

Department of Digital Systems

M.Sc. in Big Data & Analytics

Thesis

“Coaching Medical Chatbot in Facebook”

ME1919

Menelaos Ampartzakis

Thesis Supervisor

Maglogiannis Ilias

Piraeus 2021

ABSTRACT

A chatbot is a piece of software that conducts a conversation with users via

auditory or textual methods. A medical chatbot facilitates the job of a

healthcare provider and helps improve their performance by interacting with

users in a human-like way. There are countless cases where intelligent medical

chatbots could help doctors or the patients. They can step in and minimize the

amount of time they spend on tasks like providing information to the doctor or

guidance to the patient. It’s important to note that even though chatbots can

offer valuable facts and symptoms, they aren’t qualified to give an official

diagnosis. The main premise behind these talking or texting algorithms, is to

become the first point of contact before any human involvement is needed.

The objective of the current thesis is the implementation, integration and

training of a medical chatbot about Chronic Inflammatory Lung Disease (COPD)

in Facebook Messenger. Chatbot will offer the patient an immediate way to be

informed for COPD and ways to avoid it. Mainly, a user will be able to do a

questionnaire with points, that will inform user about the effect of COPD in its

life. If the user completes five questionnaires, chatbot will both offer the user a

prediction and will inform him about the biggest improvement of his symptoms

or the symptoms that seems to get worse.

Chatbot will be trained using the WIT.AI framework in Greek. Wit is a natural

language interface for applications capable of turning sentences into structured

data.

For the implementation of the chatbot’s questionnaire, a MongoDB database

in cloud will be used. MongoDB offers limited free storage in the cloud and

provide many ways of connectivity like APIs with multiple programming

languages or an Analytics application. The connectivity that will support us the

most is PyMongo Library, since the whole chatbot will be developed in Python.

The framework that will be used for the communication between Python, WIT,

MongoDB and Facebook will be Flask. The final application will be built, run and

operate in Heroku, a cloud Application Platform.

Finally, a Tableau Dashboard will be set up, so that the chatbot’s Administrator

will be able to track and monitor each user, provide the Dashboard to the user’s

doctor and give the patient custom advices and recommendations.

Keywords: Chatbot, Medical, COPD, Facebook Messenger, WIT.AI, MongoDB,

Python, Flask, Tableau

Acknowledgements

This thesis would not have been possible without the support of many people.

I would like to thank my professor Mr. Ilias Maglogiannis of the Department of

Digital Systems for his constant guidance, for giving me the opportunity to do

this research and providing invaluable support and motivation.

Finally, I would like to express my endless love and gratitude to my family and

my wife for their patience, understanding, love and continuing support during

this thesis.

Contents

ABSTRACT ...

Acknowledgements ..

Image Contents ...

Table Contents ..

1. Introduction .. 1

1.1. Medical Chatbot & Motivation .. 1

2. Background ... 3

2.1. Retrospection & Theory of Chatbots ... 3

2.1.1. History & Related Work ... 3

2.1.2. What is Chatbot? ... 4

2.1.3. NLP & Mechanisms .. 6

2.2. Applications & Frameworks ... 7

2.2.1. MongoDB ... 7

2.2.2. Facebook .. 11

2.2.3. Wit.ai .. 20

2.2.4. Tableau ... 24

2.2.5. Heroku .. 29

2.2.6. Rest Python Libraries ... 32

3. Implementation .. 34

3.1. Database & ODBC .. 34

3.2. Facebook Connectivity ... 39

3.3. Wit Setting & Connectivity ... 48

3.4. Questionnaire Flow & Methods ... 54

3.5. Tableau Dashboards & Connection ... 58

3.6. Heroku Setting & Deployment ... 62

4. Results .. 67

4.1. Expected Chatbot Conversation .. 67

4.2. Monitor the user .. 93

5. Outcome .. 94

5.1. Conclusions & Future Works .. 94

6. References………………………………………………………………………….………………………95

Image Contents

Figure 2.1 : How an AI chatbot works .. 5

Figure 2.2 : Structure of MongoDB Database ... 8

Figure 2.3 : BI Connector Components ... 9

Figure 2.4 : ODBC and Connections .. 10

Figure 2.5 : Logo of Facebook ... 12

Figure 2.6 : JSON format of payload ... 16

Figure 2.7 : JSON format of quick_reply ... 16

Figure 2.8 : Deconstruction of a sentence .. 21

Figure 2.9 : Precision and Recall of an Intent ... 22

Figure 2.10 : Usage Statistics .. 24

Figure 2.11 : New Worksheet ... 26

Figure 2.12 : New Dashboard .. 27

Figure 2.13 : Working space of a Worksheet .. 27

Figure 3.1 : Database to store chatbot data ... 34

Figure 3.2 : Methods to connect to database... 35

Figure 3.3 : Connection via Python ... 36

Figure 3.4 : Python Library for MongoDB ... 36

Figure 3.5 : MongoDB ODBC Driver .. 37

Figure 3.6 : Configuration of ODBC Driver .. 38

Figure 3.7 : Facebook App creation .. 39

Figure 3.8 : Permissions of the Facebook App .. 40

Figure 3.9 : Creation of Facebook Page .. 40

Figure 3.10 : Created Facebook Page ... 41

Figure 3.11 : Settings of the Facebook App (1) ... 42

Figure 3.12 : Settings of the Facebook App (2) ... 43

Figure 3.13 : Access Token of Facebook Page .. 44

Figure 3.14 : Python Library for Facebook Messenger 44

Figure 3.15 : Webhook Verification through Python .. 44

Figure 3.16 : Token Verification on Facebook App ... 45

Figure 3.17 : Subscriptions of Facebook App .. 45

Figure 3.18 : Quick Reply variable ... 46

Figure 3.19 : Chatbot’s welcome screen ... 47

Figure 3.20 : Let’s Begin Button & Response .. 47

Figure 3.21 : Wit.ai App Creation .. 48

Figure 3.22 : New App’s info ... 48

Figure 3.23 : Training the Wit App .. 49

Figure 3.24 : Token of the Wit App ... 52

Figure 3.25 : Python Library for Wit.ai .. 52

Figure 3.26 : Response JSON of a Request ... 53

Figure 3.27 : Inserted Document in MongoDB ... 55

Figure 3.28 : Final Document that is inserted ... 56

Figure 3.29 : Connection to MongoDB for Tableau .. 58

Figure 3.30 : Query to get all data from MongoDB to Tableau 59

Figure 3.31 : Total Number of COPD Tests Card ... 59

Figure 3.32 : Number of Unique Users Card ... 59

Figure 3.33 : Results Pie .. 60

Figure 3.34 : AVG Points per Question ... 60

Figure 3.35 : Number of COPD Tests per Day ... 60

Figure 3.36 : Tableau Dashboards ... 61

Figure 3.37 : Creation of Project’s file .. 62

Figure 3.38 : Installation of necessary Python Libraries 62

Figure 3.39 : Needed Python Libraries .. 63

Figure 3.40 : Procfile Creation .. 63

Figure 3.41 : Heroku App Creation ... 64

Figure 3.42 : Deployed Heroku App .. 64

Figure 3.43 : Message of Webhook .. 65

Figure 3.44 : Logs of the App via Heroku .. 65

Figure 3.45 : Heroku page on Facebook App .. 66

Figure 4.1 : Navigation on Facebook’s Page ... 67

Figure 4.2 : Sample Conversation (1) .. 68

Figure 4.3 : Sample Conversation (2) .. 69

Figure 4.4 : Sample Conversation (3) .. 70

Figure 4.5 : Sample Conversation (4) .. 71

Figure 4.6 : Sample Conversation (5) .. 72

Figure 4.7 : Sample Conversation (6) .. 73

Figure 4.8 : Sample Conversation (7) .. 74

Figure 4.9 : Sample Conversation (8) .. 75

Figure 4.10 : Sample Conversation (9) .. 76

Figure 4.11 : Sample Conversation (10) .. 77

Figure 4.12 : Sample Conversation (11) .. 78

Figure 4.13 : Sample Conversation (12) .. 79

Figure 4.14 : Sample Conversation (13) .. 80

Figure 4.15 : Sample Conversation (14) .. 81

Figure 4.16 : Sample Conversation (15) .. 82

Figure 4.17 : Sample Conversation (16) .. 83

Figure 4.18 : Sample Conversation (17) .. 84

Figure 4.19 : Sample Conversation (18) .. 85

Figure 4.20 : Sample Conversation (19) .. 86

Figure 4.21 : Sample Conversation (20) .. 87

Figure 4.22 : Sample Conversation (21) .. 88

Figure 4.23 : Sample Conversation (22) .. 89

Figure 4.24 : Sample Conversation (23) .. 90

Figure 4.25 : Sample Conversation (24) .. 91

Figure 4.26 : Sample Conversation (25) .. 92

Figure 4.27 : Monitoring a User (1) ... 93

Figure 4.28 : Monitoring a User (2) ... 93

Table Contents

Table 2.1: Description of Facebook Tokens .. 15

Table 2.2 : Parameters of GET requests.. 17

Table 2.3 : Webhook events ... 18

Table 2.4 : Tiers for a Heroku app ... 32

Table 3.1 : Buttons, Payloads and Description ... 46

Table 3.2 : Intents & Entities ... 50

Table 3.3 : Intents & Answers ... 51

Table 3.4 : Questions of Questionnaire .. 55

Page 1 of 97

1. Introduction

1.1. Medical Chatbot & Motivation

In recent years, every time people need information about a problem their first

thought is to search about it in the internet. That action is not limited to general

topics, but it also extends to medical issues. However, for such issues that tactic

is not recommended since it can lead to undesirable effects. There are

essentially two bad ways this can go: Either you overestimate your symptoms

and end up taking the wrong medication or engaging in the wrong self-

treatment, or you underestimate your symptoms and let a condition worsen.

There's also the risk of developing "health anxiety," real condition that involves

excessive worrying that you are sick. In fact, there is an actual term for it--

“cyberchondria”. It is the tendency of self-diagnosing yourself with medical

conditions by searching for symptoms online, resulting in serious anxiety. Case

in point, just look for any symptom online and it is bound to be linked with some

form of tumor or cancer. Eventually, it can make you feel sicker than you

actually are. Furthermore, anyone can publish content online. Nobody can

vouch for the quality and credibility of the content available online. While it can

provide you information from credible sources, it can also get you links of some

sketchy websites that have bogus information.

Based on that needs, people start developing several technologies &

applications to help people get more accurate results regarding their disease.

One of them is the creation of yes/no questionnaire systems based on

symptoms. However, some diseases have almost the same symptoms as

another, so we can’t trust a system build like this. Moreover, there are

confirmed websites and forums that provide information and answers about a

disease to the users [3]. But those answers come from certified doctors that

they are not always available, and thus it can take hours or days to reply on the

queries of the patients.

The need for a reliable and accurate diagnosis, available 24/7/365, wakes the

rise and need of a new healthcare technology called Medical Chatbot. That will

help people get information about their symptoms or disease and give them a

more accurate diagnosis with the tap of a button, as soon as they need it [7].

Artificial intelligence (AI) is the pillar for this computer software consisting of a

complex mathematical algorithm that processes input information to produce

any specific pre-defined outputs, which lead to relevant outcomes. AI systems,

Page 2 of 97

can be designed to enhance decision-making and analytical processes while

imitating human cognitive functions.

However, several official Medical Chatbots operate under platforms that are

not popular, hard to find or platforms that the user has to pay a subscription to

use those available technologies. Fortunately, one of the world’s most popular

and free to use platform allows the hosting and installation of chatbots. That

platform is Facebook and in particular Facebook Messenger. Setting a Medical

Chatbot in Facebook Messenger will allow the target audience to have it

available all the time and use it for free with just a few clicks.

Page 3 of 97

2. Background

2.1. Retrospection & Theory of Chatbots

2.1.1. History & Related Work

Early approach of chatbots began in 1950 with Alan Turing considering the idea

of machines thinking intelligently. He proposed an imitation game called Turing

test in which through written responses, a player must determine if the

response comes from a person or a machine. [15] In 1966, Joseph Weizenbaum

developed the program ELIZA, which aimed at tricking it users by making them

believe that they were having a conversation with a real human being. ELIZA

was designed to imitate a therapist who would ask open-ended questions and

even respond with follow-ups. [20] 1972 Kenneth Colby mimic ELIZA with

PARRY, by designing a program to simulate a person with a “paranoid mind”.

