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1. ABSTRACT 

Artificial intelligence (A.I) has become an important part of game industry and in most cases it 
determinate the game design. The automation in game it is needed for the game to become 
more entertained for the player. The evolution of the games is often base on how efficient is 
the gameplay of the non-player characters (NPCs) that the player must defeat to complete the 
game. A.I is not used only in game but in military, medical, corporate and advertising 
applications. Game A.I is the effort of game industry to surpass the scripted gameplay of the 
games as far as the NPSs interaction how sophisticated is the environment and how complex 
the system of the game can become and how to make it as interactive as possible for player. 
System like that learn from user input, user inputs ca be certain action such as how the player 
fights what button it prefers to use or how the player it interacts with the environment as 
whole. These inputs help the algorithm to evolve and adapt his own non-prescript behavior 
and develop new techniques for the NPCs to interact with player.  Another use of A.I in games 
is to create an NPC that learn from other NPC how to play, after some generations of training 
has the knowledge how to defeat specific NPCs. The goal of our research is the second 
example how to use artificial intelligent techniques to train an NPC to defeat another NPC in 
battle.  In this paper we present a genetic algorithm (GA) for the generation of evolving 
artificial neural networks called NEAT and we use this algorithm in a game called street fighter. 
We will discuss how this algorithm can train an NPC to defeat other NPC in battle. 

2. INTRODUCTION. 

Artificial intelligence in games: 

The term game A.I is referring to a set of algorithms that can generate intelligent 
behavior in non-player characters (NPC’s).  Artificial intelligent is a concept that goes back on 
1950s (NIM).  As the game industry starts to evolve and the game are become more complex 
algorithms has started to become more sophisticated to keep the player attention on the 
game.  Modern games have environments populated with characters and objects of many 
types and all these objects need of human level intelligence. In recent years game developers 
focus of creating highly efficient A.I in small subsystems such as pathfinding, decision making 
etc.  

 Artificial intelligent in game does not mean necessary that we need a model that 
needs to learn from players interactions only, for example developers can create a set of 
possible moves or events for the NPCs that can perform in specific situations or events as the 
game evolves. This model called finite-state machine (FSM) or finite-state automation (FSA, 
plural: automata), finite automation, or simply a state machine. This model can have infinite 
states at a given time and based on interaction of the player or environment if the condition is 
satisfied then chooses the state to play. But this model as we understand can be very difficult 
to implement it in a huge environment with many objects and players and with millions of 
decisions that must be taken so the game progress.  An example case that these algorithms are 
not feasible is the strategy games imaging after few rounds of gameplay the player will 
understand every move of enemy A.I and the game experience will become repetitive.  In early 
game development it was a fine solution but in early games it can be very difficult to use in 
every situation. Nowadays developers are using more complex A.I in games, this complexity 
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makes the games more engaging and attractive to the end user.  The solution for this problem 
it came from the Monte Carlo Search Tree (MCST) algorithm which is a is a heuristic search 
algorithm, which uses randomness for deterministic problems difficult or impossible to solve 
using other approaches.  This algorithm prevents the repletion of FSM, MCST has all the set of 
moves from the NPC and visualize them, afterwards for every possible move of the player 
analyzes every possible response and after consideration its response to players moves. 

  Modern games use Behavioral Decision Trees.  The first time they are evaluated they 
begin from the root and each child is evaluated from left to right. Child nodes are ordered by 
priority. If all a child node's conditions are met, its behavior is started. When a node begins a 
behavior, that node is set to 'active’. The next time the tree is evaluated, it again checks the 
highest priority nodes, then when it comes to a 'running' node, it knows to pick up where it left 
off. The node can have a series of actions and conditions before reaching an end state. If any 
condition fails, then the algorithm returns to the parent node. The parent selector moves on to 
the next priority node child.  This algorithm provides more flexibility to create more interactive 
A.I but this algorithm gives the illusion that NPCs are learning from our moves but the only 
thing that happens is that simply checks the nodes to which node is open to make decision 
based on the players move or decisions. 

