

Online Machine Learning for Bilateral Trading Problems

EIRINI ANGEOPOULOU ME 1917

SUPERVISING PROFESSOR ORESTIS TELELIS

University of Piraeus

Department of Digital Systems

MSc Digital Systems and Services

Specialization Big Data & Analytics

1

2

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Assistant Professor Orestis Telelis of the Department of

Digital Systems at University of Piraeus, for his constant guidance and support. I would also like

to express my gratitude to my family and friends for their continuous encouragement. Finally, I

owe my deepest gratitude to Nikolaos Sambatis. I am forever thankful for the unconditional love

and support throughout the entire thesis process and every day.

 Eirini Angelopoulou

3

4

ABSTRACT

In this work, we are studying Online Learning and its application in Online Auctions

through intermediation. These days, all transactions on modern platforms are conducted

exclusively through real-time online auctions. The design of such auctions and their properties

have initiated a lot of research in the past years, focusing on designing the optimal auction

mechanism to maximize the seller’s revenue.

Specifically, throughout this study, we explore bibliographically the Online Learning and

its key ideas and methods. We begin with the Full Feedback and the Expert Advice methods,

followed by the Partial Feedback and the Bandit general setting. Afterwards we continue our

investigation with the problem of Online Auctions and the Double Auction or Bilateral Trade

setting, which we will also examine in the experimental section too.

For the experiment, we explore the algorithms we presented in the section on Online

Learning. Initially, we selected three Full-feedback algorithms, the Follow the Best

Price algorithm, a modified Follow the Best Price with Greedy sampling, and the Exponential

Weighted Average algorithm. We then continued the analysis with an ε-Greedy algorithm from

the Partial-feedback category of algorithms.

We compare the performance of the above algorithms in the Bilateral Trade setup,

selecting four different sets for the sellers’ and the buyers’ prices. All the algorithms tested

achieved small (logarithmic) regret and generally the findings verify the theoretical results.

Comparing the results of the algorithms, the Follow the best price algorithm is the best

performing algorithm for most of the sets while the ε-Greedy algorithm is the worst. Our

modified Follow the Best Price with Greedy sample algorithm achieved the best results, actually

outperforming the original Follow the Best Price algorithm, in one of the four experiments.

5

ΠΕΡΙΛΗΨΗ

Στα πλαίσια της παρούσας διπλωματικής εργασίας, θα ασχοληθούμε με την θεματική

του «Online Learning» και τις εφαρμογές του στις «online» δημοπρασίες με διαμελάβηση. Στις

μέρες μας όλες οι συναλλαγές, στις σύγχρονες ηλεκτρονικές πλατφόρμες, πραγματοποιούνται

αποκλειστικά μέσω «online» δημοπρασιών σε πραγματικό χρόνο. Ο σχεδιασμός τέτοιων

δημοπρασιών αλλά και η ανάλυση των ιδιοτήτων τους έχουν δώσει κίνητρο για διεξαγωγή

μεγάλου όγκου ερευνών τα τελευταία χρόνια. Εστιάζοντας κυρίως στον σχεδιασμό της βέλτιστης

δημοπρασίας με στόχο την μεγιστοποίηση των εσόδων του πωλητή.

Συγκεκριμένα, ερευνούμε βιβλιογραφικά το πρόβλημα του «Online Learning» και

παρουσιάζουμε κάποιες βασικές ιδέες και μεθόδους. Ξεκινώντας με την κατηγορία

προβλημάτων «Πλήρους Πληροφορίας» με «Συμβουλή ειδικού», και «Μερικής Πληροφορίας»

προβλήματα με «Κουλοχέρηδες». Με σκοπό στην συνέχεια να εμβαθύνουμε στις «online»

δημοπρασίες και τις δίπλες δημοπρασίες, τις οποίες θα χρησιμοποιήσουμε παρακάτω και στο

πειραματικό κομμάτι της εργασίας.

Αναλυτικά, για το πειραματικό σκέλος εξετάζουμε τους αλγόριθμους που παρουσιάσαμε

στην ενότητα του «Online Learning». Αρχικά επιλέγουμε τρεις «Πλήρους Πληροφορίας»

αλγορίθμους, τον «Follow the Best Price» αλγόριθμο, μια τροποποιημένη εκδοχή του πρώτου

την οποία αναφέρουμε ως «Follow the Best Price with Greedy sampling», και τον «Exponential

Weighted Average» αλγόριθμο. Και στην συνέχεια επιλέγουμε τον «ε-Greedy» αλγόριθμο από

τις «Μερικής Πληροφορίας» μεθόδους.

Πραγματοποιούμε πειράματα με την χρήση των προαναφερθέντων αλγορίθμων, σε

τέσσερα διαφορετικά σύνολα τιμών αγοραστών και πωλητών. Παρατηρούμε ότι σχεδόν όλοι οι

αλγόριθμοι που εξετάσαμε πέτυχαν μικρά (λογαριθμικά) «Regret». Συγκρίνοντας τους

αλγορίθμους μεταξύ τους, ο «Follow the Best Price» αλγόριθμος είναι ο αλγόριθμος με την

καλύτερη απόδοση για τα περισσότερα σύνολα και ο «ε-Greedy» ο αλγόριθμος με την χειρότερη.

Και τέλος, ο τροποποιημένος αλγόριθμος «Follow the Best Price with Greedy sampling»,

ξεπερνάει σε αποτελέσματα τον αρχικό «Follow the Best Price» σε μόνο ένα από τα σύνολα που

εξετάστηκαν.

6

7

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 2

ABSTRACT .. 4

ΠΕΡΙΛΗΨΗ ... 5

1 Introduction ... 8

1.1 Online Learning ... 9

1.2 Full Feedback - Predicting from Expert Advice .. 9

1.2.1 Exponential Weighted Average Algorithm .. 11

1.2.2 Follow the Leader Algorithm ... 12

1.3 Partial Feedback – Bandit Problem ... 14

1.3.1 ε-Greedy Algorithm ... 15

1.4 Online Double Auctions ... 17

1.4.1 Follow the Best Price Algorithm .. 19

1.4.2 McAfee’s Double Auction Direct Implementation .. 20

1.4.3 ε-Greedy Algorithm ... 21

1.4.4 Exponential Weighted Average Algorithm .. 22

2 Related work.. 25

3 Experiment of Online Double Auction with Intermediation ... 29

3.1 Experimentation Framework ... 29

3.1.1 Datasets used .. 30

3.1.2 Experimental phase ... 31

3.2 Set 1: Uniform [0,1] ... 32

3.3 Set 2: Normal (μ=3, σ=1/2) .. 35

3.4 Set 3: Normal sellers (μ=4, σ=1/2) buyers (μ=3.5, σ=1/2) ... 38

3.5 Set 4: Poisson sellers (5) buyers (3) ... 41

3.6 Summary .. 44

4 Conclusions .. 48

5 Bibliography ... 50

6 Appendix – Additional results ... 52

8

1 Introduction

In this thesis, we consider the problem of an Online Auction of a specific product by an

intermediary. Meaning that we have sellers and buyers coming in pairs, in a random order,

declaring their price. Every time a pair of sellers and buyers arrive, the intermediary must decide

if they want to sell and buy, based on a threshold price they have set. The desired mechanism for

this problem would optimize the gain, resulting in trading the item.

This problem falls under the category of Online Learning problems with intermediation.

More specifically, double auction or bilateral trade is a model where the intermediary

concentrates on the maximization of their efficiency.

In Online Learning, the samples arrive in a sequence or a “stream”, and the algorithm

must process them in real-time and make a decision. In contrast, in Offline Learning, the algorithm

receives the whole input of data, to output a decision.

In the following paragraphs, we give an overview of the Online Learning setting, some key

algorithms, and some theoretical results. We introduce the Online Double Auction problem, and

we examine the extent of the algorithms presented before, within this setup. Lastly, we conduct

experiments of online double auctions with these algorithms and compare their performance and

results.

One very popular application of double online auctions is the Ad Exchange method of

selling advertisements. An intermediary (the Ad Exchange platform) interacts with both buyers

(the advertisers) and sellers (the publishers) that arrive sequentially, one iteration at a time, and

all the items are identical (ad slots). The intermediary must decide on each bid as they come.

These days all transactions are handled exclusively through real-time online auctions. As

previously mentioned, the design of such auctions and their properties has been the subject of

extensive research in the recent years, focusing on designing the optimal auction mechanism to

maximize the seller’s profit. The most popular Ad Exchanges technologies now [14] are,

DoubleClick (Google) having the 49.36% of the market share, AppNexus 11.92%, OpenX 10.77%,

and many more.

9

1.1 Online Learning

In this chapter, a brief introduction of online learning methods and some popular

algorithms will be presented.

