

UNIVERSITY OF PIRAEUS

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGIES
DEPARTMENT OF DIGITAL SYSTEMS

Postgraduate Program of Studies

MSc Digital Systems Security

MASTER THESIS

Windows Malware Analysis

Konstantinos Valsamakis

Supervisor Professor: Christos Xenakis

Piraeus
17/03/2021

MASTER THESIS

Windows Malware Analysis

Valsamakis Konstantinos

SID: 1903

Abstract

The scope of this thesis is the study of Malware Analysis on Windows environment in a
systematic and detailed manner, based on SAMA methodology. Furthermore, taking under
consideration the ENISA guidelines, a laboratory was created, which is modular and capable of
isolating the infected VMs, providing them with Internet connection or simulating one when the
appropriate rules are applied. An unknown sample was selected which ended up being a variant of
“Agent Tesla” RAT as the use cas. Extensive effort was given in reversing the malicious code and
observing its behavior to fully understand the intentions of each sample. Beyond the core
functionality are findings such as the communication means, the servers used to download malicious
code, evasive and Anti-VM techniques, as well as techniques to bypass malware defensive
mechanisms.

SUBJECT AREA: Windows Malware Analysis
KEYWORDS: Malware Analysis; SAMA; Agent Tesla

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Ioannis Dervisis, for his co-
operation and patience over the last six months, without him this Thesis would have not been
possible. I would also like to thank my esteemed supervisor Prof. Christos Ksenakis for the
guidance and the knowledge provided throughout my MSc studies. I would also like to mention the
influence I had from all my professors and especially Prof. Christoforos Ntantogian, who really
pushed me into thinking out of the box.
During my MSc studies, I really enjoyed working with enthusiastic and talented colleagues, that
share the same enthusiasm and expertise on security related subjects making the environment
competitive and healthy at the same time. Finally, I would like to express my gratitude to my
parents for all the support and guidance provided all these years.

Table of Contents

1 Introduction .. 1

2 Theoretical Background ... 2

2.1 Definitions ... 2

2.2 The PE file structure ... 3

2.2.1 MS-DOS header .. 3

2.2.2 PE Signature ... 4

2.2.3 PE File Header .. 4

2.2.4 PE Optional Header ... 4

2.2.5 Section Header Table .. 4

2.2.6 Sections ... 4

3 Methodology and Tools .. 5

3.1 Methodology ... 5

3.2 Tools ... 6

4 Lab Setup .. 8

4.1 Network Topology ... 8

4.2 REMnux GW VM Setup .. 9

4.2.1 Import Appliance .. 10

4.2.2 System Update .. 10

4.2.3 Network Configuration ... 11

4.2.4 Additional Software Installation .. 12

4.2.5 Firewall Scripts .. 13

4.2.6 Configuration of “BurpSuite Community Edition” .. 19

4.3 Windows VM Setup .. 21

4.3.1 Importing Appliance ... 21

4.3.2 Disc Partition Resizing ... 23

4.3.3 Network Configuration ... 24

4.3.4 Firewall Scripts Testing and Windows Activation ... 24

4.3.5 Classification and Code Analysis Windows VM ... 26

4.3.6 Behavioral Analysis VM ... 27

5 The use case of “Agent Tesla” malware ... 32

5.1 Classification .. 33

5.1.1 Malware Transfer ... 33

5.1.2 Applying “YARA” rules ... 33

5.1.3 Calculating the “ssdeep” checksum ... 34

5.1.4 Inspection with AV engine .. 34

5.1.5 Gathering information from open sources .. 35

5.1.6 Use of PE inspection tools ... 36

5.1.7 Deobfuscating the sample ... 37

5.1.8 Inspecting the deobfuscated sample .. 38

5.2 Code Analysis ... 39

5.2.1 Possible dead code insertion ... 39

5.2.2 Execution of “timeout 5” ... 39

5.2.3 Setting security protocol... 40

5.2.4 Concatenated URLs .. 40

5.2.5 Collecting HTML responses ... 41

5.2.6 Manually providing the HTML responses ... 42

5.2.7 Extracting a PE file .. 44

5.2.8 Removing the layer of obfuscation ... 44

5.2.9 Evasive techniques .. 45

5.2.10 Extracting the second dropped binary .. 46

5.2.11 Hardware Profiling ... 48

5.2.12 Disabled persistence option ... 50

5.2.13 Disabled screen capturing option ... 51

5.2.14 Methods of communication .. 52

5.2.15 Disabled geolocation option ... 53

5.2.16 Enabled credential harvesting option ... 54

5.2.17 Disabled key logging option ... 57

5.2.18 Investigation of the non-executed branch .. 58

5.3 Behavioral Analysis .. 61

5.3.1 Lab Modification .. 61

5.3.2 Network Traffic .. 64

5.3.3 Processes .. 67

5.3.4 Registries .. 67

5.3.5 Additional Functionalities ... 68

5.4 Summary .. 71

6 Abbreviations ... 77

7 Bibliography and References ... 79

List of Figures

Figure 2.2.1 – The PE file structure ... 3

Figure 3.1.1 – “SAMA” higher level hierarchy .. 5

Figure 4.1 – Network Topology ... 9

Figure 4.2 – Discovering the Virtual Host-Only Network Adapter .. 9

Figure 4.2.1 – The use of InetSim and BurpSuite on REMnux GW ... 10

Figure 4.2.1.1 – REMnux GW Adapters .. 10

Figure 4.2.3.1 – The edited /etc/network/interfaces ... 11

Figure 4.2.3.2 – Network Connectivity Verification .. 12

Figure 4.2.4.1 – The modified dnsmasq.conf .. 12

Figure 4.2.4.2 – Installing Web GUI for “iptables” .. 13

Figure 4.2.5.1.1 – The internet.firewall file .. 14

Figure 4.2.5.1.2 – The “reset-iptables.sh” file .. 15

Figure 4.2.5.2.1 – The “inestim.firewall” file ... 16

Figure 4.2.5.2.2 – The inetsim.conf.backup file ... 17

Figure 4.2.5.3.1 – the burp_internet.firewall file ... 18

Figure 4.2.5.4.1 – The inetsim-burp.conf ... 18

Figure 4.2.5.4.2 – The burp_inetsim.firewall ... 19

Figure 4.2.6.1.1 – Proxy Options tab ... 19

Figure 4.2.6.1.2 – Proxy Listener Addition .. 20

Figure 4.2.6.1.3 – Traffic Redirection through “BurpSuite Community Edition” 20

Figure 4.2.6.1.4 – Saving the newly created “burp-internet_proxy-listeners.json” 21

Figure 4.2.6.1.5 – Verifying availability of saved proxy listeners .. 21

Figure 4.3.1.1 – MSEdge Windows downloading .. 22

Figure 4.3.1.2 – Virtual disk resizing ... 23

Figure 4.3.2.1 – Allocating additional space .. 23

Figure 4.3.3.1 – Editing adapter’s IPv4 properties ... 24

Figure 4.3.4.1 – Windows Activation ... 25

Figure 4.3.4.2 – Downloading BurpSuite CA certificate ... 25

Figure 4.3.4.3 – Installing CA certificate on the local machine .. 26

Figure 4.3.6.1.1 – Creating fake social media profile... 28

Figure 4.3.6.2.1 – Virus & threat protection settings .. 29

Figure 4.3.6.2.2 – Firewall & network protection settings .. 29

Figure 4.3.6.2.3 – App & browser control settings ... 30

Figure 4.3.6.2.4 – Editing group policies ... 31

Figure 4.3.6.2.5 – Verifying registry keys modification .. 32

Figure 4.3.6.3.1 – “File name extensions” and “Hidden items” .. 32

Figure 5.1.1.1 – password protected with the key “infected” .. 33

Figure 5.1.2.1 – Comparing sample with community “YARA” rules ... 34

Figure 5.1.3.1 – Calculating the “ssdeep” checksum ... 34

Figure 5.1.4.1 – Scanning the sample with “Kaspersky Virus Remove Tool” 34

Figure 5.1.5.1 – Sample hashes, name and size .. 35

Figure 5.1.5.2 – YARA rules ... 35

Figure 5.1.5.3 – Agent Tesla purchase options ... 36

Figure 5.1.6.1 – Agent Tesla Certificate .. 37

Figure 5.1.6.2 – Viewing strings on “Pestudio” .. 37

Figure 5.1.7.1 – The output of “d4dot.exe” .. 38

Figure 5.1.7.2 – Inspecting “acffebafb” method ... 38

Figure 5.1.7.3 – Deobfuscating the sample ... 38

Figure 5.1.8.1 – Deofbuscated file strings ... 38

Figure 5.2.1.1 – “xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxx” pattern ... 39

Figure 5.2.1.2 – the “beddbbefdccbbfadcevcvddaebfa” method .. 39

Figure 5.2.2.1 – “Interaction.Shell” method ... 40

Figure 5.2.3.1 – TLS v1.2 Security Protocol .. 40

Figure 5.2.4.1 – Concatenated URLs .. 40

Figure 5.2.4.2 – The “ffdcbbaabe” method .. 41

Figure 5.2.4.3 – Writing the downloaded strings to memory .. 41

Figure 5.2.5.1 – HTML contents on ANY.RUN environment .. 42

Figure 5.2.5.2 – HTML selection ... 42

Figure 5.2.6.1 – Breakpoint insertion .. 43

Figure 5.2.6.2 – Viewing variable contents .. 43

Figure 5.2.6.3 – string.txt contents .. 43

Figure 5.2.6.4 – Modified “string_1” variable ... 44

Figure 5.2.7.1 – Viewing array on Memory Window .. 44

Figure 5.2.8.1 – Deobfuscation script .. 45

Figure 5.2.9.1 – Anti-debugging technique .. 45

Figure 5.2.9.2 – Avoiding debugger detection ... 45

Figure 5.2.9.3 – Thread Hiding (Evasive Technique) .. 46

Figure 5.2.9.4 – Differences between the two versions. .. 46

Figure 5.2.10.1 – New byte array creation .. 47

Figure 5.2.10.2 – Same name process termination ... 47

Figure 5.2.10.3 – Stalling and Code flow obfuscation .. 48

Figure 5.2.11.1 – Get Motherboard’s SN ... 48

Figure 5.2.11.2 – Get Processor ID ... 49

Figure 5.2.11.3 – Get MAC address .. 49

Figure 5.2.11.4 – Get paths, username and computer name .. 50

Figure 5.2.12.1 – Registry key creation ... 50

Figure 5.2.12.2 – File creation in Temp path ... 51

Figure 5.2.12.3 – Actions upon “uninstall” command receival ... 51

Figure 5.2.13.1 – Screen capturing method .. 52

Figure 5.2.14.1 – Send via “TOR” browser .. 52

Figure 5.2.14.2 – Send via email... 52

Figure 5.2.14.3 – Email parameters .. 52

Figure 5.2.14.4 – Send via FTP .. 53

Figure 5.2.14.5 – FTP parameters .. 53

Figure 5.2.14.6 – Send via Telegram .. 53

Figure 5.2.15.1 – Geolocation information .. 54

Figure 5.2.16.1 – Example of the first group of applications .. 55

Figure 5.2.16.2 – Example of the second group of applications .. 56

Figure 5.2.16.3 – Harvested data parsing ... 57

Figure 5.2.16.4 – Harvested data email .. 57

Figure 5.2.17.1 – Captured Keys email ... 57

Figure 5.2.18.1 – Identifying the same pattern on link containts .. 58

Figure 5.2.18.2 – REMCOS RAT .. 58

Figure 5.2.18.3 – Method responsible for producing “hastebin” HTMLs. 59

Figure 5.2.18.4 – Identical to “mainExecFlow” method .. 59

Figure 5.2.18.5 – Anti-virutalization and anti-sanboxing .. 60

Figure 5.2.18.6 – Virtualization discovery .. 60

Figure 5.2.18.7 – Disabling Windows Defender features ... 60

Figure 5.2.18.8 – “Eazfuscator.NET” discovery ... 61

Figure 5.3.1.1 – Downloaded responses ... 61

Figure 5.3.1.2 – Satic fakefiles in InetSim configuration file ... 62

Figure 5.3.1.3 – Data directory as an argument .. 62

Figure 5.3.1.4 – Failing to establish a secure connection .. 62

Figure 5.3.1.5 – Modified script ... 63

Figure 5.3.1.6 – Modifying the InetSim configuration file ... 64

Figure 5.3.2.1 – Traffic monitoring via BurpSuite .. 65

Figure 5.3.2.2 – Base64 conversions .. 65

Figure 5.3.2.3 – Applying the “smtp" filter on Wireshark .. 66

Figure 5.3.2.4 – Inspecting the InetSim mailbox .. 66

Figure 5.3.3.1 – Show Process Tree button .. 67

Figure 5.3.3.2 – Viewing processes’ timeline .. 67

Figure 5.3.4.1 – Show Registry Activity button .. 67

Figure 5.3.4.2 – Apply process name filter .. 68

Figure 5.3.4.3 - Captured registry modifications .. 68

Figure 5.3.5.1 – Modifying the email parameters .. 69

Figure 5.3.5.2 – Enabling screen capturing and key logging capabilities 70

Figure 5.3.5.3 – The email of the keystrokes captured .. 70

Figure 5.3.5.4 – The email of the captured screenshot ... 71

Figure 5.3.5.5 – The email of credentials harvested .. 71

Figure 5.4.1 – Tracing code that is executed .. 72

Figure 5.4.2 – Tracing code that cannot be executed .. 73

List of Tables

Table 2.3.4.1 – List of Analysis tools ... 6

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 1

1 Introduction

The word “malware” derives from the words malicious and software and is defined as a
program that its main purpose is to harm the infected host or the network it belongs. The main
functionalities of a malware are to gain control of the infected host either to steal sensitive or
confidential information or to disrupt the operations of the target (DoS). Another important aspect of
a malware is the ability to remain undetected on an infected host and provide the ability to an attacker
to use it as a pivot in order to penetrate further into the targeted network.

