
University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

Use and analysis of Attack Graphs for decision making in a

Cybersecurity Defense Plan

Supervisor Professor: Christos Xenakis

Giannis Kalderemidis jkalderemidis@gmail.com mte1910

Piraeus

29/12/2020

mailto:jkalderemidis@gmail.com

1

Acknowledgments

I would like to thank the Supervising Professor and Director of the MSc Christos
Xenakis and my colleague Aristeidis Farao for their guidance and continuous support
throughout the elaboration of this thesis. I also am grateful to Professors Stefanos
Gritzalis and Konstantinos Labrinoudakis for their notes that helped largely in its
development, as well as individually all the professors of the MSc that with their
contribution each helped to the acquisition of my knowledge during my studies.

2

Abstract

Modern information systems tend to encounter threats that evolve and become more

sophisticated than someone can keep up to by just knowing their existing

vulnerabilities. Attack graphs are the visual display of such potential courses of action

an adversary may take in order to lead to a system compromise and this document

presents how one may generate a graph, draw results from it, and create a defense

based on these conclusions. Then, driven by international standards, we delve through

the process of risk management and with the restriction of a network owner’s budget,

allocate the existing resources to the best of the business or organization by using

various methods including knapsack problem and game theory.

Περίληψη

Τα σύγχρονα συστήματα πληροφοριών τείνουν να αντιμετωπίζουν απειλές που
εξελίσσονται και γίνονται πιο περίπλοκες και εκλεπτυσμένες από ό, τι κάποιος μπορεί
να ανταπεξέλθει γνωρίζοντας απλώς τις ευπάθειές τους. Οι γράφοι επιθέσεων είναι η
οπτική απεικόνιση πιθανών πορειών δράσης που μπορεί να λάβει ένας επιτιθέμενος
προκειμένου να οδηγηθεί σε έκθεση του συστήματος σε κίνδυνο, και αυτό το
έγγραφο παρουσιάζει πώς μπορεί ένας διαχειριστής συστήματος να δημιουργήσει
έναν γράφο, να αντλήσει αποτελέσματα από αυτόν, και να δημιουργήσει μια άμυνα
βάσει των συμπερασμάτων που εξήχθησαν προς αποφυγή τέτοιων καταστάσεων. Στη
συνέχεια, με γνώμονα διεθνή πρότυπα, εξετάζουμε τη διαδικασία διαχείρισης
κινδύνων και με τον περιορισμό του προϋπολογισμού του κατόχου δικτύου,
διαθέτουμε τους υπάρχοντες πόρους στο καλύτερο δυνατό τρόπο προς όφελος της
επιχείρησης κάνοντας χρήση ποικίλων μεθόδων όπως το πρόβλημα του σακιδίου και
τη θεωρία παιγνίων.

3

Table of Content
Chapter 1. Attack Graphs 6

1.1 Motivation and Contribution 6

1.2 Introduction to attack graphs 7

1.2.1 Risk Management Procedure 8

1.2.2 How attack graphs are used in cybersecurity 10

1.3 Attack graph generation approaches 10

1.3.1 Enumeration Based Approach 11

1.3.2 TVA (Topological Vulnerability Analysis) approach 12

1.3.3 NetSPA (Network Security Planning Architecture) approach 13

1.3.4 Logic Programming Based approach 14

1.4 Attack graph approaches Comparison 14

Chapter 2. Creating an attack graph 19

2.1 MulVAL Installation 19

2.1.1 XSB installation 19

2.1.2 Graphviz tool installation 20

2.1.3 MySQL installation 20

2.1.4 MulVAL installation 20

2.1.5 Bison & Flex installation 21

2.2 Using MulVAL 21

2.2.1 Setting up the network 21

2.2.2 Datalog expressions 22

2.2.3 Generating the graph 25

Chapter 3. Defense Strategy 28

3.1 Graph Analysis 28

3.2 Risk Estimation 31

3.2.1 Node Rating/ Risk Estimation Formula 31

3.2.2 Measuring the values 32

3.2.3 Attack simulations 33

3.3 Choosing the most competent defenses 34

3.3.1 Cybersecurity Controls 34

4

3.3.2 0-1 Knapsack Problem 35

3.3.3 Defense approaches 36

3.3.4 Random Based Defense Approach 37

3.3.5 Game Theory Based Defense Approach 38

3.3.6 Results 41

3.3.7 Comparison 44

3.3.8 Other methods 45

Chapter 4. Conclusions 47

4.1 Analysis 47

References 49

Appendix A 53

Troubleshooting 53

javac: command not found 53

Bison, flex no available candidates 56

Appendix B 59

Python Scripts 59

5

List of Tables
Table 1 - Advantages and Disadvantages of each approach 14

Table 2 - Proposed usage of graph generation approaches 18

Table 3- Attack Scenarios Results 43

Table 4 - Defense methods Advantages and Disadvantages 44

List of Figures
Figure 1 - Risk Management process 8

Figure 2 - Attack graph toolkit architecture 17

Figure 3 - Path after environmental variable configuration 20

Figure 4 - MulVAL architecture 22

Figure 5- Network Setup 23

Figure 6 - Datalog system setup 23

Figure 7 - Interaction Rules 24

Figure 8 - run.P file 26

Figure 9 - Generated attack graph 26

Figure 10 - Square Nodes 28

Figure 11 - Circular and Diamond Nodes 29

Figure 12 - Direct network access Interaction Rule 29

Figure 13 - First step of the attack: Remote exploit of server program 29

Figure 14 - Remote exploitation Interaction Rule 30

Figure 15 - Simplified Attack Graph 30

Figure 16 - Return on investment table 35

Figure 17 - Simplified Graph with control options 37

Figure 18 - Random attacker results vs Random attacker Controls 38

Figure 19 - Game Theory attacker vs Random attacker Controls 40

Figure 20 - New possibilities of attack occurrence (Po) (Game Theory attacker) 41

Figure 21 - Random and Game Theory attacker vs Unguarded System 42

Figure 22 - Random attacker and Game theory attacker vs Random based defense 43

Figure 23 - Random and Game theory vs Game theory based defense 44

6

Chapter 1. Attack Graphs
Building a network defense is a process that most times requires more than knowing

and patching its vulnerabilities. Attack graphs are a great way to provide insight that

can contribute to this process but since organizations and enterprises face challenges

like restricted budget or limited resources, they are called to make decisions that

sometimes include the retention of certain risks. This document tries to give a

guideline on how a network manager can manage the given resources and distribute

them properly based on conclusions extracted by the risk management process and the

examination and analysis of the generated attack graphs.

1.1 Motivation and Contribution

A big concern of many network owners is how someone can use a limited amount of

budget and resources to protect his or her system. There are a plethora of tools that

specify the vulnerabilities in a network, but these tools usually do not take into

consideration other crucial factors like their interdependence with other assets,

conditions and requirements that may potentially affect the system state during an

incident, or even human behavior inside or outside of the network which makes it

more difficult to assess their criticality and how urgent is the acquisition of a

countermeasure. Factors like the complexity of the attacks that involve many assets

and preconditions, system states that change dynamically during an incident, and even

non-directly, non-computable system threats via vulnerability assessment tools (like

insider threat and social engineer attacks) are problems we are called to confront with

the use of attack graphs and their analysis.

Also, after the evaluation of the vulnerabilities, the network owners are called to

create a cybersecurity plan that has to be implemented in accordance with the

previously mentioned limitations, but also the size of the network, business or

organization since each one of them require different treatment options.

Decision-making in this process is crucial especially when the risk owner is called to

retain some of the existing vulnerabilities.

7

With that in mind, we try to implement a universal method of evaluation that would

help the systems defense generation regardless of these parameters. More specifically,

things that we delve into in this research include:

● The examination of the risk management process with the use of attack

graphs.

● Different graph generation methods and approaches comparison.

● Presentation of a logic graph-generating tool and its programming language.

● A way to analyze and extract information from attack graphs.

● Evaluation and prioritization of existing system vulnerabilities.

● Generation of a cybersecurity plan based on results drawn by attack graphs.

In chapter 1, in particular, we provide some insight on how attack graphs can be used

in cybersecurity, what automatic graph-generation techniques exist and how they

differ, and we present a short guide on which approach should an administrator use

depending on the scale of the network. Then, chapter 2 demonstrates the process of

generation of an attack graph on a simple network, in chapter 3 we create different

defense approaches based on a proposed formula (which can be also implemented on

larger networks) that we next compare in a scenario of 6000 attacks in a simulated

environment that matches our network’s state. Finally, chapter 4 concludes with the

accumulated results of the master’s thesis and their analysis.

