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Abstract

The last decades, scientists have expressed an increasing interest for the game Tetris and
more precisely for efficient algorithms that can score the most in-game points.

A plethora of approaches have been tried out, including genetic algorithms, linear pro-
gramming, cross-entropy and natural policy gradient, but none of them competes with
experts players playing under no time pressure.

In recent years, scientists have started applying reinforcement learning in Tetris as it
displays effective results in adapting to video game environments, exploit mechanisms
and deliver extreme performances.
Current thesis aims to introduce Memory Based Learning, a reinforcement learning algo-
rithm which uses a memory that helps in the training process by replaying past experi-
ences.
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Chapter 1

Introduction

1.1 Introduction

Reinforcement learning is a branch of artificial intelligence that focuses on achieving the
learning process during an agent’s lifespan. This is accomplished by giving the agent the
ability to retain its circumstances, providing him with enough memory of the environmen-
tal events, and rewarding or punishing his actions in the context of a predefined reward
policy. The drawback of traditional reinforcement learning is the exponential increase in
agent’s storage and exploration time requirements when there is a linear increase in the
dimensions of the problem.

Tetris is a game created in 1985 by Alexey Pajitnov and, in the last decades, it has been
an important research topic for both mathematics and artificial intelligence communities.
Unfortunately, despite being a conceptually simple game, it is NP-complete [3].

In the context of this thesis, we try to apply reinforcement learning to Tetris, a mass chal-
lenge due to the size of the possible states that the game may reside at a given time. Our
approach involves simplifying the Tetris game description and conducting a comparative
analysis between 3 distinct reinforcement learning algorithms. This involves extracting
the core information required to function intelligently from the full problem description.
Reducing the problem description makes it possible to downgrade the complexity-related
restrictions and lead to the broader application of reinforcement learning.

1.2 Tetris

Tetris consists of 7 types of pieces called Tetrominoes and more specifically they represent
the letters ”I”, ”O”, ”S”, ”Z”, ”L”, ”J” and ”T” as depicted in figures 2.2 to 2.8. These
pieces are formed by four square blocks and are spawned one at a time in the Tetris board,
which is a rectangle of 20× 10 square blocks, Figure 2.1. The user controls the spawned
piece and is free to move it right or left infinite times inside the rectangle boundaries. The
piece is falling one block-row at a time, with a frequency that is predefined and depends
on the game Level. The user can accelerate the falling rate by pressing a relevant button.
Another available move is the rotation of the pieces in a clock-wise manner. Suppose any
of the square blocks of the falling piece collides, vertically, with the ground or another
square block of an already fallen piece. In that case, it stops moving, stays in place, and
two things happen after that: i) if a block-row (Line) is full of pieces’ square blocks, then
those squares blocks are removed, and all the upper structure moves one line down, ii)
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the next piece is spawned and starts falling. The game ends when no more pieces can be
spawned, i.e., when the structure is so tall that the next piece to be spawned will overlap
with the structure. In the board, there is information about the cleared Lines, the current
Level, which affects the falling rate and scoring awards, the Next piece to be spawned,
and the current Score.

All these years, many different implementations, with slight or considerable variations,
have been published. One of them is used in the official world Tetris tournament called
Classic Tetris World Tournament.

1.3 State Representation

A factor that highly affects the performance of a Reinforcement Learning System is the
state representation, i.e., a model describing the environment’s current view. For example,
in a backgammon game, the state could be the chips’ positions and who is turn it is. The
state representation can fully encapsulate the state of the game or contain redundant
information. This is important as the size of the representation can have adverse effects
on training time. A naive approach where the representation is the whole environment,
i.e., the pixels of the screen, is shown to slowly converge by Andre and Russell [4]. What
makes Tetris’ case more difficult is the significant branching factor. The branching factor
is the number of following possible states given the current state. This factor lies between
9 - 39 and depends on the different Tetrominoes’ shapes and the rotations applied to
them. For example, the ”O” piece has no rotations, ”I”, ”S”, ”Z” have two while ”T”,
”L”, and ”J” have 4. In this paper, we evaluate the performance of agents using a
state representation consisting of 4 features, namely, lines cleared, number of holes, total
bumpiness, and total height.
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Chapter 2

Background Related Work

This chapter aims to introduce the formal specifications of Tetris that define the domain
of the problem. Later we study beyond the raw specification, and we discuss the math-
ematics of Tetris. Finally, we justify the adoption for solving Tetris with reinforcement
learning, introduce the theory used throughout the thesis and talk about related research
in reinforcement learning. Also, we end off with a review of previous attempts to apply
reinforcement learning to Tetris.

2.1 Tetris

Tetris, shown in Figure 2.1, is established to the point that it awards its name to the
category of puzzle games. Each variation may have a range of different tetrominoes.
These tetrominoes represent the alphabet letters I, O, S, Z, L, J, and T as depicted in
Figures 2.2 to 2.8

Tetrominoes can also be rotated and translated in the absence of obstructions.
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Figure 2.1: Tetris Board 10x20 Square Blocks

At the start of the game, a randomly selected tetromino spawns at the top center block
of the board—the tetromino descents at a fixed speed, determined by the current level.
If there is an obstacle right beneath, the tetromino stops descending, sets in place, and
two things follow. First, the game erases the rows full of tetromino blocks, and the board

Figure 2.2: ”I” Figure 2.3: ”S” Figure 2.4: ”Z” Figure 2.5: ”O”

Figure 2.6: ”T” Figure 2.7: ”L” Figure 2.8: ”J”
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moves down by the number of erased rows in this step. Lastly, a new tetromino spawns,
and the game continues until a tetromino cannot be placed at the top of the board.

Many different approaches of artificial intelligence and other fields have been applied to
Tetris, making the comparison between works hard due to the plethora of variations in
the rules and the mechanics that a game of Tetris can be implemented. However, as
this thesis focuses on comparing three different reinforcement learning algorithms applied
to a single variation of Tetris, it is easy to imply that there can be no implementation
discrepancies, as specific guidelines define our implementation. Therefore the achieved
results of the agents will be comparable. The following standard set is chosen for this
research.

• Tetris has a board with dimensions 20x10

• Tetris has seven distinct piece (Figures 2.2 to 2.8)

• The current game tetromino is selected by a queue of initially seven randomly chosen
pieces. This queue refreshes every time its length is less or equal to two by adding
seven more pieces

• Points are awarded by combining each piece that lands and the number of cleared
lines per step. Losing the game grants penalty points.

2.2 Mathematical foundations of Tetris

The possibility of generating a sequence of tetrominoes that guarantee the end of any
Tetris games in a board of width 2(2n+1), with n being an integer, has been mathemat-
ically proven [5]. The latter is achieved by spawning alternating Z and S pieces into the
board, which results in the gradual construction of taller and taller structures and eventu-
ally the termination of the game. Even if the agent were to play a flawless game of Tetris,
the series of pieces that guarantee the game’s termination are statistically inevitable after
a long enough time (infinite period). The number of rows completed by a good Tetris
player will follow an exponential distribution [6], owing to the stochastic nature of the
game. Some Tetris games are more complex than others due to the pieces drawn and
the order in which they are delivered, and the resulting performance spectrum can be
mistaken for erratic behavior on the part of the player. Breukelaar et al. [3] prove Tetris
is NP-complete problem. The arisen implication relates to the impossible computation
of linearly searching the entire policy space and picking an ideal action. That is where
approximation techniques fit, like reinforcement learning, to determine an optimal policy.
One assumption reinforcement learning requires is that the environment has the Markov
property [7]. Tetris satisfies the requirement mentioned above, as the state represents all
the relevant information required to make an optimal decision at any instant in time. In
other words, there is no historical momentum of the system’s current state; thus, any
future occurrence is entirely dependent on the system’s current state. If we are handed
control of a Tetris game at any point, we are as equipped to play from that point as we
would be had we played up until that point.
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2.3 Solving NP-Complete Problems

Attractive and promising solutions to problems outside of the range of computations of
linear search methods can be discovered with biological processes emulations. Genetic
algorithms and reinforcement learning are two such approaches. Genetic algorithms,
for example, search directly in the solution (policy) space of a problem, giving birth to
solutions amongst the fittest individuals to approach an optimal solution. On the other
hand, reinforcement learning yields an environment to an agent that is subsequently left to
explore for itself. The agent gets feedback directly from the environment through rewards
or penalties and continuously updates its value function to achieve the optimal policy.
Ideally, both methods converge on the best policy [8], although their different routes
gear them towards particular problems. Additionally, Reinforcement learning offers a
higher resolution than genetic algorithms, as genetic algorithms select optimal candidates
at the population level. In contrast, reinforcement learning selects optimal actions at
an individual level [8]. Every action taken under reinforcement learning is evaluated and
driven towards the optimal action for that state, while genetic algorithms reward complete
genetic strains regardless of the behavior of individual genes within the previous episode.
Reinforcement learning is different from genetic algorithms by indirectly adjusting its
policy by updating its value function, rather than introducing random variations directly
to its policy and relying on the agent chancing upon a superior policy. A vast deal of
information is conveyed in a Tetris game, and reinforcement learning enables the agent
to capture this information and adapt accordingly. Furthermore, this would enable a
directed real-time adjustment of the agent’s policy rather than a global adjustment at the
end of the game. Another consideration is that as the agent’s performance improves, the
number of rows completed in a game increases, and the lifespan of the agent increases.
This does not negatively impact the reinforcement learning agent as it learns with every
move but has an increasingly significant impact on the rate of improvement of the genetic
algorithm agent since it learns with the end of each game. These traits indicate that
reinforcement learning is better suited to solving Tetris than genetic algorithms.