 To achieve adaptive behavior in games we must use genetic neural networks. To start 
training such a network we first collect all possible moves that the player can use ex. (Map all 
controller buttons to specific moves or actions) or specify environment parameters such if go 
this way you will fall and die all this information are called inputs.  Also, we must decide when 
the game could end (Player dies) and of course what is the goal of game for example in our 
experiment the goal is to defeat the enemy player by hitting him and it loses all his life (hit 
points). To be more accurate every goal that we give to our algorithm we must assign a score 
for each one.  This way the algorithm can rank up and avoid mistakes that can cause the end of 
the game. 

 The market of game industry is high competition between games of the same genre 
so for the companies and for developers the A.I is selling point.  However, for a team of 
developers to create such a complex model has many constrains.  Because games use high 
amount of CPU and GPU power so they can run graphics operations and environmental 
operation the amount of CPU and GPU power remains for the A.I is limited.  Imagine games 
like Civilization which in every round must process thousands of moves and decision for every 
function in round. 

  

 

 

 

Neural Network: 

What could be a neural network? A neural network is a series of algorithms that endeavors to 
acknowledge underlying relationships in an exceedingly set of knowledge through a method 
that mimics the approach the human brain operates. Neural networks will adapt to ever-
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changing input thus, the network generates the most effective potential result while not 
having to revamp the output criteria. The conception of neural networks, that has its roots in 
computing. A neural network just like the human brain’s neural network. A “neuron” in an 
exceedingly neural network could be a mathematical relation that collects and classifies info 
consistent with a design. A neural network contains layers of interconnected nodes. every 
node could be a perceptron and is sort of a multiple rectilinear regression. The perceptron 
feeds the signal created by a multiple rectilinear regression into associate degree activation 
operate which will be nonlinear. In an exceedingly multi-layered perceptron (MLP), 
perceptrons are organized in interconnected layers. The input layer collects input patterns. The 
output layer has classifications or output signals to that input patterns might map. Hidden 
layers fine-tune the input weightings till the neural network’s margin of error is token. it's 
hypothesized that hidden layers extrapolate salient options within the computer file that have 
prognosticative power relating to the outputs. This describes feature extraction, that 
accomplishes a utility like applied math techniques like principal part analysis. Neural networks 
have several applications today in nearly each field we will use them like enterprise designing, 
trading, business analytics etc. 

 

Neural Network Architectures: 

1. Perceptrons computational models of a single neuron.  Perceptron was originally 
coined by Frank Rosenblatt in his paper, “The perceptron: a probabilistic model for 
data storage and organization within the brain”.  Perceptron additionally called feed-
forward neural network. To train a perceptron needs a back propagation, we must give 
to algorithm a pair dataset of input and outputs. The use of perceptron is limited but 
we use it by combined them with other neural networks. 

 

                       Perceptron (ref: [21]) 

 

Figure 1. Perceptron 

2. Convolutional Neural Networks uses the back propagation in feedforward net with 
several hidden layers.  Each neuron cell take inputs and follows it with a non-linearity.  
The whole network expresses a single differentiable score function.  Convolutional 
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Neural Networks are quite different from most other networks. They are primarily 
used for image process however also can be used for alternative varieties of input like 
audio. 

 

Figure 2.  Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved feature (ref: 
[22])  

3. Recurrent Neural Networks originally introduced in Jeffrey Elman’s “Finding structure 
in time” (1990).  It is basically perceptrons, the difference between perceptrons it is 
perceptrons are stateless.  Standard neural networks have fixed size in vectors as input 
which is a limit in usage in many situations.  RNNs are very powerful because of the 
hidden state they have which help them to store more data and have more efficiency 
than the vanilla neural networks.  Also, they are nonlinear and this give them for 
dynamic update of their hidden neurons.  

 

Figure 3. A Recurrent Neural Network (ref: [23]) 

4. Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) 
architecture used in the field of deep learning. LSTM has a feedback connection and 
this helps because it cannot only process single data point but can process entire 
sequences of data points (ex. Sound or video).  LTSM try solving the problem vanishing 
exploding gradient problem by introducing gates and an explicitly defined memory 
cell. Memory cell does not forget their values until “forget gate” tells them to do it. 
LSTM has also the input gates that can introduce new values to the cells and output 
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gate which determine when to pass data from vector to cell and the two next hidden. 