1.2 Introduction to attack graphs

As most enterprises and organizations continuously tend to virtualize their assets,

their defense becomes more and more crucial and challenging at the same time. While

vulnerability scanning, intrusion detection systems, and vulnerability assessment tools

provide enough defensive mechanisms for the hosts of a network, sometimes an

attacker may launch a multistage attack that bypasses the said defenses.

Mitigating these attacks requires a comprehensive, end-to-end approach that includes

creating and maintaining security policies based on the security needs of the system in

consideration. The first step in establishing the security needs of an organization is to

identify likely threats and perform a risk analysis, the results of which are used to

determine the security hardware and software implementations, the mitigation

policies, and the network design [25]. Attack graphs can provide part of this

8

information by representing the system state, vulnerabilities, and potential exploits an

attacker may take advantage of to compromise critical data [3].

1.2.1 Risk Management Procedure

A major part of a cybersecurity control plan is risk analysis and risk management.

Although, prior to the graph generation, the network administrator should determine

the assets, the risks, the threats, and the risk owners involved, and then proceed to

further actions. According to [29], “Risk management process is a systematic

application of management policies, procedures, and practices to the activities of

communicating, consulting, establishing the context, and identifying, analyzing,

evaluating, treating, monitoring and reviewing risk”. ISO/IEC 27005 [28] provides

guidelines for the implementation of information security based on a risk management

approach. Figure 1 displays the procedure of risk management according to the

international standard.

Figure 1 - Risk Management process

9

Beginning from the context establishment, the organization has to specify the

standards that will set the wanted results after the procedures are made. Then, risk

identification is a process that includes the source or sources of the risk, the potential

area of impacts, and causes or consequences that may occur. In terms of a network

defense strategy, it is mainly defined by potential system vulnerabilities or other

factors that may lead to a system compromise. Techniques that may extract these

system susceptibilities by testing and evaluating the system security are [25] :

Penetration Testing is an attack simulation, authorized by the system owners, that is

used to evaluate its security. Types of pen tests vary (white box, black box) and the

ones performing them usually use the same tools an attacker might do. Some tools

used in penetration testing are Metasploit Framework, Aircrack-ng, Nikto, John the

Ripper, etc.

Virus Detection and anti-virus software are used during the risk identification process

to prevent, detect, identify, and remove malware on a system.

Network Scanning is the process of recognition of available network services, filtering

mechanisms, and operating systems in use, in order to manage, maintain and secure

the system using data found by the scanner. It also includes software that listen to

open TCP ports displaying the available resources in a network. Nmap/Zenmap,

SuperScan, and Port Scanner are three tools that can give this kind of information and

be used to strengthen network security.

Vulnerability Scanning is a sub-branch of network scanning that detects and classifies

system deficiencies within it. The vulnerability report outputs, in particular, will later

be used as inputs for the generation of the attack graphs as they map most potential

weaknesses an attacker may exploit during an incident. Open Vulnerability

Assessment Language (OVAL) is also used by many compatible scanners and specifies

the discovered vulnerabilities in XML that can be converted for the graph generator to

use them [18] (for example Datalog clauses in MulVAL which is a Prolog based

language explained in chapter 2). Tools that are mainly used for vulnerability

scanning are, Nessus, OpenVAS, BurpSuite, etc.

After defining the risks, they need to be evaluated and then specify whether they can

be retained, modified, or treated. Our work focuses mostly on the process of Risk

analysis and the evaluation and management of the existing network threats.

10

1.2.2 How attack graphs are used in cybersecurity

For the sake of network security improvement, an administrator needs to constantly

evaluate the system and preserve a safe state which can be challenging as many

matters can incommode this task. Some of those matters are the increasing number of

vulnerabilities (more than one hundred each week [39]) that make it difficult to track

for each separate host and operation system and the complexity of the cyber attacks

that use multi-host and multi-step techniques which cannot be detected via current

attack detection methods (like modern Intrusion Detection Systems (IDS) and

Intrusion Prevention Systems (IPS)) [3].

After the designation of the assets and the defense mechanisms owned by the network

in consideration, attack graphs are used to describe each course of action an attacker

may take, the system state in each step, and requirements that need to be met to reach

a final goal state that usually indicates the success of the attack. Attack graphs consist

of nodes and edges whose interpretation and representation differ depending on their

types. Usually, the nodes of an attack graph are the system states and the edges refer

to their transition created by various pre and post conditions[6].

Automatic security calculations like attack graphs can provide additional insight

concerning those matters by accurately computing possible courses of action (CoA)

that someone might take to compromise a network asset and give information that

cannot be obtained from other network tools. In the next section, we analyze the main

graph generation approaches and how they differ in their results and complexity

depending on the inputs and the approach.

1.3 Attack graph generation approaches

Creating an attack graph from scratch can be pretty chaotic, given the assets that have

to be protected in a network and the increasing number of attacks and vulnerabilities

threatening more than one of the said components, the complexity increases

exponentially as a network widens. To avoid the hand-made creation of such an attack

graph, four major ways of automated generation have been presented [3].

● Enumeration Based approach nodes depict the state of the system during an

attack including the entities involved in the attack, user privileges, and the

outcome of the attack till this point.

11

● TVA (topological vulnerability analysis) approach focuses on the system’s

vulnerabilities instead of taking into consideration every possible threat. Then,

by analyzing them, it defines the courses of actions the attacker can take to

compromise the wanted network assets.

● NetSPA Approach identifies the most critical attack paths by analyzing the

network topology. It is a multiple-prerequisite graph that includes state,

precondition, and vulnerability nodes and gives the administrator the ability to

visualize and repair the most threatening elements in the network.

● Logic Programming Based Approach (MulVAL) is a logic-based approach

whose nodes represent logical statements and require that the cause of an

attacker’s potential privileges be expressible as a propositional formula in

terms of network configuration parameters. [26]

1.3.1 Enumeration Based Approach

The first approaches that were used to create automatically-generated attack graphs

are the state enumeration-based ones. The state enumeration graphs were introduced

in 1998 where nodes represented the state of the system (information on hosts, access

levels, consequences, etc) at a given time during an attack and edges show how the

actions of the attacker can affect this state, based on other parameters like the success

possibilities of the attack or the time needed for it to be successful [2]. Inputs used for

the automated generation of the graph are:

● Attack Templates: Attack templates include the steps and requirements that are

needed to be met for an attack to be successful. The defender has to take into

consideration most known attacks that threaten the system but also involve

scenarios that may not be popular but can be used to achieve a goal for the

attacker. This creates many smaller graphs that depict how each one of them

can either threaten or enable an unwanted state for the defender

● Configuration File: A configuration file consists of all information that

describes the network. Hardware (routers, hosts, servers), network topology,

group policies, and other aspects that may be of use during an attack for both

the attacker and the defender.

12

● Attacker Profile: As each entity involved in an attack has different goals,

needs, and assets that can be applied, the attacker profile describes those

characteristics.

After the data input, the algorithm that generates the attack graph uses them to get into

an initial state. It then compares the data and conditions from the attack templates and

combines them with the system and network configurations. Finally, it repeats this

process for each attacker profile and generates the graph.

As stated earlier though, the overabundance of existing threats and the complexity of

the modern networks make it really difficult to apply this approach provided that the

authors only used small-scale examples for the implementation of the algorithm. To

improve that, Ritchey and Ammann proposed the use of Symbolic Model Checking

(SMV) to simplify the model.

Model-checking is a method that specifies whether a finite-state model of a system

meets the wanted requirements. SMV, in particular, takes the network configurations

as input and performs a symbolic model checking of CTL(computational tree logic)

formulae in order to verify whether the given properties are satisfied.

By using the model checker, the only input that’s modified is the configuration file

where a new parameter is added that defines a desirable state of our system.

Moreover, the file contains the vulnerabilities and the connections of the hosts

included, and the state of the attacker. Then, the model checker will provide any

state-altering circumstances and their requirements, firstly creating the paths and then

the attack graph.

