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Abstract 

 
The continuous growth of the world wide web (WWW) has resulted in enormous 

amounts of information. Specific data, contained in webpages, can be extracted and 

leveraged in numerous applications. A semi-automatic/automatic approach to 

retrieving data from webpages is needed since manual extraction is very time- 

consuming and does not scale well. However, because of the heterogeneity and semi- 

structured nature of webpages, the automatic extraction of data is a non-trivial task. 

The task of web information extraction (WIE) is most commonly addressed with 

wrapper induction (WI). In WI, the goal is to learn a set of extraction rules by using 

manually labelled examples. The primary issue with WI is that the learned rules are 

frequently incapable of dealing with even slight variations in a webpage's template, and 

cannot generalize to other websites. In this thesis, the WIE problem is reframed as an 

object detection task. For this purpose, a dataset was built, with news articles that were 

collected and annotated. A state-of-the-art detector, YOLOv5, was used to extract 

specific attributes such as the news articles’ title, metadata, author, date, main image, 

text, and keywords. The model yielded 90% mAP (over all classes) in stratified (based 

on website domain) 5-fold cross-validation. One-shot learning capabilities of the 

model were also explored by using transfer learning to fine-tune the model to unseen 

news websites in English but also in another language (Greek) achieving 79% mAP and 

90% mAP respectively. A dataset with books’ product details from Amazon.in, with 

extracting targets the books’ title, author, and price was used to compare our approach 

with a state-of-the-art approach where a previous version of YOLO (version 2) was 
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utilized. The mAP of our approach yielded 95% mAP compared to the state-of-art 

approach which yielded 74% mAP. 
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1 Introduction 
 

1.1 Problem Description 
 

The continuous growth of the world wide web (WWW) has resulted in enormous 

amounts of information. Specific data, contained in webpages, can be extracted 

and leveraged in numerous applications such as products price comparison, 

vacancies monitoring, and news aggregation just to name a few. A semi- 

automatic/automatic approach to retrieving data from webpages is needed since 

manual extraction is very time-consuming and does not scale well. However, 

because of the heterogeneity and semi-structured nature of webpages, the 

automatic extraction of data is a non-trivial task. Moreover, the main components 

of the WWW are HyperText Markup Language (HTML), Cascading Style Sheets 

(CSS), and JavaScript which are more user-centric (designed for presentation 

purposes) and not easily processable by machines. 

 
The task of Web Information Extraction (WIE) that is explored in this thesis 

differs from traditional Information Extraction (IE) tasks, in that in traditional 

IE, data is mainly extracted from unstructured free text whereas in WIE data is 

extracted from semi-structured webpages that are usually generated in an 

automated way by a server-side application. Recent research in IE leverages 

neural models for extracting entities and relations from plain texts. However, 

these methods do not work well on webpages which contain both free text and 

markup information [1]. 

 
In the bibliography, the WIE task is tackled with various approaches. Based on 

the type of information that is used to extract the data, these methodologies can 

be Document Object Model (DOM)-based, text-based, vision-based, or a 

combination of the aforementioned methods. Programs that perform the task of 

WIE are called extractors or wrappers [2]. A pattern matching method is 

generally implemented by a wrapper using a set of extraction rules [3]. Most 

commonly, WIE is addressed with Wrapper Induction (WI). In WI the goal is to 

learn a set of extraction rules by using manually labeled examples. The primary 
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issue with WI is that the learned rules are frequently incapable of dealing with 

even slight variations in a webpage's template, and can not generalize to other 

websites [4]. 

 
In recent years, there has been a vast development of neural network 

architectures for computer vision (CV) tasks with immense success. In this thesis, 

the problem of WIE is formulated as an object detection task where the desired 

attributes or blocks of information can be identified and located within the 

webpage. Intuitively, we try to mimic the way humans detect objects based on 

appearance and context (e.g., the news articles’ title is usually written in black 

bold font and positioned above the news articles’ main image). Moreover, these 

visual features are somewhat independent of the websites’ language as illustrated 

in Figure 1. 

 
For this purpose, 728 English news webpages from 31 different domains as well 

as 45 Greek news webpages from 2 different domains were collected and 

annotated. The desired classes/attributes that were targeted for extraction were 

the news articles’ title, metadata, author, date, main image, text, and keywords. 

The one-stage object detector YOLOv5 was utilized which is the latest iteration of 

the YOLO family of detectors and yielded 90% mAP (over all classes) in stratified 

(based on domain) 5-fold cross-validation. One-shot learning capabilities of the 

model were also explored by using transfer learning to fine-tune the model to 

unseen news websites in English but also in another language (Greek) achieving 

79% mAP and 90% mAP respectively. A dataset with books’ product details from 

Amazon.in, provided by the authors of [5], with classes title, author, date was 

used to compare our approach with a state-of-the-art approach where a previous 

version of YOLO (version 2) was utilized. The mAP of our approach yielded 95% 

mAP compared to the state-of-art approach which yielded 74% mAP. 
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Figure 1. On the left, an example of the top segment of the news webpage 
(https://www.chicagotribune.com/) in the English language. On the right an example of the top 

segment of the news webpage (https://www.sport24.gr/) in the Greek language. The bounding 

boxes colors correspond to the following blocks: red: title, green: metadata, yellow: author, 
blue: date, purple: main image, gray: keywords. 

 

 

 

 

 

 

1.2 Thesis Structure 

The rest of the thesis is organized as follows. In the second chapter, the theoretical 

background regarding object detection is given. Specifically, a high-level overview 

of how one-stage-detectors such as YOLO and two-stage-detectors such as R- 

CNN work and have evolved during the recent past years as well as the most 

common evaluation metrics for object detection are presented. Related work is 

also discussed in this chapter. In the third chapter, we discuss about the dataset 

collection process, the annotation strategy, the architecture of the YOLOv5 model 

that was utilized as well as the training process. In the fourth chapter, the 

experimental results are presented and evaluated. Lastly, we conclude our 

research with a brief summary of our contributions and give some directions and 

thoughts for future work. 

http://www.chicagotribune.com/)
http://www.sport24.gr/)
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2 Background 
 

2.1 Evolution of Object Detection Techniques 
 

Object detection is a challenging and fundamental problem in the field of 

computer vision and has been a topic of research for quite some time. With object 

detection, the aim is to examine if there are any instances of objects from specific 

predefined classes (such as vehicles, animals, etc.) in an image and, if there are, 

to return the specific location of each object (e.g., with a bounding box). Object 

detection has now been successfully utilized in many real-world applications, 

such as robot vision, video surveillance, and autonomous driving just to name a 

few. 