 

Figure 4.  Long Short-Term Memory (LTSM) (ref: [27]) 

5. Gated Recurrent Unit.  GRUS are and improvement of standard recurrent neural 
network.  The difference is that can keep the information from long time before. 
This helps because they are not losing any info through time or remove any info even 
be irrelevant to prediction. 

 

Figure 5. Recurrent neural network with Gated Recurrent Unit (ref: 24]) 

 

6. Hopfield Networks. It is consistent by many percetrons and can overcome the XOR 
problem.  All the neurons are fully connected with each other.  Every node get an input 
before trainning, the networks are training by getting values of every neuron and after 
which weights are calculated.  But the weights are not change their values after this 
but only after trained for one or more patterns.  The network can invariably converge 
to at least one of the learned patterns.  The problem hotfield networks is that are very 
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limited in capacity, can only memorize 0.15N patterns in it’s energy function. 

 

Figure 6.  Hopfield network model (ref: [5]) 

 

 

 

 

Genetic algorithms, according to [2,6]: 

A genetic algorithm is inspired by Charles Darwin’s theory of natural evolution. This algorithm 
reflects the process of natural selection where the fittest individuals are selected for 
reproduction in order to produce offspring of the next generation.  The process of the natural 
selection works by selecting the best individual from the current population.  The produced 
offspring’s that inherits from their parent are selected and added to the next generation.  The 
fitness it is the factor the factor that make the offspring’s better, if the parent has a good 
fitness their children would have better.  This process keeps on until the fittest individual is 
found. 

 The process begins by selecting the starting population for the algorithm using default 
or random values.  Each individual has a set of variables called genes each gene run through 
from a fitness function.  After each iteration fittest of the individuals are selected from the 
population and added to the next generation using the reproduction function, this 
functionality is repeated for defined number of times and the end the algorithm presents the 
best of the population according to the fitness function. Let us discuss each of these concepts 
further. 

1. Fitness function.  This function it fulfils the criteria of the algorithm that helps with the 
reproducing with fittest of the individual of every generation.  For each iteration it 
assigns a fitness score for every individual and this determines if the individual will 
pass to the generation. 
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2. Selection function.  Gets as arguments the population and the results of the fitness 
function and base on how we want to reproduce the population it selects the 
individuals. 
For example the selection function can select the individuals by value if the select 
function returns a Boolean value.  If the selection function gets raw values, it can 
calculate the average of the score and keep only a percentage of the population and 
finally passes the remaining population in the reproduction function.  

3. Reproduction function. It handles the expand of the population based on the existing 
members and determines how the population of the change over time. It is most 
complex part of the algorithm and has a significant impact of creating the algorithm.  
The reproduction of the population can be achieved with mutation or crossover or 
both combined. 

a. Mutation is where every new member of the population is created base on 
single individual, for each new individual create a new one with the same 
characteristics. 

b. Crossover.  Is the more complex of the two methods because it is based on 
combination of the existing individuals.  Crossover combine the attributes of 
individuals but does so by applying a function of multiple organisms’ 
attributes. 

4. Termination function. The role of this function is to get the final population and return 
the best members base on the fitness score.  The role of termination function it based 
on purpose of the algorithm  

 

3. NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) 

According to [25,7] 

 

Neat is a genetic algorithm which is used for creating evolving artificial neural networks 
develop by Ken Stanley in 2002. It can change the weight parameters and the structure of 
network, in the attempt to find the balance between the fitness of evolved solutions.  NEAT 
implements the idea that if you can start the evolution with small and simple networks and 
allowed them to become more complex after a defined number of iterations(generations). 

 Encoding, in biology we have genotype and phenotype. A genotype is the genetic 
representation of the creature and phenotype is the actual creature.  NEAT comes with a 
question how we want to represent this biolοgy terminology in the algorithm. The way to 
handle the evolution in the algorithm is to handle the process of selection, mutation and 
crossover.  Any encoding will use one of these categories direct or indirect.  Direct encoding if 
we are talking about a neural network this mean that every node will link with to a node, 
connection of network.  This means that always will be a direct connection between the 
genotype and phenotype. Indirect encoding, we specify parameters for creating the new gene.  
Indirect approach is more difficult to   follow with knowing very well how the encoding will be 
used.  The NEAT algorithm chooses a direct encoding. 
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 Mutation, in NEAT mutation can mutate an existing connection or add a new into the 
network. If a new connection is assigned, it is randomly assigned a weight.  If a new node is 
added between the two old nodes, all the previous connection is removed.  The new start 
node is assigned with the weight of the old one and linked to previous old node with the 
weight of 1.  

