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Περίληψη 

Η παρούσα εργασία διερευνά την πιθανή εφαρμογή δύο νέων μοντέλων μηχανικής 

μάθησης, ένα μοντέλο Νευρωνικών Δικτύων (ΝΝ) και ένα μοντέλο Support Vector 

Machine (SVM), για τη γρήγορη πρόβλεψη δομικών χαρακτηριστικών διαφόρων υλικών, 

τα οποία στηρίζονται σε δεδομένα ανάστροφου χώρου (k-space). Για τη λήψη του 

σήματος ανάστροφου χώρου από τα συγκεκριμένα υλικά θα μπορούσαν να 

χρησιμοποιηθούν ποικίλες τεχνικές, ωστόσο, οι πιο πολλά υποσχόμενες μέθοδοι είναι: i) 

Μαγνητική Τομογραφία (NMRI) και ii) Μικροτομογραφία Ακτίνων Χ (X-Ray mCT). 

 

Για την εκπαίδευση των νέων μοντέλων, χρησιμοποιήθηκαν προσομοιωμένα δεδομένα 

ανάστροφου. Επιπλέον, μέσω της χρήσης εργαλείων της γλώσσας προγραμματισμού 

Python, αναπτύχθηκε μια αλυσίδα διεργασιών μηχανικής μάθησης που εμπεριέχει  τα 

βήματα της προ-επεξεργασίας, εκπαίδευσης,  επαλήθευσης, δοκιμής και ανάλυσης. Τα 

καινούργια αυτά μοντέλα, φαίνεται να προσφέρουν μια βελτιομένη απόδοση συγκριτικά 

με τις ήδη υπάρχουσες μεθόδους. Τέλος, με βάση τη γνώση από την παρούσα διατριβή, 

παρατίθενται προτάσεις για περαιτέρω βελτίωση και  πιθανές νέες εφαρμογές των νέων 

τεχνικών που αναπτύχθηκαν.  

Abstract 

This thesis investigates the potential application of two new approaches, a Neural 

Network (NN) model and a Support Vector Machine (SVM) model, for fast estimation of 

structural properties of materials based on k-space data. The k-space signal for these 

materials could be acquired methods such as: i) Nuclear Magnetic Resonance Imaging 

(NMRI) and ii) X-Ray microtomography (X-Ray mCT). 

 

In order to train and test our models we used simulated k-space data produced with a 

numerical method previously developed for a Bayesian prediction technique. 

Furthermore, using advanced tools available with the Python programming language, we 

developed a machine learning (ML) pre-processing, training, validation, testing and 

analysis pipeline. The new models investigated here seem to offer an improved 

performance compared to existing methods. Finally, suggestions for further work are 

presented based on the knowledge acquired from this thesis project. 
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1. Introduction 

The analytical methods which are developed in this thesis aim at characterizing the 

structural properties of various materials based on their k-space signal. Specifically, the 

material property that we investigate here is the sphere size distribution of a dispersed 

phase within a continuous material phase. Examples of this include: i) the bubble size 

distribution in foams, ii) the droplet size distribution in emulsions and iii) the particle 

size distribution of solid-in-liquid dispersions.   Knowledge of these structural properties 

is very important in the fields of process engineering and material science. They could be 

directly corelated to many physico-chemical properties and process parameters which 

need to be studied, monitored and controlled. For example, they could be linked with 

stability, safety, quality and performance of materials in fields such as food, 

pharmaceutical and petro-chemicals. 

 

In order to test and prove the performance of these two new machine learning methods 

we used a series of simulated k-space data. Ideally real NMRI and X-ray data could have 

also been used in order to acquire the 1D k-space data. However, we opted for the 

simulated data for three main reasons: 

1. Simulated data are easier, cheaper and faster to produce than real experimental 

data by orders of magnitude. 

2. In order to acquire real experimental data we need access to equipment which is 

only available in very specialized laboratories. This would require a broader 

collaboration between different universities and this was not in the scope of this 

MSc thesis. 

3. Numerically simulated data, assuming that they are sufficiently accurate 

representations of the real system, allowed us to precisely control, test and 

analyze our newly developed methods. They are therefore preferred during this 

initial proof-of-concept stage as they eliminate all effects and variability that 

could arise from experimental parameters. 

 

A numerical method was developed, based on previous work of the author, which 

allowed us to produce  a wide range of k-space data from various simulated samples. The 

parameter that we controlled and that we are mainly interested in is the sphere size 
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distribution. For each sample, the sphere size distribution can be described by the mean 

diameter D and the standard deviation σ.   

 

To analyze these simulated k-space data we used Python along with various scientific 

and numerical computational libraries such as Scikit-learn, NumPy, pandas and seaborn. 

We developed two machine learning (ML) regression models i) a multi-layer perceptron 

neural network model and ii) a support vector machine model. For each model, a grid 

search was performed to identify the optimal hyper-parameters. Then the performance 

of each model was evaluated based on: 

1. The mean absolute error and mean square error  

2. The time required for training each model  

3. The time required for a pre-trained model to produce a prediction 

 

Finally, the effect of two k-space experimental parameters on the models’ performance 

were tested and they are: 

1. The signal-to-noise ratio in the k-space data (SNR)  

2. The number of (simulated) set of experimental k-space data we used for training  
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2. Theoretical Background 

2.1.  Importance of Sphere Size Distribution in Material Science 

Dispersions are multiphase systems, where at least one phase is dispersed in a  

continuous phase. These systems are commonly found in many different industries 

ranging from the food, pharmaceutical and petrochemical industries.  

 

Two types of dispersions with particular interest and relevance to the most industries 

are foams and emulsions. In foams a gas phase is formed from spherical or near spherical 

(Sadoc & N.Rivier, 1999) bubbles within a continuous liquid phase whereas in emulsions 

both the dispersed and the continuous phases are liquids. The bubble or droplet size 

distribution, herein referred to as a generic sphere size distribution (SSD), is an important 

structural characteristics for foams and emulsions. The exact form of the SSD of dispersed 

systems may result from the production and treatment processes. In addition, the 

contribution of the dispersed phase to the viscoelastic properties of emulsions and foams 

can also depend on the SSD (Weaire & Hutzler, 1999; Wilson, 1989). Furthermore, the 

SSD can be related to the physicochemical properties and the stability of these systems 

(Campbell & Mougeot, 1999)(Sadoc & Rivier, 1997). Some examples from different 

industries include the use of foams in wet processing in the textile industry (Capponi et 

al., 1982), where the foam SSD effects the efficiency of the process, or the pharmaceutical 

industry where emulsions are used as drug delivery systems (Zuniga & Aguilera, 2008). 

In recent years foams find an increased application in the food industry with the 

emergence of functional foods (Green et al., 2013; Skurtys & Aguilera, 2007). Aerated 

food systems and emulsions can help to enhance sensory response whilst reducing the 

amount of flavouring used (Zuniga & Aguilera, 2008), reduce the calorific density of foods  

(Rodríguez-García et al., 2013) and deliver nutrients or bioactive molecules much more 

efficiently (Zuniga & Aguilera, 2008). Regardless of the specific application, it is highly 

desirable for scientists to be able to non-invasively characterise these systems 

andmonitor their evolution over time. 
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2.2. Basic Principles of Foams and Emulsions  

The two systems share many common structural properties and a number of physical 

phenomena. Therefore most of the theories that have been developed for foams can be 

expanded to include emulsions. Indeed, in many experimental studies one system has 

been used as a model case for the other (Weaire & Hutzler, 1999). A similar approach was 

taken in this thesis where foam systems are studied but the results can also be applicable 

to emulsions. Therefore, in this section the theory will focus on foams but certain 

characteristics of emulsions will also be mentioned. The general foam and emulsion 

theory presented below can be found in various textbooks (Weaire & Hutzler, 

1999)(Wilson, 1989) therefore only recent developments will be referenced when 

required.  

2.2.1. Foams  

A liquid foam is defined as a dispersion of gas in a liquid phase. Usually in order to assist 

the formation of bubbles and stabilize the foam, surfactants are added, to assist the foam 

formation by reducing the surface tension.  

 

For most foams the volume fraction of gas, , ranges between 0.5 and 0.98. Based on the 

fraction of gas in the structure, the foams are divided into wet and dry foams. For gas 

fractions φ>0.9 , the bubbles in the foam deform each other leading to the familiar 

polyhedral structure that many food foams have. The liquid forms thin films around the 

air bubbles creating polyhedral cells. The surfaces of these cells are curved and the liquid 

films meet each other in lines which in turn meet in vertices. The structure described 

above conforms to dry foams (Weaire & Hutzler, 1999).  

 

If a foam has a low gas fraction (φ<0.95), the idealized description mentioned previously 

is not accurate and the geometry is a little different. The idealized lines are replaced by 

channels of finite width which are called Plateau borders. Plateau borders contain the 

majority of the liquid. The cells of the foam lose their sharp edges and the corners are 

rounded off. Figure 1 shows a 2-D structure of dry and wet foam. The cells of the dry foam 

are replaced by bubbles in the wet foam.  
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Systems with very low gas fraction (φ<0.5) are better described as suspensions of 

bubbles or bubbly fluids rather than foams. In the work presented in this thesis, more 

emphasis is given on systems that are either well into the wet limit φ≤0.65.  

 

For ideal dry foams with very high gas fractions, Plateau in his work proposed the rules 

which are necessary for these systems to be at equilibrium. For those foams, in a 3-D 

structure, the liquid films can intersect only three at a time at angles of 120o. Also no more 

than four lines can meet in a vertex, and these vertices have near perfect tetrahedral 

symmetry. Finally, at the points where a Plateau border comes in touch with a surface the 

joint is smooth and the surface normal is the same on both sides. If the gas fraction 

becomes too low (φ≤0.65) the microstructure of the wet foam is no longer polyhedral 

and appears more like a liquid with individual bubbles dispersed in it (Weaire & Hutzler, 

1999; Wilson, 1989).  

 

When the structure loses its mechanical stability, Plateau’s rules no longer apply and 

multiple junctions may be found. The point of that transition is called the wet limit (Sadoc 

& Rivier, 1997). At this point the bubbles tend to have an almost spherical shape. The 

transitions limits between dry and wet foams are not well defined.  

 

2.2.2. Emulsions  

Emulsions are also dispersions but unlike foams, both the dispersed and the continuous 

phase are liquids. Therefore the dispersed phase forms droplets in the continuous phase, 

instead of bubbles. In foam systems surfactants are usually added in order to decrease 

the surface tension. In the case of emulsions amphiphilic compounds, called emulsifiers, 

are used to produce stable systems (Schramm, 2014).  

 

Another difference between foams and emulsions, is the size range of the droplets. 

Usually, the droplets sizes found in commercially useful emulsions are much smaller than 

the diameter of the bubbles in foams. Bubbles in commercial foam systems are in the 

range of 10 μm up to several mm. By contrast, the droplet radii of emulsions can range 

from 10 nm up to 1 mm. Specifically, emulsions in the range of 10 nm to 100 nm are called 

nanoemulsions. Systems with droplet radii in the range of 100 nm to 1000 nm are called 
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miniemulsions whereas systems in the range of 1000 nm to 1 mm are called 

macroemulsions (Hsiung et al., 2006; Kobayashi et al., 2007; Skurtys & Aguilera, 2007).  

 

In most cases, emulsions are composed of two phases and both water-in-oil (W/O ) and 

oil-in-water (O/W) emulsions can be produced. More complex systems can also be 

produced such as water-in-oil-in-water (W1/O/W2), oil-in-water-in-oil (O1/W/O2) or 

even multiple oil-in-water-in-water (O/W1/W2). Figure illustrates the basic structure of 

these systems(Chung and McClements, 2014). 

 

2.3. Traditional Methods for Sphere Size Distribution Analysis 

Currently, a wide range of methods are used for the estimation of the SSD. The most 

popular non-NMR techniques that are used to study dispersed systems are microscopy, 

light scattering methods, X-ray tomography, ultrasound spectroscopy and electrical 

conductivity measurements.  

 

In addition, in recent years a number of NMR techniques have also been used to 

characterize the size distribution in food foams and emulsions and there is currently an 

expanding activity in this area (Johns & Gladden, 2002)(F. Mariette, 2009). The majority 

of the approaches have adopted pulsed field gradient (PFG) NMR but T2 relaxometry and 

magnetic resonance imaging (MRI) have also been investigated. 

 

Optical microscopy is the most widely used technique. Optimal microscopy can be used 

for a wide range of systems and applications due to its capability to produce images with 

very good resolution, relative simplicity and extensive development. Conversely, a 

disadvantage of optical microscopic is that the observations are limited to a few layers of 

foams and emulsions and thus they do not provide the global size distribution of the 

sample but only a local one. Furthermore, they can be destructive for the sample since 

dilution is, in many cases, required (Blonk & Aalst, 1993).  

 

Light scattering is also commonly used and it can cover a wide range of sizes from sub-

micron level up to centimetres (Durian et al., 1991). Additionally, multiple light scattering 

techniques can provide information about the dynamics and the evolution of foams and 
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emulsions (Höhler et al., 2014).  A drawback of this approach is that only dilute systems 

can be studied and the dilution of more concentrated foams and emulsions can be 

destructive for the samples (Coupland & Mcclements, 2001).  

 

Ultrasound spectrometry has been investigated as a potential low cost method for 

samples under a range of process conditions. However, this method can be seriously 

affected by particle impurities and the thermo-physical properties of the continuous and 

dispersed phase (Johns & Hollingsworth, 2007).  

 

Electrical conductivity measurements often require the addition of an electrolyte in the 

aqueous phase which cannot be easily applied to non-diluted samples (Kostoglou et al., 

2010). A similar technique called electrical capacitance tomography (ECT) can be used 

for image acquisition. The images can then be used in order to extract the SSD. This 

approach has two major drawbacks: (i) computational demanding and very time 

consuming algorithms have to be used, (ii) the final image resolution is also usually low 

(Hou et al., 2019).  