Unlike the usual, batch processing, machine learning algorithms, in online learning, the

samples arrive in sequential order and the algorithm processes them one at a time and updates

them per interaction. That means that we do not have the usual training data set and that the

algorithm updates instantly for all the newly arrived samples making these algorithms optimum

for real-world applications where data are not only large but also arriving at a high velocity.

Online learning has become a promising technique for learning from continuous streams

of data in many real-world applications. This comes in contrast with the usual machine learning

algorithms, where they are trained with a specific data set, and then we use the model without

adapting it to new data. Online learning methods appear to fit better in environments like

auctions, trading stocks, search auctions, etc. where the values change frequently.

In the next sections, some cases of online learning algorithms both Full and Partial

Feedback will be introduced and examined based on their value in the Online Auctions set up.

1.2 Full Feedback - Predicting from Expert Advice

The general Online Learning setting includes T rounds. An instance arrives, and the

algorithm comes to a decision. Then it receives feedback and calculates the loss using some

metric.

We will begin by describing the setting of Full Feedback - Online Learning with Expert

Advice, which has been studied extensively in the literature as well as some metrics for judging

the performance of the algorithms presented. The presentation is based on studies [8],[9].

A popular way to describe this relates to the weather example. Imagine that every day 𝑡

we would like to be able to predict on a daily basis if it will rain or not, it being a binary result

{0,1}. This kind of problem has been studied a lot and many machine learning algorithms can use

historical data to predict or forecast the output. In this approach, we do not have historical data,

but we can use the advice of 𝑁 experts 𝐸 = {𝐸1, … , 𝐸𝑁}. Each day the experts make their

prediction {0,1} and then the algorithms must use this to make their own decisions, assuming

10

that no other input has been given to the algorithm. A few hours later we will have our feedback

(rain or not) from nature.

We do not make any assumption on the experts, they could be arbitrarily correlated, or

based on the quality of their information. So, the goal is to perform nearly as well as the best

expert. The best expert is the one that has made the fewest mistakes so far.

When describing this example, we consider a game with a binary output {0,1}, but within

another context we can have distinct or continuous value outputs. For instance, we could have

the same problem, but the value of each expert’s prediction would be the probability of whether

it will rain or not. Based on this output we calculate the value loss for the algorithm and for all the

experts. As a result, after 𝑇 rounds we will have a general loss of 𝐿𝑇 and a vector with 𝑁 different

losses for each of our experts [𝐿𝑇,1, … , 𝐿𝑇,𝑁].

As discussed previously, in online learning it is not necessary to know machine learning

metrics, such as accuracy. We could use the notion of regret that can be calculated as the

difference between our algorithm’s loss and the best expert’s loss instead:

𝑅𝑇 = 𝐿𝑇 − 𝑚𝑖𝑛𝑖∈𝐸 𝐿𝑇,𝑖 .

The definition of the loss function for the general online setting with 𝑇 rounds is

presented below. The analysis is based on [9, Chapter 8].

Definition 1. [9, Chapter 8] At the 𝑡 round we make a prediction 𝑦𝑡̂ ∈ 𝒴 and receive

feedback 𝑦𝑡 ∈ 𝒴. The loss function is

𝐿(𝑦𝑡̂ , 𝑦𝑡): 𝒴 × 𝒴 → ℝ+ .

In the literature we encounter a lot of different loss functions. Specifically, for our set up

where 𝑦 ∈ {0,1} one common encounter is described below.

Definition 2. [9, Chapter 8] At the 𝑡 round, we make a prediction 𝑦𝑡̂ ∈ {0,1}, and

receive feedback 𝑦𝑡 ∈ {0,1}. The loss function is

𝐿(𝑦𝑡̂ , 𝑦𝑡) = |𝑦𝑡̂ − 𝑦𝑡| .

So, in every round it can be zero if the prediction is correct and one if it is not. The

objective of the online game is, after 𝑇 rounds, to minimize the cumulative loss:

11

∑ 𝐿(𝑦𝑡̂ , 𝑦𝑡)

𝑇

𝑡=1

.

In a more generic setup with 𝐿 ∈ ℝ, we present below another common loss function.

Definition 3. [9, Chapter 8] At the 𝑡 round we make a prediction 𝑦𝑡̂ ∈ ℝ, and receive

feedback 𝑦𝑡 ∈ ℝ. The loss function is

𝐿(𝑦𝑡̂ , 𝑦𝑡) = (𝑦𝑡̂ − 𝑦𝑡)2.

The algorithms that belong to the Online Learning with Expert Advice set-up are

numerous in the literature. In the following sections, we will present the Exponential Weighted

Average algorithm [9], and the Follow the Leader [13],[1] algorithm.

1.2.1 Exponential Weighted Average Algorithm

The Exponential Weighted Average algorithm, to be described in the current section, is

based on [9, Chapter 8]. In the specific algorithm we assume that the loss function has continuous

values 𝐿 ∈ [0,1], and will be used at the weight update rule.

The algorithm begins with a list of uniform weights, [𝑤1(1), … , 𝑤𝑁(1)]. At every round t

we receive a list with the expert’s predictions [𝑥1(𝑡), … , 𝑥𝑁(𝑡)] and their weights

[𝑤1(𝑡), … , 𝑤𝑁(𝑡)]. And then, the algorithm’s prediction is calculated by the following rule:

𝑦𝑡̂ =
∑ 𝑤𝑖(𝑡)𝑥𝑖(𝑡)𝑁

𝑖=1

∑ 𝑤𝑖(𝑡)𝑁
𝑖=1

After calculating the prediction, we receive the feedback and update the weights

accordingly, with the following rule:

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡)𝑒−𝜂𝐿𝑖(𝑡) ,

where 𝐿𝑖(𝑡) = 𝐿(𝑦𝑖(𝑡)̂, 𝑦𝑖(𝑡)), is the total loss of the expert 𝑖 at the round 𝑡.

The pseudocode for the Exponential Weighted Average algorithm is shown in figure 1.1.

12

Algorithm Exponential Weighted Average [9]

Parameters: A constant 𝜂 > 0
Initialization: For each expert 𝑘, 𝑤𝑘(1) = 1.
for t = 1,2, … , 𝑇 do:

Make a prediction: 𝑦𝑡̂ ←
∑ 𝑤𝑖(𝑡)𝑥𝑖(𝑡)𝑁

𝑖=1

∑ 𝑤𝑖(𝑡)𝑁
𝑖=1

;

Receive feedback, 𝑦𝑡;
for every expert k do:
 Calculate the loss: 𝐿𝑖(𝑡);

 Calculate the weight: 𝑤𝑘(𝑡 + 1) ← 𝑤𝑖(𝑡)𝑒−𝜂𝐿𝑖(𝑡) ;
 end for
end for

Figure 1.1 Exponential Weighted Average

The next step is to present a bound for the Regret of the Exponential Weighted Average

algorithm, as presented in [9, Chapter 8].

If we assume that the loss function will have continuous values 𝐿 ∈ [0,1] then for any

value of the constant 𝜂 > 0 and any series of events 𝑦1, … , 𝑦𝑇 ∈ 𝒴, the regret of the Exponential

Weighted Average algorithm after T rounds will satisfy:

𝑅𝑇 ≤
log(𝑁)

𝜂
+

𝜂𝑇

8
 .

The optimum choice for the number 𝜂, expects from us to know the horizon 𝑇. However, a

general method treating this, consists of interpreting 𝜂 as a function of time, 𝜂𝑡 = √(8 log 𝑁) 𝑡⁄ ,

which leads to a 𝑂(√𝑇) dependency on T, that cannot be improved for general loss function.

Apart from the algorithm mentioned above, many others, belonging to the Weighted

Majority family, have been presented in the literature. Some differ in the update rule, others in

the loss function and bounds that they have used.

1.2.2 Follow the Leader Algorithm

The Follow the Leader algorithm, as described in [13] and [1], is a simple and intuitive

strategy for Online Learning problems. We will present this method in the same general setting

we described in the previous algorithm. In this framework, the leader’s predictions

[𝑥1(𝑡), … , 𝑥𝑁(𝑡)] are a convex set, and the loss function 𝐿𝑖(𝑡) is a convex function with respect

to its first argument.

13

This method, just like the previous one of the Exponential Weighted Average, is initiated

by the assumption that few leaders are performing conceivably better than others as time passes.

Therefore, we want to increase the probability of these leaders being selected in the next rounds.