 

 (ref: [26]Heidenreich, H., 2021. NEAT: An Awesome Approach to 
NeuroEvolution. Hunter Heidenreich (http://hunterheidenreich.com/blog/neat-

an-awesome-approach-to-neuroevolution).) 

Competing Conventions, the idea behind it is that just blindly crossing over through two neural 
networks can result to bad mutated and non-functional network.  The case is that if these two 
networks are dependent on their central node and are both recombined out of the network, it 
will face a problem. 

 

 (ref: [26]) 
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NEAT tackles this problem by assigning historical values to the new evolution when it is time 
for crossover, this reduces the chance of creating no-functional individuals. 

 

ref: [26] 

Speciation, Neat suggest speciation for protection of the new structures and have better 
optimization before the algorithm wipe out the entire population.  How speciation works, 
splits up the population into several species based on topology and connection.  Because NEAT 
uses historical markings in its encoding, this helps for measurement to be easier.  Every 
individual in population must compete with other individuals with the same species. This helps 
structure to be more optimized with losing any case before eliminating the population.  Also, 
NEAT has fitness sharing between species and this helps to improve the performance of the 
new species and have better optimization before being evolved. 

A large goal of NEAR algorithm is that allowed minimal network to be evolved.  The creator did 
not create the algorithm to found first the all the good networks and after try to reduce the 
size of the network, instead NEAT starts with minimal number of nodes and connection.  So, 
the complexity of NEAT evolves as the time goes on and keep only the necessary.  This can be 
achieved by creating a network without any hidden nodes. Every individual in the initial 
population is an input node or an output node, this with the help of speciation evolving 
minimal and high performing networks. 

Now we describe how NEAT genetic encoding works and how solves the problems that 
specifically addresses. 

Genetic encoding is a scheme that allows corresponding genes to easily line up when other 
genomes are in the process of crossover.  Genomes are linear representations of network 
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connectivity.  Every genome has a list of connection and each connection refers to two node 
genes that are connected. Node genes have in-node out-node and a specified weight for each 
connection when a connection gene is imminent to be created and an innovation number is 
assigned which allows to find the corresponding genes. 

 Mutation in NEAT changing connection weights and the network structure.  Mutation 
occurs in two ways. By adding a connection mutation and adding a node mutation. Connection 
mutation adds a connection gene with random weight in two previously unconnected nodes.  
Adding a new node, it can be happened by splitting an existing connection and the new placed 
where the old connection used to be.  The previous connection is disabled, and the new 
connection get the weight of 1 and the node also get the weight of 1.  This approach helps the 
network to be optimized and make use of the structure and in comparison, with other 
algorithm can immediately make use of the new structure and not waiting for the networks to 
be evolved first to use the new structure. 

Tracking Genes through Historical Markings, this provides the information of which 
gene match up with which gene between any individual inside the population.  This 
information is coming from the historical origin of the gene.  Two gene with the same origin 
has the same structure but possibly different weights. Thus, the algorithm needs to know 
which genes has the information of their and which they do not.  Tracking historical genes 
needs computation.  When a gene is generated, a global innovation number is incremented 
and assigned to the gene.  A problem that occurs with the global innovation number is that is 
possible to assign different numbers in the same structural innovation.  To resolve that 
problem, the algorithm keep track of the of innovations that happens in the current 
generation.  Thus, ensure that identical mutation gets the same number. 

This historical marking gives to NEAT a new capability to know for every gene which 
gene match up with which.  When crossing over, these genes in both genomes with the same 
innovation numbers are lined up.  These genes are called matching genes. Genes that do not 
match are either disjoint or excess.  When composing the new offspring genes are choosing 
randomly from their parent at matching genes, whereas all excess or disjoint genes are always 
included from the more fit parent. This way, historical markings allow NEAT to perform 
crossover using linear genomes without the need for expensive topological analysis.   