Malwares play a big part in Cybercrime today, and according to the ENISA Threat Landscape
2020 annual report [1] regarding the most frequently encountered cyberthreats, the category
"malware" holds the first place since 2013. It is observed that in 2020 alone, 677 million programs
were related to malicious activity worldwide, where the most common initial vectors used to distribute
malware, are through Web and e-mail protocols. This number is disturbing and demonstrates the
criticality of this matter as well as the importance of the malware analysis field of study.

The methodology that this thesis is relied upon, is the “Systematic Approach to Malware
Analysis” (SAMA) [2], and it was selected as it best describes the series of actions needed to perform
such an analysis. A plethora of tools was tested, but those of preference are listed. Although the
tools suggested in SAMA are mainly targeted to PE analysis, it is a generic methodology that can
be applied on any sample.

The Lab that was set up is modular, meaning that additional VMs with the appropriate
configuration (adapter attachment to the internal network, IP assignment and CA certificate
installation, etc.) can be added as needed. The benefit of this approach is that the network
connection of every analysis VM can be controlled from a single VM (the GW) with the use of the
appropriate script. Internet connection and simulated internet connection, with or without interception
are the possible states that can be applied. However, each VM is addressed to a specific stage
(Code or Behavioral) of the analysis as well as to a specific filetype and therefore it differs
significantly from the rest of the VMs, so each configuration is separately described.
 An “Agent Tesla” variant was selected as the use case of Windows malware analysis which
revealed many interesting findings. Beneath its core functionality the multiple infection stages, the
obfuscation mechanisms, the ways to bypass them and the C2 communication methods were
unraveled. The core functionality consists of credential harvesting methods which were by default
enabled, while it can also provide geolocation services, keylogging and screen capturing capabilities.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 2

2 Theoretical Background

In this chapter, the basic terminology of Malware Analysis is explained [3] [4] [5], and a brief
overview of the PE and ELF files structure is presented [6].

2.1 Definitions

Malware, short for malicious software, is the family of software that is taking advantage of
the system's resources which is being executed, on behalf of its author, without the user's consent
or by deceiving the user to give his consent.

Malware analysis is the systematic and detailed examination of a malware sample in an
isolated environment, aiming to extract adequate information about its functionality and behavior in
order to understand the extent and the effects of an infection, and provide information in order for
treatment measures to be created.

Static Analysis is the type of Malware Analysis where information regarding the malware
sample is extracted without executing its code.

Dynamic Analysis is the type of Malware Analysis where information regarding the malware
sample is extracted by executing its code.

In malware analysis, the term obfuscation can be defined as the processing of a malware’s
code by its author, in order to render it unreadable and thus harden the process of code inspection
and reverse engineering.

Packing is the obfuscation technique that uses compression to achieve its purpose.
Since malware can be renamed in order to deceive the end user, hash functions are used to

uniquely identify them. File renaming does not affect the hash function result, as it is not part of the
code. The process of hash derivation is also known as file fingerprinting. Upon obtaining the
fingerprint of the sample, it can be used to collect more information about it by providing it as an
input to “VirusTotal” or similar online tools.

Remote administration tool (RAT) is generally a feature that a malware provides, but lately,
the existence of really sophisticated pieces of code that provide nothing more than remote access,
rendered them as a specific malware category. Its purpose, very similar to desktop sharing software,
provides the attacker with unauthorized administrative access.

On most Windows environments, the “Extension Hiding” setting is enabled by default, which
is something that malware authors are taking advantage of by adding a non-legit suffix before the
regular one. Thus, for example, the file “photo.exe” can be renamed as “photo.jpg.exe” which can
mislead the user, as he will only see the “photo.jpg” part of the name. Moreover, a malicious user
can change the extension of the file, without changing its properties. The “photo.exe” file can be
renamed to “photo.jpg” and still be an executable. This technique is called extension faking.

In addition to that, thumbnail faking is often used. In this way, the icon that represents the
file is changed accordingly to the name of the file or the fake extension. In the above-mentioned
scenario of the “photo.jpg.exe” file, the thumbnail could be changed into a custom one, misleading
the user to consider this file as a photo. Likewise, icons may be changed accordingly to bypass the
“Always show icons, never thumbnails” Windows setting.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 3

2.2 The PE file structure

Every executable file has a common format that is called Common Object File Format
(COFF), a format for either executable, object code or shared library computer files that are used on
Unix systems. PE is in a way a COFF format for executable, DLL’s or core dumps in 32-bit and 64-
bit versions of Windows systems like ELF is for Linux. PE format is more of a data structure (Figure
2.2.1) that instruct Windows OS loader what information is needed in order to deal with the
executable code (dynamic library references for linking, export and import tables, resource
management, etc.).

Figure 2.2.1 – The PE file structure

2.2.1 MS-DOS header

Every PE file starts with the MS-DOS header, whose function and purpose is to describe how

to load and execute an MS-DOS stub, which is located right after the header. The stub is a tiny MS-
DOS program that prints the known string “This program cannot be run in DOS mode”.

The MS-DOS header occupies the first 64 bytes of the file and contains the magic value that
describes every PE file, those are the ASCII characters of the letters “MZ” contained in the “e_magic”
field which are the initials of Mark Zbikowski, one of leading developers of MS-DOS. Before digging
into the PE structure, it is important to note one of the most if not the most important field in the MS-
DOS header, is the “e_lfanew” which contains the file offset at which the real PE binary begins.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 4

2.2.2 PE Signature

The PE signature is nothing more than a field holding a 4 bytes Dword containing the ASCII

characters “PE\0\0” and identifies the file as a PE format image file. It is located right after the MS-
DOS stub at offset ”0x3c”.

2.2.3 PE File Header

The file header hold information regarding general properties of the file. Such information are

the “Machine” field which describes the architecture of the system for which the PE is intended, the
“NumberOfSections” which is nothing more than the number of entries in the section header table
and the “SizeOfOptionalHeader” which describers the size in bytes of the header that follows the file
header. Lastly, another important field is the “Characteristics” which contains flags regarding the
endianness of the file, the structure and its linking information.

2.2.4 PE Optional Header

The optional header is not at all optional as the name implies, because it exists in almost any

PE executable and contains many important fields. The first 16-bit number describes the well-known
magic value and after that we have some information regarding the linker being used as well as the
minimum operating system version which is needed for the binary to run. Furthermore we find the
“AddressOfEntryPoint” which is a field containing the entry point of the binary along with the
“ImageBase” and “BaseOfCode” fields which describe the address at which the binary is loaded
and the base address of the code section respectively. Last but not least, we have the “DataDirectoy”
array which contains “IMAGE_DATA_DIRECTORY” structures. In essence every entry in the
“DataDirectory” array is a pointer to the respective structure which serves as a shortcut for the loader,
allowing for a swift look up when looking for specific portions of data. Of the most important are:

• ImportAddressTable (IAT): a table that stores the runtime addresses of the imported
functions

• ResourcesTable: a table of resources embedded in the PE

• ImportTableAddres: a table of the imported functions

• ExportTableAddress: a table of the exported functions

2.2.5 Section Header Table

The Section Header Table is an array of “IMAGE_SECTION_HEADER” structures and

contains all the information related to the various sections available in the image of the executable
file. The most important fields are:

• SizeOfRawData: Specifies the size of the section in the file

• VirtualSize: Indicates the size of the section in memory.

• PointerToRawData: This value is the offset to where the Raw Data section stars in the file.

• VirtualAddress: This is the relative virtual address (RVA) of the section in memory.

• Characteristics: This field holds information regarding relocations and flags.

2.2.6 Sections

 The PE file structure consists of the headers defined so far and a generic object called

section. Sections contain the necessary content of the file like code, data, resources and other
executable information. Every section has a header and a body (raw data) and can be organized in
any way, as long as the header contains the information needed for the section do be analyzed.

 Many of the sections in the PE file have similarities with those of the ELF file. For instance,
the “.text” section which is the section responsible for holding the code, the “.rdata” which contains

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 5

the read-only data, the “.data” secion which holds the readable/writable data and “.reloc” section
which contains information regarding the relocations of the file, all of the above exist in the ELF file
structure.

 There are also sections which can be found only on PE like the “.edata” and “.idata” and
the ones containing the table to exported and imported functions. The “.idata” section is responsible
for which functions and data the binary is going to import from DLLs or shared libraries. The “.edata”
section lists down the addresses of any function that the DLL will export and may be used by the
binary. In reality, those two sections are not separated and if they are not visible in the PE file
structure, they can be found embedded into the “.rodata” section.

3 Methodology and Tools

In this chapter, the methodology that this study was based on is introduced. Also, the tools
that were used in every stage, as well as a brief description of their functionality is explained.

3.1 Methodology

The methodology that our analysis was based on, is the “SAMA” methodology [2] and
consists of 4 major stages: the “Initial Actions”, the “Classification”, the “Code Analysis” and the
“Behavioral Analysis” (Figure 3.1.1).

Figure 3.1.1 – “SAMA” higher level hierarchy

 The “Initial Actions” stage includes the preparation needed to create a safe working
environment, and the capturing of its state prior to infection, in order to use this environment as
reference point on later stages.

The “Classification” stage is the first interaction with the sample and of great importance
when responding to an incident. The goal is to understand the sample’s main characteristics,
generate hashes that uniquely identify it, and use them to gather information that may have been
published by other security researchers. Additionally, the type of packing/encryption that may have
been implemented to evade analysis is identified and bypassed. The strings of the sample,

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 6

especially after the unpacking process, may provide a glimpse of the malware’s functionality which
is often crucial for the next stages of analysis. Finally, the file dependencies are collected for further
examination if needed.

The “Code Analysis” stage is pretty much self-explanatory and is about understanding the
sample’s functionality by viewing its code using both static (disassembler) and dynamic (debugger)
means.

The “Behavioral Analysis” stage’s goal is to understand the malware’s functionality as well.
On this stage, though, a different approach is taken. Instead of viewing its code, the changes in the
system are observed while the sample is running in a controlled environment.

“SAMA” describes each stage in great detail, providing a series of steps to be completed and
suggesting tools for each of them. Moreover, it specifies the information that should be collected at
each stage. However, it was decided to adopt the higher-level approach of the methodology and
deviate from the suggested steps.

