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Abstract

Today’s exponential needs for lightweight applications dictate the diminution of time-to-market
requirements hardware-oriented applications are usually associated with, along with implementation
restrictions compared to other computer systems. At the same time, the process cannot abate the anticipated
level of security by any means. High-Level Synthesis (HLS) tools have proved themselves as a vital
assistant in such a process, since it allows developers to use familiar, high-level language (HLL) along with
optimization strategies to formulate the desired functionality, defined in a hardware description language
(HDL). As a result, hardware development can become an easier, quicker process, leaving room for
verification and validation on an early stage. On the downside, this methodology has not yet been tested
thoroughly regarding the quality of the generated output compared to traditional HDL development flow.
For that purpose, an AES cryptographic algorithm and some known side-channel attack countermeasures
applied over it have been put through the HLL-to-HDL workflow offered by Vivado HLS tool, using
different Synthesis directives. The resulting designs were finally compared by means of timing and are
utilization, two key characteristics for embedded applications. It was finally determined that, while the
default settings of the HLS tool offer a result of acceptable quality, the use of the directives under scope
can either benefit of worsen those two aspects. The use of such configurations then should be considered
regarding the underlying architecture as well as the needs of applications.

Keywords : Embedded Systems, High-level Synthesis (HLS), AES, Side-channel Attacks countermeasures,
directives
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MepiAnwn

H ekBetikn) adEnon tov avaykdv yio yprioT EVOOUUTOUEVOV «EAAPPOVY) EPAPUOYOV OmoLTel T Heiwon
TOV YPOVOL AVATTVENG TTOV GLYVA OXETILETAL HE TIC EPAPLOYEG TTOV GTOYEVOVV ¥PNoT 0T0 YAIKO, Kot
TapdAInia, v emiforr] avGTNPOTEPOY TEPLOPICUADY LAOTOINGNG, GUYKPLTIKG LE GAAN VTOAOYIGTIKA
ovotiuota. Ty ida otiypn, to eninedo g Acedieiag dev mpénet va topapepiletor. Ta epyareio High-
level Synthesis (HLS) givaw g Béom va mapéyovv oiuepa TNV OTOITOOUEVT VITOGTAPIEN GTNV ETIAVGT TOV
TpoPInubTev avantuéng evooUATOUEVOV Epapuoydv. Emitpémouv 1 ypfon yVeOOTdV YAOGG®V
npoypappoTiopod avatepov emmédov (high-level languages — HLL) ywo va meprypdyouv oty {nroduevn
GUUTEPLPOPA, TNV €VKOAN emPoAn PeAtioTomomoemv TAve og avth, ovaAappdvovtag teAkd v
aVTOMOTN HETATPOTH o€ pia yhdooo meprypaeng Yoo (Hardware-description language — HDL). Q¢
amotélecpia, 1 dadkacio g avanTuéng pmopel va yivel gvkoAdTepn Kol ToOTEPN, EMITPEMOVTOS TNV
TEPAUTEP® EMAANOEVON TNG AELTOVPYIKOTNTOS OO TAL TPDOLLO 6TAd TG Sodtkacing. ZTov avtimoda, N
pebodoroyia dev €xet ypnoonomBel oe enapkn Padrd, og TPOG TNV TOLOTNTA TOV ATOTEAEGUATOV TNG.
Io avtd 10 oKOTO, 1 peAET alomoince Tov KpUTToYpaetkd pnyaviopd AES, kabdg kot avtipetpa mov
oToygvOVV eVTADEIES TOL YAKOD amévavTt og embioel mAdylo kavaliov (side-channel attacks), kabaog kot
NV TOIKIAID TV TOPAUETPOTOMOE®Y TTOL TTopEyEL TO epyaieio Vivado HLS, vid v popoen vipektifov
(Synthesis directives). Ot oyedidoeic mov Tposkvuyay cuykpidnkov ueta&d Tovg, M TPOG TIC HETPIKEG TV
APOVOL KOl TOV ¥DPOVL, dVO CNUAVIIKG YOPUKTNPLOTIKG OV TPEMEL Vo AopBavovtatl vadyn Katé tnv
AVATTVEN EVOOUOTOUEVOV EQOPLOYDV. ZUUTEPUAGUATIKG, TPOKVTTEL OTL 1| TPOKABOPIGUEV ¥POT TOV
€pYaAEiov OmOdIdEL L0l IKOVOTOMTIKY TOOTNTO MG TPOG TG e&eTalOUEVEG LETPIKES, EVA M YPNOT| TOV
vipeTifov pmopel va TG ennpedost oe onpavtikd Padud -apvnticd 1 OeTikd-, cuvendg N xpnomn Tovg Ba
npénel va eetaleTon 81e£001KA G TPOG TOVG TEPLOPIGLOVS TNG TAUTPOPLOG EPAPLOYNG AAAY KOl TH GO
™G EQAPHOYNG.

Aé€eic-khedra: Evoopatopéve Xvotipote, High-level Synthesis, AES, avtipetpo embécemv nAdyiov
KOvVaA00, vTpeKTiPeg
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1. Introduction

Embedded systems can be viewed as autonomous computing units, each with its own hardware and
software, capable of performing a small range of tasks, as defined by its manufacturer. It can operate
independently or as a part of a larger system and is able to interact with elements such as sensors through
integrated peripherals. One of the essential characteristics of embedded systems is their tight constraints.
Their pervasive nature dictates that such systems shall operate under unstable environmental conditions,
have minimal requirements in terms of cost, size, power consumption, while maintaining a satisfying level
of performance, reliability and lifetime [1].

In the recent years, and in the brink of an Internet-of-Things (IoT) revolution, attention has been
drawn over the use of embedded systems. IoT aspires to connect “anyone with anything at anywhere,
anytime” [2]Error! Reference source not found.. Briefly, 10T involves low-cost devices acting as the end
nodes of a system that gathers information of any kind and transfers them through the Internet, to similar
devices or processing units. 10T applications generally employ embedded systems at the end nodes (edge
devices) of the “IoT mesh™ to achieve the desired functionality. The resulting system is highly
heterogenous, but the devices involved manage to collaborate “seamlessly”, through a network that offers
high speed communications.

Top 10 loT Applications Areas for 2020
(as observed among 1,414 known loT projects)

Manufacturing
Mobility
Energy

Cities

Retail
Healthcare
Supply Chain

Agriculture  ———

Buildings  —
Others ————

0% 5% 10% 15% 20% 25%

Figure 1. 10T trends as recorded in 2020 [3]

As shown in Figure 1, 10T application has taken over multiple sectors, aiming to resolve core
issues, optimize tasks and allow the development of novel methodologies in an effective way. This can be
heavily attibuted to the platforms involved. Most of the devices taking part in 10T systems heavily rely on
integrated circuits (IC) to achieve optimality [4]. Those are small, cheap, energy efficient yet highly
computationally capable electronic modules. The countless applications based on pervasive technologies
need to be oriented towards those devices, hence, traditional programming associated with general-purpose
computing systems is exchanged for developing over specialized hardware units. The term hardware
acceleration is used to encapsulate that powerful approach.

Gate-level development requires the use of programming languages that could capture a digital
hardware’s attributes. The most known consideration is that of concurrency, when computations are
performed individually — and in extend in parallel-, whenever the input is available. This contrasts the
fundamentals of some of the most commonly used procedural, “high-level” languages (HLL), whose goal
is to offer an abstract, algorithmic manner of development, concealing any architectural concerns from the
developer. For that reason, hardware-description languages (HDL) were developed to encompass such
matters, while remaining independent of the electronic technology the design is applied over, with the most
common of them being Verilog and VHDL.

L A highly connected topology used to describe the interconnectivity of 10T devices.
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Along with them, Electronic design automation (EDA) tools appeared to aid the design process.
Their workflow generally comprises of:

e The logic development, usually in a hardware description language (HDL) which results in an
abstract model representing the behavior of data -signals- among the registers (register-transfer
level - RTL).

e The RTL synthesis, which transforms the RTL into electronic components and wiring, thus
creating a netlist.

e The Physical Synthesis, which places the resulting netlist over the target technology. Place-and-
route step is the slowest HDL-to-bitstream operation, since a complex optimization needs to be
made: find out the shortest paths among the computational blocks so that the design is optimal.

e Among these steps, the best practice is to perform simulations to verify the correct functionality
of design in terms of behaviour or timing.

The first problem discussed over this thesis is that developing and verifying applications
directly on gate-level is, by definition, a daunting, slow task. This stems from the fact that the
functionality doesn’t target a processor that operates in a serial, easily predictable manner. Instead, it is
implemented over logic cells, which require a deep understanding to determine their relationships and
behavior from the developer’s perspective. While the additional complexity that comes with it is mostly an
acceptable trade-off [5], today’s rising demands press for changes in the process followed. A novel
methodoly to tackle those this issue is presented in Chapter 2 of this thesis.

The second objective tackled concerns the security aspect of hardware accelerators, examined
extensively in Chapter 3. It is obvious that security must be enabled, especially over a technology that has
penetrated every aspect of everyday life. Numerous examples of the importance of embedded systems’
security can be presented. Perhaps the most indicative example are “smart cards”, a personal card with its
own microprocessor. Nowadays, such devices can possibly contain a variety of personal information in
order to identify their owner and allow ubiquitous access to services. In addition to their flexibility, smart
cards are constantly improved to accommodate sometimes multiple, more complex capabilities.

Security in those novel platforms becomes of utmost importance then, considering a number of
factors. The first is the extended attack surface of such systems. As of 2019, the number of connected
devices exceeded 7 billion [©], a value that will exponentially increase with the adoption of 5G technology,
which will bring a greater variety of applications requiring embedded systems. The heterogeneity of the
components taking part in an 10T mesh should also be taken into account, along with the lack of security
advancements in the field, mainly because it is practically impossible to keep up with the rapid deployment
of larger, more complex loT applications.

The use of hardware devices specifically comes with additional challenges. The implementations
must retain their low-cost, low power consumption characteristics in order to support pervasiveness. The
nodes are inherently constrained in terms of computational capabilities, and they depend on other systems
accessed through the network to perform any needed processes. By that means, they cannot support
elaborate cryptographic mechanisms. This resulted in a surge in research over “lightweight cryptography”
methodologies [7].

In addition, the implementation itself presents certain electronic phenomena related to the cipher’s
behavior, and that can be exploited instead of seeking weaknesses over the cryptographic algorithms. This
has resulted in a new family of attacks, discussed later. It has been observed that a more computationally
intense cipher can lead to more of such exploitable phenomena occurring [2].

Given those, a series of countermeasures were developed with the use of the HLS methodology,
over a known cryptographic mechanism, in respects to important metrics, presented in Chapter 4. In
addition, the directives used through the HLS tool under examination are presented at Chapter 5,serving as
a guide for their better understanding. The directives finally used are specified in Chapter 6, defining the
designs’ solutions. In Chapter 7 the results are compared in regards of the metrics defined. Lastly, in
Chapter 8, the conclusions are drawn and future research directions are discussed.

Development of hardware countermeasures for embedded systems security using High-Level Synthesis 7
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2. High Level Synthesis (HLS)

HLS has become a popular solution to the first problem presented above, applying the simplicity of the
high-level abstraction over the design flow, performing a behavioural synthesis. An HLS tool takes an
HLL program, and automatically produces an RTL design with the same functionality, described in HDL.
This enables anyone with the basic knowledge of an HLL, usually C/ C++, to access the hardware
programming advantages without the need to ponder over implementation details. At the same time, human
error is substantially reduced, the resulting programs are more flexible and far easier to debug [“].

The process of transformation from HLL to HDL automatically takes over tasks that otherwise would
be the designer’s responsibility. The variety and order of them may vastly differ from one tool to another,
but the basic tasks are [10]:

e Data-Flow Graph (DFG), which is a general representation of the inputs and outputs of a design,
the operations and their interoperability, and how the dataflow is shaped, given the data
dependencies. This step can be extended to Control/Data-Flow Graph (CDFG) to include the
control flow (conditional cases).

e Resource Allocation, which determines the resources that may be required for the implementation
of a design, given information from the previous step. The resources shall be enough to implement
every operation defined, but in an optimal way, meaning the minimal use of more complex
components.

e Scheduling, the essential step for behavioural synthesis, which designates operations to clock
cycles, according to the timing characteristics of both the hardware and the design. Depending on
the methodology used, scheduling can be categorized to:

o  Scheduling for unconstrained designs, for which the only limitation is data dependencies.
Those are more commonly used as an estimation rather than the realization of
implementations.

o Scheduling for constrained designs, which take into consideration constraints posed by
resources or time limitations and given that, aim to produce the most efficient
implementation possible.

e Register Allocation, that examines cases where registers are required (example, in data
dependencies that last longer than one cycle). Lifetime Analysis can also be performed to
determine data validity along the time, enable sharing and therefore minimize the number of
registers that will be needed in the design.

Binding, which assigns the operations scheduled to the associated hardware resource.

State Machine Extraction, at which point the sequence of operations is finally defined. The state
machine of the design is extracted from the scheduling step and instructs how the data are passed
in the components, according to the current state.

e Netlisting, which results in the synthesized design. Netlisting can be performed between other
steps, offering a form of verification.

Interface Synthesis defines the form of the interface of top module in a design, consisting of the input
and output signals, along with various control signals that allow the communication with other modules
and peripherals. The inner functions become separate blocks, whose operation creates a hierarchy of
modules and entities. As mentioned, the whole process is automatic, yet most HLS tools allow a level of
manipulation from the user, especially in order to take advantage of hardware benefits. Testing can be then
performed in the earliest stages of the design process with minimal effort, assisting design exploration.

It should be noted though, that while most HLS tools enable designers to overcome the difficulties of
hardware application development, they should not entirely dismiss the fact that the code will be finally
implemented for hardware and should address their limitations. Sequential-to-Concurrent logic transition
needs to be taken into account while developing a design. Memory management also differs. For example,
there are high-level techniques, such as dynamic memory allocation, that, though they greatly benefit the
code on the higher-level, they don’t synthesize well or not at all. Such methods include dynamic
programming techniques, pointer usage, recursion and system calls [9].

Development of hardware countermeasures for embedded systems security using High-Level Synthesis 8
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After three decades of extensive research, trial and error, a wide variety of academic and commercial
tools exist [11] [12]. The parameters involved in the choice of a tool include the existing documentation
and vendor support, the target device used, the optimizations abilities, the resulting RTL in terms of metrics
such as resource and power usage, latency, etc, the correctness of verification and finally the overall user
experience.

2.1. Vivado HLS

The tool used in this thesis is Vivado HLS (version 2020.1), developed by Xilinx. It is considered part of
the Vivado Design Suite, which allows developers to take a high-level algorithm to programmable logic
through an extended design flow. It is an Eclipse-like IDE, as presented in Figure 2, an environment familiar
to most programmers. A Vivado HLS project contains the high-level code, a testbench file, from which the
inputs to-be-examined are given to the code, and at least one solution, in which the constraints and the
optimization details of the project are defined.