2.4 Exploration

The agent can have one of a variety of exploration policies. However, regarding a purely
greedy policy, the agent will always select the state transition to offer the most significant
long-term reward. Even though this will immediately benefit the agent, it may fail to find
the best policy in the long term. Using an ε-greedy method, the agent will choose the
best state transition the majority of the time and take exploratory transitions the rest
of the time. The frequency of these exploratory transitions is determined by the policy’s
value of ε. It is possible to vary ε to have an initially open-minded agent that proves its
value function while its experience increases over time. One problem with the ε-greedy
approach is that the agent explores aimlessly and is as likely to explore an unattractive
avenue as it is to explore a promising one. Another approach is to start with a very high
ε and gradually diminish it to zero. This encourages the agent to explore freely at the
beginning but choose wiser action later when experience is gained. promising ones.

ε = 1− d/1500 (2.1)
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d = min(E, 1500) (2.2)

The selection of 2.1 is driven by the fact that we did not have the necessary computing
power to train the agent for a long time, so the number of 1500 is given as the maximum
allowed episode for exploration.

2.5 Existing applications

Reinforcement learning performs well in small domains, and by using the insight offered
by Sutton and Barto [7], the creation of an agent that plays simple games like Tic-Tac-
Toe or Blackjack successfully is effortless. It it successfully applied to many sophisticated
problems such as :

• Packet routing in dynamically changing networks [9]

• Robotic control [10]

• Acrobat [7]

• Chess [11]

Bellman is cited Sutton and Barto [7] as stating that reinforcement learning suffers from
the ”curse of dimensionality”. In other words, the exponential increase in the system’s
complexity as the number of elements in it increases linearly. This tendency is responsible
for reinforcement learning having relatively few successes in large state-space domains [12].
These successes include :

• RoboCup-Soccer Keep-Away [12]

• Backgammon [13]

• Elevator control [14]

2.6 Large state space successes

TD-Gammon

Tesauro [13] used reinforcement learning to train a neural network to play backgammon.
The program was such a success that its first implementation (Version 0.0) had abilities
equal to Tesauro’s well-established Neurogammon 2 [13]. Furthermore, by Version 2.1,
the TD-Gammon is regarded as playing at a level extremely close to that of the world’s
best human players and has influenced how expert backgammon players play [13]. The
reliance on performance rather than established wisdom and the unbiased exploration
leads, in some circumstances, to TD-gammon adopting non-intuitive policies superior to
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those utilized by humans [13]. Backgammon is estimated to have a state-space larger than
1020. This state-space was reduced by the use of a neural network organized in a mul-
tiplayer perception architecture. TD learning with eligibility traces was responsible for
updating the weighting functions on the neural network as the game progressed. Another
benefit associated with using reinforcement learning methods rather than pure supervised
learning methods was that TD-gammon could be (and was) trained against itself [13].

RoboCup-Soccer Keep-Away

Sutton et al. [12] managed to train reinforcement learning agents to complete a suc-
cessfully subtask of full soccer, involving a team of agents — all learning independently
— keeping the ball away from their opponents. This implementation overthrew many dif-
ficulties, like having multiple independent agents functioning with delayed rewards and,
most importantly, functioning in ample state space. The state-space problem was re-
solved with the use of linear tile-coding (CMAC) function approximation to reduce the
state-space to a more feasible size [12].

2.7 Tetris Related Reinforcement Learning

We found three existing extensions of reinforcement learning to Tetris that all implement
one- piece methods.

Reduced Tetris

Melax [1] applied reinforcement learning to a greatly reduced version of the Tetris game.
His Tetris game had a well with a width of six, an infinite height, and the greatly reduced
piece set shown in Figure 2.9. The game’s length was dictated by the number of tetro-
minoes attributed to the game, which was set at ten thousand. Although the height of
the Tetris board was infinite in theory, the active layer in which blocks were placed was
two blocks high. Any placement above this level had the result of lower layers being dis-
carded until the structure had a height of two. The number of discarded rows was kept as
record by the game, which was used as a score for the agent’s performance. This scoring
approach resulted in better performance corresponding to a lower score. The two-block
active height prevented the agent from lowering the block structure and completing rows
that it initially failed to complete. This is different from traditional Tetris, where a player
can complete a previously unfilled row after reducing the well structure and re-exposing
it. Furthermore, since the pieces are drawn stochastically, and unfilled rows form an im-
mutable blemish on the performance evaluation of the agent, this introduces a random
aspect to the results. The agent was implemented using the TD(0) and was punished a
hundred points for each level it introduced higher than the working height of the well.
The agent of Melax achieved significant learning, as shown in Table 2.1. These results
are shown in Figure 2.10.
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Figure 2.9: Melax’s Reduced Tetrominoes

Game Height
1 1485
2 1166
4 1032
8 902
16 837
32 644
64 395
128 303
256 289

Table 2.1: Table to test captions and labels.
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Figure 2.10: Melax’s results as taken from Melax [1]

Mirror Symmetry

Max’s approach was adopted and extended by Bdolah and Livnat [2], who investigated dif-
ferent reinforcement learning algorithms and introduced state-space optimizations. First,
the state-space was reduced into two distinct approaches. In the first approach, subsur-
face information was discarded, letting only the contour of the game to consider. This
approach was further divided into considering the contour differences as positive or neg-
ative. The second state-space reduction used mirror symmetry within Melax’s well to
reduce the number of different states.
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Figure 2.11: Bdolah and Livnat’s results as taken from Bdolah and Livnat [2]

Both optimizations appear to have significantly improved the performance of the agent,
judging by the chart shown in Figure 2.11. There are, however, some troubling viewpoints
to these results.

The results of mirror symmetry are far superior to the results achieved by any other
method. This optimization effectively ignored one reflection of duplicated states and thus
should have sped up the learning process while converging on the same solution. The
accelerated learning is apparent, but the results show that the mirror symmetry led to
adopting a distinctly different policy to that adopted by the original agent. This means
that the value function must have converged on different values, negating the original
assumption that the values are identical and necessarily redundant. The contour approach
extended the perceptive ability of the agent and maintained information below the original
two-layer structure. This enabled the agent to reduce the well structure throughout the
game continually. The results in the figure seem to indicate swift learning. By the end
of the first game, the agent settles on a policy that produces a result far superior to the
original Melax result. Despite the dubious results associated with the mirror symmetry
optimization, it is a sound suggestion that is legitimate in the Tetris game defined by
Melax. This optimization is equally legitimate in the full game since every tetromino
in the standard tetromino set is mirrored within the set. Incorporating this in reducing
our final state space would roughly halve the number of states required in describing the
Tetris well.
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2.8 Relational Reinforcement Learning

Relational reinforcement learning was utilized to the full board of Tetris problem by
Driessens [15]. Relational reinforcement learning is different from traditional methods
in its structuring of the value function. For example, rather than storing every possible
state in a table, the relationship between the elements in the environment is utilized in
developing a reduced state space. This state information is then stored in a decision tree
structure. Driessens approached the problem with three different relational regression
methods [15] which he developed throughout his thesis. The first of these regression
methods had already proven itself with the successful extension of reinforcement learning
to Digger. Driessens results for full Tetris are shown in Table 2.2. The RRL-RIB agent
reached its optimal policy within fifty training games. In the four hundred and fifty
subsequent training games, this policy was not improved upon. The RRL-KBR

Regression Method Learning Games — Average Completed Rows
RRL-TG 5000 10
RRL-RIB 50 12
RRL-KBR 10-20 30-40

Table 2.2: Relational regression results [15]

The agent reached a better policy earlier than the other regression methods. However,
it then rather unexpectedly unlearned its policy after a further twenty to thirty games.
Since this is a full implementation of Tetris, its results can be compared against other
one-piece artificial intelligence methods. The best-hand-coded competitor completes an
average of six hundred and fifty thousand rows per game, and the best dynamic agent,
utilizing genetic algorithms, completes an average of seventy-four thousand rows per game
[6]. Driessens results are not impressive in light of the competition and are very poor even
for human standards. Driessens attributes the reduced functionality to Q-learning, stip-
ulating that Q-learning requires a reasonable estimate of the future rewards in order to
function correctly and that the stochastic nature of Tetris critically limits the accuracy
of these estimates. Since his regression methods were derived from Q-learning, this in-
adequacy impacted all of his methods. Furthermore, Q-learning is known to be unstable
[12], [16] when incorporated in function approximation, and this could certainly have con-
tributed to the poor performance reflected in the above results. Despite the final results
of Driessens’s agent, the idea of exploiting the internal relationships present within the
Tetris well as a means of reducing the state space is an attractive one.