Colby used a variation of Turing test on a group of psychologists, fooling half of

them that PARRY was a real patient. "PARRY and ELIZA 'met' several times. One

of the most famous encounter of these chatterbots took place at the ICCC 1972

, where PARRY and ELIZA were hooked up over ARPANET and 'talked' to each

other". In 1988, Rollo Carpenter creates Jabberwacky and in 1997 goes online.

Its stated aim, is to "simulate natural human chat in an interesting, entertaining

and humorous manner". It is an early attempt at creating an artificial

intelligence through human interaction. It adds user responses from previous

conversations to database and uses them to increase vocabulary. The evolved

version of Jabberwacky is set as chatterbot web application called Cleverbot.

Since coming online in 1997, Cleverbot has engaged in about 65 million

conversations with Internet users around the world, who chat with it for fun via

the Cleverbot website. In 1992, Dr.Sbaitso developed for Microsoft DOS

personal computers as an AI speech synthesis software. Made to showcase

digitized voice that sound cards were able to synthesize. The software was

bundled with some sound cards manufactured by Creative Labs. 1995 A.L.I.C.E.

(Artificial Linguistic Internet Computer Entity) is a free software chatbot created

in AIML (Artificial Intelligence Markup Language), an open, minimalist,

stimulus-response language for creating bot personalities like A.L.I.C.E. AIML

uses two categories: pattern and template. Pattern is matched with input

message, while templates are used to construct the response. 2001

SmarterChild, a popular chatbot that was available for Short Message Service

(SMS) networks, AOL Instant Messenger, and MSN Messengers. Combines fast

https://en.wikipedia.org/wiki/International_Conference_on_Computer_Communications
https://en.wikipedia.org/wiki/International_Conference_on_Computer_Communications
https://en.wikipedia.org/wiki/ARPANET
http://cleverbot.com/
https://en.wikipedia.org/wiki/International_Conference_on_Computer_Communications
https://en.wikipedia.org/wiki/ARPANET

Page 4 of 97

information delivery, like news, sports, weather, with entertaining answers

based on personality. [11] IBM’s 2006 Watson is a system capable of answering

questions in natural language. Originally the system was designed to compete

and win in game show Jeopardy. In 2010s many intelligent virtual assistants

became available as voice activated assistants. In 2010 Siri [5], a virtual assistant

of Apples iOS interface, is created and uses natural language to answers users

queries and to perform web service requests. In 2012 Google Now, a mobile

application for android and iOS offers predictive cards with information and

daily updates developed by Google to automatically answer users’ questions.

Also, it can be used to make recommendations and to perform actions by

submitting queries to a set of web services. In 2015 Cortana, a Windows Speech

Platform acts as a personal assistant recognizing NLP commands and using

“Bing” to answer user questions. Finally, in 2016 Facebook will now allow

businesses to deliver automated customer support, e-commerce guidance,

content and interactive experiences through chatbots way. Through

the Messenger Platform’s new Send/Receive API, bots can send more than

just text. They will be able to respond with structured messages that include

images, links and call to action buttons. These could let users make a restaurant

reservation, review an e-commerce order and more. You can swipe through

product carousels and pop out to the web to pay for a purchase [6]. Chatbots

suddenly become the biggest thing in tech by unlocking the ability to provide

personalized and interactive communication.

2.1.2. What is Chatbot?

A chatbot is an artificial intelligence (AI) software that can simulate a

conversation (or a chat) with a user in natural language through messaging

applications, websites, mobile apps or through the telephone. Chatbots

interpret and process user’s words or phrases and give an instant pre-set

answer. They inhabit platforms like – FB Messenger, Whatsapp, Skype, Slack,

Line, Kik, Wechat or even a website. Similar to regular apps, chatbots have

application layer, a database, APIs and Conversational User Interface. There are

three main types of Chatbots.

• Rule-based chatbots

This is the simplest type of chatbots today. People interact with these bots by

clicking on buttons and using pre-defined options. To give relevant answers

these chatbots require people to make a few selections. As a result, these bots

https://www.messenger.com/platform
http://newsroom.fb.com/news/2016/04/messenger-platform-at-f8/
https://developers.facebook.com/blog/post/2016/04/12/Bots-for-Messenger/?revisionid=269931516688945

Page 5 of 97

have longer user journey, and they are the slowest to guide the customer to

their goal. These bots are great when it comes to qualifying your leads. The

chatbot – asks questions, and people answer them with buttons. The bot

analyzes collected data and gives a reply. But, for more advanced scenarios with

many conditions or factors, these chatbots aren’t always the best solution.

• Intellectually independent chatbots

These bots use Machine Learning (ML) which helps the chatbot learn from

user’s inputs and requests.

“ML is the ability of the computer to learn by itself from the data, recognize

patterns and decide with minimal human interference.”

Intellectually independent chatbots are trained to understand specific

keywords and phrases that trigger bot’s reply. With the time they train

themselves to understand more and more questions. You can say they learn

and train from experience.

For example, you write to a chatbot: “I have a problem with logging into my

account”. The bot would understand the words “problem” “logging” “account”

and would provide a pre-defined answer based on these phrases.

• AI – Powered Chatbots

AI-powered bots combine and keeps the best features from Rule-based and

Intellectually independent. AI-powered chatbots understand free language, but

also have a predefined flow to make sure they solve user’s problem.

They can remember the context of the conversation and the user’s preferences.

These chatbots can jump from one point of conversation scenario to another

when needed and address random user request at any moment.

These chatbots use Machine Learning, AI and Natural Language Processing

(NLP) to understand people.

Figure 2.1 : How an AI chatbot works (Source drift.com)

Page 6 of 97

2.1.3. NLP & Mechanisms

Modern organizations work with data that come in a variety of different forms

including documents, audio recordings, emails, JSON, and many more. The

most common way that such data is recorded is via text. That text is usually

quite similar to the natural language that we use from day-to-day. NLP is the

ability of the computer to understand and analyze natural textual data. For

applications like chatbots, NLP is used as the main technique to find the right

response and reply in understandable for a human language.

The goal of NLP is to make the interaction between computers and humans feel

like communication between two people. With the help of NLP people can

freely interact with chatbots asking a question. Some of the most common

techniques of NLP to extract information from a text are the following:

a. Tokenization – splitting a sentence into different parts, words or

“tokens”. In the process, we throw away punctuation and extra symbols

too.

b. Part of speech tagging – determines which words are nouns, verbs,

adjectives, etc.

c. Stemming – is the technique for cleaning up text data for processing.

Stemming is the process of reducing words into their root form. The

purpose of this is to reduce words which are spelled slightly differently

due to context but have the same meaning, into the same token for

processing.

d. Named entity recognition – finds entities in the text that the user has

typed.

The developed chatbot of current thesis, will be an AI – powered Chatbot that

will understand free language and will have predefined patterns like specific

questions-answers in questionnaire. The Framework that will be used for NLP

with all the techniques embedded, will be the WIT.AI Framework.

Page 7 of 97

2.2. Applications & Frameworks

Chatbots are composite applications. Firstly, they are hosted to one of more

platforms that each has its own requirements, specifications and available

features. Afterwards, if it’s necessary for chatbot to save the data, a database

is required. Finally, a chatbot or NLP framework is usually used to handle

answers and responses.

All these applications, platforms and framework must bind together. Often,

all of them are tied up using a programming language. But not all programming

languages support every framework and application and not all frameworks are

supported to all platforms.

For that reason, the developed chatbot of the current thesis, will be a

chatbot developed in Python using as main library and framework the FLASK. It

will be hosted in Facebook Messenger and the connection with Python will

established using the library PyMessenger. The Framework that will be used for

NLP with all the techniques embedded, will be the WIT.ai. The library pywit will

be used to use that framework in Python. A MongoDB database will set up in

MongoDB Atlas, the cloud platform of Mongo, that will provide us with 24/7

support and functionality. The PyMongo library will be needed to use CRUD

commands with Python and to use the aggregation operations. Code,

requirements and every needed file will make up the application that will be

built, run and operate in Heroku, a cloud Application Platform. Finally, a Tableau

Dashboard will be created to monitor chatbot and users using a live connection

with MongoDB in localhost.

2.2.1. MongoDB

In the world of the database, the most common and well popular

database systems are RDBMS (Relational Database Management Systems).

Now, if we want to develop an application which deals with a large volume of

data, then we need to choose one such database which always provides a high

– performance data storage solutions. So that, we can achieve the performance

in the solution in terms of the data store and data retrieval with accuracy, speed

and reliability. Now, if we categorized the database solutions then there are

mainly two types of database category available i.e. RDBMS or Relational

Database like SQL Server, Oracle etc. and another type is NoSQL database like

MongoDB, CosmosDB etc.

The NoSQL database are being an alternative of conventional SQL Database and

this type of database provides mostly all types of features which are normally

Page 8 of 97

available in the RDBMS systems. Now-a-days, NoSQL databases become much

popular in comparison to the past due to the simple design, provision for both

horizontal and vertical scaling and for easy and simple control over the stored

data [29]. This type of database basically breaks the normal tradition of data

storage structure of the relational database. It gives the provision to the

developers to store data in the database as per the actual requirement of their

program. This type of facility we can’t achieve by using the traditional RDBMS

database.

MongoDB is a document-oriented database which stores data in JSON-

like documents with dynamic schema. It means you can store your records

without worrying about the data structure such as the number of fields or types

of fields to store values. MongoDB documents are like JSON objects. Documents

are gathered together in collections. A database stores one or more collections

of documents. In MongoDB, databases hold one or more collections of

documents.

Figure 2.2 : Structure of MongoDB Database (Source geeksforgeeks.com)

 The Easiest Way to Deploy, Operate, and Scale MongoDB in the Cloud is

Atlas. MongoDB Atlas is a fully-managed cloud database developed by the same

people that build MongoDB. Atlas handles all the complexity of deploying,

managing, and healing your deployments on the cloud service provider of your

choice (AWS, Azure, and GCP) [28]. MongoDB Atlas is always on and durable

and also includes powerful features to enhance reliability for your mission-

critical production databases, such as continuous backups and point-in-time

recovery.

There are many APIs and libraries to use and interact with MongoDB in
cloud. Since our application will be developed in Python a connection must be

Page 9 of 97

established using a library for Mongo. PyMongo is the official Python driver that
connects to and interacts with MongoDB databases. The PyMongo library is
being actively developed by the MongoDB team.

Finally, to connect Mongo with a visualization application a MongoDB ODBC

Driver is needed. The MongoDB ODBC Driver for BI Connector provides

connectivity between a SQL client and the MongoDB Connector for BI. The

ODBC driver enables users to create a Data Source Name (DSN) and connect a

variety of BI tools to the BI Connector. It includes the BI Connector

authentication plugin, which implements the client side of MongoDB-

supported authentication mechanisms. BI Connector will be used with Tableau,

a visualization software that will be explained in a later chapter.

Figure 2.3 : BI Connector Components (Source docs.mongodb.com)

Open Database Connectivity (ODBC) is an open standard Application
Programming Interface (API) that allows applications to access data in database
management systems (DBMS) using SQL as a standard for accessing the data.
Each Database system will have its own API and hence ODBC driver. An ODBC
driver acts as an interface between an application and a data source, which can
be anything like a file, a relational or non-relational database, or a cloud
application. The architecture of ODBC-based data connectivity is as follows.

Page 10 of 97

Figure 2.4 : ODBC and Connections (Source magnitude.com)

ODBC application is any compliant application that performs processing by
submitting SQL statements and receiving data from the ODBC Driver Manager,
in our case Tableau.

The ODBC Driver Manager loads and unloads ODBC drivers of the application.
Windows OS comes with a default Driver Manager, while rest have the choice
to use an open source ODBC Driver Manager.

The ODBC Driver processes ODBC function calls, submits SQL requests to a
specific data source and returns results to the application. The ODBC driver may
also modify an application’s request so that the request fit to syntax supported
by the associated database.

Data source is DBMS that is used where in our case is MongoDB.