1.3.2 TVA (Topological Vulnerability Analysis) approach

A major disadvantage of the enumeration-based approach is the exponential augment

of the graphs in larger-scale networks. In [27] a new parameter is taken into

consideration that is the variety of the attacker’s behavior and the correlation of the

targets involved in the attack (sometimes a denial of a service implies the inability of

access to another). A graph generated in such a way lowers the complexity from

exponential to polynomial and is known as exploit dependency graph [2]. Although,

an attack path created this way can appear more than once in the graph and there can

be paths that are not dependent on other pre-existing states. The nodes in this model

13

consist of exploit and security condition ones and the edges define the pre and post

conditions in this state of the attack.

This approach differs from the previous techniques in a way that instead of examining

each threat to a given system, it just delves into the existing vulnerabilities which can

be targeted to affect criticality for the network assets. The advantage it brings is the

lowered computational power needed for its generation but on the downside, it

depends on the knowledge of the attacks that can result in a system compromise, to a

level that they can be expressed in pre and post conditions so that they can be used as

inputs to the graph generation algorithm.

1.3.3 NetSPA (Network Security Planning Architecture) approach

A new approach that has a linear increment depending on the range of the network, is

the NetSPA approach [17]. The model’s generation is based on the open ports that

exist in a network’s hosts. Network traffic rules, group policies, connections with

other hosts, and existing vulnerabilities are the main inputs for this graph generation

approach. After the data evaluation, the graph is created which consists of three types

of nodes.

● State Nodes: This type of node represents the access level of the attacker on a

host. This can be user, root, DoS, or other effects related to the confidentiality

or integrity of system files.

● Prerequisite Nodes: As stated by the name, the preconditions of one or more

attacks are expressed in these nodes. They also contain information on the

reachability of the hosts and their groups.

● Vulnerability Instance Nodes: Vulnerabilities in this approach include not

only insufficient protection against certain types of known threats but every

possible way that an attacker can gain access to the system (software flaws,

server misconfigurations, trust relationships, etc).

Also, since graph evaluation can prove to be a challenging task, the authors of [17]

have proposed two ways to reduce its complexity. These are the automatic graph

simplifications and recommendation generation. The first focuses on the reduction of

the graph range by dropping similar nodes while the other tries to extract crucial

information from the graph and present it to the users. By using vulnerability scanning

tools like Nessus, the attack graph is generated according to rules stored in the tool’s

14

database, and NetSPA determines whether a vulnerability is critical in a potential

system compromise attempt. NetSPA runs offline using the given parameters, in order

to avoid the leak of information to the attacker.

1.3.4 Logic Programming Based approach

The last category of graph generation tools is the Multihost, Multistage Vulnerability

Analysis (MulVAL) [18] and we will use it to create an attack graph and analyze it in

the next chapter.

Logical attack graphs use Datalog tuples to interpret the system configuration and

contrary to its predecessors, it doesn’t include the whole network state. After

describing the system properties (vulnerabilities, network topology, etc), the reasoning

engine XSB creates all possible scenarios that could lead to a specified state.

Each node in the graph is a logical statement and this statement reflects just an aspect

of the whole network. The edges define the causality relations between network

configurations and the attacker’s capability to benefit from them. In short, whereas till

now the graphs represented “how the attack can happen”, logical attack graphs show

“why the attack can happen”. Although, a downside according to [18], is that attack

conditions that cannot be expressed in propositional formulas cannot be captured by

logical attack graphs. More on logical attack graphs, MulVAL, and their architecture

will be presented in the second and third chapters.

1.4 Attack graph approaches Comparison

This part compares the discussed graph generation approaches and proposes where

each one of them can be used most accurately. Although, before comparing the

approaches, we should first recap the advantages and disadvantages each one of them

offers. Starting with the enumeration-based approach, the advantages limit to its

seniority compared to the other methods. It is slower than the other methods and has

exponential complexity for larger networks making it incompetent for most cases.

TVA partially fixes the problem of complexity and speed but its focus on the system

vulnerabilities requires the network owners to have knowledge over all known attacks

that can lead to the exploitation of each asset. This means that system owners should

express the steps of each attack to pre and post conditions for the graph to be

generated which is extremely difficult (especially in larger networks and

15

organizations) and needs constant maintenance and update to keep up with new

upcoming threats. NetSPA solves the complexity problem for up to 50000 hosts and

has a feature that evaluates the most vulnerable paths. Although, since the

connectivity between hosts is given manually as an input, there is a chance that

certain correlations may be ignored which can lead to partially false results (and

nodes), and also graphs that include many prerequisite nodes can be confusing in

larger networks since they may create loops difficult to interpret. Like TVA, NetSPA

is difficult to obtain since they both are academic projects and were developed at

George Mason University and MIT respectively, meaning they are not open to the

public. Finally, MulVAL creates a fully detailed representation of the attack and its

steps by demonstrating the interdependencies between system configurations,

potential threats, and the vulnerabilities of the system. Its complexity can be at worst

exponential but a downside is that the attack conditions of an attack have to be

expressed in propositional formulas in order for the logic engine to capture them. The

table below gives a synopsis of the discussed advantages and disadvantages.

Table 1 - Advantages and disadvantages of Graph Generation approaches

Graph generation
approach

Advantages Disadvantages

Enumeration based ● First approach in automatic graph

generation

● Other methodologies

excel in many aspects

TVA ● Much faster to implement on a

system

● Less computational complexity

(algorithm of Ammann and𝑂(𝑁6)

later 𝑂(𝑁3)

● Depends on the

knowledge of the known

attacks that can achieve

the wanted result

● Nodes and edges can

appear more than once in

the graph

● Difficult to obtain

16

NetSPA ● Generation methods scale roughly as

O(NlogN), it can perform

successfully for up to 50000 hosts

● Evaluates critical attack paths

● Reachability of hosts can

be challenging to

compute

● Multiple-prerequisite

graphs have many loops

making it difficult to

interpret

● Difficult to obtain

MulVAL ● Clearly cites how different network

configurations affect the potential

privileges of an attacker before,

during, and after the attack, as well

as the interdependencies between the

vulnerabilities.

● Since the size of a

MulVAL-generated graph is

polynomial in the size of the

network, the graph size can be at

worst exponential to it

● Free and available to the public

● Worst-case running time:

~ complexity𝑂(𝑁2) 𝑂(𝑁3)

for up to 1000 hosts with

up to 100 vulnerabilities

● Attack conditions that

cannot be expressed in

propositional formulas

cannot be captured by

logical attack graphs.

The tools selected for the comparison are all free to use but NetSPA and TVA are

difficult to obtain as explained earlier. Also, since enumeration-based attack graphs

are considered outdated, for their replacement we added the Attack Graph Toolkit

which creates state attack graphs and is the closest to enumeration-based approach

architecture [22]. Attack graph Toolkit (state diagram) is obtainable via download on

[40].

17

Figure 2- Attack Graph Toolkit Architecture

[22] also makes a comparison of academic graph generating projects (MulVAL,

NetSPA, TVA, and Attack Graph Toolkit) with other commercial tools but for the

ones we take into consideration, small networks (like a small office) with minimal

security requirements and assets involved, all graph generation approaches seem to

work efficiently but while more network factors appear, the exponential scalability of

Attack Graph Toolkit deprives its competence to cope with the increased numbers

(can only be used in Small Offices and business that have only a few resources that

require protection). Finally, TVA, NetSPA, and MulVAL scale the best within large

organizations. Specifically, organizations that choose the TVA approach, require the

network administrator to have perfect system and vulnerability knowledge in order to

set the right conditions and results of potential exploits (continuous penetration tests

and vulnerability assessment may help in this task). Although, since the generated

attack graph may prove challenging to read and interpret, NetSPA is best suited for

networks that surpass 1000 hosts with the requirement that the interdependencies are

expressed correctly. Lastly, MulVAL is overall acceptable on every occasion while

contrariwise to the other tools is easily available to the public.