Adding new genes to population representing different structures and the system can 
population from different topologies.  This causes problem because this kind of system cannot 
maintain diverse topological innovations.  Smaller structures optimized faster and adding 
nodes and connections usually decrease the fitness of the network.  Recently augmented 
structures have little hope of surviving more than one generation.  The solution to this 
problem is protect the innovation through speciation. 

Protecting Innovation through speciation. The idea is to divide the population into 
species, but this is a matching problem, and there comes the historical marking to give a 
solution to this problem. Excess and disjoint genes give us the compatibility distance, the more 
disjoin are the genomes less evolution history the share, so are more incompatible.  To 
measure the compatibility the algorithm uses the above function: 
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E and dare the excess and the disjoint genes, W is the weight differences of the matching 
genes, C1 C2 and C3 give us the option to adjust the importance of the 3 factors and finally the 
N is the number of genes in the larger genome. 

    Minimizing Dimensionality through Incremental Growth from Minimal Structure.  
NEAT creates an initial network without introducing any hidden nodes and layers.  New 
structures are incrementally introduced as the mutation is happening and at the end only the 
structure is surviving can be useful through fitness evaluation. Since NEAT starting with 
minimal population the search is very efficient so NEAT as more performant and optimized in 
compare with other approaches like TWEANN. 

Performance evaluation of NEAT, to evaluate system performance we use three 
experiments: 

  1.  The XOR experiment which tests the increasing topology of the algorithm evaluation.  To 
build XOR solving network we should grow new hidden unit in the staring genome.  Two inputs 
must combine to a hidden node and as opposed to only output node.  The two inputs should 
be combined at some hidden unit, opposed to the output node, because there's no operate 
over a linear combination of the inputs which will separate the inputs into the correct 
categories. These structural necessities create XOR appropriate for testing NEAT’s ability to 
evolve topology. 

2.  The single pole-balancing or inverted pendulum problem is a standard experiment for 
artificial learning problems. 

3.  The double pole-balancing experiment, this is the advanced form of pole balancing, in 
which the cart has two poles instead of one with different mass and length to be balanced. 
Game Simulator Platforms. 

4. GAME SIMULATOR PLATFORMS 

 

There are many simulators out there on the internet that simulate many game platforms as 
PlayStation, Nintendo, android and many more. Each of these simulators are exposing several 
tools so you can interact with the game and game all the aspects of it such as the inputs of the 
controller, the speed of the game. Also helps to identify through memory how the AI of the 
operates and interacts with your inputs, you can identify patterns and spawn times through 
memory access. All the information is very important to create your AI algorithm, will all that 
information you can create a proper fitness function and experiment with your AI and how you 
can defeat your opponent or finish the stage.  

 

Example of simulators: 
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1. Gym retro. You can use gym retro to work on RL algorithms and study generalization.  
Before that, the focus of the emulator was to optimize agents and solve single task. 
With this emulator you can study the ability to generalize between games and similar 
scenarios. 

2. AI-TEM: Artificial Intelligence Testbed in Emulator. AI-TEM is an environment created 
for the aim of testing game AI. it is created from Visual Boy Advance (VBA), an 
emulator of Nintendo Gameboy Advance game system (GBA). Commercial games will 
be played on VBA using the games' Roms.  

3. Bizhawk is the emulators that we are using for our experiment so with go in more 
detail above.  

 

For our experiment we use BizHawk emulator, this emulator is multiplatform and support 
full rerecording support and Lua scripting. The emulator supports almost all platforms as the 
above image show us. 

 

 

The core functionality that we use for our experiment is the ram watch that is provided by 
emulator. 
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With this functionality we can watch memory address of the current game.  This memory 
addresses provides with very useful information that helps the algorithm to perform.  For 
example, we can get the time, health of the players, distance of the player, damage and many 
other useful values. Another key functionality of the emulator is the Lua support and console.  
Also, the way to check what memory we want to watch the memory address that changes 
during the gameplay and we add value to them we can see them reflect to game itself. 

 

Figure 7. Lua console 

 

With this console we can run any Lua command or script.  How its functionality works, as a 
mention before the emulator provides us with memory access from Lua, as we get the values 
direct memory the algorithm produces some output moves and at the of this process, we can 
send through sockets the moves that we want our player to do. 