It is my firm belief that static analysis and dynamic analysis of the code are often mutually
dependent processes and cannot be considered as individual steps where the first must be finished
prior moving to the second. Moreover, there may be findings that are discovered on latter stages
(usually hidden binaries or dll’s) that require further investigation and therefore oblige the analyst to
repeat some of the previous stages. Therefore, the quandary that arises is whether the analyst
should complete the ongoing task or temporally pause it and continue with the examination of the
newly discovered lead. Finally, while the tools proposed by “SAMA” are mainly referring to “Windows”
malware analysis, the methodology is applicable to any type of malware analysis, as long as the
appropriate tools are used.

3.2 Tools

While the methodology suggests specific tools for each step of the analysis stages, the
chosen tools may vary between analysts as it is a matter of personal preference.

The tools that were used throughout the Analysis stages of “Agent Tesla” malware are listed
in the following table (Table 2.2.6.1):

Table 2.2.6.1 – List of Analysis tools

Tool Description

ANY.RUN [7]

Online sandbox whose free version provides
us a 32-bit Windows 7 environment for up to
five minutes. If a file is uploaded to the VM it
cannot exceed the 16 MB.

Burp Suite Community Edition [8]
The free and therefore limited-feature edition of
Burp Suite which can act as a man in the
middle and intercept the network traffic.

Detect it easy [9]

A cross platform application for inspecting files.
Hash calculation, string inspection, obfuscator
detection, entropy diagrams, section and
header viewer are some of its features.

De4dot [10]
An unpacker/deobfuscator that supports
various packers/obfuscators

Dnsmasq [11]
A lightweight, easy to configure DNS
forwarder, designed to provide DNS services
on a small scale network.

DNSpy [12]
A dissassemler and debuger for .NET
applications.

Exeinfope [13]
A portable tool that can be used for inspection
of PE executable file.

FLARE VM [14]
A Windows Distribution created by FireEye
company specially designed for malware

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 7

analysis and reverse engineering, which
comes with many related tools preinstalled.

Ghidra [15]
An open-source reverse engineering software
created by NSA

Gmail [16] Google’s free email service

InetSim [17]
A software that is used to simulate Internet
services

iptables [18]
A Linux command to set firewall rules to the
incoming and outgoing packets

iptables web GUI [19]
A graphical user interface for easier
modification of IPtables.

Kaspersky Virus Removal Tool [20]
A free version of the Kaspersky’s Antivirus
Engine

pestudio [21]
A free tool used for the initial assessment of a
malware

ping [18]
A command that is used to verify connectivity
between two systems.

Process Monitor [22]
A free powerful tool to monitor files and registry
modifications, as well as thread and processes
activity

Python [23]
A programming language that is directly
interpreted

REMnux [24]
A Linux toolkit mainly for malware analysis and
reverse-engineering purposes.

SciTE [25]
A text editor that comes pre-installed on
REMnux systems

ssdeep [26]

ssdeep is a program for computing context
triggered piecewise hashes (CTPH). Another
more sophisticated way of sample
identification.

Virtualbox [27]
One of the best free and powerful solutions
regarding virtualization provided by Oracle.

WebArchives [28] A non-profit digital library of web pages

Windows [29] The most widely used operating system.

Wireshark [30]
The most famous network protocol analyzer
used. Can provides network examination at a
microscopic level.

YARA [31] YARA rules are another way of identifying
malwares by creating rules that look for certain
characteristics. YARA rules [32]

7z – 7za [33] File archiver

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 8

4 Lab Setup

The lab setup is based on the ENISA guidelines [34] and consists of two kinds of VMs: the

GW VM and the Analysis VMs.
“REMnux” Linux Distribution which is based on “Ubuntu 18.04 LTS” was chosen to act as the

GW between the Analysis VMs and the Internet (or the Fake Internet provided by “InetSim”).
For the Analysis VMs a Windows 10 VM was split into two different sections by taking

snapshots at different states of the machine. The first one was used for the “Classification” and
“Code Analysis stages, while the second was set up for the “Behavioral Analysis” of the PE files.

This setup offers scalability, as more OSes can be added if needed. For example, another
Analysis VM could be added if the under-inspection sample was compatible with older OS versions.
Furthermore a “MobSF” VM or an “Android VM” could be of great use when analyzing mobile
malware samples.

Moreover, regarding the VM hypervisor Oracle’s “VirtualBox” solutions was selected, due to
its open-source nature and previous experience using it. However, any other hypervisor would be
eligible for the needs of our lab, as it is mostly a matter of preference.

For the traffic to be controlled, “BurpSuit Community Edition”, “INetSim” and “iptables” are
collaborating. There are “.firewall” scripts developed in order to automate this collaboration, and
many tweaks were made in order for them to apply in each of our use cases.

Finally, each of the Analysis VM was fine-tuned accordingly to its purpose and the
requirements of the analysis stage that it would participate.

4.1 Network Topology

 The core component of the topology (Figure 4.1) is the “GW REMnux” which provides
connectivity between the three different subnets in our lab.

The first ethernet interface (eth0) provides connectivity to the internet through NAT, meaning
that its IP address is dynamically assigned by DHCP.

The second ethernet interface (eth1) acts as the core node in a simple star topology where
every peripheral node is connected to. IP address assignment in this subnet 10.0.0.0/24 was
statically inserted. The subnet consists of:

● “REMnux GW” VM (10.0.0.1)
● “Windows” VM(10.0.0.3)

The last ethernet interface (eth2) is responsible for the connectivity with the host, and its IP

address (192.168.56.10) is statically inserted. To correctly assign this address, the command
“ipconfig” was issued on the Host-PC and the VirtualBox Host-Only subnet was discovered (Figure
4.2).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 9

Figure 4.1 – Network Topology

Figure 4.2 – Discovering the Virtual Host-Only Network Adapter

4.2 REMnux GW VM Setup

 This VM is the cornerstone of our Lab as it acts as a GW between the Analysis VMs and the
Internet, providing us the capability to monitor the network traffic. In addition, fake internet can be
simulated using “InetSim’’ software and the traffic can be intercepted with the use of the “BurpSuite
Community Edition’’ software.

The figure below (Figure 4.2.1) illustrates the possible outcomes that can be achieved
through the execution of the corresponding script file and the appropriate burp configuration file. The
installation of the software, as well as the contents of the script and configuration files are described
in detail in the following subsections (4.2.1 - 4.2.6).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 10

Figure 4.2.1 – The use of InetSim and BurpSuite on REMnux GW

4.2.1 Import Appliance

 After downloading the latest “REMnux” VM from the official website [24], it was imported to
“VirtualBox” by pressing “Ctrl+I” shortcut and following the prompted installation wizard.
 The “REMnux GW” VM consists of three adapters (Figure 4.2.1.1). The first one was set to
be attached to NAT, providing internet connectivity to the Lab when needed, while the second was
set to “Internal Network’’ named “intranet”. The third adapter was set to “Host-Only”, providing us a
safe way of transferring files to the host.

Figure 4.2.1.1 – REMnux GW Adapters

4.2.2 System Update

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 11

 Upon booting the machine for the first time, the initial action was to retrieve and install the
latest updates, which was completed through the following commands:

• $ sudo apt-get update

• $ sudo apt-get upgrade

Generally, it is considered a good practice to take a snapshot of the machine’s state prior to

any major change and/or after it is successfully completed, as there is always the possibility of a
system failure.

4.2.3 Network Configuration

 The “ifupdown” package was installed to replace the new network manager that is used by
default on “Ubuntu” systems, called “netplan”, as suggested while trying to edit the
“/etc/network/interfaces” file. Additionally, the instalation of “net-tools” package was performed so
that commands such as “route” and “ifconfig” could be used. The given command was:

• $ sudo apt install ifupdown net-tools

 Also, the network interface naming convention was switched back to “eth0” [35].
 Next, the “/etc/network/interfaces” file was modified as shown in the figure below (Figure
4.2.3.1)

Figure 4.2.3.1 – The edited /etc/network/interfaces

 The interfaces were restarted using “ifdown” and “ifup” commands and verified Internet and
host connectivity via “ping” commands (Figure 4.2.3.2). The commands used were:

• $ sudo ifdown eth0, eth1, eth2

• $ sudo ifup eth0, eth1, eth2

• $ ping -c 4 -I eth0 8.8.8.8

• $ ping -c 4 -I eth2 192.168.56.1

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 12

Figure 4.2.3.2 – Network Connectivity Verification

 As per each step completed, another snapshot of the current state was taken.

4.2.4 Additional Software Installation

In cases where simulated internet was provided to the Analysis VMs, the “INetSim” software

played the role of the DNS. When actual connection to the WWW was needed though, the DNS
services were provided by “dnsmasq”.

To install this software the following command was inserted on a terminal:

• $ sudo apt-get install dnsmasq

 Upon successfully installing this package, a backup of the “/etc/dnsmasq.conf” was saved
prior its modification as ilustrated on the following figure (Figure 4.2.4.1).

Figure 4.2.4.1 – The modified dnsmasq.conf

 Furthermore, a web GUI interface [19] was used for troubleshooting reasons when testing

the “.firewall” scripts, as it provided a live representation of the “iptables” in use. The installation
processes started with downloading the file:

• $ sudo git clone https://github.com/puux/iptables.git

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 13

 Then, the following commands followed, to install and run the server:

• $ cd /iptables

• $ sudo npm install

• $ node server.js

 The interface was available by visiting localhost on port “1337” (Figure 4.2.4.2 & Figure
4.2.4.2).

Figure 4.2.4.2 – Installing Web GUI for “iptables”

To install “BurpSuite Community Edition” the latest 64-bit installation file for Linux OSes was

downloaded from the official site [36]. Then, the following command was inserted into a terminal:

• $ sudo bash <downloaded file>

The installation wizard was prompted, and the files were installed on the

“/opt/BurpSuiteCommunity” folder. After installation was successfully completed, the program could
be executed through the “BurpSuiteCommunity” folder.

4.2.5 Firewall Scripts

 For the appropriate routing to take place, and for the required services to be up the scripts
provided by the VM of ENISA [37] were modified to meet our needs.

4.2.5.1 The “internet.firewall” script

 The “internet.firewall” script (Figure 4.2.5.1.1) was the first to be developed, since it provides
our Analysis VMs with Internet connectivity.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 14

Figure 4.2.5.1.1 – The internet.firewall file

In the beginning of the script, all the interfering services (“systemd-resolved”, “dnsmasq” and

“inetsim”) are being stopped, as they may not be required or may need to be modified before they
are restarted.

Next, the “/etc/network/interfaces.internet” is being restored as the current
“/etc/network/interfaces” file. This happened because there were many testings attempts that failed
before ending up with this final script, and therefore, it was concluded that a separate “interfaces”
file for each case would be preferable in terms of debugging. The original “/etc/network/interfaces”
that was created on a previous step (Figure 4.2.3.1) was saved as “/etc/network/interfaces.backup”.

The bash script flags “xeu” were set for the script to be more verbose while being executed
and to abort in case an error was encountered.
 In line 20, another script is being executed (Figure 4.2.5.1.2) so that the” iptables” are reset
[38].

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 15

Figure 4.2.5.1.2 – The “reset-iptables.sh” file

 The most important lines of the “internet.firewall” script are lines 27-29, where three “iptables”
rules are present. The first one redirects the traffic from the “intranet” interface to the “NAT” while
the second allows for the responses to be returned in the same way. The third rule masquerades
the outgoing traffic so that NAT can be achieved. Additionally, comments have been typed in the
“iptables” rules to remind us of their functionality.
 After the IP forwarding is ensured (line 32), the required services are being restarted.

4.2.5.2 The “inetsim.firewall” script

 The “inetsim.firewall” script (Figure 4.2.5.2.1) is responsible for serving simulated traffic to
our analysis machines based on the “inetsim.conf” file, located on the “/etc/inetsim” path. Apart from
the services that need to be running, the main difference between the “internet.firewall” and
“inetsim.firewall” files, is their iptables rules. In this script there are two rules; one blocking access to
port 22, the standard port of Secure Shell (SSH), for all the incoming traffic from the intranet, and
one that directs this traffic to the IP that “INetSim” is configured to be listening to.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 16

Figure 4.2.5.2.1 – The “inestim.firewall” file

 The configuration file that is used on this script is the “inetsim.conf.backup” (Figure 4.2.5.2.2)
located on the “/etc/inetsim/” path which replaces the default “inetsim.conf”.