Page 11 of 97

A running mongosqld instance with authentication enabled using --auth must

be active for the connection with Tableau. mongosqld accepts incoming

requests from a SQL client and proxies those requests to a mongod or mongos

instance. mongod is the primary daemon process for the MongoDB system. It

handles data requests, manages data access, and performs background

management operations. Finally, for a sharded cluster, the mongos instances

provide the interface between the client applications and the sharded cluster.

The mongos instances route queries and write operations to the shards. From

the perspective of the application, a mongos instance behaves identically to

any other MongoDB instance.

2.2.2. Facebook

Facebook is a free social networking website where users can post

comments, share photographs, and post links to news or other interesting

content on the web, chat live, and watch short-form video.

Shared content can be made publicly accessible, or it can be shared only among

a select group of friends or family, or with a single person.

Facebook is user-friendly and open to everyone. Even the least technical-

minded people can sign up and begin posting on Facebook. Although it started

out to keep in touch or reconnect with long-lost friends, it rapidly became the

darling of businesses that were able to closely target an audience and deliver

ads directly to the people most likely to want their products or services. Its

success can be attributed to its ability to appeal to both people and businesses

and its ability to interact with sites around the web by providing a single login

that works across multiple sites.

Facebook makes it simple to share photos, text messages, videos, status posts

and feelings on Facebook. The site is entertaining and a regular daily stop for

many users. Unlike some social network sites, Facebook does not allow adult

content. When users transgress and are reported, they are banned from the

site. Facebook provides a customizable set of privacy controls, so users can

protect their information from getting to third-party individuals.

https://docs.mongodb.com/bi-connector/master/reference/mongosqld/#mongodb-binary-bin.mongosqld
https://docs.mongodb.com/bi-connector/master/reference/mongosqld/#std-option-mongosqld.--auth

Page 12 of 97

Figure 2.5 : Logo of Facebook (Source Facebook.com)

Facebook Messenger is an instant messaging service owned by Facebook,

launched in August 2011, replacing Facebook Chat. The application and website

are an instant messaging service that connects to the Facebook database and

has replaced the in-app Facebook messaging service. To use Facebook

Messenger, you must first have a Facebook account. You can sign up through

the Facebook mobile application or by visiting Facebook.com. If you already

have a Facebook account, or just created one, you can continue by downloading

the Facebook Messenger application from Google Play, App Store, Windows

Phone Store, and Blackberry World, or by visiting Messenger.com.

It allows Facebook users to connect with each other and send instant messages,

emoji, photos, videos, and perform other light tasks. Additionally, Messenger

provides features like send money to friends, get the weather and place

product orders. In 2016, Mark Zuckerberg, CEO of Facebook, announced the

arrival of Messenger chatbots [26]. Facebook now allow you install Messenger

chatbots on your business page. Chatbots allow you to have an automated

conversation with people who click on your Facebook Messenger to start a

conversation. Companies identified their value to automate many low-level

customer service functions. Part of their benefits are the reduced workload of

frontline staff, allowing them to focus on more complicated customer issues,

24/7/365 availability and the instant access to basic information quickly and

easily.

Messenger permits you to deploy an app like chatbots if you fulfill three

requirements. You need to have:

• Facebook Page: Make sure that you have a Facebook Page since it

represents your business identity when connecting with people on

Messenger. To create a new Page,

visit https://www.facebook.com/pages/create, you can also set up a

test Page to start.

http://facebook.com/
https://play.google.com/store/apps/details?id=com.facebook.orca&hl=en
https://itunes.apple.com/us/app/messenger/id454638411?mt=8
https://www.microsoft.com/en-us/store/apps/messenger/9wzdncrf0083
https://www.microsoft.com/en-us/store/apps/messenger/9wzdncrf0083
https://appworld.blackberry.com/webstore/content/58299022/?lang=en&countrycode=US
http://messenger.com/
https://www.facebook.com/pages/create

Page 13 of 97

• Facebook Developer Account: Required to create new apps, which are

the core of any Facebook integration. You can register as a developer by

going to the Facebook Developers website and clicking the "Get Started"

button.

• Facebook App: Contains the settings for your app, including access

tokens.

Having the above requirements satisfied, grant developers the permission to

create their app [4]. To do so, visit https://developers.facebook.com/ and click

on Create App button.

Note! During the Covid-19 Pandemic period (March 2020 – May 2021) the only

app type that could be created was Business Type App.

When your new Facebook Page and App are ready you must connect them

together. That connectivity will be achieved using Flask and Pymessenger. Let’s

start with Flask.

Flask is a web framework, it’s a Python module that lets you develop web

applications easily. It’s has a small and easy-to-extend core: it’s a

microframework that doesn’t include an ORM (Object Relational Manager) or

such features.

It does have many features like URL routing, template engine. It is a WSGI web

app framework. The Web Server Gateway Interface (Web Server Gateway

Interface, WSGI) has been used as a standard for Python web application

development. WSGI is the specification of a common interface between web

servers and web applications. Werkzeug is a WSGI toolkit that implements

requests, response objects, and utility functions. This enables a web frame to

be built on it. The Flask framework uses Werkzeug as one of its bases. jinja2 is

a popular template engine for Python. A web template system combines a

template with a specific data source to render a dynamic web page.

Using Flask, we can create an endpoint – a fancy way of referring to a website

URL. When a user sends us a message, Facebook will send that data to our

endpoint, where we will send a response back to Facebook to show the user.

First, we imported the Flask class. An instance of this class will be our WSGI

application. Next, we create an instance of this class. The first argument is the

name of the application’s module or package. If you are using a single module

(as in this example), you should use __name__ because depending on if it’s

started as application or imported as module the name will be different

('__main__' versus the actual import name). This is needed so that Flask knows

where to look for templates, static files, and so on. For more information have

https://developers.facebook.com/
https://developers.facebook.com/

Page 14 of 97

a look at the Flask documentation. We then use the route() decorator to tell

Flask what URL should trigger our function.

Functions will be triggered through some HTTP methods. HTTP methods are the

standard way of sending information to and from a web server. To break it

down, a website runs on a server or multiple servers and simple returns

information to a client (web-browser). Information is exchanged between the

client and the server using an HTTP protocol that has a few different methods.

We will be discussing the post commonly used ones called POST & GET. GET is

the most commonly used HTTP method and it is typically used to retrieve

information from a web server. POST is commonly used to send information to

web server. It is more often used when uploading a file, getting form data and

sending sensitive data. POST is a secure way to send data to a web server. In

Flask, to specify that a page works with both POST and GET requests we need

to add a method argument to the decorator.

To run the application, execute the app.run(). Notice also that we are setting

the debug parameter to true. That will print out possible Python errors on the

web page helping us trace the errors. However, in a production environment,

you would want to set it to False as to avoid any security issues. Port 80 is the

default http port (Apache).

To handle sending messages back to a user who communicates with our bot,

we’ll be using the PyMessenger library to handle sending responses to users.

PyMessenger is a Python Wrapper for Facebook Messenger Platform. It uses

the Facebook’s API called Graph. It has a single Bot class, that is used for sending

different type of messages. Most of the function calls have inside hardcoded

dictionaries to be converted to json. PyMessenger provides functions to send

messages, create and use buttons and all the needed capabilities for chatbot.

The functions return the full JSON body of the API call to Facebook.

To get the JSON and use the Bot class, the Page Access Token of the

Application’s Facebook page must be parsed as argument. An access token is

an opaque string that identifies a user, app, or Page and can be used by the app

to make graph API calls. When someone connects with an app using Facebook

Login and approves the request for permissions, the app obtains an access

token that provides temporary, secure access to Facebook APIs. Access tokens

are obtained via a number of methods.

The token includes information about when the token will expire, and which

app generated the token. Because of privacy checks, the majority of API calls

on Facebook need to include an access token. There are different types of

access tokens to support different use cases:

Page 15 of 97

Access

Token

Type

Description

User

Access

Token

This kind of access token is needed any time the app calls an API

to read, modify or write a specific person's Facebook data on their

behalf. User access tokens are generally obtained via a login

dialog and require a person to permit your app to obtain one.

App

Access

Token

This kind of access token is needed to modify and read app

settings. It can also be used to publish Open Graph actions. It is

generated using a pre-agreed secret between the app and

Facebook and is then used during calls that change app-wide

settings. You obtain an app access token via a server-to-server

call.

Page

Access

Token

This kind of access token is similar to user access tokens, except

that they provide permission to APIs that read, write or modify the

data belonging to a Facebook Page. To obtain a page access

token you need to start by obtaining a user access token and

asking for the Page permission or permissions you need. Once

you have the user access token you then get the page access

token via the Graph API.

Client

Token

The client token is an identifier that you can embed into native

mobile binaries or desktop apps to identify your app. The client

token isn't meant to be a secret identifier because it's embedded

in apps. The client token is used to access app-level APIs, but

only a very limited subset. The client token is found in your app's

dashboard. Since the client token is used rarely, we won't talk

about it in this document. Instead it's covered in any API

documentation that uses the client token.

Table 2.1 : Description of Facebook Tokens (Source developers.facebook.com)

Page access tokens are used in Graph API calls to manage Facebook Pages. To

generate a page access token, an admin of the page must grant your app the

Page permission or permissions needed. Once granted, you can retrieve the

Page access token using a user access token with the required permissions.

With a Page Access Token, you can make API calls on behalf of a Page. For

example, you could post a status update to a Page (rather than on the user's

timeline) or read Page Insights data. Page access tokens are unique to each

Page, admin, and app.

https://developers.facebook.com/docs/facebook-login/access-tokens/#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#apptokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#apptokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#apptokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#pagetokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#pagetokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#pagetokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#clienttokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#clienttokens

Page 16 of 97

After parsing the Access Token, the functions of the Bot Class can be used. One

of the main functions that will be used is send_message(sender_id, message)

which takes 2 arguments. The 1st one is sender_id. Each time a user applies a

request to our application (sends a message), in the incoming JSON, the id of

the user is also included. That id is named as recipient_id which is Page Scoped

User ID (PSID) of the message recipient. The user needs to have interacted with

any of the Messenger entry points to opt-in into messaging with the Page. Note

that Facebook Login integrations return user IDs are app-scoped and will not

work with the Messenger platform. The 2nd argument is message which is the

message that the application will send to the user.

Another main function is send_raw(payload). This function will be used to send

messages that include buttons. Buttons are a main functionality of the

application. The argument of the function is Payload which is in JSON format.

Figure 2.6 : JSON format of payload

The main fields that need to be filled are:

• recipient_id. The recipient’s id received from user’s message.

• text. The text that chatbot wants to include in message.

• quick reply. That field contains a nested JSON that set up the button and

must be filled. These fields are:

o content_type. An irrelevant field that will be left as “text”

o title. That field represents the name that appear in the Facebook

Messenger UI button. It’s the text that is written in the button.

o payload. The field that our application reads to identify the button

that is clicked on Facebook.

o image_url. The icon of the button. An 24x24 size icon can be

placed in the button using the URL of the icon.

Figure 2.7 : JSON format of quick_reply

Page 17 of 97

Except from the connection using the Access Token to use the above functions,

there is one more connection verification that must be done. It will be used to

link Facebook page and application. That verifications occurs with Webhook.

Webhooks are automated messages sent from apps when something happens.

The Messenger Platform sends events to your webhook to notify you when a

variety of interactions or events happen, including when a person sends a

message. Webhook events are sent by the Messenger Platform as POST

requests to your webhook.

Setting up a callback URL for webhook events requires verification that you

control or own the domain that hosts your application.

1. Developer provides the webhook URL along with a developer generated

verify token via the app dashboard.

2. The Messenger Platform will try to verify your webhook by sending

a GET request to the callback URL with the parameters listed below.

3. The callback URL responds with the value of the hub.challenge sent. The

URL should validate that the hub.verify_token matches with the token

that was entered in the app dashboard.

The parameters that are provided in the GET request are the following.

Parameter Description

hub.mode Set to subscribe

hub.verify_token The custom verify token that the developer provided

hub.challenge Generated by the Messenger Platform. Contains the
expected response.

Table 2.2 : Parameters of GET requests (Source developers.facebook.com)

The available webhook events are listed below. All webhook events are

optional, so select those that are most relevant for the experience you are

trying to create.