MSc Thesis                                                                                                                                                                                        Georgios Bardis 

Development of a software tool for the emulation of automatic video-game playing based on the Artificial Evolution of 
Neural Network Topologies                                                                                                         16 

Another key aspect of the emulator is that provides with save state functionality.  This 
functionality is very useful because we want the algorithm to start every time from a specific 
time and the position of player must be the same for every round. 

 

The emulator also provides us with and API for game controllers. We can connect as many 
controllers as we want through code and give direct commands through Lua commands.

 

Figure 8. Emulator’s controller options 
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The values that we get from the emulator: 

1. Health of the player that the algorithm is handling 
2. Position of the player that the algorithm is handling 
3. Current state of the player. This mean that we need know each frame if the player 

is moving or is idle. 
4. Where the player is facing 
5. Health of the enemy player. 
6. Position of the enemy player. 
7. State of the enemy player. 
8. Distance between the players. 
9. Players Keystroke. This info refers to what key is using each frame 
10. Players blocking ability.  This is a custom input that calculated from players 

distance the current state and enemy state. 
11. Players damaging ability.  This is custom input that calculated from players 

distance and current state and enemy player state and the current damage that 
our player is doing. 

12. Continuous Keystrokes. This is a customer input that calculated from players 
keystroke and the current state.  

 

The above values are combined to create the fitness function that we use in NEAT. Above we 
will discuss how we use them in the fitness function. 

 

Fitness functions parameters: 
 

1. myHealth – enemyHealth.  This factor it not used if the player does damage, we use 
this factor only if the player dies without do any damage to enemy player.  

2. The most important factor is the player has done damage to enemy player so if the 
condition is valid.  We calculate the remain health of the enemy player (176 - 
enemyHealth) * (176 - enemyHealth). 

3. The remain health of our player fitness + (myHealth * 50).  The more our player has 
the better for the fitness. 

4. Calculation the time that the game has taken place fitness - (FrameCounter * 20).  If 
the game holds a lot of time this is bad factor for the fitness. 

5. PlayerWasStale is the factor that if the player is not moving has a negative number and 
if the player is moving has a positive outcome for fitness.  If the player is moving, we 
give to this factor a score of 100 if the is not moving we decrease the value by 100 and 
final value will be added to the fitness (fitness + PlayerWasStale). 

6. PlayerProximityAction is factor that has the same usage as the PlayerWasStale, we 
want to check if the player is moving but if he moving to make an attack and moving 
around and doing nothing. So, we check the distance between the players and an 
attacking distance threshold. If these two conditions are met, we decrease this factor 
by 30, if our player is moving always towards to enemy player to attack him this factor 
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does not change at all.  So, this factor is a negative one to give penalty to the fitness if 
the player is not trying to attack. 

7. PlayerContinuousKeystrokePunishment, this factor is applied after an observation of 
the training process.  The player in the early state of training was trying to defend 
himself from attacks by moving up and down continuously, after we observe that 
pattern decide to put a negative factor to train the network to not use so frequent that 
pattern, we did want to stop it but reduce the usage of it.  So, if the conditions are 
met, we decrease the value by 20 otherwise we did not change the at all and add the 
final value to fitness (fitness + PlayerContinuousKeystrokePunishment). 

8. PlayerCloseDamageAbility, this factor is about if the player hits are registered or not.  
If the players hit are doing damage to the enemy player, we increase this value by 100, 
if the player hits are not registered, we decrease the value by 1, the final value is 
multiplied by 5.  The decrease value is so small because we do not want to stop the 
player to try to hit but we want to give a push to try to get closer to enemy player so 
he can register the hit and do damage which is the most import goal of the game. 
(fitness + PlayerCloseDamageAbility * 5). 

9. PlayerCloseBlockAbility, this factor is about blocking.  If the player manages to block 
enemy’s hits, we increase the value by 1.  The increase of value is so small because the 
player the most time is on defense position and we do not want to stay always in 
defense but also try to attack. The final value is multiplied by 5 (fitness + 
PlayerCloseBlockAbility * 5). 