The changes that were made and stored as “inetsim.conf.backup” are:

• the enabling of all the available services, and

• the assignment of “10.0.0.1” in the “service_bind_address” and “dns_default_ip” fields.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 17

Figure 4.2.5.2.2 – The inetsim.conf.backup file

Since DNS resolving was handled by the “INetSim” software, the “system-resolved” and the

“dnsmasq” services were stopped.

4.2.5.3 The “burp_internet.firewall” script

 While providing Internet access to an Analysis VM is an important task for installing and
updating software, it must be controlled when dealing with malware analysis, by intercepting the
network traffic. For this reason, the “burp_internet.firewall” script was created (Figure 4.2.5.3.1).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 18

Figure 4.2.5.3.1 – the burp_internet.firewall file

 The only difference between “internet.firewall” and “burp_internet.firewall” is in the “iptables”
rules. Specifically, there are two rules added on “burp_internet.firewall” which redirect the incoming
traffic from port 80 to port 8080 and the traffic from 443 to 8443. The ports 8080 and 8443 were
those that the “BurpSuite” was configured to listen to.
 For this script to be functional, “Burp Suit” must be running.

4.2.5.4 The “burp_inetsim.firewall” script

 The last script that was created while setting up the Lab, is the “burp_inetsim.firewall”. In this
way the traffic generated by the “INetSim” can be intercepted.
 By comparing the “intestim.firewall” with the “burp_inetsim.firewall”, we can see that there is
a key difference between them. More specifically, the “burp_inetsim.firewall” file uses the “inetsim-
burp.conf” configuration file (Figure 4.2.5.4.1), where “service_bind_address” is set to 0.0.0.0 (traffic
from everywhere), “http_bind_port” is set to 880 and “https_bind_port” is set to 8443.

Figure 4.2.5.4.1 – The inetsim-burp.conf

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 19

The redirection from the default http and https ports (80 and 443 respectively) to ports 880
and 8443, is achieved via “BurpSuit Community Edition” rather than “iptables” software. Therefore,
there are no such rules implemented on this script (Figure 4.2.5.4.2).

Figure 4.2.5.4.2 – The burp_inetsim.firewall

4.2.6 Configuration of “BurpSuite Community Edition”

Since this software edition is not the paid version, only a temporary project can be created,
meaning that no changes are saved. For this reason, once the proxy listeners were configured, they
were exported to “burp-internet_proxy-listeners.json” and “burp-inetsim_proxy-listeners.json”. As
their name suggests, “burp-internet_proxy-listeners.json” is meant to be used in conjunction with the
“burp_internet.firewall”, while “burp-inetsim_proxy-listeners.json” is meant to be used in conjunction
with the “burp-inetsim.firewall”. Both files contain the proxy listeners of each other, so that the
transition between “burp_inetsim.firewall” and “burp_internet.firewall” can take place faster.

Beneath the proxy listener configuration, “PortSwigger” (the company that developed
“BurpSuite”) must be imported as a CA on the Analysis VMs. This process, however, is described
separately for each Analysis VM, since the process differs slightly depending on the OS.

4.2.6.1 Proxy Listeners Configuration

 After launching “BurpSuite Community Edition” with administrative privileges and selecting
“Temporary Project” as well as “Use Burp defaults” on the prompted windows, the program is started.
From the main menu, the tab “Proxy” and then tab “Options” were selected (Figure 4.2.6.1.1).

Figure 4.2.6.1.1 – Proxy Options tab

The default listener was removed and a new one was added by the “Proxy listener” sections.

The new listener was bound to port “8080” from the “Binding” tab of the “Add a new proxy listener”
window that had emerged, as shown in the figure below (Figure 4.2.6.1.2).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 20

Figure 4.2.6.1.2 – Proxy Listener Addition

 On the “Request handling” tab, the “Support Invisible proxying (enable only if needed)” option
was checked on the corresponding checkbox.
 The same process was repeated for the port “8443”.
 The “8080” and “8443” listeners were made to be used in conjunction with
“burp_internet.firewall”, but they were not yet exported.
 Next, two new proxy listeners were added, bound to ports “80” and “443”. In order for ports
below ”1024” to be selected, root privileges are required. Both listeners, though, were set up to be
redirecting the traffic to IP “10.0.0.1”, port “880” (Figure 4.2.6.1.3) and “8443” respectively.

Figure 4.2.6.1.3 – Traffic Redirection through “BurpSuite Community Edition”

 At that point, “intercept” option was ensured to be “on” from the corresponding tab, and the
proxy listeners regarding “8080” and “8443” ports were activated.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 21

Those options were saved using the “Options” (cog) icon as “burp-internet_proxy-
listeners.json” (Figure 4.2.6.1.4) under “lab/rules”.

Figure 4.2.6.1.4 – Saving the newly created “burp-internet_proxy-listeners.json”

 Finally, the active listeners were switched (the listeners regarding ports “8080” and “8443”
were disabled, and those regarding “80” and “443” were enabled) and saved as “burp-inetsim_proxy-
listeners.json” inside “/lab/rules” directory.

It was then tested whether “Burp-internet_proxy-listeners.json” and “burp-inetsim_proxy-
listeners.json” were available and functional each time “BurpSuite” was executed (Figure 4.2.6.1.5).

Figure 4.2.6.1.5 – Verifying availability of saved proxy listeners

4.3 Windows VM Setup

 The Windows VM was used for the analysis of PE files. However, after setting up the network
adapter and after installing the “Burp Suite” CA certificate, a separate subtree of snapshots was
initiated. The first series of snapshots were appropriately configured for the
“Classification” and “Code Analysis” stages, while the second branch was suitable for the “Behavioral
analysis”.

4.3.1 Importing Appliance

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 22

 The Windows VM that was used is a 64-bit Windows 10, provided by Microsoft (Figure
4.3.1.1) for testing “Edge” browser [29]. The downloaded file was unzipped and imported into Oracle
“VirtualBox” by hitting “Ctrl+I” shortcut and following the prompted wizard.

Figure 4.3.1.1 – MSEdge Windows downloading

 Next, , through the “Settings” window (“Ctrl+S” shortcut), after navigating to the “Network”
group of options, where the “Adapter 1” was attached to the internal network named “intranet”.
 It was also ensured that there were no shared folders between the host PC and the VM
(“Shared Folders” group options) available, and that “Shared Clipboard”, “Drag‘n’Drop” (“General”
group options, “Advanced” tab) and “Enable USB controlled” (“USB” group options) features were
disabled. In this way, they would not be exploited by any malware sample [39].
 Moreover, the hard drive disk and the RAM storage provided are information which are often
analyzed in order for a malicious sample to identify whether it is being executed in a virtual
environment or not. Thus, those values must be realistic; hard drives less than 80GB and RAM less
than 2GB might be considered virtual machines by many malwares. Since the VM was imported with
the default values, 4GB of RAM and 40GB of hard drive were assigned. To overcome the possibility
of malware detecting that is being executed on a virtual environment, the virtual disk size should be
increased. Hence, the shortcut “Ctrl+D” was pressed and the appropriate virtual disc was selected
and resized to 150GB (Figure 4.3.1.2) [3].
 Additionally, to improve the performance of the VM, more Video Memory was assigned from
the “Display” group options, under the “Screen” tab. Also, in the “Remote Display” tab, the “Enable
Server” checkbox option was deselected.

Then, a snapshot was taken, since the Windows VM’s license is only valid for a period of 90
days once activated. Consequently, the import procedure could be skipped upon expiration date by
restoring the VM to this captured state.

When the snapshot was successfully captured, Windows were ready for the first boot, where
the password “Passw0rd!” was inserted in the login page.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 23

Figure 4.3.1.2 – Virtual disk resizing

4.3.2 Disc Partition Resizing

 Once the instance was up and running, it was verified that the disk capacity was still 40GB
of space. In order to resize it, the word “partition” was typed in the windows search bar and “Create
and format hard disk partitions” option was selected. The “Disk Management” window appeared
where see the 110GB of unallocated disk space is visible.
 After right clicking on the primary partition, the option “Extend Volume…” was selected and
the additional space was allocated to the current partition (Figure 4.3.2.1).

Figure 4.3.2.1 – Allocating additional space

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 24

4.3.3 Network Configuration

 From the “Windows Settings” window, the option “Network & Internet” was selected and then
the “Change adapter options”. On the newly appeared window, after right clicking on the Ethernet
interface and upon selecting “Properties”, the “Ethernet Properties” window showed up. The
“Internet Protocol Version 6 (TCP/IPv6)” was unchecked, while the “Internet Protocol Version 4
(TCP/IPv4)” was selected, and the “Properties” button was pressed.
 The IP “10.0.0.3” was assigned, the subnet mask was set to “255.255.255.0” and the
REMnux GW’s IP address, “10.0.0.1”, was given as input to the “Default gateway” and the “Preferred
DNS server” fields, as shown on the figure below (Figure 4.3.3.1).

Figure 4.3.3.1 – Editing adapter’s IPv4 properties

4.3.4 Firewall Scripts Testing and Windows Activation

 After the Interface was configured, the “REMnux GW” VM was booted and the command
“sudo /lab/rules/internet.firewall” was inserted. After verifying that the “Windows 10” VM could
connect to the Internet, the activation of the Windows OS was performed by inserting the command
“slmgr /ato” to the command prompt (Figure 4.3.4.1).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 25

Figure 4.3.4.1 – Windows Activation

Next, the script “inetsim.firewall” was executed on the “REMnux GW”, in order to ascertain

that the “InetSim” service was running properly. As expected, the default “html” response was
returned each time a random webpage was visited on the “Windows 10” VM. The procedure of
switching between the states should cause no issues for the configuration off the “.firewall” scripts
to be considered correct.

For the rest of the scripts to be tested, another change needed to be made on the “Windows
VM”, which was to import the burp CA certificate on the system. To achieve this, the
“burp_internet.firewall” file was run on the “REMnux GW” VM and the “sudo BurpSuiteCommunity”
command was given on a terminal. Once the program had started, a new temporary project was
created and the “burp_internet-proxy_listeners.json” configuration file was imported. The intercept
option (“Proxy” → “Intercept”) was then disabled, and “http://10.0.0.1:8080” was typed on the
browser’s address bar of the “Windows VM”. From the response given, we were able to download
the “BurpSuite” CA certificate (Figure 4.3.4.2).

Figure 4.3.4.2 – Downloading BurpSuite CA certificate

To install this certificate on the local machine and store it on the “Trusted Root Certification

Authorities” store can be achieved by double clicking on the downloaded file and by selecting “open”.
(Figure 4.3.4.3), Next, it was confirmed that an “https” connection could be established, with

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 26

“BurpSuite” capable of intercepting the traffic and without the browser complaining about the
certificate of the web site.

Figure 4.3.4.3 – Installing CA certificate on the local machine

 To test if the “burp_inetsim.firewall” was functional, the enabled proxy listeners had to be
swapped. More specifically, the two listeners that were disabled while “burp_inetsim.firewall” was
tested, were then enabled (on ports 80 and 443), while those that were previously enabled, had to
be disabled (listeners on ports 8080 and 8443). The traffic could be intercepted through “BurpSuite”,
while the “INetSim” was simulating Internet traffic.
 At that point, a new snapshot branch, dedicated for the “Behavioral Analysis” stage, was
created, while the first series of snapshots were available for the “Classification” and “Code Analysis”
stages.

4.3.5 Classification and Code Analysis Windows VM

 To get the VM ready for the “Classification” and “Code Analysis stages”, it should have
access to the “WWW”, meaning that the “internet.firewall” or the “burp_internet.firewall” should be
executed on the “REMnux GW”, in order to proceed with the system update, and the installation of
“Flare VM” as well as the additional needed tools.

Upon completion of the above steps, the VM was shut down, the adapter was disabled, and
a snapshot was taken. The VM was properly isolated and at our disposal for future use [40].