18

Table 2 - Proposed usage of graph generation approaches

Graph Generation
Approach

Open-
source

Scalability Small Office /
Home Office

Small Business Large
Enterprise/O
rganization

Attack Graph Toolkit Yes Exponential ✓ -Depends on the
number of assets
(fewer assets
mean better
implementation)

-Can’t scale
well

TVA No Polynomial：
𝑂(𝑁3)

-Depends on
admin
knowledge of
attacks that
can exploit
the existing
vulnerabilities

-Depends on
admin
knowledge of
attacks that can
exploit the
existing
vulnerabilities

-Depends on
admin
knowledge
-Graph
difficult to
read

NetSPA No O(NlogN) ✓ ✓ ✓

MulVAL Yes Polynomial：
~𝑂(𝑁2) 𝑂(𝑁3)

✓ ✓ ✓

19

Chapter 2. Creating an attack graph
After comparing the most known methods of automatic graph generation, we will

now generate an attack graph with the use of the MulVAL tool. We chose this

approach because it fits better with most types of networks and clearly shows how

different network configurations can affect the attacker’s actions with its state nodes

and the calculated interdependencies. This chapter consists of an installation guide of

the logic engine and the graph generator, a part where we present and solve problems

that may come up upon installation, a quick introduction to the PROLOG language

that is used in MulVAL, and finally the generation of the graph which will later be

analyzed. A file with the virtual machine which has the MulVAL installed will also be

available for the readers.

2.1 MulVAL Installation

For the installation of the tool, we used Ubuntu and created a guide including the

steps, software, and configurations needed in order for it to be functional. MulVAL

uses a logic engine, graphics software, and a database management system whose

information and issues encountered during the installation will be provided below.

2.1.1 XSB installation

XSB is a Logic Programming and Deductive Database system for Unix and Windows

using Prolog and developed at Stony Brook University. The XSB Prolog System

supports standard Prolog functionality and has been augmented by a powerful

technique known as tabling, which greatly increases its applicability. In short, tabling

(also called memoization or lemmatization) has the characteristic that each procedure

is called only once, “remembers'' everything that it returns and if it's ever called again,

it uses the previous computations to satisfy the request.

After downloading the file from [36], we have to unzip it, navigate the path, and

execute configure with the following command.

./configure

At this point, we have to set up the path to the XSB folder. To do this simply use:

export PATH=(XSB path)/bin:$PATH

Then to compile execute ./makexsb

20

A problem you may encounter is the javac: Command Not Found whose solution is

described in the troubleshooting section (troubleshooting: javac not found).

2.1.2 Graphviz tool installation

Graphviz is an open-source graph visualization software. It is mostly used for

structural information representations as graphs or diagrams and it is the main way of

MulVAL to depict the graph after the logic engine produces it. For its installation use

sudo apt-get install graphviz graphviz-doc

2.1.3 MySQL installation

MySQL is an open-source database management system, commonly installed as part

of the popular LAMP (Linux, Apache, MySQL, PHP/Python/Perl) stack. It uses a

relational database and SQL (Structured Query Language) to manage its data and is

used for storing by MulVAL to import files from an enterprise network.

For the installation run the following orders:

sudo apt update

sudo apt install mysql-server

sudo mysql_secure_installation

If you use Kali Linux and don’t want to use MySQL due to its support reduction,

alternatives to MySQL are SQLite, ArangoDB, MariaDB, and PostgreSQL.

2.1.4 MulVAL installation

To install MulVAL, first, decompress the downloaded file in the same path with XSB,

and then we need to set the environmental variable MULVALROOT point to the

following folders. These are the commands needed:

export MULVALROOT=/home/tools/mulval

export PATH=$MULVALROOT/bin:$MULVALROOT/utils:$PATH

The path should look like the figure below in order for it to be compiled successfully

Figure 3- Path after configuration

21

https://www.mysql.com/
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-ubuntu-18-04

For its compilation, we need to access the installation folder and use the command

make

If everything is set up correctly, MulVAL will be successfully installed. Solutions to

possible problems that may come up during the installation will be provided in

Appendix A.

2.1.5 Bison & Flex installation

Flex and Bison are the modern equivalents Of Lex and Yacc. More specifically, Bison

(or GNU Bison) is a parser generator that reads sequences of tokens and determines

whether the sequence in consideration complies with the syntax specified by the

grammar. Flex on the other hand is a lexical analyzer that provides the tokens to Bison

after it converts the inputs.

To install simply use:

sudo apt install bison flex

Again, problems that may appear in the installation are resolved in Appendix A.

(troubleshooting: no available candidates)

2.2 Using MulVAL

Now that we are ready to use the MulVAL tool, we need to know the inputs and

parameters needed for the graph generation. Network vulnerabilities, subnets, access

control lists, and other information related to the system setting are required as input

to the logic engine which will produce the logical graph. For their expression, Datalog

tuples are used and we will now review the terminologies and the processes that lead

to it.

2.2.1 Setting up the network

As stated, MulVAL uses rules made in Datalog to imprint the network topology and

the connections of its components. As shown in the figure, the logic engine receives

three inputs. The first is the analysis database which provides the software

vulnerabilities. The other is the interaction rules that cite the correlation relationships

of the hosts and how an attacker can use them to achieve a wanted result and lastly the

security policy that establishes the wanted system property for the administrator.

22

Then, the logic engine processes the data and builds the logical graph. The figure

below depicts this architecture.

Figure 4- MulVAL architecture

So, what follows in order to create the graph, is the specification of the said inputs.

For our example, we used the three-host premade files that are included in the VM

(running_rules.P, input.P, run.P).

2.2.2 Datalog expressions

For our use case, the figure below represents the network that is taken into the

examination. It is also included in the VM and it comes with the installation of

MulVAL (folder named 3_hosts).

23

Figure 5 - Network Setup

To establish the wanted parameters, we use the file input.P that is presented in the

figure and contains all information the logic engine needs in order to initialize the

process.

Figure 6 - Datalog system setup

For a better understanding of the input file, a quick explanation is presented below.

Line 1-8: Information about the attacker and his/her goal. The goal is to execute code

to the workstation and his only access is via webserver at TCP port 80

Line 11-16: Information about the file server

Line 19-24: Information about the webserver and workstation

To express an entity like the attacker in Datalog, we define the location and the goal

of the said individual (or other information we may need) for the logic engine to

conduct the potential courses of action it may take. In our use case, the attacker is

24

located on the internet (attackerLocated(internet)) and his goal is to execute a code in

the workstation host (execCode(Workstation,-)).

Right below the goal of the attacker, hacl is the host access control list that specifies

all accesses between the hosts and thus how the attacker can gain access to the wanted

assets. Specifically, the syntax is hacl(Source Destination, Protocol,

Destination_Port), so what we get is that the attacker can only access the web server

via TCP port 80 since he is located on the internet.

Now that we defined the system threat, we need to set the configurations of the hosts.

As explained in the first chapter, the input comes from the vulnerability assessment

process done either by dedicated software or by other network tools. Again in our

example, what is crucial is the vulExists(Host, ID, Program) command that specifies

the vulnerabilities with their ID in a program on the host, vulProperty(ID,

ExploitRange, Exploit Sequence) that shows the consequences of the ID vulnerability

and the exportInfo(Server, Path, Access, Client) [18].

Since we created the security policy and a network state for our hosts, the last

component needed for the logic engine is the interaction rules.

Figure 7 - Interaction Rules

In these interaction rules, amongst others we set the following conditions:

25

Line 77-80: Anyone who has an account is considered an insider threat

Line 84-88: When a principal is compromised, and the user has an account, there is a

50% chance that the hosts with this account are also compromised.

The figure displays the first two Datalog tuples that express two interaction rules

concerning the binding information of users and principals that may be exploited.

The syntax of the tuples is hasAccount(Principal, Host, Account) where principal

expresses the property of the entity (employee, admin, attacker) and the account is the

name of the user (chris, john, root).

This concludes the initialization part of the network and the interaction rules, and with

all the inputs in place, the logic engine is now ready to generate the graph.

2.2.3 Generating the graph

Before building the graph, the MULVALROOT environment variable has to be set to

the folder on which it will be built.

export MULVALROOT=/path/to/mulval

export CXX=g++

export CC=gcc

cd /home/tools/mulval

make

When the installation is complete, access the created folder and type the following

commands to create the attack graph

cd /home/tools/mulval/utils

chmod u+x graph_gen.sh

cd /home/tools/mulval/testcases/3host

graph_gen.sh input.P -v -p

26

Figure 8 - run.P file

As displayed in the figure above, run.P calls running_rules and input that were

presented earlier, resulting in the creation of the graph (Figure below displays the

generated graph).

Figure 9 - Generated attack graph

27

This sums up the process of attack graph generation using MulVAL. Information

about its analysis and the findings that we may extract from it will be presented in the

next chapter.