 

3D X-ray tomography is a very powerful technique with the capability of providing high 

resolution images of the system’s microstructure (Trater & Alavi, 2005)(A.J.Meagher et 

al., n.d.). However, its main disadvantage is that it is very time consuming, because of the 

image acquisition and reconstruction process. In many cases, it can also be described as 

an invasive technique (as the sample preparation techniques can be destructive) (Johns 

& Hollingsworth, 2007). 

 

2.4. NNs and SVMs for K-Space Signal Analysis 

Based on the review of the existing analytical techniques presented in section 2.3, we can 

see that there is a need for a fast and non-invasive method that can be used to study the 

sphere size distribution both in stable as well as in dynamic systems. 

 

Our approach to develop such a method is to use the existing NMRI or X-Ray mCT 

techniques but in combination with a novel machine learning data analysis method. More 

specifically, as we discussed in section 2.3. a major drawback of both these methods 
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(NMRI and X-Ray mCT) is that they are commonly used to acquire a 3D image of a sample 

which is then analyzed further to extract the desired information about the sphere size 

distribution of the material. Both the 3D image acquisition and 3D image analysis are very 

time-consuming steps. It was however shown in previous work (Holland et al., 2012) that 

the information related to the sphere size distribution of a system exists in the 1-

dimensional k-space signal of that system.  Moreover, it was demonstrated that is 

possible to use that 1D k-space signal acquired from NMRI or X-Ray mCT, in combination 

with a Bayesian statistical method, to predict the sphere size distribution of various 

materials (K. Ziovas et al., 2016).   

 

Despite the promising applications that this approach could have the Bayesian signal 

processing method, the authors reported that two major drawback of this method are (K. 

Ziovas et al., 2016): 

i. It’s relatively low accuracy-low confidence for the predicted results 

ii. The need to build a numerical model of the desired system which is then used to 

build the Bayesian statistical model of the k-space signal. 

The second point proved in particular proved to be extremely important in cases where 

the structure of the system under investigation is not well understood. In such cases the 

Bayesian sphere sizing method produces very low accuracy results which, as the author 

of the method explain, cannot be used to gain any useful information about the sphere 

size distribution (Ross et al., 2012a; K. Ziovas et al., 2016). 

 

What we aim to do in this thesis is to build on this recent work and investigate other 

machine learning methods, namely SVMs and Neural Networks, in order to:  

i. Improve the performance.  

ii. Expand the range of potential applications for the 1D k-pace signal analysis 

method.  

In this section we will discuss what the k-space signal is. Furthermore, we will present 

some examples of what the signal from a material with a spherical dispersed phase might 

look like. We will not discuss the details of how this signal can be acquired form NMR and 

X-Ray however since these are very complex techniques, and the focus of this thesis lies 

more on i) the signal properties itself and ii) the machine learning algorithms that we 
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implemented in order to analyze the signal. More details about the theory of NMRI and X-

Ray mCT can be found in textbooks (Callaghan, 1993)(Abraham et al., 1988)(Baruchel et 

al., 2000; Ketcham, 2001) and other published work (Carlson et al., 2003; Cierniak, 2011; 

Laverse et al., 2012; Meagher et al., 2011)(F., 2009; Francois Mariette et al., 2012). 

 

2.4.1. K-space signal and sphere size distribution 

K-space is a name for the frequency domain of a spatial Fourier transform (reciprocal 

space) used predominantly by scientists in the MRI field (Callaghan, 1993, 2011)(Levitt, 

2007).  

 

More specifically the 1-dimensional k-space signal that we are investigating in this thesis 

can be described, generally, as the 1D Fourier transform of a real 1D image (or profile).  

To understand the properties of k-space therefore, one must gain a good understanding 

of what the Fourier transformation (FT) is and how it is used to transform time or space 

domain signal into temporal or spatial frequency domain. 

 

2.4.1.1. Sound signal frequency analysis 

An intuitive example of time domain to frequency domain transformation, is when the FT 

is used to express a musical chord (from the time domain) in terms of the volumes and 

frequencies associated with the individual notes of the cord.  

The continuous FT is described by the equation (Bracewell, 1999): 

 𝐹{𝑥(𝑡)} = 𝑋(𝜉) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝜉𝑡𝑑𝑡
∞

−∞

 (1) 

 

where 𝑥(𝑡) is a function of time t and 𝜉 is the frequency. This equation allows us to map 

a signal from the time domain to the frequency domain. The inverse FT, as the name 

suggests, performs the inverse operation and it is described by the equation (Bracewell, 

1999): 

 
𝑥(𝑡) =  ∫ 𝑋(𝜉)

∞

−∞

𝑒𝑗2𝜋𝜉𝑡𝑑𝑡 (2) 
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Figure 1 shows an example of two simple sine waves with frequencies f = 2Hz and f =  6Hz  

in the time domain as well as their respective frequency domain plots. Since these are 

simple single frequency waveforms in the time domain, they only have one frequency 

component in the reciprocal frequency domain. More complex waveforms would have 

intensity peaks at various frequencies in the frequency domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the time and frequency domain of the combined waveforms of the two 

waves previously shown in figure 1. It easy to see that if more and more waveforms are 

added the frequency domain “signature” of the original wave would include peaks at 

multiple frequency points. The intensity of the peaks at these points is proportional to 

the relative contribution of each wave component to the total signal. In this example the 

wave with frequency f = 2Hz has an intensity twice that of the wave with f = 6Hz in the 

final combined wave. If now we invert the problem and we start with the frequency 

domain (k-space) data we could use this information to predict some properties for the 

original signal. For example, we might wish to calculate the average wavelength of the 

Figure 1.  The time and frequency domain representations of sine waves with two different frequencies. a) 
The time domain signal for a sine wave with f = 2Hz, b) the time domain signal for a sine wave with f = 6Hz 
and c) and d) their frequency domain representations respectively. 

(a) (b) 

(c) (d) 
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waves in the original signal. This can be done analytically since we can calculate the 

wavelength of a wave given its frequency f and its speed C in the medium where the wave 

propagated with the equation: 

 
𝜆 =

𝐶

𝑓
 (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  The (a) time and (b) frequency domain representations of two combined sine waves with initial 
frequencies f1=2Hz and f2=6Hz. 

(a) 

(b) 
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Usually, the propagation speed is either known or it can be measured. But let’s assume 

that for a specific case the speed of the wave in the medium is unknown and furthermore 

the speed is not always constant, so it cannot be exactly determined by performing 

experiments. Then we cannot directly calculate the wavelength. It might be possible 

however to produce an estimation for the wavelength. One could use a machine learning 

algorithm, like those that we will discuss in later chapters, to train a model which can 

identify a correlation between the wavelength and the frequency. The model could be 

trained for various conditions where the propagation speed would take different values. 

Despite the changing propagation speed however the model would hopefully be able to 

create a correlation between the original wavelength and the frequency. It might for 

example be able to identify a pattern where the relative distance between the frequency 

peaks is always constant for a particular average wavelength compared to other waves, 

even though the absolute value of the frequency peaks might vary.  

 

2.4.1.2.  k-space signal patterns 

Although the wavelength example might look as a not very interesting problem there are 

many cases where this approach could provide us with a reasonably accurate estimation 

for very challenging tasks. One such case we explore in this thesis. The goal is to estimate 

the average sphere size of a dispersion based on a k-space data set. The properties of the 

materials that we aim to study are often unknown and it is hard to determine and model 

these materials. Just like the wavelength example mentioned above, one could try to 

identify some patterns in the k-space signal with the help of ML models and estimate the 

sphere size rather than directly attempting to calculate it. One such approach we will 

explore in this thesis and the implementation details will be described in the “Method 

Development and Implementation” and “Results and Analysis” sections.  

 

To gain an insight into what type of patterns the ML models will try to identify we can 

look at the k-space signal coming from two different samples. The only difference 

between the samples is that they have a dispersed phase with a different mean sphere 

size. What we are interested is to look at the k-space signal and identify a potential 

pattern that is corelated with the sphere size distribution. If such a pattern exists, then 

the ML models that we will train could learn to identify it.  Figure 3 show the simulated 
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k-space signal from two samples where sample (a) has a mean sphere diameter of D = 3 

au. and sample (b) has a mean sphere diameter of D = 6 au. The details of how we can 

simulate this signal will be presented in the “Method Development and Implementation” 

section. Moreover, this signal can be acquired from real samples using MRI and Xray 

techniques (Callaghan, 1991)(Baruchel et al., 2000)(K. Ziovas et al., 2016) as we already 

discussed, but the details of  these methods are not in the scope of this thesis.    

 

(a) 

(b) 

Figure 3.  The k-space signal from two samples where (a) is a simulated sample with mean diameter D=3au 
and (b) is a simulated sample with mean diameter D=6au. The continuous fluctuating lines represent the data 
from a single sample while the dashed lines represent the underlining pattern found in the signal. 
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The signal is represented with the solid line, and it can be seen in both cases that it is 

noise and varies unpredictably from point to point. However, it is also possible to identify 

a pattern in this signal which we illustrate by the dashed lines. These patterns are similar 

to diffraction patterns (Håkansson et al., 1998) but they are buried in the background 

noise and may even be impossible to identify visually. A ML model should be able to learn 

to discover these patterns in the k-space signal, if they exist, and correlate them with a 

specific sphere size distribution (Le et al., 2020). Based on this intuition we aim to test 

the performance of two ML models ANNs and SVMs on identifying these patterns. 

 

2.4.2. Overview of Artificial Neural Networks (ANN) 

Artificial neural networks are currently one of the most popular machine learning 

methodologies. They have attracted a lot of interest the past few decades mainly because 

they seem to outperform most traditional machine learning methods in a variety of tasks 

from classification to regression. In this section we attempt to provide an overview of the 

theory and mathematical foundations of neural networks. We also present some of the 

most important  aspects of the training process of a neural network. 

 

2.4.2.1.  Biological foundation of Neural Networks 

 

 

 

The brain is the component of our body that enables humans to learn and perform a 

variety of tasks. It is estimated to have about 10 billion neurons. Neurons are 

interconnected with each other, forming a large network where each neuron receives 

Figure 4.  Depiction of a biological neuron and it most important components. 
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input from other neurons through its synapses. The input of a neuron is summed and 

when this sum exceeds a particular threshold, the neuron sends an electrical spike to 

other neuron(s) through its axon (Bishop, 2006). 

 

Perceptron is an algorithm in machine learning for supervised learning of binary 

classifiers, i.e., a function to determine the class in which the input vector belongs 

(Agarwal, 2019). The algorithm draws inspiration form the biological neurons. It receives 

a signal in its input, it performs some mathematical operations on it and then sums the 

results which is then passed as input to another neuron just like the biological neurons 

that we presented above. The basic structure and mathematical foundation of a 

perceptron is presented in figure 5. 

 

 

 

This structure can be mathematically written as: 

 𝑓(𝑥) = {
1 𝑖𝑓 𝑤 ∙ �⃗� + 𝑏 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

where 𝑤 is a vector of real-valued weights, 𝑏 is bias and �⃗� is a vector of input values x 

(Géron, 2019). 

Figure 5.  The structure of a simple perceptron model and its various components. 
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2.4.2.2.  From Perceptrons to Neural Networks 

Using the perceptron model as a building block a basic artificial neural network can be 

constructed. The goal of a neural network is to produce a prediction for the value of a 

function f  for a given set of inputs. A simple neural is in essence a multi-layer perceptron 

and it contains the following components: i) Neurons, ii) Bias units, iii) Synaptic weights, 

iv) Activation functions and v) Hidden layers (Ian et al., 2016). 

 

Neurons 

The neuron is the perceptron model along with its input and output as we presented in 

the previous section. 

 

Bias units 

Bias is an adjustable parameter of the neural network. It allows us to adjust the result of 

the activation function by adding a constant (i.e. the bias) to the neurons input. It can be 

thought of as analogous to the role of a constant(intercept) in a linear function (Chollet, 

2018). 

 

Synaptic weights 

By continuing the analogy that we used to describe the bias, the weights can be thought 

of as the co-efficient of the equation that the NN is trying to solve. Just like the coefficient 

of a linear function, negative weights reduce the value of an output. Weights are probably 

the most important parameter as they form the core of the NN.  During the training stage 

of a NN, the weights are initialized based on a given strategy (usually at random). Through 

the training process the values of the weights are optimized and the set of weights that 

produce the best prediction are chosen as the values for our model (Brauer, 2018). 

 

Activation functions 

An activation function dictates how the output of a node is transformed into the input for 

the next layer of the network.  There is a wide range of activation functions to choose 

from and we will discuss some of them later.  In general, they can be linear or nonlinear. 

If a nonlinear function is chosen it introduce a nonlinearity in the neural network design. 

The choice of activation function directly affects the performance of the neural network. 

It is not uncommon to use different activation functions in different parts of the model 
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depending on the task that each layer performs in the NN architecture.  For example, the 

activation function used in the hidden layers are usually different that the function used 

in the output of the NN (Agarwal, 2019). 

 

Hidden layers 

A hidden layer is located between the input and output of the NN. It’s job it consists of 

neurons and its job is to applies weights to its input and direct them through an activation 

function to the output.  In practice, most neural networks have more than one hidden 

layer to be able to adjust and predict on the non-linearities that usually exist on the data 

we are trying to analyze. Having a single hidden layer would be equivalent to predict a 

simple linear function which, in most cases is not a good approximation for the results 

that we are trying to predict (Géron, 2019). 

 

 

 

Figure 6.  The structure of a NN with an input, and output and one hidden layer. The connections between the 
nodes and the different layers of the NN can be seen as well as the weight for each synaptic connection. 
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2.4.2.3.  How does a NN produce a prediction 

For the NN architecture presented in figure 6 we can say that the result of the propagation 

of the input signal x through a single hidden layer, before the result pass though the 

activation function is given by the equation (Deng & Yu, 2013): 

 

𝑛𝑒𝑡𝑗 =  ∑ 𝑥𝑖𝑤𝑖𝑗 +  𝑤𝑗0

𝑑

𝑖=1

 (5) 

And after that signal passed through the activation function f(x): 

 𝑦𝑗 = 𝑓(𝑛𝑒𝑡𝑗) (6) 

 

In the output layer the signal is summed and passed through on more activation function 

g(x) in order to produce the final result of the NN: 

 

𝑧𝑘 = 𝑔(∑ 𝑤𝑘𝑗𝑦𝑗 +  𝑤𝑘0)

𝑛𝑃

𝑗=1

 (7) 

 

where nP is the number of nodes in the hidden layer & wk0 are the bias values. 