Page 18 of 97

Webhook Event Description

messages Subscribes to Message Received events

messaging_account_linking Subscribes to Account Linking events

message_deliveries Subscribes to Message Delivered events

message_echoes Subscribes to Message Echo events

messaging_game_plays Subscribes to Instant Game events

messaging_handovers Subscribes to Handover Protocol events

messaging_optins Subscribes to Plugin Opt-in events

messaging_policy_enforcement Subscribes to Policy Enforcement

events

messaging_postbacks Subscribes to Postback Received events

message_reactions Subscribes to Message Reaction events

message_reads Subscribes to Message Read events

messaging_referrals Subscribes to Referral events

standby Subscribes to Handover Protocol

Standby Channel events

Table 2.3 : Webhook events (Source developers.facebook.com)

All webhook events have a common structure that includes information you will

need to process and respond to the event, including the PSID of the sender and

recipient of the event. In addition to the properties shown below, each event

also has its own event-specific properties. Note that entry is an array and may

contain multiple objects, so ensure your code iterates over it to process all

events.

When you receive a webhook event, you must always return a 200 OK HTTP

response. The Messenger Platform will resend the webhook event every 20

https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/account-linking
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-delivered
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-echo
https://developers.facebook.com/docs/messenger-platform/reference/webhook-events/messaging_game_plays/
https://developers.facebook.com/docs/messenger-platform/reference/webhook-events/messaging_handovers
https://developers.facebook.com/docs/messenger-platform/reference/webhook-events/messaging_optins
https://developers.facebook.com/docs/messenger-platform/webhook-reference/policy-enforcement
https://developers.facebook.com/docs/messenger-platform/webhook-reference/policy-enforcement
https://developers.facebook.com/docs/messenger-platform/webhook-reference/postback-received
https://developers.facebook.com/docs/messenger-platform/reference/webhook-events/message-reactions
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-read
https://developers.facebook.com/docs/messenger-platform/webhook-reference/referral
https://developers.facebook.com/docs/messenger-platform/reference/webhook-events/standby
https://developers.facebook.com/docs/messenger-platform/reference/webhook-events/standby

Page 19 of 97

seconds, until a 200 OK response is received. Failing to return a 200 OK may

cause your webhook to be unsubscribed by the Messenger Platform.

A delivery receipt will automatically be sent to the user after your webhook has

acknowledged the message. You can also use Sender Actions to notify that the

message has been seen. Your webhook should meet the following minimum

performance standards:

• Respond to all webhook events with a 200 OK.

• Respond to all webhook events in 20 seconds or less.

If your webhook fails to meet either of the above requirements for more than

15 minutes a 'Webhooks Failing' alert will appear in the 'Alerts' page of your

app settings. If your webhook continues to fail for 1 hour, you will receive a

'Webhooks Disabled' alert, and your Facebook app will be unsubscribed from

receiving webhook events for the Page. Once you have fixed the issues with

your webhook, you must set up your webhook again and every connection will

be ready.

Since connections are ready means that now we can send requests to our

application. The first request concerns the 'get started' button of the welcome

screen which starts a conversation with your Messenger bot when it is tapped.

When the button is tapped, your webhook will receive

a messaging_postbacks event that contains a string specified by you in

the get_started property of your bot's Messenger profile. This postback should

be used to trigger your initial welcome message, such as a set of quick replies,

or a text message that welcomes the person [25].

To set the postback payload, send a POST request to the Messenger Profile API:

curl -X POST -H "Content-Type: application/json" -d '{

 "get_started": {"payload": "<postback_payload>"}

}'

"https://graph.facebook.com/v2.6/me/messenger_profile?access_token=<P

AGE_ACCESS_TOKEN>"

Some of the best Practices that Facebook suggests are:

• Do communicate next steps to encourage a response in your welcome

message. You can use buttons to add structure to your message and call

out specific actions people can take.

https://developers.facebook.com/docs/messenger-platform/reference/messenger-profile-api/

Page 20 of 97

• Do share basic commands in your welcome message. Communicate

which keywords or terms people can use to ask for help, get updates,

etc., so they find what they want more quickly.

• Do change your onboarding experience when your bot experience

changes. Revisit your greeting text and welcome message as you update

your capabilities to make sure they’re still relevant.

• Don't forget everything on the screen works together. The context you

provide in your Messenger Greeting should complement the “Get

Started” button.

• Don’t be too generic. Try addressing people by name to make the

message feel personal and treating it as an opportunity to teach them

how to use and control the experience.

The greeting text on the welcome screen is the first opportunity to tell a person

why they should start a conversation with our Messenger bot. Some things we

might include in our greeting text might include a brief description of what our

bot does, such as key features, or a tagline. This is also a great place to start

establishing the style and tone of our bot. The Greeting text of our Chatbot

greets the user and let him know about what the chatbot is for. Three buttons

are also sent to the user to make his interaction easier. Those buttons are about

COPD information, COPD questionnaire and COPD prevention tips and they will

help user to navigate along chatbot.

2.2.3. Wit.ai

Wit.ai is a free open NLP Framework for developers, acquired by Facebook, that

helps you to build applications that uses chatbots or conversational tools. It

provides an easy-to-use interface to create your app in the language of your

choice, train and improve your app and to monitor every process regarding the

NLP mechanism. Wit ‘s APIs are really powerful and are being supported by

multiple programming languages. For Python, the message API is called wit and

it will be used, to identify the way our chatbot “understands” the user’s inputs.

You need to have a Facebook Account to access and use Wit.ai. Logging with

your Facebook Account you will be able to create your first application.

The next step is to train the application. Training will allow application to

understand what the end-user tries to say to the chatbot. Since chatbot, will be

used for information and guidance about COPD, the inputs of the user will focus

on questions like:

Page 21 of 97

• What is COPD?

• What is the best prevention for COPD?

• I need to take the COPD test.

Each of the above questions is an utterance. Utterances are examples of what

a user says. In other words, utterances are examples of sentences that are

possible to be questioned by users.

In each of the above questions, the user has an intention or Intent. The intent

of a user is the aim or goal they expect to achieve when launching a

conversation. Intent is a critical factor in chatbot functionality because the

chatbot’s ability to parse intent is what ultimately determines the success of

the interaction. For example, when a user asks, “What is the best prevention for

COPD”, the user’s intention is prevention.

Also, each sentence or utterance contains some entities. Entities are data

points or values that defines the type of information that will determine the

intent of the utterance. For example, when a user asks, “What is the best

prevention for COPD”, the entities of that utterance are “prevention” and

“COPD”.

Figure 2.8 : Deconstruction of a sentence (Source aidev.co.kr)

Furthermore, after the successful training of the application the connection

with Python must be established. That will be accomplished using the Python

library of Wit.ai called pywit and the main class that will be used is Wit() and

the main function is message().

Page 22 of 97

Finally, we need to better understand and iterate upon the performance of the

Wit application and thus improve it. To make the NLP API more accurate,

reliable and scalable we can find the Insights section on the Intents page in the

Wit Application console by clicking any intent. Having validated enough data

with the bot, this section will show how the Wit model perform at different

confidence thresholds. To start, we will be able to measure precision and recall

for the Wit entities, allowing us to assess the confidence levels for both the

accuracy and frequency at which you are able to identify an entity.

Figure 2.9 : Precision and Recall of an Intent (Source Wit.ai)

Precision-Recall is a useful measure of success of prediction when the classes

are very imbalanced. In information retrieval, precision is a measure of result

relevancy, while recall is a measure of how many truly relevant results are

returned.

The precision-recall curve shows the tradeoff between precision and recall for

different threshold. A high area under the curve represents both high recall and

high precision, where high precision relates to a low false positive rate, and high

recall relates to a low false negative rate. High scores for both show that the

classifier is returning accurate results (high precision), as well as returning a

majority of all positive results (high recall).

A system with high recall but low precision returns many results, but most of its

predicted labels are incorrect when compared to the training labels. A system

Page 23 of 97

with high precision but low recall is just the opposite, returning very few results,

but most of its predicted labels are correct when compared to the training

labels. An ideal system with high precision and high recall will return many

results, with all results labeled correctly.

This allows us to pick the confidence threshold depending on what we want to

optimize.

In the Insights section you can find:

• The App Traffic chart that shows the usage of your app. This is a measure

of total API calls from users to your app over time.

• The Intent Usage chart that shows the usage of your app on a per-intent

basis. This is a measure of total API calls from users to each intent of your

app over time. Intent usage will shed light on how people are using your

app and whether the app is behaving the way you expect it to.

• The Entity Usage chart that shows the usage of your app based on

entities. This chart tracks API calls per entity over time.

Page 24 of 97

Figure 2.10 : Usage Statistics (Source Wit.ai)

Adjust the dates to get more specific metrics by selecting the calendar button

on the upper right section of the Insights page. You can select the time period

for which you need insights either on the calendar or from the options on the

left.

2.2.4. Tableau

Tableau is a powerful and fastest growing data visualization tool used

in the Business Intelligence Industry. It helps in simplifying raw data in a very

easily understandable format. Tableau helps create the data that can be

Page 25 of 97

understood by professionals at any level in an organization. It also allows non-

technical users to create customized dashboards.

Data analysis is very fast with Tableau tool and the visualizations created are

in the form of dashboards and worksheets. The great thing about Tableau

software is that it doesn’t require any technical or any kind of programming

skills to operate. The tool has garnered interest among the people from all

sectors such as business, researchers, different industries, etc.

To use all these features in our local machine the Tableau Desktop will be

used. Tableau Desktop has a rich feature set and allows you to code and

customize reports. Right from creating the charts, reports, to blending them

all together to form a dashboard, all the necessary work is created in Tableau

Desktop. For live data analysis, Tableau Desktop provides connectivity to Data

Warehouse, as well as other various types of files. The workbooks and the

dashboards created here can be either shared locally or publicly.

Tableau uses a workbook and sheet file structure, much like Microsoft Excel. A

workbook contains sheets. A sheet can be a worksheet, a dashboard, or a

story.

• A worksheet contains a single view along with shelves, cards, legends,

and the Data and Analytics panes in its side bar. For details on the

worksheet workspace, see The Tableau Workspace.

• A dashboard is a collection of views from multiple worksheets. The

Dashboard and Layout panes are available in its side bar.

• A story contains a sequence of worksheets or dashboards that work

together to convey information. The Story and Layout panes are

available in its side bar.

About sheets. Each workbook can contain different types of sheets: views

(also known as worksheets), dashboards, and stories.

• A worksheet is where you build views of your data by dragging and

dropping fields onto shelves.

• A dashboard is a combination of several views that you can arrange for

presentation or to monitor.

• A story is a sequence of views or dashboards that work together to

convey information.

https://help.tableau.com/current/pro/desktop/en-us/environment_workspace.htm

Page 26 of 97

The sheets display along the bottom of the workbook as tabs. In this section

you’ll learn how to create, open, duplicate, hide, and delete sheets. You'll also

learn how to organize sheets in a workbook.

Within a workbook, you can create new sheets, clear an entire worksheet,

duplicate sheets, hide or show a worksheet, and delete a sheet. Tableau has

several ways to view and organize the sheets in your workbook.

Create new worksheets, dashboards, or stories

There are several ways to create new sheets in a workbook, dashboard, or a

story. You can create as many sheets in a workbook as you want.

To create a new worksheet, dashboard, or story, click the New

Worksheet, New Dashboard, or New Story button at the bottom of the

workbook.

Figure 2.11 : New Worksheet (Source tableau.com)

The New Worksheet button.

To rename a new worksheet, dashboard, or story, right-click (Ctrl-click on a

Mac) the tab and then select the Rename command.

More ways to create new worksheets

Create a new worksheet by doing one of the following:

• Select Worksheet > New Worksheet.

• Right-click any open tab in the workbook and select New

Worksheet from the menu.

• On the toolbar, click the drop-down arrow on the New Worksheet

 button and then select New Worksheet.

• Press Ctrl + M on your keyboard (Command-M on a Mac).

More ways to create new dashboards

Create a new dashboard by doing one of the following:

• Select Dashboard > New Dashboard.

• Click the New Dashboard button at the bottom of the workbook.

Page 27 of 97

Figure 2.12 : New Dashboard (Source tableau.com)

• Right-click on any open tab in the workbook and select New

Dashboard from the menu.

• On the toolbar, click the drop-down arrow on the New

Worksheet button and then select New Dashboard.

Head in the first Sheet to start building the 1st Worksheet in the workspace.