[
File Edit Project Solution Window Help
A= B[ X o R a0 # A" LG @) | 5 Debug +| Synthesis & Analysis
I Explor 3 = O || gl Synthesis(solution1){Sbox_csynth.rpt) &2 = 0O |80 =& o Di = g
& Synthesis Report for ‘Shox’ =
¢ 125 simple_Canright |i=] General Information
[ Includes General Information w |iz| Performance Estimates
= Source Timing
fiz= Test Bench Date: Tue Jun 28 11:55:28 2021 Latency
~ = solution? Version: 20201 (Build 2897737 on Wed May 27 20:21:37 MDT 2020) ~ [:Z] Utilization Estimates
~ 4 constraints Project: simple_Canright I Summary
% directives.tel Solution: solutionl Detail
U seriptc] Product family: artix7 v ] Interface
v B csim Target device:  xc7al00t-ftg256-2 ] Summary
= build
= report Performance Estimates
M bgp:nis: = Timing
= verilog = Summary
(= vhdl | Clock | Target | Estimated ‘ Uncertainty |
v s [ apclk | 1000ns | s652ns | 125ms |
= report
(= systemc =] Latency
(= verilog = Summary
(= vhdl Latency (cycles) | Latency (absolute) | Interval (cycles)
min | max min | max min | max | Type
36| 36| 0360us | 0360us | 36| 36| none
= Detail
@ Instance
# Loop
Utilization Estimates
= Summary
Name BRAM_18K | DSP43E FF LUT | URAM
DSP - - -
Expression - - 0 250
FIFO - -
Instance - - 21 233
Memory 0 - 16 2
Multiplexer - - - 110
Register - - 279
Total 0 0 316 595 0
Available 270 240 | 126800 | 63400 0 v
< >
B Console & . @] Emors| & Wamings| ‘= DRCs| &5 Man Page =k 2H ! 5 ‘ mB-m-Es O
Vivado HLS Console
< >

simple_Canright/solution

Figure 2. Vivado HLS graphical user interface. After the Synthesis, a report is available.
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At the Synthesis perspective, the code can be developed and verified through the testbench.
Debug option is also available. The solutions can be then synthesized, producing the respective
functionality in VHDL or Verilog files, along with a brief report containing performance estimates.
Alternatively, the more detailed Analysis perspective can be examined. It is an interactive tool that offers
a glimpse of how the scheduling and binding affect on the given code. A good practice is to co-simulate
high-level and RTL, an option Vivado HLS also offers using one of the integrated RTL simulators, along
with a wave viewer. Finally, the RTL export as IP is possible, which can be imported at Vivado.

The optimizations are optional that can be applied come in the form of directives. Those can
specify, among others, the minimum or maximum latency of a code block, the resources to be used for an
alternative handling of variables (example, what memory types are used for array implementation) or
limitations over them, how loops are implemented (unrolled, merged), whether pipelining is going to be
applied, modifications in the dataflow and the protocols that control input and output signals. All aim to
optimize the application of the code over the hardware platform. Lastly, besides the user interface, Vivado
HLS can be accessed through the bash, with the use of tcl commands[13].

3. Cryptographic Acceleration

Cryptography is by no means a novel field of study. Its use can be traced back along with the first signs
of written language, among many different cultures. Up until today, its concept remains the same: To find
ways to effectively hide information communicated through any means, while providing a method of
unveiling them, known only to the intended parties. Cryptography became a vital technique for the military
and diplomatic services, defining, most notably, the outcome of the two World Wars [14].

The dawn of the Information Age revamped the interest in cryptography. While the central idea
remained the same, new requirements rose because of the digitalization of information, as well as the
environment those are exchanged, today in greater numbers than ever. Mathematics and Informatics rapid
development allowed the creation of much more complex cryptographic algorithms (ciphers) for the
uncertain digital world. The primary mathematical principles and theorems discussed in every study
concerning the development and evaluation of cryptographic mechanisms were set by the emblematic work
of C.E. Shannon in the late 1940°s [15][16].

The importance of cryptography is such, that nowadays, information security is a prolific field of
study, as well as a thriving industry, since it has become essential for any organization operating on the
cyber environment. Cryptanalysis, the study of information systems for weakness in cryptographic methods
and implementations has been also proved to be a useful tool, since it allows the better understanding and
evolution of cryptographic algorithms.

The main terms of cryptography that need to be noted are the plaintext, the initial information
meant to be delivered from one end to another, and the ciphertext, the encrypted plaintext that is
communicated. Lastly, the cryptographic key is a piece of information that is used as a parameter in a
cipher to transform the given plaintext to the ciphertext through the encryption process, and must be kept
secret. In fact, the whole success of the process depends, not on the secrecy of the algorithm used, but on
the secrecy of the key. The key’s quality depends on factors such as the way it is generated, its size, etc.
The key is the one that also allows the decryption, the reverse process to retrieve the initial information, to
be performed.

Cryptography is part of Cybersecurity that encapsulates all the preventive measures applied over
applications, systems and networks. The aim is to successfully tackle any possible threats, and when this is
deemed impossible, to ensure the operational continuity of the system with the minimal possible damages.
This ensures that the security of information has been thoroughly studied over the software domain, and
will continue to do so, since absolute security is not feasible. It is critical then, that devices that operate in
the uncertain cyber environment must apply a satisfying level of security.

Development of hardware countermeasures for embedded systems security using High-Level Synthesis 10
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3.1. HLS in Cryptography

The imperative requirement for secure applications developed for hardware along with the need for better
time-to-market can be fulfilled by HLS tools. Modern cryptographic mechanisms are characterized by great
complexity, an issue that can be overcomed with the use of Hardware. A common technique is the use of
dedicated hardware to accelerate the computations. Therefore, known, tested cryptographic techniques
existing in HLL form can be transferred easily over the hardware platforms with the use of HLS tools.
Points of interest include the performance of those implementations and the level of security. Clearly, any
modifications performed over the HDL-to-be code shall be oriented towards the efficient utilization of the
resources and the capabilities of the hardware platform, but at the same time, cannot alter the level of
security as observed in classic programming.The possibilities of HLS tools when it comes down to the
production of a satisfactory cryptographic implementation have been thoroughly studied in bibliography.

The Advanced Encryption Standard (AES) is of particular interest in research work. In [17] the
authors examine implementations depicting two different needs in the market today, high performance
versus small area. [12] delves further into the use of directives, specifically pipelining, array manipulation
and the use of BRAMS, comparing it, not only with other works, but a theoretically optimal
implementation. [19] goes a step further and compares multiple implementations over different platforms
with an equivalent RTL, developed from scratch. Although the authors conclude that the RTL version is,
by a small margin most of the times, better than the HLS-generated, they point out the value of HLS tools
rests on the ease of development they offer. Another aspect that needs to be concerned is the novel threats
hardware platforms face, such as fault injections, timing attacks and power analysis attacks, among many
others. Those kinds of attacks, presented in the taxonomy shown in Figure 3, can be realized due to different
vulnerabilities presented in the design, either because of bad designing methods or lack of understanding
of the way those operate.While HLS tools can assist the designing process by minimizing human error, the
development of countermeasures has become a prolific field of research.

Invasive Probing

Semi-Invasive Fault-Injection
Classical Attacks
Computing \ J
 —

Timing Analysis

J

Simple Power

Side Channel .
Analysis

Analysis

H

Non-Invasive

H

Power Analysis

Attacks by Differential
Quantum Power Analysis
Algorithms Y

H

Quantum
Computing

Attacks on Post
Quantum
Algorithms

l

Figure 3. Side-Channel Analysis Attacks taxonomy

Attempts to develop such countermeasures especially designed to be incorporated to HLS code
have been recently made, as in the case of [20], yet the level of security they provide is unsatisfactory and
births questions about the reliability of the tools. [21] attempts to identify the cause that can lead to flawed
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designs, targeting in particular HLS Synthesis flow. Lu Zhang’s work has been particularly influential to
the field of HLS development where security-by-design methodologies are explored, as in [22], where
machine-learning is employed to determine design patterns that are related to weaknesses and [23], where
the relationship of directives and security is explored over an AES function.

Lastly, a great research field over which HLS could be used future is the development of
countermeasures for quantum algorithms. As soon as quantum computing becomes accessible, many
cryptographic measures will become useless, putting every application that they are applied at risk. HLS
tools can support the faster development of accelerators that will be part of new countermeasures [24],
given that any problems regarding the reliability of security measures will be explored more.

3.2. Side-Channel Attacks

Physical devices are particularly susceptible to a family of attacks named side-channel attacks (SCA).
Those aim to extract information related to cryptographic operations indirectly, through the examination of
side-channel leakage, which comes in the form of timing characteristics, electromagnetic radiation and
power consumption. The physical behavior of the device has been proved to be statistically related to the
data processed, whether the operations are performed on hardware (logic gates) or software level
(embedded processor) [20]. The process is simple, costless and doesn’t require heavy physical probing of
the device, making them extremely dangerous against embedded systems [25].

In Power Analysis Attacks, sampling the power consumption leakage, a quite simple and reliable
operation nowadays, allows the depiction of the device’s electrical activity as points and the visualization
of its behavior, on what is known as a power trace along the time domain. The form of a power trace is
shown in Figure 4.
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Figure 4. Example of power trace. Patterns that correspond to specific computational functions can
be determined [26].

3.2.1. Power Trace Acquisition

The extraction and study of the power consumption information is capable of unveiling evidence for any
means of cryptographic mechanism performed by it. This is possible because the electrical current that runs
through a device’s transistors indicates their activity. Note that other hardware-related phenomena can
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appear in this activity, such as noise, which needs to be eliminated to acquire a higher-quality power trace.
Noise cancelation is trivial and can be achieved by averaging a large number of traces.

The relation of current | that runs through a device to voltage V measured across it, which is the
metric that depicts the power consumption is derived from Ohm’s Law:

I=—

R
where R indicates the resistance of the device. If R remains constant, then the current is proportionate to
the voltage. Knowing that, an instrument called oscilloscope can be used to obtain the graph of voltage
changes over time and therefore, the power usage.

3.2.2. Simple Power Analysis Attacks (SPA)

Power Analysis Attacks can be categorized based on the methodology followed. In SPA attacks, sensitive
information can be derived directly from the traces. For example, in Figure 5, one can easily deduce the
rounds o operation two cryptographic mechanisms perform. While this requires only a small amount of
such measurements to extract the information, it also demands a detailed knowledge of the operations
involved in the cryptographic algorithm examined, and how they correspond to the pattern the power traces
form.
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Figure 5. SPA traces depicting the rounds of DES (left) and AES (right) encryption rounds [27].

Prevention of such attacks includes the avoidance of direct use of the key in the computations
performed, the addition of noise and the use of desynchronization technique. The latter involves the random
addition of “useless” instructions with no real effect on the result along with the functional instructions, in
order to tamper with the presented power consumption. All those result in the distortion of the observable
pattern on which SPA depends on.

3.2.3. Differential Power Analysis (DPA)

DPA comprises a sub-class of an advanced type of side-channel attacks. It has prevailed over SPA, as it
can overcome practical limitations such as the lack of knowledge over the cryptographic mechanisms and
noise, whether it is unintentional or imposed as a defense measure. DPA attacks are based on the statistical
analysis of a large number of power consumption measurements derived from the processing of different
data (such as a series of known plaintexts) by the same cryptographic module. The function opted for
examination must operate on data that include the key.

For every data d; then, the power trace t;i of it, processed through a function, is extracted. The
alignment of the collected power traces is important in order to reduce the required power traces. A common
technique used to achieve that (at least on a simulated attack) is using a trigger signal. Additionally, to make
the whole process less costly, a specific part of the traces may be examined (for example, the first or last
round in a symmetric block cipher), as defined by specific peak points within the trace (see Figure 5).
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Having the initial data and (a hint of) the leaked result from a function involving the key, the key
is then hypothesized. Hypothetical keys are all possible values that can serve as a secret key in a
cryptographic algorithm. For example, in AES-128, the key has a length of 128 bits, hence all values
between (0)10 and (2'%8-1);0 are possible keys. If every d; goes through the same function, for each
hypothesis key ki, the hypothetical result V;; of the function is calculated. This is then simulated at the logic
level to render the corresponding hypothetical power consumption trace hij. Most commonly, Hamming
distance and Hamming weight models are used at this stage. Hamming distance is more efficient than
Hamming weight, provided that information about the calculations performed are known to the attacker

[“¢].

The real traces extracted by the device are eventually compared to the hypothesized traces. The
result rij is a metric that shows how well the two traces relate. The Correlation coefficient method is widely
preferred. The pair with the higher degree of relation can reveal the key used. The values r;;jcan also serve
as an indicator of how precise the estimations were. A higher precision occurs when more traces are
examined. Note that this process may only unveil part of the key, depending on the way it is handled by the
cryptographic algorithm. For example, in AES, the secret key goes through a key scheduling algorithm,
and only the round key is derived, which corresponds to one byte of the secret key, so the process has to be
repeated to unveil the rest of the key.

There are several methods of preventing DPA attacks. A signal degradation method can be used,
by choosing operations that leak less information or by applying physical countermeasures. Introducing
noise in the power consumption will result in higher computational requirements from the attacker’s side.
The cryptosystems can also apply non-linear key updates, to thwart any attempts to correlate the power
traces to a specific key by preventing the gathering of the required number of samples for a reliable DPA
attack. Additionally, as implied above, the addition of any means of misalignment of the power traces can
hinder the process [29].

Security against DPA attacks generally occurs when independence is introduced between the
intermediate results and their power traces. This can be accomplished with the use of hiding and masking
methods, the main two mechanisms used to counteract first-order DPA attacks. Hiding is a solution that
aims to the manipulation of the power consumption, either by randomizing the execution of the algorithm,
or, on the hardware level, achieving a different energy expected (random or minimal) for all the operations
executed rather than the one.

Masking can manipulate the intermediate results, and thus produce a different power consumption
leakage, statistically independent (theoretically) from the initial results that in other case, are exploited
successfully due to their dependence on sensitive data. The manipulation of the intermediate results is
accomplished with the use of one or more randomly generated masks. The masking scheme is applied to
the input data and is carried through the encryption operations to the produced ciphertext, from which it
will be removed to give the expected ciphertext.

3.2.4. Higher-Order Attacks

As countermeasures are developed for every vulnerability discovered, new kinds of attacks of greater
complexity appear, necessitating novel techniques. The idea of how a more complex (higher-order) attack
could be crafted appears in the fundamental work of Kocher et al. [29] about DPA attacks. Considering an
operation that handles data which have been subjected to masking, the effect of the mask over the leakage
is not predictable, which is the reason behind masking’s success. But this can be overcome if the joined
leakage of two different inputs masked with the same value is examined. The number of traces required is
higher than a first-order DPA attack, still, an approach of determining that amount in advance, utilizing
statistical methods, has been developed. Moreover, points of interest can be determined for the attack to
focus on, taking the absolute difference of a leakage model metric (ex. Hamming weight) of two joined
leakages. Such a pre-process can formulate a more efficient DPA attack, overcoming the computational
requirements the countermeasure sets.

Higher-order attacks (HODPA) leverage the pre-processing step. While the problem becomes
multivariate, this extra step allows its reduction to a univariate problem, on which a 1% order attack can be
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then applied [30]. It should be noted that the complexity of such an attack itself hardly makes any effort of
executing it tempting. Making a system hard enough to attack is considered a form of security
(computational security).

3.3. AES

Rijndael Block Cipher is one of the most well known symmetric encryption algorithms. It was developed
by Vincent Rijmen and Joan Daemn in 1999 [31] and was adopted by the U.S. National Institute of
Standards and Technology (NIST) as AES in 2001, replacing the Data encryption Standard (DES and
3DES).

It is designed to be simple yet robust, fast, and transferable. It is an explementary application of
the confusion and diffusion principle, as defined by Shannon[15]. According to his theory, confusion is
achieved when the relationship between the encryption key and the ciphertext becomes indistinguishable.
Diffusion on the other hand means that a modification solely on one bit of the plaintext can statistically
affect half the bits of the ciphertext. This is simply realized by permutating and substituting the elements
of the given plaintext. The resulting ciphertext then carries no statistical relationship to the original data.
Rijndael algorithm fulfills those principles, with the use of non-linear and linear functions, performed over
the data in multiple iterations. Moreover, with small modifications, its functionality is invertible, meaning
that decryption of a given ciphertext is possible.