The algorithm begins with a list of leaders’ predictions [𝑥1(1), … , 𝑥𝑁(1)] and at every

round it calculates the prediction according to the following rule:

𝑦𝑡̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈[𝑥1(𝑡),…,𝑥𝑁(𝑡)] ∑ 𝐿𝑖(𝑥)

𝑡

𝑖=1

 ,

where 𝐿𝑖(𝑡) = 𝐿(𝑦𝑖(𝑡)̂, 𝑦𝑖(𝑡)), is the total loss of the leader 𝑖 at the round 𝑡. As we

mentioned above, we assume that the loss is a convex function.

The pseudocode for the Follow the Leader algorithm is shown in figure 1.2.

Algorithm Follow the Leader [13]

Initialization: The expert’s predictions [𝑥1(𝑡), … , 𝑥𝑁(𝑡)].
 For each expert 𝑘, 𝐿𝑘(1) = 0.
for t = 1,2, … , 𝑛 do:

Make a prediction 𝑦𝑡̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈[𝑥1(𝑡),…,𝑥𝑁(𝑡)] ∑ 𝐿𝑖(𝑥)𝑡
𝑖=1 ;

Receive feedback, 𝑦𝑡;

end for

Figure 1.2 Follow the Leader

Evidently, this algorithm is a greedy algorithm. Similarly with the previous one, the goal is

to design one that achieves a total expected loss not greater than the loss of the best leader.

As presented in [1], the Regret of Follow-the-Leader algorithm is bounded by the number

of times the leader is overtaken by another expert. As a result, the value of Regret remains small

as long as the best predictions are made by a single expert on average.

Accordingly, FTL works very well in scenarios where the losses are independent and

identically distributed (i.i.d.), when due to the uniform law of large numbers, the leader is

overtaken by another expert only a finite number of times. Yet, the algorithm has bad

performance for worst-case data.

In the next paragraph, we will introduce the Partial Feedback and specifically a simple

version of the k-armed Bandit problem, as it has been described in [10].

14

1.3 Partial Feedback – Bandit Problem

We have discussed until now the Full Information setting, where we were able to observe

the loss of all the experts. In some problems this assumption is valid. Yet, in other cases this is not

possible, and we can only observe the loss of the expert we actually choose. We will present in

this section a very popular example of Partial Feedback problems, as presented in [10].

The Multiarmed Bandit problem is one where a gambler must decide among K non-identical

slot machines, which to play in a sequence of trials so as to maximize his reward. In this example,

at the end of each round, the gambler only knows the output of the slot he played and has no

other feedback about the other slots that weren’t selected.

A more general description of Partial Information games is the following: in every round,

we have a choice among k different actions. After each round, we receive a reward based on the

action we selected, but no other feedback about the rest of the available options. The objective

is to maximize the expected total reward over a period of time.

In this set up you can see that we face a dilemma, since we receive no information about

the accuracy of the actions unless we choose them. We need to balance our actions between

exploiting the information we have received until now and exploring other actions that may be

better. In the literature, this is referred to as the exploration versus exploitation dilemma.

So, in each round, each of the experts has an expected reward. This is the value of each

action. Let’s say that the action selected on round 𝑡 is 𝐴𝑡 and the equivalent reward 𝑅𝑡, so the

expected reward for selecting the actions 𝑎 is the conditional expectation:

𝔼[𝑅𝑡| 𝐴𝑡 = 𝑎] .

If we knew the value of each of the available actions, then our problem would be trivial as

we would be able to always choose the action with the highest value. We assume that this is not

the case. Instead, we have some estimations. Therefore, we denote that the estimated value of

action 𝑎 at the 𝑡𝑡ℎ round is 𝑄𝑡(𝑎). The goal here is, that the 𝑄𝑡(𝑎) would be as close as possible

to the expected reward 𝔼[𝑅𝑡| 𝐴𝑡 = 𝑎].

During the game, we estimate these action values, and we do that by exploring.

Consequently, at any given moment we know that at least one action excels the others, by having

the greatest estimated value. These are greedy actions, and by selecting them we are exploiting

the information we have until now. If instead, we select one of the nongreedy actions, say with a

15

small probability, then we are exploring the other options. While exploiting may seem the right

choice on each round, by exploration you can get a greater total reward in the end.

A straightforward way to estimate these action values is by average the rewards that were

received until now, as presented in [10, Chapter 2].

Definition 4. [10, Chapter 2] At the 𝑡𝑡ℎ round, the estimated value of the action 𝑎 is

the sum of the rewards when 𝑎 is taken prior to 𝑡, over the number of times 𝑎 is taken prior to 𝑡.

𝑄𝑡(𝑎) =
∑ 𝑅𝑖 ∙ 1𝐴𝑖=𝑎

𝑡−1
𝑖=1

∑ 1𝐴𝑖=𝑎
𝑡−1
𝑖=1

 .

When the denominator is zero, we set 𝑄𝑡(𝑎) equal to a default value, like zero. And as it

goes to infinity, by the law of large numbers, 𝑄𝑡(𝑎) converges to 𝔼[𝑅𝑡| 𝐴𝑡 = 𝑎]. This is called the

sample-average method of estimating the action values.

Obviously, this is just one way to estimate action values and a quite simple one.

Consequently, based on the above definition, a greedy action rule will be:

𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑄𝑡(𝑎)) .

Where the function 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 results in the action 𝑎 which we need to choose to get the

max estimated value.

In the following paragraphs, we will describe one of the most popular and simple in

implementation algorithm of Partial Information Bandit problems. The ε-Greedy algorithm, as

presented in [10].

1.3.1 ε-Greedy Algorithm

As described above, Greedy actions always exploit the prior knowledge in order to

maximize immediate reward and do not spend any time sampling other actions that may seem

inferior at the time, but may be better in the long run.

A reasonable alternative to this is to behave greedily most of the time, but occasionally

select randomly with equal probability among all the actions, independently of the estimated

action value. These are the ε-Greedy methods. Below we present an ε-Greedy method for the

Bandit problem, as analysed in [10, Chapter 2].

16

If we assume that we are using an ε-Greedy for action selection, as the rounds pass by,

every action will sample an infinite number of times. As a result, by law of large numbers, the

estimated value (Definition 4) 𝑄𝑡(𝑎) will converge to the expected reward 𝔼[𝑅𝑡| 𝐴𝑡 = 𝑎]. This is

a big advantage of this method, since it directly indicates that the probability of selecting the

optimal action converges to near certainty (1 − 𝜀).

In order to be able to create a computational efficient ε-Greedy algorithm, we need to

express the estimated value 𝑄𝑡(𝑎) to an incremental formula that depends only on the previous

step.

Defining first that 𝑄𝑛 is the estimate value of action 𝑎 after it has been selected 𝑛 times

and 𝑅𝑛 is the reward received after the action 𝑎 has been selected 𝑛 times, the new average of

all 𝑛 rewards can be computed by:

𝑄𝑛+1 =
1

𝑛
∑ 𝑅𝑖

𝑛

𝑖=1

= 𝑄𝑛 +
1

𝑛
[𝑅𝑛 − 𝑄𝑛] .

The expression [𝑅𝑛 − 𝑄𝑛] is the error between the estimated value and the reward.

This formula requires memory only for 𝑄𝑛 and 𝑛, and only the small computation for each

new reward.

The pseudocode for the bandit problem using ε-greedy action selection algorithm [10,

Chapter 2] is shown in figure 1.3.

Algorithm ε-Greedy [10]

Initialization: For each action 𝑘, 𝑄(𝑘) = 0 and 𝑁(𝑘) = 0.
for t = 1,2, … do:

 𝐴 ← {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝑡(𝑎); 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀
𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛; 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀

 𝑅 ← 𝑏𝑎𝑛𝑑𝑖𝑡(𝐴);
 𝑁(𝐴) ← 𝑁(𝐴) + 1;

 𝑄(𝐴) ← 𝑄(𝐴) +
1

𝑁(𝐴)
[𝑅 − 𝑄(𝐴)];

end for

Figure 1.3 ε-Greedy

One popular implementation of Online Learning is Online Auctions. In the next paragraph,

we are going to introduce the Online Auctions and specifically the Double Auction or Bilateral

Trade setup, presenting in detail the theory and the methods we are going to use in our

experimentation.

17

1.4 Online Double Auctions

Online Auctions have been studied extensively in the literature. We will present the Double

Auction problem in this section, as described in [11]. The algorithms, methods, and some

theoretical results we are about to see here, are the ones that we will also use in our experiment.

The results of our experimentation will be presented in section 3.

We consider the double auction of a specific product by an intermediary. The sellers and

buyers are coming in pairs, in a random order, and they declare their price. Whenever a seller and

a buyer arrive, we must decide whether we want to allow the transactions based on a threshold

price.

Online Auction problems can be divided into Full Feedback or Partial Feedback based on

the information we are receive after the end of every round. In the first case, we have available

all the information about the seller’s and buyer’s values as well as the output of the interaction.