28

Chapter 3. Defense Strategy
After generating the attack graph, we will now delve into its analysis and how we can

make important defensive decisions and strategies by doing this. The first part of this

chapter explains how we read the graph and draw data from it that can help in the next

steps. We will then examine the vulnerabilities and the countermeasures that have to

be taken in order to patch them and lastly we will evaluate them and choose the best

line of defense depending on our budget and other internal and external parameters.

Lastly, we will compare two potential defense strategies and their results after a

number of system compromise attempts.

3.1 Graph Analysis

The logic attack graph we created depicts how an attacker can take advantage of the

system’s existing vulnerabilities and achieve his objectives. What differs though from

other types of attack graphs is the type of nodes it has and what each one of them

represents.

As shown, there are 3 types of nodes in our graph. The first schema presented is the

rectangle that shows the current state of the system either it is an antivirus protecting a

certain host or the existence of a threat. In our example, the first two nodes are

displayed on the figure below:

Figure 10 - Square Nodes

We explained earlier how we represent the network status in Datalog. More

specifically, hacl(internet, webserver, tcp, 80) represents a Host Access Control List

with the parameters given (source, destination, protocol, destination port) and

attackerLocated (internet) is pretty much self-descriptive as the “located” indicates an

entity that has been reported and the parenthesis contains the location of the entity.

The next type of node (figure 11) we meet is the circular one that describes the

precondition and the postcondition of an attack, which is connected with the

diamonds that portray a potential advantage that the attacker could gain.

29

Figure 11 - Circular and Diamond Nodes

As described in the RULES section (rule 6 in this example), there is an interaction

rule that gives an attacker access to the webserver through port 80. For better

understanding, this rule is provided below.

Figure 12 - Direct network access Interaction Rule

Now, since the attacker has access to our network, we move to the next postcondition

node. The result (postcondition) of the first step is the exploitation of a program of the

webserver. As stated in the rectangle node (19), the webserver with the information

provided in the parenthesis can be accessed by the attacker.

Figure 13 - First step of the attack (remote exploit of server program)

Combined with the vulnerability expressed in the rectangle node (20) CAN-2002-0392

can result in the remote exploitation of a server program (figure above displays the

process). This interaction requires the existence of a software vulnerability in order

for it to be successful as specified in the following interaction rule.

30

Figure 14 - Remote exploitation Interaction Rule

The same process of analysis is repeated till the attack graph is completely examined.

So, the logic engine took the variables, compared them with the rules set by the

administrator, and then generated the nodes where the requirements were met. With

that in mind, the graph generation is completed with the attacker installing a Trojan

horse and becoming the root. If we break down the graph, we can see that there are

two courses of action that someone may take in order to have the wanted result. The

simplification of the graph is presented in the figure below:

Figure 15 - Simplified graph

The first part of the graph indicated in green is the common course of actions that

leads to two attack paths. Both lead to the access of the attacker to the file server files

and the Trojan Horse installation and each node represents a system vulnerability that

31

can be partially protected or prevented by implementing certain countermeasures.

This concludes the attack graph analysis and gives the administrator some insight in

order to create the said defenses.

3.2 Risk Estimation

In the first chapter, we mentioned the risk management procedure and how we make

use of attack graphs in order to identify them. The process of risk analysis, though,

consists of two sub-processes [28]. Risk identification is the first part where all

potential vulnerabilities are presented which is followed by risk estimation which

assigns values to their likelihood and consequences. In this section, we present a

formula to make such measurements and give values to the vulnerabilities (or nodes

in attack graph representations), and provide an attack simulation environment using

these values for demonstrating different scenarios.

3.2.1 Node Rating/ Risk Estimation Formula

As mentioned, attack graphs consist of nodes and edges that depending on the graph

generation approach give a different interpretation to the system state at a given time.

In their majority, these states are vulnerable points that are used by the attackers as

“stepping stones” in order to achieve their goals and can be altered with the scope of

improving the system security. After defining these vulnerabilities, what a network

administrator has to do is prioritize the defense mechanisms depending on the needs

of the network. In this part, we present a way to evaluate and rate the nodes and

potential controls that will later constitute an effective network defense.

According to [24], the risk to which an information system is exposed is a function of

the values of its assets (A), the nature and level of its vulnerabilities (Rs), the nature

and possibility of threat occurrence (Ro), and the nature and level of impact of the

consequences that may appear if these threats occur (L). This gives us

𝑅 = 𝑓(𝐴, 𝑅𝑠, 𝑅𝑜, 𝐿)

We can express this in terms of cybersecurity with [5] and [10] that both use a

formula to express the total loss of a potential compromise: 𝐿 = 𝑅𝑠 × 𝑅𝑜 × 𝑆 × 𝐴

where Rs is the risk of success of an attack to this vulnerability, Ro is the risk of a

threat occurrence, A is the total of the assets involved and S is the total level of

32

security that protects it. Although, since there may be no protection in a given node

or vulnerability, S is calculated by , where E expresses the efficiency of𝑆 = 1 − 𝑒

the implemented controls which finally gives us the formula of:

𝐿 = 𝑅𝑠 × 𝑅𝑜 × (1 − 𝑒) × 𝐴

In the following chapters, we will provide information on how each one of these

values is calculated and how they differ depending on the defense approach an

administrator might take.

3.2.2 Measuring the values

This section provides the process of the evaluation of each parameter of the formula,

and how we obtain these values.

Risk of success (Rs):

The risk of success is the probability that an attacker may succeed and affect the

system state in any way. The state nodes denote these probabilities as well as the

requirements that need to be met for them to succeed. [9] in particular, gives new

approaches in calculating the success probabilities in MulVAL by taking into

consideration the Common Vulnerability Scoring System (CVSS) to improve the

accuracy of probability of each vulnerability. So attack graphs not only give us the

most accurate information concerning the risk of success by calculating in the graph

generation engine, but also show us the requirements and the system state at each

time.

Risk of Occurrence (Ro):

One thing the defender needs to take into consideration is the probability of the

attacker exploiting a vulnerability. Since each vulnerability works differently in favor

of the attacker depending on his goal, the system administrator has to evaluate them

according to a selected defense strategy plan. The risk of occurrence differs according

to the potential gain of the attacker, the vulnerability type, the complexity of the

attack, the existing defenses, and the impact of a successful exploitation but as

explained in the next section, there are tools and standards that consider these factors

and help the system owners calculate the final probability.

33

Security (S=1-E):

As security in the formula, we define the existing controls of a certain vulnerability.

Security includes everything that contributes to the mitigation of the total damage

done during or after an attack. Since not all controls have the same impact though, we

measure S by its efficacy (1-E) where 0<=E<1 (because of the zero-day attacks).

Efficacy and security values will be set arbitrarily in our examples.

Asset:

As a definition, an asset is “an item of property owned by a person or company,

regarded as having value and available to meet debts, commitments, or legacies”. The

formula considers A to be the overall value of the assets that the attacker has access to

after the compromise of a vulnerability. Attack graphs help us calculate the

interdependencies between the vulnerabilities and the total of the affected assets via

attack paths that demonstrate the possible course of actions an attacker may take

during an incident. Asset values are given arbitrarily in the examples.

3.2.3 Attack simulations

For a better understanding of how the implementation of certain controls alters the

results of the successful attack attempts to the system into consideration, we created

scripts in Python that represent the scenario where the attacker tries to exploit the said

vulnerabilities. The IDE used for the demonstration was PyCharm and it ran on AMD

Ryzen 5 1400 Quad-Core Processor at 3.2GHz with 8GB RAM.

The outputs show the results of the 2 attack paths, generated from our graph, initially

on a totally unguarded system after ~3000 attacks were made in each one separately

and how many attempts amongst them were successful.

The first indications show the results of attack path 1. Out of 3000 attacks, 1897

succeeded in exploiting the first vulnerability (remote exploit of web server program),

960 out of these took advantage of the second (access server file), 359 got past the

remote exploit of the file server program, 127 accessed the file server and finally, 66

out of 3000 attacks were successfully completed the objective (2.2% of the total

attacks). The same goes for the second path that had a total of 560 successful attempts

out of 3000 attacks (18,66%) giving us an outcome of 626/6000 (10,43%) system

violations.

34

Also, we created scripts that show the preference of the attackers’ Courses of Action

in multiple paths, knapsack problem solver, and how the chosen controls affect the

success ratio after their implementation.