4.3.5.1 System Update

 As “update” was typed on the “Windows” search bar, “Check For Updates” was suggested.
After the updates had been downloaded and installed, the VM was restarted and the same process
was repeated until no more updates were available.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 27

4.3.5.2 Flare VM installation

 The “Flare VM” installation script “install.ps1” was downloaded from the official “github”
webpage [41]. Then, a “Powershell” console was initiated with administrative privileges and the
execution policy was set to unrestricted, using the command:

• > Set-ExecutionPolicy Unrestricted

 Finally, after navigating to “Downloads” directory and the “install.ps1” was executed with the
command:

• > ./install.ps1

 After several installed packages and system restarts, the “Flare VM” tools were installed

4.3.5.3 Additional Tools Installation

 Although “Flare VM” contains most of the tools that were needed for analyzing malware
samples, some additions were needed.
 The first additional software was “ssdeep”, which was downloaded from the official “github”
page [42]. While “Flare VM” comes with “YARA” preinstalled, it was necessary to download the
latest community rules [43] in order to scan our sample. Last but not least, the portable edition
of “Kaspersky Virus Removal Tool” was selected as an antivirus solution￼￼.

4.3.6 Behavioral Analysis VM

 On a separate snapshot branch, the “Windows 10” VM was prepared for the behavioral
analysis. There were two objectives that needed to be accomplished during this VM preparation in
order to make it operational. At first, the VM should mimic a realistic environment to avoid, as much
as possible, being detected by the malware. Anti-virtualization and anti-analysis techniques, based
on environment discovery, are commonly adopted by malware to evade detection and analysis. In
addition, it should be “malware friendly”, by disabling “Windows” security features that may prevent
malware from being executed, and in general, by lowering the security levels of the system [3].

4.3.6.1 Mimic a realistic environment

 The resources that were assigned to the VM during the import, disc partition, and network
configuration procedures (4.3.1 - 4.3.3) had partially made the environment realistic, assigning
reasonable resources and providing a working Internet connection (either real or simulated).
However, additional configuration was needed.
 On the “REMnux GW” VM the “internet.firewall”, located in the “/lab/rules” directory, was
executed to provide connection to the Internet. Then, the “www.ninite.org” webpage was visited in
order to download software that may be commonly found on a PC. The advantage of using this site
is the convenience that it provides to download and install the selected software as a bundle. The
installation file that was downloaded, included:

• Chrome

• Firefox

• Dropbox

• VLC

• Notepad++

• Winrar

• Skype

• LibreOffice

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 28

 Subsequently, the account’s username was changed to “Amaryllis Awanes” (the
anagramming of the phrase “malware analysis”) and its administrative privileges were verified.

Moreover, a “gmail” account was created with this name (amaryllisawanes@gmail.com) and
social media accounts were synchronized with it (Facebook, Instagram). Next, a login into those
accounts using both “Chrome” and “Firefox” browsers was performed, ensuring that the credentials
were saved on the system. Generally, the system was used in such a way so that some logs of
network activity were accumulated by visiting some webpages, opening photos and documents,
logging into social media accounts (Figure 4.3.6.1.1) and storing some fake credentials.

Figure 4.3.6.1.1 – Creating fake social media profile

 Furthermore, the “VM VirtualBox Guest Additions” were uninstalled. Although they enhance
the system performance and provide us the ability to view the VM on full screen, their installation
indicates the existence of a virtual environment. Therefore, modern malwares often search for this
software to discover the presence of a virtual environment.

4.3.6.2 Make the system “Malware Friendly”

Besides mimicking a real environment, the VM should be “malware friendly” [40], meaning
that it should fulfill the following prerequisites:

● The default user should have administrative privileges
● Commonly Exploited Software should be installed
● Security features should be disabled
● Browser security features should be disabled

The root privileges were already verified on the previous step, while preparing the system to

mimic a realistic environment and commonly exploited software (reference) such as “VLC” were also
installed. Additional such software (MS Office, Adobe Acrobat Reader and Adobe Flash Player)
could be installed if explicitly needed by the malware.
To edit the security features [45], “Windows Security” was typed in the windows search bar (“Win+R”
shortcut). Next, at the “Virus & threat protection” tab, the “Manage settings” option was selected and
the “Real-Time protection”, “Cloud Delivered Protection” and “Automatic Sample Submission”
options were disabled (Figure 4.3.6.2.1).

mailto:amaryllisawanes@gmail.com

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 29

Figure 4.3.6.2.1 – Virus & threat protection settings

Afterwards, the Domain, Private and Public network firewalls were turned off from “Firewall

& Network Protection” section (Figure 4.3.6.2.2).

Figure 4.3.6.2.2 – Firewall & network protection settings

The last set of options that needed to be disabled were the “Check apps and files”, and

“SmartScreen” for both Microsoft Edge and Microsoft Store which can be found under the “App &
browser control” section of “Windows Security” (Figure 4.3.6.2.3).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 30

Figure 4.3.6.2.3 – App & browser control settings

To avoid the issue of Windows trying to periodically re-enable the Antivirus, the modification

of Group Policy was deemed to be necessary. That was accomplished by searching “gpedit.msc”
into windows search bar and by navigating to the correct path (Computer Configuration →
Administrative Templates → Windows Components → Windows Defender Antivirus)

There, the option “Turn off Windows Defender Antivirus” was enabled and applied.
Furthermore, info Windows Defender Antivirus directory under the “Real-time Protection” tab, further
modifications needed to be done (Figure 4.3.6.2.4):

• Enable “Turn off real-time protection”

• Disable “Turn on behavior monitoring”

• Disable “Monitor file and program activity on your computer”

• Disable “Turn on process scanning whenever real-time protection is enabled”

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 31

Figure 4.3.6.2.4 – Editing group policies

All the aforementioned actions are necessary so that the Windows Defender Antivirus will
not interfere with our malware analysis. After the VM was restarted, it was verified that the
modifications persisted through reboot, by checking through “Registry Editor” (“Win+R” shortcut →

“regedit” → “OK”) the keys listed below, as shown on the following figure (Figure 4.3.6.2.5):

• “DisableAntiSpyware”

• “DisableBehaviorMonitor”

• “DisableOnAccessProtection”

• “DisableRealTimeMonitoring”

• “DisableScanOnRealTimeEnable”

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 32

Figure 4.3.6.2.5 – Verifying registry keys modification

4.3.6.3 Make the system “Analysis Friendly”

In addition to the commonly used software, tools related to the behavioral analysis were

downloaded. The portable edition of “Process Monitor” was selected, to avoid installation and
therefore, possible detection from any sample.

The last modification that needed to take place at the Windows VM, was the activation of
“File name extensions” and “Hidden items” options which can be found under “View” tab in “File
Explorer” (Figure 4.3.6.3.1).

Figure 4.3.6.3.1 – “File name extensions” and “Hidden items”

5 The use case of “Agent Tesla” malware

For the Windows malware analysis use case, a new sample of the well-known “Agent Tesla”
spyware was selected. Although “Agent Tesla” originates back to 2014, it is still evolving, affecting
more and more technologies, and adopting new evasive techniques. It has become one of the most
popular malwares of 2020, since it is often delivered as an attachment on many “COVID-19” related
spam campaigns, At the time of writing, according to ANY.RUN, it holds the second place in the
global ranking [46] [47]

While “SAMA” methodology begins with the “Initial Actions” as the first stage of malware
analysis, its goals (to prepare and isolate a working environment) have been performed and
explained while setting up the lab. Therefore, only “Malware Transfer”, “Code Analysis” and
“Behavioral Analysis” stages are described in this chapter. However, malware specific modifications
to the lab environment, which may be categorized as “Initial Actions”, are explained where needed.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 33

5.1 Classification

In this stage of “Agent Tesla” analysis, the sample was profiled by generating unique
identifiers (checksums) and by applying “YARA” rules. Also, it was scanned through online and
offline AV engines and more information were collected from online sources and other analysts. The
most important part of the “Classification” stage is to identify the anti-analysis and anti-reverse
protection measures that were adopted, so that they are bypassed.

5.1.1 Malware Transfer

The variant of “Agent Tesla” that was downloaded to the “REMnux GW” can be found on the
“Malware Bazaar” webpage [48], by typing the appropriate keyword followed by the sample’s
SHA256 number to the search field, as shown below:

sha256:6d2b23cb8fd5840a7efb893cc21e5bfe7f13500267b52cee041cc8e9fffd4676

 In order to transfer the sample to the analysis VM (Flare VM in our case) the “inetsim.firewall”
rule located in the “/lab/rules/” path of the “Remnux VM” was applied. Next, a simple HTTP server
was created on port 8000, using the command:

 The network adapter of the “FLARE” VM was attached to the internal interface, named
“intranet” and the instance was booted. After Windows were loaded, it was verified that “FLARE” VM
could reach the GW, via “ping” commands. By typing in the browser’s search bar, the IP and the port
that the http server was listening to, provided us with the option to download the malware sample to
the analysis VM. The IP address and port were:

Prior to the malware’s extraction, the VM was powered off to deactivate again the adapter,

so that the working environment was isolated. At this point, another snapshot should be taken as a
reference point since it was still not infected.

Internet access could be provided easier to the “FLARE” VM via the “REMnux GW” by
applying the “/lab/rules/internet.firewall” script, but it is preferable to avoid exposing the VM to the
internet as much as possible.

Most malware samples that are shared through malware repositories are password protected
with the password “infected” as an extra security layer. It is not clear whether this is a convention,
but it also applied in our case (Figure 5.1.1.1).

Figure 5.1.1.1 – password protected with the key “infected”

5.1.2 Applying “YARA” rules

Proceeding with the initial identification of the sample, the community “YARA” rules [32] were
used, which can be found at the official GitHub page . The applied rules indicated that we were
dealing with a “PE32 .NET” executable file written in “Visual Studio” platform. Also, another rule was
matched which revealed the use of big numbers, an indication that some kind of crypto service might
existFigure 5.1.2.1￼).

$ python -m SimpleHTTPServer

http://10.0.0.1:8000

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 34

Figure 5.1.2.1 – Comparing sample with community “YARA” rules

5.1.3 Calculating the “ssdeep” checksum

The next step in sequence was the calculation of the “ssdeep” checksum. The output was

“384:P3cOn/cS2k7/DU4HWUTzW1zFILr9CcGL3JqRjZInSAyuY0gFLtxRzekmMH4Gbzzy:l9TAuWY
jaVYBtTeRGfXVOaUf2hE” as shown in the figure below (Figure 5.1.3.1)

Figure 5.1.3.1 – Calculating the “ssdeep” checksum

5.1.4 Inspection with AV engine

In addition, the portable edition of “Kaspersky Virus Remove Tool” was used, which
successfully identified the sample as a malicious one (Figure 5.1.4.1).

Figure 5.1.4.1 – Scanning the sample with “Kaspersky Virus Remove Tool”

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 35

5.1.5 Gathering information from open sources

The information that was available on “Malware Bazaar”, was a variety of hashes which
matched our calculations, the file name and size of the sample (Figure 5.1.5.1), as well as a set of
“YARA” rules that could identify the malware as an “Agent Tesla” variant (Figure 5.1.5.2).

Figure 5.1.5.1 – Sample hashes, name and size

Figure 5.1.5.2 – YARA rules

 The research of “Agent Tesla” through google search engine, resulted in a legitimate website
which was actually selling the software as a keylogger product. It was at that point that we were
certain we were dealing with some sort of RAT. At the time of writing, the website was offline but
“WebArchives” can provide a view of the main page, as well as the offered services (Figure 5.1.5.3).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 36

Figure 5.1.5.3 – Agent Tesla purchase options

 In addition, upon checking the hash in VirusTotal, only a few AV engines could identify this
sample as a threat. However, this number was progressively increased, reaching the 54/71 at the
time of writing [49].