The Tableau workspace consists of menus, a toolbar, the Data pane, cards and

shelves, and one or more sheets. Sheets can be worksheets, dashboards, or

stories. The working space appears as following.

Figure 2.13 : Working space of a Worksheet (Source tableau.com)

A. Workbook name. A workbook contains sheets. A sheet can be a worksheet,

a dashboard, or a story.

Page 28 of 97

B. Cards and shelves - Drag fields to the cards and shelves in the workspace to

add data to your view.

C. Toolbar - Use the toolbar to access commands and analysis and navigation

tools.

D. View - This is the canvas in the workspace where you create a visualization

(also referred to as a "viz").

E. Click this icon to go to the Start page, where you can connect to data. For

more information, see Start Page.

F. Side Bar - In a worksheet, the side bar area contains the Data pane and

the Analytics pane.

G. Click this tab to go to the Data Source page and view your data. For more

information, see Data Source Page.

H. Status bar - Displays information about the current view.

I. Sheet tabs - Tabs represent each sheet in your workbook. This can include

worksheets, dashboards, and stories.

To start building the visualizations, some new Calculations must be made with

the retrieved data of the database. Calculated fields allow you to create new

data from data that already exists in your data source. When you create a

calculated field, you are essentially creating a new field (or column) in your

data source, the values or members of which are determined by a calculation

that you control. This new calculated field is saved to your data source in

Tableau, and can be used to create more robust visualizations. But don't

worry: your original data remains untouched.

You can use calculated fields for many, many reasons. Some examples might

include:

• To segment data

• To convert the data type of a field, such as converting a string to a date.

• To aggregate data

• To filter results

• To calculate ratios

You create calculated fields using calculations. There are three main types of

calculations you can use to create calculated fields in Tableau:

https://help.tableau.com/current/pro/desktop/en-us/buildmanual_shelves.htm
https://help.tableau.com/current/pro/desktop/en-us/environment_workspace.htm#ToolbarButtons
https://help.tableau.com/current/pro/desktop/en-us/view_parts.htm
https://help.tableau.com/current/pro/desktop/en-us/environment_startpage.htm
https://help.tableau.com/current/pro/desktop/en-us/environment_workspace.htm#SideBar
https://help.tableau.com/current/pro/desktop/en-us/datafields_understanddatawindow.htm
https://help.tableau.com/current/pro/desktop/en-us/environ_workspace_analytics_pane.htm
https://help.tableau.com/current/pro/desktop/en-us/environment_datasource_page.htm
https://help.tableau.com/current/pro/desktop/en-us/environment_workspace.htm#StatusBar

Page 29 of 97

• Basic calculations - Basic calculations allow you to transform values or

members at the data source level of detail (a row-level calculation) or

at the visualization level of detail (an aggregate calculation).

• Level of Detail (LOD) expressions - Just like basic calculations, LOD

calculations allow you to compute values at the data source level and

the visualization level. However, LOD calculations give you even more

control on the level of granularity you want to compute. They can be

performed at a more granular level (INCLUDE), a less granular level

(EXCLUDE), or an entirely independent level (FIXED) with respect to the

granularity of the visualization.

• Table calculations - Table calculations allow you to transform values at

the level of detail of the visualization only.

The type of calculation you choose depends on the needs of your analysis and

the question you want to answer [31].

We are now ready to create the Dashboards that will be used to monitor the

users of the chatbot so that we can offer them better guidance.

2.2.5. Heroku

Heroku is a container-based cloud Platform as a Service (PaaS). Developers use

Heroku to deploy, manage, and scale modern apps. The platform is elegant,

flexible, and easy to use, offering developers the simplest path to getting their

apps to market.

Heroku is fully managed, giving developers the freedom to focus on their core

product without the distraction of maintaining servers, hardware, or

infrastructure. The Heroku experience provides services, tools, workflows, and

polyglot support—all designed to enhance developer productivity. Heroku runs

applications through virtual containers known as Dynos. A Dyno is a container

on the Heroku platform utilized for running and scaling Heroku applications.

They are fundamentally virtual Linux containers used for running code based

on user commands. Applications can be scaled up to specific numbers of Dynos

based on the requirements of developers. Heroku offers container

management features to help users perform effortless scaling and dyno size,

type and number management based on application requirements.

Dynos are the fundamental elements powering up a Heroku application.

Developers can deploy their applications to Dynos and manage these units to

Page 30 of 97

easily create and run scalable applications. They get freedom from having to

perform infrastructure management tasks and can instead focus on the

important aspects of creating and running applications.

Some of the Heroku’s Advantages are:

• Free to Start. Users can get started with the free tier of Heroku, which

does come with some restrictions and fundamental functionality. It is a

suitable plan for those who intend to create a basic cloud app.

Developers can opt for this plan initially before committing to the

platform.

• Easy to Use. As a leading platform as a service offering, Heroku is known

for its ease-of-use. The free version of Heroku is best suited for small

development projects. Developers can also opt for several different tier

packages that are more suitable for large businesses’ complicated

requirements. The intuitive Heroku platform dashboard helps users

perform easy scaling, management, and application monitoring.

• Developer-Centric. Heroku focuses on helping developers hone their

skills to create feature-rich applications. The experience is favorable for

developers as they access some useful tools to accelerate core

development processes. They are free from having to perform various

repetitive tasks and can concentrate on critical development actions

• Focus on Coding not Server. Heroku takes away the burden of server

management and gives developers access to an easy-to-use web UI.

One-click deployments are also quite convenient for developers once an

application is running. They can create new software releases

conveniently in the form of release branches and quickly deploy

branches across different environments.

• Scalability. Users Heroku PaaS relies on a Dyno for running the code

written by developers. Each dyno is fundamentally a container

encapsulating resources such as memory and CPU and application code

and related dependencies. Heroku users can then choose to create any

number of independent application copies once it has been prepared, a

process known as horizontal scaling. Applications that receive an

unprecedented influx of traffic can be handled through the one-click

creation of hundreds of app instances. Heroku’s auto-scaling feature

helps it easily detect traffic spikes and create more Dynos accordingly.

• Security. Heroku offers developers a secure way of developing

applications due to its set of security features. This PaaS platform

Page 31 of 97

reduces developers’ requirement to push constant security patches,

which can be a hassle, especially in more sophisticated web applications.

Heroku ensures an optimal level of security for servers, application code

and prevents any possible issues.

• Powerful CLI. Heroku Command Line Interface or CLI is a feature that

helps to develop and manage Heroku applications conveniently. The CLI

is, in fact, one of the most reliable components of the Heroku PaaS.

But there are some limitations using Heroku which are:

• Sleeping Apps. A single web dyno assigned to a Heroku application goes

into sleep when it has not received traffic for an hour. The dyno wakes

up automatically for processing when the application is reaccessed.

Sleeping applications can be a potential issue for some businesses.

However, applications that have multiple dynos do not go to sleep.

• Does not provide static IP addresses. A static IP address is a fundamental

requirement for most businesses and having one can prove to be quite

an advantage. By default, Heroku does not offer static IP addresses

within CRE (Common Runtime Environment). Users have to opt for the

expressive Heroku Private Spaces to get static IP addresses that are not

optimal regarding load balancing or customization. Users have to rely on

third-party static IP add-on providers to use this IP type with Heroku. The

complexity of utilizing this feature can be a concern for developers and

business owners alike and can influence them to go for other providers.

There are 4 different Tiers that a developer can choose which are:

Type of
Plan

Ideal for Description

Free and
Hobby

Minimum
Viable Products
Non-
Commercial
Applications
Solo Projects

Heroku has a Free plan and a Hobby plab, both
starting at $0. These are the Starter plans, most well-
suited for non-commercial app deployments.

https://blog.heroku.com/app_sleeping_on_heroku
https://blog.heroku.com/app_sleeping_on_heroku

Page 32 of 97

Production
Small Business
Applications

TheHeroku Production plan begins from a rate of $25
per month, but the rate can vary based on the
requirements of the clients.

Advanced
Mission Critical
Applications

The Heroku Advanced Plan begins from $250 per
month. It is most well-suited for businesses with more
sophisticated development requirements.

Enterprise
Enterprise
Grade
Applications

 The Heroku Enterprise package is a flexible plan that
requires customers to pay depending on their needs.
It is most suitable for companies with more
sophisticated security and compliance requirements.

Table 2.4 : Tiers for a Heroku app (Source heroku.com)

Current Thesis chatbot application will be deployed in the Free Tier structure.

But to use Heroku it’s necessary to create an Account first. Visit the page

https://www.heroku.com and Sign Up. Next, the Heroku CLI must be installed.

Visit the page devcenter.heroku.com and install it. Git CLI is also needed to

download to interact with git. Visit the https://git-scm.com/downloads and

download it. Download dependencies are now fulfilled to start building the

project.

2.2.6. Rest Python Libraries

Some other libraries that will be needed for the implementation of the

chatbot are NumPy, datetime, os, venv, gunicorn.

Time and Datetime are modules of Python to work with dates and times. That

modules are needed to get and use dates in our program.

The OS module in Python provides functions for interacting with the operating

system. OS comes under Python’s standard utility modules.

NumPy (Numerical Python) is an open source Python library that’s used in

almost every field of science and engineering. It’s the universal standard for

working with numerical data in Python, and it’s at the core of the scientific

Python and PyData ecosystems. Some functions of NumPy will be used to

predict some numbers. For the prediction, the functions numpy.polyfit() and

numpy.poly1d() of the NumPy package of Python will be used. The Numpy

polyfit() method is used to fit our data inside a polynomial function. The

np.polyfit() method takes few parameters and returns a vector of coefficients

https://www.heroku.com/
http://www.devcenter.heroku.com/
https://git-scm.com/downloads

Page 33 of 97

p that minimizes the squared error in the order deg, deg-1, … 0. It least

squares the polynomial fit. It fits a polynomial p(X) of degree deg to points (X,

Y) where X and Y are arrays. It returns a ndarray, shape (deg+1,) or (deg+1, K).

Numpy.poly1d is a one-dimensional polynomial class. A convenience class,

used to encapsulate “natural” operations on polynomials so that said

operations may take on their customary form in code. The polynomial’s

coefficients, in decreasing powers, or if the value of the second parameter is

True, the polynomial’s roots (values where the polynomial evaluates to 0). For

example, poly1d([1, 2, 3]) returns an object that represents x^2+2*x+3,

whereas poly1d([1, 2, 3], True) returns one that represents

(x−1)(x−2)(x−3)=x^3−6x^2+11*x−6.

The venv module provides support for creating lightweight “virtual

environments” with their own site directories, optionally isolated from system

site directories. Each virtual environment has its own Python binary (which

matches the version of the binary that was used to create this environment)

and can have its own independent set of installed Python packages in its site

directories.

The gunicorn "Green Unicorn" (pronounced jee-unicorn or gun-i-corn) is a

Python Web Server Gateway Interface (WSGI) HTTP server. It is a pre-fork

worker model, ported from Ruby's Unicorn project. The Gunicorn server is

broadly compatible with a number of web frameworks, simply implemented,

light on server resources and fairly fast.

Page 34 of 97

3. Implementation

3.1. Database & ODBC

MongoDB Atlas provides free Clusters with limited storage of 512MB.

Atlas free clusters provide a small-scale development environment to host your

data. Free clusters never expire and provide access to a subset of Atlas features

and functionality. The procedure to create a free tier cluster is the following:

1. Create a MongoDB Account using your email.

2. Login in the MongoDB Atlas

3. Click on the Build a Cluster button

4. Select the Shared Clusters option and click Create a Cluster

5. Select the Cloud provider of your choice

6. Select the M0 Sandbox cluster tier

7. Name your Cluster and click Create Cluster

Creation may take up to 10 minutes and become ready to use. After the
successful deployment of our project a few settings must be fixed to make
database accessible and secure. Clicking on Database Access and adding an
authentication method using password for access, will make database more
secure. Now where our cluster and settings are ready, it’s time to create a new
database and collection for the documents we need to store.

Figure 3.1 : Database to store chatbot data (Source mongodb.com)

It’s necessary for the chatbot application to connect with the database and
perform CRUD operations. On the Databases/Connect menu clicking on the

Page 35 of 97

Connect your application there are multiple choices to connect the MongoDB
database with the application.