3.3 Choosing the most competent defenses

Perceiving the threats and managing their controls is crucial but under the restriction

of the organization’s budget, the administrator has to distribute his limited resources

to get the maximum value out of them. Risk evaluation is the process of comparing

the results of risk analysis with risk criteria to determine whether the risk is acceptable

depending on its magnitude[28]. After examining the graph and assigning values to

the risks, we can make a comparison between each system’s weak spots and decide

whether it would be beneficial for the organization to invest in corrective actions or

not. Although, depending on the defense model, calls made by the system owners may

differ so we will examine how administrators react based on these models presenting

two potential strategies.

3.3.1 Cybersecurity Controls

Cybersecurity control describes a mechanism, action, or procedure whose goal is to

reduce the risk and minimize the consequences created by a specific system

vulnerability. Inside an Information Security Management System (ISMS),

countermeasure categories usually include the physical security of an asset,

procedural and technical changes, and personnel improvement, education,

replacement, or removal [24]. The stages of vulnerability assessment and analysis

(which includes the deduction that was created by attack graphs) demonstrate possible

system susceptibilities that require the application of such controls. [15] presents a

process of how the control candidates are chosen after the generation of an attack

graph, and then it’s recreated with the updated values of risks on its nodes.

35

Figure 16 - Return on investment table [15]

As shown in the figure, the zero-cost countermeasures have to be enforced first, and

then a complete list with the controls that impact security properties is generated in

order for the organization to pick amongst them.

A list of countermeasures that may apply to certain vulnerabilities is provided within

[34] for non-software controls and [35] for software, introducing how an organization

may react in most cases.

3.3.2 0-1 Knapsack Problem

Optimal budget allocation is a problem explored vastly in [16] where it is posed as a

problem whose solution is reminiscent of the classical knapsack problem. The

knapsack problem is a problem in combinatorial optimization where, given a set of

items that all have a weight and a value, we have to figure out the combination of

items that will give us the maximum value within a total weight limit. In terms of

network defense though, the algorithm differs depending on the resource interaction,

and if the resources are spent evenly or not amongst the targets. In our examples, we

use the multiple targets-shared resources pattern.

The variables of the knapsack problem in our model consist of two variables:

Value (Weight): The value of a vulnerability (node) is described by the node rating

formula mentioned in the previous section. The potential loss in case of a system

compromise because of the said vulnerability is proportional to its value meaning that

it needs to be secured. So we consider as the value of a𝐿 = 𝑅𝑠 × 𝑅𝑜 × 𝑆 × 𝐴

vulnerability.

36

Cost: After controls and vulnerabilities are rated, they have to be purchased or put

into action. Either way (since they are not zero-cost controls), there will be an

economic impact on the organization during their enforcement. In our case study, we

call this control cost. Control cost can be categorized into two types:

● Direct Cost is a one-time investment made by the network owners that is

required for the control to be acquired or done.

● Indirect Cost is potential financial damage that may be created due to the

implementation of certain controls. Some types of indirect costs are reduced

system performance and re-training costs due to system changes [4]. Also,

node removal and indirect damage that may be created due to

interdependencies are discussed in [12].

Finally, one control may fall into both categories since it may require both a direct

cost for its purchase and then an indirect cost for its implementation which can lead to

service downtime or system maintenance. In this case, the total cost of the control can

be expressed by C(total)=C(d)+C(i). An example that has both direct and indirect

costs is the installation of software that first needs to be bought (direct) and slows the

system performance while active (indirect).

In the following sections, we examine how the Knapsack Problem is implemented

depending on various defense scenarios an organization may take.

3.3.3 Defense approaches

We earlier discussed the formula that can be used for the evaluation of vulnerabilities

in a system. To set up the parameters for the knapsack problem in order to distribute

the organization’s budget accordingly, we will use it in our generated graph. So let L

be the potential loss from a potential node compromise. We then have

where A is considered 1 (since all nodes affect the𝐿 = 𝑅𝑠 × 𝑅𝑜 × (1 − 𝑒) × 𝐴

same asset) and the nodes have no security meaning E=0 until the implementation of

a countermeasure. In the figure below we provide some potential control candidates in

the nodes, they can be used on.

37

Figure 17 - Simplified Graph with Control Options

Each node has the values of P that give the success probability in the node

compromise, the efficacy factor E that we set the arbitrary value of 0.5 for each

control meaning that if the countermeasure is selected, security (S) will change to 0.5,

and then i expresses the total investment that the control needs in compared with the

total budget provided. We also consider that zero-cost controls were implemented and

this is the latest-generated attack graph. As it is impossible to secure all nodes due to

this restriction, the system administrator is called to make the call and prioritize them.

We will use two examples of defense approaches one may take where the first

considers that the attacker has no strategy (random attacker) and the second calculates

the possible course of action the attacker may take based on a game-theoretic model

(game theory attacker).

3.3.4 Random Based Defense Approach

Our first approach considers that the attacker has no strategy on how he or she will

proceed and thus will attack randomly each path. So let N be the total courses of

action an attacker may take, each one has a 1/N probability of getting attacked. Since

there are two possible attack paths in our example, this gives us the R(o) probability at

~50% (~3000 out of 6000 attacks will occur on each attack path).

38

With this in mind, by using as input the values and the cost of the nodes, the nodes

that give the maximum value within the budget are B, C, D, and F. The newly

generated graph after the implementation of the chosen countermeasures (nodes are

multiplied with the new value of the security which is 1-0.5=0.5) with the results of

6000 attacks is provided in the figure.

Figure 18 - Random attacker results after 6000 attacks vs Random Attacker Controls

The previous successful attempts on an unguarded system after 6000 attacks were 626

(10,43%) and with this defense approach, only 294 (4,9%) system compromises were

reported. Although this is not a realistic scenario since many factors dictate the

attacker’s choices in these situations as explained in the previous chapters and the

next defense approach examines these aspects.

3.3.5 Game Theory Based Defense Approach

Many pieces of research were made that relate game theory with cybersecurity

decision-making ([4], [5], [19], and [23] are some of them) and in general they

present ways to predict the attacker’s behavior based on each model. By doing these

predictions we can assert the probability of occurrence (P(o)) of an attack to a specific

vulnerability. Specifically, [19] determines the probabilities of occurrence by

calculating the attacker’s payoff considering the vulnerability’s CVSS score.

39

Common Vulnerability Security Score (CVSS) [3][19] is a standard that depicts how a

vulnerability can be exploited (attack vector, attack complexity, privileges required,

user interaction) as well as how its exploitation impacts the organization

(confidentiality impact, integrity impact, availability impact).

Although, this may not always be representative since for some organizations,

vulnerabilities that impact confidentiality may attract more attacks regardless of their

difficulty level. This is why CVSS is composed of three metric groups.

Base: The base CVSS metric is the one mentioned above and it represents “the

intrinsic characteristics of a vulnerability that are constant over time and across user

environments”. It consists of exploitability metrics and impact metrics.

Temporal: The Temporal metric group “reflects the characteristics of a vulnerability

that may change over time but not across user environments”. For example, the

presence of an exploit tool accessible by anyone would increase the CVSS score,

while the creation of an official patch would decrease it.

Environmental: representing “characteristics of a vulnerability that are relevant and

unique to a particular user's environment”. This is where existing security controls

that may mitigate part of the damage of a successful attack and requirements for

confidentiality, integrity, and availability imposed by the system owners take place

and change the evaluation of the vulnerability.

Back in our example, if we set the CVSS scores 1 and 10 for the two paths, the

attacker will attack accordingly 9% of the time the first and 91% times the second

node. Then, with the chosen defenses we get the following results:

40

Figure 19 - Game Theory attacker vs Random attacker Controls

This time, the attacker has chosen to attack the first path 549 times and the second

5451 times. Also, even with the controls, we observe that a total of 475 (7.9%) attacks

were successful which is slightly lower than the totally uncontrolled system results.

By knowing the probabilities of attack occurrence in each node, we recalculate the

node rating with the new values:

41

Figure 20 - New possibilities of attack occurrence (Po) chosen by Game theory

attacker

With knapsack values changed, the nodes that are selected for the maximum

efficiency within budget are now e, f, and d. The results of the newly generated

defense, that uses controls on different nodes are presented and compared in the next

section.

3.3.6 Results

In this section, we compare the results of both defense approaches (random attacker

based and game theory attacker based) after 6000 attacks. The results involve the

following scenarios:

● random and game theory attacker attack an unguarded system

● random and game theory attacker attack a system with a random attacker

based defense

● and random and game theory attacker attack a system with a game theory

attacker based defense

42

.