Tsitsiklis & Van Roy [17] formulate Tetris as a Markov decision problem using a 200-
dimensional binary vector to represent each state and a 7-dimensional binary vector for
the pieces. As a Tetris board is a 20x10 rectangle of blocks, each element of the state
vector matches precisely one block of the board with values 1or 0 if the block is occupied
by a piece or not, respectively. As for the piece vector, all the elements are 0 except for
the ones that occupy a block. Using feature-based value iteration with features being the
height of the board and the number of holes, they achieved 32 cleared lines.

Bertsekas & Ioffe [18] tried out an approximate version of the λ-policy iteration method
as well as an optimistic version. Use a linear feature-based approximation architecture
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with optimistic λ-policy iteration. The two methods performed similar results, with the
best being optimistic, achieving a score of 3,200 cleared lines in a 20x10 Tetris board.
The used featured are the height of each column, the differences in heights between two
consecutive columns, the maximum height, and the number of holes.

Scherrer [19] revisits the work of Bertsekas & Ioffe [18] of the approximate version of λ-
policy iteration method and challenges their paradoxical observation. More precisely, they
wrote ”An interesting and somewhat paradoxical observation is that a high performance is
achieved after relatively few policy iterations, but the performance gradually drops signifi-
cantly. We have no explanation for this intriguing phenomenon, which occurred with all of
the successful methods that we tried”. He reproduced the issue and found out that it was
a minor bug in the algorithmic implementation. With this fix, the previously mentioned
algorithm achieves an approximate average score of 4,000 cleared lines.

Lagoudakis et al. [20] research two different algorithms. The Least-Squares Q-Learning,
an extension of the Least-Squares Temporal Difference algorithm that learns a state-action
value function much like Q-Learning. Due to limitations, including approximation biases
and poor sample utilization, they eventually study the Least-Squares Policy Iteration
(LSPI) algorithm, a model-free form to approximate policy iteration and efficiently uses
training samples collected in any arbitrary manner. The features they use regarding
Tetris are the maximum height in the current board, the number of holes, the sum of
absolute height differences between adjacent columns, the mean height, the change of
these quantities in the next step, the change in score, and a constant term. The LSPI
achieves an average score between 1,000 and 3,000 per game.

Farias & Van Roy [21] examine the linear programming approach to approximate Dy-
namic Programming, which requires a linear program solution with a tractable number
of variables but a potentially large number of constraints. They do so using randomized
constraint sampling, a technique capable of producing reasonable solutions to the linear
program in approximate Dynamic Programming. They formulate Tetris as a stochastic
control problem with an intractable state-space. To approximate the cost-to-go function,
they use a linear combination of the following 22 basis functions: Ten basis functions for
the height of each column Nine basis functions for the absolute difference between heights
of successive columns. One basis function for the maximum column height One basis
function for the number of holes and a constant basis function The performance of the
approach reaches 4,274 scores.

Bohm et al. [22] apply evolutionary algorithms to the game of Tetris. The program
chooses the best move by rating possible future views of the board based on a rating
function of a weighted sum of several sub ratings. The evolutionary algorithm is used to
find the optimal weights. The rating function takes into account the current piece as well
as the next one to be spawned, and it is mainly composed of more specific rating functions,
which are: 1) The maximum height of the board 2) The number of holes 3) Connected
holes which is the same as the number of holes but vertically connected unoccupied blocks
count as one hole 4) The number of cleared lines 5) The differences between the highest
and the lowest heights of the respective columns 6) The depth of the deepest well, i.e.,
empty blocks between columns with a width of one. 7) Sum of all wells 8) Landing height,
i.e., the height that the last piece was placed 9) Number of occupied blocks 10) weighted
blocks are the same as the number of occupied blocks but multiplied by the number of
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rows they reside in. 11) Sum of all horizontal transitions between occupied/unoccupied
blocks 12) Sum of all vertical transitions between occupied/unoccupied blocks They split
the experiments using two rating functions. One using the features 1-6 and the other with
7-12. Their best results in a 20x10 board were 859,520.

2.9 Reinforcement Learning Definitions

Reinforcement learning can be comprehended through the concepts of environments, re-
wards, states, actions, and agents. Capital letters often denote sets of things, while lower-
case letters denote a specific instance of the same thing; e.g., A is all possible actions,
while a is a specific action contained in the set.

• Agent: An agent takes actions; for example, Super Mario navigating a video game
or a drone making a delivery.

• Action (A): A is the set of all the possible moves the agent could make. An action
has to be self-explanatory, but it must be noted that agents often choose from a list
of possible and discreet actions. The list may include running left or right, jumping
low or high, standing still, or crouching in video games. In the stock market, the
list may include holding, buying, or selling any one of the available securities and
their derivatives. Regarding handling aerial drones, alternatives would include many
different velocities and accelerations in 3D space.

• Discount factor: The discount factor is multiplied by the future rewards discovered
by the agent to dampen the effect of these rewards on the agent’s action choice. It
is designed to mark future rewards as less worthy than immediate rewards; i.e., it
enforces short-term greed in the agent. They are usually expressed with the Greek
lower-case letter gamma: γ. Say γ is 0.8, and there is a reward of 5 points after ten
timesteps, the current value of that reward is

0.810 × 5

. A discount factor of 1 makes future rewards worth just as much as immediate
rewards.

• Environment: The world in which the agent moves and reports feedback back to
the agent. The environment takes the agent’s present state and action as input and
returns it as output, the reward, and its next state. From the agent’s perspective,
the environment could be the rules of society or the laws of physics that process
people’s actions and determine their consequences.

• State (S): A state is an immediate and concrete situation in which the agent finds
itself, i.e., a particular place and moment, an instantaneous configuration that puts
the agent with other vital things such as obstacles, tools, prizes, or enemies. It can
be any future situation or the current reported back by the environment.

• Reward (R): A reward is the feedback metric by which we measure the failure or
success of an agent’s actions in a particular state. For example, in the Super Mario
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video game, he is awarded points if Mario touches a coin. From any state, an agent
can send output in the form of actions towards the environment. The environment
returns the new state (which resulted from acting on the previous state) to the agent
and rewards any. Rewards can be immediate or delayed. Thus, they effectively
evaluate the agent’s action.

• Policy (π): The policy an agent employs is the strategy to determine the following
action based on the present state. It is a map between states and actions.

• Value (V): The expected long-term return with the discount included, as opposed
to the short-term reward R. Vπ(s) under policy π is the expected long-term return
of the current state. The further into the future a reward occurs, the lower it is its
estimated value.

• Q-value (Q): Q-value is similar to value, except that it takes the current action a
as an extra parameter. Qπ(s, a) refers to the long-term return of action from the
current state s under policy π. Thus, Q is a map between state-action pairs to
rewards.

To sum up, environments are functions that take as input an action taken in the current
state and output the next state and the reward; agents input the new state and reward
and output the following action.

In the feedback loop depicted above, the subscripts denote the time steps t and t+1, with
each referring to different states: the state at moments t and t+1.

Reinforcement learning judges actions by the produced results. It is goal-oriented and
aims to learn sequences of actions that lead an agent to achieve its goal or maximize its
value function. Here are some examples:

• In video games, the main goal is to finish the game by collecting the most points,
so each additional point obtained through the course of the game is going to affect
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the subsequent behavior of the agent; i.e., the agent may learn that it should touch
coins, dodge meteors or shoot battleships to maximize its score.

• In the real world, the goal may be for a robot to travel a distance between two
points A and B, and every centimeter the robot moves closer to point B could be
counted as points.

2.10 State-Action Pairs Complex Probability Distri-

butions of Reward

Reinforcement learning’s goal is to select the best-known action for any provided state,
which means the actions need to be ranked and assigned values relative to one another.
What we are measuring is the value of state-action pairs since those actions are state-
dependent.