 

2.4.2.4. Training an ANN: Challenges and Considerations 

We presented the mathematical formulas based on which a NN can produce a prediction 

based on an input vector �⃗�. But for this calculation to work a set of parameters need to be 

calculated first such as the weight and the biases for each node and each layer of the NN. 

The estimation process of these parameters is what is commonly referred to as the 

“training” of a NN. 

 

In order to evaluate how good, the predictions of the NN are, we use a loss function. This 

function is set as the objective function in an optimization problem where the control 

variables are the weights. During the optimization process the partial derivative of the 

cost function is calculated for each weight and the weights are then updated to achieve 

the optimum value for the cost function. 
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The most common strategy used for updating the values of the weights is back-

propagation (Géron, 2019). Back-propagation allows us to find the partial derivative for 

each weight using the following equations. We can describe the loss function as: 

 

𝐽(𝑤) =  
1

2
 ∑(𝑡𝑘 − 𝑧𝑘)2 =  

1

2
 ‖𝑡 − 𝑧‖2

𝑐

𝑘=1

 (8) 

 

where J(w) is the loss function, t is the expected output, c is total number of outputs and 

z is the model prediction. We can then calculate the partial derivatives of the weights of 

each layer as follows: 

 
Δ𝑤 =  −𝜂

𝜕𝐽

𝜕𝑤
=  −𝜂

𝜕𝐽

𝜕𝑛𝑒𝑡
∗

𝜕𝑛𝑒𝑡

𝜕𝑤
 (9) 

 

So, for the last layer this calculation can be solved as: 

 
Δ𝑤𝑘𝑗 =  −𝜂

𝜕𝐽

𝜕𝑤𝑘𝑗
=  −𝜂

𝜕𝐽

𝜕𝑛𝑒𝑡𝑘
∗

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
 (10) 

 

where 𝑛𝑒𝑡𝑘  is: 

 

∑ y𝑖𝑤𝑘𝑗 + 𝑤𝑘0

𝑛𝑃

𝑗=1

 (11) 

 

Equation 11 then becomes:  

 
Δ𝑤𝑘𝑗 = −𝜂 (

𝜕𝐽

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
) ∗ 𝑦𝑗  (12) 

 

 Δ𝑤𝑘𝑗 == 𝜂(𝑡𝑘 − 𝑧𝑘) ∗ 𝑓`(𝑛𝑒𝑡𝑘) ∗  𝑦𝑗    (13) 

 

where 𝜂 is the learning rate. The learning rate is an important meta-parameter of the 

model which dictates how big the change of the weight values is between each iteration. 

Small values of learning rate will increase computational time. Very large values might 
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lead to model instability because the model will constantly overshoot the optimal value 

and it will never converge.  A more detailed explanation as well as various strategies 

regarding the value of the learning rate can be found in the literature (Müller, A., & Guido, 

2018). 

 

The change of the weight values for the previous layers can then also be updated in a 

similar way by applying the same equations.  After this backward pass is completed, the 

weights can be updated by simply applying the following equation: 

 𝑤(𝑚 + 1) = 𝑤(𝑚) +  ∆𝑤 (14) 

 

Now that we have a mechanism for updating the weights based on the error(distance) 

between the desired and the predicted value we can choose an optimization strategy for 

the objective function. A commonly used optimization method is the stochastic gradient 

descent (Friedman et al., 2009; Géron, 2019). There is extensive literature covering the 

details of the stochastic gradient descent. For the purpose of this section, we can that the 

stochastic gradient descent is an iterative optimization method. Its goal is to start from a 

random point on a function and reach the lowest point (minimum) of that function by 

travelling down the slope of the function. 

 

The entire training process that we described here can then be summarized as follows: 

1. The weights of the NN are initialized with random values. 

2. The input of the NN is passed through the layers of the NN, where the initial 

guesses for the weight values are used to calculate the output of the network. 

3. The difference(error) between the expected and the estimated output is 

calculated. Based on this value we use the backpropagation method to update the 

weights of the NN 

4. The new estimated values are then calculated. If they newly calculated error is 

higher than our target value, we repeat the calculations are repeated.  

5. The algorithm, usually, terminates based on two conditions: 

a. Either because the error has decreased below an acceptable level that we 

have pre-defined or 

b. Because the maximum number of iterations has been exceeded.  
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It is important to terminate the process after a maximum number of iteration because the 

target value for the error may be never reached. This would cause our algorithm to 

oscillate indefinitely (Ian et al., 2016). 

 

2.4.2.5. Practical aspects of Back-Propagation 

 

Activation function 

As mentioned in section 2.4.2.2 the activation function is an important component of the 

ANNs. The output signal of each node of a layer is passed through an activation function 

before it is fed to the next layer. The activation function transforms the signal in such a 

way that a non-linear behavior is introduced to the output signal. Without an activation 

function a neural network would work just like a linear regression model. The non-

linearity introduced by the activation function allows the ANN model to “fit” more 

complex and non-linear curves on the data (Chollet, 2018; Deng & Yu, 2013; Géron, 2019).  

 

Commonly used activation functions have a set of desirable properties that increase the 

performance of the ANN (Géron, 2019). An activation function should ideally be: 

• Continuous and Smooth. Smoothness is important for improving the 

performance of gradient based optimization methods. These methods 

converge easier to the optimal solution when smoother functions are used. 

Moreover, the activation function should produce a continuous output since 

its input signal, coming from a node, is also continuous. 

• Non-linear. As discussed earlier it is necessary for a non-linear output to be 

produced so that the ANN can better “learn” non-linear patterns that might 

exist in the training data. 

• Differentiable. This requirement arises from the need to calculate the partial 

derivatives for the back-propagation step presented in section 2.4.2.4. 

• Monotonic. The behavior of the function must be monotonic so that, as the 

weight of a neuron increases, the output of the activation function will also 

increase. A non-monotonic function would result in unpredictable behavior. 
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• Saturated. This property limits the potential output range of a neuron 

between an upper and a lower limit. It is ensured therefore, that no single 

weight can dominate the final output signal. 

• Linear or constrained for small values. It might seem that this requirement 

contradicts the non-linearity that we mentioned earlier. However, if the 

behavior of the activation function is not linear (or constrained in another 

way) for small weight values the vanishing or exploding gradient problem 

arises (Deng & Yu, 2013). The vanishing gradients appear with certain 

activation functions whereas more layers are added to the ANN the gradient of 

the loss function tend to zero. This in turn makes the training process harder 

and maybe impossible. On the other hand, exploding gradient appear when 

error gradients accumulate over time and can result in extremely large 

gradients. In some cases, the weight value grows so fast that they overflow the 

memory and “NaN” values appear, which causes the optimization process to 

fail completely. These problems are discussed in more detail in the literature 

(Géron, 2019; Maleki et al., 2020; Rozenberg et al., 2012).  

 

Loss functions 

The purpose of the loss function in the ANN is to calculate the difference between the 

target (expected) output and the neural networks predicted value. Los functions and their 

properties are of great importance for ANNs and there is a lot of published work on this 

topic (Ian et al., 2016; Messaoud et al., 2020). Three broad types can however be 

identified: 

1. Classification functions. They are used when we wish to find the probability 

that our input signal belongs to a distinct category. The output in this case 

consists of distinct classes and a probability is assigned to each.  Commonly 

used classification functions are margin classifier, negative log-likelihood and 

categorical cross-entropy. 

2. Regressive functions. When the desired prediction is a continuous quantity 

rather than a distinct class, continuous regressive functions are used. This 

category of functions includes mean square error and absolute error. 
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3. Embedding functions. In some ML problems we are interested in determining 

how similar two (or more) inputs are. To determine this degree of similarity 

functions such as the L1 hinge error and the cosine error are used. 

 

Optimization Algorithms 

During the training process optimization algorithms are used to find the best 

combination of weight values that minimizes the loss function (Brauer, 2018; Deng & Yu, 

2013; Ian et al., 2016). These algorithms can be divided in two categories, based on how 

the learning rate is chosen: 

1. Algorithms with constant learning rate where the learning rate is the same 

(and fixed in value) for all weights. The stochastic gradient descent that we 

discussed earlier is such an algorithm. 

2. Algorithms with adaptive learning rates. They provide various methods for 

adjusting the learning rate during the training process to offer a better balance 

between speed of convergence and accuracy (Friedman et al., 2009). “Adam” 

is a very popular adaptive algorithm. 

 

2.4.3. Overview of Support Vector Machines (SVMs) 

Another popular machine learning algorithm that has been relatively that can be used to 

tackle both regression and classification problems, just like the ANN, is the support vector 

machine (SVM) algorithm. 

 

The theory behind SVMs has a long history and it was first developed during the 1960’s 

however it was not until the early 1990’s that practical, working classifiers that used the 

kernel trick were invented (James et al., 2013).  SVMs in their original form could have 

only been used to analyze linearly separable data. The introduction of the kernel trick 

however (James et al., 2013), which will be discussed in this chapter, was a major 

advancement for SVMs since it made the analysis of non-linearly separable data, not only 

possible, but also computationally efficient. 
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2.4.3.1. Linearly separable data 

A one-dimensional set of data, with two classes can be considered linearly separable if a 

point exists such that: 

• It could separate the data into two distinct groups and 

• Each group consists only of data points from a single class 

Such a case is illustrated in Figure 7. 

 

 

As seen in figure 7 at least one point exists that can act as a boundary between the class 

on the left of the boundary and the class on the right. In this dimension therefore, the data 

set is linearly separable. If we now, try to separate a two-dimensional data set the 

boundary between the two classes is not anymore, a point but a straight line. This is 

illustrated in figure 8 where, again the two classes are being perfectly separated by a 

linear boundary. If we then move to a three-dimensional (3D) space the boundary now 

becomes a 2D plane.  

 

 

 

One can imagine how this analysis can be further expanded to higher dimensional spaces. 

The decision boundaries for n-dimensional data sets are called hyperplanes. A 

hyperplane is therefore a n-1 dimensional subspace of the original n-dimensional data 

space.  

Figure 7.  A 1-dimensional linearly separable set of data. The data can be easily separated in two classes by 
choosing an appropriate point on the x-axis. 

Figure 8.  A 2-dimensional linearly separable set of data. The data can be easily separated in two classes by 
choosing an appropriate line such as the one illustrated on the right diagram. 
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2.4.3.2. Main concepts and mathematical foundation 

Given the linearly separable data sets that we show in the previous section it is often 

desired to identify the best way that two (or more) data classes in that data set can be 

separated. As we discussed, there are potentially infinite numbers of decision boundaries 

between two linearly separable classes. The question that arises is how one can choose 

the decision boundary that provides the best separation between these classes.  This is 

precisely where the SVM algorithm has proven to be useful. It allows us to identify the 

hyperplane that separates the two classes while providing the maximum margin on 

either side of the decision boundary. This is illustrated in figure 9. 

 

 

Before further investigating how an SVM can achieve this goal it is important to explain 

the basic terminology used in describing SVMs. The most important terms are: 

• Support vectors. As seen in figure 9, on either side of the decision boundary 

the are some points that are closer to the boundary that the rest of the points 

in each class. These are known as support vectors (Pisner & Schnyer, 2019). 

They are in essence the most important point of each class since they define 

where the hyperplane should be placed. If a support vector is removed from a 

class, then the decision boundary will change. On the other hand, removing any 

other point from either class will not affect the decision boundary. 

Figure 9.  A hyperplane separating two classes in a 2D space. The margin as well as the support vectors of 
the hyperplane can be seen. 
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• Margin. This is defined as the distance between the support vectors and the 

decision boundary as can be seen again in figure 9. There can be two types of 

margins the soft and the hard margin. When an SVM model is created we could 

allow some of the data points from each class to fall within the margin on either 

side of the hyperplane.  This is an instance of the bias-variance tradeoff 

(Müller, A., & Guido, 2018) where the model is allowed some degree of error 

on the training data in exchange for flexibility. If we restrict our model in such 

a way that no points are allowed to fall within the margin, then we are using a 

hard margin. 

Given a data set where two linearly separable class A and B exist. We wish to identify the 

line that separate these two classes so that we can then use this decision boundary to 

predict the class of a new unknown data point x and place it in either class A or class B.  

For a two-dimensional data space, the decision boundary, as we saw before is a linear 

equation: 

 
𝑔(𝑋) = 𝑤𝑇𝑋 + 𝑏 = 0 (15) 

 

Where w is the weight vector, X is the input vector and b is the bias. It must be noted that 

the weight vector can be thought to represent the orientation of the hyperplane in the n-

dimensional feature space. 

 

Since the hyperplane is the decision boundary between the two classes in the entire 

feature space this means that for each feature vector there is a linear function g(Xi). If the 

feature value is on the positive side of the hyperplane the equation is: 

 
𝑔(𝑋𝑖) = 𝑤𝑇𝑋 + 𝑏 > 0 → 𝑋𝑖 ∈ 𝐶𝑙𝑎𝑠𝑠 𝐴 (16) 

 

while if the feature value is on the negative side of the hyperplane it becomes: 

 
𝑔(𝑋𝑖) = 𝑤𝑇𝑋 + 𝑏 < 0 → 𝑋𝑖 ∈ 𝐶𝑙𝑎𝑠𝑠 𝐵 (17) 

 

In figure 10 we can see the value of this linear function for the hyperplane, the support 

vectors as well as some random points in each class. 
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2.4.3.3. Calculating the maximal margin classifier 

As we discussed in the previous section the distance between the hyperplane and the 

support vectors is defined as the margin. In the case that we are studying, where our data 

are linearly separable, we can see that in fact one could draw an infinite number of 

hyperplanes between the data by simple rotating or traversing the decision boundary as 

can be seen in figure 11. 

 

 

Figure 10.  A hyperplane separating two classes in a 2D space. The margin as well as the support vectors of the 
hyperplane can be seen. Moreover, representative values of the boundary equation for various data points are 
illustrated. 