In the second and more realistic case, we know the output of the interaction and the value we set

up, but we do not have any information about the second party price. We will present below some

methods that belong to the Full Information Expert Advice setup, followed by a Partial

Information Bandit method. All of them will be used later in the experimentation phase.

Two metrics commonly used to assess the performance of a mechanism are Social

Welfare and Gain from Trade. Both are presented below, as given in [11], [7].

For the intermediation setting, we consider that a set of binaries of buyer’s and seller’s

bits arrives online in a random order at every round: 𝑀(𝐵, 𝑆) = {(𝑏1, 𝑠1), (𝑏2, 𝑠2), … , (𝑏𝑛, 𝑠𝑛)},

with |𝐵| = |𝑆| = 𝑛.

The intermediary has set a price 𝑝 ∈ 𝐵 ∪ 𝑆. In every round we buy and sell one item from

the sellers to buyers who accept our price, over n steps. So, the transactions that were

successfully made are:

𝑇(𝐵, 𝑆) = {(𝑏, 𝑠) ∈ {{𝐵} ∪ {𝑆}} | ∃𝑡 𝑏𝑡 ≥ 𝑝𝑡 ∧ 𝑠𝑡 ≤ 𝑝𝑡 } .

Below we present the definition of Social Welfare as presented in [7], [11].

18

Definition 5. [7], [11] The Social Welfare of the online auction we describe, is the sum

of the valuations of all agents with items. More specifically, all the sellers that did not sell their

items and all the buyers that did buy an item.

𝑊(𝐵, 𝑆) = 𝔼 [∑ 𝑠
𝑠∈𝑆\𝑇(𝐵,𝑆)

 + ∑ 𝑏
𝑏∈𝑇(𝐵,𝑆)

] ,

or differently expressed: 𝑊(𝑝𝑡 , 𝑠𝑡 , 𝑏𝑡) = 𝑊𝑡(𝑝𝑡) = 𝑠𝑡 + (𝑏𝑡 − 𝑠𝑡)𝕀{𝑠𝑡 ≤ 𝑝 ≤ 𝑏𝑡} .

Below we present the second function we have for evaluating the performance: the Gain

from Trade as presented in [7], [11].

Definition 6. [7], [11] The Gain from Trade of the online auction we described, is the

difference between the final and the starting Welfare. In other words, the difference of the values

of buyers and sellers for the transactions that were successfully made during the execution of our

algorithm.

𝐺𝐹𝑇(𝐵, 𝑆) = 𝔼 [∑ 𝑏
𝑏∈𝑇(𝐵,𝑆)

 − ∑ 𝑠
𝑠∈𝑇(𝐵,𝑆)

] ,

or differently expressed: 𝐺𝐹𝑇(𝑝𝑡 , 𝑠𝑡 , 𝑏𝑡) = 𝐺𝐹𝑇𝑡(𝑝𝑡) = (𝑏𝑡 − 𝑠𝑡)𝕀{𝑠𝑡 ≤ 𝑝 ≤ 𝑏𝑡}.

Note that, from the definitions given above, the 𝐺𝐹𝑇(𝐵, 𝑆) = 𝑊(𝐵, 𝑆) − 𝑠𝑡 .

Lastly, we will also examine the performance of our algorithms based on Regret notion

we present below.

Definition 7. [11] The Regret of the online auction we describe, is the difference

between the expected total performance of our algorithm, and the best fixed price strategy

assuming full knowledge of the distribution.

𝑅𝑇 = 𝑚𝑎𝑥𝑝∈[0,1]𝐸 [∑ 𝐺𝐹𝑇𝑡(𝑝)

𝑇

𝑡=1

− ∑ 𝐺𝐹𝑇𝑡(𝑝𝑡)

𝑇

𝑡=1

] .

19

Therefore, the goal is to design a mechanism that achieves asymptotically vanishing time-

averaged Regret with respect to the best fixed-price strategy, or equivalently Regret sublinear in

the time horizon 𝑇.

The first algorithm we will present belongs to the Full Feedback Experts’ Advice setup and

is the “Follow the Best Price” algorithm as presented in [11].

1.4.1 Follow the Best Price Algorithm

In [11], Nicolò Cesa-Bianchi, Tommaso R. Cesari, Roberto Colomboni, Federico Fusco,

Stefano Leonardi (2021), present the Follow the Leader approach we saw in a previous section,

which they call Follow the Best Price. As we mentioned this algorithm belongs to the Full Feedback

methods. The “Follow the Best Price” algorithm [11] is shown below, in figure 1.4.

The seller/buyer pairs arriving are (𝑏𝑡, 𝑠𝑡) ∈ [0,1]2 independent and identically distributed

(i.i.d.) random variables, without any further assumptions on their common distribution (B, S).

They could even be arbitrarily correlated.

So, the algorithm begins by selecting a starting value for the price, arbitrarily. At step 𝑡, the

algorithm presents the price p, then the pair (𝑏𝑡 , 𝑠𝑡) arrives and receives the result of the

transaction. Lastly, it recalculates the value price, selecting the value 𝑝 ∈ {𝑆1, 𝐵1, … , 𝑆𝑡 , 𝐵𝑡 } with

the maximum Gain from Trade value until now. The update rule is presented below:

𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈{𝑆1,𝐵1,…,𝑆𝑡,𝐵𝑡 } ∑ 𝐺𝐹𝑇(𝑥, 𝑠𝑖, 𝑏𝑖)

𝑡

𝑖=1

 .

Algorithm Follow the Best Price [11]

Initialization: The price value p = 𝑝1.
for t = 1,2, … , 𝑛 do:

Post the price value p;
Receive feedback (𝑠𝑡 , 𝑏𝑡) ;

Compute 𝑝 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈{𝑆1,𝐵1,…,𝑆𝑡,𝐵𝑡 } ∑ 𝐺𝐹𝑇(𝑥, 𝑠𝑖, 𝑏𝑖)𝑡
𝑖=1 ;

end for

Figure 1.4 Follow the Best Price

Finally, a bound for Regret is presented below as a function of the number of mistakes of

the best expert, as stated in [11].

20

In a Full-Feedback stochastic (iid) setting, the Regret of the Follow the Best Price

algorithm, is bound of the following regardless of 𝑇 ∈ ℕ:

𝑅𝑇 ≤ 𝑐√𝑇𝑙𝑜𝑔(𝑇) , where 𝑐 ≤ 90.

The next algorithm we will present is the greedy sample or direct implementation of the

dominant strategy action, for double auctions, as presented in [12].

1.4.2 McAfee’s Double Auction Direct Implementation

In this scenario, we have an Offline Double Auction mechanism. So instead of pairs of

sellers and buyers, we have a list of 𝑚 buyers and 𝑛 sellers. Each buyer 𝑖 has a privately observed

value 𝑏i and each seller 𝑗 has a privately observed value 𝑠j.

Let {𝑏1, 𝑏2, … , 𝑏m} be the list of buyers’ values and {𝑠1, 𝑠2, … , 𝑠n} be the list of sellers’

values, we have available. We are ordering the buyers’ values in descending order and the sellers’

values in ascending order, as shown below:

𝑏(1) ≥ 𝑏(2) ≥ ⋯ ≥ 𝑏(m) and 𝑠(1) ≤ 𝑠(2) ≤ ⋯ ≤ 𝑠(n) .

Where the notation (𝑖) is used for the 𝑖th highest valuation buyer or the 𝑖th lowest

valuation seller.

Additionally, we are assuming that:

𝑏(m+1) = sup{𝑏: 𝐹(𝑏) = 0} , 𝑠(n+1) = inf{𝑠: 𝐹(𝑠) = 1} .

The efficient number of trades is the number 𝑘 ≤ min{𝑚, 𝑛} where:

𝑏(k) ≥ 𝑠(k) , and 𝑏(k+1) < 𝑠(k+1) .

Finally, we define the trading price:

𝑝0 =
1

2
(𝑏(k+1) + 𝑠(k+1)).

This method, as defined in [12], is called the Direct Implementation of the Dominant

Strategy action and it always produces full information first best price. The pseudocode of the

algorithm is shown in figure 1.5.

21

Algorithm McAfee’s Direct Implementation [12]

Initialization: The buyers [𝑏1, 𝑏2, … , 𝑏m] and the sellers [𝑠1, 𝑠2, … , 𝑠n].
Order by descending the list of buyers [𝑏1, 𝑏2, … , 𝑏m]
Order by ascending the list of sellers [𝑠1, 𝑠2, … , 𝑠n]
for t = 2, … , max (𝑚, 𝑛) do:

if 𝑏𝑡−1 ≥ 𝑠𝑡−1 𝑎𝑛𝑑 𝑏𝑡 < 𝑠𝑡 do:

 Compute 𝑝 ←
𝑠𝑡+1−𝑏𝑡+1

2
;

 break;
 end if
end for

Figure 1.5 McAfee’s Direct Implementation

Later, we will use the algorithms and metrics described above in our experimentation

section.