 
Hand-crafted features (e.g., HOG, SIFT) [6] were mostly used for the early object 

detection algorithms. However, the performance of these methods required 

significant effort from domain experts and reached a plateau after 2010. R. 

Girshick et al. [6] say: “... progress has been slow during 2010-2012, with small 

gains obtained by building ensemble systems and employing minor variants of 

successful methods”. Most recently, deep learning methodologies have been used 

for learning feature representations automatically from the data. Krizhevsky et 

al. [7] proposed a Deep Convolutional Neural Network (DCNN) which they 

named AlexNet. The model achieved significantly higher image classification 

accuracy in the Large-Scale Visual Recognition Challenge (ILSVRC). Deep 

learning methods have, since that time, predominately been the research focus 

for most computer vision-related tasks. R-CNN [6] combines region proposals 

with CNNs and was one of the first successful integrations of CNNs in an object 

detection pipeline. The successes of those deep learning models can be mostly 

attributed to the readily available, huge amounts of training data and also the 

increasingly powerful computing capabilities (GPUs especially) that enable the 

training of large networks with millions or even billions of parameters. 

 
In the deep learning era, object detection algorithms can be divided into two 

categories: “two-stage detection” and “one-stage detection” [8]. In general, two- 



-11-  

stage detectors achieve better classification accuracy and localization whereas 

one-stage detectors are very efficient and therefore faster. We will give a high- 

level overview of how two representative detectors (RCNN for two-stage 

detection and YOLO for one-stage detection) work. 

 
 
 

2.2 R-CNN Family of Detectors 
 

2.2.1 R-CNN 

R-C NN [6] was one of the earliest examples of convolutional neural networks 

being successfully applied to the problem of object detection, and it served as a 

foundation for the creation of additional advanced object detection systems. 

 
The R-CNN architecture consists of four components as illustrated in Figure 2: 

• Regions of interest (RoI) component. The first component extracts class- 

independent region proposals. Regions that have a high likelihood of 

containing an object are extracted using an algorithm named selective 

search [9]. Since the proposed RoIs may vary in size, they are resized to 

acquire predefined fixed dimensions; since CNNs can only process images 

with a fixed input size. 

• Feature extraction component. A pretrained CNN (e.g., AlexNet on ImageNet 

dataset) is commonly used to extract features from each RoI. 

• Classification component. A set of class-specific linear SVM classifiers are 

trained based on the extracted features from the previous component. 

• Bounding-box (BB) regressor component. This component is responsible for 

predicting and refining the bounding box’s location as well as size for each 

object. Four values are predicted by the regressor; (x,y): coordinates of the 

center of the box and (h,w): height and width of the box. 
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Figure 2. R-CNN architecture [10]. 

 

 
Disadvantages of R-CNN: 

• Training is a multi-phase pipeline. Three separate training components 

(CNN, SVMs, BB regressor) make the training process hard to be 

optimized in an end-to-end manner. 

• Training is computationally expensive both in time as well as in space. 

• Very slow object detection since for each image the selective search 

algorithm proposes about 2,000 RoIs to be furtherly processed. 

 
 

 
2.2.2 Fast R-CNN 

Fast R-CNN [11] introduced two novel ideas, increasing both detection speed and 

accuracy: 

• Application of the CNN feature extractor to the entire image first and then 

proposal of regions. By doing so, the CNN is utilized only once instead of 

running over each of the 2000 candidate regions. 

• Replacement of the SVMs with a softmax layer. This way, the CNN 

performs both feature extraction as well as object classification. 
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The Fast R-CNN architecture consists of the following components as shown in 

Figure 3: 

• Feature extraction component. To extract features from the whole image, a 

pretrained CNN is used. 

• RoI extraction component. 2000 region candidates are proposed per image 

via the selective search algorithm. 

• RoI pooling layer component. Extracts fixed-size segments (since fully 

connected layers require fixed-size input) from the proposed regions by 

applying max pooling. 

• Two-head output layer. 

o Softmax classifier for classification. Predicts class probabilities. 

o BB regressor for localization. Predicts offsets from the original RoI. 
 
 

Figure 3. Fast R-CNN architecture [10]. 

 
 

Fast-RCNN is much faster in regards to inference time since the CNN is only run 

once per image. Training is faster as well because of the unification of many of 

the components to a single CNN. The only bottleneck that remains is the proposal 

of candidate regions which are produced by a separate model. 
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2.2.3 Faster R-CNN 

 
 

In Faster R-CNN [12] the selective search algorithm is substituted with a region 

proposal network (RPN) that is also part of the same network, resulting in a fully 

trainable end-to-end deep learning object detection system. 

 
The Faster R-CNN architecture consists of the following networks as shown in 

Figure 4: 

• RPN. Proposes RoIs by using the last feature map provided by the feature 

extractor. Two outputs are produced by the RPN: the objectness score 

(indicates if an object is present) and the box location. 

• Fast R-CNN. It consists of the same aforementioned components of the 

Fast-RCNN architecture. 
 

 
Figure 4. Faster R-CNN architecture [12]. 

 

 

 
A novel method for multi-scale object detection was also introduced with no need 

for multiple scales of input images or feature maps. This is accomplished, by 

using predefined boxes as references called anchor boxes. The BB regressor will 

then predict offsets from these boxes adjusting the anchor boxes to better fit the 
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objects as illustrated in Figure 5. By using a sliding window, the RPN generates k 

(hyperparameter) anchor boxes for each location in the feature map. The anchors 

are at the center of their respective windows and vary in scale and aspect ratio to 

support a wide range of objects. The anchor boxes that are used are dataset 

specific and hence should be treated as hyperparameters. The authors of Faster- 

RCNN used nine anchor boxes with three different aspect ratios and three 

different scales. 

 

 

Figure 5. Offset coordinates predictions from initial anchor box [13]. 

 

 

 
2.2.4 Limitations of R-CNNs 

Great improvement in performance both in object detection speed and accuracy 

has been shown with each new iteration of the R-CNN family of detectors. 

However, these approaches have drawbacks such as that training consists of 

multiple phases (region proposal and detection) which makes the network hard 

to optimize, and training and inference time is quite slow. Fortunately, one-stage 

detectors such as the YOLO family of detectors have addressed some of these 

challenges with varying degrees of success with each iteration. 