Figure 3.2 : Methods to connect to database (Source mongodb.com)

Chatbot will be developed using Python 3.7. In the Driver select Python and
Version 3.6 or later. Below that, the connection string is created. Replace the
parameter <password> with the password of the user and <myFirstDatabase>
with the name of the database. Also, we must get the connection string using
the driver Node.js and version 2.2.12. That connection string contains all the
information of the database like uri and replicaSet name that will be needed for
the connection with Tableau.

Page 36 of 97

Figure 3.3 : Connection via Python (Source mongodb.com)

From the perspective of the MongoDB Database, everything is ready to use.
Next step is to use PyMongo, to connect it with our application. The connection
will be established by creating a new instance of the MongoClient Class using
the connection string that was acquired from the MongoDB Cloud Database.
We can obtain our database by parsing the name of our database to the
get_database() function.

Figure 3.4 : Python Library for MongoDB (Source mongodb.com)

Application is now connected with the MongoDB database and CRUD
operations are available. The last connection for MongoDB that must be
created is that with Tableau. To successfully connect Tableau with MongoDB an
ODBC driver must be created.

To successfully create the needed ODBC Driver, the following procedure must
be completed:

Page 37 of 97

1. Download and install the MongoDB ODBC driver with version 1.4.1 for
Windows.

2. Add to environmental variables of the system, the bin folders of the
MongoDB BI Connector.

3. Open ODBC Data Sources select System DNS and click Add….

Figure 3.5 : MongoDB ODBC Driver

4. Select the MongoDB ODBC 1.4.2 Unicode Driver and fill the Connection
Parameters. Data Source Name is the name of the Data source.
Description is the description of the data source. TCP/IP Server is
localhost since the connection is established in local machine. Port is the
default port for SQL connection which is 3307. User and password fields
are the user’s name and password in MongoDB Cloud respectively.
Database field can be filled with the database that the user needs to
connect (not necessary).

Page 38 of 97

Figure 3.6 : Configuration of ODBC Driver

5. Click OK on the MongoDB ODBC Data Source window and click OK on the
ODBC Data Source window.

Our ODBC Driver is now ready to use from the perspective of MongoDB. In the

Tableau chapter, the connection between ODBC Driver and Tableau will be

established and further explained.

Page 39 of 97

3.2. Facebook Connectivity

To setup your app, give a name to your app and an email to let app

contact you for potential policy violations, app restrictions or steps to recover

the app if it's been deleted or compromised. Select if app’s purpose is to access

and use data on behalf of Yourself or your own business or Clients. Click Create

and your app is ready.

Figure 3.7 : Facebook App creation (Source developers.facebook.com)

Your newly created Facebook app is probably in development mode. Note that

apps in this mode are only allowed to message people connected to the app

(Admins, Developers and Testers). Once your app is ready to be public, the app

needs to go through app review for the pages_messaging permission. Visit App

Page 40 of 97

Review/Permissions and Features and find permission pages_messaging. Click

Request Advanced Access and Edit App Review Request.

Figure 3.8 : Permissions of the Facebook App (Source developers.facebook.com)

Provide the needed verification details that are required and submit your

request for review. It usually takes 1 to 5 days to approve or decline the request.

Each app must be linked to a Facebook Page. To create one visit

Settings/Advanced and click Create Page.

Figure 3.9 : Creation of Facebook Page (Source developers.facebook.com)

It will redirect you to your new page link. Name your page, choose the category

that fits the most to the purpose of your application and finally write a

description about the object of page. Click Create Page and the application’s

page is ready.

Page 41 of 97

Figure 3.10 : Created Facebook Page (Source developers.facebook.com)

Since the application is a Business Type App, a Business Verification process

must be done that allow Facebook Messenger to gather information about you

and your business and verify your identity as business entity. To complete the

process, you must move in the App Dashboard and go to Settings > Basic >

Verification and click the Start Verification button.

• If your Facebook developer account is already associated with a

Facebook Business account, you will be given the option to select a

Business within it. If you don't have a Facebook Business account, or if

your account contains no Businesses, you should create one. Connecting

your app to a verified Business completes the connection process and

there's nothing else to do. The Verification section should show that your

app is now connected to the selected verified Business.

• If you connected your app to an unverified Business, Admin or a verified

developer of the Business must complete the verification process within

the Business Manager. Click Start Business Verification to load the

unverified Business in the Business Manager and complete the

verification process. Once you have completed verification, return to the

Basic Settings panel. You should see that your app is now connected to

a verified Business.

Page 42 of 97

Figure 3.11 : Settings of the Facebook App (1) (Source developers.facebook.com)

The last step before getting application in public mode, is to insert the

necessary information of the application in the Settings > Basic. These are:

• App Icon (1024 x 1024). An icon that fits your application’s purpose

• Privacy Policy URL. You can either create a free privacy policy from

various free websites or use Heroku’s privacy URL.

• Category. Specify the category of your application.

Page 43 of 97

Figure 3.12 : Settings of the Facebook App (2) (Source developers.facebook.com)

After the successful completion of the above fields, the application is now ready

to run in public mode.

Afterwards, to connect page with Python and use it with PyMessenger the

Access Token of the page must be retrieved. In the Developers Facebook page,

in the application’s page at Messenger>Settings you can find the Access Token

of the page.

Page 44 of 97

Figure 3.13 : Access Token of Facebook Page (Source developers.facebook.com)

Click the “Generate Token” button and your application’s token is generated

and ready to be used. As explained, it will be used as a connection string in the

Python code that will be handled by the Bot Class of the PyMessenger Library.

Figure 3.14 : Python Library for Facebook Messenger (Source developers.facebook.com)

Webhook Verification will be achieved with the verify() function. The set token

is “hello”.

Figure 3.15 : Webhook Verification through Python (Source developers.facebook.com)

Page 45 of 97

To set the same token on the application’s Facebook page, go to

Messenger>Settings. On the field “Verify Token” fill the Token “hello”.

Facebook will echo it back as part of callback URL verification. On the Callback

URL the URL of the Heroku’s Application will be filled. Heroku will further

explained in another chapter. On the Webhook’s Page select all fields for the

chatbot.

Figure 3.16 : Token Verification on Facebook App (Source developers.facebook.com)

Figure 3.17 : Subscriptions of Facebook App (Source developers.facebook.com)

Page 46 of 97

Connection is now verified, and the functions send_raw(payload) and

send_message(sender_id, message) of the Bot Class can be used.

The next step is to create the needed buttons of the application using the above

functions. As mentioned, buttons are recognized by the payload of the field

quick_reply that is used on the variable payload of send_raw() function. Each

time a user presses a button, the application “understands” that the user has

pressed it if the quick_reply field in included in the JSON body. Then, to identify

which button is pressed, the application checks the payload field inside the

quick_reply field. Payload is the field that the application handles on code to

reply on request.

Based on function send_raw() a new function is created to help us parse the

arguments easier. The function send_quick_reply(recipient_id, text,

quick_reply) gets 3 arguments. The recipient id, the text message that the

application sends and the quick reply which is the argument to set up the

button.

Figure 3.18 : Quick Reply variable

We have assigned 9 buttons in total for the chatbot application. The buttons

titles, their payloads and their description are presented below:

Button Title Payload Description

Πληροφορίες tieinaixap Button to request information about COPD

Προηγούμενα
Τεστ previoustest

Button to request previous completed COPD
questionnaires

Πρόληψη prolipsi Button to request ways to prevent COPD

Νέος Χρήστης neosxristis Button that gives the input "New User"

Γυναίκα gynaika Button that gives the input "Woman"

Άντρας antras Button that gives the input "Man"

Δεν απαντώ denapantw Button that gives the input "No Answer"

Τερματισμός
Τεστ termatismostest

Button to request to end the existing COPD
questionnaire

Τεστ ΧΑΠ testxapinit Button to request to start a new COPD questionnaire

Table 3.1 : Buttons, Payloads and Description

Each button is used in multiple requests and multiple buttons can appear in a

response. There is one more button that we need to setup in the Welcome

Screen of Messenger. The welcome screen is the first thing people see when

Page 47 of 97

they encounter your Messenger bot and includes information that allows a

person to learn about your bot and what it offers. The welcome screen displays

the name and responsiveness of your bot, the profile picture and cover photo

from your Facebook Page, an optional greeting message, and the 'get started'

button.

Figure 3.19 : Chatbot’s welcome screen

(Source facebook.com)
 Figure 3.20 : Let’s Begin Button &

Response (Source facebook.com)

Page 48 of 97

3.3. Wit Setting & Connectivity

The first step a developer needs to do to use Wit.ai Framework, is to create a

new application by clicking on the “+ New App” button.

Figure 3.21 : Wit.ai App Creation (Source Wit.ai)

The new application needs a name and it’s necessary to select the language that

the application will use for the NLP mechanism. For chatbots that are used in

Public applications, the “Visibility” selection must always be “Open”. Click

“Create” and your application is ready.

Figure 3.22 : New App’s info (Source Wit.ai)

Therefore, in Wit.ai the training process is the following. Insert the user’s

expected utterance. Then define the intent of that utterance. After, the entities

Page 49 of 97

of that utterance must also be declared. Click the “Train and Validate” button

and the training process of the application will start.

Figure 3.23 : Training the Wit App (Source Wit.ai)

The procedure of training will be continued until chatbot is fully trained and

able to understand every utterance of the user. The trained intents & entities

of the application are below.

intents description Entities

previoustest

Sentences with that intent have as intent to
get the previous completed COPD
questionnaires of the user

questionnaire:questionnaire,
previoustest:previoustest

greeting
Sentences with that intent have as intent to
greet user and navigate him through chatbot

prolipsi
Sentences with that intent have as intent to
give user ways to prevent COPD xap:xap, prolipsi:prolipsi

what_is
Sentences with that intent have as intent to
give user information about COPD

tieinaihxap:tieinaihxap,
xap:xap, explain:explain

get_xap
Sentences with that intent have as intent to
start a new questionnaire for the user

xap:xap,
questionnaire:questionnaire

Page 50 of 97

antras
Sentences with that intent have as intent to
get gender male

denapantw
Sentences with that intent have as intent to
get gender unknown

gynaika
Sentences with that intent have as intent to
get gender female

Table 3.2 : Intents & Entities (Source Wit.ai)

Each of the above intents are handled and answered by fixed answers that have

been inserted in the chatbot code. Answers are presented below.

intents Answer

previoustest

If user has completed COPD questionnaire at least once:
“Results based on points”

If user has never completed the COPD questionnaire:
Φαίνεται ότι δεν έχετε κάνει το Τεστ ακόμα! Μπορείτε να το
δοκιμάσετε είτε πατώντας το κουμπι ΄΄Τεστ ΧΑΠ΄΄ είτε γράφωντας
΄΄Τεστ ΧΑΠ΄΄.

greeting
Γεια σας! Είμαι ο XAΠbot και είμαι εδώ για να σας ενημερώσω για
την Χρόνια Αποφρακτική Πνευμονοπάθεια(Χ.Α.Π.)!

prolipsi

Στη θεραπεία της ΧΑΠ παίζει ρόλο η κατάλληλη φαρμακευτική
αγωγή, αλλά και άλλες μη φαρμακευτικές παρεμβάσεις. Η διακοπή
του καπνίσματος είναι επιλογή κλειδί στην αντιμετώπιση της ΧΑΠ.
Ο εμβολιασμός των ασθενών για τη γρίπη και τον πνευμονιόκκοκο
είναι ουσιώδους σημασίας παρέμβαση. Η πνευμονική
αποκατάσταση παίζει επίσης πολύ βασικό ρόλο γιατί βελτιώνει τα
συμπτώματα, βοηθά τον ασθενή να ανταποκρίνεται καλύτερα
σωματικά, αλλά και συναισθηματικά, στις καθημερινές του
δραστηριότητες και εν τέλει βελτιώνει την ποιότητα ζωής. Οι
φαρμακολογικές θεραπείες στη ΧΑΠ παίζουν σημαντικό ρόλο στη
μείωση των συμπτωμάτων, στη μείωση της συχνότητας και της
σοβαρότητας των παροξύνσεων, στη βελτίωση της αντοχής στην
άσκηση και συνολικά στη βελτίωση της ποιότητας ζωής. Η
φαρμακευτική αγωγή στη ΧΑΠ συνήθως χορηγείται με εισπνοή και
για το λόγο αυτό η τεχνική της εισπνοής από τον ασθενή παίζει
ουσιαστικό ρόλο για τη σωστή λήψη της αγωγής. Συνεπώς τόσο η
τεχνική εισπνοής όσο και η τακτική λήψη της, σύμφωνα με τις
οδηγίες του θεράποντος ιατρού, θα πρέπει να επανεκτιμώνται
τακτικά.

what_is
Η Χρόνια Αποφρακτική Πνευμονοπάθεια (ΧΑΠ) είναι μια
προοδευτική ασθένεια που επηρεάζει τους αεραγωγούς των

Page 51 of 97

πνευμόνων. Με την πάροδο του χρόνου καθιστά την αναπνοή όλο
και πιο δύσκολη.

get_xap

If user has never completed the COPD questionnaire:
Ας ξεκινήσουμε λοιπόν! Το Τεστ αξιολόγησης για τη Χ.Α.Π.
αποτελείται απο 6 ερωτήσεις ώστε να εκτιμήσουμε την επίδραση
που έχει η Χρόνια Αποφρακτική Πνευμονοπάθεια στην
καθημερινότητά σας!