5.1.6 Use of PE inspection tools

The next step was to scan the executable file, through a “PE” inspection program. Flare VM
has a variety of such pre-installed tools, such as “pestudio”, “peid”, “exeinfope” and more, that reside
in the “FLARE” shortcut, located on the desktop, in the “Utilities” subdirectory. Those programs
provided us with the following information:

• Entry Point

• Sections

• Strings

• Imports Table

• Entropy

• Possible packing/obfuscation

Moreover, it was detected that the program was signed with a certificate issued by Microsoft
Windows, but the chain was terminated in a non-trusted Root CA Certificate (Figure 5.1.6.1).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 37

Figure 5.1.6.1 – Agent Tesla Certificate

While the program of choice is a matter of preference, many tool outputs should be

compared, especially when trying to identify the packer/obfuscator. While examining our sample
using “exeinfope”, it was identified that it was written on Microsoft Visual C#/Basic.NET language
and that the Entry Point Token is the 0x0600005. Moreover, the program suggested that the sample
was obfuscated or crypted.
 “Pestudio” was also the choice of preference while searching for strings, as it provided an
organized view and sorted them in a more convenient way (Figure 5.1.6.2). The software “Detect It
Easy” was also used as it features a search bar, which comes very handy, especially when searching
for URLs and IP addresses. The most important strings that were suspiciously standing out, were
“DownloadString”, “Shell”, and various cryptography-related values. As a result, a web request, a
call that opens a shell as well as some kind of encryption/decryption was expected to be evident
during the code analysis part. Finally, it was discovered that a lot of strings were obfuscated and
therefore not readable.

Figure 5.1.6.2 – Viewing strings on “Pestudio”

5.1.7 Deobfuscating the sample

To bypass the obfuscation technique, “de4dot” unpacking/deobfuscation program was
executed with the parameter -d in order to identify if it was protected with a known software. The
command was:

• de4dot.exe -d <file>

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 38

Unfortunately, the program detected an unknown Obfuscator, as shown on the figure below

(Figure 5.1.7.1)

Figure 5.1.7.1 – The output of “d4dot.exe”

 Taking that information into consideration, the malware was examined with the use of
“DNSpy” located in the “dotNET” folder, inside the “FLARE shortcut”. Upon further inspection of the
code, it was found out that the method “acffebafb” is not obfuscated and its code was visible (Figure
5.1.7.2).

Figure 5.1.7.2 – Inspecting “acffebafb” method

It was concluded that the method “acffebafb” with token “06000006” was responsible for

resolving the obfuscated strings. Thus, it was attempted to deobfuscate the program by providing
this method to “de4dot.exe” as a string token parameter. (Figure 5.1.7.3). The following command
was typed:

• de4dot.exe <file> --strtyp delegate –strtok <token-of-the-method> -o <output-file>

Figure 5.1.7.3 – Deobfuscating the sample

5.1.8 Inspecting the deobfuscated sample

 While analyzing the strings of the deobfuscated file with the use of “pestudio”, a string of
concatenated URLs was visible (Figure 5.1.8.1). Moreover, some “GUID” strings were also present.

Figure 5.1.8.1 – Deofbuscated file strings

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 39

The classification of the unpacked file was not as thorough as that of the original sample,
since there was enough information available to continue with the next stage of malware analysis.

5.2 Code Analysis

In this stage the Malware Analysis, the protection layers were bypassed (string encryption)
by developing “powershell” scripts. Also, other evasive techniques were identified (debugger
presence discovery, thread hiding, dead code insertion, stalling, code flow obfuscation). The
dropped files were retrieved by manually patching the code offline after retreiving the collected URL
response via the online sandbox “ANY.RUN”. Finally, the key methods of Agent Tesla that reveal its
functionality were studied and manually renamed. Also, information was gathered from pieces of
code that were disabled or out of the execution flow.

5.2.1 Possible dead code insertion

Since the sample was a .NET file, “DNSpy” was the program of our choice for both static and
dynamic code analysis.

We initially moved to the entry point of the program (right click → Go to Entry Point) and
manually renamed the method into “mainExecFlow”. The first thing that was immediately noticed
was a series of method calls, each one containing a string that matched the pattern “xxxxxxxx-xxxx-

xxxx-xxxx-xxxxxxx” (Figure 5.2.1.1).

Figure 5.2.1.1 – “xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxx” pattern

From the figure above, it is visible that those stings are submitted in the

“beddbbefdccbbfadcevcvddaebfa” method. However, this method is only returning the given string
(Figure 5.2.1.2).

Figure 5.2.1.2 – the “beddbbefdccbbfadcevcvddaebfa” method

Initially, the executable was further processed, by providing the token 06000004 as a “strtok”

to the “de4tdot” program, using the same command as before, which resulted in eliminating those
lines of code in the new output file. It was concluded that dead code injection was probably adopted
as an obfuscation technique, since there was no use of this string inside the class “debaacebcbfefd”.
Nevertheless, it was decided to continue our analysis with the previous version of the executable
because this string pattern reminded us of GUIDs which are pointers to Windows registry. As a
result, these lines of code were ignored for the time being.

5.2.2 Execution of “timeout 5”

 Focusing again on the “mainExecFlow” method we wanted to better understand the
“Interaction.Shell” call on line 12 (Figure 5.2.2.1).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 40

Figure 5.2.2.1 – “Interaction.Shell” method

 Through the online Microsoft documentation of “Interaction.Shell” method [50], it was
identified that there are four parameters given as input:

● the path name as a string,
● a parameter regarding the window of the shell and its focus (hidden and focused on this

case) [51],
● a Boolean parameter that declares whether the shell will be waiting for the completion of the

program (which is true on our case),
● and finally, the time that it will halt, given in seconds (the -1 value, denotes infinite value).

As a result, the first parameter given, (string.Format(“timeout {0}”,

(checked((int)Math.Round(Conversions.ToDouble(“1000”) /1000.0) + 4)).ToString()), was some sort
of obfuscation. The result of solving this mathematical representation was “timeout.exe 5”.

5.2.3 Setting security protocol

 The next meaningful code, “ServicePointManager.SecurityProtocol” at line 17 (Figure
5.2.3.1), showed that the security protocol was set to TLS v1.2 [52].

Figure 5.2.3.1 – TLS v1.2 Security Protocol

5.2.4 Concatenated URLs

At this section, a “memorystream” and the string variable “empty” were initialized, prior
continuing with the “hastebin” URL requests. It was observed that those URLs on line 23 (Figure
5.2.4.1), which were separated with the “@@@” string between them, were being stored on a
variable named “text”.

Figure 5.2.4.1 – Concatenated URLs

 As a result, it was observed that this string was inserted in the “ffdcbbaabe” method and it

needed further inspection (Figure 5.2.4.2).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 41

Figure 5.2.4.2 – The “ffdcbbaabe” method

It was concluded that those URLs that were discovered before, were stripped of their “@@@”

characters and stored in a string array. Furthermore, each URL was provided in the
“WebClient().DownloadString(text)” method for their contents to be retrieved, processed and stored
into a new string variable. This processing included a check for the characters “@@@” inside the
string, its splitting using “@@@” as a delimiter and the replacement of “\\” with null. That method
was renamed as “StringFromURL” to remind us of its functionality.

At that/ time, it was suspected that the malware was using the downloaded string to form a
file and load it into memory. It was later verified by inspecting the call of the method shown in figure
below (Figure 5.2.4.3).

Figure 5.2.4.3 – Writing the downloaded strings to memory

5.2.5 Collecting HTML responses

 Since the VM was isolated, to inspect the values returned by the URLs a third party software
was used.. The free version of the online sandbox “ANY.RUN” provided us with 60 seconds per
sample uploaded (and can be extended up to five minutes), which was more than enough time to
collect the html code.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 42

Figure 5.2.5.1 – HTML contents on ANY.RUN environment

 Moving on deeper with the code analysis, each html file contained in the suspicious URLs
was reviewed. The same pattern was identified on every single html file; there was one html
paragraph with the “Code: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxx” pattern and a series of numbers
between 0 and 255 separated with commas. Also, the string “@@@” was at the beginning and at
the end of this sequence of numbers.
 We proceeded with the collection of the responses, one per “hastebin” link, on the “REMnux
GW” VM. This was achieved through “Files” option, located on the bottom left of the panel and the
html file was selected (Figure 5.2.5.2). The responses were collected so that they could be manually
inserted to the sample.

Figure 5.2.5.2 – HTML selection

Therefore, the VM was powered off in order to restore the intranet adapter and the retrieved

HTMLs were transferred in the same secure way that the original malware sample was initially
transferred (simple http server) (5.1.1). When all the zip files were transferred, the VM was isolated
once again (power off, remove adapter) and another snapshot was taken.

Moving forward with the unzipping of the downloaded files, the password “infected” was
provided and all the values stored between the “@@@” characters were copied into a single file,
named “string1.txt”. At that point, another snapshot should be taken for the dynamic analysis.

5.2.6 Manually providing the HTML responses

As a next step, a breakpoint was placed on the 16 line of the method that was already

renamed to “stringFromURL” (Figure 5.2.6.1) and the program was ran.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 43

Figure 5.2.6.1 – Breakpoint insertion

 When the breakpoint was hit, the values that the variables contained could be visible through
“Locals” section of “DNSpy”. (Figure 5.2.6.2).

Figure 5.2.6.2 – Viewing variable contents

 In order to avoid entering the “try catch” part of the code, the if statement had to fail its
checking. Thus, each entry in the array was manually modified. Also, the URL inside the text variable
was changed.
 Moreover, the “string_1” variable with the desired value: the contents of the file “string1.txt”
was manually patched (Figure 5.2.6.3).

Figure 5.2.6.3 – string.txt contents

 The following figure (Figure 5.2.6.4) shows the modified Local window.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 44

Figure 5.2.6.4 – Modified “string_1” variable

 Consequently, to continue the execution of the program can be achieved with the step over
button or by just hitting the F10 key shortcut. Upon exiting this method, the control was transferred
back to the “mainExecFlow” method, and more specifically to the “bcefdbeedecfaaabfbbaafeafdebc”
(line 28). The string was converted to bytes and then stored into the “memorystream” variable.

5.2.7 Extracting a PE file

 With the next hit, the bytes from the “memorystream” were stored to a newly created byte
array. Once the array was created, its values appeared to Memory Window 1 (Ctrl+1 shortcut). We
observed the magic bytes “MZ”, which denoted that it was a PE file (Figure 5.2.7.1). Finally, we
saved this into a new file named “exp_PE1.exe” for further examination.

Figure 5.2.7.1 – Viewing array on Memory Window

5.2.8 Removing the layer of obfuscation

 At that point, we proceeded to the analysis of the dumped PE file, which was named as
“exp_PE1.exe”. We found out that the same string obfuscation technique was deployed. However,
a unique decryption method existed inside each class. For this reason, we collected the tokens of
those methods and saved them to a text file named “tokens1.txt”. We also developed a simple
“powershell” script (named “loop1.ps1”) that recurrently uses the “de4dot.exe” program, taking a
different token number as a token in each iteration (Figure 5.2.8.1). The output of this processing
was renamed to “exp_PE1_d.exe” and we moved on to its analysis.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 45

Figure 5.2.8.1 – Deobfuscation script

.

5.2.9 Evasive techniques

 The first findings that were observed, were some sleep calls and some curse words that were
meant to be displayed in the console in case the sample would be debugged. Between those lines,
there was a debugger control mechanism, intended to kill the process if a debugger was detected
(Figure 5.2.9.1).

Figure 5.2.9.1 – Anti-debugging technique

 Fortunately, this mechanism could be bypassed since “DNSpy” software provided us with the
option of “System.Diagnostics.Debugger” (Figure 5.2.9.2) at “Prevent code from detecting the
debugger” options group (Debug → Options → Debugger).

Figure 5.2.9.2 – Avoiding debugger detection

 Although the strings were successfully decrypted, the rest components of the code such as
constants, method and names were unreadable and no obfuscation pattern could be identified.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 46

Therefore, a dynamic approach was selected to understand the functionality of the code. However,
“DNSpy” stopped providing information, as soon as the debugger reached the following line (Figure
5.2.9.3), located inside the “cefaaba” method.

Figure 5.2.9.3 – Thread Hiding (Evasive Technique)

The “Thread-Hiding” evasive technique is form of “Control Flow Manipulation” that prevents

the debugging events from reaching the debugger [53]
 Unfortunately, the “de4dot.exe” former processing of the file changed the code of the
program in such a way that the above-mentioned evasion technique could not be bypassed.
Consequently, the obfuscated file (exp_PE1.exe) whose code remained intact was further debug. In
that version, a Boolean flag existed which was used to bypass the execution of this mechanism
(Figure 5.2.9.4).

Figure 5.2.9.4 – Differences between the two versions.