We map state-action pairs to the values expected to be produced using the Q function.
The Q function takes as input a state and action and outputs the probable reward.

Running the agent through lists of state-action pairs is the process of reinforcement learn-
ing, observing the resulting rewards, and adapting the Q function’s predictions to those
rewards until the best path is accurately predicted. This prediction is the policy.

Reinforcement learning can be interpreted as modeling a complex probability distribution
of rewards concerning many state-action pairs. This is one of the reasons reinforcement
learning is paired with a Markov decision process, a sampling method from a complex
distribution to deduce its properties.

After a bit of time spent employing a Markov decision process to approximate the prob-
ability distribution of rewards over state-action pairs, a reinforcement learning algorithm
may tend to repeat actions that lead to reward and cease to test alternatives. Thus, there
is a tension between exploiting available rewards and continued exploration to discover
new actions that also lead to victory. Much like oil companies have the dual function
of pumping crude out of known oil fields while drilling for new reserves, in the same
way, reinforcement learning algorithms can be programmed to both explore and exploit
to varying degrees in order to assure that they do not pass over rewarding actions at the
cost of known winners.

Reinforcement learning is an iterative process. In its most interesting applications, it
does not begin by knowing which rewards state-action pairs will produce. Instead, it
learns those relations by running through states repeatedly as athletes or musicians iterate
through states to improve their performance.
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2.11 Neural Networks and Deep Reinforcement Learn-

ing

Neural networks are function approximators, particularly useful in reinforcement learning
when the state space or action space is too large to be wholly known.

A neural network can be used as a value function or policy function approximator. That
is, neural networks can learn to map states to values or state-action pairs to Q values.
Thus, rather than use a lookup table to store, index, and update all possible states and
their values, which is impossible with enormous problems, we can train a neural network
on samples from the action or state-space to learn and predict how valuable they are
relative to our target in reinforcement learning.

As with all neural networks, they use coefficients to approximate the function relating
inputs to outputs. Their learning consists of finding the fitting coefficients, or weights, by
iteratively adjusting those weights along gradients that promise minor errors.

More specifically, Q maps state-action pairs to the highest combination of immediate
reward with all future rewards that later actions in the trajectory might harvest. Here is
the equation for the Q function, from Wikipedia:

After assigning values to the expected rewards, the Q function selects the state-action
pair corresponding to the highest so-called Q value.

At the start of reinforcement learning, the neural network coefficients may be initialized
stochastically or randomly. Then, using feedback from the environment, the neural net-
work can use the difference between the expected reward and the ground-truth reward to
adjust the weights and improve the interpretation of state-action pairs.

This feedback loop is similar to the backpropagation of error in supervised learning.
Nevertheless, supervised learning begins with knowledge of the actual labels the neural
network is trying to predict. Its goal is the creation of a model that maps different images
to their corresponding names.

Reinforcement learning relies on the environment to feed it a scalar number in response
to any new action. However, the rewards the environment returns can be delayed, varied,
or affected by unknown variables, introducing noise to the feedback loop.

This leads us to a complete expression of the Q function, which considers the immediate
rewards produced by action and the delayed rewards returned several timesteps deeper in
the sequence.
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As human beings, the Q function is recursive. Thus, just as calling the wetware method
human() contains within it another method human(), of which we are all the fruit, calling
the Q function on a given state-action pair requires us to call a nested Q function to
predict the value of the following state, which in turn depends on the Q function of the
state after that, and so forth.
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Chapter 3

Deep Learning Neural Networks

3.1 Neural Networks Definition

An artificial Neural Network is an efficient computing system whose central theme is anal-
ogous to biological neural networks. Artificial Neural Networks are also named ”parallel
distributed processing systems”, ”artificial neural systems,” or ”connectionist systems.”
Artificial Neural Network acquires a vast collection of units that are interconnected in a
pattern that allows communication between them. Also, these units are simple processors
which operate in parallel.

3.2 Biological Neuron

A nerve cell neuron is a biological cell that processes information. There is a vast number
of neurons, approximately 1011 with numerous interconnections, approximately 1015.

Figure 3.1: Biological Neuron
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As shown in the above Figure 3.1, a typical neuron consists of the below-mentioned four
parts, with the help of which we can explain its working.

• Dendrites They are tree-like branches responsible for receiving the information from
other connected neurons. In other words, they are like the ears of the neuron.

• Soma It is the neuron’s cell body responsibility for processing information they
have received from dendrites.

• Axon It is just like a cable through which neurons send the information.

• Synapses It is the connection between the axon and other neuron dendrites.

3.3 Model of Artificial Neural Network

Figure 3.2 represents the general model of ANN followed by its processing.

Figure 3.2: Artificial Neural Network Model

For the above general model of an artificial neural network, the net input can be calculated
as follows

yin = x1 · w1 + x2 · w2 + x3 · w3 + ...xm · wm

The output is calculated by applying the activation function over the network input.

Y = F (yin)
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3.4 Feedforward Network

It is a network having processing nodes in layers, and all the nodes of a layer are connected
to the nodes of the previous layer. Each connection has a weight. There is no feedback
loop, meaning information flows in one direction, from input to output. There are two
types of feedforward networks

• Single layer feedforward network This neural network has only one weighted layer.
In other words, the input layer is fully connected to the output layer (Figure 3.3).

• Multilayer feedforward network This neural network consists of more than one
weighted layer. Intermediate layers are called hidden layers (Figure 3.4).

Figure 3.3: Single layer feedforward network
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Figure 3.4: Multilayer feedforward network

3.5 Activation Functions

It may be defined as the effort applied over the input to obtain an exact output. In neural
networks, we can also apply activation functions over the input to get the exact output.
The followings are some activation functions of interest.

3.5.1 Linear Activation Function

Also called the identity function because it performs no input editing. It can be defined
as

F (x) = x

Sigmoid Activation Function

Sigmoid outputs values between 0 and 1. It is positive in nature and always bounded,
which means its output cannot be less than 0 and more than 1. Furthermore, sigmoid is
increasing in nature, which means more the input higher would be the output. It can be
defined as

F (x) =
1

1 + exp(−x)
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3.5.2 ReLU (Rectified Linear Unit) Activation Function

The rectifier or ReLU (Rectified Linear Unit) activation function is an activation function
defined as the positive part of its argument:

F (x) = max(0, x)

3.6 Perceptron

Perceptron is the primary operational unit of artificial neural networks. It employs su-
pervised learning rule and can classify the data into two classes.

Perceptron consists of a single neuron with a non-trivial number of inputs having ad-
justable weights, but the neuron’s output is 0 or 1 depending on the threshold. It also has
a bias whose weight is always 1. The following figure shows a perceptron representation

Perceptron has the following three basic elements:

• Links It would have a set of connection links, which carries a weight including a
bias always having weight 1.

• Adder It adds the input after they are multiplied with their respective weights.

• Activation function It limits the output of a neuron.

Figure 3.5: Perceptron

3.7 Learning Rate

The learning rate is a hyperparameter that controls how much the model should change
in response to the estimated error each time the weights are updated. The learning rate
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selection is challenging as too small values may result in a lengthy training process that
could get stuck. In contrast, on the other hand, a value too large may result in learning
a sub-optimal set of weights very quickly or an unstable training process.

3.8 Weights

Weight is the parameter in a neural network that transforms input data within the net-
work’s layers. A neural network is a set of neurons. Within each neuron, there is a set of
inputs, a weight, and a bias value. As an input enters the neuron, it gets multiplied by
the weight value, and the resulting output is either passed to the next layer or observed.
Often the weights of a neural network live within the hidden layers of the network.

3.9 Back Propagation

Back Propagation Neural Network is a multilayer neural network consisting of the in-
put layer, at least one hidden layer, and the output layer. As its name suggests, back-
propagating will take place in this network. The error calculated at the output layer
propagated back towards the input layer by comparing the predicted output and the
actual output.

Figure 3.6: Back Propagation
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Every neuron is connected with another neuron through a connection link. Every con-
nection link is associated with a weight that contains information about the input signal.
This is the most important information for neurons to solve a specific problem because
the weight usually excites or inhibits the signal that is being communicated. In addition,
each neuron has an internal state, which is called an activation signal. Output signals,
produced after combining the input signals and activation rule, may be sent to other
units.

3.10 Stochastic Gradient Descent

Gradient descent is one of the most popular algorithms to perform optimization and by
far the most common way to optimize neural networks.

The standard gradient descent algorithm updates the parameters θ of the objective J(θ)

as,
θ = θ − α∇E[J(θ)]

where the expectation is approximated by evaluating the gradient and cost over the full
training set. Stochastic Gradient Descent (SGD) does away with the expectation in the
update and computes the gradient of the parameters using only a single or a few training
examples. The new update is given by,

θ = θ − α∇J(θ;x(i), y(i))

with a pair (x(i), y(i)) from the training set.