 
 

2.3 YOLO Family of Detectors 
 

YOLO detectors reframe the object detection task as a regression problem by 

localizing and classifying objects with a single end-to-end neural network which 

can be more easily handled, optimized, and is significantly faster. Furthermore, 

when making predictions, YOLO detectors consider the image as a whole. 
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Contrary to region proposal and sliding window-based approaches, YOLO 

detectors examine the entire image during training and inference, which allows 

them to encode contextual information about each object implicitly. The accuracy 

of YOLO models is close to that of R-CNN and the detection speed is significantly 

faster [8]. 

 
 

2.3.1 YOLOv1 

YOLOv1 [14] splits the input image into a grid of S x S cells, each of which is 

responsible for identifying an object if the center of the bounding box of that 

object falls into that grid cell. Each grid cell predicts: 

• Coordinates of B bounding boxes. (x,y): coordinates of the center of the box 

and (h,w): height and width of the box. 

• Objectness score. The probability of an object being present in the cell. The 

objectness score is normalized as a probability with a value ranging from 

0 to 1 using a softmax layer. 

• Class (C) prediction. The model predicts the probability for K number of 

classes if the bounding box contains an object, where K is the total number 

of classes for a given problem. 

 
It is important to note that even though YOLOv1 can predict for each cell multiple 

boxes and objectness scores, it can only predict one class. The final output of 

YOLOv1 is a tensor of shape 𝑆 × 𝑆 × (5 ∗ 𝐵 + 𝐶). Finally, YOLOv1 applies non- 

maximum suppression (NMS) to reduce the number of candidate boxes to only 

one bounding box per object. NMS examines all of the overlapping boxes that 

surround an object to determine which box has the highest prediction probability 

and suppresses the others. Boxes with an Intersection over Union (IoU) and a 

confidence loss below an adjustable threshold are discarded as shown in Figure 

6. 
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Figure 6. Non-maximum suppression [15]. 

 

 
GoogLeNet [16] inspired the architecture of YOLOv1, as shown in Figure 7. The 

network uses 24 convolutional layers followed by 2 fully connected layers and 

instead of inception modules, 1 × 1 followed by 3 × 3 convolutional layers are 

used. A pretrained CNN (on ImageNet dataset) is fine-tuned at half the resolution 

and then the resolution is doubled for more accurate detection. The authors called 

this architecture Darknet. 
 
 

 

Figure 7. YOLOv1 architecture [14] 
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2.3.2 YOLOv2 

YOLOv2 [17] introduced some novel features to improve performance and speed: 

• Batch normalization [18]. Batch normalization is used to regularize the 

model and improve its convergence. The addition of batch normalization 

resulted in a 2% increase in mean Average Precision (mAP). 

• High-resolution classifier. The original YOLOv1 trains the CNN at 224 × 224 

pixels and then the resolution is increased to 448 x 448 pixels for 

detection. YOLOv2 fine-tunes the CNN for 10 epochs first, using the full 

448 × 448 pixels resolution. This gives the network time to adapt to higher 

resolution instead of suddenly switching to it for the detection phase. The 

addition of the high-resolution classifier improved the mAP by 4%. 

• Predictions with anchor boxes. Rather than predicting the coordinates of the 

bounding boxes directly, anchor boxes are used in a similar manner as in 

Faster R-CNN. Predicting offsets rather than coordinates makes the task 

easier and allows the network to learn quicker. Instead of manually 

selecting priors, k-means clustering is utilized on the bounding boxes of 

the training set to automatically identify suitable priors. Multiple classes 

can now be predicted by the same cell. 

 
 
 
 

2.3.3 YOLOv3 

YOLOv2 often failed to predict accurately small objects. This was attributed to 

the successive downsampling of the input which led to the loss of fine-grained 

features. YOLOv2’s architecture was still missing some of the most significant 

features that were part of most state-of-the-art algorithms: no skip connections, 

no residual blocks, and no upsampling. YOLOv3 [19] integrates all of these 

modifications allowing predictions at three different scales per cell by upsampling 

and concatenating feature maps at different stages within the network as shown 

in Figure 8. The model used Darknet-53 architecture with a 53-layer network for 

training the feature extractor. For the detection phase, an additional 53 layers are 

added, giving a total of a 106-layer fully convolutional model. 
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Figure 8. YOLOv3 architecture [20]. 

 

 

 
2.3.4 YOLOv4 and YOLOv5 

The backbone of YOLOv4 [21] is CSPDarknet53. CSP stands for Cross Stage 

Partial and is derived from DenseNet [22]. DenseNet was designed to connect 

layers in a very deep neural network in order to solve the problem of vanishing 

gradients (as ResNet [23]). CSP preserves fine-grained features through forward 

propagation, enables the network to reuse features, and reduces the number of 

network parameters. A spatial pyramid pooling [24] (SPP) block is added since it 

considerably improves the receptive field and separates the most important 

contextual features. PANet [25] is used for the aggregation of features from 

different backbone levels for multi-scale detection. 

 
The architecture of YOLOv5 [26] closely resembles that of YOLOv4 but is 

considerably faster. Moreover, YOLOv5 is written in Python using the PyTorch 

framework which makes it more accessible. Specific details about the architecture 

of YOLOv5 will be discussed in the third chapter. 
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2.4 Evaluation Metrics for Object Detection 
 

Object detector performance is most commonly measured using two metrics: 

mean average precision (mAP) for detection accuracy and frames per second 

(FPS) for detection speed. The mAP is a percentage raging from 0 to 100, with a 

higher percentage indicating better detection performance. The FPS metric is 

used to measure how many frames can be inferenced in a second with higher 

values indicating faster detection. IoU measures the overlap between two 

bounding boxes: the ground truth bounding box and the predicted bounding box. 

Based on a threshold, the IoU score is then used to determine whether a detection 

is valid (True Positive (TP)) or not (False Positive (FP). This threshold is tunable 

but a value of 0.5 (a value greater than 0.5 detonates TP) is commonly used. In 

Figure 9 examples of various IoU values are presented. 

 

 
Figure 9. IoU examples. The higher the overlap, the bigger the IoU value [27]. 

 

Using the IoU to define TP and FP, precision and recall can be calculated as 

follows: 

𝑇𝑃 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

(𝑇𝑃 + 𝐹𝑃) 
[8] 

 
 
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃 

 
 

(𝑇𝑃 + 𝐹𝑁) 

 

[8] 

 
 
 
 

The PR curve can be drawn when the precision and recall for all classes has been 

calculated. Computing the area under the curve (AUC) yields the average 

precision (AP). The mAP is the average of all the APs obtained across all classes. 