1.4.3 ε-Greedy Algorithm

In this paragraph we will present the ε-Greedy algorithm that has been introduced in

paragraph 1.3.1. This time however, it will be studied in the Double Auction setup as we will use

it in the experimental section of this work.

The seller/buyer pairs arriving {(𝑏1, 𝑠1), (𝑏2, 𝑠2), … , (𝑏𝑛, 𝑠𝑛)}, are independent and

identically distributed (i.i.d.) random variables, without any further assumptions on their common

distribution (B, S).

As we saw in paragraph 1.3 in definition 5, the estimated value 𝑄𝑛(𝑎) of the action 𝑎 at the

n𝑡ℎ round, will be given by:

𝑄𝑛+1(𝑎) = 𝑄𝑛(𝑎) +
1

𝑛(𝑎)
[𝑅𝑛 − 𝑄𝑛(𝑎)] .

Where 𝑛(𝑎) is the times the action 𝑎 has been selected and the reward at the n𝑡ℎ round is

the Gain from Trade value (𝑏𝑛 − 𝑠𝑛)𝕀{𝑠𝑛 ≤ 𝑝 ≤ 𝑏𝑛}.

Hence, in each round the algorithm decides if we will follow the greedy action, with

probability 1 − 𝜀, receives the seller/buyer pair and calculates the reward value and lastly,

updates the estimated value for the action selected, based on the updated rule described above.

The pseudocode for ε-Greedy algorithm is shown in figure 1.6.

22

Algorithm ε-Greedy

Initialization: For each action 𝑘, 𝑄(𝑘) = 0 and 𝑁(𝑘) = 0.
for t = 1,2, … do:

 𝐴 ← {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝑡(𝑎); 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀
𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛; 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀

Receive feedback (𝑠𝑡 , 𝑏𝑡) ;
if 𝑏𝑡 ≥ 𝑝𝐴 𝑎𝑛𝑑 𝑝𝐴 ≤ 𝑠𝑡 do:

 𝑅 ← 𝑏𝑡 − 𝑠𝑡;
end if
𝑁(𝐴) ← 𝑁(𝐴) + 1;

 𝑄(𝐴) ← 𝑄(𝐴) +
1

𝑁(𝐴)
[𝑅 − 𝑄(𝐴)];

end for

Figure 1.6 ε-Greedy

1.4.4 Exponential Weighted Average Algorithm

In this paragraph we will present the Exponential Weighted Average method, which has

been introduced in paragraph 1.2.2, but in the Double Auction setup as we will use it in the

experimental section of this work.

In this algorithm we assume that the loss function is the Gain from Trade and will be used

at the weight update rule.

The algorithm starts again with a list of uniform weights, [𝑤1(1), … , 𝑤𝑁(1)]. At every

round t we receive a list with the expert’s predictions [𝑥1(𝑡), … , 𝑥𝑁(𝑡)] and their weights

[𝑤1(𝑡), … , 𝑤𝑁(𝑡)]. And then, the algorithm’s prediction is calculated by the following rule:

𝑦𝑡̂ =
∑ 𝑤𝑖(𝑡)𝑥𝑖(𝑡)𝑁

𝑖=1

∑ 𝑤𝑖(𝑡)𝑁
𝑖=1

After calculating the prediction, we receive the feedback and update the weights

accordingly with the following rule:

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡)𝑒−𝜂𝐿𝑖(𝑡) ,

where 𝜂𝑡 = √(8 log 𝑁) 𝑡⁄ and 𝐿 ∈ [0,1].

For calculating the loss function, we follow the steps shown below:

1. Calculate loss for each expert 𝐿𝑖(𝑡) = max(𝐺𝐹𝑇(𝑡)) − 𝐺𝐹𝑇𝑖(𝑡)

2. Normalize loss 𝐿(𝑡), since 𝐿 ∈ [0,1].

23

The seller/buyer pairs arriving {(𝑏1, 𝑠1), (𝑏2, 𝑠2), … , (𝑏𝑛, 𝑠𝑛)}, are independent and

identically distributed (i.i.d.) random variables, without any further assumptions on their common

distribution (B, S).

The pseudocode for the Exponential Weighted Average algorithm, for Online Double

Auction setting, is shown in figure 1.7.

Algorithm Exponential Weighted Average

Parameters: A constant 𝜂 > 0
Initialization: A list with experts 𝑋 = [𝑥1, … , 𝑥𝑁] ∈ [0,1]𝑁 and for each expert 𝑘, 𝑤𝑘(1) = 1.
for t = 1,2, … , 𝑇 do:

 Calculate 𝜂𝑡 = √(8 log 𝑁) 𝑡⁄ ;

Make a prediction for the price: 𝑝𝑡 ←
∑ 𝑤𝑖(𝑡)𝑥𝑖(𝑡)𝑁

𝑖=1

∑ 𝑤𝑖(𝑡)𝑁
𝑖=1

;

Receive feedback (𝑠𝑡 , 𝑏𝑡) ∈ [0,1] ;
for every expert k do:
 Calculate: 𝐺𝐹𝑇𝑘(𝑡) ← 𝐺𝐹𝑇𝑘(𝑡) + 𝑏𝑡 − 𝑠𝑡 ;

 end for
 Calculate the loss: 𝐿𝑘(𝑡) = max(𝐺𝐹𝑇(𝑡)) − 𝐺𝐹𝑇𝑘(𝑡);
 Normalize loss 𝐿(𝑡);

for every expert k do:

 Calculate the weight: 𝑤𝑘(𝑡 + 1) ← 𝑤𝑘(𝑡)𝑒−𝜂𝐿𝑘(𝑡) ;
 end for
end for

Figure 1.7 Exponential Weighted Average

24

25

2 Related work

Numerous papers have already investigated the subject of online auctions. Below we will

see some papers that study the classic online auction for a single product setup, some that

consider Full Feedback methods, others with Partial Feedback, others investigate the problem

from the seller’s perspective, others from the buyer’s, and some with instrumentation. Lastly,

some that are dealing with the Bilateral Trade Auctions that we are studying in this thesis and we

will describe their findings and their individual approaches.

Some of these papers have investigated the subject of Online Auctions for a single product

in unlimited resources. For instance, in their paper Blum, Kumar, Rudra, and Wu [3] investigate a

Full Information Online Auction and a post price mechanism, where an auctioneer declares a price

ahead and a bidder decides if he is going to accept it or not. In comparison to the standard online

auction, the authors’ mechanism offers much less information to the auctioneer about the

bidder's valuation. The authors present, somewhat surprisingly, an asymptotically constant-

competitive algorithm for both problems, using a weighted majority (WM) algorithm for their

online auction and an Exp3 algorithm for the posted price set up.

In their research paper of Feng, Podimata, and Syrgkanis [4], the authors were also

interested in the online auction of digital goods, but focusing on the fact that in many cases the

bidder does not have a clear picture of the product’s worth, or its worth changes over time. Their

primary application is that of value-per-click sponsored search auctions. In this paper, the authors

address the problem of "learning how to bid" in a Partial Information setup, in order to minimize

the Regret with respect to the best-fixed price bid. Their algorithm, WIN-EXP (a variant of EXP3),

outperforms the classical Bandit approach, and it is proven to hold even when they introduce

noise in the bidder’s feedback. The WIN-EXP algorithm achieves Regret 𝑂̃(√𝑇|𝑂| log|𝐵|), better

than the generic Multi-armed Bandit Regret of 𝑂̃ (√𝑇|𝐵|), where 𝐵 is the set of possible action

values (bids) and 𝑂 the set of potential outcomes, since |𝑂| in most applications it will be a small

constant.

One of the most recent studies on the Bilateral Trade problem is the one of Nicolò Cesa-

Bianchi, Tommaso R. Cesari, Roberto Colomboni, Federico Fusco and Stefano Leonardi [11]. In

their work they study a mechanism design problem to perform bilateral trades, in a Regret

minimization setting. Their goal is to bound the total loss in a long period, by learning the

26

important features of the prior distributions. In their analysis, they experiment with a stochastic

and an adversarial setting with the objective to investigate how the bounds of the Regret

change, depending on the quality of the feedback received. Their results show that under the

stochastic setting (iid), for the Full-Feedback model, their algorithm achieves Regret of 𝑂̃(𝑇1 2⁄).