Figure 11.  A representative number of candidate decision boundaries is illustrated for a D data set. 
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In order to choose the best classifier amongst these infinite options, we use the maximal 

margin criterion. Based on this criterion the hyperplane that provide the best separation 

between the two classes is the one that has the largest margin value (James et al., 2013). 

This can easily be understood based on intuition, since the hyperplane with the maximum 

margin is the one that is further away, on either side, from the classes that we wish to 

separate. It is possible to calculate the perpendicular distance from each data point in our 

observations and identify the support vectors and the margin distance. When calculating 

the maximum margin classifier, it is assumed that this classifier will still have a large 

margin on future test data as well.  Even though the maximum margin classifier produces 

good results in most cases, it is also prone to overfitting when trained on large feature 

spaces (Müller, A., & Guido, 2018).  

 

The calculations for the maximal margin classifier consist in fact of an optimization 

problem where the objective function to be maximized is the margin M: 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑀 (18) 

 

Subject to the following constraints: 

 

∑ 𝑤𝑗
2 = 1

𝑝

𝑗=1

 

𝑦 ∗ (𝑤𝑇𝑋 + 𝑏) ≥ 𝑀 

(19) 

 

These constraints ensure that all observations lie on the correct side of the hyperplane 

and that no observation is closer to the hyperplane than the distance M. Details for solving 

strategies for this optimization have been published and are extensively available in 

literature (Rozenberg et al., 2012).  

 

2.4.3.4. Non-perfectly separable classes - Support Vector Classifiers  

It is easily understood form the analysis of the maximal margin classifier presented so far, 

that that approach could only work when observation can be perfectly separated by a 

hyperplane. In many cases however this is not possible, and we are instead interested in 
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a classifier that offers the best (but not a perfect) separation of the data points.  

Furthermore, even if two classes could be perfectly separated, the maximal margin 

classifier might lead to overfitting on the training data. To avoid this some degree of 

uncertainty is usually desired.  This uncertainty allows our model to generalize better to 

new data and minimizes its sensitivity to the original training set. We can therefore think 

of the support vector classifiers (SVC) as a more efficient, less sensitive and more 

generalizable extension of the maximal margin classifier. 

 

The optimization problem for a support vector classifier is like the one presented for the 

maximal margin classifier, but we can now relax the constraints and add a fuzzy factor that 

will allow our model to misclassify a given number of observations. Specifically, the 

optimization problem is described by the following equations: 

 

 
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑀 (20) 

 

Subject to the following constraints: 

 

∑ 𝑤𝑗
2 = 1

𝑝

𝑗=1

 

𝑦 ∗ (𝑤𝑇𝑋 + 𝑏) ≥ 𝑀(1 − 𝜖𝑖) 

𝜖𝑖 ≥ 0, ∑ 𝜖𝑖 ≤ 𝐶

𝑛

𝑖=1

 

(21) 

 

Where 𝜖 are slack variables that allow some of the observation points to be misclassified 

and C is the tuning parameter that controls the number of misclassifications that we wish 

to allow for our SVC. Large values for the parameter C would lead to many observations to 

fall within the margin and therefore the model would rely on many support vectors.  Such 

a model would, in theory, display low variance but higher bias. On the other hand, if a small 

value for C is chosen the SVC, a smaller number of points would fall within the margin and 

the model would rely on fewer support vectors as well.  With this tuning the model would 
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display higher variance but potentially lower bias. An example with different values of C 

is illustrated in figure 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.4.3.5. Non-linearly separable data – Support Vector Machines 

We have investigated so far, the basic theory and mechanisms used for data that can be 

linearly separated in two distinct classes, however this assumption is not always true for 

real data. In fact, in most real applications the linear classifiers would perform very poorly 

on predicted the desired class because they cannot account for the non-linearities in the 

data. Therefore, the SVCs can be further extended in order to accommodate for this non-

linearities. This can be achieved by expanding the original feature space with the use of 

higher degree polynomials (quadratic, cubic etc.). For example, if we start with the 

features:  

𝑋1, 𝑋2, . . , 𝑋𝑝−1, 𝑋𝑝 

Figure 12.  An SVC fitted on the same data set with varying values for the tunning parameter C. The value for 
the tuning parameter is higher on the top left and then decreases gradually for the top right, bottom left and 
bottom right panel. As the value of C decreases the extent of misclassified points is reduced. 
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We can then expand this feature space by calculating higher order relationships between 

these features such as: 

𝑋1, 𝑋1
2, 𝑋2, 𝑋2

2, . . , 𝑋𝑝−1, 𝑋𝑃−1
2 , 𝑋𝑝, 𝑋𝑃

2 

 

If we then apply a linear classifier in this enlarged space, it might be able to successfully 

separate the observations in distinct classes. It should be noted that the classifier used 

would still be a linear classifier but fitted on higher order feature space which means that 

in the original feature space the classifier would appear as non-linear. In the example 

above this would mean that in the original feature space the classifier would be a 

quadratic polynomial. Of course, higher orders of polynomial can be used until a 

satisfactory separation is achieved. 

 

It is easy to see however that this simplistic approach faces a major challenge. Specifically, 

the need for an increased feature space with higher order of relationships (polynomial or 

other) can easily lead to computationally unmanageable problems. Addressing this 

challenge is exactly where the success of the Support Vector Machines lies.  

 

SVMs attempt to use the higher order relationships that might exist in our data, but they 

do that with a computationally efficient way. This is what SVM practitioners and scientists 

call the kernel trick. The mathematics behind the kernel trick are relatively complex and 

have been analyzed extensively in the literature (Rozenberg et al., 2012). The main idea 

however is that one only needs to calculate the inner product only between the support 

vectors to capture the non-linear relationships in the data set. Because the support 

vectors are usually a very small subset of the original data set, this calculation more 

efficient than the original approach where the higher order feature space had to be first 

produced and then a linear function had to be fitted on this enlarge space. The final 

calculation for estimated a non-linear classifier is: 

 
𝑓(𝑥) = 𝛽0 + ∑ 𝑎𝑖

𝑖∈𝑆

〈𝑥, 𝑥𝑖〉 (22) 

where α are the correlation parameters between each pair of support vectors. Another 

major computational improvement is achieved by not calculating the inner product of the 

support vector directly. This is the heart of the kernel trick. Instead, the inner product can 

be calculated by a numerical approximation, with the use of various expansion series 
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(kernels). These kernels (numerical approximations) make the computation of the inner 

product very efficient. Furthermore, depending on the type of kernel used, one could 

approximate the relationship between the support vectors in a different way.  Some 

kernels could produce better results in specific cases than others. Therefore, a data 

scientist can experiment with and choose the kernel that performs the best in each 

specific scenario. This can be seen in Figure 13 where a polynomial and a radial kernel 

are used to separate two classes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  An SVM fitted on the same data set with two different kernels. On the left plot the kernel used is a 
3rd degree polynomial and, on the right, it is a radial kernel. 
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3. Method Development and Implementation 

In this chapter we will present the methodology, software tools and programming aspects 

that we used for developing the ANNs and SVMs models and for producing our simulated 

k-space signal of sphere size distributions 

 

3.1. Development of NN and SVM Code 

In this section we present the data preparation, data analysis, machine learning training, 

validation and testing methodologies that we followed to study the performance of NN 

and SVM on analyzing our k-space signal. We also discussed the tools selection process 

and the analytical approach that we chose for this work. 

 

3.1.1. Machine learning pipelines 

When investigating a ML problem, the aim is to develop a model that can be trained on 

an existing training data set and be latter used to perform prediction on new data. 

Moreover, this model is often part of a larger application with various components. This 

is a very complex process with various distinct steps that require different 

methodologies, skills and tools. This process, starting from the raw data and ending with 

a software application that uses a trained ML model is known as ML pipeline. The most 

important steps of a ML pipeline are illustrated in figure 14. These broad categories can 

be further broken down into more detailed steps.  

 

Data preparation 

This step comes before even considering a machine learning approach. It involves all the 

required steps that a data scientist/software developer needs to follow to acquire good 

quality data but also gain a very important insight on this data as well. Specifically, these 

steps include: 

• Data collection and storage 

• Data cleaning and feature engineering 

• Exploratory data analysis and visualization 
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Typically, a data scientist would start this process by collecting raw data either from 

existing data repositories or by producing/collecting the data from a source. These raw 

data might include bad quality or irrelevant data which had to be cleaned and prepared 

(Friedman et al., 2009). Furthermore, not all the feature of the data are relevant for the 

analysis to follow so one might choose only a subset of the original feature space to work 

with. On the other hand, feature augmentation techniques also exist that allow scientists 

to enlarge their feature space by producing new features from the original ones (James et 

al., 2013). 

 

Finally, it is usually extremely helpful to perform a manual exploratory data analysis and 

visualization to better understand the information hidden in the given data. This insight 

can prove to be essential for the following model selection step. In cases where the data 

are not well understood wrong ML approaches are chosen that lead to poor performance 

(Weber, 2020). 

 

 

Model training  

When the data pre-processing step is completed and after we have gained an insight into 

the data by performing a preliminary analysis, the machine learning training step follows.   

Data 
preparation

•Data collection and storage

•Data cleaning and feature engineering

• Exploratory data analysis and visualization

Model 
training

• Candidate model selection

•Model training and validation

•Model testing and evaluation

Model 
deployment

•Model integration and deployment

•Model monitotring and management

Figure 14.  The main steps and processes involved in a ML pipeline starting from raw data and ending with 
model deployment and monitoring. 
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This can also be said to include the following tasks: 

• Candidate model selection 

• Model training and validation 

• Model testing and evaluation 

The process begins by exploiting the insight that we gained from the data preparation 

step to identify potential ML algorithms that could tackle the problem at hand. After the 

candidate models have been identified the main training ad validation steps begin which 

are usually the core of a ML development task. In this step the models are trained based 

on a predefined data set. During their training we evaluate the effectiveness of our 

training strategy by validating the results with a subset of our training data. Again, 

numerous strategies exist for this step like train/test split, k-fold validation and others 

(Friedman et al., 2009). The validation process ensures that our training is leading to an 

improved version of our model while at the same time avoids overfitting and excessive 

computations with minimal performance benefits (James et al., 2013). 

 

When the training step is completed, we then present our candidate models with various 

data sets that they have not seen before. It is important to avoid data leakage between 

the training and the testing steps because this could lead to false performance results. 

The models must always be tested against previously unseen data (Hannes Hapke, 2020).  

The performance of each method is evaluated using various performance metrics such as 

mean square error and mean absolute error for regression problems and accuracy, 

precision and recall for classification problems (Bishop, 2006).  

 

The best performing model is selected to be used in the final application.  

 

Model deployment 

 A ML model is usually the core of a functionality or even of an entire software application. 

As such it need to be integrated, deployed, and managed with the rest of the application.  

This is usually the area where software developers take over from data scientists as they 

are responsible for integrating the ML model with a bigger application and it needs to 

work and communicate with other components. More importantly the model 

performance must be constantly monitored and new iteration of the model have to be 
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constantly tested and deployed without disturbing the normal operation of the 

application.  

 

In this project we do not aim to develop such an application but rather investigate the 

potential application and performance of NN and SVM on analyzing the k-space signal. 

Therefore, we will not discuss this part of the pipeline more in this thesis.  The 

implementation details of such an application could however be investigated in future 

work. 

3.1.2. Development tools and methodology 

The work presented in this thesis focused on the first two steps of a ML project pipeline, 

namely i) data preparation and analysis ii) ML model training and validation. Specifically, 

our aim was to: 

• Produce, prepare and analyze the simulated k-space signal from materials with a 

specific structure, namely dispersions 

• Investigate the performance, advantages and challenges that ANN and SVMs 

present when trying to make predictions about material properties based on this 

k-space signal 

 

Tools 

Currently there is a variety of software tools that are available and help scientists address 

the challenges involved in each step of the ML pipeline. For the first two steps of the 

pipeline, where our work is focused, we decided to use the following main tools: 

• Python 3. Multi-paradigm high-level interpreted language. Currently it is the most 

popular choice amongst Data and ML scientists (Géron, 2019; Lee, 2019). 

• Pandas and NumPy.  The two most popular Python modules for performing 

scientific computations (NumPy) and performing complex manipulation of large 

data-frames (Pandas). 

• Seaborn and Matplotlib. Seaborn is a high-level data visualization library in 

Python which works very well with NumPy and Pandas data structures. It allows 

scientists to produce numerous graphs with minimal code. It is used extensively 
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to illustrate and analyze data. Seaborn is based on the more low-level Matplotlib 

library which we also used to customize our graphs. 

• Scikit-learn. One of the most popular libraries for training, validating and testing 

ML models. Although it is not a performance-oriented library like some other 

alternatives (it does not support GPU acceleration for) it offers a very user friendly 

and uniform interface while at the same time it supports most of the current ML 

methods. This makes it the most popular choice for RnD and educational purposes 

in the Data and ML fields. In our case it allowed us to use the same high-level 

approach and develop the same pipeline for data preparation, training, validation 

and testing. Then we could simply swap in and out the ANN or VM models without 

having to rebuild the entire pipeline for each model. If someone wishes to improve 

the computational time of our models, after the investigation phase, it is possible 

to transfer the implementation to a more performance-oriented library like 

PyTorch, Keras or TensorFlow (Brauer, 2018)(Gulli & Pal, 2017)(Stevens et al., 

2020). 

• Jupyter Notebooks. This is a browser-based interactive computational 

environment which has recently become extremely popular with data scientists. 

It offers a platform where the user can create and run in real-tile code blocks, store 

data, display markdown text, images and graphs. This allows data scientists to 

have access to all the components of a Data/ML project in the same place with an 

easy interface. Combining code, data, graphs and text in a single location helps 

scientific communication greatly. 

• Git. We used git and GitHub for version control. This also allows us to share the 

project in the future with other scientists. The repository of this project will be 

made public after the completion of the examination process (Kostas Ziovas, 

2021). 