-21-  

2.5 Related Work 
 

The first WIE systems utilized manual wrappers (e.g., TSIMMIS [28], Web-OQL 

[29]) to extract structured information. A pattern matching is usually performed 

by a wrapper using a set of extraction rules. However, this approach is hard to 

scale and maintain since programming expertise would be required to write 

custom scripts for each website or even each webpage. For these reasons, WIE 

has been mainly addressed with WI. WI methods (e.g., WHISK [30], STALKER 

[31]) take as input labeled webpages with examples of the data to be extracted 

and produce a wrapper. Thus, the user interaction has gone from writing custom 

extraction rules to labeling specific fields that are to be extracted. However, the 

main criticism of WI systems is that they tend to break if the webpages change, 

and that they cannot generalize to different webpages of the same domain (e.g., 

news websites). Efforts have been made in wrapper induction methods to induce 

extraction rules that are more robust to small changes, but with not much success 

[4]. 

 
Features of web documents that can be used for the WIE task are: 

• Text-based features e.g., RAPIER [32]. 

o Extracting data from the HTML source code by, for example, string 

or regex-based delimiters. 

o Punctuation marks, frequency of links e.g., when compared to 

typical texts, advertisements have a higher link distribution but a 

lower punctuation mark rate [33]. 

• DOM-based features e.g., Thresher [34]. The DOM is a tree structure that 

allows the selection of elements, based on their relative positions to other 

elements of the DOM (e.g., parent-of or sibling-of). 

• Visual-based features (e.g., VIPS [35]). Exploiting visual features, such as 

borders, colors, font size, etc. to identify elements. 

 
It’s important to note that most WI approaches use text and/or DOM 

information, making the assumption that the semantics of the webpage are 

accurately depicted by the HTML/DOM structure which is not always the case. 
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Most recently, machine learning approaches have been used to tackle the WIE 

task. The authors of [36] use multiple features such as fonts, links, and positions 

by utilizing the DOM tree node properties to train a machine learning model in 

order to extract the main content and remove other elements such as branding 

banners, navigational elements, advertisements, copyright, etc. The authors of [1] 

create a two-stage neural approach named FreeDOM. The first stage combines 

text and markup information to learn a representation for every DOM node in the 

webpage. Using a relational neural network, the second stage enables the 

capturing of longer-range semantic relationships. The authors of [5] use YOLOv2 

to extract product information of books from Amazon.in such as the books’ 

author, title, and price. They then use the tesseract optical character recognition 

(OCR) engine to convert the extracted segments into a machine-readable format. 
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3 Methodology 
 

3.1 Datasets 
 

To the best of our knowledge, there is no large-scale dataset for WIE that is 

annotated for object detection. For that reason, we created a new dataset based 

on screenshots from news articles. NewsCatcher API [37] is used to collect links 

from news articles written in English. Keywords are provided to the API to search 

articles that contain these terms in either the title or the summary. We used 

simple/general keywords such as ['the', 'a', 'to', 'and'] which are more likely to be 

in the title or the summary of the articles. The links were aggregated from 336 

different news sources which were published up to 1 week before the API call. We 

collected 50000 links with this method. We removed duplicate links and then 

selected 92 sources; each of which had at least 5 links associated with it. 

 
To get the screenshots, Selenium [38] was used. Selenium provides a simple API 

via a python library to control well-known web browsers e.g., Chrome, Firefox, 

and allows for web browser automation. A headless chrome driver is used for 

better performance; meaning that the browser runs in the “background” without 

a user interface. In order to render most of the websites correctly, to get a 

screenshot, we have to bypass pop-ups (e.g., cookies, advertisements). For that 

purpose, we wrote custom scripts for each website that it was required, to 

simulate the action of a user closing the pop-ups. Finally, once the content was 

loaded a screenshot was taken and saved as a PNG file. 10000 screenshots were 

saved from 92 different sources. From the 10000 screenshots, 728 screenshots 

from 31 different sources were selected and annotated. Domains with different 

visual features were prioritized in the selection process in order to capture as 

much variation as possible. 

 
Furthermore, to test the capabilities of our model for transfer/one-shot-learning 

for news articles written in a different language we manually collected 45 links 

from 2 sources of news articles written in Greek. We saved the screenshots using 

the same method as mentioned above. 
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To compare our proposed approach with a state-of-the-art approach, the authors 

of [5] provided us with a subset of the dataset that they used for their approach. 

The dataset includes 138 screenshots of books product details from amazon.in. 

The images had no labels so we had to annotate them as well. 

 
 
 
 
 

 

3.2 Annotation Strategy 
 

The datasets were annotated by drawing bounding boxes around each object 

within each image using the open-source annotation tool Labelme [39]. 

 
The labels for the news article dataset are title, metadata, author, date, main 

image, text, and keywords. Annotated examples from the news article dataset are 

presented in Figure 10. Here are some metadata and rationale for labeling each 

attribute: 

• Title. The title is almost always positioned on the top segment of the page 

and above the main image. There may be metadata or keywords above or 

below the title. One very visually discriminative feature of the title is that 

the text is usually in bold, most specifically in black color. 

• Metadata. The metadata block includes information about the article. It 

usually also includes the date and author blocks. It is usually positioned 

on the top segment of the page, most commonly below the title and above 

the main image. 

• Author. One or more authors of the article can be selected. Positioned 

usually inside the metadata block. 

• Date. Only the original publication day of the article is selected. For 

example, if there is a date related to the latest update, it is not selected. 

Positioned usually inside the metadata block. 

• Text. Refers to the main text blocks of the article. Positioned usually below 

the top segment of the page. Text blocks that include ads or redirect to 

other articles are not selected if they are visually distinguishable from the 
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main content and are visually consistent within the same domain. Text 

blocks are continuous; meaning that if there is an image, a visual 

separator, an advertisement, or just a large blank block between texts then 

only the continuous text blocks are selected. 

• Keywords. Can be at the top or the bottom segment of the page. Keywords 

are usually enclosed in rectangular boxes. 
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Figure 10. Annotated examples from the news article dataset. The bounding boxes colors 

correspond to the following blocks: red: title, green: metadata, yellow: author, blue: date, 

purple: main image, cyan: text, gray: keywords. 

 

 
 

The labels for the books dataset are title, author, and price. Annotated examples 

from the books dataset are presented in Figure 11. Here are some metadata and 

rationale for labeling each attribute: 

• Title. Usually in black color and positioned below the books’ cover image. 

• Author. One or more authors of the book can be selected. Usually in blue or 

gray color and positioned between the title and the price. 