AES algorithm is categorized as a block cipher, meaning its operation is based on fixed-length
groups of data called blocks. The use of blocks has advantages and disadvantages, leading to the creation
of multiple modes of operation. NIST has standardized five of these modes, briefly presented below [37]

BRIk

e Electronic Code Book (ECB) : The original, simplest form of AES, where each data block is
encrypted individually. While it can protect data from error propagation, it can result in repeated
encrypted patterns.

e Cipher Block Chaining (CBC) : In this case, each plaintext block is related to the previous
ciphertext. Before the encryption process, and XOR operation is performed among them. For the
first plaintext block, an initialization vector (IV) is used, which is the one that eventually
determines the ciphertext.

e Cipher Feedback (CFB) : In this case, the plaintext block is XORed with a portion of the previous
ciphertext block, encrypted and shifted by a number of bits (encryptor).

e Output Feedback (OFB) : The operation resembles CFB, with the exception that the encryptor of
the previous block is used instead of the cipher block.

e  Counter Mode (CTR) : In the last case, a nonce? value is added to a counter, increasing by one per
block. The result is encrypted, before XORed with the plaintext.

Each mode can be used in specific cases, according to the cryptographic needs. The algorithm
examined from now on will be the ECB version.

The algorithm’s input is meant to be of specific length, either 128, 192 or 256 bits, defining AES-128,
AES-192 and AES-256 variations of the algorithm. If the length of the plaintext does not fit those cases,
the data are split into blocks of the required length and padding is added, if required, at the last block [34].
The corresponding key must be of the same size. That length defines two values used in the algorithm:

e Ny, which equals the key length divided by 32, meaning it can either be 4, 6 or 8 and

e Ny, which, according to Nx and Ny, can be either 10, 12 or 14.

e Ny is also defined, but it depends on the length of the word, as the architecture of the platform
defines it and most commonly is set to 4. Ny can be equal to 6 or 8, too.

2 A random-generated value, used only once per occasion. It is widely used in cryptographic techniques.
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N; is used to define the number of iterations (rounds) of the encryption process. Nk and Ny define the
number of columns and rows of the State block, the intermediate cipher result, formed as a two-dimensional
array, its elements placed column-wise, as shown in Figure 6:

Contains  Contains
byte 0 byte 4

Contains

byte 1 001]01]02]| 03

\1,0 111213
|0|1|2|...|15|:> TIEIRETARY |::>|o|1|2|...|15|

: 301313233
Plaintext Bytes Ciphertext Bytes

State Array

Figure 6. The State block formation for AES-128 encryption(Nk = 4, Nr = 10, Npb=4) [31].

Before the round operations begin, some preparatory operations take place. Firstly, Key Schedule
is used to expand the given key into N, +1 number of different round keys. In the case of AES-128, a total
of (11 rounds*128 bits) = 1408 bits or 352 words need to be generated. The first round key (four words, 4
words*4 bytes*8 bits = 128 bits) is equal to the initial key. The following word is generated by the previous
one, first rotated by 4-bits, then substituted through SubBytes() operation and lastly XORed with a value
[rci, 0x00, 0x00, 0x00], with i denoting the number of the round. The result is XORed with the previous 4%
word. The next 3 words are only XORed with the previous 4™ word, thus the second round key is formed.
The process is repeated for a total of 10 rounds, resulting in 11 round keys [35].

Each rc;is equal to the polynomial x1. For example, rc; equals x° = 1, rco equals x* = x and rcg
equals x’. After rco, the polynomials are divided by the polynomial x8+x*+x3+x+1. The results of the
calculations are known and usually constant values are used, expressed in hexadecimal representation. The
way polynomials are expressed in hexadecimal forms is analyzed in extend later.

Each encryption round of AES consists of four steps:

e SubBytes(State) : A non-linear byte substitution, applied over each of the State’s bytes separately.
It involves a polynomial inversion of a maximum degree 7 and an affine transformation. Most
commonly, a substitution (look-up) table is used, whose construction is explained in extend later.

o ShiftRows(State) : It is applied over the rows of the State and shifts their content cyclically, on
an offset determined by Ny. For example, in the case of Ny = 4, the first row is not shifted (shifted
by 0), the second row is rotated left by 1, the third by 2 and the fourth by 3. Right rotation is used
for the decryption process.

e MixColumns(State) : It is applied over the columns of the State this time. Considering the column
as a matrix a;, each of is multiplied by a fixed matrix, producing a new matrix bi. The fixed matrix
is a maximum distance separable (MDS) matrix, that offers the required diffusion to the algorithm.
The encryption process uses the following MDS matrix to determine the State’s new columns:

b, 0x02 0x03 0x01 0x017 [%o
bll _ [0x01 0x02 0x03 0x01‘,[a1
b, 0x01 0x01 0x02 0x03| [a2
bs 0x03 0x01 0x01 0x02] las

The last round of encryption skips the MixColumns () step, as it has provably no effect on the security
of the algorithm.

e AddRoundKey(State, RoundKey) : Finally, a Round Key is applied to the State, with a simple
XOR operation. The Round Keys are derived from a Key Schedule preparatory step, are of length
Np, and their number is equal to N,.
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The operation flow of encryption and decryption is clearly demonstrated in Figure 7:
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Figure 7.The AES-128 algorithm diagram for the encryption and decryption process [36]

AES is highly flexible, allowing it to be applied over the application of specific requirements, such
as hardware-based applications operating in a highly interconnected network. It is proved more efficient in
terms of throughput and energy-efficiency than DES versions [37].

3.3.1. Security of AES

The AES algorithm stands against cryptographic attacks today, as it provides a satisfactory security margin
for the immediate future, considering the current computational power of processors, as well as the one
predicted by Moore’s Law. As mentioned before, it is a common practice for many modern cryptographic
algorithms to depend their security on the fact that contemporary computational systems are not powerful
enough to break them, or that the attack required is far too complex to compensate for its outcome.

The confidence of AES security is such that it is the most used cryptographic algorithm today. A
successful key attack will result to a cessation of activities performed in the present digitalized world.
Interestingly, the Rijndael’s AES mechanism is considered to be the top candidate to applied on smart cards
due to its minimal requirements [32].
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In its simplest form, the algorithm uses 128 bits for its secret key, which means the secret key lies
among 2?8 possible values, with every bit added up to 256 doubling that range (though, in the case AES-
128 is indeed broken, AES-256 could no longer be deemed as safe). A brute-force attack, the simplest attack
one can perform by exhaustively examining each one of those possible keys, would not be feasible with the
current technology.

The best option for a successful attack on AES is the Biblique attack [39]. It’s a meet-in-the-
middle type of attack, most commonly used against hash functions, that works by splitting the possible keys
into two groups of 22 keys, which then are formulated into a 29x 29 matrix. A key k; exists in one group
and a kz in another. The encryption function is also split in a way that Ex(plaintext) and ez «2(e1 k1 (plaintext))
result in the same ciphertext. The same logic can be followed for decryption: Di(ciphertext) equals dz k2(d1
k1 (ciphertext)). Since Dx(ciphertext) = Dk(Ex(plaintext)) = plaintext, it can easily be proven that d
2(ciphertext) = eqxi(plaintext). All the possible combinations are then attempted to figure the pair of kq,k»
that satisfies the equitation. This can be enhanced with the use of graph theory, to attack the intermediate
states of AES more efficiently. Still, this only lowers the complexity to 21261, Quantum-based attacks are
also examined [40], but to this day, no attack of such nature is provably threatening AES.

But this is not the case for side-channel attacks. While AES holds against timing attacks, it can
easily be attacked with DPA. The type of leakage examined can affect the invasiveness of the attack. Power
analysis may require the physical examination of the device, in contrast to Electromagnetic analysis [41].
Still, power traces can be extracted, although of lower quality, which in extend necessitate more power
traces to derive a confident result[42]. In a simulated attack [43], it has been proved that a DPA attack on
a hardware implementation of AES may only require 4,000 power traces to unveil the 8 MSB of the key.

3.3.2. Mathematical Background - Galois Fields

The idea of non-linearity is to transform a given piece of information to another, without exposing the
relation between the data involved. In AES, this transformation is performed over bytes, which consist of
8 bits, with the leftmost bit being the most significant bit (MSB) and the rightmost the least significant bit
(LSB). With that in mind, a byte can be represented as a polynomial of degree 7:

a; x” +ag-x®+as x5 +a, x*+az-x>+a, x>+a,-xt+ay-x°

where the coefficients a-to aoswill either be 0 or 1. A byte with the value 0x63 (hexadecimal form) can be
represented as {01100011} (binary form) or as the polynomial x8+ x5+ x*+ x°, and vice versa. Going back
to Key Scheduling, it is now clear that polynomials up to rcscan be easily represented with constants.

The most common computing architectures today, define the byte as an 8-bit vector, which can
depict 28 or 256 different elements, from {0000 0000} to {1111 1111}. Hence polynomials over rcg cannot
be represented, due to architectural limitations. The limited range of numbers consists of a finite field of
numbers, also named Galois field. Generally, a Galois field of the form GF(p"), where p is a prime number,
contains p"different elements, represented as an n-1 degree polynomial. The respective Galois field in this
case is identified as GF(2%) or GF(256). There are more than one ways a GF(p") field can be defined,
resulting into multiple isomorphic fields.

All operations defined in a Galois field behave according to specific rules:

1. Operations performed among bytes have to return a byte defined within the finite field (closed
set).

2. An expression using the same operator returns the same result, whatever the grouping of the
quantities involved, as long as their order remains the same (associative property).

3. Anexpression connected with the same operator returns the same result, whatever the order of the

guantities involved (communicative property).

An expression returns the same result, whether calculating it as is or in parts (distributive property).

Each element has an additive inverse. An additive operation - symbolized as @ - of a quantity

with its additive inverse returns the respective identity.

ok
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6. Each element, except 0, has a multiplicative inverse (reciprocal). A multiplicative operation -
symbolized as @ - of a quantity with its multiplicative inverse returns the respective identity.

7. For each operation, an identity value has to be defined. Operating with the identity quantity, leaves
the other quantity unchanged.

The basic operations are addition and multiplication. Subtraction is considered as addition with
the opposite value and division is considered as multiplication with the inverse value. The identities defined
for each operation are 0 and 1 respectively. Since the values are behaving as polynomials, the operations
will be examined from that scope.

In the classic polynomial addition, the coefficients of the variables with the same degree are
added. For example (x8+1) + (x8+x +1) equals 2x3+x +2. But in the polynomial representation of bytes, the
coefficients will either be 0 or 1, and so will be the result of any possible addition among them. Hence, the
proper result should be modulo 2, which corresponds to a simple XOR operation. The previous example
would return as result (x2+1) @ (x*+x +1) , or for the shake of calculations {1000 0001}&{1000 0011} =
{0000 0010} = 0x02. As mentioned before, subtraction requires the opposite value to be available. In the
case of Galois fields, every element is its own opposite, making subtraction and addition essentially the
same operation.

In polynomial multiplication, every term of one polynomial is multiplied with every term of the
other polynomial. Using the same example, (x8+1)(x8+x +1) equals x®* + x° +2x8 + x + 1, which is obviously
a problem given the 8-bit architecture. This time, the result needs to be modulo an irreducible polynomial,
specific to the finite field. This implies the execution of a division between the multiplication’s result and
the irreducible polynomial, from which the remainder is kept. The irreducible polynomial is not unique for
a finite field, and the search of an optimal one is an extended case of study. In the case of AES algorithm,
the irreducible polynomial used is x® + x4 + x3 + x + 1.

Polynomial Inversion is a demanding operation, with the difficulty increasing along with the
degree of the polynomial. Algorithms that take advantage of mathematical properties that involve the
inverse can be used, such as the Extended Euclidean Algorithm [44] but it adds a considerable stalling to
the calculations and is not ideal for hardware implementation. In the following sections the ways that the
problem is overpassed in the software will be presented, and how can an optimal hardware implementation
can be constructed.

3.3.3. SBox construction

The SubBytes() function is the most demanding step of the AES cryptographic mechanism, with the intense
computations performed certainly resulting in more leakages. Moreover, due to its non-linear nature, the
leakages of the SubBytes() intermediate values differ greatly from one another, even if the data concerned
are only one bit different. Interestingly, in [45] it is proved that a function that good against linear attacks
lacks against differential ones. The operation consequently is ideal for DPA application, and secure
measures are examined throughout bibliography especially for it.

The SubBytes() operation performed in AES theoretically consists of two sub-steps :

e An Inversion of the given byte in GF(28) : If o is the data notation, o is it’s inverse, with
a ® ot = 1. The inversion is followed by an
e Affine Transformation, which consists of:
o Sum of multiple value rotations, implemented through a matrix multiplication and
o avector addition of x"+ x5+ x?+1, which corresponds to the constant 0x63.

Instead of performing such intense computational operations, the results are precomputed and
placed in a two-dimensional look-up-table (LUT) called SBox, thus only a mapping operation is eventually
required. AES Shox for encryption an decryption is shown in Figure 8. The input of SubBytes(), serves as
two indexes, with the upper four bits indicating the row and the lower four bits indicating the column in
which the substitution byte is located. The inverse SBox can be similarly constructed, with a different LUT
depicting the inverse operations this time.
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Figure 8. SubBytes(0x00) - left , equals the value of the element located in row 0, columun 0, which
is 0x63. Similarly, inverse_SubBytes(0x63) — right, equals 0x00

While this idea serves a software application satisfactorily, its space requirements make it inefficient
for hardware implementations. In the simplest AES version - input of 128 bits, 10 rounds of operation —
parallelization is possible in hardware, due to the lack of dependency among the bytes. The 128 bits (16
bytes) of an input can use different instantiations of SubBytes(), meaning 16 Sbhoxes are required at the
same clock cycle. Parallelization can also be applied over the 10 rounds AES-128 performs, meaning the
implementation has to maintain 160 copies of Shox, without considering any additional circuit involved.
This translates to a minimum overhead of 41kB. From the security’s perspective, the parallel computations
may amplify the leakage of this operational step, making it vulnerable against side channel attacks.
Alternative methodologies and architectures are examined to limit the power consumption of SubBytes()
and in extend, making it safer. As per [46], pipelining of operations massively benefits all the
implementations examined. One of them, using composite fields, is examined in detail below.

3.3.4. Canright’s Compact Sbhox

David Canright proposed a “compact” implementation SBox [47], developed especially for hardware
applications, one that proved adequate and that is today regularly used as a basis in the research. Canright
opts to perform the SubBytes computations instead of a simple mapping, applying various gate-level
optimizations. At the same time his implementation takes into account the hardware limitations and the
maintenance of the algorithm’s security properties.

Inversion in this case is performed with the use of tower field representation® [45]. The idea behind
it is that any data defined in a finite field of the form GF(p") can be represented in the isomorphic field
GF((p™?), where n = 2m. Hence, the finite field GF(28) can be viewed as a (quadratic) extension of the
field GF(2%), noted as GF(2%) over GF(2*% or most commonly GF(28)/GF(2%). Each element in G(28) is
mapped to exactly one element of GF(28)/GF(24). While this is suitable for hardware implementation and
is in fact used in many cases as optimal, Canright generalizes this property to represent the elements of
GF(28) in GF(28)/GF(2%/GF(2?).