 

Methodology 

With the use of the tools described above we developed the scripts and modules 

necessary for simulating, visualizing and storing the k-space data as described in section 

3.2.2.  The simulation parameters that we had to specify are: i) sphere size distributions, 
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ii) noise levels, iii) sample sizes and iv) number of simulations to perform. The details and 

values for these parameters will be given in the “Results and Analysis” section. 

 

After producing the desired data sets, we developed the data processing and ML model 

training pipeline. This includes: 

1. Loading, formatting and scaling of data 

2. Specifying the grid search parameters for each ML model. These parameters vary 

for each model, but they are the hyperparameters that a scientist has to tune in 

order to achieve the optimal performance for each ML model. Scikit-learn offer the 

same interface for conveniently creating grid search structures for any type of ML 

model. 

3. Training and validating the ANN and SVM models using the k-fold validation 

method 

4. Testing the performance of the optimally tuned model on a previously unseen data 

set 

5. Storing the ML model for further analysis 

 

The final step in our project was to perform a sensitivity analysis on our models ad 

identify their performance characteristics. We tested and visualized how the ANNs and 

the SVMs perform on analyzing unseen k-space data of various samples. The parameters 

that we tested are specific for each model and again will be presented in the “Results and 

Analysis” section. 

 

Throughout this process we tried to use good coding practices and build reusable tools 

whenever possible.  Our aim to have an automated, uniform and easy to use understand 

workflow. It is composed of Python code libraries, comments, text-block explanations, 

graphs and images for each step. This makes the process easy to follow for anyone who 

might be interested in studying or expanding the current work. As mentioned earlier we 

used git for version control and the entirety of this project will be publicly available as an 

open-source project in GitHub after the completion of the examination process. The 

GitHub repository address can be found in the ‘References’ chapter (Kostas Ziovas, 2021). 
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3.1.3. Problem formulation 

While developing our methodology we could choose to formulate the problem of 

estimating the sphere size distribution of a sample from its k-space signal as (i) a 

regression problem or (ii) a classification problem.  

In the past a Bayesian method was used to analyze the k-space signal and in that work 

there was a predefined set of possible states that the model could predict based on k-

space data. The problem was therefore a classification problem. However, it is more 

intuitive and of higher practical use to approach this task as a regression problem. By 

nature, the question that we are facing covers a continuous space of possible answers. 

There is not, in reality, a finite set of sphere size distribution that our system can have. It 

might be known that the values always fall within a specific range, but they could take 

any value in this range. So conceptually classification is not the most appropriate choice 

for this task.  

 

Furthermore, as we will explain in the “Results and Analysis” section, by discretizing the 

problem in order to turn it into a classification task the performance degrades because 

the variance increases. The reason is that by using classification a sample that is 

misclassified will be assigned a value far different that its true value. This is because the 

classes are assigned at large intervals and there is not continuous value assignment as in 

a regression problem. Even small errors in the classification problem create a much 

worse overall model performance.  

 

A classification formulation would be preferred if the property of the material that we are 

trying to estimate is discrete by nature, or if it is easier for humans to understand in a 

discrete form. For example, if we wanted to estimate the presence of a dispersed phase 

or not in our sample then it might be more natural to say that we have two classes one if 

there is a dispersed phase in the sample and one where there is not. Then for each sample 

analyzed we could get a clear ‘YES’ or ‘NO’ answer. 
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3.2. Development of K-Space Signal Simulation Code 

In the previous chapter, section 2.4.1, we discussed the theory related to the 1-

dimensional k-space signal. We also showed how this 1D k-space signal varies based on 

the sphere size distribution in our samples. In this section we discuss the how such a 

signal can be created through simulations, instead of performing real NMRI or X-Ray 

experiments. 

 

3.2.1. Simulation vs Real Experiments 

In order to test and prove the performance of the two new machine learning methods, we 

produced a series of simulated k-space data. Ideally real NMRI and X-ray data could have 

also been used. The simulated data however offer some compelling advantages: 

1. In order to acquire real experimental data we needed access to specialized 

equipment which is only available in very few laboratories. This would mean that 

we had to collaborate with a laboratory or a different university which has such 

an equipment available. Moreover, a significant amount of time would be required 

to configure that equipment to our specific experimental needs while a source of 

funding would be necessary to cover the costs of using and maintaining that 

equipment. These requirements were not in the scope of this MSc thesis. 

2. Simulating data on a computer is easier, cheaper and faster than performing 

complex and time-consuming experiments. 

3. Numerically simulated data, assuming that they are sufficiently accurate 

representations of the real system, allowed us to precisely control, test and 

analyze our newly developed methods. They are therefore preferred during this 

initial proof-of-concept stage as they eliminate all effects and variability that 

could arise from experimental parameters. 

 

3.2.2. Simulation Process Overview 

In this section an overview of the method is presented with emphasis on the numerical 

implementation rather than the mathematical foundation which has been presented 

previously in a series of papers (Holland et al., 2011a, 2012; K. Ziovas et al., 2016). All 

numerical code has been written and implemented using Python 3 and run on an AMD 

Ryzen 5 2600 with 6 Cores (12 Threads). The most important Python libraries used, other 



MSc Thesis  Ziovas Konstantinos 

Development of Machine Learning Models (SVMs and NNs) for Identification of Structural Properties 

of Materials Based on k-Space Data  48 

than the standard library, are: NumPy, Pandas, Seaborn, Matplotlib, Multiprocessing and 

Functools.  

 

Initially, a model for the size distribution must be chosen. The choice of the model is 

dictated by the sphere size distribution of the physical system that is to be analyzed. Since 

we do not have a specific sample to work with, we chose the most common sphere size 

distribution type: a Gaussian size distribution (Campbell & Mougeot, 1999). By 

implementing a Gaussian model, it is possible to train, test and validate the performance 

of the ML methods with a very commonly found size distribution. These finding can then 

be easily adapted to a different size distribution if a specific use-case requires it. 

 

Two assumptions have been made for the implementation of the numerical simulations: 

i. The spheres are randomly distributed in space. 

ii. A Gaussian sphere size model is assumed. 

 

The assumption of random spatial distribution is incorporated in the theoretical analysis 

presented in (Holland et al., 2012), on which this method is based. However, it is possible 

to expand the model for non-random spatial distributions if this is desired.  To fully 

describe a Gaussian distribution two parameters, have to be identified: i) the mean 

sphere diameter Dm and ii) the standard deviation σ. Since we are producing our samples 

through simulations, we chose to use an arbitrary size range for the spheres’ Dm 

parameter ranging from 0.1 arbitrary length units (a.u.) up to 1 arbitrary length units 

(a.u.). The same was done for the standard deviation σ.  These assumptions are expressed 

in equations 23 and 24. 

 0.1 ≤ 𝐷𝑚 ≤ 1 (23) 

 0.1 ≤ 𝜎 ≤ 1 (24) 

In order to produce the simulated sample, the following steps are followed: 

1) A random number N of spheres is generated. The number of spheres in each 

sample is random in order to ensure that the ML models can predict the correct 

SSD independently of the sample size.  Each of these N spheres is randomly 

sampled from a Gaussian distribution with a specified Dm and σ. 
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2) After a diameter has been assigned to a sphere the projection of this 3D sphere 

down to a 1D is calculated using the equation: 

 ℎ(𝑟, 𝑥) = 𝜋(𝑟2 − 𝑥2) (25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  (a) A 3D representation of a single sphere with arbitrary units of length, (b) the 1D volume 
projection of the same sphere on the x-axis 

(a)

(b) 
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where r is the radius of the sphere and x is the position in 1D space. A full 

mathematical analysis of this method is presented in the literature (Holland et al., 

2012). This process is illustrated in figure 15. The 1D signal profile acquired in this 

manner is proportional to the volume of the original sphere at each position along 

the x-axis. This is a key point for this simulation because this produces a signal like 

what a water droplet would produce in an NMRI experiment. The reason is that 

the 1D signal acquired from a water sphere in a magnetic field during an NMRI 

experiment is directly proportional to amount of water at each position on the x-

axis. In this case the NMRI signal in the x-axis would be directly proportional to 

the volume of the sphere. Our simulations are therefore good approximations of a 

real experiment (Holland et al., 2012; Ross et al., 2012a; K. Ziovas et al., 2016). 

3) Each sphere is then shifted randomly within this 1D space and added on to the 

other sphere projections. When the process for all the spheres is completed the 

real space1D projection looks like that of figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) The 1D real space profile is Fourier transformed and the corresponding k-space 

signal is acquired. Figure 17 includes the k-space signal that is produced from the 

1D profile of figure 16.  

Figure 16.  A 1D volume projection of N spheres on the x-axis using arbitrary units of length. 
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The simulation process that we presented in order to generate the k-space signal would 

be practically equivalent to the way that we would acquire the k-space signal from an 1D  

X-Ray profile experiment (K. Ziovas et al., 2016). In an X-Ray experiment we would first 

acquire the real space 1D intensity profile and then produce the k-space data. In contrast 

to this, if we performed a NMRI experiment our original data would be the k-space signal 

itself (Holland et al., 2011b, 2012) and from that we could produce the real space profile 

if desired. The theory behind each method was discussed in chapter 2, sections 2.4.1 and 

2.4.2 but more information can be found in the literature (Holland et al., 2011b, 2012; 

Ross et al., 2012a; K. Ziovas et al., 2016). 

 

 

 

 

 

Figure 17.  The k-space signal corresponding to a simulated sample with N spheres. The k-space data are 
produced by applying a FFT on the real-space data. 
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4. Results and Analysis 

In this section we present the results of the k-space signal simulations as well as the 

training, validation, and evaluation of the ANN and SVM models. The code used for every 

part of this thesis can be found from a link to public GitHub repository  in the ‘References’ 

section (Kostas Ziovas, 2021). 

4.1. K-Space Signal Simulations 

For the k-space signal simulations we used the methodology described in the previous 

section. We performed a range of simulations for samples with various sphere size 

distributions. Table 1 includes all the parameters and their values used to produce the 

data that we used later to train and test our models. 

Table 1. Parameters used for producing k-space simulations 

 Value Range 

Sphere Size Distribution Type Gaussian 

Mean Diameter 1-10 a.u. 

Standard Deviation 0-25% of Mean Diameter 

Noise Level 1-10% of Total Signal Intensity 

Number of Spheres per Sample 40-4000 

K-space Size 256 points 

Total Number of Simulations 100000 

 

As seen in table 1 the type of sphere size distribution was always gaussian and the size of 

the k-space sample simulated was always 256 points as this corresponds to a typical MRI 

experiment for this type of analysis (K. Ziovas et al., 2016). 

 

The number of spheres in the simulation is the equivalent of the sample size if a real 

experiment was to be performed. We chose this range which covers two orders of 

magnitude of sample sizes to ensure that the analysis we perform is independent of the 
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samples sample. This is also in line with previously published work (Holland et al., 2012; 

Ross et al., 2012a). 

 

The mean diameter and standard deviation were varied randomly and independently so 

that a representative data set is produced. The noise level was also varied within a range 

of 1-10% of the total signal intensity. The reason we calculate the noise as a percentage 

of the total intensity is that because the intensity of the signal varies on different k-space 

points we need a common point of reference. It may also seem that a noise level of 10% 

is small but the signal in k-space decays in a logarithmic fashion (Callaghan, 1993) as we 

move away from the center of k-space therefore even a noise level of 10% would 

completely dominate a very big part of the signal away from the center of k-space (Levitt, 

2007)(Callaghan, 2011). 

 

The simulations with all the varying parameters where combined in a single csv file based 

on which the training and validation of both ANN and SVM took place. 

 

4.2. Neural Networks Training and Analysis of K-Space Signal 

In this section we present the training, validation, testing and analysis of the ANN model.   

 

4.2.1. Training and Validation 

As we discussed in section 3.1, we formulated the task as a regression problem. We chose 

the Multi-Layer Perceptron (MLP) Regressor model and used Scikit-learn’s interface to 

create a hyper-parameter grid search. Furthermore, we also used Scikit-learn’s 

Multioutput Regressor (Géron, 2019) since in our analysis, we wish to predict both the 

mean diameter D of the sphere size distribution as well as the standard deviation σ. The 

Multioutput Regressor tool allows ML models that produce a single prediction output to 

be used for multiple prediction cases. 

 

It should be noted, and it can be seen in the projects code, that before training our NN 

model we performed a pre-processing scaling step on the original data. Input data scaling 

is very important when training ML models because the models are sensitive to the 

absolute signal intensity that they are trained on. If the values of the input data varies 
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widely it has a detrimental effect on the ability of the model to identify any patterns 

(Hastie et al., 2016; James et al., 2013).  The scaling that we performed is a simple 

MinMaxScaler which is available within the Scikit-learn package. This scaler simply re-

maps all the signal within a (0-1) range. 

 

4.2.1.1. Hyperparameter tuning 

Table 2 includes all the hyperparameters that we tested. These hyperparameters are very 

important for the performance of our model and they are not estimated from the data 

themselves but instead they are specified by the data scientists who is developing the 

model. To be able to identify a close-to-optimal set of hyperparameters a grid search 

operation is performed like the one we present here. In this grid search all possible 

combination of the hyperparameters specified in table 2 are used. 

Table 2. NN hyperparameter values tested  

 Value Range 

Activation function Logistic, tanh, relu 

Solver lbfgs, sgd, adam 

Learning Rate constant, invscaling, adaptive 

Momentum 0.1, 0.2, 0.4, 0.6, 0,8 

Beta_1 0.1, 0.25, 0.5, 0.7, 0.9 

Beta_2 0.0125, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75 

Alpha 0.0000125, 0.000025, 0.00005,  

0.000075, 0.0001, 0.00025, 0.0005 

Cross validation folds 5 folds 

 

The values that we chose to investigate in the grid search cover the most used activation 

functions, solvers and learning rate strategies. Moreover, a representative range of values 

was chosen for the beta and alpha parameters in the range of values usually 

recommended (Hastie et al., 2016; James et al., 2013). It must be emphasized that the 

hyperparameter tuning is a very empirical process and even though some general 
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recommendations exist, it is up to the data scientist to decide how the tuning process will 

be performed (James et al., 2013). This is an area of ML where a lot of research is being 

done aiming at reducing the trial-and-error process and establishing a more rigorous 

scientific approach for the hyper-parameter tuning. However, at the time when this thesis 

is written no such generally accepted approach exists. Details about the characteristics of 

each of the hyperparameters and their performance characteristics can be found in the 

literature. 