• Price. Usually in black or red color and positioned below the author. One 

very visually discriminative feature of the price is the Indian rupee symbol 

inside the block. 
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Figure 11. Annotated examples from books dataset. The bounding boxes colors correspond to 

the following blocks: red: title, green: author, yellow: price. 
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3.3 Proposed Approach 

 
3.3.1 Data Augmentation 

Data augmentation is used to expand the dataset so that the model can be more 

robust to image variations. For this purpose, photometric and geometric 

distortions are commonly used by researchers. We use photometric distortion by 

altering the saturation, value, and hue of the images. In regards to geometric 

distortions, we add random scaling and translating. Mosaic data augmentation is 

also included with the YOLOv5 implementation and combines four training 

images into one in various ratios enabling the model to learn to identify objects 

at smaller scales (Appendix A). 

 
 

3.3.2 YOLOv5 Models 

YOLOv5 offers 5 models which are pretrained on the COCO [40] dataset. The 

difference between those models is the trade-off between the detection accuracy 

and the detection speed. The most lightweight model, YOLOv5n6, is really fast 

but not very accurate. On the other hand, the biggest model, YOLOv5x6 is the 

most accurate model but comes at the cost of slow inference speed. In Figure 12 

the detection speed and accuracy of each model on the COCO dataset is 

presented. 

 

 
Figure 12. YOLOv5 models. Detection speed and detection accuracy trade-off [26]. 
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3.3.3 YOLOv5 Architecture 

 
 

The general architecture of YOLO models consists of three components: 

• Backbone component. Usually, a pretrained CNN is used for extracting 

features from the image. 

• Neck component. The feature maps which are extracted by the backbone are 

aggregated and utilized by the neck. A neck, in most cases, consists of 

several bottom-up and top-down paths. This component aids in the 

transmission of small-object information and prevents it from being lost 

to higher levels of abstraction. This is accomplished by upsampling the 

resolution of the feature maps, allowing distinct layers from the backbone 

to be aggregated and influence the detection phase [41]. 

• Head component. Predicts bounding box coordinates and class 

probabilities. 

 
 

The YOLOv5s6 model architecture, as well as its modules, are presented in Figure 

13. These modules are: 

• The focus module is the initial layer of the backbone component, and it is 

intended to reduce the models’ calculations. The focus layer acts basically 

as a SpaceToDepth transformation layer that rearranges blocks of spatial 

data into depth. The input image is sliced into four segments. Then, the 

four slices are concatenated in-depth and sent off to the CBL module. 

• The CBL Module includes a convolution layer, a batch normalization (BN) 

layer, and a leaky ReLU activation function. 

• The CSP1_X module is the backbone component's third layer. The CSP1_X 

and CSP2_X modules are based on the CSPNet [42]. These modules divide 

the input feature mapping into two parts, and then combine them, 

reducing the number of calculations. CBL modules and X residual 

modules (Resunits) are contained in the CSP1_X to extract more 

effectively deeper features of the image. The value of X corresponds to the 

number of Resunits. 
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• The Res unit module consists of mainly two CBL modules, and produces its 

output by adding the output of those modules with the original input 

• The CSP2_X module is the initial layer of the neck component. The key 

distinction between it and the CSP1_X block is that the value of X in the 

CSP2_X block denotes the number of CBL modules. 

• The Spatial Pyramid Pooling (SPP) module is the backbone component's 

ninth layer, and it turns a variable-dimension feature map into a fixed- 

dimension feature map and is intended to improve the receptive field of 

the model and short out important features from the backbone [24]. The 

module firstly passes the input through the CBL module. Then, the max- 

pooling operation is applied vie three parallel maximum pool layers. Then, 

the output after those operations is concatenated with the feature map 

outputted after the CBL module. Finally, the output of the concatenation 

is passed through a CBL module. 

 
 

 
Figure 13. YOLOv5s6 architecture [43]. 



-31-  

3.3.4 Training Procedure 

 
It's important to note that the screenshots from the news articles had quite big 

and variable dimensions. The height ranged from 944 to 17724 pixels and the 

width was less variable ranging from 800 to 1283. In comparison, the screenshots 

from the books dataset had lower dimensions and variability. The height ranged 

from 235 to 1080 pixels and the width was also less variable ranging from 800 to 

1283. Basic statistics about the news and the books datasets are shown in 

Appendix B. 

 
Theoretically, the best detection accuracy would be obtained by using the biggest 

model and the highest resolution possible for training. However, we were 

restricted by the GPUs’ memory (NVIDIA GTX 1080Ti 11 GB). We used the 

official pretrained yolov5s6 model on the COCO dataset. The training 

environment consisted of python 3.9.9 and PyTorch 1.10 [44]. PyTorch is an 

open-source machine learning library that enables efficient tensor operations via 

the GPU, supports automatic differentiation, and has been utilized for the 

implementation of the YOLOv5 models. 

 
We tested all model sizes but with capped resolutions (as much as the GPU’s 

memory allowed). The best results were obtained using the yolov5s6 model with 

3520 x 3520 pixels resolution for the news dataset and the yolov5s6 model with 

2048 x 2048 pixels resolution (which captures all resolutions) for the books 

dataset. Stochastic gradient descent is used as the optimizer with an initial 

learning rate of 0.01, 0.937 momentum, and weight decay of 0.0005. We used the 

official pretrained yolov5s6 model on the COCO dataset. The epochs, batch size, 

and patience are set to 5000, 2, 500 for the news dataset and 1000, 5, 100 for the 

books dataset respectively. In each case, the best model based on validation loss 

is saved during training. The loss consists of three components: bounding box 

regression loss, confidence loss, and classification loss. 

 
Wandb.ai [45] is used to track, compare and visualize the experiments. Wandb.ai 

offers a web interface where one can explore metadata e.g., GPU power/memory 
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usage, hyperparameters of the models, key metrics such as mAP, 

training/validation losses, and more. 

 
Since the images were mostly rectangular, rectangular training is used. That 

means that the bigger side of the image will be resized to the image_size that is 

set and the smaller side will shrink according to the aspect ratio of the image and 

will get padded to become a squared image of image_size x image_size 

dimensions. The news dataset was split into two datasets. One dataset contains 

687 images from 28 domains and the other 41 images from 3 domains (to test 

one-shot-learning). For the rest of this thesis, these datasets are referred to as 

news dataset and English news TF dataset respectively. 