For the Realistic-Feedback, assuming also that the valuations of the seller and the buyer are

independent of each other and have bounded densities, their algorithm achieves Regret of

𝑂̃(𝑇2 3⁄). But if either they are not independent or they do not have bounded densities, no

strategy can achieve sublinear worst-case regret. They also showed that these rates cannot be

improved more than a log 𝑇 factor. Lastly, they demonstrate that in an adversarial setting, no

strategy can achieve sublinear worst-case regret, regardless of the feedback.

In their work, Jonathan Weed, Vianney Perchet, and Philippe Rigollet in [5], also consider

the online advertising setting as a well-fitted problem to approach with the Online Learning

algorithms. In this setup, the good that is in sale is the advertising space, the seller is the respected

platform’s owner, and the advertisers are the bidders. They consider a market where repeated

Vickrey auctions take place and study this case from the bidder’s perspective with the objective

of maximizing the expected revenue generated by the ads. This setup can be expressed as a Bandit

problem, or a Learning problem with Partial Feedback, with the goal to construct the optimal

bidding strategy. They research the problem from two perspectives, from the Stochastic setting

with a UCB-type of algorithm and from the Adversarial setting discretizing the possible scenarios

to convert this to a classic bandit set up. In the stochastic approach, logarithmic regret 𝑂̃(log 𝑇)

is possible and in the Adversarial approach, comparing the performance against that of the best

fixed bid, a sublinear regret is also achievable.

Mehryar Mohri and Andres Munoz Medina in [6], also consider the online advertising

setting of a Vickrey auction with a reserve, but in their study they focus on determining the

optimal reserve price to maximize the revenue, from the publisher’s perspective. The revenue

depends on the reserve value that the publisher is setting. If this value is too low the winner may

end up paying a very small price whereas if it is too high, it is possible that no bidder will bid high

enough and the slot will be empty. Their approach is to use historical data from past auctions to

predict the optimal reserve price, assuming full information with the objective of minimizing the

expected value of the loss function. They do not make an assumption on the distribution of the

bids but only that the outcome of each auction is independent and identically distributed allowing

the bidders to be correlated. Finally, they present an algorithm that achieves 𝑂̃(Tlog 𝑇).

27

There are more interesting studies and approaches than the ones we have described so

far. We reference the reader to Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, Pavel Kolev,

(2020) [2], research, where they consider Secretary and Online Bipartite Matching problems. The

high-level idea is to incorporate some form of predictions in an existing online algorithm to get

the best of two worlds.

28

29

3 Experiment of Online Double Auction with Intermediation

In the previous chapters, we talked about some algorithms of two different groups, Full

Feedback and Partial Feedback. From the algorithms described so far, we will be using the

algorithms in section 1.4 Online double auctions, for our experiments. Therefore, the algorithms

used are defined in the table below.

Algorithms Algorithm Names Category

Algorithm 1 Follow the Best Price (FBP) Full Feedback - Predicting from Expert Advice

Algorithm 2 Follow the Best Price algorithm

with Greedy sample

Full Feedback - Predicting from Expert Advice

Algorithm 3 Exponential Weighted Average

(EWA)

Full Feedback - Predicting from Expert Advice

Algorithm 4 ε-Greedy (ε=0.01) Partial Feedback – Bandit Problem

Table 3.1 Algorithms used in our experiments.

For the ε-Greedy algorithm, we examine different possible values for the constant value

ε and we choose 0.01 based on the results.

In the paragraph below we will present the datasets created for the experiments and the

methodology we are going to use.

3.1 Experimentation Framework

The setting of our experiments is similar to the one described in section 1.4 Online Double

Auctions.

We consider the double auction of a specific product by an intermediary. At every round,

a set of binaries of buyer’s and seller’s bits, 𝑀(𝐵, 𝑆) = {(𝑏1, 𝑠1), (𝑏2, 𝑠2), … , (𝑏𝑛, 𝑠𝑛)}, with |𝐵| =

|𝑆| = 𝑛,. The intermediary has set a price 𝑝 ∈ 𝐵 ∪ 𝑆 and we buy and sell one item from the sellers

to buyers who accept our price, over n steps. So, the transactions that were successfully made

are:

𝑇(𝐵, 𝑆) = {(𝑏, 𝑠) ∈ {{𝐵} ∪ {𝑆}} | ∃𝑡 𝑏𝑡 ≥ 𝑝𝑡 ∧ 𝑠𝑡 ≤ 𝑝𝑡 } .

30

In the following sections, we will make a comparison of the performance of the algorithms

presented in table 3.1 and examine the differences. Our aim is to experiment with differentiated

datasets and see how the above algorithms perform in each case. We will present the datasets

used in the next paragraph.

3.1.1 Datasets used

As we have already mentioned, the seller/buyer pairs are independent and identically

distributed (i.i.d.) random variables.

In table 3.2 we show the different datasets, for the values of the sellers, buyers, and the

prices of the experts/bandits, used in our experiments. We also give the number of rounds 𝑇 and

the number of the experts or bandits, 𝑁.

We defined the price dataset (the experts/bandits) by taking the range between the

𝑚𝑖𝑛(𝐵 ∪ 𝑆) and the 𝑚𝑎𝑥(𝐵 ∪ 𝑆), with step 𝑘.

Set Description Distribution T N

Set 1

Sellers’ dataset Uniform [0,1] 250000 -

Buyers’ dataset Uniform [0,1] 250000 -

Price dataset range(0, 1, 0.05) - 20

Set 2

Sellers’ dataset Normal (μ=3,σ=1/2) 250000 -

Buyers’ dataset Normal (μ=3,σ=1/2) 250000 -

Price dataset range(1, 4, 0.1) - 30

Set 3

Sellers’ dataset Normal (μ=4,σ=1/2) 250000 -

Buyers’ dataset Normal (μ=3.5,σ=1/2 250000 -

Price dataset range(2, 5, 0.1) - 30

Set 4

Sellers’ dataset Poisson (5) 250000 -

Buyers’ dataset Poisson (3) 250000 -

Price dataset range(0, 17, 1) - 17

Table 3.2 Types of datasets we use in our experiment.

For the two last sets, we didn’t use the same distribution for both the sellers and the buyers.

Instead, the sellers’ distribution is shifted to the right compared to the buyers’, based on the

assumption that sellers desire to sell at a higher price and buyers to buy at a lower. In figure 3.1

we can observe the histograms, of set 3 and set 4.

31

Figure 3.1 Buyers’ and Sellers’ distribution for Set 3 and Set 4.

3.1.2 Experimental phase

In this section, we present the aspects of the experimental phase. All the experiments were

implemented in Python. As shown above, in Table 3.2, we run the experimentations for mutable

iteration (250000). For each set of datasets, we examine all the algorithms shown in Table 3.1.

and we observe the performance of the methods based on the following metrics:

• Gain from Trade

• Social Welfare

• Regrate

32

Particularly, for the Follow the Best Price with Greedy sample algorithm which we will see

below, we need to specify the experimental phases, since it is a combination of two algorithms

we described in the previous chapters. The idea is to use McAfee’s Double Auction

Implementation algorithm, presented in paragraph 1.4.2, to sample the first n rounds and use

the “optimum” value it returns as the initial value of the price for the Follow the Best Price

algorithm, presented in paragraph 1.4.1.

We call this the Follow the Best Price with Greedy sample algorithm and experimental

phases are the following:

1. We sample the 0.01 of the whole number of rounds 250000. Hence, we run the

McAfee’s Double Auction Implementation algorithm for 2500 sets of binaries of

buyers and sellers.

2. Then we use the output of the above algorithm, to determine the initial value of

the price for the Follow the Best Price.

3. Combined with the above, we run the Follow the Best Price, for the rest, 247500

rounds.

Continuing with our experiment, in the next paragraphs we present the results of each

dataset for all the algorithms and finally we summarize by comparing the performance of the

algorithms.

3.2 Set 1: Uniform [0,1]

For the first experiment, we will be using the Uniform [0,1] distribution to create the sets

of buyers’ and sellers’ values. We will be running the experiment for 250000 rounds; and we will

compare the performance of the algorithms presented above, with each other and with the best

expert. The results are shown in Table 3.3 below.

Compared with the best expert, we see that the Gain from Trade value of our algorithm is

always less yet very close to that of the best offline game.

The value of the Price of the best offline game is ~0.5 , and that is also the mean value of

the Price for all our algorithms. Even so, the EWA and ε-Greedy algorithms have the worst value

of Regret while the FBP has the best. We can also point out that the FBP with Greedy sample

algorithm has not improved the results from the classic FBP algorithm.