 

Apart from the training meta-parameters defined in the table above for the ANN model 

the most important decision is probably the structure of the NN. Specifically, we must 

decide how many layers and how many nodes in each layer our model will have. As is the 

case with the hyperparameters described above there is not generally accepted method 

that would yield the optimal NN structure. This is also a try and error process where a 

data scientist must experiment with various complexities for the NN (Bishop, 2006). In 

this project we tried to cover a sufficiently wide range of structures. Specifically, the 

combinations that we considered can be found in table 3: 

Table 3. NN architectures tested  

Layers and Number of Nodes 

L1:64, L2:128 L1:128, L2:256 L1:128, L2:64 L1:64, L2:32 
L1:64, L2:128, L3:256 L1:128, L2:256, 

L3:512 
L1:128, L2:64, 

L3:32 
L1:256, L2:128, 

L3:64 
L1:512, L2:256, L3:64 L1:512, L2:128, 

L3:64 
L1:512, L2:64, 

L3:32 
L1:512, L2:256, 
L3:128, L4:64 

L1:512, L2:128, L3:64, 
L4:32 

L1:512, L2:1024, 
L3:512, L4:128 

L1:512, L2:1024, 
L3:512, L4:128, 

L5:64 

L1:512, L2:256, 
L3:128, L4:64, 

L5:32 
L1:1024, L2:512, 

L3:256, L4:128, L5:64 
L1:1024, L2:512, 
L3:256, L4:128, 

L5:64, L6:32 

L1:2048, L2:1024, 
L3:512, L4:256, 
L5:128, L6:64 

L1:2048, L2:512, 
L3:256, L4:128, 

L5:64, L6:32 
L1:4096, L2:2048, 

L3:512, L4:256, 
L5:128, L6:64 

L1:2048, L2:1024, 
L3:512, L4:256, 
L5:128, L6:64, 

L7:32 

L1:4096, L2:2048, 
L3:1024, L4:512, 
L5:256, L6:128, 

L7:64, L8:32 

L2:8192, L2:4096, 
L3:2048, L4:1024, 

L5:512, L6:256, 
L7:128, L8:64, 

L9:32 
 

It can be easily seen that there is a very large number of possible combinations. Especially 

if one combined the hyperparameter grid search with the Neural Network structure grid 
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search a total of C = 793,800 combinations must be evaluated. The computational time 

for each iteration depends on the specific value of the hyperparameters but even with a 

very optimistic time of 100 sec per parameter combination this entire space search would 

require 2.5 years to evaluate on a single core.  It is apparent that not all these 

combinations can be investigated. 

 

In order to reduce computational time, we initially fixed the NN structure to a four-layer 

network with the following nodes:  

L1:256 -> L2:128 ->L3:64 -> L4:32 

 

where the letter L represents each layer by number and the value following are the 

number of nodes in each layer. 

 

By fixing the NN structure to this initial configuration, we performed a hyperparameter 

grid search to identify the values that yield the best performance.  This assumes that the 

hyperparameter grid search is not heavily correlated with the NN structure itself given 

that a structure relatively close to the optimal structure is used (Bishop, 2006)(Hastie et 

al., 2016). After identifying the desired values, we then performed a second grid search 

on all the NN configurations that are in table 3. 

 

4.2.1.2. Results 

The NN that achieved the highest score during training had the hyperparameter values 

shown in table 4. It’s mean-square-error (MSE) on the test data was MSE = 0.0028 for the 

mean diameter estimation and MSE = 0.028 for the standard deviation. The mean-

absolute error (MAE) was MAE = 0.037 for the mean diameter and MAE = 0.136 for the 

standard deviation.  

 

It should be noted that, in order to have an easy direct comparison between the 

performance of our model on estimating the mean diameter D and the standard deviation 

σ, we scaled the labels of our data set. Specifically, when we created our data set the range 

of values for the diameter D were 0-10 au and for the standard deviation 0-2.5 au. For the 

MSE and MAE to be easily comparable we rescaled the labels assigned to our data so that 
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both the diameter D and the standard deviation σ are in a range 0-1au of distance.  The 

same process we repeated latter during the testing step. 

 

The number of layers and nodes is not the only characteristic of the NN structure. The 

arrangement of the layers and nodes is also important. For example, observe the 

following NN structures: 

• L1:256 -> L2:128 ->L3:64 -> L4:32 

• L1:32 -> L2:64 ->L3:128 -> L4:256 

• L1:64 -> L2:128 ->L3:256 -> L4:32 

 

Table 4. Parameters of best performing NN  

Activation function Relu 

Solver Adam 

Learning Rate Constant 

Beta_1 0.5 

Beta_2 0.05 

Alpha 0.000075 

NN Structure 
L1:2048, L2:1024, L3:512, L4:256, 

L5:128, L6:64, L7:32 

Training time 1.5 hours 

Performance - Mean Diameter MSE=0.0028, MAE=0.037 

Performance - Standard Deviation MSE=0.028, MAE=0.136 

 

These three NN have the same number of layers and same number of nodes therefore 

are of comparable complexity. However, the structure of the NN is different in each case 

since the placement of the layers is different: 

• In the first approach the nodes start from a high value and ‘fan-in’ 

towards the output 

• In the second approach the nodes ‘fan-out’  

• In the third approach the node initially ‘fan-out’ and after the third 

layer the ‘fan-in’ again before the output 
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Each of these structures allow for a different amount of complexity at different parts of 

the NN. It has been shown that in some problems specific type of structures perform 

better than others (Deng & Yu, 2013). In our case we have observed that for comparable 

level of complexity, like the example above, the structure that produced the highest 

score was always a ‘fan-in’ structure. 

 

4.2.2. Testing 

The best performing ANN model identified by the analysis in the previous section was 

tested against a previously unseen part of our simulated data to evaluate its performance. 

The reason that this testing step is necessary is because it is common for ML models to 

score very well against their training data but then perform poorly on new data. 

Moreover, this is a sign of overfitting during the training process and therefore model 

testing is important before using a newly trained ML model.  The test data that we are 

using is a reserved part of data from the original simulated dataset. 

 

4.2.2.1. Results 

Table 5 shows the performance summary of the NN model. 

Table 5. NN performance results on test data 

Performance - Mean Diameter MSE=0.008, MAE=0.069 

Performance - Standard Deviation MSE=0.067, MAE=0.21 

Estimation Time -1k Estimations 1.75 sec 

 

The performance results on the new test data are showing an expected behavior. Both 

the estimation for the mean diameter D and the standard deviation σ have approximately 

double the error of the estimations obtained during training on the training data set. This 

is an expected behavior since all the models perform slightly better on the data that they 

have been trained on (Chollet, 2018; Géron, 2019). If the performance difference was 

larger, closer to an order of magnitude, then that would mean that our training process 

forced our model to overfit on the training set. We would need to revisit the training 
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process and improve the validation and implement a strategy to reduce overfitting such 

as: 

• Model simplification 

• Early stopping 

• Different validation method 

• Regularization 

• Dropouts 

Details and use cases for all these techniques can be found in the literature (Hastie et al., 

2016). We can also visualize the output of our model over the test set so we can gain a 

better insight about the performance of the model on our data. Figure 18 shows the 

predicted mean diameter D of our NN model based on the k-space signal.  

 

 

Because we have tested our model over 1k samples it would be hard to get a clear picture 

by plotting all of them. So instead, we binned our prediction in 40 bins and each dot in 

Figure 18.  The NN-predicted mean diameter D plotted against the actual mean diameter. Each dot is a bin 
constituted from 40 individual measurements. The solid black line is the best fit linear prediction of the MLP 
regressor. The dashed line represents the ideal output if the model estimation for all the diameters was equal 
to the actual diameter of each sample. 
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figure 18 represents the center of this bin. The error bars are the 95% confidence interval 

area around the center of each bin. 

 

Figure 19 respectively shows the predicted standard deviation of our NN model based on 

the k-space signal. The same binning process was applied. As mentioned earlier in this 

section in order to be able to easily compare the performance and output of our model 

for both the mean diameter D and the standard deviation σ, we rescaled the region of 

values for both parameters so that they both cover a range of 0-1au of distance. This also 

allow direct comparison of their MAE and MSE values. 

 

 

4.2.2.2. Discussion 

From the results presented in section 4.2.2.1 we can see that the ANN performs well on 

the task of predicted the mean sphere size of the distribution present in the sample under 

analysis. Despite some small fluctuations throughout the range of values, the diagonal 

line of expected diameters follows the model predictions very closely. Moreover, the 

Figure 19.  The NN-predicted standard deviation σ plotted against the actual standard deviation σ. Each dot is 
a bin constituted from 40 individual measurements. The solid black line is the best fit linear prediction of the 
MLP regressor. The dashed line represents the ideal output if the model estimation for all the σ was equal to 
the actual σ value for each sample. 
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variance of the predicted values for each bin of sizes as they are represented by each dot 

in figure 18 is very low. The 95% interval error bars are almost not visible on most points, 

which mean that the model offers high repeatability. This good performance is also 

captured in the values of the MAE and MSE for the mean diameter as shown in table 5.  

 

A more interesting and not so easy to understand behavior is observed when focusing on 

the predictions of the standard deviation for each sample. Our model displays again great 

repeatability with very high confidence and very ‘tight’ 95% confidence intervals. 

However, it is consistently predicting standard deviation values very far away from the 

real value. With a closer inspection one can see that the model is attempting to flatten out 

the prediction line to a constant value of about 0.5 au, exactly in the middle of the value 

range. This is a very different behavior than any other model (for example the Bayesian 

models) has ever reported before (Holland et al., 2011a, 2012; Ross et al., 2012a, 2012b). 

The MSE and MAE values are also much higher for the standard deviation than what they 

were for the mean diameter predictions. One explanation for this behavior might could 

be given if we consider the role that the parameters mean value µ and the standard 

deviation σ play in a Gaussian distribution. The mean value represents the value around 

which the distribution is centered. As a Gaussian distribution converges towards this 

mean value as the standard deviation grows smaller and smaller until the mean value 

ends up describing all of the spheres in a sample. In that case the Gaussian distribution 

would have converge to a uniform distribution. The standard deviation on the other hand 

is itself in a sense a measurement of uncertainty. It provides information for the degree 

of divergence of a Gaussian distribution from this ideal mono-disperse distribution where 

all spheres would have the same diameter as the mean value. 

 

Given this analysis it might be clearer why the ANN is attempting to adopt an agnostic 

approach towards predicting the standard deviation. The standard deviation is treated 

as a value of uncertainty over the prediction of the mean diameter. The ANN model is 

trying to ignore this uncertainty and predict a value for the mean diameter that would 

more accurately describe the sample if all the samples had the same standard deviation! 

Therefore, the values that the ANN predicts for the standard deviation converge towards 

the value in the center of the range for the standard deviations. To phrase this differently 

the ANN seems to assume that all samples have approximately the same standard 
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deviation (~ 0.5 au) and based on that it is estimating the mean diameter that would most 

accurately describe that sample. 

 

Of course, this is only an intuitive analysis based on the fundamental properties and the 

statistical meaning that the mean value and the standard deviation have for a Gaussian 

distribution. A more rigorous and in-depth analysis could be performed in the future to 

explain why this approach is favored by the ANN. 

 

4.2.3. Sensitivity Analysis 

After identifying and testing the best performing ANN model we performed a sensitivity 

analysis to gain a deeper insight into the model performance and how this could be 

affected by various parameters. 

 

4.2.3.1. Parameters investigated 

For this sensitivity test we monitored how the MAE, the MSE, the fitting (training) time 

and the prediction time of our model changed based on: 

• The number of simulations used for training the model 

• The ANN structure complexity (number of layers and number of nodes) 

• The noise level present in the signal 

We also investigated the effect of the standard deviation on the accuracy of the predicted 

mean diameter. This sensitivity tests were done following the insights gained by the 

analysis presented in section 4.2.2, where we show that the ANN adopted an agnostic 

approach towards the standard deviation but achieved very good results on the mean 

diameter. It was therefore important to investigate the relationship between these two 

parameters. 

 

4.2.3.2. Results 

Number of simulations 

As seen in figure 20 the number of experiments used to train the NN is following the law 

of diminishing returns where initially the MSE and MAE are decreasing rapidly as the 

number of experiments is growing. However, after ~5,000 experiments the rate of 
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improvement slows down and reaches a plateau at ~10,000.  After this point there is 

close to zero reduction in the error. At the same time the time required to train the NN 

increases rapidly, in a near-logarithmic rate, with very little gain in performance after 

~10,000 experiments. Therefore, for type of data that we investigated in this thesis a 

number between 5,000 and 10,000 experiments offers the best performance-to-

computational requirements ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model complexity 

Another very important parameter, as we already discussed, is the complexity of the NN. 

The number of layers and nodes used in the NN architecture have a different effect both 

on its performance as well as on the computational requirements. We can see in figure 21 

that the performance improvement follows the same inverse logarithmic rate as we 

observed previously for the number of experiments. The difference in this case however 

is that the increase in computational requirements does not follow a quasi-log 

relationship as before but instead it seems to follow an exponential rate. This means that 

Figure 20.  Effect of the number of experiments used during training on the (a) Fitting time, (b)Prediction 
time, (c) MSE and (d) MAE of the NN model. 

(d) (c) 

(b) (a) 
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for a given increase in the model complexity the computational requirements increase 

with an exponential rate therefore rapidly penalizing models with increased complexity. 

  

By inspecting the graphs in figure 21 we see that the inflection point where the 

computational time increases very fast is for NN with 6 to 7 layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the same time very small improvements in performance are observed for NN with 

more than 4 layers. The seven-layer architecture however produces the best performance 

both for MSE and MAE without requiring extremely large computational times. We chose 

this architecture in our thesis to achieve the maximum performance while maintaining 

relatively low computational requirements. Any architecture with more than 7 layers 

offers no advantages. If someone wanted to achieve the best performance-to-

computational requirements ratio an architecture with 4 layers should be chosen as it 

offers only slightly worse MSE and MAE but with half the computational requirements. 