The transformation of elements from GF(28) to GF(28)/GF(24)/GF(2?) -and back to GF(28) after
the computations- requires the change of the basis of one field to another. The basis of a finite field is
defined as a set of vectors that can produce all elements of the field through linear combinations among
them. In finite fields specifically, those bases are represented as polynomials (polynomial basis).
Additionally, if the basis vectors are linearly independent, the resulting basis is called normal basis. It is
proved that the use of normal basis is optimal in this case. The change of basis is achieved through a matrix
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multiplication with a transition matrix. Since the last change of matrix is followed by the affine
transformation’s matrix multiplication, the two matrices can be combined to one.

The reason to perform this change of representation is to take advantage of the simpler operations
of the lower-degree fields. Instead of performing calculations on a polynomial of degree 7 (ex. {1011
0111}, as expressed in the new representation), calculations are performed on polynomials of degree 3
({1011} and {0111}), which in turn will be performed on polynomials of degree 1 ({10},{11}, {01} and
{11}). Indicatively, the inversion in GF(2?), where the elements are represented with two bits, is a simple
swap among them*. Along with several more calculations, the inversion in GF(28) can be performed.

The algorithmic details are presented in the following steps:

1. Change of basis of A, from GF(28) to GF(28)/GF(2*)/GF(22), with the use of transition matrix A2X,
consisting of the elements { 0x98, OxF3, 0xF2, 0x48, 0x09, 0x81, 0xA9, OxFF }. The use of those
values is one of the combinations that ensures that the normal basis will be used, and the one
resulting in the optimal circuit.

In the design, change of basis involves a conditional branch performed over each bit of the given input,
from the utmost right (LSB) to the utmost left (MSB). Depending on whether the given bit is 1 or 0, an
XOR operation is performed with the element of the static matrix that corresponds to the bit position and
every previous result. For example, given the input 0x0B (0000 1011,), the resulting representation is OxFF
for the first bit examined, 0XA9 @ OxFF = 0x56 for the second bit, 0x56 for the third bit, which is not
examined and 0x09 @ 0x56 = Ox5F for the fourth bit, with the rest not satisfying the condition set.

2. Invert term A to A%, given the following equations:

At = ((Ao ®15B1) <<4) // (A1 ®15B™)

Ais split to A; and Ag — the upper and lower 4 bits of the number respectively®. B is the expression
of the number in sub-field GF(2%). A shifter is required to place the upper half result to the correct
bits.

3. Calculate term B, given the following equation:
B=N &is(A1 @A) D AL &isAo.
N is a value associated with the field GF(2%) called norm, and is derived from B. The calculation
of N ®16 (A1 @ Ao)? iscalled Square-Scaling. Canright proves it’s “cost-free” due to the use
of normal basis, meaning it can be performed without additional gates. Square-Scaling is also
calculated through the subfields (see Error! Reference source not found., Figure 11).
4. Calculate term B, given the following equation:

Bt =((bo &+ct)<<2) @ (b1 1),

with by, bo corresponding to the upper and lower two-bits of the value and ¢ being the expression
of the number in sub-field GF(22).

5. Calculate term c, given the following equation:

c=ton &4 (bo @ b1)?> Db &®sbo

with n being the norm in GF(2). ¢ is split to two 1-bit values, ¢; and co.

4 Inversion in GF(22) also equals squaring, which is the term Canright uses instead.
5 Those sub-terms are “isolated” from the initial term (the other bits will be zeroed out) with the use of bit
masking. Shifting are also required to adjust the position
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6. Calculate term ¢, which is only a bit swap between c; and co:
ct=(co<<1)// ¢y

7. Change of basis of A1, from GF(28)/GF(2*)/GF(2?) to GF(28) , with the use of transition matrix
X2S, consisting of the elements { 0x58, 0x2D, 0x9E, 0x0B, 0xDC, 0x04, 0x03, 0x24 }. The
combination again ensures the normal basis will be used. In addition, it incorporates part of the
affine transformation. Again the matrix results in the most optimal circuit possible.

8. Add affine constant 0x63 to the result.

The high-level code is given by Canright and was used in Vivado HLS. It should be mentioned that,
while the code uses 32-bit (int) values, the operations affect only the 8 lower bits, The remaining upper
length is zeroed out with bit masking. RTL synthesis would optimize out every unused wiring.

As displayed in Figure 9, the implementation requires two mapping operations G256_newbasis() and
one inversion G256 _inv(). The latter requires one square-scaling G16_sq_sc() instance, one G16_inv() and
three multiplications G16_mul(). Those in turn will contain two inversion G4_sq() instances and one
G4 _scl_N2(), one G4_scl_N2(), two G4_sq() and three G4_mul(), and three G4_mul() and one G4_scl_N()
respectively, as depicted in Figure 10. A more detailed view over their functionality is offered in Figure 11.
The requirement of the many different instances doesn’t necessarily require the same number of dedicated
modules to be synthesized. Several optimizations can be applied in order to take advantage of concurrency
and pipelining possibilities and benefit areas of timing and resource utilization. These are concerns
examined in Chapter 5, where the Directives are further studied.

Upper New
4 bits Upper
= _— 4 bits
& ®-1[64sq] [64_sq) [Gascinz]-- | [G4_scN [G4_sa [camul Ga_sc N
i G16_8q_sc : [64_mu] [64_mu @
: : G4_mul| [G4_sq| Ci6 mut
gois ' o = - == e bits SubByles(Data)
{:33 gltti) | G256 newbasis ——», 3 & ! 1> G256 _newbasis " (B its)
: Gisan| | [Gamul [Gamal | fea il Gasan
G4_mul G16.inv [Ga_mul [G4_mul .
o G16_mul : G616 mul Lower
Louer ! 4bits 0x63
A2X G256_inv %25
(8 8-bits) (8 8-its)

Simple Canright

Figure 9. Simple Canright Implementation modules : Top function and sub-modules
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Figure 10. Simple Canright Implementation modules : G16 functions’ implementation details
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Figure 11.Simple Canright Implementation modules : G4 functions’ implementation details

3.4. Secure Implementations

Each of the implementations examined in the following sections concerns four countermeasures built over
Canright’s Compact SBox, (simple Canright from now on, which will act as a “baseline” implementation),
implemented with six different set of directives. The effect of those sets of directives results in different
designs, whose behaviour will be examined through metrics provided by the Vivado HLS.
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3.4.1. Countermeasures Methodology

The countermeasures discussed implement, first of all, the masking mechanism used as a defensive measure
against side-channel attacks. As mentioned before, masking eliminates the dependency between sensitive
information, as carried through the cryptographic operations, and the power leakage. This is achieved with
the introduction of random values called masks. Moreover, it is an ideal countermeasure to use for an HLS
tool, since it can be easily defined in high-level code. Masking can be performed in two ways:

e Additive masking, where the mask is added to the data. The addition here is Boolean, hence XOR
is used. Itis ideal for linear operations, where the mask is preserved as is, and so it can be removed
by simply applying XOR operation with the same value.

e Multiplicative masking, where the mask is multiplied with the data. The multiplication in this
case is polynomial. While it is costly, it can be applied over non-linear functions, unlike additive
masking. Lastly, multiplicative masking is susceptible to zero-attacks, since the value zero is
mapped to itself, and should be handled differently[4°].

The second kind of countermeasures is identified as Correlated Noise Generation (CNG)
countermeasures [50]. This logic can be used for power leakage manipulation, if the input data are properly
handled. The countermeasure is examined in further detail in the following sections.

3.4.2. Masked Canright

Canright extended the idea of Compact SBox by introducing masks in his original design [51]. The theory
behind this implementation is presented in [49] in an effort to develop a computationally cost-efficient
implementation that would be sound against first-order side-channel attacks. As mentioned above, the
SubBytes() process is a non-linear operation and additive masking is more costly when applied to it, unlike
other AES functions. At the same time, multiplicative masking suffers from zero attacks and is generally
too costly to be used in a lightweight implementation.

The use of tower field representation introduces linearity to the process. Specifically, inversion in
GF(4), which consists of a bit swap, is a permutation operation, and thus essentially, a linear operation,
making the use of additive masking more efficient.

However, only the data are essentially masked to this point. Multiple masks need to be introduced
in order to conceal the intermediate computations in the tower field representation and furthermore they
need to be independent to each other. In total, four independent masks are required:

e one 8-bit M; to be used for the masking of the term A (A @ M = A’). M;will be used separately
as an input for the masked SubBytes().
one 4-bit Q to be used for the masking of the term B’,
one 2-bit r to be used for the masking of the term ¢’,

e one 4-bit T to be used for the masking of the term B>’

The masked cryptographic process will result in an 8-bit output mask S that can be used to remove
the input mask from the result. It’s computation is required since its bits are used in the calculations. Masked
Canright’s algorithm is defined below:

0. The input data of the masked SybBytes() are given masked: A’ is (A @ M;), with M; being
the input mask.

1. Change of basis of 4°, from GF(28) to GF(28)/GF(24)/GF(22), with the use of A2X®.

2. Change of basis of M;, from GF(28) to GF(28)/GF(24)/GF(2?), with the use of A2X, thus
producing M.

6 Oswald et al. suggest the masking of that (linear) operation too with another mask, but Canright skips it.
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3. Change of basis of M, from GF(28)/GF(24)/GF(2?) to GF(28) with the use of X2S, thus
producing S.

4. Invertelement A’to A1’. A’ issplitto A;> and Ao’. A is defined in the following equations:
AL = (At << 4) /] AsY,
with Ar™>, AL calculated from:

At =851 BA) 6 BYBA 6 T AMo 16 B OMo 16 T
At =S80 PA 6BV BALI 16 T AM1 &16 B OM1 16 T

M and S are is similarly split to 4-bit values Mi, Mo, S; and S

5. Calculate element B’ from the following equation:
B'=Q @ N®is (A’ ® A’ B N Q16 (M1 Mo)> BAC R16 A1
@A’ Qs Mo DA R1s M1 @ M1 Q16 Mo

It is important to ensure the addition of Q is performed ahead of any other calculation
concerning B. B’ is split to b;> and bo’.

6. Calculate element B’ from the equation below:
B = (b <<2) // b,
with b1V, bt given from the following equations:

b1t =t: @by &sc’@bo’ ar? Bo uct’ Do s r?
bol’ =to @b’ ®sct Db’ s> P act Doy &ur?

Q and T are is similarly split to 2-bit values d1, qo, t1 and to, r?is r with its bits ry,ro swapped.

7. Calculate element ¢’ from the following equation:

C'=r@n (e @b’)> B n (01 D qo)? Pbo” &ubyi’
@b1’ 100 @bo” &401 @ 01 &4 Qo

8. Calculate element c*’, which is only a bit swap between ¢;” and co’.
et =((cot <<1) // e
9. Change of basis of A’, from GF(28)/GF(2*)/GF(22) to GF(2®) , with the use of X2S.

10. Add affine constant 0x63 to the result, which is linear and won’t affect the masking.

After those steps, A’ = (A1 @ S), S being the transformed M;, and (A1 @ S) @ S = AL. Swill
be calculated internally and won’t be returned as a result, but it can be computed separately to validate the
correctness of the resulting ciphertext.

As an example, the value 0x00 is given as an input to this implementation. From Figure 8, it is
known that the expected result of the SubBytes(0x00) is 0x63. In this case, the four randomly generated
values M; = 0x5D, Q = 0x64, r = 0x7F and T = 0x29 are given as parameters, from which we use a specific
number of bits for each mask. The value OxCE is returned as a result, for which OXCE & S needs to be
equal to 0x63. S is calculated to be OXAD, which verifies the relationship between the initial and the given
data. Q, r and T don’t affect the result, but alter any observed intermediate results. Masked Canright’s
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interface is presented in Figure 12, opposite to the interface of Simple Canright’s interface. Figure 13
depicts a use case of Masked Canright.

Data Data 5 M; I, 0 r T
8 bits) B - . .
( (8 bits) (8 bits) (4 bits) (2 bits) (4 bits)
Simple Canright Module Masked Canright Module
SubBytes(Data) SubBytes(Data) £ S
(8 hits) (8 bits)

Figure 12. Masked Canright Module compared to Simple Canright.

Q r T
0x64 Ox7F 0x29

Data
. Data’ A4 Y Y (Data'1)' Data'1
0x64 OxCE External 0x63
Mask Data @ Mask > MaskedSubBytes() Computation of F———»
0x5D real output
s OXCE 1100 1110
M s :
0xAD
Change of Basis |[0XCC_| Change of Basis OxAD * XOR O0xAD 1010 1101
(AZX) (X28) .
0x63 0110 0011

External Computation of
S

Figure 13. Use of Masked version of SubBytes. MaskedSubBytes() refers to the alternate version of
Canright’s algorithm that includes the masks. ‘External computations’ refer to computations that
need to be performed outside the SubBytes module, so that no sensitive information can be
derived.

Canright goes a step further and examines optimizations over the bit reusability of the masks,
which in turn allows the optimization of the calculations, but those aren’t examined in this thesis. The
security and performance of this implementation are proved by both works mentioned.

3.4.3. CNG (First version)

The second countermeasure examined is based on the Correlation Noise Generation methodology. In this
case, the same operations are performed in parallel, one using the intended data and other using data that
were generated from those data. If more than one operations are performed concurrently, the resulting
leakage will be an aggregation of the leakages that would result, had those operations been performed
individually. This resembles the computational addition of noise, something an adversary can easily remove
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by means of using filters or with the extraction of a larger amount of power traces. In CNG though, the data
used in the parallel computations bear a degree of correlation, which makes the extraction of sensitive data
a harder task.

In this version of CNG (CNGv1), the data will use the same data path. In the C code, all values
declared are of type integer (int). This means that 32 bits are bound by the design for the handling of each
of those variables. 8 bits are used for the computation of SubBytes() and another 8 bits are used for its
CNG.

SBox operations, as defined in simple Canright, are bitwise, meaning that if more bits are
considered, they will be affected by the calculations, without themselves affecting the original result. For
example, value 0x00 is extended with the correlated 0x01 value, forming the extended value 0x0100. The
result of SubBytes(0x0100) then would be 0x7C63, which is a concatenation of the separate results of
SubBytes(0x00) and SubBytes(0x01). The 32 bits of the integers used can accommodate a total of 1 SBOX
and 3 CNGs, but the effect of a single CNG will be examined.

To apply CNG to the Canright SBOX we need perform the following changes:

1. Extend all values used in the code accordingly. If a single CNG is implemented, A2X = { 0x98,
OxF3, 0xF2, 0x48, 0x09, 0x81, 0xA9, OXFF } should be altered to { 0x9898, OxF3F3, OxXF2F2,
0x4848, 0x0909, 0x8181, 0XxA9A9, OxFFFF }. Similarly, X2S, the affine constant and all bit
isolation masks used.

2. Given the above change, G256 newbasis() functionality should be extended to include the
additional bits. For a single extension then, both the i""and the (8+i)" bits should be examined in
the same iteration. This requires an additional, separate condition to be examined for the upper
part of the integer value.

3. Configure the input data so they are correlated. In the example above, the upper 8 bits of the input
carry a value that can be derived from the lower 8 bits of the input, if 1 is added (XORed). A
common technique used is, for any given input, a true key and a fake key to be used for the SBOX
and the CNG part respectively, as if the data resulted from two different AddRoundKeys
operations. The resulting leakage will be an aggregation of the operations SubBytes(Data @
TrueKey) and SubBytes(Data @ FakeKey). CNGvV1 interface is shown in Figure 14.