Generally, in SGD each parameter is updated by computing with respect to a minibatch
or a few training examples as opposed to a single example. There are two reasons for this:
first, it reduces the variance in the parameter update and leads to more stable convergence
and secondly it allows the computation to take advantage of optimized matrix operations
that can be used in a vectorized computation of the gradient and const. A common
minibatch size is 256, although the optimal size of the minibatch can vary for different
applications and architectures.

In SGD, the learning rate α is typically smaller than a corresponding learning rate in batch
gradient descent due to the much more variance in the update. Choosing the best learning
rate and schedule (i.e., changing the value of the learning rate as learning progresses) is
considered a difficult task. One common method that works well in practice is using a
small enough constant learning rate that provides stable convergence in the initial epoch
(complete pass through the training set) or two of training and then halves the learning
rate’s value as convergence slows down. A better approach is evaluating a held-out set
after each epoch and anneal the learning rate when the change between epochs is below
a small threshold. This tends to give good convergence to a local optimum. Another
commonly used schedule is to reduce the learning rate on each iteration t as ab+ t where
a and b dictate the initial learning rate and when the annealing begins. More advanced
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methods include using a backtracking line search to find the optimal update.

One final but essential point regarding Stochastic Gradient Descent is how the data are
presented to the algorithm. If the data is given in exact order, this may bias the gradient
and lead to poor convergence. Generally, an excellent method to avoid this is to shuffle
the data before each training epoch randomly.

3.11 Adam Optimization Algorithm

The Adam optimization algorithm extends stochastic gradient descent that has recently
seen wider adoption for deep learning applications in natural language processing or com-
puter vision. Adam is an optimization algorithm that can be used in the place of the
classical stochastic gradient descent procedure for updating network weights iterative
based on the training data.

Adam is different from classical stochastic gradient descent.

Stochastic gradient descent keeps a single learning rate (denoted as alpha) for all weight
updates, and the learning rate is not changing during training.

A learning rate is kept for each network weight and separately adapted as learning un-
winds. The method computes individual learning rates for different parameters from
estimates of first and second moments of the gradients.

The authors explain Adam as the combination of the advantages of two other extensions
of stochastic gradient descent. Particularly:

Adaptive Gradient Algorithm (AdaGrad) which maintains a per-parameter learning rate
that improves the performance on problems containing sparse gradients (e.g.,computer
vision and natural language problems). Root Mean Square Propagation (RMSProp) also
maintains per-parameter learning rates, which adapt based on the average of current
magnitudes of the gradients for the weight. This means the algorithm performs well on
online and non-stationary problems (e.g., noisy).

Adam connects the benefits of both AdaGrad and RMSProp.

Adam uses the average of the second moments of the gradients other than adapting the
parameter learning rates based on the mean as in RMSProp.

Notably, the algorithm computes the exponential moving average of the gradient and the
squared gradient, while the parameters beta1 and beta2 control the decreasing rates of
these moving averages.

The starting value of the moving averages and beta1 and beta2 values, which are close
to 1.0, result in a bias of moment estimates towards zero. This bias is overcome by first
calculating the biased estimates before then calculating bias-corrected estimates.
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3.12 Deep Reinforcement Learning

Deep reinforcement learning is the combination of artificial neural networks and rein-
forcement learning which helps software agents learn how to accomplish their goals. In
other words, it unites function approximation and target optimization, mapping states
and actions to the rewards they lead to.

While neural networks are responsible for recent artificial intelligence breakthroughs in
domains like machine translation, compute vision and time series prediction – they also
combine with reinforcement learning algorithms in the creation of something astounding
like Deepmind’s AlphaGo, an algorithm that beat the world champions of the Go board
game.

Reinforcement learning attributes to goal-oriented algorithms that learn ways of achieving
a complex objective or the maximization along a particular dimension after many steps;
e.g., they can maximize won points in a game after many moves. Reinforcement learning
algorithms may start from a clean slate, and under the proper conditions, achieve super-
human performance. Much like a pet incentivized by treats and scolding, these algorithms
are punished when they take the wrong decisions and rewarded if they make the right
ones.

Reinforcement algorithms that use deep neural networks can beat human experts playing
numerous Atari video games [23], Starcraft II [24] and Dota-2 [25]. While that may sound
quite trivial to non-gamers, it is actually a vast improvement compared to reinforcement
learning’s historical accomplishments, and the state of the art is rapidly progressing.

Reinforcement learning solves the hard problem of immediate actions correlation with
the production of the delayed outcomes. Like humans, reinforcement learning algorithms
usually have to wait to see the weight of their decisions. They operate in a environment
with delayed returns, where it can be hard to understand which action leads to which
outcome after many time steps.

Reinforcement learning algorithms are slowly and gradually performing better and better
in real-life environments when choosing from an arbitrary number of possible actions,
instead of the limited options of a repeatable video game. In other words, they are
beginning to achieve goals in the real world.
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Chapter 4

Design & Specifications

In this chapter, we reduce the state space of Tetris by adopting assumptions and discuss
the possible consequences of each assumption. We then design the reinforcement learning
agent and consider the processes it requires. Finally, we end the chapter by considering
the structure of the whole application.

4.1 Redesigning the Tetris State Space

Traditional reinforcement learning uses a tabular value function that associates a value
with every state. Thus, the primary design consideration is how the Tetris state space can
be reduced without discarding pertinent information. Since the full Tetris well, shown in
Figure 2.1, has dimensions twenty blocks deep by ten blocks wide, there are two hundred
block positions in the well that can be either occupied or empty.

Assumption 1 The position of each block on screen is not a consideration that is factored
into every move by a human player. We limit ourselves to simply considering the sum of
heights of each column.

Assumption 2 The height of each column is pretty irrelevant except perhaps when the
height of a column starts to approach the top of the well. The importance lies in the
relationship between successive columns rather than in their isolated heights.

Assumption 3 The height of each column is not the only consideration a human player
has to think. For example, holes that form between structures are the natural enemy of
Tetris. Therefore, one crucial aspect of the game is the reduction of these holes.

Assumption 4 In order to avoid losing the game, it is essential to clear lines as the
game progresses. Having in mind that clearing more rows at once awards more points,
the possible number of row clearance at each step is important. This maxes out at four,
due to I piece’s (Figure 2.2) height, which is four.

4.2 The Structure of a Reinforcement Learning Agent

We set out to create an agent that functions within the reduced state representation
developed above. We decided to compare three algorithms where the agent can consider
the tetromino currently allocated to it in the course of each move. The agent’s behaviour
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can be separated into distinct processes.

• Discover transitions

• Choose amongst transitions using exploration policy

• Update value function

Each of these processes is now discussed in depth in the following subsections

4.3 The Discovery of Transitions

This method discovers the transitions available from the current state. The agent makes
use of a conceptual game that exists purely for its benefit, isolating any conceptual ma-
nipulations from the full game. The agent copies the block formation from the real Tetris
well into its conceptual well before performing each of the possible transitions with the
current tetromino. Each transition is defined by four parameters. These are the number
of translations and rotations, the resulting reward and the value of the resulting state.
Every unique transition is added to a list of possible transitions.

4.4 Exploring Amongst Transitions

ε-greedy is implemented as competing exploration policy. ε-greedy is a deviation from the
greedy policy and is implemented within the greedy method by giving the agent a fixed
probability of choosing randomly amongst the available transitions. There are therefore
two methods that accept a range of possible transitions and return a single transition.
Optimistic exploration is achieved by initialising the value function with values slightly
larger than the largest anticipated value. This value is easily determined when dealing
with purely negative rewards, since all states will have negative values, and therefore zero
is an optimistic value. When dealing with positive rewards, the easiest approach is to set
the agent to explore for a large period of time, look at the predicted values and adopt a
value slightly larger than the largest value for the starting values.

4.5 Update the Value Function

The transition selected by the exploration policy is taken in the full game. The results
of this transition are used in updating the agent’s value function. The update functions
for our three approaches are shown by equations in algorithms 1, 2 and 3. The update
method accepts the current index, destination index and a reward. In the SARSA agent,
this reward is interpreted as the reward associated with taking the action from the current
state. In Q-Learning, the reward defers from SARSA in that it also considers the rewards
of taking an action in the next step. In Memory-Based Learning, we train the agent at
the end of each episode by replaying a batch from the previous episodes’ moments. In
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implementing those agents, the state-value table had to be extended to contain every
transition off each state. The number of transitions is dictated by the number of different
tetrominoes, the number of translations and the number of different orientations. Each
tetromino accounts for a specific set of translations and orientations based on its physical
nature. For example, the O piece (Figure 2.5) can move up to four blocks to the right or
left, and have no rotations. In other words, the number of the available translations for
O piece is 8. This drastically decreases the state space of the game as it removes a great
deal of redundant information depending on the tetromino set used.