 

Figure 21.  Effect of the number of layers of the NN used during training on the (a) Fitting time, (b)Prediction 
time, (c) MSE and (d) MAE of the NN model. 

(a) (b) 

(c) (d) 
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Noise level 

The set of graphs in figure 22 shows the effect of noise on the performance of the NN. The 

noise level is not a parameter that a scientist or engineer can control. There are ways to 

improve the signal-to-noise ratio (SNR), or noise-to-signal (NSR) in our case, by 

increasing the number of samples acquired, increasing the sample size and by using more 

sensitive equipment amongst other (Callaghan, 1993). All these solutions have a limit 

upon further improvement cannot be achieved.  Therefore, it is important to know how 

well our NN can perform in situations with varying noise levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MSE and MAE increase with a logarithmic rate and plateau at about 20% NSR. This 

value may seem low but as we already discussed the k-pace signal decays with a 

logarithmic rate away from the center of k-space. The NSR is measured between the 

center of k-space and the edges of k-space where the signal level could be many orders of 

magnitude different. Therefore, a NSR of 20% between k-space center and edges is 

Figure 22.  Effect of the noise level in the data used during training on the (a) Fitting time, (b)Prediction 
time, (c) MSE and (d) MAE of the NN model. 

(a) (b) 

(c) (d) 
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considered a very high value (Callaghan, 1993, 2011). This means that the NN can 

perform a regression on the k-space data even based on extremely noise dominated data. 

 

It is interesting to observe the effect of noise on training and prediction times. The 

prediction time is as expected negatively affected; however, the training time displays a 

more interesting behavior where for smaller values of noise, the training time decreases 

as the noise level increases until the noise reaches a level of 10%, where the training time 

starts increasing again. An explanation of this could be related to the difference in the 

signal level as we move away from the center of k-space. 

 

As we already discussed the signal has values orders of magnitudes different far away 

from the center of k-space. As we start from a pure signal and slowly increase the noise 

level the points far away from the center are affected first. These points are quickly 

dominated by the noise therefore the NN ignores them during training. In practice 

therefore, as the noise increases the number of points that our NN considers is reduced 

creating an apparent reduction in training time. This hypothesis is supported by the fact 

that at the same time the MSE and MAE error increase rapidly since the NN has fewer 

points to base its predictions on. It can be seen in figure 23 how noise-dominated the 

signal becomes when comparing a sample with 0.1% of noise to signal level compared to 

a sample with 10% noise to signal ratio.  

 

It is obvious from this graph that as the noise level keeps rising and reaches 10% the 

magnitude of the noise becomes comparable to the signal level of the points near the 

center. At this noise level the entire signal is affected therefore the NN cannot simply 

ignore points anymore but instead it tries to perform the best prediction based on noise 

affected data points. This then begins to affect the training time since the model must now 

learn to identify the k-space pattern from noisy data. The training time increases, and the 

MSE and MAE begin to approach a plateau since all points are already affected by noise 
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Mean diameter-standard deviation correlation 

In section 4.2.2 we presented the NN estimation against the real values both for the mean 

diameter D as well as the standard deviation σ of the sphere size distributions in our 

samples. 

 

Figure 23.  The k-space signal of a sample with mean sphere diameter D=6 au with (a) 0.1% noise-to-signal 
ratio and (b) 10% noise-to-signal ratio 

(a) 

(b) 
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We explained how the model offers an improved accuracy for the mean diameter but 

converges towards an agnostic approach for the estimation of the standard deviation, 

since the parameter σ can be viewed itself as a representation of uncertainty over the 

mean diameter. The two parameters are corelated so in order to investigate the effect of 

standard deviation the prediction we split the data based on the standard deviation in 4 

parts with standard deviation i) 0 < σ ≤ 0.4 au, ii) 0.4 < σ ≤ 0.6 au, iii) 0.6 < σ ≤ 0.8 au and 

iv) 0.8 < σ ≤ 1 au. We can see the results in figure 24.  

 

 

 

 

The NN is trying to find a middle ground between the samples with different σ ranges 

since the range 0 < σ ≤ 0.4 au seems to produce a small underestimation of the mean 

diameter, the 0.8 < σ ≤ 1 au is overestimated and the two graphs in the middle ranges are 

more accurately estimated. 

 

This analysis provides some ground for future work where a different approach could be 

taken. Instead of having a single NN model for the entire range of standard deviations a 

model ensemble could be trained on different ranges of standard deviations. During the 

(a) (b) 

(c) (d) 

Figure 24.  .  The NN-predicted mean diameter D plotted against the actual mean diameter. Each dot is a bin 
constituted from 40 individual measurements. The solid black line is the best fit linear prediction of the 
MLP regressor. The dashed line represents the ideal output if the model estimation for all the diameters 
was equal to the actual diameter of each sample. Each plot corresponds to samples with different range of  
σ values (a) 0 < σ ≤ 0.4, (b) 0.4 < σ ≤ 0.6 au , (c) 0.6 < σ ≤ 0.8 au and (d) 0.8 < σ ≤ 1 au 
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analysis step when we would like to extract a prediction for a sample, the candidate 

sample would be processed by all models. The model that is trained on the standard 

deviation range closer to the real standard deviation of the sample will produce the 

smallest error. This is a modern approach which produces more accurate results in most 

cases with the tradeoff of requiring to train and test against multiple models instead of a 

single model. Given the current state of computing this is not a particularly hard task in 

most cases (Bishop, 2006). 

 

4.3. Support Vector Machines Training Analysis of K-Space Signal 

In this section we followed the same overall process as the one presented in section 4.2 

for the ANN model. This is a result of the streamlined ML pipeline-based approach that 

we implemented. The pre-processing, training, validation, testing and analysis steps were 

implemented in such a way that any model can be easily swapped in and replace another 

ML model without requiring major changes in the pipeline. The only major change 

between the models is around the specific hyper-parameters that we tuned and tested 

since they differ between ML models. 

 

We will go through the same steps presented in section 4.2 and we try to avoid a 

duplication in the analysis. We will reference the discussion already presented in the 

previous section where necessary and expand it with information specific about the SVM 

model. 

4.3.1. Training and Validation 

For the SVM analysis we chose the SVM Regressor model and used Scikit-learn’s interface 

to create a hyper-parameter grid search. Like the ANN model, we also used Scikit-learn’s 

Multioutput Regressor (Géron, 2019) since we wish to predict both the mean diameter D 

as well as the standard deviation σ. 

 

Before training our SVM model we performed the same pre-processing scaling step on 

the original data that we discussed in section 4.2.1. The scaling that we performed is a 

simple MinMaxScaler which is available within the Scikit-learn package. This scaler 

simply re-maps all the signal within a (0-1) range. 
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4.3.1.1. Hyperparameter tuning 

Table 6 includes all the hyperparameters that we tested. To be able to identify a close-to-

optimal set of hyperparameters a grid search operation where all possible combination 

of the hyperparameters specified in table 6 are used. 

Table 6. SVM hyperparameter values tested  

 Value Range 

Kernel function Linear, Polynomial, Radial 

C 0.05, 0.075, 0.1, 0.125, 0.175, 0.25 

Gamma scale, auto 

Degree of polynomial (for polynomial 

kernel) 

2, 3, 4, 5 

Epsilon 0.005, 0.075, 0.01, 0.0125, 0.025 

 

The values that we chose to investigate in the grid search cover the most used options for 

the kernel function (James et al., 2013). Moreover, a representative range of values was 

chosen for the other parameters.  

 

It can be seen by simply comparing table 6 with table 2 of the NN model that a much 

smaller number of hyper-parameters needs to be tested for the SVM compared to the NN 

which reduces computational time required during the training phase. This could be seen 

as a potential advantage of the SVMs over the NN (Battineni et al., 2019; Deng & Yu, 2013; 

Otchere et al., 2021).  

 

4.3.1.2. Results 

The SVM that achieved the highest score during training had the hyperparameter values 

shown in table 7. It’s mean-square-error (MSE) on the test data was MSE = 0.008 for the 

mean diameter estimation and MSE = 0.068 for the standard deviation. The mean-

absolute error (MAE) was MAE = 0.064 for the mean diameter and MAE = 0.21 for the 

standard deviation.  The training time required for the SVM is 15 sec for the optimal set 

of meta-parameters whereas the ANN required 1,5 hours! This is a very significant 



MSc Thesis  Ziovas Konstantinos 

Development of Machine Learning Models (SVMs and NNs) for Identification of Structural Properties 

of Materials Based on k-Space Data  71 

difference in favor of the SVM. The kernel trick reduces the number of require 

computations resulting in a very efficient ML model (James et al., 2013). 

Table 7. Parameters of best performing SVM  

Kernel function Radial 

C 0.125 

Gamma scale 

Epsilon 0.0125 

Training time 15 sec 

Performance - Mean Diameter MSE=0.008, MAE=0.064 

Performance - Standard Deviation MSE=0.068, MAE=0.21 

 

4.3.2. Testing 

The best performing ANN model identified by the analysis in the previous section was 

tested against a previously unseen part of our simulated data to evaluate its performance.  

The test data that we are using is a reserved part of data from the original simulated 

dataset. 

 

4.3.2.1. Results 

Table 8 shows the performance summary of the SVM model. 

Table 8. SVM performance results on test data 

Performance - Mean Diameter MSE=0.008, MAE=0.07 

Performance - Standard Deviation MSE=0.069, MAE=0.22 

Estimation Time -1k Estimations 1.75 sec 

 

The performance results on the new test data are showing very similar characteristics to 

the ANN. In fact, the error values are almost identical between table 8 and table 5.  Despite 
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being much more computationally efficient therefore the SVM produces identical 

estimations compared to the ANN when tested on new data.  

 

In contrast to this the performance of the ANN was much better (the error was almost 

half) compared to the SVM on the training data set. This could be a very good indicator 

that we might have overfitted our ANN on our training data. Following the discussion of 

section 4.2 about the model complexity that we chose for our ANN we could in fact choose 

a simpler model with 4 layers which could perform equally well but with smaller required 

training time. In the future if someone wishes to perform a practical implementation of 

the work presented in this thesis a 4-layer model could be chosen.  

 

We can also visualize the output of our model over the test set so we can gain a better 

insight about the performance of the model on our data. Figure 25 shows the predicted 

mean diameter D of our SVM model based on the k-space signal. 

 

 

Figure 25.  The SVM-predicted mean diameter D plotted against the actual mean diameter. Each dot is a bin 
constituted from 40 individual measurements. The solid black line is the best fit linear prediction of the SVM 
regressor. The dashed line represents the ideal output if the model estimation for all the diameters was equal 
to the actual diameter of each sample. 
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We binned our prediction in 40 bins and each dot in figure 25 represents the center of 

this bin. The error bars are the 95% confidence interval area around the center of each 

bin. This is like the process followed for the NN. 

 

Figure 26 respectively shows the predicted standard deviation of our SVM model based 

on the k-space signal. The same binning process was applied. As mentioned in section 

4.2.1 in order to be able to easily compare the performance and output of our model for 

both the mean diameter D and the standard deviation σ, we rescaled the region of values 

for both parameters so that they both cover a range of 0-1au of distance. This also allow 

direct comparison of their MAE and MSE values. 

 

 

 

4.3.2.2. Discussion 

From the results presented in section 4.3.2.1 we can see that the SVM, like the ANN, 

performs well on the task of predicted the mean sphere size of the distribution present 

Figure 26.  The SVM-predicted standard deviation σ plotted against the actual standard deviation σ. Each dot 
is a bin constituted from 40 individual measurements. The solid black line is the best fit linear prediction of 
the SVM regressor. The dashed line represents the ideal output if the model estimation for all the σ was equal 
to the actual σ value for each sample. 
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in the sample under analysis. Despite some small fluctuations throughout the range of 

values, the diagonal line of expected diameters follows the model predictions very 

closely. Moreover, the variance of the predicted values for each bin of sizes as they are 

represented by each dot in figure 25 is very low. This good performance is also captured 

in the values of the MAE and MSE for the mean diameter as shown in table 8.  

 

Regarding the predictions of the standard deviation, we observe the same characteristics 

as for the ANN. Specifically the model produces an output that tends to create a constant 

output around 0.5 au. This is the same agnostic approach that the ANN also displayed and 

it was discussed in detail in section 4.2.2. 

 

4.3.3. Sensitivity Analysis 

After identifying and testing the best performing SVM model we performed a sensitivity 

analysis to gain a deeper insight into the model performance and how this could be 

affected by various parameters. 

 

4.3.3.1. Parameters investigated 

For this sensitivity test we monitored how the MAE, the MSE, the fitting (training) time 

and the prediction time of our model changed based on: 

• The number of simulations used for training the model 

• The ANN structure complexity (number of layers and number of nodes) 

• The noise level present in the signal 

We also investigated the effect of the standard deviation on the accuracy of the predicted 

mean diameter.  This is the same analysis that we performed in section 4.2.3. 

 

4.3.3.2. Results 

Number of simulations 

As seen in figure 27 the number of experiments used to train the SVM is following the law 

of diminishing returns where initially the MSE and MAE are decreasing rapidly as the 

number of experiments is growing. However, after ~10,000 experiments the rate of 

improvement slows down and reaches a plateau.  After this point there is close to zero 
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reduction in the error. At the same time the time required to train the SVM increases 

rapidly, in a near-exponential rate, with no gain in performance after ~10,000 

experiments.   

 

There is a difference here between the SVM and the NN Model. As we see in figure 20 

presented in section 4.2.3.2 the required fitting time grows at much faster rate with the 

number of experiments for the SVM compared to the NN.  The SVM follows an exponential 

rate whereas the NN a logarithmic rate. 

 

 

Noise level 

The set of graphs in figure 28 shows the effect of noise on the performance of the SVM. 

We discussed the effects of noise in the analysis of k-space signal in detail in section 

4.2.3.2. 

 

Figure 27.  Effect of the number of experiments used during training on the (a) Fitting time, (b) Prediction 
time, (c) MSE and (d) MAE of the SVM model. 