-33-  

4 Results and Discussion 
 

4.1 News Dataset 

 
The model yielded 0.87 mAP with stratified (based on domain) 5-fold cross- 

validation on the news dataset over all classes. In Table 1, the mean and standard 

deviation for all classes for the metrics of precision, recall, and map0.5 (0.5 IoU 

threshold) are presented. The title, main απimage, text, and keywords have a very 

high mAP (more or equal to 0.91). However, the metadata, author, and date have 

a lower mAP (less or equal to 0.82). This can be attributed to the fact that the 

metadata section which usually includes the date and the author blocks is usually 

quite smaller in comparison to the other classes. Moreover, resizing the input 

image to a smaller resolution could exacerbate the problem further. A higher 

resolution could possibly increase the mAP for those classes. The standard 

deviation for the mAP for all classes except for the author and date is less or equal 

to 0.02, so the model is quite stable. 

 
 
 

 Classes Precision Recall map0.5 

0 all 0.92 ± 0.01 0.83 ± 0.02 0.87 ± 0.01 

1 title 0.93 ± 0.07 0.93 ± 0.02 0.94 ± 0.01 

2 metadata 0.92 ± 0.03 0.73 ± 0.02 0.78 ± 0.02 

3 author 0.87 ± 0.03 0.64 ± 0.06 0.69 ± 0.05 

4 date 0.92 ± 0.04 0.74 ± 0.05 0.82 ± 0.04 

5 main_image 0.95 ± 0.02 0.93 ± 0.02 0.96 ± 0.02 

6 text 0.92 ± 0.02 0.90 ± 0.01 0.91 ± 0.02 

7 keywords 0.92 ± 0.02 0.93 ± 0.01 0.94 ± 0.01 
 

Table 1. Mean and standard deviation for all classes for the metrics of precision, recall, and 

map0.5 for the news dataset. 

 
 

Test-time augmentation (TTA) is also explored. Similarly, as the data 

augmentation that is applied during the training phase, TTA can be used during 

test time. TTA performs augmentations during test time, so instead of just using 

the original image for inference, random augmentations such as random scaling 

and flipping are performed and then the average of these predictions is taken into 
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account for the final prediction. TTA results in significant improvements in mAP 

over all classes as illustrated in Table 2. The mean mAP for all classes is 0.90 

compared to 0.87 without TTA. The order of the mAP values for all classes is 

similar to the ones without TTA. The standard deviation for the mAP for all 

classes except for the author and date is less or equal to 0.02 as well. 

 

 
 Classes Precision Recall map0.5 

0 all 0.93 ± 0.01 0.86 ± 0.01 0.90 ± 0.01 

1 title 0.96 ± 0.02 0.97 ± 0.01 0.97 ± 0.01 

2 metadata 0.95 ± 0.02 0.76 ± 0.02 0.82 ± 0.02 

3 author 0.89 ± 0.05 0.67 ± 0.05 0.75 ± 0.04 

4 date 0.94 ± 0.04 0.79 ± 0.03 0.87 ± 0.03 

5 main_image 0.96 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 

6 text 0.92 ± 0.03 0.93 ± 0.01 0.94 ± 0.01 

7 keywords 0.91 ± 0.02 0.94 ± 0.01 0.95 ± 0.02 
 

Table 2. Mean and standard deviation for all classes for the metrics of precision, recall, and 

map0.5 for the news dataset with TTA. 

 

 

 

4.2 One-shot Learning on English News TF and 
Greek dataset 

 
One-shot learning capabilities of the model are also explored by using transfer 

learning to fine-tune the model to unseen news websites in English but also in 

another language (Greek). In both cases, we use one different image from each 

domain of the dataset for training to test how different input images affect the 

performance of the model and check the variability of the results. We use one of 

the pretrained models (on the news dataset) and fine-tune it with just one image 

per domain. This experiment is conducted 5 times for each dataset. 

 
In Table 3, the mean and standard deviation for all classes and for the metrics of 

precision, recall, and map0.5 are presented for the English news TF dataset. The 

mAP (0.75) is quite lower than the mAP of the original news dataset (0.87). The 

title, main image, and text have still high mAP values but metadata, author, date, 

and keywords have quite lower values. This can be attributed to the fact that there 

may be high variability of this dataset in certain classes compared to the original 
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news dataset and likewise the high mAP values of the title, main image and text 

can be explained by the fact that they are most commonly visually consistent 

across domains. Moreover, the standard deviation for the mAP for most of the 

classes is quite high. This is to be expected since only one image for each domain 

is used for training each time and it may not be able to capture the same degree 

of variation that is required for all the webpages of that domain. 

 Classes Precision Recall map0.5 

0 all 0.80 ± 0.12 0.73 ± 0.08 0.75 ± 0.08 

1 title 0.98 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 

2 metadata 0.54 ± 0.29 0.36 ± 0.03 0.34 ± 0.04 

3 author 0.68 ± 0.21 0.46 ± 0.25 0.59 ± 0.21 

4 date 0.67 ± 0.20 0.71 ± 0.34 0.69 ± 0.31 

5 main_image 0.97 ± 0.01 0.90 ± 0.07 0.93 ± 0.06 

6 text 0.88 ± 0.07 0.95 ± 0.03 0.97 ± 0.01 

7 keywords 0.87 ± 0.10 0.69 ± 0.15 0.76 ± 0.12 

Table 3. Mean and standard deviation for all classes for the metrics of precision, recall, and 

map0.5 for the English news TF dataset. 

 
 

TTA is also applied to the English news TF dataset. Using the same methodology 

as described above, the results are presented in Table 4. TTA leads to higher mAP 

over all classes; 0.79 compared to 0.75 for the vanilla case. The order of the mAP 

values is similar to the ones without TTA and the standard deviation for the mAP 

for most of the classes is reduced. 

 

 
 Classes Precision Recall map0.5 

0 all 0.83 ± 0.11 0.76 ± 0.08 0.79 ± 0.07 

1 title 0.98 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 

2 metadata 0.61 ± 0.28 0.38 ± 0.00 0.35 ± 0.03 

3 author 0.75 ± 0.21 0.51 ± 0.37 0.70 ± 0.21 

4 date 0.69 ± 0.17 0.71 ± 0.31 0.70 ± 0.29 

5 main_image 0.98 ± 0.01 0.96 ± 0.03 0.98 ± 0.02 

6 text 0.91 ± 0.05 1.00 ± 0.00 0.99 ± 0.00 

7 keywords 0.87 ± 0.11 0.77 ± 0.13 0.82 ± 0.09 
 

Table 4. Mean and standard deviation for all classes for the metrics of precision, recall, and 

map0.5 for the English news TF dataset with TTA. 
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In Table 5, the mean and standard deviation for all classes and for the metrics of 

precision, recall, and map0.5 are presented for the Greek dataset. The mAP (0.89) 

is a bit higher compared to the mAP of the original news dataset (0.87). The title, 

metadata, main image, and text have still high mAP values but, author, and date 

have lower values. This high mAP across all classes can be attributed to the fact 

that there may be a high degree of similarity of this dataset with the original news 

dataset. Moreover, the standard deviation for the mAP for some of the classes is 

quite high e.g., author. This is to be expected since only one image is used for 

training as explained in the English news dataset above. 