4.6 Application Design

We designed a Tetris game from first principles in order to have complete control over
the structure of the game and familiarise ourselves with the required methods. The
application can be readily divided up into the following logical classes

• The Game Window

• The Graphics Manager

• The Game Controller

• The Tetris class

• The Tetrominoes List

• The Tetris player

The game window is the display that all graphics are rendered. The graphics manager is
responsible for sending to the game window the appropriate information for the game to
take place. The game controller has a number of responsibilities listed below:

• Initialize score

• Track game status (playing, game over)

• Creating random tetromino sequences for future spawns

• Spawning a piece

• Moving a piece vertically and horizontally

• Check collisions with walls and other already placed tetrominoes

• Count number of holes

• Count bumpiness (sum of the differences of heights between consecutive columns)

• Count maximum height
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The Tetris class, requires a game controller and a graphics manager to function. It is
the core unit that connects everything together. Other than using the game controller to
ensure the execution of the game, it is responsible for informing the dependent entities
about the board status, the current reward and the result of applying one step (one action)
to the environment.

The Tetris player, which can either be instantiated as an agent or human player, is an
object that uses the exposed methods of Tetris class in order to access the basic controls
of the game. if it is a human, a piece can be moved using the arrow keys. On the other
hand, if it is an agent, it automatically moves based on the decisions it takes.

The tetrominoes list contain the necessary information about the piece that the game
controller needs to know in order to apply the respective mechanics, such as rotational
manipulation and translation. All tetromino transitions which occur within the board
are checked and performed in the Game Controller. The Game Controller and the ar-
tificial agent (Tetris player) are all objects that will need to change in the course of
the investigation. This structuring allows for seamless swapping between different game
definitions and artificial agents. As long as the agent implements the correct interface,
the theory guiding the actions of the agent can subscribe to any artificial intelligence
method. This follows the reasoning, outlined by the strategy design pattern [26], that
competing algorithms should implement a common interface and therefore be seamlessly
interchangeable. We would expect any object-orientated Tetris game to deal with a large
number of tetromino objects, and the performance penalty introduced by instantiating
large numbers of simple objects warrants consideration. This is addressed by conventional
design patterns and corresponds to a fly-weight design pattern, as discussed in Gamma
et al. [26]. Rather than having the game continually recreating individual tetrominoes
within the list of available tetrominoes, it is preferable to create every possible tetromino
once and subsequently pass out a reference to the relevant tetromino. This optimisation is
piece-specific and is implemented in the Tetris class by instantiating a dictionary mapping
each of the tetrominoes to the corresponding range of orientations and translations. The
first time a tetromino is assigned a rotation or translation, a respective value is accessed
in this dictionary.

35



Chapter 5

Implementation

5.1 Environment

The simulation of the Tetris environment that is used is a custom implementation that
obeys the Classic Tetris World Tournament rules, except that pieces can only be rotated
clock-wise and not in both directions. In addition, the training agent decides the move
it will follow each time a piece is spawned, and this move cannot be changed until the
spawn of the next one.

As epoch, we assume one whole game, i.e., from the very first piece until the game is
over. Every epoch, the current state is calculated as soon as a piece is spawned. After
that, all following possible states are generated, based on the current’s piece transforms
and rotations. These following states are fed into the agent who chooses to take an action
(move) in random or based on the most rewarding next state. The action is applied to
the Tetromino, which in turn ends up falling on the board, and the next piece is spawned.
This cycle continues until a game ends, triggering a reset and a new game starts.

In Tetris, an agent must take specific action sequences to receive a reward by clearing
lines, while there are a lot of others that can lead to no rewards. If the latter happens
frequently, more exploration is needed before a reward is found resulting in sparse rewards
and impossible learning. This is avoided by reducing the placing of one tetromino from
many actions to one.

5.2 Q-Learning

Q-Learning is an Off-Policy algorithm for Temporal Difference learning. It can be proven
that given sufficient training under any ε-soft policy, the algorithm converges with proba-
bility 1 to a close approximation of the action-value function for an arbitrary target policy.
Q-Learning learns the optimal policy even when actions are selected according to a more
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exploratory or even random policy [27]. The procedural form of the algorithm is:

Algorithm 1: Q-Learning

Input: the policy π to be evaluated
Where: Q() is the Q function
s is some state
S is the set of all states
a is an action
r is the reward given by taking action a
s′ is the next state
a′ is the next action
α is the learning rate
γ is the discount rate
ε is given by (5.2)
Initialize Q(s, a) = 0,∀s ∈ S
while true do

Initialize s as starting state
while s is not terminal state do

Choose a from s using policy derived from Q Take action a, observe r and
next state s′

Choose a′ from s′ using policy derived from Q
Q(s, a)← Q(s, a) + α[r + γmaxαQ(s′, a′)−Q(s, a)]
s← s′

end

end

This procedural approach can be translated into steps as follows:

• Initialize the Q-values table, Q(s, a)

• Observe the current state, s

• Choose an action, a, for that state based on the given policy

• Take the action, and observe the reward, R, as well as the new state, s’

• Update the Q-value for the state using the observed reward and the maximum
reward possible for the next state

• Set the state to the new state, and repeat the process until a terminal state is
reached

5.3 SARSA

The SARSA algorithm is an On-Policy algorithm for TD-Learning. The major difference
between it and Q-Learning, is that the maximum reward for the next state is not nec-
essarily used for updating the Q-values. Instead, a new action, and therefore reward, is
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selected using the same policy that determined the original action. The name SARSA ac-
tually comes from the fact that the updates are done using the quintuple Q(s, a, r, s′, a′).
Where: s, a are the original state and action, r is the reward observed in the following
state and s’, a’ are the new state-action pair. The procedural form of SARSA algorithm
is comparable to that of Q-Learning [27]:

Algorithm 2: SARSA

Input: the policy π to be evaluated
Where: Q() is the Q function
s is some state
S is the set of all states
a is an action
r is the reward given by taking action a
s′ is the next state a′ is the next action α is the learning rate
γ is the discount rate
ε is given by (5.2)
Initialize Q(s, a) = 0,∀s ∈ S
while true do

Initialize s as starting state
Choose a from s using policy derived from Q
while s is not terminal state do

Take action a, observe r and next state s′

Choose a′ from s′ using policy derived from Q
Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s← s′

a← a′

end

end
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5.4 Memory Based Learning

Algorithm 3: Memory Based Learning

Input: the policy π to be evaluated
Where: Q() is the Q function
s is some state
S is the set of all states
a is an action
r is the reward given by taking action A
α is the learning rate
γ is the discount rate
ε is given by (5.2)
minSample is the minimum replay sample required to start training
replayMemory is the replay memory
batchSize is the number of samples to choose from replay memory
Initialize Q(s, a) = 0,∀s ∈ S
while true do

Initialize s as starting state
while s is not terminal state do

Choose a from s using policy derived from Q
Take action a, observe r and next state s′

replayMemory.push((s, s′, R))
end
if replayMemory.length ≥ minSample then

batch← replayMemory.sample(batchSize)
for (s, s′, R) ∈ batch do

Q(s, a)← Q(s, a) + a[r + γQ(s′, a′)]
end

end

end

Memory Based is an algorithm thatthat uses a replay memory. Every generated state of
the environment is inserted into a fixed size memory. This memory is a FIFO list. The
goal of the agent is to maximize its rewards by constructing some policy. The policy is
responsible for deciding the action that moves the environment from one state to another.
The memory-based learning method tries to approximate a Q function, Q(s, a), which
estimates the value of the following states. In other words, Q(s, a), provides information
on how much value the state s will yield in the future. Unlike episodic or step-by-step
RL method, where the Q function is improved per episode or per step accordingly, in the
memory-based method, the value function starts improving after a minimum amount of
state sample has been gathered. The policy is ε-greedy, meaning that it will either take
highest rewarding action or a random action depending on ε.
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5.5 Rewards and Exploration

Each block placement acquires 1 point of reward. Each lose grants a -2 reward. In each
move, there can be a simultaneous line clearance c ∈ [0, 4]. The reward given based on c
can be seen in equation (5.1).

r ← r + 10c2 (5.1)

The squared increase in rewards based online clearance, has shown that it helps the agent
look for clearing more lines at once rather thanthan clearing them one by one, which is
closer to a human’s play style.