(a) (b) 

(c) (d) 
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The MSE and MAE increase with a logarithmic rate and plateau at about 10% NSR. This A 

lower value compared to the ANN. This might imply that the ANN performs better with 

noisy data. 

 

Furthermore, unlike the ANN the fitting time and prediction time also increase as the 

noise level increases. This is an expected behavior, and it implies that the SVM does not 

ignore noisy data like the ANN did for lower values of noise. The performance of the SVM 

decreases continuously as the noise level increases following a logarithmic pattern. 

 

 

 

Mean diameter-standard deviation correlation 

In figure 24 we see the effect of the standard deviation on the estimation of the mean 

diameter for the SVM. We explained in section 4.2.3 how the standard deviation σ can 

affects the estimation of the mean diameter. Like the NN, we split the data based on the 

standard deviation in 4 parts with standard deviation i) 0 < σ ≤ 0.4 au, ii) 0.4 < σ ≤ 0.6 au, 

iii) 0.6 < σ ≤ 0.8 au and iv) 0.8 < σ ≤ 1 au. The SVM is also trying to find a middle ground 

Figure 28.  Effect of the noise level in the data used during training on the (a) Fitting time, (b)Prediction 
time, (c) MSE and (d) MAE of the SVM model. 
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between the samples with different standard deviation ranges. Like in the case of the NN 

model the range 0 < σ ≤ 0.4 au seems to produce a small underestimation of the mean 

diameter, the 0.8 < σ ≤ 1 au is overestimated and the two graphs in the middle ranges are 

more accurately estimated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A model ensemble approach could also further improve the performance of the SVM. 

Instead of having a single model trained on all the possible standard deviations we could 

instead train many SVM models specialized in different ranges of standard deviation. This 

was again discussed in detail in section 4.2.3. 

 

 

 

 

 

Figure 29.  .  The SVM-predicted mean diameter D plotted against the actual mean diameter. Each dot is a 
bin constituted from 40 individual measurements. The solid black line is the best fit linear prediction of the 
SVM regressor. The dashed line represents the ideal output if the model estimation for all the diameters 
was equal to the actual diameter of each sample. Each plot corresponds to samples with different range of  
σ values (a) 0 < σ ≤ 0.4, (b) 0.4 < σ ≤ 0.6 au , (c) 0.6 < σ ≤ 0.8 au and (d) 0.8 < σ ≤ 1 au 



MSc Thesis  Ziovas Konstantinos 

Development of Machine Learning Models (SVMs and NNs) for Identification of Structural Properties 

of Materials Based on k-Space Data  78 

4.4. Comparing the Bayesian, NNs and SVMs models 

 

4.4.1. NN vs SVMs 

We have already discussed the most important characteristics of the ANN and the SVM 

model in section 4.3. Both models perform equally well and the results they produce on 

the test data set are almost identical. Moreover, their behavior during the testing and 

sensitivity analysis phases was similar (see sections 4.2.3 and 4.3.3). Nevertheless, some 

differences have been observed and can be summarized as follows: 

• The ANN seem to perform better on noisy data than the SVM model 

• The SVM requires orders of magnitude less computational time during training to 

achieve results equivalent to these of the NN (15 secs for SVM compared to over 1 

hour for the NN) 

• Despite requiring much less time during training the SVM requires 270 sec to 

produce a result on a test set. In contrast the ANN requires only 1.7 sec. This is a 

significant advantage for the NN model for time sensitive applications 

Each approach has therefore some advantages that make it the best fit for specific 

applications. 

 

4.4.2. NN and SVMs vs the Bayesian method 

It is not easy to compare the performance of the ANN on predicted the mean diameter 

with previous attempts, like the Bayesian approach found in the literature (Holland et al., 

2012; Ross et al., 2012a, 2012b). The reason is that in the Bayesian approach a 

classification approach was used rather than a regression which we present here. 

Nevertheless, for comparison reasons, figure 30 includes the predicted mean diameters 

and the standard deviations of sphere size distributions when using the Bayesian 

approach (Holland et al., 2012; Ross et al., 2012a), as they are reported in the literature. 

 

We can see that the ANN and SVM developed in this thesis, both seem to produce a 

significantly better prediction for the mean sphere size (diameter or radius). The 

predictions of our models are not only more accurate but also more precise since the 95% 
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confidence interval are significantly smaller than those reported in the literature for the 

Bayesian method and presented in figure 30. 

  

 

 

 

It has to be noted however that the range of values for which the prediction of the mean 

diameter (or radius) are reported for the Bayesian method are the regions where the 

method ‘exhibits it best performance’ [sic] (Holland et al., 2011b; Ross et al., 2012a) This 

is noted by the authors in all relevant papers and it is highlighted that a good 

understanding of the sample under analysis is needed before using the method so that 

the scientist can pre-configure the Bayesian methods parameters such that the predicted 

values can fall within this range of optimal performance. We have no such step or 

requirement in our method. If we were however to choose the region with the highest 

accuracy from our predictions, this would be around the center of the value range in 

figures 18 and 25. We would in that case also see that an even better performance is 

achieved there for the ANN and SVM compared to the Bayesian method. 

 

On the other hand, as we already discussed in section 4.2.2 and 4.3.2 that the ANN and 

the SVM seems to adopt an agnostic approach regarding the value of the standard 

deviation. We do not observe this behavior on the results from the Bayesian method.  

 

 

 

Figure 30.  (a)  Bayesian-predicted mean radius against real radius (b) Bayesian-predicted standard 
deviation against real standard deviation of samples with Gaussian sphere size distribution as reported in 
the literature. 
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These could be because of two reasons: 

• The region for which the results for the standard deviation are presented is also 

selected so that they achieve the higher accuracy. Again, we could achieve such a 

behavior by selected the region around the center of the figure 18 and 25 

• The estimation of the sphere size and the standard deviation was formulated as a 

classification problem in the Bayesian approach. In that case a specific set of 

predefined values for the standard deviation was given to the model. This is very 

different than the regression approach that we take here. Specifically in the 

Bayesian classification approach a high penalty would occur if all values where 

misclassified and moved to the class around the center of the value range. 

However, with a more careful analysis of the results from the Bayesian approach a similar 

behavior to our models might in fact be observed. This behavior has not been analyzed 

or discussed before in the literature (Holland et al., 2011b; Mitchell et al., 2013; Ross et 

al., 2012a; Wu et al., 2014). In figure 30 the Bayesian model exhibits a very low confidence 

and high 95% confidence intervals for the predictions of the standard deviation. This 

could be an equivalent behavior to the ANN-SVM models, simply expressed in a different 

way. The Bayesian model might in fact also adopt an agnostic approach not assigning all 

sample to the class near the center of the value range for the standard deviation but by 

near-randomly assigning classes to each sample. In other words, it would try to predict 

the correct class for the standard deviation for each sample but with very low confidence. 

It is very likely that the wrong class is assigned to each sample therefore on average the 

differentiation of standard deviations is very low. This is the same result that the ANN 

and SVM provide but with a different mechanism.  

 

The previous analysis is presented here for the first time, and it is important to note that 

the development of the ANN and SVM models provided us with new insights for the 

behavior of a different model (the Bayesian model).  

 

Another parameter that is of importance when comparing the three models with each 

other is the time required to develop and train each method as well a the time required 

to produce a prediction. In this comparison the SVM seems to be the method that offers 

the fastest training time as it only requires a few second to achieve a performance that is 
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better than the Bayesian method and comparable to the NN. The slowest method is the 

Bayesian approach since it requires the estimation of the Rayleigh parameters for each 

point in k-space for each possible sphere size distribution used in the classification task. 

The NN are also time consuming and depending on the model complexity (number of 

layers and nodes) training could require a time of several minutes up to over an hour. 

 

The comparison above covers the time required for training each model. After the 

training step however, the model is deployed and is used to predict the sphere size 

distribution of new samples. This is the most time-critical step for many analytical 

processes (Bishop, 2006)(Hannes Hapke, 2020; Weber, 2020). In this comparison the NN 

is the best performing method since it requires just over a second to produce an output 

and this time can be reduced easily by improving the available computational resources. 

The Bayesian method offers a slightly higher prediction time (a few seconds) and it is also 

bound to the computational resources available. Finally, the SVM model requires the 

largest amount of time to produce a result, and the time was in our case a few minutes, 

significantly lower than both the other methods. 
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5. Conclusions  

In this thesis we developed and analyzed two new methods that can be used for studying 

the properties of various materials. 

 

More specifically there is a need for new, faster methods for studying and characterizing 

the properties of materials both for scientific as well as for industrial purposes. We 

focused on a specific type of materials called dispersions. These materials are comprised 

of at least two distinct phases where one secondary phase is dispersed in near spherical 

particles within a continuous phase. Dispersions are found in a very wide range of 

applications, and it is often necessary to determine the sphere size distribution of the 

dispersed phase within the continuous phase. The information about the sphere size 

distribution can be related to many structural and functional properties of the materials 

(A.J.Meagher et al., n.d.; P.R.Garret, 1993)(Chung & McClements, 2014; Wilson, 1989). 

 

There are currently various traditional methods for analyzing these materials but there 

is still a need for a very fast, reliable, and non-invasive method that can be used both in a 

laboratory as well as a production environment. Recently a new method was proposed 

which utilizes k-space signal acquired from either a NMRI or an X-Ray machine and 

combined with a Bayesian probabilistic model it can provide a very fast estimation for 

the sphere size distribution (Holland et al., 2012)(K. Ziovas et al., 2016). 

 

Based on this Bayesian method and taking advantage of the progress made in recent 

years in the fields of NN and SVM we proposed a new expansion and improvement of this 

k-space signal analysis approach. We used simulated k-space data of materials which 

have a Gaussian sphere size distribution for their dispersed phase. Our goal was to be 

able to predict with a good accuracy the mean sphere diameter and the standard 

deviation for each sample based only on a 1D set of k-space data. Only 128 k-space data 

points were used for each sample. We developed, trained, and tested a NN and a SVM 

regression model that can take a set of k-space data as input and produce a very good 

estimation for the sphere size distribution in a sample of a material. The two methods 

that we tested formulated the problem as a regression task. This contrasts with the 

previously proposed Bayesian method which approached it as a classification problem. 
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Moreover, an extensive meta-parameter optimization was performed, and we managed 

to produce two models that perform well at predicting the mean sphere diameter from a 

material sample.  The estimation for the standard deviation of the sphere size distribution 

within our samples was not estimated with equally high accuracy, similarly to the results 

presented in the past from the Bayesian approach. The combined results of our methods 

with the findings from the Bayesian approach show that this result stems from the 

intrinsic nature of the standard deviation as a variable that measure the uncertainty over 

the mean sphere size. 

 

In summary both the new approaches appear to offer significant improvements over the 

existing methods for a wider variety of parameters such as i) wider range of sphere size 

distribution ii) faster development, testing and deployment times iii) better performance 

for noisy data. Comparing the two new methods with each other we can briefly say that 

the SVM offers good performance with lower computational requirements during the 

model training phase. On the other hand, the NN model seems to perform better with 

noisy data and more importantly it has a two orders of magnitude faster prediction time. 

This fast prediction time can be extremely important for real-time analysis applications 

where a method is required to produce reliable estimation for the structure of a sample 

within a sub-second time window (Stevenson et al., 2006)(P.R.Garret, 1993). 

 

The investigation presented here can be seen as only a first step in the potential 

application of new ML methods such as NN and SVM on the analysis of k-space signal.  

More work can be done in many directions which could either improve the performance 

of the proposed methods or find new applications where ML models can be combined 

with k-space data to provide information about various other properties of materials. 

Some potential extensions of our work are presented in the “Future Work” chapter. 
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6. Future Work 

In the work presented in this thesis we extended some ideas that have been recently 

developed.  These ideas the usage of 1D k-space data acquired from a sample of a material 

in combination with a ML method to produce an estimation about the properties of the 

given material. We extended the previous work by: 

• Investigating two ML methods that have grown rapidly in popularity the past 

decade. The ANN and SVM have become the center of great amount of 

groundbreaking scientific work which has provided great advances in many fields.  

Through our work we have demonstrated that they offer very promising results 

in the field analytical techniques for material science. 

• Gaining better understanding about the previously proposed methods, their 

advantages, and limitations and how they can be improved with the use of 

regression models. 

The development and investigation work performed for this thesis however 

demonstrated that there are many more potential avenues to be explored. 

 

A path of potential future work could include an attempt to better understand the 

behavior and characteristics of the NN and SVM models trained on 1D k-space signal of 

materials with a dispersed phase. A better understanding could be gained on the 

interaction of the features of the k-space signal and how these features affect the training 

and performance of each ML model. For example, it is often the case that various artifacts 

exist in real k-space signal acquired with NMRI or X-Ray mCT (Callaghan, 1993)(Baruchel 

et al., 2000; Ketcham, 2001). It is important to understand how these artifacts and various 

other signal characteristics affect the proposed methods. 

 

Regarding possible improvements of the proposed NN and SVM models, topics to study 

could include: 

• Investigation of the performance of the models on materials with sphere size 

distributions different than Gaussian. For example, log-normal and binomial 

distributions could be studied. 
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• Creation of an ensemble of models where each model could be specialized in 

different set of material properties. like the distribution type, standard 

deviation and any other structural parameter of the sample. This would 

provide a much more accurate and powerful tool with the main downside 

being the longer computational time required for training all the individual 

models. 

• Training of the models with real experimental data acquired with NMRI or 

Xray mCT. This would allow the models to learn from the features that exist in 

the real material samples and to be fine tuned specifically for the material 

properties of interest. 

Finally, the ML models used here to predict the sphere size distribution of materials based 

on their k-space signal could also be used to predict many other properties of various 

materials. In particular any material property that is proven to have an effect on the k-

space or spectral signal, acquired with an Xray, MRI or NMR machine, could be predicted 

with the use of a ML model. For example, the chemical composition of a material can be 

monitored with NMR spectroscopy. In many cases multiple molecules produce very 

complicated spectral signatures which could also be affected by various artifacts. A 

properly trained ML model should be able to produce good estimations for the 

composition of the materials much faster than traditional methods. 
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