5.2.10 Extracting the second dropped binary

During the debugging procedure of “exp_PE1.exe”, we came across a method that returned

an interesting byte array right just before the program exited (Figure 5.2.10.1). We immediately
proceeded with the inspection of its bytes with the help of the embedded hex analyzer (right click →
Show in Memory Window → Memory 1 or Ctrl+1 shortcut). As we initially suspected, it was another
PE file that was dumped and named “exp_PE2.exe”.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 47

Figure 5.2.10.1 – New byte array creation

 Proceeding with the code inspection of the new PE file, we discovered that prior to the
program’s entry point a method used for unpacking reasons was called. The token of the method
was 0600022D and was once again given as input to the “de4dot.exe” program. The output was
named “d0600022D.exe” to quickly identify the token which was used to produce it.
 Upon further inspection, we concluded that each method of the “class0” was used for string
obfuscation, and fortunately their tokens could be provided as input to “de4dot.exe” in order for the
resolving to be achieved. Therefore, those tokens were extracted in a new text file, named “tokens2”
and the “loop1.ps1” script was first modified accordingly and then saved as “loop2.ps1”.
 At that point, most of the malware’s content was clarified and subsequently most of the
methods and variables could be renamed to generate coherent code.
 The first method that was called in the main function was renamed as “CompareProcessId”
due to its functionality. After the findings of the “Behavioral analysis” it was clear that the newly
spawned process was terminating all the processes with the same name.

Figure 5.2.10.2 – Same name process termination

Right after this mechanism, a method that was forcing the thread to sleep for one minute was

called. The parameters given (5 and 10) were dictating how many times the “Thread.Sleep(1000)”
would be called (10-5+1 = 6, in our case). Also, this function is a typical example of the code flow

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 48

obfuscation technique that was applied throughout a vast amount of methods, that hinder reverse
engineering attempts as it contains unnecessary conditional statements and redirections [53] (Figure
5.2.10.3).

Figure 5.2.10.3 – Stalling and Code flow obfuscation

5.2.11 Hardware Profiling

 Right after the above-mentioned sleep calls, the configuration of the security protocol (TLS
v1.2) was noticeable, string variable assignment. By deep diving into the creation of that string, we
realized that there were three more methods responsible for it.
 The first one was trying to get the serial number of the system’s motherboard. In case this
could not be achieved, the string “e9f07d25-5859-46d2-b407-dfb4b1a28a58” was returned (Figure
5.2.11.1).

Figure 5.2.11.1 – Get Motherboard’s SN

In a similar way, the Processor ID or the “df96295f-4375-47d7-a4aa-0e8958c35197” string

is returned by the second method (Figure 5.2.11.2).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 49

Figure 5.2.11.2 – Get Processor ID

In addition to the Motherboard’s SN and the Processor’s ID, the MAC address, or in case of

failure the “b865c588-efea-495a-9239-c04091abdd88” string, would be returned (Figure 5.2.11.3).

Figure 5.2.11.3 – Get MAC address

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 50

The information retrieved from the queries, were first concatenated, and then hashed with
MD5 algorithm. As a result, the string variable was named as “hashedInfo”.

Next, the path of the executable was stored and so did the
%startupfolder%/%insfolder%/%insname% path, which were later compared to each other. Also, the
username and the computer name were stored in the form “username/computername” (Figure
5.2.11.4).

Figure 5.2.11.4 – Get paths, username and computer name

5.2.12 Disabled persistence option

The code execution of the sample was controlled by several timers. The first timer that was
encountered in this file was responsible for checking if thirty seconds (interval = 30000) had elapsed
in order to proceed with transmitting a screenshot via TOR.
 After this timer, it was decided whether the persistence techniques would be applied or not.
There are two parameters that define the condition of the “if” statement. The first one is a Boolean
variable, initialized at compilation time, while the calculation of the second parameter occurs after
comparing the paths that were previously discovered (5.2.11). The Boolean variable was initialized
as “false” and because the two parameters are connected with a logical AND operand, the failure of
“if” condition is unavoidable. The paths should be also different so that the persistence techniques
were applied.

In case the condition was successful, the file would be moved to a subfolder inside the
startup folder and the hidden as well as the system attributes would be set.

Additionally, registry keys “Software\\Microsoft\\Windows\\CurrentVersion\Run” and
“SOFTWARE\\Microsoft\\Windows\\CurrentVersion\Explore\\StartupApproved\\Run” would be
created, and values would be set, as shown in the figure below (Figure 5.2.12.1)

Figure 5.2.12.1 – Registry key creation

 Next, there was an additional condition based on another Boolean variable. This one was
responsible for saving the executable to the %temp%/tmpG folder, under a subfolder named by the
date and time of that call, with a “.tmp” extension (Figure 5.2.12.2).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 51

Figure 5.2.12.2 – File creation in Temp path

 Thus, it was concluded that the Boolean variable was also an option regarding the
persistence of the malware, that it was also disabled prior to its compilation.
 The next line of the code is another condition that indicated whether a communication via
TOR could be established. If the condition criteria were met, the sample would download and
configure TOR as a listening proxy server through localhost, port 9050 and would send all the system
info (motherboard serial number, processor Id, MAC address, computer, username, date and time)
through a POST request. That specific process was set to be triggered by some newly created
timers. It is also worth mentioning that if the string “uninstall” was received as a response from the
C2 server, the sample would delete two registry values, delete the executable from the startup folder,
and finally attempt to save a copy on the temp folder, as illustrated in the figure below (Figure
5.2.12.3).

Figure 5.2.12.3 – Actions upon “uninstall” command receival

5.2.13 Disabled screen capturing option

 Afterwards, another sleep was initiated, followed by the screen capturing option. If the check
was successful, a screenshot would be captured after minute (interval 60000) (Figure 5.2.13.1).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 52

Figure 5.2.13.1 – Screen capturing method

5.2.14 Methods of communication

 We were surprised to see that the author has implemented four different ways or transferring
that screenshot through a variable comparison. The first option (ComToC2Method == 0) was to send
the screenshot through “TOR” browser (Figure 5.2.14.1).

Figure 5.2.14.1 – Send via “TOR” browser

 The second option (ComToC2Method == 1) was to send it through SMTP protocol (Figure
5.2.14.2), where in the method that was responsible (Figure 5.2.14.3), the author tried to create an
SMTP client with his credentials. It would then send an email to his account with the subject “SC”
(short for Screen Capture) concatenated with “_Username/Computername”, along with the system
information mentioned above as the main mail body. The actual screenshot would be sent as an
attachment.

Figure 5.2.14.2 – Send via email

Figure 5.2.14.3 – Email parameters

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 53

 The third option (ComToC2Method == 2), as shown below (Figure 5.2.14.4 & Figure 5.2.14.5)
was to upload the file through FTP protocol.

Figure 5.2.14.4 – Send via FTP

Figure 5.2.14.5 – FTP parameters

Finally, we came across with another option, which was to send the captured screenshot via

“Telegram”, a well-known software off Russian origin for encrypted communication.

Figure 5.2.14.6 – Send via Telegram

5.2.15 Disabled geolocation option

 After a series of consecutive sleep calls, there was another disabled yet possible option. This
option made a request to an external domain (ipfy.com) which could provide the malware author with
the Geolocation information of the infected machine using its IP address (Figure 5.2.15.1).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 54

Figure 5.2.15.1 – Geolocation information

5.2.16 Enabled credential harvesting option

 This is where we observed one of the sample’s core functionalities. There was a direct call
from main, with no Boolean condition as we had identified in almost every functionality. As we
stepped deeper into this specific method, we came across a plethora of different applications that
were targeted by the malware. More specifically this method can be separated into two parts.

In the first part (Figure 5.2.16.1), we encountered a group of applications that were being
processed in a similar manner. A list of objects, whose attributes were the application name, the
absolute path to the User Data of the application, and a Boolean value was created. Then, each
object of the list was parsed (if the Boolean value was set to True), searching for credentials inside
the “logins” file and saving them inside a new list.

This group was consisted with the following applications:

• Opera Browser

• Yandex Browser

• Iridium Browser

• Chromium

• 7star

• Torch Browser

• Cool Novo

• Kometa

• Amigo

• Brave

• CentBrowser

• Chedot

• Orbitum

• Sputnik

• Comodo Dragon

• Vivaldi

• Citrio

• 360 Browser

• Uran

• Liebao Browser

• Elements Browser

• Epic Privacy

• Coccoc

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 55

• Sleipnir 6

• QIP Surf

• Coowon

Figure 5.2.16.1 – Example of the first group of applications

 In the second part (Figure 5.2.16.2), each application was uniquely processed for the
credentials to be harvested, meaning that the method that would be used to retrieve the credentials
might differ from application to application. However, the format of the collected data was identical
to the format of the previous data in the first group, and that was because all these results ended up
in the same list mentioned above.
 The application of the second group were:

• UCBrowser

• WS_FTP

• IE/Edge

• FTPCommander

• Safari

• Firefox

• FileZilla

• SeaMonkey

• IceDragon

• Thunderbird

• BlackHawk

• Falcon

• PaleMoon

• IceCat

• K-Meleon

• FTPGetter

• Eudora

• FlashFXP

• CoreFTP

• Incredimail

• Pocomail

• WinSCP

• FTPNavigator

• Trillian

• ClawsMall

• Becky!

• Flock

• OpenVPN

• theBat

• Psi/Psi+

• Foxmail

• Chrome

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 56

• OperaMail

• Outlook

• QQ

• CyberFox

• InternetDownloadManager

• SmartFTP

• Postbox

• JDownloader

• Waterfox

Figure 5.2.16.2 – Example of the second group of applications

 It is worth mentioning that during our code analysis we managed to find additional methods
to harvest credentials which were never called, and this indicated that the sample had more
capabilities that were not being active at this instance of the “Agent Tesla”. Those were:

• MailBird

• MySQLWorkbench

• NoIp

• NordVPN

• Paltalk

• Pidgin

• Real-Tight-UltraVNC

• Edge Chromium

 For the last part of this “credentials harvesting” method, the sample proceeded with the
appropriate parsing of the data according to the sending method chosen (Figure 5.2.16.3).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 57

Figure 5.2.16.3 – Harvested data parsing

In our case, the method of communication is the email (ComToC2Method == 1) as we had

already encountered while inspecting the method responsible for screen capturing (page 52).
However, the subject of this email was differentiated to “PW_Username/Computername”, and the
harvested data were contained in the mail body instead of an attachment (Figure 5.2.16.4).

Figure 5.2.16.4 – Harvested data email

5.2.17 Disabled key logging option

 After the “credentials harvesting” method was finished, the control was transferred back to
main method, where we observed yet another condition regarding the use a keylogger method. Upon
deeper inspection of this “Agent Tesla” variation, this feature (isKeylogerEnabled) was deactivated,
but due to research purposes we delved in and took a peek at the code. It was observed that the
sample provided the author with the option of sending the keystrokes at a predetermined time (an
initialized number in minutes). It is also worth mentioning, that the author achieved the keylogger
functionality through the implementation of the “hook” mechanism [54], an application that can
intercept events like keystrokes.
 Yet again, the sample provides four ways of sending the data, but in this variant, the email
method is predetermined, and the subject of the mail sent was “KL_Username/Computername”
(Figure 5.2.17.1)

Figure 5.2.17.1 – Captured Keys email

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 58

5.2.18 Investigation of the non-executed branch

At that point, we decided to further investigate the code of previous PE files, and focus on
the parts that were not being executed, starting with the “hastebin” URLs of the “exp_PE1_d.exe”.
We suspected that the same methodology was applied for a PE to be injected and we assumed that
it could be possible for a different variant of Agent Tesla to be hidden on those URLs.
 As a result, we repeated the process of analyzing the newly identified “hastebin” URLs
through “ANY.RUN” online sandbox. Fortunately, the same pattern that was repeated through the
previous set of URLs was identified (Figure 5.2.18.1).