If user has completed COPD questionnaire at least once:
Φαίνεται ότι έχετε ξανακάνει το τεστ Χ.Α.Π. από αυτόν τον
λογαριασμό! Θα θέλατε να συνεχίσατε σαν κάποιος από τους
παρακάτω χρήστες;

antras

Occurs only inside questionnaire. Will explained in a later chapter.

Τέλεια, ας περάσουμε στο ερωτηματολόγιο! Ερώτηση 1:……

denapantw

Occurs only inside questionnaire. Will explained in a later chapter.

Τέλεια, ας περάσουμε στο ερωτηματολόγιο! Ερώτηση 1:……

gynaika

Occurs only inside questionnaire. Will explained in a later chapter.

Τέλεια, ας περάσουμε στο ερωτηματολόγιο! Ερώτηση 1:……

Table 3.3 : Intents & Answers (Source Wit.ai)

Now that our application’s training is finished, lead us to the next step of

connection. To be able to use our trained application of Wit in our code, a token

in generated to be used as a connection string. It’s available in Wit’s Application

“Settings” Menu. For our application, the “Client Access Token” will be used.

Page 52 of 97

Figure 3.24 : Token of the Wit App (Source Wit.ai)

That token will be used as a connection string to let our application

communicate with the Python code.

Figure 3.25 : Python Library for Wit.ai

Class Wit gets the “Client Access Token” of our application in order to use our

trained NLP model. Function message() gets the user’s utterance as argument,

extracts the intents and entities of the user’s sentence based on our Wit

Application and returns it in a JSON format. A sample context of the GET

message function parsing the utterance “Πρόληψη για την ΧΑΠ” (Prevention of

COPD in Greek) is the above.

Page 53 of 97

Figure 3.26 : Response JSON of a Request (Source Wit.ai)

Returned JSON contains all the necessary information to understand what the

user wants to say to chatbot. Sentence “Πρόληψη για την ΧΑΠ” contains 2

entities that were created during training. The first entity is “Πρόληψη”

(Prevention) and the second is “ΧΑΠ” (COPD). Each body of the entity appears

in the JSON and the confidence metric. Finally, it contains 1 intent which is

prevention with confidence 0.8188.

Page 54 of 97

3.4. Questionnaire Flow & Methods

In our chatbot application, the user will have the capability to take a COPD

questionnaire to learn about the COPD effect in his/her life apart from asking

regular questions that are answered through regular and fixed answers from

trained intents in Wit. Questionnaire consists of 10 questions. Some questions

accept limited answers. Questions and their limitation are presented below.

Questions are ordered to represent the flow of the questionnaire for a new

user.

 Questions Answer Limitations

Question 1 What's your name? No Limit

Question 2 What's your surname? No Limit

Question 3 What's your weight in kilograms? Integer value from 30 to 300

Question 4 What's your gender?

Man, Woman or No Answer.
These answers have been
trained as intents and similar
answers are also accepted.
Can be also inserted as
answers from buttons.

Question 5
From 1 to 10, how often do you cough?
(1 = Never & 10 = Always)

Integer value from 1 to 10

Question 6
From 1 to 10,do you often feel tightness
in the chest? (1 = Never & 10 = Always)

Integer value from 1 to 10

Question 7
From 1 to 10, do you gasp when climbing
stairs? (1 = Never & 10 = Always)

Integer value from 1 to 10

Question 8
From 1 to 10, do you feel weakness
during the day? (1 = No Weakness & 10 =
Total weakness)

Integer value from 1 to 10

Page 55 of 97

Question 9

From 1 to 10, do you feel insecure when
you leave home because of your illness?
(1 = Absolutely Secure & 10 = Totally
insecure)

Integer value from 1 to 10

Question
10

From 1 to 10, how restful is your sleep?
(1 = Αbsolutely calm & 10 = Τotally
anxious)

Integer value from 1 to 10

Table 3.4 : Questions of Questionnaire

Every time a user starts taking a COPD test, a document is inserted in the

MongoDB database. That document has the following format:

Figure 3.27 : Inserted Document in MongoDB

After the successful insertion of the above document, every time chatbot

receive valid answer (based on the answers limitations) in each question, it

proceeds to next question. Also, each time a valid answer is received the

counterpart field of the document is updated with the answer.

 The “user_id” field contains the user’s Facebook ID. “Start_xap” field indicates

if the user has started the COPD test and it’s filled with “yes” or “no”. Next is

“Init_check” field. The purpose of that field, is to check if the user has

completed the COPD test ever before to autofill some of his personal

information. If the user has completed the test at least once, then its value will

Page 56 of 97

be filled with “exist” during the insertion, otherwise with “not exist”. In the

“exist” case, the user must choose to continue either with one of the first name

and last name that has completed the COPD test or continue as a new user. If

the user continues with one of the previous first and last name, then the fields

“name”, ”surname” and “gender” are filled from the fields of the previous COPD

test and the field “Init_check” turns to “not exist” to continue the

questionnaire. In case that the user selects to continue as a new user, the field

“Init_check” turns to “not exist” once again. In that way, multiple users can take

the COPD test from the same Facebook Account. The fields “name”, “surname”,

“weight” and “gender” are the user’s first name, last name, weight and gender

respectively. The fields “q1” to “q6” are filled from the inputs of the user

regarding Question 1 to Question 6.

After the successful completion of the COPD questionnaire, a new document is

inserted in the database that has the following format and the old one is

deleted.

Figure 3.28 : Final Document that is inserted

The field “_id” is the default ID field that Mongo pass to every document. The

“user_id_res” field contains the user’s Facebook ID. The field “points” contains

the sum of points of q1 to q6. The “tr_timestamp” contains the timestamp in

GMT+2:00 (time zone of Greece) that lie during the completion of the COPD

test. The rest fields are same as the first inserted document.

In case where the user selects to continue as an existing user then the flow of

the questionnaire is limited to the Questions 3,6,7,8,9,10 of the above table

(Table 3.4) since the rest fields are auto filled from a previous test.

Page 57 of 97

The only questions where the answer can be predicted is the one regarding

gender. For that reason, we trained our chatbot application with multiple inputs

regarding gender, so it can also accept and understand the intent of text except

from buttons. The rest questions can be answered with infinite answers. For

the questions that they don’t have a limitation, like name and surname it’s not

necessary to check the input of the user. But for the questions regarding weight

and q1 to q6 there are some limitations. Those limitations can only be checked

by scanning the raw text of the response JSON. For example, for the question

“What's your weight in kilograms?” the answer must be an integer number

from 1 to 10. The answer will be included in the field “text” of the response

JSON (see picture JSON above Figure 3.26). If that field contains a text different

than a number from 1 to 10 then the answer is considered as invalid and the

user must answer that question again.

After the successful completion of the questionnaire, chatbot will warn user

about the effect of COPD in user’s life and inform user on how to prevent it.

Moreover, after the completion of 5 COPD tests from the same user (same

name and last name), chatbot will provide some statistical information about

the user’s progression. Finally, chatbot will make a prediction about the user’s

points of the 5th COPD test. If prediction points are between +-7 points of user’s

5th actual COPD test, prediction will be considered as successful and chatbot

will explain user the result of that prediction. If prediction exceeds threshold of

+-7 points, prediction will be considered as failed and chatbot will explain user

the result of that prediction. That’s the logical flow of the questionnaire.

Page 58 of 97

3.5. Tableau Dashboards & Connection

To retrieve the data of chatbot, create the necessary Dashboards and

monitor the users, a live connection between Tableau and MongoDB must be

established. that reason, an ODBC driver was created using the MongoDB

Connector. To enable the connection, open a CLI and enter the following

command.

mongosqld --mongo-uri "mongodb://cluster0-shard-00-

00.79rb7.mongodb.net:27017,cluster0-shard-00-

01.79rb7.mongodb.net:27017,cluster0-shard-00-

02.79rb7.mongodb.net:27017/?ssl=true&replicaSet=atlas-iqxe97-shard-

0&retryWrites=true&w=majority" --auth -u username -p password

• mongosqld will start the connection of localhost with the Mongodb Atlas

Database.

• --mongo-uri takes as argument the URI string that was taken from the

connection string of Node.js except username and password in the

beginning. These 2 parameters will be filled in the end with the –auth

• --auth gets as argument the username and password

The CLI will look like this:

Figure 3.29 : Connection to MongoDB for Tableau

The connection between database and localhost is now active.

Having the CLI running, open the Tableau application, click to connect to a

server and select Other Databases (ODBC). Select DNS and click on the name of

our connection i.e. “My Connection”. Click “Connect” and “Sign In” and the

Tableau is now connected with on. Select our database named “student_db”

and select the table “chatbot_records”. Double click on the “New Custom SQL”

and input the query SELECT * FROM student_db.chatbot_records. That query

will give us all the records of the table.

Page 59 of 97

Figure 3.30 : Query to get all data from MongoDB to Tableau

We are now ready to proceed with the creation of worksheets.

The 1st Worksheet refers to the Total COPD Tests.

Figure 3.31 : Total Number of COPD Tests Card

The 2nd Worksheet refers to the Number of Unique Users.

Figure 3.32 : Number of Unique Users Card

The 3rd Worksheet refers to the Total COPD Tests per Result.

Page 60 of 97

Figure 3.33 : Results Pie

The 4th Worksheet refers to the AVG Points per Question.

Figure 3.34 : AVG Points per Question

The 5th Worksheet refers to the Number of COPD Tests per Date.

Figure 3.35 : Number of COPD Tests per Day

We are now ready to bind all Workbooks together to a Dashboard. It will

contain filters like Date, Time, First Name & Last Name and Results. Filters will

help us track better the information we need. More filters and parameters were

about to be added but the current ODBC driver cannot support them. The final

Dashboard looks like this.

Page 61 of 97

Figure 3.36 : Tableau Dashboards

For a user with no programming skills it’s difficult to run the necessary

commands and open the Tableau report. For that reason, a new .bat file was

created. Batch files (.bat) consists of a series of commands to be executed by

the command-line interpreter, stored in a plain text file. A new file was created

with the Tableau file and the .bat file. We first opened a notepad, insert the

following commands and the notepad was saved with extension .bat.

start mongosqld --mongo-uri "mongodb://cluster0-shard-00-

00.79rb7.mongodb.net:27017,cluster0-shard-00-

01.79rb7.mongodb.net:27017,cluster0-shard-00-

02.79rb7.mongodb.net:27017/?ssl=true&replicaSet=atlas-iqxe97-shard-

0&retryWrites=true&w=majority" --auth -u username -p password

start C:\Users\menio\Desktop\thesis\Book1.twb

As a result, by double clicking the .bat file the above scripts will executed, and

the Tableau Dashboard will open.

Page 62 of 97

3.6. Heroku Setting & Deployment

To build the project’s folder create a file named facebook-messenger-

chatbot. Open a CLI an run the command virtualenv myenv to create the

isolated environment of the application.

Figure 3.37 : Creation of Project’s file

After the successful creation a file named myvenv will appear in the folder. To

activate the virtual environment run the command myvenv/Scripts/activate.

Use the command pip install pymessenger flask to install all the necessary

libraries of the project of the code including gunicorn.