Data ((Data 5 FakeKey) =< 8) || (Data & TrueKey)
(8 bits) (16 bits)
Simple Canright Module CNGv1 Module

l i

SubBytes(Data) SubBytes({(Data & FakeKey){i 8) || (Data & TrueKey))
(8 bits) (16 bits)

Figure 14. CNGv1 (single extension) module compared to Simple Canright

3.4.4. CNG (Second version)

In the second version of CNG (CNGv2), the code remains the same as the one with the simple Canright.
The parallel operation of SubBytes() is achieved by using the same module twice, something that can be
configured from Vivado’ environment. The alternative CNG implementation’s interface is depicted in
Figure 15.

" Vivado offers RTL-to-Bitstream transformation flow.
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Data Data & FakeKey Data & TrueKey
(8 bits) (8 bits) (8 bits)
l h 4 ) 4
Simple Canright Module Simple Canright Module Simple Canright Module
l CMNGv2 Module
r  J
Sungt:isgData) SubBytes(Data & FakeKey) SubBytes(Data & TrueKey)
(8 bits) (8 bits) (8 bits)

Figure 15. CNGv2 (single extension) module compared to Simple Canright

3.4.5. Combinational Countermeasure

In the final implementation the masked Canright is combined with the second version of CNG (CNGv2 +
Masked Canright from now on). Two masked SubBytes() modules will be utilized instead of one, in an
effort to increase the security of the implementation. The same plaintext and M; (will result in the same M
and S), Q, r, T masks will be used, but different keys. This way, the resulting leakage will correspond to
the aggregation of the leakage of the masked operations SubBytes(Data @ M; @ TrueKey, Mi Q, r, T) and
SubBytes(Data @ Mi @ FakeKey, Mi Q, r, T). This design will be a good point of comparison, since it will
be the most computationally complex implementation. The interface of the last implementation is presented
in Figure 16.

M; Q r T
(8 bits) (4 bits) (2 bits) (4 bits)
Data b FakeKey & M; Data & TrueKey & M,;
Data (8 bits) (8 bits)
(8 bits)
l [ 1
2 2 R ¢ A 4 ‘l' Y
Simple Canright Module Masked Canright Module Masked Canright Module
l CNGv2+Masked Module
SubB Dat. ' M
u (gfifé) ata) SubBytes(Data @ FakeKey) @ S SubBytes(Data @ TrueKey) @ S
(8 bits) (8 bits)

Figure 16. Combinational countermeasure (CNGv2 + Masked Canright) module compared to Simple
Canright

4. Metrics

The metrics provided by Vivado HLS are estimates of the implementation’s behavior, described by
elements such as:

e Timing : The fastest clock frequency that can be achieved by the module. A threshold time value
(target) can be defined in the projects settings, along with an accepted window of uncertainty. In
the designs examined, those values were set to 20 ns and 2.5 ns respectively. If the estimated
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timing exceeds the target, the module will not be able to function at the set frequency and further
optimizations shall be performed.

e Latency : The number of clock cycles passed since an input is given to the module until the output
is produced. Minimum and maximum latency have a meaning if the code contains conditional
loops containing logic that can affect the total cycles of the output generation. The metric
initialization interval (I11) may also appear in those reports. It represents the rate in clock cycles,
of the module’s ability to process new inputs (throughput), and is directly associated with their
size. Latency can be examined in further detail:

o For each sub-module, in order to determine each one’s overhead.
o For loops, where the value of “iteration latency” concerns the number of cycles a single
iteration takes to complete. “Tripcount” depicts the number of loop iterations.

e Resource Utilization : Depicts the number of elements such as LUTs, Flip-Flops, BRAMs, etc,
each module uses for memory, multiplexing, FIFO implementations, registers and other. Again,
Resource Utilization can be viewed in further details for each sub-module. If the utilization
exceeds 100%, a warning is generated.

Those metrics are derived after the Synthesis process. More accurate values can be extracted in
later stages of the development, as for example, if “Vivado synthesis, place and route” evaluation option is
selected when the RTL is to be exported. Yet this is a slow procedure that tackles the principle of early
knowledge. Lastly, Vivado HLS only returns results about the module under examination. In the cases
where two different modules are used, some assumptions were made about the Synthesis results.

5. Directives

Directives are instructions of how the compilation of the RTL is going to handle Synthesis. Their use
requires a good comprehension of the code and the relationship among the elements involved, since they
deal with architectural decisions. Their use though, can greatly impact the code’s performance. The use of
directives does not guarantee that the correctness of the functionality is retained after the changes they
impose. The best practice is to review their effect manually, through C Simulation and C/RTL Co-
simulation.

Directives are applied within the code in the form of pragma definitions, or, as Vivado HLS allows,
through a specialized Ul window, with each action logged in a separate .tcl file defined for each solution.
Directives are applied either on data structs and code blocks such as loops or functions. The following
section is dedicated to an extensive analysis of those directives, aggregating information from multiple
guides [13][52][53][54][55] of the tool in use.

In Vivado HLS 2020.1, 21 directives can be applied:

e ALLOCATION : Allows the restriction of the number of hardware resources assigned for the
implementation of a functionality. As a result, Synthesis imposes the sharing of the limited
resources throughout the functionality, something that can benefit the area utilization at the
expense of latency.

e ARRAY_MAP : Each defined array is synthesized into a separate memory element (by default,
ROM for read-only arrays, RAM for read-write). This can obviously be offset in the case of small
arrays. Arrays belonging in the same scope can be concatenated into a larger array, which can then
be placed in a single memory element instead of separate ones, and reduce memory utilization
significantly. There are two modes of mapping, with their use demonstrated at Figure 17:

o Horizontal mapping : All given arrays are concatenated into one, with element size equal
to the maximum size existing among the concatenated arrays. When offset is set, it
indicates how the elements are positioned in the new array.

o Vertical mapping : The data of the given arrays are concatenated, creating elements of
larger size.
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Figure 17. ARRAY_MAP modes example : (a) Arrays before the directive is used, (b) Horizontal
ARRAY_MAP, no offset set, (¢) Horizontal ARRAY_MAP with offset = 1 for the second array, (d)
Vertical ARRAY_MAP

e ARRAY_PARTITION : In this case, an array is separated into more than one array, and so, more
memory instances are required. While this seems counter-productive in terms of area, when more
separated arrays are used, more access ports to them are created, and thus the data bandwidth
increases. The number of the resulting arrays is defined by factor N. Multi-dimensional arrays can
also be handled accordingly,given the dimension enumeration over which the partition is going to
be performed. For example, given an array of the form A[rows][col], value O will partition over
all dimensions, 1 will partition over the rows dimension, etc. Three modes are defined:

o Block partitioning : The given array is split into N smaller arrays of equal size. Its use is
shown at Figure 18.

o Cyclic partitioning : The elements of the given array will alternately be placed into the
partitioned arrays. Its behavior is demonstrated at Figure 19.

o Complete partitioning : Each element of the given array is placed into a dedicated array.
When multi-dimensional arrays are concerned, the register will contain the address to the
array that the partitioning will create. Again, its use can be better understood through

Figure 20.

0 1 2 0 1 2 0 1 2
0 1 0xE1] 0x01 | 0xB1 0x4D | 0x02 | 0x00 0xFF | 0xC7 | 0x83

o [oxe1|oxo1|oxB1 ] (b)

1 0x4D | 0x02 0x00

2 |oxFF |0xC7 | 0x83 0 1 2 0 1 2 0 1 2
@ OXE1 | 0x4D | 0xFF 0x01 | 0x02 | 0xC7 0xB1/ 0x00 | 0x83

(c)

Figure 18. ARRAY_PARTITION Block example : (a) Two-dimensional array, (b) Partitioning for N=3,
dim = 2, (c) Partitioning for N=3,dim =1

0 1 2
0 UE1|UU1|UB1| o 1 2 01 2
ikl Dbl s 0xE1 | 0xB1| 0x02 0x01 | 0x4D | 0x00
1 0x4D|0x02 | 0x00
(b)

(a)

Figure 19. ARRAY_PARTITION Cyclic example : (a) Two-dimensional array, (b) Partitioning for N=2
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o 1 2 OXE1 0x01

0 |OxE1| 0x01|0xB1

ﬂ

1 | 0x4D 0x02 | 0x00 0x4D 0x02 0x00
2 ‘OXFF‘[}XC? 0x83

‘DXFF ‘ ‘UXCT‘ ‘ 0x83 ‘

(a) (b)

Figure 20. ARRAY_PARTITION Complete example (a) Two-dimensional array, (b) Partitioning for
d=0

e ARRAY_RESHAPE : The specified array is first divided as per ARRAY_PARTITION directive
and then merged vertically, creating an array “wider” elements, as in ARRAY_MAP, when
vertical mapping is opted. It allows for the better utilization of the memory components of the
design. Figure 21 depicts an example of the directive’s use.

0 1 2

0 1 2 0xE1 | 0x01 | 0xB1
0 | OxE1|0x01|0xB1 0 1 2 0 . 5

™, |\\
1 T l:[,\) 0x4D|0x02 [0x00| ——— > [oxFr4DE1 | 0xC70201 | 0x830081

2 |0xFF |0x0? 0x83 |

0 1 2

0xFF |0xC7 | 0x83

Figure 21. ARRAY_RESHAPE steps : The given array is first split into smaller arrays that can be
rearranged according to the designer’s needs. In this case, the directive options are : factor=3,
type = block, dim=1.

e CLOCK (supported only in SystemC) : When applied to a function, it operates at a different clock
frequency than the one applied to the module, thus producing/consuming data at a different rate
than the rest of the design. C and C++ don’t offer the corresponding functionality.

o DATAFLOW : This directive applies a form of parallelism among data-dependent functions or
loops. In many cases, in order for a function to start executing, all operations over the required
data need to have been finalized, even though the result of the operations may be available earlier.
For example, func_1 performs a series of calculations, returning data a,b and c. Despite a and b
being available before the completion of func_1, they cannot be used as inputs for func_2 and
func_3 respectively. DATAFLOW allows for the use of those data at an earlier stage, saving the
design some clock cycles. An example of its effect is demonstrated at Figure 22:
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func_1 funct H ' : : func_1 ‘| func_1
ifuncj E func_2 i Jfunc 2 : Efunc 2.
func_3 func_3 func_3 func_3
Cycle 1 2 3 4 5 6 7 8 9 Cycle 1 2 3 4 5 6 7
(a) (b)

top_function(){
func_1(x.y.a.b,c),
func_2(a,d),
func_3(b.e),

}

Figure 22. Dataflow example. (a) While a and b are available, they cannot be used until func_1 is
finalized. (b) func2 can begin computations as soon as the data are available.

e DEPENDENCE : It is used to provide information to better handle dependencies. Vivado HLS
lacks in terms of the abiltiy to correctlyidentify and resolve programming obstacles, especially
when different directions of them exist in code, such as:

o True dependencies : They occur when a memory location is accessed for a read operation,
before a write operation is finalized (Read after Write — RAW).
o Anti-dependencies : They occur when a memory location is accessed for a write
operation, before a read operation is finalized (Write after Read — WAR).
o Output dependencies : They occur when a memory location is accessed for a write
operation, before another write operation is finalized (Write after Write— WAW).
Specifically for loops, two additional dependencies occur:
o Loop-independent dependence: One of the directions above occurs for amemory location
within the same loop iteration. It is defined as “intra” in the directive “type” options.
o Loop-carry dependence: One of the directions above occur for a memory location in
different loop iterations. It is defined as “inter” in the directive “type” options.
In the case pipelining of the iterations is applied, the loop-carry dependence will affect its
application. That is not the case for loop-independent dependencies though. Yet Vivado HLS treats
them all the above as non-resolvable dependences. Hence, the use of DEPENDENCE directive
assists the compiler to determine the nature of those dependences and ignore the “false” ones,
allowing other directives to take full effect. A use case is depicted at Figure 23:

T P
—t—— ; : : : : : : : [ — : :
i=0 READ A[0] | WRITE A[0] : : : : : i=0 | READ A[0] WRITE A[0]
— - . . : : : : : T ' ;
H | [ : : : : : : L
i=1 ' ! | READ A[1] WRITE A[1] ] =1 ' READ A[1] WRITE A1]
H ! ?—.: : H d ' ' ' ' H 1 H
i : ; ;
' ' ! . ' ' ' ' ' ' ' ' '
cycde 1 2 3 4 5 6 7 8 9 10 Cyde 12 3 4 5 87
for (inti=0;i=N jf

Figure 23. DEPENDENCE case use in loop-independent dependency : (a) Vivado HLS assumes that
WRITE A[0] and READ A[1] result in a WAR dependence, stalling the process by 3 clock cycles. (b)
DEPENDENCE directive is set in this case, explicitly specifying that WAR will not occur

e EXPRESSION_BALANCE : By default, Vivado HLS “balances” the tree the execution creates,
in order to minimize latency. The directive allows for the disabling of this behavior to minimize
resource utilization. A simple example of EXPRESSION_BALANCE is provided at Figure 24:
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E + —»  sum [ —_—— >
—’;+—1! 5 g L e s
cycle 1 2 cycle ! 2 3
(a) by
sum=a+bhb
sSum +=c
sum +=d

Figure 24. EXPRESSION_BALANCE use case : (a) represents the execution as described in the
given code, as implemented by Vivado HLS (b) disabling EXPRESSION_BALANCE minimizes the
required computational resources, sacrificing some time.

e FUNCTION_INSTANTIATE : This directive can be used when multiple occurrences of the same
sub-function exist in a function. Synthesizing them in different instances allows them to be
optimized for the different variables. Same copies of functions at the same hierarchy level are
synthesized to a single -generic- block. This directive, better presented at Figure 25, assists
parallelism, resulting in decreased latency and increased throughput at the expense of area. The
area overhead could be very large, but combined with other area-limiting directives, performance
balance can be achieved.

| func_inst | : i ! func_inst 1
' : : func_inst : func_inst_2
: : : func._inst func:_llnst_S
Cycle 1 2 3 4 5 3 Cycle 1 2
(a) (b}
top_function(){
func(a,b,refum_1);
funciretum_1.c.retum_2);
func(retum_1 refurn_2.d);
}

Figure 25. FUNCTION_INSTANTIATE effect : By default, the same function is synthesized to a
single, generic instance. With the use of directive, three instances can be used, optimized per
variables.

e INLINE : Used to remove a function from the block hierarchy. It’s functionality passes to the
caller function, where it may cooperate with the present functionality better. INLINE directive can
also be applied recursively, inlining a series of sub-functions to their next one in the hierarchy.

e INTERFACE : Allows the specification of the way the block will communicate with other
elements of the design, through the interface ports. The additional signals will define the behavior
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of the synthesized block, as for example the rate it can accept new inputs. Briefly, there are
protocols ideal for continuous operation, where control signals would add unnecessary delays and
should not be defined (ap_none), handshake for simple (ap_ctrl_hs) and more complex
(ap_ctrl_chain) implementations. More modes can be defined for ports, whether they remain stable
during the computations (ap_stable), require validation (ap_ovld, for output only) or
acknowledgement of reception (ap_ack), communication with memory components (ap_memaory
for RAMs, bram for BRAMs, ap_fifo for FIFO, ap_bus for bus interface), as well as AXI master
(m_axi) and slave (s_axilite) interfaces.

e LATENCY : Sets the maximum and minimum latency constraints. If the latency of the synthesized
design falls under the set minimum, the latency will be virtually increased through the use of
registers. If the resulting latency exceeds the set maximum, the tool will attempt to verge towards
it, applying latency reduction optimizations that do not contradict the effect of other directives.

e LOOP_MERGE : Allows the combination of the logic within the loops for which the directive is
designated into a single loop. Clearly, the number of iterations of all the loops to-be-merged must
be the same.