Exploration is an important part in reinforcement learning. The exploration rate is given
by the formula (5.2), where d is the decay factor and E is the number of running epoch,
meaning that ε slowly decays to 0 in the first 1500 episodes.

ε = 1− d/1500 (5.2)

d = min(E, 1500) (5.3)

This causes the agent to take random actions with decreasing rate, which is standard in
reinforcement learning, as initially the agent has no experience and needs to explore more
frequently while after some episodes it needs to exploit the knowledge it acquired through
exploration. This is very similar to how humans learn tasks by trying strategies when
faced with something new, but use experience on known tasks.

The policy relies on the value function Q(s, a) which is the expected reward for each
state. While for smaller problem Q(s, a) can be represented by a table with each item
representing the expected value of state-action pairs, in the case of Tetris where the set
of states is huge, it is not feasible. That’s why an approximator is required. The role of
the approximator takes a Deep Neural Network.

5.6 State Representation

The state representation that was used i a 1D vector with four features:

• Line Clearance: The number of cleared lines if found in this state.

• Holes: The number of empty blocks with at least one piece block above them.

• Total Bumpiness: Sum of the differences of heights between pairs of consecutive
columns.

• Total Height: Sum of heights of each column.
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5.7 Deep Neural Network Agent

The agent used is a fully connected deep neural network.

Initially, we deployed a smaller neural network with the following characteristics:

• Input Layer: The input layer accepting the state representation.

• Hidden Layer 1: The first hidden layer consists of 32 neurons and uses the ReLU
activation function.

• Hidden Layer 2: The second hidden layer consists of 32 neurons and uses the
ReLU activation function.

• Output Layer: The output layers consists of 1 neuron which represents the ex-
pected reward given the input state. The activation function is linear.

• Loss Function: Mean Squared Error is used as loss function.

• Optimizer: Adam optimizer is used.

• Learning Rate: Learning rate is set to 0.001.

But we would like to compare the results of the afore mentioned model to the results of
a deeper network containing:

• Input Layer: The input layer accepting the state representation.

• Hidden Layer 1: The first hidden layer consists of 32 neurons and uses the ReLU
activation function.

• Hidden Layer 2: The second hidden layer consists of 64 neurons and uses the
ReLU activation function.

• Hidden Layer 3: The first hidden layer consists of 64 neurons and uses the ReLU
activation function.

• Hidden Layer 4: The second hidden layer consists of 32 neurons and uses the
ReLU activation function.

• Output Layer: The output layers consists of 1 neuron which represents the ex-
pected reward given the input state. The activation function is linear.

• Loss Function: Mean Squared Error is used as loss function.

• Optimizer: Adam optimizer is used.

• Learning Rate: Learning rate is set to 0.001.
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Chapter 6

Evaluation

6.1 SARSA Results

Figure 6.1 depicts the results of SARSA algorithm. It is clear that SARSA is not an
algorithm that converges to this specific domain. After 3000 episodes and two deep
learning agents of different depths, it could not learn how to play the game by clearing
lines. We believe this happens due to the fact that SARSA selects actions a and a′ on the
same step using the given ε-greedy policy which increases randomness. In a game with a
vast space-state, like Tetris, it is usual for an approach to find difficulties in approximating
a large percentage of the space-state.

Figure 6.1: SARSA Results
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6.2 QLearning Results

Figure 6.2 shows the results of QLearning approach. In contrast with SARSA, QLearning,
on the initial agent, seems to be able to learn very little from the game. Max cleared
lines of 8 during the exploration period can be interpreted as a random event to happen.
Between 800 and 2800 episodes, we observe no actual improvement. After 2800 episode
an increased performance is seen, but due to the maximum set limit of 3000 episodes we
can not be sure that there could be a continues improvement towards optimum.

Is is also clear, that when training on the deeper neural network, the agent wasn’t able to
learn anything about the game. Perhaps deeper networks require adjustments and tweaks
to the hyperparameters in order to find the golden rule.

Figure 6.2: QLearning Results

6.3 Memory Based Results

At Figure 6.3 the results of Memory Based Learning can be seen. It is by far the most
promising approach compared to SARSA and QLearning. In the graph 6.3, we observe
that after 1500 episodes, the point where exploration stops, there’s an increase in the
performance of the agent reaching approximately the number of 35 cleared lines on the
initial neural network. We strongly believe that this massive difference compared to other
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algorithms is due to the fact that Memory Based agent uses a memory of past experiences
for training. This seems to help because the agent can replay the best moves from a set of
bad or good experiences. This is close to how we, humans, operate. By knowing the best
action of our previous states, we can repeat and improve our behavior. This is something
that lacks from previous approaches of SARSA and QLearning.

When training on the deeper network, we also observe an increase in cleared lines between
1500 and 2000 episodes. The maximum number is 20. After that the performance starts
dropping. We believe this happens due hyperparameter tuning. Due to the lack of com-
puter power we could not experiment on more setups and compare results with different
hyperparameters.

Figure 6.3: Memory Based Results
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Figure 6.4: Initial Neural Network Comparison
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Figure 6.5: Deeper Neural Network Comparison
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Chapter 7

Conclusion

In this thesis we presented an approach to reducing the state space of Tetris. We tried
to identify redundancy in the game description, and thereby reduce the amount of in-
formation required to play intelligently, down to a handleable kernel. We compared two
famous algorithms, SARSA and QLearning, with Memory Based Learning, a reinforce-
ment learning algorithm that relies on a replay memory to train and predict actions. Our
SARSA and QLearning, agent was found to be lacking in ability, and was completely
overshadowed by the performance of the Memory Based agent.
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Appendix A

Example: Source Code Samples

Training

1 from collections import deque

2

3 import numpy as np

4 from tensorflow import keras

5 from tensorflow.keras.layers import Dense , Input

6 import GameController as GameController

7 import TetrisAI as Tetris

8 from time import sleep

9 import random

10 from statistics import mean

11 import sys

12

13 # Configuration paramaters for the whole setup

14 seed = 42

15 gamma = 0.95 # Discount factor for past rewards

16 epsilon = 1.0 # Epsilon greedy parameter

17 epsilon_min = 0 # Minimum epsilon greedy parameter

18 epsilon_max = 1.0 # Maximum epsilon greedy parameter

19 epsilon_interval = (

20 epsilon_max - epsilon_min

21 ) # Rate at which to reduce chance of random action being taken

22

23 epsilon_stop_episode = 1500

24 epsilon_decay = (epsilon - epsilon_min) / epsilon_stop_episode

25 log_every = 50

26 batch_size = 512

27 epochs = 1

28 mem_size = 20_000

29 memory = deque(maxlen=mem_size)

30 replay_start_size = 2000

31 ACTIONS = [(transform , rotation) for transform in range(0 - 5,

GameController.BOARD_WIDTH - 5) for rotation in range (4)]

32

33 INPUT_SHAPE = 4

34

35 print("MemoryBased")

36 sleep (1)

37

38

39 def create_q_model ():

40 # Network defined by the Deepmind paper

41 model = keras.models.Sequential ()

42 model.add(Input(shape=INPUT_SHAPE , dtype="float32"))

43 model.add(Dense (32, activation="relu"))
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44 model.add(Dense (32, activation="relu"))

45 model.add(Dense(1, activation="linear"))

46 model.compile(loss=’mse’, optimizer=’adam’)

47 return model

48

49

50 def get_best_state(states):

51 ’’’Returns the best state for a given collection of states ’’’

52 max_value = None

53 best_state = None

54

55 if epsilon >= np.random.rand (1) [0]:

56 # Take random action

57 return random.choice(list(states))

58 else:

59 for s in states:

60 value = predict_value(np.reshape(s, [1, INPUT_SHAPE ]))

61 if not max_value or value > max_value:

62 max_value = value

63 best_state = s

64

65 return best_state

66

67

68 def predict_value(state):

69 """ Predicts the score for a certain state """

70 return model.predict(state)

71

72

73 def add_to_memory(current_state , next_state , reward , done):

74 """ Adds a play to the replay memory buffer """

75 memory.append (( current_state , next_state , reward , done))

76

77

78 def train(batch_size =32, epochs =3):

79 """ Trains the agent """

80 n = len(memory)

81

82 if n >= replay_start_size and n >= batch_size:

83

84 batch = random.sample(memory , batch_size)

85

86 # Get the expected score for the next states , in batch (better

performance)

87 next_states = np.array ([x[1] for x in batch ])

88 next_qs = [x[0] for x in model.predict(next_states)]

89

90 x = []

91 y = []

92

93 # Build xy structure to fit the model in batch (better

performance)

94 for i, (state , _, reward , done) in enumerate(batch):

95 if not done:

96 # Partial Q formula

97 new_q = reward + gamma * next_qs[i]

98 else:

99 new_q = reward
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100

101 x.append(state)

102 y.append(new_q)

103

104 # Fit the model to the given values

105 model.fit(np.array(x), np.array(y), batch_size=batch_size ,

epochs=epochs , verbose =0)

106

107

108 # The first model makes the predictions for Q-values which are used to

109 # make a action.