Random & Game theory VS Unguarded system

Starting with the total success of the attack and its success percentage as shown in

section 3.2, what follows is the number of attacks that occurred on each path. The

figures below depict these results.

Figure 21 - Random and Game Theory attacker vs Unguarded System

Figure 21a - Results of Random attacker vs Unguarded System

Figure 21b - Results of Game Theory attacker vs Unguarded System

Figure 21c, d - Graphical Representation of the results

More specifically, the random attacker chose the first path 3043 times of which 65

were successful and the second 2957 times with 529 successful. On the other hand, the

game theory attacker only used the first path 554 times and succeeded in 11

43

compromises, and the second attack was attacked 5446 times and the successful

attempts were 927.

With the same methodology, we present the results of random-based and game

theory-based defense below.

Random & Game theory VS Random Attacker Controls

This scenario (Figure 22) involves 6000 attacks to a system that implements controls

by calculating P(o)=0.5 (random attacker probability of occurrence). As demonstrated

earlier, the nodes selected are b, c, d, and f.

Figure 22 - Random attacker and Game theory attacker vs Random based defense

Figure 22a - Results of Random attacker vs Random based defense

Figure 22b - Results of Game Theory attacker vs Random based defense

Figure 22c, d - Graphical Representation of the results

44

Random & Game theory VS Game Theory Controls

Figure 23 demonstrates 6000 attacks to a system that implements controls by

calculating the expected utility of the attacker with game theory (P(o)=0.9 on the

second path and P(o)=0.1 on the first). The vulnerability nodes that we chose to

defend are d, e, and f.

Figure 23 - Random and Game theory vs Game theory-based defense

Figure 23a - Results of Random attacker vs Game theory-based defense

Figure 23b - Results of Game Theory attacker vs Game theory-based defense

Figure 23c, d - Graphical Representation of the results

3.3.7 Comparison

The first thing we notice in these scenarios is that the Game Theory attacker always

has more success than the random one. Even in the scenario with the defense created

based on the random attacker, the game theory attacker achieved more system

compromises than the other. Also, even when both attacker and defender know the

45

game in an adversary situation, ~90% of the times game theory attacker targets the

weakest system path meaning that since the success percentage is always higher than

the random attacker’s approach, the control implementation should prioritize its

defense. The table below summarizes the results from all scenarios.

Table 3 - Attack Simulation Results

Random Attacker Game Theory Attacker

No defenses Path 1 attempts: 3043
Path 2 attempts: 2957
Success: 9.9%

Path 1 attempts: 554
Path 2 attempts: 5446
Success: 15.63%

Random attacker based
controls

Path 1 attempts: 2955
Path 2 attempts: 3045
Success: 4.5%

Path 1 attempts: 535
Path 2 attempts: 5465
Success: 8.23%

Game Theory attacker
based Controls

Path 1 attempts: 3056
Path 2 attempts: 2944
Success: 2.85%

Path 1 attempts: 582
Path 2 attempts: 5418
Success: 3.63%

3.3.8 Other methods

The application of heuristic algorithm approaches for network hardening is also

mentioned in [12] and [20]. More specifically, authors in [12] calculate the return on

investment of each node and their interdependencies and then use the Best-First

search (BestFS) algorithm to select the nodes whose closure is the most profitable.

Respectively, [20] develops an Ant Colony Optimization (ACO) algorithm where ants

populate the most significant system vulnerabilities and then the edges are ranked

depending on the pheromone left by the ants. What differs in comparison with the

game theory approach is that while these methods create fast and good solutions on

complex systems but may give different results with each repetition [21], the latter

provides a systematic quantitative approach for deciding the best strategy in most

competitive scenarios. Table 4 summarizes some advantages and disadvantages posed

by each method.

46

Table 4 - Defense methods Advantages and Disadvantages

Advantages Disadvantages

Game Theory ● Most researched
method in
combination with
attack graphs

● Gives mostly
accurate predictions
of an attacker’s
behavior

● The increasing
number and
complexity of attacks
sometimes lowers the
accuracy

● Simply provides
rules of logic (not
winning strategy)
based on certain
behaviors.

Ant Colony
Optimization/
Hidden Markov
Model/ BestFS

● Fast discovery of
good solutions

● Scale well on large
networks

● Increased Difficulty
in their theoretical
analysis

● Probability
Distribution changes
by iteration

47

Chapter 4. Conclusions
In this document we presented, analyzed, and compared the advantages and

disadvantages of the main graph generation techniques and provided a guideline that

helps the system owners to evaluate their outputs. We also examined one graph

generation tool (MulVAL) and created a cybersecurity plan based on its generated

attack paths. Moreover, the simulation of the attacks helped in the demonstration of

how different defense approaches affect the results in most cases and that the same

amount of resources can provide a dissimilar outcome.

Risk management is a procedure that requires a different approach depending on the

system owner or the assets that need to be protected. Attack graphs are a great way to

depict potential system vulnerabilities that previous assessment steps didn’t and

combining them with defense evaluation approaches like Game-theory or Ant Colony

Optimization simplifies this process and improves the efficiency of the existing

resources to a better end.

4.1 Analysis

Attack graphs are a great way to have a visual representation of how a network is

threatened by an attacker and provides the ability to analyze vulnerabilities

individually, as the step by step depiction of the system state during an incident and

the correlation of existing threats may prove crucial in decision-making before, during

and after its occurrence.

Also, especially MulVAL is an excellent tool that calculates logic parameters like the

human factor and insider threat, something that other evaluation methods don’t. Of

course, this can prove to be bad since it can lead to over-complicated attack graphs if

too many conditions are set.

Since we used the tools on a small example, the speed was not an issue but work and

research [9][18][22] done in larger networks indicate that their use can be applicable

to a wide variety of systems.

Lastly, implementation (mainly with the free tools we used) is something that has to

be improved since the program installation and the inputs given by the user are pretty

complex. This can prove dangerous as wrong inputs give false results especially in

approaches like TVA where the preconditions and postconditions are set by the

administrator. With that in mind, network administrators have to constantly check and

update the needed components in order for the attack graph to be effective.

48

49

References
[1] Liu, C., Singhal, A., & Wijesekera, D. (2012, December). Mapping evidence

graphs to attack graphs. In 2012 IEEE International Workshop on Information

Forensics and Security (WIFS) (pp. 121-126). IEEE.

[2] Barik, M. S., Sengupta, A., & Mazumdar, C. (2016). Attack Graph Generation and

Analysis Techniques. Defense Science Journal, 66(6).

[3]Singhal, A., & Ou, X. (2011). Security Risk Analysis of Enterprise Networks

Using Probabilistic Attack Graphs.(National Institute of Standards and Technology,

Gaithersburg, MD), NIST Interagency or Internal Report (IR) 7788.

[4] Panaousis, E., Fielder, A., Malacaria, P., Hankin, C., & Smeraldi, F. (2014,

November). Cybersecurity games and investments: A decision support approach. In

International Conference on Decision and Game Theory for Security (pp. 266-286).

Springer, Cham.

[5] Panda, S., Panaousis, E., Loukas, G., & Laoudias, C. (2020). Optimizing

investments in cyber hygiene for protecting healthcare users. In From Lambda

Calculus to Cybersecurity Through Program Analysis (pp. 268-291). Springer, Cham.

[6] Haque, S., Keffeler, M., & Atkison, T. (2017). An evolutionary approach of attack

graphs and attack trees: A survey of attack modeling. In Proceedings of the

International Conference on Security and Management (SAM) (pp. 224-229). The

Steering Committee of The World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp).

[7] Ou, X., Boyer, W. F., & McQueen, M. A. (2006, October). A scalable approach to

attack graph generation. In Proceedings of the 13th ACM conference on Computer

and communications security (pp. 336-345).

[8] Sheyner, O., Haines, J., Jha, S., Lippmann, R., & Wing, J. M. (2002, May).

Automated generation and analysis of attack graphs. In Proceedings 2002 IEEE

Symposium on Security and Privacy (pp. 273-284). IEEE.

[9] Sembiring, J., Ramadhan, M., Gondokaryono, Y. S., & Arman, A. A. (2015).

Network security risk analysis using improved MulVAL Bayesian attack graphs.

International Journal on Electrical Engineering and Informatics, 7(4), 735.