e OCCURRENCE : It is used when part of a code within a pipelined loop logic is executed
conditionally. Such an occurrence will operate at a lower throughput rate (initialization interval)
than the rest of the function/loop (equal to 1 when pipelined). Vivado HLS sets as the initialization
interval of a code block the maximum initialization interval presented in the functionality, meaning
such cases can lead to degradation of the design’s performance, especially if they are rare. This
directive allows the distinction of those conditional executions and the setting of a separate 11 for
them. In Figure 26, the optimization of the direcitve is shown:

ifune_1 |func_2 : . : ifunc:_1 fung_2
{func_1 ] ' {func_1|
fune_1 ! : Hunc_1

Efunc_1 func_2 . . func_1 |func_2

Cycle 1 2

w
B
i
o
o
L2
e
o
i
¥
[
MY
2
o

for (inf = 0l 1 < N, i+2)f

Figure 26. OCCURENCE use in data-dependent operations : (a) Operation without the directive.
Vivado HLS cannot predict when func_2 will be executed, so it extends Il to accommodate its
execution in all cases. (b) The directive instructs the compiler where to add the additional cycles.

e PIPELINE : Pipeline is a common parallelization technique that can dramatically increase the
execution of a function/loop. Normally, in the case of hardware implementations, a code block
such as a function or a loop’s body binds the logic blocks involved for the whole duration of the
execution. This is counter-productive, since they can be used for other computations, without
affecting the running code’s functionality. Its use can be affected by data dependencies,
occurrences and inherently slow blocks, all of which can be optimized with the use of other
directives. Its effect can be better understood, given the example at Figure 27:
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result 1=a+b
rezult 2=a%*c
result 3 =reswt 1 +resuit_2

Figure 27. PIPELINE example. (a) 3 iterations of the given code executed without pipeling take 9
clock cycles, with input rate (I) of 3 cycles, while in (b) with PIPELINE set, it is executed in 5 clock
cycles, with 1l equal to 1.

e PROTOCOL : It allows for the creation of a manual protocol for the defined code region, directing
the way the resulting RTL signals should behave within its functionality. For example, commands
may not carry any dependence among them, yet the order of execution shall be explicitly followed.
The region can be executed in parallel with the rest of the functionality or separately, depending
on the mode (floating, fixed respectively) opted. It is combined with the ap_utils.h C library, which
offers helpful operations to manually define the region’s behavior.

e RESOURCE : The directive is used to define the resource (core) that will be used for the synthesis
of avariable or an arithmetic operation, especially when multiple definitions of cores exist in code.
Examples of use are:

o For Operators : Addition and subtraction core choice depends on the data type concerned
(integer, half-precision, single-precision, double-precision), whether it is implemented
with the use of pipeline technique, as well the use or not of a DSP type (DSP48, full DSP,
medium DSP, no-DSP). Ten (10) different cores exist only for addition and subtraction.
Other options exist for multiplication and division cores, logarithmic and exponential
calculations, square root, inversion and multiplexing.

o Storage : Three memory types are offered -FIFO, RAM and ROM-. The number of ports
can be also defined, when RAMs and ROMs are concerned. The resource type can also
be defined, whether it would be BRAM, Distributed RAM (LUTRAM), Ultra RAM
(URAM) specifically for RAMs and Shift Registers specifically for FIFOs.

e STABLE : It can be defined for variables of any type that are input or outputs of a code region and
specifies that do not need any synchronization control signals. It is applied best at read-only
variable, where the data cannot be changed. When applied at data that can be written at any point
of the execution, the behavior of the data should be examined thoroughly. In any case, it saves the
implementation of some clock cycles that would be otherwise required for the validation of the
input/output signal.

e STREAM : It implements a continuous feed of data, useful in certain design scenarios. When used
in a design, it can have either of the following uses:

o For Dataflow optimization : Allows the change of array type from the default RAM to
FIFO.

o For FIFO configuration : Allows the specification of size (depth) of the FIFO struct.

e TOP : Used to specify the top module of the design through the use of a directive. Alternatively,
it can be specified through the solution’s settings.

e UNROLL : Loop unrolling is another common programming technique that has become common
practice because of parallelization. It allows for a loop’s body to be implemented into different
instances, that can run concurrently, thus decreasing considerably the latency of the design. An
example of different use cases is provided in Figure 28. The level of unrolling defines:

o Full unrolling : It is implemented when the directive instructs Synthesis to implement
each iteration into a dedicated instantiation. The primary condition is that the number of
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iterations is fixed. For example, while and do-while loops that examine conditions cannot
be unrolled with the use of this directive. It is best applied when the iterations do not
contain data dependencies among each other, but it can be very costly in terms of area.
o Partial unrolling : To balance out the area cost and latency, a specific number of copies
(N) can be created, unrolling the loop by a factor N. N should be an integer, multiple of
the total number of iterations required, else, optionally, the exit condition shall be
checked. This allows for loops of an unknown number of iteration to be unrolled.

=0 | ‘OOP;WSI i : i ; : ; ' =0 : Ioop_inst_ﬂ [ i=0 i \OOp_iIFISl_1 ‘
i=1 ' ' \oopTinsl i : : j : i=1 : “mFLE”SLQ i=1 : Ioop_i:nst_z :
=2 : : i i ‘ IOOP;iHSt I % : =2 : qup_;nsl_ﬂ . i=2 E : : |00D_:m5t_1
i=3 : : E : 3 : I Ioop‘_mst : i=3 : Iocp_:nsl_d : i=3 E : : \00D7in5172 I
Cycle I 1 I 2 I 3 4 ‘ 5 ‘ 6 I 7 : 8 : Cycle I 1 ‘ 2 I Cycle I 1 I 2 I 3 4 :
(@) (b) (€)

for (int =011 < N i++){
arrayfij =i "2,
/

Figure 28. UNROLL use : (a) loop operation without the directive (b) loop after unrolling by a factor
of 4 - full unroll, (c) loop after unrolling by a factor of 2 - partial unroll

e RESET (only for data) : Allows the configuration of reset over static or global variables. It can be
enabled (default) or disabled.

6. Solutions

The following segment overviews the directives examined, the way they can shape Synthesis and in extend,
the resulting code. As an indication, the hierarchies of the HDL modules are presented. Before delving
deeper into the solutions and their effect on the designs, a brief introduction is provided:

e solutionl : Use of the default Vivado HLS settings for memory and functionality.

e solutionl 1 no_inline : Use of the default Vivado HLS settings as before, with the exception of
the disabling of functionality inlining.

solution2_loop_unroll_F8 : Application of full loop unrolling technique.
solution3_loop_unroll_F4 : Application of partial loop unrolling technique.
solution4_resource_constants : Enforcement of BRAM use.

solution5 _Ishr_1 all functions : Application of tight timing and operational resource
constraints.

6.1. solution1

No directives are set in this solution, meaning Vivado HLS is synthesizing the given HLL code according
to a default strategy. That strategy prioritizes the satisfaction of the timing constraints, then seeks the best
possible throughput, by decreasing the 11 and the latency, and finally, attempts to minimize the resources
given to the design. Consequently, the tool performs a small amount of optimizations automatically.

The first step is the formation of the top module’s interface, from which the code’s functionality
communicates with external components. Firstly, two ports for the clock (ap_clock) and reset (ap_rst)
signals are used. The arguments of the top function, as set in HLL code, as well as the return value
(ap_return), if one is defined for the top function, will be synthesized into 1/O ports. Input-only ports are
synthesized as simple wires, while output-only require additional validation signals. By default, a
handshake protocol (ap_ctrl_hs) is applied, used to allow communication with other modules when
handling data, which adds the following four control signals to the interface:
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e ap_start: Input signal that specifies when the block can start processing data.

e ap_done : Output signal that signifies when the block has finished its process. It serves as
validation for the ap_return signal, if present.

e ap_idle : Output signal that indicates that the module does not — and will not, while it is enabled-
perform any operation.

e ap_ready : Output signal that specifies when the block is ready to accept new inputs.

The examination of the code’s functions follows. Generally, Vivado HLS will try to retain the
hierarchy as expressed in the HLL code into the RTL, with each function synthesizing into a block.
Sometimes, a function is automatically inlined, meaning its functionality is not synthesized into a separate
block but is included in the one higher in the hierarchy. This is always the case, for example, with the
function G4_sq(), which performs the bit swap in a given 2-bit value and returns the result, unless otherwise
specified.

As for other code elements, loops are by default remain “rolled”, and they are always executed
serially. Again, small loops may be automatically unrolled. The compiler automatically opts to represent
the read-only array data A2X and X2S into ROMs. Again, an automation step the default strategy takes is
to use registers for the elements of small arrays, in a similar way ARRAY_PARTITION directive is used.
The threshold size is set to 4, but can be configured from the settings of Vivado HLS. Structs are
decomposed and at last, operators are assigned to appropriate hardcore elements.

The results of the Synthesis given any set of directives were derived from the generated VHDL
code (or, if a graphic representation is preferred, from Vivado’s RTL Analysis step). To better understand
the effect of solution1’s directives on the implementation, a paradigm is given in Figure 27. It is clear that
inlining has been performed for the modules that perform simpler computations. Examining the code or
simply the messages printed in the Vivado HLS console, it is understood that G256_inv module contains
logic regarding G16_sq_sc and G16_inv, which in turn contain their own dedicated logic for G4_sq,
G4 _scl_N2 and G4_mul. Similarly, G16_mul, contains its own logic for separate G4_mul and G4_scl_N
computations. It is noted that A2X U and X2S U are implementing the memory access to ROM
components, used to store the arrays A2X and X2S, respectively. Figure 29 shows the solution’s effect over
Simple Canright’s implementation:

SBox

v v v

G256 _inv
(t_1_G256_inv_fu_178)

A2X_U X25_U

v \ v

G16_rmul G16_mul G16_rmul
(p_G16_mul_fu_48) (p_G16_mul_fu_54) (p_G16_mul_fu_&0)

Figure 29. Hierarchy for simple Canright’s implementation, given solution1. Note the naming of the
modules, which are generated in a way to support debugging.

For the masked implementation the hierarchy slightly differs. The complexity of logic involved
doesn’t allow the level of inlining observed in simple Canright’s implementation to be applied. While most
functions are still inlined, both multiplications G16_mul and G4_mul (part of the inlined G16_inv and
G16_sq_scl_N) are not. Moreover, the number of the required instances increases because of the correction
terms calculations. Similarly, the G256_newbasis is not inlined because of its additional use for the input
mask. Solution1’s effect over the masked version of Sbox is depicted at Figure 30:

Development of hardware countermeasures for embedded systems security using High-Level Synthesis 37



MSc Thesis Amalia-Artemis Koufopoulou

SBox

v ' v v

G256_newbasis G256_inv X25 U
(grp_G256 newbasis fu 81) (grp 3256 inv fu 68) -

|
v v

G16_mul G4_mul
8 dedicated modules | | 12 dedicated modules

A2X_U

Figure 30. Hierarchy for masked Canright's implementation, given solutionl

The hierarchy is altered again for CNGv1. This time two modules of G16_mul are created instead
of the three for simple Canright or the eight for masked Canright. Inlining of the rest of the functionality is
in effect. Lastly, solution1’s result over CNGv1 can be viewed in Figure 31:

SBox

h A 4 A 4

G256_inv
(grp_G256_inv_fu_164)

v v

G16_mul G16_mul
(arp_G16_mul_fu_106) (g_G16_mul_fu_112)

A2X_U X28_U

Figure 31. Hierarchy for CNGv1’s implementation, given solutionl

CNGV2 and the Masked-CNG Countermeasure use as their top modules simple Canright and
masked Canright respectively, hence their hierarchies will be the same, duplicated for the two different
instances they utilize. It is verified, through Vivado’s “RTL Evaluation” that the elements of each module
are not shared with the other.

6.2. solution1_1 no_inline

For the next solution, and as the name implies, it is strictly specified that no inlining is going to be performed
for any of the design’s modules. This can be achieved through the proper option of the directive INLINE.
The functionality of each function is to be implemented in a dedicated module that can be shared, instead
of implementing separately the required functionality on each upper-level function. Since no restrictions
on the limit of modules/resources that can be used are imposed, multiple copies of those modules can be
created.

Disabling inlining may result in stalls, as well as an overall bigger design. Its effect is depicted
below, for simple Canright’s design: Vivado HLS “decides” to create dedicated sub_modules for G16_inv
and G16_sq_scl, and share the sub_modules among the G16_mul modules. Figure 32 depicts the result of
inlining disabling on simple Canright’s implementation:
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SBox

v v v v

A2X U (3256_newbasis G256 _inv
— {grp_G256_newbasis_fu_36) {t_1_G 25 B_in\,r_fu_45]

v : v

X25_U

G16_inv G16_sq_scl G16_mul
(e_G16_inv_fu_42) (c_G16_sq_scl_fu_49) 3 modules
G4 scl N G4 s G4_mul G4 _scl_N2 G4 _sq Gd_mul G4 _scl N

_scl_| 54 | - ! | !
1 dedicated module | (2 dedicated modules| |3 dedicated modules 1 dedicated module | |2 dedicated modules 3 shared modules || 1 shared module

Figure 32. The resulting hierarchy for simple Canright’s implementation, given
solution1l_1 no_inline.

For the masked implementation, while the hierarchy is the same, the modules used are increased
according to the additional logic involved, as shown in Figure 33:

SBox

v v v v

(5256_newbasis G256_inv
(arp_G258_nawossi=_iu_21)| | (grp_G256_inv_fu_68)

) ' v

AZX_U X2s_U

G16_inv G16_sq_scl G16_mul
(e_2_G16_inv_fu_32) 2 modules 8 modules
v ! v v v i !
G4_scl_N G4 sq G4_mul G4_sq G4_scl_N2 G4_mul G4_scl_N
dedi d module | |4 ded d modules| |12 dedicated modules 1 shared modules 2 shared modules 3 shared modules || 1 shared module

Figure 33. The resulting hierarchy for masked Canright’s implementation, given
solution1_1_no_inline.

CNGvV1 hierarchy follows the same pattern, with small alterations in the number of the lower
modules, as shown in Figure 34:

SBox

v v v .

G25E_mawbasis G256 _inv
- — =
Az (arp_G258_newsasis_fu_41) || (grp_G256_inv_fu_38) H2E_ U
v ‘ }
18 _inw G186 _sq_scl G18_mui
{e_G18_inv_fu_52) (e_G16_sqg_scl_fu_57) 2 modules

4_scl_N G4_sq G4 _mul Gd_sel_M2 G4_sg G4_mul E4_zcl M
1 dedicated module | (2 dedicated modules | |3 dedicated modules 1 dedicated module | |2 dedicated modules 3 shared modules | | 1 shared module

Figure 34. The resulting hierarchy for CNGv1 implementation, given solution1_1_no_inline.
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6.3. solution2_loop_unroll_F8

The third solution’s directive concerns the G256_newbasis() function, which contains the only loop existing
in the design. It consists of 8 iterations, with each one performing the needed calculations in every bit of
the function’s first input, in order to change the representation, either from GF(28) to GF(28)/GF(24)/GF(2?)
or from GF(28)/GF(2*)/GF(2?) to GF(28), according to the array given as the function’s second input. The
directive unrolls the loop by a factor 8, thus full unrolling is performed. As the hierarchy in the following
figure indicates, the unrolled loop’s logic is simple enough to be inlined with Sbox’s logic. Generally, the
resulting designs appear to be simpler compared to previous solutions. The effect of loop unrolling can be
better understood from Figure 35:

SBox

Y

G256_inv
(t 3_G255_inv_fu_92)

v Y v

G16_mul G16_mul G16_mul
(d_G16_mul_fu_48) (p_G16_mul_fu_54) (g_G16_mul_fu_&0)

Figure 35. The resulting hierarchy for simple Canright, given solution2_loop_unroll_F8

For the masked Canright implementation, as shown in Figure 36, the multiplications over GF(2?)
are not inlined.