33

Set Metrix FBP FBP with Greedy EWA ε-Greedy

Set 1

Best expert 0,500 0,500 0,500 0,500

Best expert GFT 31187,106 31187,106 31187,106 31187,106

Mean Price 0,499 0,499 0,498 0,595

GFT 31185,288 31184,740 31158,294 30551,956

Social Welfare 31185,104 31184,556 31158,110 30565,240

Regret 1,818 2,366 28,812 590,623

Table 3.3 Algorithms’ results for Set 1: Uniform [0,1] where T=250000

In the plot below we can observe the correlation between the value of the Price and the

Gain from Trade value on the offline game. It is obvious that the best expert has Price ~0.5.

Figure 3.2 Correlation between GFT and the Price for Set 1: Uniform [0,1], on

the offline game.

Below we present some graphs with the Regret and Gain from Trade metric during time

(T), along with the Price variation, filter for the first n rounds. For the Price value, it is noticeable

that the ε-Greedy algorithm explores more, since all the other algorithms after the first rounds

land on the 0.5 and do not change for the rest of the rounds. Additional to that, the ε-Greedy

algorithm needed more time to approach the optimal value (0.5). These findings explain the bad

results the algorithm had to the metrics above.

34

Figure 3.3 Price variation for Set 1 for all algorithms (4000 rounds)

In the following plot, we can see how Gain from Trade changes over time. We notice that

the GFT for all the algorithms, has a linear relationship to time, approximately
1

8
 𝑇. Also, the

Welfare graph has a similar picture that we choose not to present here for this reason.

Figure 3.4 Gain from Trade for Set 1 for all algorithms (50000 rounds)

35

Lastly in the following plot, we can see the Regret over time and we notice that it gets

asymptotical to the x-axis after the first couple of rounds for all the algorithms except the ε-

Greedy algorithm which has an upward trend.

Figure 3.5 Regret for Set 1 for all algorithms (50000 rounds)

Uniform distribution was our first attempt, but it is an unrealistic distribution with a large

variance in the values, we will use below the normal distribution and observe our algorithms’

performance. Figure A.1 in the appendix shows the first hundred rounds of Price and Regret.

3.3 Set 2: Normal (μ=3, σ=1/2)

In this section we continue with set 2, using the Normal (μ=3, σ=1/2) distribution to create

the buyers’ and sellers’ values. Again, we run the experiment for 250000 rounds; and we will

present the performance metrics for each algorithm in table 3.4 below.

Compared to the best expert, we see again that the Gain from Trade value of our algorithm

is always less than that of the best offline game.

The value of the Price of the best offline game is ~3 , and the mean value of the Price for

all our algorithms is also very close. Even so, the EWA and ε-Greedy algorithms again have the

36

worst values of Regret, and the FBP has the best. We can also point out that the FBP with Greedy

sample algorithm does not have improved results, compared to the classic FBP algorithm.

Set Metrix FBP FBP with Greedy EWA ε-Greedy

Set 2

Best expert 3,0 3,0 3,0 3,0

Best expert GFT 50017,261 50017,261 50017,261 50017,261

Mean Price 2,999 2,999 3,007 2,792

GFT 50013,098 50017,261 49986,760 45754,578

Social Welfare 50010,378 50009,547 49984,039 48116,370

Regret 4,162 4,993 30,501 4262,683

Table 3.4 Algorithms’ results for Set 2: Normal (μ=3, σ=1/2) where T=250000

In the plot below we can observe, the correlation between the value of Price and the Gain

from Trade value on the offline game. It is obvious that the best expert has Price ~3 and that the

line is shifted to the right.

Figure 3.6 Correlation between GFT and the Price for Set 2: Normal (μ=3, σ=1/2), on the

offline game.

For the Price value, we can see again that the ε-Greedy algorithm explores more and needs

more time to approach the optimal value. The other algorithms after the first rounds land on the

value 3 and do not explore further.

37

Figure 3.7 Price variation for Set 2 for all algorithms (4000 rounds)

In the following plot, we can see how Gain from Trade changes over time. We notice that

the GFT for all the algorithms, has a linear relationship to time, approximately
1

5
 𝑇. We notice

that the GFT of the ε-Greedy algorithm has the late start we observe also on the Price plot. For

the first hundred rounds its stays at zero and then increases at a smaller rate than the rest of the

algorithms.

Figure 3.8 Gain from Trade for Set 2 for all algorithms (50000 rounds)

38

As expected from the Gain from Trade results, the Regret for most of the algorithms gets

asymptotical to the x-axis over time, except for the ε-Greedy algorithm which has a clear upward

trend.

Figure 3.9 Regret for Set 2 for all algorithms (5000 rounds)

In the next set, we choose to have two different normal distributions for the sellers’ and

buyers’ values. As we explain in an earlier paragraph, this scenario seems more realistic based on

the assumption that the sellers aim is to sell at a higher price and the buyers to buy at a lower. In

the appendix, Figure A.2 shows the first hundred rounds of Price and Regret.

3.4 Set 3: Normal sellers (μ=4, σ=1/2) buyers (μ=3.5, σ=1/2)

For this section we choose to use the Normal (μ=4, σ=1/2) for the sellers’ values and Normal

(μ=3.5, σ=1/2) for the buyers. Again, we run the experiment for 250000 rounds; and we present

the performance metrics for each algorithm in table 3.5 below.

Unlike previous experiments, comparing the Gain from Trade results of the best experts

versus our algorithms, we see that EWA algorithm performs better achieving a negative Regret.

Furthermore, this time FBP with Greedy sample algorithm outperforms the classic FBP algorithm

succeeding smaller Regret value.

39

Set Metrix FBP FBP with Greedy EWA ε-Greedy

Set 3 Best expert 3,7 3,8 3,7 3,7

Best expert GFT 15256,184 15335,418 15256,184 15256,184

Mean Price 3,744 3,758 3,741 3,671

GFT 15236,448 15325,981 15350,34 13239,639

Social Welfare 15232,727 15322,260 15346,62 15075,517

Regret 19,736 9,437 -94,156 2016,545

Table 3.5 Algorithms’ results for Set 3: Normal sellers (μ=4, σ=1/2) buyers (μ=3.5, σ=1/2)

where T=250000

In the plot below we can observe, the correlation between the value of Price and the Gain

from Trade value on the offline game. It is obvious that the best expert has Price ~3 and that the

line is shifted to the right.

Figure 3.10 Correlation between GFT and the Price for Set 3: Normal sellers (μ=4,

σ=1/2) buyers (μ=3.5, σ=1/2), on the offline game.

Looking at the Price graph we see that the ε-Greedy algorithm again does the most

exploration. The other algorithms after the first rounds land on the optimal value ~3.7.

40

Figure 3.11 Price variation for Set 3 for all algorithms (6000 rounds)

From the Gain from Trade plot, we notice that the GFT, for all the algorithms, has a linear

relationship to time, approximately ~
1

17
 𝑇. We notice that the GFT of the ε-Greedy algorithm

has the late start we observe also on the Price plot. The first thousand rounds stay at zero and

then increase at a smaller rate than the rest of the algorithms.

Figure 3.12 Gain from Trade for Set 3 for all algorithms (50000 rounds)

41

As expected from the Gain from Trade results, the Regret for most of the algorithms gets

asymptotical to the x-axis over time, except for the ε-Greedy algorithm which has a clear upward

trend before he also gets asymptotical.

Figure 3.13 Regret for Set 3 for all algorithms (6000 rounds)

In the next set, we choose to have two different Poisson distributions for the sellers’ and

buyers’ values to examine the performance of our algorithms in a discrete distribution. In the

appendix, Figure A.3 shows the first hundred rounds of Price and Regret.

3.5 Set 4: Poisson sellers (5) buyers (3)

Unlike previous experiments, for this section we choose a discrete distribution, to be exact,

a Poisson (5) for the sellers’ values and Poisson (3) for the buyers. Again, we run the experiment

for 250,000 rounds and we will present the performance metrics for each algorithm in Table 3.6

below.

In this setup, we examine the Regret results of our algorithms and see that the FBP with

Greedy sampling algorithm has the best outcome, with a close second to be the FBP algorithm

whereas ε-Greedy algorithm performs the purest. Compared with the optimum bandit, we see

again that the Gain from Trade value of our algorithm is always less than that of the best offline

game.

42

Set Metrix FBP FBP with Greedy EWA ε-Greedy

Set 4 Best bandit 4,0 4,0 4,0 4,0

Best bandit GFT 73372,0 73372,0 73372,0 73372,0

Mean Price 3,9 3,9 4,0 3,9

GFT 73370,0 73371,0 73357,0 71173,0

Social Welfare 73369,0 73370,0 73356,0 71172,0

Regret 2,0 1,0 15,0 2199,0

Table 3.6 Algorithms’ results for Set 3: Poisson sellers (5) buyers (3) where T=250000

In the plot below we can observe the correlation between the value of Price and the Gain

from Trade value on the offline game. It is obvious that the best expert has Price ~4 and that the

curve is shifted to the left and is sharply peaked.