10. PlayerMoveVariety, this factor is not so important as the other to achieve the goal of 
winning the enemy player but to make more realist the outcome of training.  At every 
game we check the variety of the moves that out player does and if the player is 
always hit the same key, we give negative value of 200 to the factor, if the player does 
actually use different keys to hit the enemy the value does not change at all.  This way 
we achieve in the late generations to make the player do combo moves and not only 
common moves (fitness + PlayerMoveVariety).           

 

                                                                                            

5. EXPIREMENTAL RESULTS 

 

      We are gone discuss some results from neat algorithm after 60 generation. Our first 
diagram is about the fitness of algorithm as the generations are evolving. It is very clear that as 
the model is developing the fitness is going better and better. The only spots at this diagram 
that are interesting is between generation 5-7, 7-9, 15-17 and 19-21. This is the generation 
that the model is trying new combination of moves against the CPU AI and as we can see 
clearly through this diagram is that our AI needs about 2 to 3 generation to find the 
combinations of to gain some results against the CPU. Also, after the 53 generation we can 
that our model is reaching a pint that it cannot evolve and more based on the fitness function 
that we proved 
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Figure 9 Fitness by generation. 

  

In our second diagram we can the time that our AI is surviving against the CPU AI. As the 
model evolving and trying new moves so there are spices because is losing very quickly. Also, 
we can see that it is consistent above the 800ms of surviving time. This can be improved by 
giving more credit to our model about being more defensive than attacking, our maybe we can 
find the sweet spot about the attacking and defensive behavior of our model. 

 

Figure 10 Fitness by survival time. 

 

6. CONCLUSION 

 

The research aimed to find the usability of NEAT algorithm to game AI and how it can make 
a model that can be efficient against the CPU AI and defeat opponent after 60 generations, 
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based on same factors that are given as inputs to the algorithm. The result indicated that neat 
algorithm could create a model that can defeat the AI of this game, also it can defeat different 
opponents, in normal difficulty. This is a very good result because this a fight game and there 
are many aspects that can make a player defeat the opponent as such defense, movement and 
attacking which can be split in multiple combinations with each other. This indicates that we 
can manipulate the model to work as we want, for example we can make the AI to be more 
defensive or attacking or we can make the player to learn special combos. By analyzing the 
results, we can learn that if we change the weight of the input that given to algorithm the AI 
plays very differently. In this case we have given more focus to player attacking the opponent, 
the fitness factor that give that result is PlayerWasStale, PlayerProximityAction. The 
PlayerWasStale is the input that indicates the movement of the player, if the player is moving 
towards the enemy, we give positive score else we penalize if not and PlayerProximityAction is 
about the movement again but it is mandatory to try to fight the opponent and not to move 
without any action. This is the inputs that balances the AI behavior, after many runs of the 
algorithm if this two inputs does not exists the player will be only defensive, because in the 
beggining our player will be doing nothing but stand still and not trying to hit his opponent 
efficiently, the only positive input will be defense because to defend is more easy than the 
offence, the AI will eventually will be doing only defense, so this two inputs is a way to give to 
the algorithm a way to start thinking towards not only to defense but to offence also. 

 Another good aspect of this implementation is that NEAT can be training more 
efficiently and make the player almost impossible to be defeated. This can be achieved by 
training the AI to use more efficient moves and counter attacks. A fitness factor that helps us 
to achieve more variety moves is PlayerMoveVariety. This factor penalizes the player if hit the 
key repetitively, with this input we have achieved to do special moves against the enemy 
player. So, if this factor goes a step further, we can make the AI to learn how to counter 
efficiently, or make it to learn more combos if we give positive result if the AI hits a combo of 
keys that can register more damage to enemy player. 

 To sum up NEAT it can be uses as AI in games, as my research indicates it can be used 
also in many different games to solve any kind of scenario to defeat or complete a scenario of 
a game. The only limitation a have found is the variety of tools that can be found to run a game 
and get the information which is important to run the algorithm. Also read memory to get the 
values can be difficult sometimes based on the complexity of the environment of the game 
that you are running this goes also to writing into the memory if it is needed to. 

 Based on the conclusion, we can train this model with more players as an opponent so 
will be more efficient to a more variety of scenarios and opponents. Also, a recommendation 
for further research will be training a different model or the same model to fight each other 
without making it impossible to defeat each other. Maybe we can train the game with a 
different algorithm and fight each other to see which of the two is the best for this game 
specifically. 
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