SBox

v v v

G256 _newbasis G256_inv G256 _newbasis
(grp_G256_newbasis_fu_109) (grp_G256_inv_fu_%96) (t_G255_newbasis_fu_131)

v v

G16_mul G4_mul
8 dedicared modules| |12 dedicated modules

Figure 36.The resulting hierarchy for masked Canright, given solution2_loop_unroll_F8

A different hierarchy is also derived for CNGv1 with the use of loop unrolling, as shown in Figure
37:
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SBox

v v

G256_newbasis G256 _inv
(grp_G256_newbasis_fu_§9) (grp_G256_inv_fu_64)

2 v

G16_mul G16_mul
(grp_G16_mul_fu_108) (g_G16_mul_fu_112})

Figure 37.The resulting hierarchy for CNGv1, given solution2_loop_unroll_F8

6.4. solution3_loop_unroll_F4

In the fourth solution examined, the same directive as before is used, this time with the factor being set at
4 this time. This will cause partial unrolling of the loop involved, which may balance out the benefits and
the trade-offs of full unrolling and no unrolling. The resulting hierarchy for simple Canright implementation
is presented in Figure 38:

SBox

v v v |

G256_newhasis G256 _inv
A2X_U (grp_G256_newbasis_fu_34) ([_1 _G255_Fw_fu_45} X2 S—U

v , v

G16_mul G16_mul G16_mul
(d_G16_mul_fu_48) {p_G16_mul_fu_54) (g_G16_mul_fu_&0)

Figure 38. The resulting hierarchy for simple Canright, given solution3_loop_unroll_F4

In the case of masked Canright’s implementation (Figure 30), the resulting hierarchy resembles
the one presented for solutionl’s use, as depicted in Figure 39:

SBox

G256_newbasis G256_inv
A2)(_U (grp_G256_newbasis_fu_&1} {grp_G256_inV_fL|_EB}| X2S—U

I
¥ ¥

G16_mul G4 _mul
8 dedicated modules 12 dedicated modules

Figure 39. The resulting hierarchy for masked Canright, given solution3_loop_unroll_F4

CNGv1’s hierarchy when solution3 is applied is presented in Figure 40:
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5256_newbasis G256_inv
AZX_U (grp_G256_newbasis_fu_41) (grp_G256_inv_fu_386) X28_U
G16_mul G16_mul
(grp_G16_mul_fu_108) (g_G16_mul_fu_112)

Amalia-Artemis Koufopoulou

Figure 40.The resulting hierarchy for CNGv1, given solution3_loop_unroll_F4

6.5. solutiond4 resource_constants

This solution combines the no inline directive for all functions, and the directive RESOURCE,
which set for three arrays (A2X, X2S and y, an internal array used in G256_newbasis for the computations)
the type of the core they are going to utilize. In this case, single-port BRAMSs cores are defined, which are
by nature limiting to the design, since simultaneous access becomes impossible. As implied by Figure 41,
3 Single-port BRAMSs will appear in Synthesis reports.

SBox

v v

v

v

{grp_G256_newbasis_fu_44)

(3256_newbasis
‘ A2X U ‘ -y

G256_inv
(t_1_G256_inv_fu 53)

X25 U

¥

¥

U G16 inv G16_sq_scl G16_mul
v (e_G16_inv_fu_d42) (c_G16_sq_scl_fu_49) 3 modules
G4 _scl N G4 _sq G4 _mul G4 scl N2 G4 _sq G4 mul G4 _scl N
1 dedicated module | |2 dedicated modules | |3 dedicated modules 1 dedicated module | |2 dedicated modules 2 shared modules | | 1 shared module

Figure 41. This design’s hierarchy is similar to the one of solution1_1 _no_inline’s design. The red
modules are the ones using the arrays A2X, X2S and y for which the directive was set.

Solution4’s effect over the masked implementation of Sbox is depicted in Figure 42:
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SBox
3256_newbasis G256_inv
AX U (grp_G256_newbasis_fu_89) | | (grp_G256_inv_fu_76) X2s U
y v
U G16 inv G16_sq_scl G16_mul
¥ {e_G16_inv_fu_32) 2 modules 8 modules
G4 _scl N G4 _sq G4_mul G4 _scl N2 G4 _sq G4_mul G4 _scl N
1 dedicated module | |2 dedicated modules | |12 dedicated modules 1 shared module 2 shared modules 3 shared modules | | 1 shared module

Figure 42. The resulting hierarchy for masked Canright, given solution4

Figure 43 presents the effect of the directives comprising solution4 over CNGv1 implementation:

SBox
G256_newbasis G256_inv
AZXU (grp_G258_newbasis_fu_48) | | (grp_G256_inv_fu_44) x2s U

v l r

u G16_inv G16_sq scl G16_mul
- (e_G1B_inv_fu_52) (c_G16_sq scl_fu_57) 2 modules
G4_scl_N G4_sq G4_mul G4_scl_N2 G4_sq G4_mul G4_scl_N

1 dedicated module | |2 dedicated modules | |3 dedicated modules 1 dedicated module | |2 dedicated modules 3 shared modules | | 1 shared module

Figure 43. The resulting hierarchy for CNGv1, given solution4

6.6. solution5 Ishr_1_all functions

In the final solution, four kinds of directives are applied to the design: a) firstly, the inlining is disabled, for
all modules, b) the loop contained in G256 _newhbasis is fully unrolled, ¢) the operations of shift left, logical
shift left and arithmetic shift left, as well as the use of some sub-modules, are limited to one per module.
Specifically, one module of G256 _newbasis and one module of G256_inv will be used for Shox, one
module of G16_mul will be used for G256_inv and one module of G4_mul will be used for G16_mul. d)
Finally, the target clock for the resulting design is set to half the value it was set for the other solutions. The
effect for all these directives results in the hierarchy shown in Figure 44, concerning simple Canrights’
implementation:
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SBox

i—‘—i

(G256_newbasis G256_inv
(grp_G256_newbasis_fu_80) | | (grp_G256_inv_fu_148)

v : v

G16_inv G16_sq_scl G16_mul
(e_Gﬂﬁ_iEv_fu_sg) (c_G16_sq_scl_fu_64) (grp_G16_mul_fu_38)
v \ v { v { v
G4_scl N G4_sq G4_mul G4_scl_N2 G4 | sq G4 mul G4 scl N
1 dedicated module | |2 dedicated modules| |3 dedicated modules 1 7 d module | |2 modules| |1 module| |1 d module

Figure 44. Simple Canright design's hierarchy for solution5

Figure 45 shows the effect of solution5 over the masked implementation of Sbox:

SBox

l—l—l

G256_newbasis G256_inv
(grp_G256_newbasis_fu_30) | [(grp_G256_inv_fu_146)

v '

G156 _inv G16_sq scl G16_mul
(e_G16_inv_fu_59) (c_G16_sq_scl_fu_64) (grp_G16_mul_fu_38)
Gd_scl_N Gd_sq G4_mul G4 scl N2 (34 sq 64 mul G4_scl_N
1 dedicated module | |2 dedicated modules| |3 dedicated moduls 1 d di duls 1 dedicated module| |1 dedicated module

Figure 45. Masked Canright design's hierarchy for solution5

The effect of the constraints enforced from solution5 over CNGv1°’s hierarchy is shown at Figure
46:

SBox

l—‘—l

G256_newbasis G256_inv
(grp_G256_newbasis_fu_20) | ({grp_G256_inv_fu_146)

v : v

G16_inv G16_sq_scl G16_mul
(e_G16_inv_fu_95) (c_G16_sqg_scl_fu_100) (grp_G16_mul_fu_54)
v 3 v v v ' v
G4_scl_N G4_sq G4_mul G4_scl_N2 G4_sq G4_mul Gd_scl_N

1 dedicated module | |2 dedicated modules| |2 dedicated modules 1 dedicated module | |2 dedicated modules| |7 dedicated module| |1 dedicated module

Figure 46. CNGv1 design's hierarchy for solution5

Lastly, tighter timing constraints have been applied for this solution. Unlike the other, which
targeted a clock period of 20,00ns, this one targets a 10,00ns period. This aspect is not set as a directive,
but as a solution setting.
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Multiplication is a quite complex logic to implement, and is often traded for bit shifters®. Given that
both options are limited because of the directives set, this design is expected to present greater latencies.

7. Performance analysis of Sbhox Implementations

In the following sections, the results of the thirty implementations are going to be presented and compared
in regards of the metrics discussed. Abbreviations will be used for the solutions presented previously.

7.1. Simple Canright

Firstly, the expected clock for the top module is examined. As shown in Table 1. Soll of the simple
Canright’s implementation serves as the baseline for the comparison among the implementations. Sol3 and
Sol1 have equal minimum clock periods of 15,704 ns. Sol2 achieves a slightly lower clock period, at 15,938
ns, while sol1_1 and sol5_5 manage a minimum clock period 11% lower than the baseline’s clock, with
an estimated clock period of 17,500 ns. Sol11 operates at tighter timing constraints, thus it presents a smaller
minimum clock period, by 46%, resulting at an estimated clock of 8,430 ns.

It appears that inlining, even when applied automatically as in the cases of sol1, sol2 and sol3
results in a faster design. Sol11 cannot be compared with the other designs, given the restriction imposed,
but it could serve as a point of examining the effect of tighter timing constraints on other metrics.

Table 1. Timing estimates for simple Canright’s solutions

Clock soll soll 1 sol2 sol3 sol4 sol5
an clk Target 20,00 ns 20,00 ns 20,00 ns 20,00 ns 20,00 ns 10,00 ns
P Estimated | 15,704 ns | 17,500 ns | 15,938 ns | 15,704 ns | 17,500 ns | 8,430 ns

The next metric to be examined is latency. Table 2 depicts the values extracted by Vivado HLS
tool. Min and max values have no meaning for the algorithm opted, since unbalanced conditional executing
does not exist in code and can be skipped in the following latency tables. In this case, the effect of unrolling
is obvious. The initial implementation requires 34 clock cycles to produce the result. Partial unrolling of
sol3 by factor 4 cuts the amount of cycles in half, requiring 17 cycles to produce its result. Full unrolling
taking place in sol2 results in a latency of 1 clock cycle, indicating that total parallelization has been
achieved. The absolute latency then aligns with the target clock cycles, which means maximum throughput
has been achieved. Again, disabling inlining, as in the cases of soll_1, sol4 and sol5 adds delays at the
designs. For example, while full unrolling is performed at sol5, its full potential does not take effect.

Table 2. Total latency estimates for simple Canright solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency Min 34 37 1 17 37 14
(cycles) max 34 37 1 17 37 14
Latency Min 0,680 us 0,740 us 0,02 ps 0,340 ps 0,740 ps 0,140 ps
(absolute) max 0,680 ps 0,740 ps 0,02 ps 0,340 us 0,740 us 0,140 ps
Interval Min 34 37 1 17 37 14
(cycles) max 34 37 1 17 37 14

In order to better comprehend the effect of loop unrolling, the G256 _newbasis loop, whether it is
inlined or existing in its own module will be examined. As shown in Table 3, sol1’s G256 _newbasis loop
presents a latency of 2 clock cycles per iteration and 16 in total, which is almost half of the total latency

8 Shifting the bits of a number by n positions left results in the multiplication of that number by 2"
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pointed in Table 2. The inlined loop is used two times, one for converting the input value to the tower field
representation and one to reverse this conversion for the output. Thus, the loops contribute to 32 out of the
34 cycles of the total latency. Any additional latency that occurs is a result of an overhead of the multiple
modules being used, as depicted in Table 4. For example, in solutions soll_1 and sol4, where inline is
disabled, the loop latency is the same as sol1’s since no directive affects it, yet it is enforced to be part of a
dedicated module, hence the increased total latency, adding a few extra clock cycles to the resulting designs.

When the loop examined is fully unrolled, those characteristics do not exist since the loop itself
doesn’t exist, as observed in sol2 and sol5 cases. In sol3’s case, where the loop does exist, in a different
form than the original, tripcount is equal to 2 (8 iterations unrolled by a factor 4), with each of these
iterations presenting a latency of 3 instead of 2, because the logic within each loop has increased, and a
total of 6 instead of 16.

Table 3. Loop metrics estimates for simple Canright solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) 16 16 - 6 16 -
Iteration Latency 2 2 - 3 2 -
Tripcount 8 8 - 2 8 -

Table 4. G256_newbasis module metrics estimates for simple Canright solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) inlined 17 Inlined inlined 17 0

Finally, the resource utilization the synthesized designs of simple Canright’s implementation will
approximate is presented in Table 5. Flip-Flop (FF) utilization drops dramatically in the cases of sol2 and
sol5, by 93% and 79% respectively, and for sol4 by 62%. At the same time, FFs use estimation increases
for soll_1 by 15% and for and sol3 by 32%, despite the fact that the latter applies the loop unrolling like
sol2 and sol5. Sol3 also shows an increase of 54% in the number of LUTSs, while the other solutions present
decrease in that number, compared to soll. There seems to be a relation to the low latency those two
solutions present. A smaller amount of resources could result in a faster implementation. Lastly, it is noted
the number of BRAMSs used in solution sol4. As speculated previously, the directives used over the three
arrays existing in code are taking effect, with the binding of 3 corresponding cores.

Table 5. Resource Utilization estimates for simple Canright solutions

Available® soll soll 1 sol2 sol3 sol4 sol5
BRAM 18K 270 0 0 0 0 3 0
DSP48E 240 0 0 0 0 0 0
FF 126800 293 337 18 389 109 60
LUT 63400 599 506 446 928 446 496
URAM 0 0 0 0 0 0 0

7.2. Masked Canright

Compared to simple Canright’s implementations, the majority of solutions seem to be able to perform the
same (as in sol1_1 and sol4) or fewer (as in sol1, sol2, sol3) clock cycles, despite handling a more complex
logic, as presented in Table 6. The case of sol2 is notable, since it displays a 9% reduction in the estimated
clock. The only exception is the number of the sol5’s clock cycles, which not only is 20% higher compared
to simple Canright’s estimated clock, but also exceeds the set threshold.

% For xc7a100t-ftg256-2 target device.
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Comparing the solutions of the masked implementation, it is noteworthy to mention that the timing
estimates follow the same pattern: Solutions that allow inlining result in a higher frequency clock. Full loop
unrolling also seems to affect that number.

Table 6.Timing Estimates for Masked Canright's solutions

Clock soll soll 1 sol2 sol3 sol4 sol5
Target 20,00 ns 20,00 ns 20,00 ns 20,00 ns 20,00 ns 10,00 ns
Estimated | 15,371 ns | 17,500 ns | 14,457 ns | 15371 ns | 17,500 ns | 10,137 ns

ap_clk

The latencies of all resulting implementations of the mask application over Canright’s algorithm,
presented in Table 7, introduce additional logic to the design, which translates, as expected to more
complex, slower designs. Comparing the solutions to their respective ones from the simple Canright
version, a minimum of 42% of latency increase can be observed. Even loop unrolling cannot fully optimize
the design, as noted in the case of sol2, where the optimal throughput is now 4 cycles instead of 1 due to
the increased complexity of the cryptographic operation.