Figure 3.14 Correlation between GFT and the Price for Set 4: Poisson sellers (5) buyers

(3), on the offline game.

Looking at the Price graph we see that the ε-Greedy algorithm again does more exploration.

The other algorithms after the first rounds land on the optimal value 4 and do not vary from this

for the rest of the rounds.

43

Figure 3.15 Price variation for Set 4 for all algorithms (4000 rounds)

From the Gain from Trade Figure 3.16, we notice that the GFT, for all the algorithms, has a

linear relationship to time, approximately ~
1

3
 𝑇, except for ε-Greedy which has ~

1

4
 𝑇. We notice

that the GFT of the ε-Greedy algorithm does not have the late start we observe in the previous

sets.

Figure 3.16 Gain from Trade for Set 4 for all algorithms (10000 rounds)

44

As expected the Regret -for most algorithms- gets asymptotical to the x-axis over time,

except for the ε-Greedy algorithm which has a clear upward trend.

Figure 3.17 Regret for Set 4 for all algorithms (6000 rounds)

Figure A.4 in the appendix shows the first hundred rounds of Price and Regret.

3.6 Summary

In every case, looking at the experiments above, we manage to achieve Gain from Trade

values close to the offline game most of the time, something that is supported by the theoretical

results presented in previous chapters.

From the “Correlation between GFT and the Price” graphs presented in the previous

paragraphs, it is safe to assume that the algorithm approaching the “optimal” value of the Price

faster, is the one that will perform the best. Observing the Figures A.1-4, in the appendix

paragraph at the end of our work, we see that even though the Follow the Leader algorithm and

the modified Follow the Leader with Greedy sample have different begging values, they end up

making the same prediction for the Price after a couple of rounds. It is also evident that all

algorithms approach the "optimal value" quite fast, except for the ε-Greedy algorithm.

The “simple” Follow the best price algorithm is the best performing algorithm -Table 3.7-

in the two first sets but not in the last two where the sellers’ and buyers’ distribution is not exactly

45

the same. The ε-Greedy (with ε=0.01) algorithm has the worst results, since it is the only one from

the Partial Information category.

Set Best Algorithm

Set 1: Uniform [0,1] Follow the Best Price

Set 2: Normal (μ=3, σ=1/2) Follow the Best Price

Set 3: Normal sellers (μ=4, σ=1/2)
buyers (μ=3.5, σ=1/2)

Exponential Weighted Average

Set 4: Poisson sellers (5) buyers (3) Follow the Best Price with Greedy sample

Table 3.7 Summarize best performing algorithms for each set based on Regret.

Also, considering the results of the previous paragraphs, the modified Follow the Best Price

with Greedy sample algorithm outperformed the original Follow the Best Price algorithm, only in

the last two sets.

Looking at more detailed results of Regret and GFT, in the Table 3.8, most of the algorithms

perform very well compared to the optimal offline result. We have Regret near zero and

asymptotical to the time for all the algorithms except the ε-Greedy, which for most of the sets

was getting asymptotical to time with an upward trend.

More precisely, the two cases that do not follow the above behavior for the Regret, are the

Set 4: Poisson sellers (5) buyers (3), where ε-Greedy seems to have a clear upward trend and Set

3: Normal sellers (μ=4, σ=1/2) buyers (μ=3.5, σ=1/2), where the Exponential Weighted Average

algorithm manages to achieve a negative Regret close to zero and outperform the offline optimal

results.

Set Metrix FBP FBP with Greedy
sample

EWA ε-Greedy

Set 1 GFT results ~ 1 8⁄ × 𝑇

Regret ~0+ asymptotical to time

Set 2 GFT results ~1 5⁄ × 𝑇

Regret ~0+ asymptotical to time

Set 3 GFT results ~1 17⁄ × 𝑇

Regret ~0+ ~0− asymptotical to time

Set 4 GFT results ~1 3⁄ × 𝑇 ~ 1 4⁄ × 𝑇

Regret ~0+ upward trend

Table 3.8 Summarize algorithms’ results for all algorithms and sets, GFT and Regret.

46

Lastly examining the results of the Gain from Trade value, from Table 3.8 and the plots

presented in the previous paragraph, we see that all algorithms have a linear relation to time

except the ε-Greedy algorithm which in most of the sets, has a late start in the first hundred

rounds but after that it also gets linear to the time.

47

48

4 Conclusions

To summarize, this work explores the Online Learning Problems with Intermediation, giving

a particular emphasis on the Double Auction, or Bilateral Trade. We start with the Full Feedback

and the Expert Advice methods, followed by the Partial Feedback and the Bandit general setting.

We studied bibliographically the algorithms and some theoretical results, that treat the above

problems. Next, we present the problem of Online Auctions and more particular the Double

Auction setting, we selected for our experimentation section.

We examined the algorithms that were presented on the Online Learning problems.

Initially, we selected two Full-Feedback algorithms to analyze, the Follow the Best Price

algorithm, a modified Follow the Best Price with Greedy sampling, and the Exponential

Weighted Average algorithm. The analysis continued with an ε-Greedy algorithm from the

Partial-Feedback category of algorithms.

We compared the performance of the above algorithms in the Bilateral Trade set up,

selecting four different sets for the sellers’ and the buyers’ prices. Our findings verified the

theoretical results. All the algorithms tested achieved small (logarithmic) Regrets except for the

ε-Greedy, in Set 4: Poisson sellers (5) buyers (3), that suffered a linear Regret.

More specifically, the Follow the best price algorithm is the best performing algorithm in

the two first sets but not in the last two where the sellers’ and buyers’ distribution is not the same.

The ε-Greedy algorithm has the worst results in the experiments. Our modified Follow the Best

Price with Greedy sample algorithm achieved the bests results, only in Set 4: Poisson sellers (5)

buyers (3).

49

50

5 Bibliography

1. S. de Rooij, T. van Erven, P. D. Grünwald, W. M. Koolen: Follow the leader if you can, hedge

if you must. Journal of Machine Learning Research 15(1): 1281-1316 (2014)

2. A. Antoniadis, T. Gouleakis, P. Kleer, P. Kolev: Secretary and Online Matching Problems

with Machine Learned Advice. Annual Conference on Neural Information Processing

Systems 2020, NeurIPS (2020)

3. A. Blum, V. Kumar, A. Rudra, F. Wu: Online learning in online auctions. Theoretical

Computer Science 324(2-3): 137-146 (2004)

4. Z. Feng, C. Podimata, V. Syrgkanis: Learning to Bid Without Knowing your Value.

Proceedings of the 2018 ACM Conference on Economics and Computation (2018): 505-

522

5. J. Weed, V. Perchet, P. Rigollet: Online learning in repeated auctions. Proceedings of the

29th Conference on Learning Theory (2015): 1562-1583

6. M. Mohri, A. M. Medina: Learning Algorithms for Second-Price Auctions with Reserve.

Journal of Machine Learning Research 17: 74:1-74:25 (2016)

7. E. Koutsoupias, P. Lazos: Online Trading as a Secretary Problem. Algorithmic Game Theory

- 11th International Symposium 2018: 201-212

8. S. Arora, E. Hazan, S. Kale: The Multiplicative Weights Update Method: a Meta-Algorithm

and Applications. Theory of Computing 8(1): 121-164 (2012)

9. M. Mohri, A. Rostamizadeh, A. Talwalkar: Foundations of Machine Learning. Adaptive

computation and machine learning, MIT Press 2012

10. J. D. Johnson, J. Li, Z. Chen: Reinforcement Learning: An Introduction: R.S. Sutton, A.G.

Barto, MIT Press, Cambridge. (2000)

11. N. Cesa-Bianchi, T. R. Cesari, R. Colomboni, F. Fusco, S. Leonardi: A Regret Analysis of

Bilateral Trade. EC '21: The 22nd ACM Conference on Economics and Computation 2021:

289-309

12. R. P. McAfee: A Dominant Strategy Double Auction. Journal of Economic Theory, vol. 56,

no. 2, 1992, pp. 434–450

13. S. Shalev-Shwartz: Online Learning and Online Convex Optimization. Foundations and

Trends in Machine Learning 4(2): 107-194 (2012)

14. https://www.datanyze.com/market-share/ad-exchanges--399

51

52

6 Appendix – Additional results

Figure A.1 Price and Regret variation for Set 1 for all algorithms (100 rounds)

53

Figure A.2 Price and Regret variation for Set 2 for all algorithms (100 rounds)

54

Figure A.3 Price and Regret variation for Set 3 for all algorithms (100 rounds)

55

Figure A.4 Price and Regret variation for Set 4 for all algorithms (100 rounds)