 
 
 

 Classes Precision Recall map0.5 

0 all 0.87 ± 0.04 0.87 ± 0.05 0.89 ± 0.04 

1 title 0.89 ± 0.04 0.92 ± 0.04 0.96 ± 0.01 

2 metadata 0.92 ± 0.05 0.89 ± 0.09 0.96 ± 0.02 

3 author 0.86 ± 0.10 0.80 ± 0.21 0.82 ± 0.17 

4 date 0.70 ± 0.07 0.71 ± 0.10 0.71 ± 0.11 

5 main_image 0.97 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 

6 text 0.84 ± 0.06 1.00 ± 0.01 0.98 ± 0.01 

7 keywords 0.92 ± 0.05 0.76 ± 0.05 0.84 ± 0.07 
 

Table 5. Mean and standard deviation for all classes for the metrics of precision, recall, and 

map0.5 for the Greek news dataset. 

 

 
TTA is also applied to the Greek dataset. Using the same methodology as 

described above, the results are presented in Table 6. TTA leads to a slighter 

higher mAP over all classes, 0.90 compared to 0.89 for the vanilla case. The order 

of the mAP values is similar to the ones without TTA and the standard deviation 

for the mAP for all of the classes is reduced. 

 
 Classes Precision Recall map0.5 

0 all 0.88 ± 0.02 0.89 ± 0.03 0.90 ± 0.02 

1 title 0.90 ± 0.04 0.91 ± 0.04 0.96 ± 0.02 

2 metadata 0.91 ± 0.02 0.95 ± 0.07 0.94 ± 0.01 

3 author 0.89 ± 0.06 0.82 ± 0.16 0.85 ± 0.13 

4 date 0.77 ± 0.06 0.73 ± 0.13 0.74 ± 0.11 

5 main_image 0.97 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 

6 text 0.84 ± 0.03 1.00 ± 0.00 0.98 ± 0.00 

7 keywords 0.84 ± 0.03 0.80 ± 0.04 0.86 ± 0.05 
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Table 6. Mean and standard deviation for all classes for the metrics of precision, recall, and 

map0.5 for the Greek news dataset with TTA. 

 

4.3 State-of-the-art Comparison on the Books 
Dataset 

 
The model yielded 0.95 mAP with stratified (based on domain) 5-fold cross- 

validation on the books dataset over all classes. In Table 7, the mean and standard 

deviation for all classes and for the metrics of precision, recall, and map0.5 (0.5 

IoU threshold) are presented. The mean mAP for all classes is 0.95. All the 

classes; title, author, and price have a very high mAP (greater or equal to 0.91). 

The standard deviation for the mAP for all classes except the title is less or equal 

to 0.02. 

 
 
 

 Classes Precision Recall map0.5 

0 all 0.97 ± 0.01 0.93 ± 0.02 0.95 ± 0.02 

1 title 0.99 ± 0.01 0.84 ± 0.05 0.91 ± 0.05 

2 author 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 

3 price 0.96 ± 0.03 0.98 ± 0.02 0.97 ± 0.02 
 

Table 7. Mean and standard deviation for all classes for the metrics of precision, recall, and 

map0.5 for the books dataset. 

 

 
TTA was also applied to the books dataset. Using the same methodology as 

described above, the results are presented in Table 8. TTA leads to similar mAP 

order for all classes with a slight increase in the title class. No significant change 

for standard deviation as well. 

 
 Classes Precision Recall map0.5 

0 all 0.97 ± 0.01 0.94 ± 0.03 0.95 ± 0.03 

1 title 1.00 ± 0.01 0.86 ± 0.07 0.93 ± 0.05 

2 author 0.96 ± 0.02 0.97 ± 0.02 0.97 ± 0.04 

3 price 0.96 ± 0.02 0.98 ± 0.02 0.97 ± 0.03 
 

Table 8. Mean and standard deviation for all classes for the metrics of precision, recall, and 

map0.5 for the books dataset. 
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Our approach yields better precision, recall, and mAP compared to the state-of- 

the-art approach as shown in Table 9. This can be attributed to the deeper model 

architecture, the novel data augmentation methods e.g., mosaic, and all the 

further improvements that were discussed in Chapter 2, in the evolution from 

YOLOv2 to YOLOv5. 

 
Methods Precision Recall map0.5 

State of the art 0.97 0.48 0.74 

Proposed Approach 0.97 ± 0.01 0.93 ± 0.02 0.95 ± 0.02 

Proposed Approach + TTA 0.97 ± 0.01 0.94 ± 0.03 0.95 ± 0.03 
 

Table 9. Mean and standard deviation comparison of our approach with a state-of-the-art 

approach for all classes for the metrics of precision, recall, and map0.5 for the books dataset. 

 

 

For the books dataset, in both cases (with or without TTA), the results are 

generally better than the ones from the news dataset. This is to be expected since 

with the book dataset the full resolution of the images is used during training and 

so, small objects can be more easily detected. Also, the news datasets include 

articles from multiple domains whereas the books dataset contains book product 

details only from one domain. 

 

4.4 Detection Speed and Accuracy Trade-off 

In all cases, TTA leads to various degrees of improvement in regards to the mAP. 

However, it’s important to note that there is a trade-off between detection speed 

and accuracy when using TTA. TTA leads in most cases to half or less FPS for all 

datasets as shown in Table 10. 

Dataset TTA FPS mAP (over all classes) 

news no 34.92 ± 3.51 0.87 ± 0.01 

yes 17.16 ± 0.78 0.90 ± 0.01 

Greek news no 22.52 ± 0.72 0.89 ± 0.04 

yes 9.20 ± 0.12 0.90 ± 0.02 

English news TF no 17.34 ± 0.25 0.75 ± 0.08 

yes 11.94 ± 0.16 0.79 ± 0.07 

books no 18.78 ± 5.72 0.95 ± 0.02 

yes 5.72 ± 1.53 0.95 ± 0.03 

Table 10. FPS (mean and standard deviation) and mAP over all classes for each dataset with and 

without TTA. 
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5 Conclusion and Future 
Work 

 
In this thesis, we reformulated the problem of WIE as an object detection task. 