110 model = create_q_model ()

111

112 # Experience replay buffers

113 action_history = []

114 state_history = []

115 state_next_history = []

116 rewards_history = []

117 done_history = []

118 episode_reward_history = []

119 running_reward = 0

120 episode_count = 1

121 frame_count = 0

122 # Number of frames to take random action and observe output

123 epsilon_random_frames = 50000

124 # Number of frames for exploration

125 epsilon_greedy_frames = 100 _000.0

126 # Maximum replay length

127 # Note: The Deepmind paper suggests 1000000 however this causes memory

issues

128 max_memory_length = 10_000

129 # Train the model after 4 actions

130 update_after_actions = 4

131 # How often to update the target network

132 update_target_network = 10000

133 # Using huber loss for stability

134 loss_function = keras.losses.Huber ()

135 env = Tetris.Tetris ()

136 total_lines_cleared = 0

137 action_count = 0

138 TAG = ’another_state ’

139 update_after_episodes = 1

140

141 singles = []

142 doubles = []

143 triples = []

144 tetrises = []

145

146 with open(’reports/report_ {}. csv’.format(TAG), ’w’) as f:

147 print(’Created ’)

148 f.write(’Episode ,Single ,Double ,Triple ,Tetris ,Total ,Score\n’)

149 try:

150 while True: # Run until solved

151 done = False

152 episode_reward = 0

153 single = 0

154 double = 0

155 triple = 0
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156 tetris = 0

157 episode_lines_cleared = 0

158 if episode_count % 10 == 0:

159 print("Episode: " + str(episode_count))

160 print(’Total lines cleared: ’ + str(total_lines_cleared))

161 while not done:

162 env.step(None)

163 current_state = env.get_state(False)

164 possible_next_states = env.get_next_states ()

165 best_state = get_best_state(possible_next_states.values ())

166

167 best_action = None

168 for action , state in possible_next_states.items():

169 if state == best_state:

170 best_action = action

171 break

172 if best_state [0] == 4:

173 tetris += 1

174 elif best_state [0] == 3:

175 triple += 1

176 elif best_state [0] == 2:

177 double += 1

178 elif best_state [0] == 1:

179 single += 1

180

181 reward , done = env.step(best_action)

182

183 action_count += 1

184

185 episode_reward += reward

186

187 add_to_memory(current_state , possible_next_states[

best_action], reward , done)

188

189 current_state = possible_next_states[best_action]

190

191 if done:

192 episode_lines_cleared = env.gameController.lines

193 total_lines_cleared += episode_lines_cleared

194 env.gameController.state_initializer ()

195 break

196

197 episode_reward_history.append(episode_reward)

198 singles.append(single)

199 doubles.append(double)

200 triples.append(triple)

201 tetrises.append(tetris)

202 # Update every fourth frame and once batch size is over 32

203 if episode_count % update_after_episodes == 0:

204 train(batch_size , epochs)

205

206 if epsilon > epsilon_min:

207 epsilon -= epsilon_decay

208

209 # Logs

210 if log_every and episode_count and episode_count % log_every ==

0:

211 avg_score = mean(episode_reward_history[-log_every :])
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212 min_score = min(episode_reward_history[-log_every :])

213 max_score = max(episode_reward_history[-log_every :])

214 avg_singles = mean(singles[-log_every :])

215 avg_doubles = mean(doubles[-log_every :])

216 avg_triples = mean(triples[-log_every :])

217 avg_tetrises = mean(tetrises[-log_every :])

218 avg_total = mean(singles[-log_every :]) + 2 * mean(doubles[-

log_every :]) \

219 + 3 * mean(triples[-log_every :]) + 4 * mean(

tetrises[-log_every :])

220

221 # Update running reward to check condition for solving

222 with open(’reports/report_ {}. csv’.format(TAG), ’a’) as f:

223 f.write(’{} ,{} ,{} ,{} ,{} ,{} ,{}\n’.format(episode_count ,

avg_singles ,

224 avg_doubles ,

avg_triples ,

225 avg_tetrises ,

avg_total , avg_score))

226 episode_count += 1

227 except SystemExit:

228 model.save(’models/_{}’.format(TAG))

Testing

1 from collections import deque

2

3 import numpy as np

4 from tensorflow import keras

5 from tensorflow.keras.layers import Dense , Input

6 from MemoryBased import GameController as GameController ,

TetrisQLearning as Tetris

7 from time import sleep

8 import random

9 from statistics import mean

10 import sys

11

12 # Configuration paramaters for the whole setup

13 seed = 42

14 gamma = 0.95 # Discount factor for past rewards

15 epsilon = 1.0 # Epsilon greedy parameter

16 epsilon_min = 0 # Minimum epsilon greedy parameter

17 epsilon_max = 1.0 # Maximum epsilon greedy parameter

18 epsilon_interval = (

19 epsilon_max - epsilon_min

20 ) # Rate at which to reduce chance of random action being taken

21

22 epsilon_stop_episode = 1500

23 epsilon_decay = (epsilon - epsilon_min) / epsilon_stop_episode

24 log_every = 50

25 batch_size = 512

26 epochs = 1

27 mem_size = 20_000

28 memory = deque(maxlen=mem_size)

29 replay_start_size = 2000

30 ACTIONS = [(transform , rotation) for transform in range(0 - 5,

GameController.BOARD_WIDTH - 5) for rotation in range (4)]

31
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32 INPUT_SHAPE = 4

33

34 print("MemoryBased")

35 sleep (1)

36

37 def get_best_state(states):

38 ’’’Returns the best state for a given collection of states ’’’

39 max_value = None

40 best_state = None

41

42 for s in states:

43 value = predict_value(np.reshape(s, [1, INPUT_SHAPE ]))

44 if not max_value or value > max_value:

45 max_value = value

46 best_state = s

47

48 return best_state

49

50

51 def predict_value(state):

52 """ Predicts the score for a certain state """

53 return model.predict(state)

54

55

56 def add_to_memory(current_state , next_state , reward , done):

57 """ Adds a play to the replay memory buffer """

58 memory.append (( current_state , next_state , reward , done))

59

60

61 def train(batch_size =32, epochs =3):

62 """ Trains the agent """

63 n = len(memory)

64

65 if n >= replay_start_size and n >= batch_size:

66

67 batch = random.sample(memory , batch_size)

68

69 # Get the expected score for the next states , in batch (better

performance)

70 next_states = np.array ([x[1] for x in batch ])

71 next_qs = [x[0] for x in model.predict(next_states)]

72

73 x = []

74 y = []

75

76 # Build xy structure to fit the model in batch (better

performance)

77 for i, (state , _, reward , done) in enumerate(batch):

78 if not done:

79 # Partial Q formula

80 new_q = reward + gamma * next_qs[i]

81 else:

82 new_q = reward

83

84 x.append(state)

85 y.append(new_q)

86

87 # Fit the model to the given values
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88 model.fit(np.array(x), np.array(y), batch_size=batch_size ,

epochs=epochs , verbose =0)

89

90

91 # The first model makes the predictions for Q-values which are used to

92 # make a action.

93 model = keras.models.load_model(’models/b_1’)

94

95 print(model.summary ())

96 sleep (2)

97

98 episode_count = 1

99 # Using huber loss for stability

100 env = Tetris.Tetris ()

101 total_lines_cleared = 0

102 episode_reward = 0

103 try:

104 while True: # Run until solved

105 done = False

106 episode_lines_cleared = 0

107 if episode_count % 10 == 0:

108 print("Episode: " + str(episode_count))

109 print(’Total lines cleared: ’ + str(total_lines_cleared))

110 print(’Episode reward: ’, )

111 episode_reward = 0

112 while not done:

113 env.step(None)

114 current_state = env.get_state(False)

115 possible_next_states = env.get_next_states ()

116 best_state = get_best_state(possible_next_states.values ())

117

118 best_action = None

119 for action , state in possible_next_states.items():

120 if state == best_state:

121 best_action = action

122 break

123

124 reward , done = env.step(best_action)

125

126 episode_reward += reward

127

128 current_state = possible_next_states[best_action]

129

130 if done:

131 episode_lines_cleared = env.gameController.lines

132 total_lines_cleared += episode_lines_cleared

133 env.gameController.state_initializer ()

134 break

135

136 episode_count += 1

137 except SystemExit:

138 print (0)
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