Figure 3.38 : Installation of necessary Python libraries

Create a python file named app.py and insert the code needed to run the

application. That file will hold the code of the application.

Next, run the command pip freeze > requirements.txt. That command will

return all dependencies of the application and their version.

Page 63 of 97

Figure 3.39 : Needed Python Libraries

After, we need to create a Procfile. Procfile will tell Heroku which file contains

the flask app and thus which script to run first. To create it run the command

echo > Procfile. Edit the created Procfile by removing all contents and filling it

with the command web: gunicorn app:app.

Figure 3.40 : Procfile Creation

A git repository must be made for that project and so, run the command git

init. Running the command git status, one of the files that seems to be

untracked is myenv/. But since the requirements.txt file is also included

myenv/ should not be added. So the next command is echo > .gitignore which

creates the file gitignore. In that file remove all contents and add the text

myvenv/. Everything on that folder will be ignored from being added by git.

Page 64 of 97

Next step is to add the files running the command git add . in the command

prompt and then commit the added files with the command git commit -m

“ourproject”.

It remains to push the application. But to use Heroku it’s necessary to create

an app and then push it in that app. To create a Heroku app run the command

heroku create. A colored name will appear in the command prompt that is the

name of the heroku app.

Figure 3.41 : Heroku App Creation

Now we need to tell git repository what the URL of the git repository of the

heroku app is. To do that, run the command heroku git:remote -a

name_of_the_heroku_app . Finally, run the command git push heroku master

to push the commits on the Heroku app.

Log in Heroku in the app’s page. Click on the app’s name and then on the

Open app in top of page. If the deployment was successful, the set message of

the Webhook will appear on the top of that page.

Figure 3.42 : Deployed Heroku App (Source heroku.com)

Page 65 of 97

Figure 3.43 : Message of Webhook (Source heroku.com)

To monitor and debug the application click on the More button and View Logs.

Each time an action happens in the chatbot, the logs will be updated with the

respective actions.

Figure 3.44 : Logs of the App via Heroku (Source heroku.com)

The URL of the application must be completed in the Application’s Developer’s

Facebook page in the Messenger Settings as mentioned in the Facebook app

configuration chapter.

Page 66 of 97

Figure 3.45 : Heroku page on Facebook App (Source developers.facebook.com)

The chatbot application is now ready and running.

Page 67 of 97

4. Results

4.1. Expected Chatbot Conversation

Since the application is now active and in public mode, the users can

now use the chatbot. The conversation between a user and the chatbot is

displayed below. The Chatbot’s Facebook page is located at the URL

https://www.facebook.com/Wit-test2-117488840168031/

Click on the button Message to open the Starting page.

Figure 4.1 : Navigation on Facebook’s Page (Source facebook.com)

https://www.facebook.com/Wit-test2-117488840168031/

Page 68 of 97

Figure 4.2 : Sample Conversation (1)

Page 69 of 97

Figure 4.3 : Sample Conversation (2)

Page 70 of 97

Figure 4.4 : Sample Conversation (3)

Page 71 of 97

Figure 4.5 : Sample Conversation (4)

Page 72 of 97

Figure 4.6 : Sample Conversation (5)

Page 73 of 97

Figure 4.7 : Sample Conversation (6)

Page 74 of 97

Figure 4.8 : Sample Conversation (7)

Page 75 of 97

Figure 4.9 : Sample Conversation (8)

Page 76 of 97

Figure 4.10 : Sample Conversation (9)

Page 77 of 97

Figure 4.11 : Sample Conversation (10)

Page 78 of 97

Figure 4.12 : Sample Conversation (11)

Page 79 of 97

Figure 4.13 : Sample Conversation (12)

Page 80 of 97

Figure 4.14 : Sample Conversation (13)

Page 81 of 97

.

Figure 4.15 : Sample Conversation (14)

Page 82 of 97

Figure 4.16 : Sample Conversation (15)

Page 83 of 97

Figure 4.17 : Sample Conversation (16)

Page 84 of 97

Figure 4.18 : Sample Conversation (17)

Page 85 of 97

Figure 4.19 : Sample Conversation (18)

Page 86 of 97

Figure 4.20 : Sample Conversation (19)

Page 87 of 97

Figure 4.21 : Sample Conversation (20)

Page 88 of 97

Figure 4.22 : Sample Conversation (21)

Page 89 of 97

Figure 4.23 : Sample Conversation (22)

Page 90 of 97

Figure 4.24 : Sample Conversation (23)

Page 91 of 97

Figure 4.25 : Sample Conversation (24)

Page 92 of 97

Figure 4.26 : Sample Conversation (25)

Page 93 of 97

4.2. Monitor the user

After the successful completion of COPD test from a user, a new document with

all the information of the user and the test is inserted in the database. To

monitor these information Tableau will be used, as mentioned in a previous

chapter. Double click on the .bat file and the Tableau Workbook will open.

To monitor a specific COPD test of a user, just adjust the filters. For example,

according to the above example the latest COPD test was completed by the

user, Μενέλαος Αμπαρτζάκης. Click on the First Name & Last Name Filter to

select the First & Last Name of the user. If you want to select the latest COPD

test, filter with one more condition based on Time.

Figure 4.27 : Monitoring a User (1)

Figure 4.28 : Monitoring a User (2)

Page 94 of 97

5. Outcome

5.1. Conclusions & Future Works

In the current thesis, a new approach was described to build a medical

chatbot in Facebook Messenger Platform using Wit.ai in the Greek language.

Later, Tableau was used to monitor the results of the users. Finally, a method

to include questionnaire in the chatbot was developed using MongoDB and

Python. This entire end-to-end solution can be adopted by doctors or

organizations that want to provide users an instant way to identify the effect of

symptoms regarding COPD.

The solution can be applied to multiple areas and not just for medical

use. Thus, the logic and implementation of the questionnaire will always be the

same. However, questionnaire method is not scalable, and it needs more hard

coding as long as you add more questions. It’s free for everyone to have that

ecosystem with the chatbot trained except from Tableau. Additionally, minor

operations must be applied in the computer of the administrator to have it in

use.

As future works, it would be valuable to develop a method that adds all

the necessary conditions in a scalable way. We also plan to improve the way

the prediction is done. For example, a clustering can be applied in users and

their results to find clusters that contains users with similar results and habits.

Then the prediction will be accomplished using the results of the cluster. Later

on, more KPIs can be added in the Dashboard to monitor even better the users.

Then, the dashboard can be deployed in a Tableau Server to set alerts each time

a user has a really negative result. That will reduce the need to check it

constantly and eventually open it just the times when an alert occurs.

Page 95 of 97

6. References

1. IBM 2018. Overview of Watson assistant. https://console.bluemix.

net/docs/services/conversation/index.html, 2018.

2. Reifler, Erwin (February 2–5, 1960). "The solution of MT linguistic

problems through lexicography". Proceedings of the National

Symposium on Machine Translation.

3. Benilda Eleonor V. Comendador, , et al.., (2015), “Pharmabot: A Pediatric

Generic Medicine Consultant Chatbot ”

4. J. Constine. Facebook launches messenger plat- form with chatbots,

2016.

5. Jerome R Bellegarda. Spoken language understanding for natural

interaction: The siri experience.,. In Natural Interaction with Robots,

Knowbots and Smartphones, pages 3–14, 2005.

6. Abu Shawar, B., & Atwell, E. (Eds.) 2007. Chatbots: Are they really useful?

7. Divya S et al.., (2018) “Self-Diagnosis Medical Chatbot Using Artificial

Intelligence”

8. Bickmore, T. W., Mitchell, S. E., Jack, B. W., Paasche-Orlow, M. K., Pfeifer,

L. M., & O’Donnell, J. 2010. Response to a relational agent by hospital

patients with depressive symptoms. Interacting with Computers, 22(4):

289–298.

9. Turing, Alan (October 1950), "Computing Machinery and Intelligence",

Mind

10. Duffy, M. C., & Azevedo, R. 2015. Motivation matters: Interactions

between achievement goals and agent scaffolding for self-regulated

learning within an intelligent tutoring system. Computers in Human

Behavior, 52: 338–348.

11. Fryer, L. K., Ainley, M., Thompson, A., Gibson, A., & Sherlock, Z. 2017a.

Stimulating and sustaining interest in a language course: An

experimental comparison of Chatbot and Human task partners.

Computers in Human Behavior, 75: 461–468.

12. Ahmed Fadhil (2018). Beyond Patient Monitoring: Conversational Agents

Role in Telemedicine & Healthcare Support for Home-Living Elderly

Individuals

13. Gartner. Gartner Predicts a Virtual World of Exponential Change -

Smarter with Gartner;

https://www.gartner.com/smarterwithgartner/gartner-predicts-a-

virtual-world-of-exponentialchange/, 04 Jan 2018.

14. V.Manoj Kumar et al.., (2016) “Sanative Chatbot For Health Seekers”

Page 96 of 97

15. Weizenbaum, J. (1966). ELIZA—A computer program for the study of

natural language communication between man and machine.

Communications of the ACM, 9(1), 36–45. Wessel, M., Adam, M., &

Benlian, A. (2019). Th

16. Elkins, A. C., Derrick, D. C., Burgoon, J. K., & Nunamaker Jr, J. F. (2012).

Predicting users' perceived trust in Embodied Conversational Agents

using vocal dynamics. In: Proceedings of the 45th Hawaii International

Conference on System Science (HICSS). Maui: IEEE.

17. Krishnendu Rarhi (ORCID: 0000-0002-5794-215X), Abhishek

Bhattacharya, Abhishek Mishra, Krishnasis Mandal (2018) “Automated

Medical Chatbot”

18. Flora Amato, et al., (2019) “Chatbots meet eHealth: automatizing

healthcare”

19. J., Ford, W. R., & Farreras, I. G. (2015). Real conversations with artificial

intelligence: A comparison between human–human online

conversations and human–chatbot conversations. Computers in Human

Behavior, 49, 245–250.

20. Shah, H., Warwick, K., Vallverdú, J., Wu, D.: Can Machines Talk?

Comparison of ELIZA with Modern Dialogue Systems. Comput. Hum.

Behav. 58, 278–295 (2016)

21. Lin Ni, Chenhao Lu, Niu Liu, and Jiamou Liu. 2017. Mandy: Towards a

smart primary care chatbot application. In International Symposium on

Knowledge and Systems Sciences. Springer, 38–52.

22. Webber, G. M. (2005). Data representation and algorithms for

biomedical informatics applications. PhD thesis, Harvard University.

23. L. Zhang, “Building Facebook Messenger,” 2011. [Diakses: 31-Mar-

2017]

24. Sameera A. Abdul-Kader, Dr. John Woods, “Survey on Chatbot Design

Techniques in Speech Conversation Systems”, (IJACSA) International

Journal of Advanced Computer Science and Applications, Vol. 6, No. 7,

2015

25. Facebook for developers. April 12, 2016. Retrieved July 6, 2018 from

https://developers.facebook.com/videos/f8-2016/introducing-bots-on-

messenger

26. Facebook Messenger Platform. https://messengerplatform.fb.com/.

Accessed 5 April 2017

27. Awidi et al., 2019 I.T. Awidi, M. Paynter, T. Vujosevic Facebook group in

the learning design of a higher education course: An analysis of factors

influencing positive learning experience for students Computers &

Education, 129 (2019), pp. 106-121

Page 97 of 97

28. Shady Hamouda, Zurinahni Zainol, "Document-Oriented Data Schema

for Relational Database Migration to NoSQL", Big Data Innovations and

Applications (Innovate-Data) 2017 International Conference on, pp. 43-

50, 2017.

29. Sheffi Gupta, Rinkle Rani, "A comparative study of elasticsearch and

CouchDB document-oriented databases", Inventive Computation

Technologies (ICICT) International Conference on, vol. 1, pp. 1-4, 2016.

30. Jonathan de Oliveira Assis, Vanessa C O Souza, Melise M V Paula, João

Bosco S Cunha, "Performance evaluation of NoSQL data store for digital

media", Information Systems and Technologies (CISTI) 2017 12th Iberian

Conference on, pp. 1-6, 2017.

31. Datig, I. and Whiting, P. (2018), "Telling your library story: tableau public

for data visualization", Library Hi Tech News, Vol. 35 No. 4, pp. 6-8.

https://doi.org/10.1108/LHTN-02-2018-0008