For this purpose, a dataset with news articles was collected and annotated. A 

state-of-the-art detector, YOLOv5, was used to extract specific attributes such as 

the news articles’ title, metadata, author, date, main image, text, and keywords. 

The model yielded 90% mAP (over all classes) in stratified (based on website 

domain) 5-fold cross-validation. One-shot learning capabilities of the model were 

also explored by using transfer learning to fine-tune the model to unseen news 

websites in English but also in another language (Greek) achieving 79% mAP and 

90% mAP respectively. A books dataset, with classes title, author, date was used 

to compare our approach with a state-of-the-art approach where a previous 

version of YOLO (version 2) was utilized. The mAP of our approach yielded 95% 

mAP compared to the state-of-art approach which yielded 74% mAP. In all cases, 

TTA leads to various degrees of improvement in respect to the mAP but with a 

detection speed/accuracy trade-off. Our approach works not only in multiple 

websites within the same domain (e.g., news articles) but can also work for other 

domains (e.g., book listings). Regarding future directions, testing this method to 

extract specified fields from other domains e.g., job listings would be interesting. 

We were also restricted by the GPU’s memory so experiments with higher 

resolution images and bigger models could possibly yield better results. 
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Appendix A 
 
 
 

 
Augmentation Value 

0 HSV_H 0.015 

1 HSV_S 0.7 

2 HSV_V 0.4 

3 Scale 0.5 

4 Translate 0.1 

5 Mosaic 1 

 
 

Table 11. Data augmentation values. 

 

 

 

Appendix B 
 
 
 

domains count min 

height 

max 

height 

mean 

height 

std 

height 

min 

width 

max 

width 

mean 

width 

std 

width 

abc.net.au 71 5348 16081 9292.0 2554.0 800 800 800.0 0.0 

aljazeera.com 25 6062 14286 8052.0 1653.0 800 800 800.0 0.0 

aol.com 21 4409 15060 8024.0 2548.0 800 800 800.0 0.0 

bbc.co.uk 44 1733 13325 7966.0 2575.0 800 800 800.0 0.0 

bbc.com 33 1821 14134 8798.0 2310.0 800 800 800.0 0.0 

bizjournals.com 22 3682 9000 5700.0 1453.0 800 970 846.0 77.0 

cbsnews.com 20 3077 8564 5318.0 1332.0 800 800 800.0 0.0 

chicagotribune.com 22 3939 8214 5305.0 1062.0 800 800 800.0 0.0 

chinadaily.com.cn 27 944 8859 3212.0 1549.0 800 1010 862.0 98.0 

chron.com 21 3891 13528 7064.0 2524.0 800 800 800.0 0.0 

cnbc.com 20 3489 10650 5708.0 1518.0 800 800 800.0 0.0 

cnn.com 21 3160 17724 9129.0 2982.0 800 800 800.0 0.0 

dw.com 23 5014 9593 6751.0 1007.0 980 980 980.0 0.0 

espn.com 21 1756 6289 3232.0 1224.0 800 800 800.0 0.0 

fastcompany.com 20 10257 17073 11856.0 1907.0 800 800 800.0 0.0 

france24.com 20 2681 9138 5371.0 1789.0 800 800 800.0 0.0 

globalnews.ca 15 6612 13790 8618.0 1986.0 800 800 800.0 0.0 

go.com 21 2103 6967 4180.0 1413.0 800 800 800.0 0.0 

huffpost.com 22 3622 10756 7042.0 1641.0 800 800 800.0 0.0 

indiatimes.com 22 4049 8808 5556.0 1288.0 800 1003 920.0 102.0 

irishtimes.com 21 4808 11456 7678.0 2140.0 800 800 800.0 0.0 

http://abc.net.au/
http://aljazeera.com/
http://aol.com/
http://bbc.co.uk/
http://bbc.com/
http://bizjournals.com/
http://cbsnews.com/
http://chicagotribune.com/
http://chinadaily.com.cn/
http://chron.com/
http://cnbc.com/
http://cnn.com/
http://dw.com/
http://espn.com/
http://fastcompany.com/
http://france24.com/
http://globalnews.ca/
http://go.com/
http://huffpost.com/
http://indiatimes.com/
http://irishtimes.com/
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latimes.com 21 4273 10205 7144.0 1458.0 800 800 800.0 0.0 

mercurynews.com 21 4611 9093 6611.0 1258.0 800 820 801.0 4.0 

metro.co.uk 21 5419 15204 8156.0 2725.0 800 800 800.0 0.0 

nbcnews.com 26 2781 7523 4804.0 1356.0 800 800 800.0 0.0 

ndtv.com 23 2563 4832 3350.0 581.0 1283 1283 1283.0 0.0 

netscape.com 21 1007 2694 1790.0 389.0 980 980 980.0 0.0 

npr.org 22 5133 14425 7692.0 2458.0 800 800 800.0 0.0 

nypost.com 15 3525 8791 5571.0 1813.0 800 800 800.0 0.0 

thestar.com 11 4890 8582 6412.0 1278.0 1176 1176 1176.0 0.0 

variety.com 15 5746 9435 7368.0 1083.0 913 913 913.0 0.0 
 

Table 11. Basic statistics about the domain count, width and height of the news dataset. 
 

 

domains count min 

height 

max height mean height std height min 

width 

max width mean width std 

width 

news247.gr 24 5350 10937 6943.0 1127.0 1000 1000 1000.0 0.0 

sport24.gr 21 2744 8096 4093.0 1518.0 800 800 800.0 0.0 
 

Table 12. Basic statistics about the domain count, width and height of the Greek dataset. 
 

 

domains count min height max height mean height std height min 

width 

max width mean width std width 

amazon.in 138 235 1080 706.0 277.0 398 1920 1073.0 545.0 

 

Table 13. Basic statistics about the domain count, width and height of the books dataset. 

http://latimes.com/
http://mercurynews.com/
http://metro.co.uk/
http://nbcnews.com/
http://ndtv.com/
http://netscape.com/
http://npr.org/
http://nypost.com/
http://thestar.com/
http://variety.com/
http://news247.gr/
http://sport24.gr/
http://amazon.in/
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Appendix C 
 
 
 

Figure 14. mAP per epoch (validation set) of training for each experiment with the news dataset. 
 

 

 

Figure 15. mAP per epoch (validation set) of training for each experiment with the English 
news TF dataset. 

 

 

 

 

 

Figure 16. mAP per epoch (validation set) of training for each experiment with the Greek news 
dataset. 
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Figure 17. mAP per epoch of training for each experiment with the books dataset. 
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