Table 7. Total latency estimates for masked Canright solutions

soll soll 1 sol2 sol3 sol4 sol5

Latency (cycles) 59 59 4 29 59 50
Latency (absolute) 1,180 us 1,180 us 0,08 us 0,580 us 1,180 us 0,507 ps

Interval (cycles) 59 59 4 29 59 50

The loop metrics haven’t been altered, since itS logic hasn’t been changed significantly, as
presented in Table 8. Yet, the small addition in code causes Vivado HLS not to inline it automatically, as
viewed in Table 9. In sol2’s case, two G256 newbasis modules are created, but they do not present any
latency because of unrolling

Table 8. Loop metrics estimates for masked Canright solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) 16 16 - 6 16 -
Iteration Latency 2 2 - 3 2 -
Tripcount 8 8 - 2 8 -

Table 9. G256_newbasis module metrics estimates for masked Canright solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) 18 18 0 8 18 -

As it appears in Table 10, the resource utilization for all the masked designs, compared to simple
Canrights designs, has nearly doubled, with an average of 61% for FFs and 55% for LUTSs. Specifically,
the minimum increase is observed at the masked sol3 by 40% for FFs and 42% for LUTS, while the
maximum is displayed at masked sol2, with an increase of 89% for FFs and 66% for LUTS. It is noted that
both of these solutions solely perform loop unrolling, full and partial respectively. Again, BRAMs are used
only for the design of sol4, as the directive instructs.

Table 10. Resource Utilization estimates for masked Canright solutions

Available soll soll 1 sol2 sol3 sol4 sol5
BRAM 18K 270 0 0 0 0 3 0
DSP48E 240 0 0 0 0 0 0
FF 126800 583 601 169 651 373 300
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LUT 63400 1206 1286 1312 1602 1226 990
URAM 0 0 0 0 0 0 0
7.3. CNG (First version)

The first version of the CNG’s designs seems to be able to achieve slightly faster clocks than its simple
Canright counterparts: sol1 and sol3 present a 4% fall to the clock cycles (were both 15,704 ns), sol1_1 and
sol4 remain the same, sol2’s clock cycles fall to 5% and sol5’s fall to 10% (were 17,500 ns and 8,430 ns),
while satisfying the time constraints, unlike the masked version.

Compared to the masked version, the CNGv1 implementations also result in faster clocks. This is
because the logic of CNGv1 is not more complicated than any of the masked designs. On the contrary, it
may be a case of better utilization of the resources, because of the parallel bitwise computation performed.
Again, disabling inlining, as in cases of sol1_1 and sol4 (sol5 is not directly comparable) seems to result in
a slower clock for the design. The results are depicted in Table 11:

Table 11.Timing Estimates for CNGv1's solutions

Clock soll soll 1 sol2 sol3 sol4 sol5
an clk Target 20,00 ns 20,00 ns 20,00 ns 20,00 ns 20,00 ns 10,00 ns
P Estimated | 15,055ns 17,500ns 15,055ns | 15,055ns 17,500ns 7,565ns

The total latency of CNGv1 implementations shows a similar behavior as the designs examined
previously. The inlined designs of sol1, sol2 and sol3 are better compared to functions that don’t inline any
functionality. Likewise, loop unrolling assists the latency reduction to a degree that is analogous to the
factor of the unrolling. The resulting designs are all slightly slower than the designs of the simple Canright,
by 1 to 4 clock cycles, but it would be an acceptable trade-off if the security that the countermeasure is
supposed to offer was verified. The numbers are presented in Table 12.

The reason behind those extra clock cycles, especially in the cases of sol1, sol2 and sol3 may be a
result of the level of inlining performed. The minor differences in G256_newbasis, viewed in Table 14,
among the two algorithms (CNGv1 contains an additional condition that needs to be examined for every
CNG used) results in different synthesis decisions from the tool. While the function is mostly inlined in
simple Canright, its respective CNGv1 is not.

Table 12.Total latency estimates for CNGv1’s solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) 36 38 3 18 38 18
Latency (absolute) 0,720 ps 0,760 us 0,06 ps 0,360 ps 0,760 pus 0,180 ps
Interval (cycles) 36 38 3 18 38 18
Table 13. Loop metrics estimates for CNGv1 designs
soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) 16 16 16 - 6 16 -
Iteration Latency 2 2 2 - 3 2 -
Tripcount 8 8 8 - 2 8 -
Table 14.G256_newbasis module metrics estimates for CNGv1 solutions
soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) | inlined [ inlined 17 0 7 17 0
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The resource utilization’s behaviour presented in Table 15 for CNGv1 differs a lot compared to
simple Canright’s designs. Specifically, FFs use has risen 27% for sol1, 64% for sol2, 47% for sol4 and
70% for sl11, with a slight drop for sol1_1 (0,5%) and sol3 (13%). As for LUTS, their use resembles the
numbers depicted for the masked implementation of the SBox, as they have generally doubled. Sol1’s and
soll 1’s LUTs have both increased by 62%, sol2’s by 76%, sol3’s by 49% sol4’s by 67% and lastly, sol5’s
by 61%, compared to simple Canright.

Table 15. Resource Utilization estimates fo CNGv1 solutions

Available soll soll 1 sol2 sol3 sol4 sol5
BRAM_18K 270 0 0 0 0 3 0
DSP48E 240 0 0 0 0 0 0
FF 126800 212 335 50 336 207 204
LUT 63400 1607 1364 1930 1848 1386 1284
URAM 0 0 0 0 0 0 0

7.4. CNG (Second version)

CNGvV2, as described before, implements the CNG logic by duplicating the SBox module. Since this logic
is not implemented through Vivado HLS, the estimates the tool produces are referring solely to the top
module’s operation, which is essentially a simple Canright’s module. Therefore, the metrics are examined
through the following assumptions, given that the hardware elements of each Sbox are not shared:

e  The clock period of the “super-module” is the period of the slowest Sbhox module. Given that Sbox
is duplicated, the clock period is the same as simple Canright’s one.

e Since the input is extended twice, while the clock period remains the same (presented in Table
16), the throughput will double.

e The latency of the “super-module” is the greatest of the latencies of the Shox modules, as presented
in Table 17 for the total latency. Given that there is no sharing that could lead to stalls, the latency
of each design is the same one as its respective simple Canright’s solution. Loop latency (Table
18) and G256 newbasis’s latency (Table 19) remain the same as simple Canright’s (Table 3 and
4 respectively)

e Each module is independent of one another’s operation, hence the resource utilization will be
doubled, as shown in Table 20.

Table 16. Timing estimates for CNGv2’s solutions

Clock soll soll 1 sol2 sol3 sol4 sol5
an clk Target 20,00 ns 20,00 ns 20,00 ns 20,00 ns 20,00 ns 10,00 ns
P Estimated | 15,704 ns | 17,500 ns | 15,938 ns | 15,704 ns | 17,500 ns | 8,430 ns

Table 17. Total latency estimates for CNGv2 solutions

soll soll 1 sol2 sol3 sol4 sol5

Latency (cycles) 34 37 1 17 37 14
Latency (absolute) 0,680 us 0,740 us 0,02 us 0,340 us 0,740 ps 0,140 ps

Interval (cycles) 34 37 1 17 37 14

Table 18. Loop metrics estimates for CNGv2 solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) 16 16 - 6 16 -
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Iteration Latency 2 2 - 3 2 -
Tripcount 8 8 - 2 8 -

Table 19. G256_newbasis module metrics estimates for CNGv2 solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) inlined 17 Inlined | inlined 17 0
y (cy 17 17 0

Table 20. Resource Utilization estimates fo CNGv2 solutions

Available soll soll 1 sol2 sol3 sol4 sol5
BRAM_18K 270 0 0 0 0 6 0
DSP48E 240 0 0 0 0 0 0
FF 126800 586 674 36 778 218 120
LUT 63400 1198 1012 892 1856 892 992
URAM 0 0 0 0 0 0 0

7.5. Combinational Countermeasure

Combinational countermeasure uses the idea behind CNGv2, this time employing the masked Canright
module instead of the simple one. The same assumptions as before are applied once again, resulting in the
respective timing estimations (Table 21), total latency (Table 22), loop and G256 newbasis latencies
(Tables 23 and 24 respectively) and resource utilization (Table 25).

Table 21. Timing Estimates for CNGv2 + Masked Canright's solutions

Clock soll soll 1 sol2 sol3 sol4 sol5
Target 20,00 ns 20,00 ns 20,00 ns 20,00 ns 20,00 ns 10,00 ns
Estimated | 15,371 ns | 17,500 ns | 14,457 ns | 15,371 ns | 17,500 ns | 10,137 ns

ap_clk

Table 22. Total latency estimates for CNGv2 + masked Canright solutions

soll soll 1 sol2 sol3 sol4 sol5

Latency (cycles) 59 59 4 29 59 50
Latency (absolute) 1,180 ps 1,180 us 0,08 us 0,580 us 1,180 ps 0,507 us

Interval (cycles) 59 59 4 29 59 50

Table 23. Loop metrics estimates for CNGv2 + masked Canright solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) 16 16 - 6 16 -
Iteration Latency 2 2 - 3 2 -
Tripcount 8 8 - 2 8 -

Table 24. G256_newbasis module metrics estimates for CNGv2 + masked Canright solutions

soll soll 1 sol2 sol3 sol4 sol5
Latency (cycles) 18 18 0 8 18 -
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| 18 | 18 | o | 8 | 18 | -

Table 25. Resource Utilization estimates fo masked Canright solutions

Available soll soll 1 sol2 sol3 sol4 sol5
BRAM_18K 270 0 0 0 0 3 0
DSP48E 240 0 0 0 0 0 0
FF 126800 583 601 169 651 373 300
LUT 63400 1206 1286 1312 1602 1226 990
URAM 0 0 0 0 0 0 0

7.6. Result Summary Analysis

The results analyzed previously are displayed graphically below. Figure 47 presents the aggregated results
in regards of timing estimates. The horizontal axis represents the different solutions used, while the vertical
axis represents the resulting values. CNGv2 and the combinational countermeasure implementations are
aggregated with the results of simple Canright and masked Canright respectively, given the assumption
made in the previous chapter. Figure 48 and 49 present the summarized results in regards of latency. Again,
the horizontal axis represents the different solutions used, while the vertical axis represent the resulting
values for clock cycles and time respectively. Again, CNGv2 and the combinational countermeasure
implementations are represented through simple Canright’s and masked Canright’s results. Resource
utilization is shown in Figure 50 for flip-flops and 51 for LUTs. The number of elements used is depited in
the vertical axis. This time CNGv2 and the combinational countermeasure is represented separately, given
the assumption that they operate with double the amount of elements their respective simple Canright and
masked Canright implementations use.

Generally, masked Canright implementation is proved to be the most computational intensive
countermeasure. CNGvV1 is a better option, offering theoretically better security than the simple Canright
version, for the trade-off of a greater number of LUTs used. In regards to the solutions used, soll (the
default use of Vivado HLS) results in better results compared to some of the other solutions used, pointing
out that even with little understanding of an implementation or generally the hardware’s behavior, Vivado
HLS can result in high-quality results.

Despite the different implementations and their requirements in area and time domains, the trends
of the metrics tend to remain the same for the solutions applied. Full unrolling undoubtedly benefits the
designs’ efficiency as noted in the cases of sol2 and sol5, yet the factor opted should be carefully considered.
Partial unrolling taking place in sol3 seems to have a negative impact in resource utilization, as shown in
Figure 50, in a degree that it possibly cannot justify any advantages gained. This indicates a possible
problem of directive misuse. Lastly, resource handling may offer an advantage, as displayed in sol4, but it
should be combined with more directives in order to result in a better implementation.

In any case, the planning of directives is a useful tool that allows the examination of better
alternatives from the very first steps of design development.
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Resource Utilization Estimates - Flip Flops
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Figure 51. Resource Utilization Estimates — LUTs

8. Conclusion and Further Research

This thesis tackles the subject of examining the optimality of the generated secure designs for hardware
platforms when using an HLS tool. Firstly, a brief overview of today’s environment was given. Applications
based on hardware devices, such as Internet of Things have seen a great rise in demand. Embedded systems
can be highly capable and offer an edge on computational acceleration, yet they come with strict limitations
in regards of energy consumption, response time, size and more. A “good” design for such systems has to
meet those specific requirements. Therefore, the development of applications over such platforms comes
with versatile needs on area and time domain, in a limited time window to meet market demands. This
impacts the production process of hardware applications, calling for a change in the workflow.

Given that, the importance of HLS tools was then established. Tools such as Vivado HLS used in
this thesis, have allowed the reduction of implementation times and the essential design exploration derived
from those needs. Its ease of use derives from the fact that developers only need to develop the desired
algorithm in a high level code to be given as an input to the HLS tool. Instead of dwelling with the complex
architectural characteristics of a hardware platform, the synthesis process can be configured, using
directives to control the behaviour of the generated output. Finally, the result can be assessed and verified
through a number of reports at this early stage of the development process.
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Next, a brief history and current status of Cryptography was given to highlight the security
requirements of modern applications. Most significantly, a detailed view of an emerging family of attacks
on hardware was offered. Side-channel attacks undoubtedly pose a severe threat for all those devices used
in the modern digitalized environment. It is not random then that AES, the most widely used cryptographic
algorithm, is extensively studied and is as well opted in this case.

An alternate version of AES, as detailed by David Canright is examined, one that fits better a
hardware platform capabilities. It specifically targets SubBytes() functionality, which in software is
traditionally performed through the use of costly in terms of area substitution tables. In hardware, on the
other hand, it can be easily computed through an optimized form of the polynomial inversion required.
Based on that implementation, the countermeasures are presented. Those involve masking, one of the most
known techniques used against side-channel attacks, developed especially for the non-linear nature of the
inversion involved. They moreover concern the correlated noise generation (CNG) technique, either when
applied within the datapath or through multiple instantiations of the base implementation. The last
countermeasure combines the two techniques, using multiple instantiations of the masked design for CNG.

A detailed documentation of the directives contained in Vivado HLS follows, in order to make the
level of architectural manipulation comprehensive. Thorough examples are used to present their effect in
multiple cases. Finally, six sets of directives that form the solutions opted are overviewed, along with their
expected effect. Thirty implementations are examined in total, in terms of estimations given by Vivado
HLS in regards of timing, latency and area utilization.

It appears that the loop unrolling technique can greatly benefit the design, while inlining, when
used individually, does not. The use of BRAMSs reduces the designs’ utilization metrics, but their general
effect on the design requires further study. It is important to mention that the default Synthesis strategy
presents, in all cases examined, good results, meaning that misuse of directives can possibly impact the
design’s quality and should be opted after a well-thought examination. On a side note, the research solely
focuses on a small yet valuable part of the workflow from concept to realization. While HLS greatly assists
that process, it only offers a first look at the output design. HDL-to-bitstream steps and their possible
configurations can lead to a significantly diverged design.

The next step would be to further examine the effects of more combinations of directives. Already,
several papers such as [23],[56],[57] shape the direction of study over that topic, yet the research can be
expanded to accommodate more diverse cases. Furthermore, HLS tool outputs need to be assessed in terms
of implementation quality. Already efforts have been made to quantify the pros and cons of HLS use against
HDL development, as in [58] and [59]. Especially when it comes to embedded devices, the research can be
expanded in order to determine whether state-of-the-art tools can efficiently target their strict requirements.
Moreover, the resulting level of security can be examined, by comparing the resistance against side-channel
attacks of cryptographic algorithms generated with HLS and developed directly in HDL.

Lastly, and as mentioned before, HLS tools offer a level of abstraction that doesn’t allow
architectural manipulation. Yet it is known that certain hardware phenomena [60] can lead to
compromisable designs against side-channel attacks. Hence it is imperative to study the security level of
the final designs, whether those phenomena occur more often when HLS tools are used and in such a case,
seek out a way to prevent their occurrence early in the development process.
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