[10] Khouzani, M. H. R., Liu, Z., & Malacaria, P. (2019). Scalable min-max

multi-objective cyber-security optimisation over probabilistic attack graphs. European

Journal of Operational Research, 278(3), 894-903.

50

[11] Noel, S., Jajodia, S., Wang, L., & Singhal, A. (2010). Measuring security risk of

networks using attack graphs. International Journal of Next-Generation Computing,

1(1), 135-147.

[12] Sawilla, R., & Skillicorn, D. (2012, November). Partial cuts in attack graphs for

cost-effective network defense. In 2012 IEEE Conference on Technologies for

Homeland Security (HST) (pp. 291-297). IEEE.

[13] Wang, L., Noel, S., & Jajodia, S. (2006). Minimum-cost network hardening using

attack graphs. Computer Communications, 29(18), 3812-3824.

[14] Noel, S., Jajodia, S., O'Berry, B., & Jacobs, M. (2003, December). Efficient

minimum-cost network hardening via exploit dependency graphs. In 19th Annual

Computer Security Applications Conference, 2003. Proceedings. (pp. 86-95). IEEE.

[15] Gonzalez-Granadillo, G., Doynikova, E., Kotenko, I., & Garcia-Alfaro, J. (2017,

October). Attack graph-based countermeasure selection using a stateful return on

investment metric. In International Symposium on Foundations and Practice of

Security (pp. 293-302). Springer, Cham.

[16] Smeraldi, F., & Malacaria, P. (2014, May). How to spend it: optimal investment

for cyber security. In Proceedings of the 1st International Workshop on Agents and

CyberSecurity (pp. 1-4).

[17] Ingols, K., Lippmann, R., & Piwowarski, K. (2006, December). Practical attack

graph generation for network defense. In 2006 22nd Annual Computer Security

Applications Conference (ACSAC'06) (pp. 121-130). IEEE.

[18] Ou, X., Govindavajhala, S., & Appel, A. W. (2005, August). MulVAL: A

Logic-based Network Security Analyzer. In USENIX security symposium (Vol. 8, pp.

113-128).

[19] Mishra, P. K., & Tyagi, G. Game Theory based Attack Graph Analysis for Cyber

War Strategy.

[20] Wang, S., Zhang, Z., & Kadobayashi, Y. (2013). Exploring attack graph for

cost-benefit security hardening: A probabilistic approach. Computers & Security, 32,

158-169.

[21] Selvi, V., & Umarani, R. (2010). Comparative analysis of ant colony and particle

swarm optimization techniques. International Journal of Computer Applications, 5(4),

1-6.

[22] Yi, S., Peng, Y., Xiong, Q., Wang, T., Dai, Z., Gao, H., ... & Xu, L. (2013,

October). Overview on attack graph generation and visualization technology. In 2013

51

International Conference on Anti-Counterfeiting, Security, and Identification (ASID)

(pp. 1-6). IEEE.

[23] Hota, A. R., Clements, A. A., Bagchi, S., & Sundaram, S. (2018). A

game-theoretic framework for securing interdependent assets in networks. In-Game

Theory for Security and Risk Management (pp. 157-184). Birkhäuser, Cham.

[24] Information Systems Risk Analysis and Management, Kostas Labrinoudakis

[25] Cisco Certificate Networking Associate security course

[26] http://people.cs.ksu.edu/~xou/mulval/ accessed on 8/5/2021

[27] Ammann, P.; Wijesekera, D. & Kaushik, S. Scalable, graph-based network

vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer and

Communications Security, 2002. pp. 217-224.

[28] ISO/IEC 27005: 2018 risk management standard

[29] ISO Guide 73:2009

[30] Installation and configuration of Mulval attack graph tool environment under

Kali https://www.programmersought.com/article/37794643490/ accessed on 8/5/2021

[31] MulVAL: A logic-based, data-driven enterprise security analyzer

http://people.cs.ksu.edu/~xou/argus/software/mulval/readme.html

accessed on 8/5/2021

[32] SMV - Symbolic Model Checking

https://link.springer.com/chapter/10.1007/978-3-662-04558-9_12

accessed on 8/5/2021

[33] Training support package on the ad-hock course on specific topics of Cyber

Security of Critical Infrastructures, VOLODYMYR DAHL EAST UKRAINIAN

NATIONAL UNIVERSITY

[34] CIS Controls Version 7.1 Implementation Groups 1.2

[35] DHSES_OCT_CIRT_CIS_Controls_Tool_Mapping_v1.1.1

[36] XSB Downloads http://xsb.sourceforge.net/downloads/downloads.html accessed

on 8/5/2021

[37] Common Vulnerability Scoring System version 3.1: Specification Document

https://www.first.org/cvss/specification-document accessed on 8/5/2021

[38] Bimatrix Game Solver https://cgi.csc.liv.ac.uk/~rahul/bimatrix_solver/ accessed

on 8/5/2021

52

http://people.cs.ksu.edu/~xou/mulval/
https://www.programmersought.com/article/37794643490/
http://people.cs.ksu.edu/~xou/argus/software/mulval/readme.html
https://link.springer.com/chapter/10.1007/978-3-662-04558-9_12
http://xsb.sourceforge.net/downloads/downloads.html
https://www.first.org/cvss/specification-document
https://cgi.csc.liv.ac.uk/~rahul/bimatrix_solver/

[39] CVE Details https://www.cvedetails.com/browse-by-date.php accessed on
8/5/2021

[40] Scenario and Attack Graphs http://www.cs.cmu.edu/~scenariograph/#software

accessed on 8/5/2021

53

https://www.cvedetails.com/browse-by-date.php
http://www.cs.cmu.edu/~scenariograph/#software

Appendix A

Troubleshooting

javac: command not found

The first error we troubleshoot is javac: command not found. This happens because

what we have installed is the Java Runtime Environment (JRE) only, which does not

provide javac. For javac, we have to install the OpenJDK Development Environment

Part 1- Install JDK

https://stackoverflow.com/questions/48609449/mulval-installation-problems

The JRE is the Java Runtime Environment which is a package with everything

necessary to run a compiled Java program while the JDK is the Java Development

Kit, a full-featured SDK for Java. To install it, we firstly download it

JDK Download

54

https://centos.pkgs.org/8/centos-appstream-x86_64/java-1.8.0-openjdk-1.8.0.292.b10-1.el8_4.x86_64.rpm.html
https://centos.pkgs.org/8/centos-appstream-x86_64/java-1.8.0-openjdk-1.8.0.292.b10-1.el8_4.x86_64.rpm.html
https://centos.pkgs.org/8/centos-appstream-x86_64/java-1.8.0-openjdk-devel-1.8.0.292.b10-1.el8_4.x86_64.rpm.html
https://stackoverflow.com/questions/48609449/mulval-installation-problems

Account Creation Oracle (to download kit)

https://community.linuxmint.com/tutorial/view/1372

After the JDK installation we confirm that it is installed with the command java

-version

https://stackoverflow.com/questions/35649140/make-bin-javac-command-not-found

Next, we have to locate javac and set the JAVA_HOME path to it.

55

https://community.linuxmint.com/tutorial/view/1372
https://stackoverflow.com/questions/35649140/make-bin-javac-command-not-found

https://vitux.com/how-to-setup-java_home-path-in-ubuntu/

The path should now look like this. If you try to compile MulVAL again the javac

error should not appear.

SOLVED

56

https://vitux.com/how-to-setup-java_home-path-in-ubuntu/

Bison, flex no available candidates

If apt-get install bison flex doesn’t work there are two ways to install them. You can

download and install them manually or by editing the etc/apt/sources.list file.

Manual Download and install

Manual Downloads

Manual install

57

SOLVED

Alternate way

SOLVED

58

59

Appendix B

Python Scripts

Python Scripts that were used involve:

● Attack Simulation Attacks 6000 times. The user inputs how many attacks

occur on each path.

● Attack Simulation (weighted) User defines the percentage of weight on each

path and with that input, the script randomly attacks 6000 times.

● Knapsack problem solver Takes as parameters the data of Loss (L(i)) for

each node and returns which nodes have to be protected

● Brute force investments The user manually inputs the investment percentage

and the efficacy on each node.

● BFS, BestFS Heuristic Algorithms that return the results of Breadth First

Search and Best First Search

● Attack Path creator The user inputs the connections of each node. Returns

all possible attack paths.

60