Figure 5.2.18.1 – Identifying the same pattern on link containts

 We then proceeded with processing the retrieved html files and saving the byte part (numbers
separated with commas) into a new text file, named “string2.txt”. Since there was not active code for
processing the downloaded text, we had to come up with a more creative idea. Therefore, we used
the deobfuscated original executable (d06000006.exe) to convert the “string2.txt” into a new PE file.
We finally managed to export a new PE file that was named “exp_PE3.exe”.
 The newly retrieved file was almost identical to “exp_PE1.exe”, so we collected the tokens
of the methods that were responsible for the string obfuscation and saved it to “tokens2.txt” file. We
modified the “loop1.ps1” script accordingly and saved it as “loop3.ps1”. For our surprise, no more
“hastebin” URLs were available, meaning that we could not get any other similar PE executable.
 Although “de4dot.exe” helped with the string resolving, some parts of the code had been
modified and the evasive techniques adopted by the malware author could not be bypassed. For
this reason, we continued with debugging the “exp_PE3.exe”, the same way as the “exp_PE1.exe”
was debugged, expecting to retrieve another variant of the “Agent Tesla” malware, and compare it
with the one we had already analyzed. However, the PE that was produced (exp_PE4.exe) was a
variant of “REMCOS RAT”, and not an “Agent Tesla” as expected (Figure 5.2.18.2).

Figure 5.2.18.2 – REMCOS RAT

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 59

 Through further analysis of the non-executed code of “exp_PE3_d.exe”, we were able to
identify a method that was responsible for formatting, uploading and naming the hastebin URLs that
we were dealing with throughout the analysis, as illustrated in figure below (Figure 5.2.18.3).

Figure 5.2.18.3 – Method responsible for producing “hastebin” HTMLs.

 Furthermore, a class containing identical code to the main of our original sample was
identified. At that point, we could verify that the code of the “d06000006.exe” file we decided to ignore
(page 39), was just random strings (Figure 5.2.18.4).

Figure 5.2.18.4 – Identical to “mainExecFlow” method

 Other findings include anti-virtualization and anti-sandbox techniques (Figure 5.2.18.5 &
Figure 5.2.18.6).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 60

Figure 5.2.18.5 – Anti-virutalization and anti-sanboxing

Figure 5.2.18.6 – Virtualization discovery

The code also included a series of Windows registry modifications that would disable

Windows Defender features (Figure 5.2.18.7).

Figure 5.2.18.7 – Disabling Windows Defender features

 Last but not least, the use of “Eazfuscator.NET” obfuscator was discovered (Figure 5.2.18.8).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 61

Figure 5.2.18.8 – “Eazfuscator.NET” discovery

5.3 Behavioral Analysis

In order for us to verify what we have seen in initial analysis we needed to observe the
behaviour of the malware while it is running on the system. Consequently, we restored the VM state
to the snapshot that was configured for the Behavioral Analysis stage.

Furthermore, “REMnux GW” was booted and the “inetsim.firewall” was executed with root
privileges. Also, the original sample was transferred by creating an http server with the “python -m
SimpleHTTPServer” command and by visiting “10.0.0.1:8000” from the “Windows 10 VM”. In
addition, some modifications to “InetSim” configuration files had to be made for the simulated internet
to be realistic. Upon completion, we proceeded with the execution of the malware alongside with a
series of tools to complete the purpose of this phase.

5.3.1 Lab Modification

 From the Code analysis stage, some “hastebin” URLs were ascertained to be used by the
malware for downloading additional code. In order to simulate this process, we needed to configure
“INetSim” to respond to the malware requests appropriately. As mentioned above we have already
downloaded the contents of those responses, which were extracted in the
“/var/lib/inetsim/http/fakefiles” directory adding the extension “.html” (Figure 5.3.1.1).

Figure 5.3.1.1 – Downloaded responses

Generally, it is considered a good practice to modify the copied files, while keeping the

original files intact, whose functionality has already been tested. Thus, we moved on with the
following series of commands to make a copy of the firewall script and the “INetSim” configuration
file, and continue with the modification of the newly created configuration file:

• $ sudo cp /lab/rules/inetsim.firewall /lab/rules/modified.firewall

• $ sudo cp /etc/inetsim/inetsim.conf /etc/inetsim/modified-inetsim.conf

• $ sudo scite /etc/inetsim/modified-inetsim.conf

 The ability of “INetSim” to serve fake pages depending on the requested path, requires
modification in the “https_static_fakefile” section of the configuration file. Therefore, the files that
were placed in “/var/lib/inetsim/http/fakefile”, were included in the appropriate section of the
“modified-inetsim.conf” file (Figure 5.3.1.2).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 62

Figure 5.3.1.2 – Satic fakefiles in InetSim configuration file

 In addition, the line 46 of the “/lab/rules/modified.firewall”, which was responsible for starting
the “INetSim” service (sudo /etc/init.d/inetsim start) , was replaced with line 47 (sudo /usr/bin/inetsim
--config /etc/inetsim/inetsim.conf --data-dir /var/lib/inetsim), so that “var/lib/inetsim” data directory
could be passed as an argument (Figure 5.3.1.3). After all, this was the directory that contained the
“http/fakefiles” path, where the hastebin responses were stored.

Figure 5.3.1.3 – Data directory as an argument

 The newly configured set of rules was applied by executing the “/lab/rules/modified.firewall”
script and the capability of “INetSim” to serve fake files based on the requested path was tested (the
first of the “hastebins” URLS, “https://hastebin.com/raw/anonefakug”, was visited and the
“var/lib/inetsim/http/fakefiles/anonefakug.html” content was returned).
 Although the original sample was executed, it did not behave as suspected. Specifically, it
exited unexpectedly after a short amount of time without any indication of downloading the contents
of the fake hastebin responses that were previously created. Upon further investigation, we
concluded that it was not feasible for the malware to establish a secure connection (Figure 5.3.1.4).

Figure 5.3.1.4 – Failing to establish a secure connection

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 63

 Subsequently, we proceeded with the creation of a new set of rules which will involve “Burp
Suite” to surpass the previously mentioned connection issue [55]. Therefore, we moved on with
these commands:

• $ sudo cp /lab/rules/burp_inetsim.firewall /lab/rules/burp_modified.firewall

• $ sudo cp /etc/inetsim/inetsim-burp.conf /etc/inetsim/modified-inetsim-burp.conf

• $ sudo scite /etc/inetsim/burp_modified.firewall

 With the use of “scite” editor, the following modifications were applied (Figure 5.3.1.5):

● On line 13, the configuration file of “INetSim” that would be active when running this
script, is changed to “modified-inetsim-burp.conf”

● The line 40 was commented out, and a new line was added, specifying the data
directory to be used upon “INetSim” execution.

Figure 5.3.1.5 – Modified script

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 64

Moreover, the “https_static_fakefile” section in the “/etc/inetsim/modified-inetsim-burp.conf”
was edited similarly to “/etc/inetsim/modified-inetsim.conf” to include the “hastebin” responses
(Figure 5.3.1.2). Lastly, we made another modification to the file, regarding the use of SMTP service
which was the type of communication that the malware author has implemented. More specifically,
the “smtp_bind_port” and the “smtp_fqdn_hostame” were altered to 587 and
“smtp.krishnalandrenzo.com” respectively (Figure 5.3.1.6), in order for the simulation to conform with
code analysis findings (page 52).

Figure 5.3.1.6 – Modifying the InetSim configuration file

After verifying the functionality of the current state, a new snapshot was taken and used as

a reference point each time the malware was executed.

5.3.2 Network Traffic

“BurpSuite” and “Wireshark” were used supplementarily, in order to identify the malware
requests and further inspect the traffic generated. As expected, the malware made requests to the
following URLs:

• https://hastebins.com/raw/oxayasemub

• https://hastebins.com/raw/usefahalez

• https://hastebins.com/raw/dijoladayu

• https://hastebins.com/raw/mojenuqasu

• https://hastebins.com/raw/anonefakug

• https://hastebins.com/raw/yukakaxamo

 As shown in the figure below (Figure 5.3.2.1), the responses were successful (HTTP 200
OK), indicating that the contents of the URLs were fetched and sent via the message body. No other
“http” or “https” requests were observed, verifying that the rest of the URLs found in the code analysis
stage were on a different execution path, and thus not executed (apify.org, pastebin)

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 65

Figure 5.3.2.1 – Traffic monitoring via BurpSuite

With the use of Wireshark software, we were able to capture all the communication to the

supposed malicious recipient. By applying the keyword “smtp”, we were able to filter out the rest of
the traffic to observe the mails sent and their contents (Figure 5.3.2.3 & Figure 5.3.2.2). Just as a
typical SMTP session, we observe the “EHLO” message followed by the authentication method,
where the client sends “AUTH LOGIN” (line 3385 in Wireshark) and the server responds with code
334 as well as it requests for a username. Once the client provides the username, the server
requests for the password and then code 235 indicates that authentication was successful. Note that
both the username and the password, but also server requests are both BASE64 encoded (Figure
5.3.2.2) [56].

Figure 5.3.2.2 – Base64 conversions

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 66

Figure 5.3.2.3 – Applying the “smtp" filter on Wireshark

 “INetSim'' provided us with a more user-friendly way to examine in detail the email that we
captured with “Wireshark”. The default location of “INetSim’s” mailbox, named “smtp.box” is located
in the “/var/lib/inetsim/smtp/” directory.

Figure 5.3.2.4 – Inspecting the InetSim mailbox

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 67

As the previous figure (Figure 5.3.2.4) shows, we verified that the email had the format and
contents that we expected to see. Specifically, the Subject matches the “PW” + “Username” +
“Computername” pattern. Also, the sender and the receiver address matched the
“amitkhanna@krishnalandrenzo.com” address and the mail body contained every piece of
information and credentials that the malware was able to harvest. That included OS and CPU
information, continuing with browser’s (Firefox and Gmail) saved credentials such as “facebook”,
“instagram” and “Gmail”.

5.3.3 Processes

 Another crucial procedure to behavioral analysis which provides us with a lot of information
regarding the inspected file, is the real time observation of the process/thread activity. For this
reason, “Process Monitor” was started, and the “Show Process Tree” option was selected, as shown
on the figure below (Figure 5.3.3.1)

Figure 5.3.3.1 – Show Process Tree button

Next, we executed the malware sample for at least 20 minutes, as defined in thr SAMA

methodology. Immediately, a process was spawned bearing the same name as the file
(6d2b23cb8fd5840a7efb893cc21e5bfe7f13500267b52cee041cc8e9fffd4676.exe, PID: 7292). At the
same time, the child process “timeout.exe” was spawned as expected and initiated “conost.exe”.
Both were terminated after a period of five seconds.

After one minute and eight seconds, a process with the exact same name but with a different
PID (9372) was spawned while the initial process was terminated. The latter was kept running until
the end of the given time window (Figure 5.3.3.2).

Figure 5.3.3.2 – Viewing processes’ timeline

5.3.4 Registries

 The same tool that was used to monitor the processes was used to inspect the Windows
registry modifications by selecting “Show Registry Activity” (Figure 5.3.4.1). However, the process
should be applied first as filter due to the number of generated logs.

Figure 5.3.4.1 – Show Registry Activity button

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 68

The appropriate window to achieve this can be appeared by hitting “Ctrl+L” or “Filter” →
“Filter…” → “Process Monitor Filter” (Figure 5.3.4.2).

Figure 5.3.4.2 – Apply process name filter

After 20 minutes had passed, the captured registry modifications were exported. There were

16,125 registry modifications recorded in total, most of which were generated during the first minutes
of the sample’s execution (Figure 5.3.4.3).

We also ascertained once more that the strings suspected to be dead code insertion were
not GUIDs, by searching their strings in the captured file.

Figure 5.3.4.3 - Captured registry modifications

5.3.5 Additional Functionalities

The final step of this behavioral analysis was to verify that the additional core functionalities
could be activated (by altering the values on the responsible variables) and operate as suspected.

Prior to this step, however, a new email account (amaryllisawanes@europe.com) was
created that would simulate the malicious communication channel.

The method responsible for communicating with the malicious user was renamed to
“MailToAmitkhanna” on previous stages of malware analysis, after the username part of the email

mailto:amaryllisawanes@europe.com

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 69

address used. We had also identified the emailing was hard coded as the selected way of
communication. Therefore, we proceeded with changing the values by first right clicking any part of
this function’s code and then selecting “Edit IL instructions…”.

The credentials were changed to “amaryllisawanes@europe.com” and
“”M4lw4r3_DuMMyM41l” for the username and password, respectively. Furthermore, the
“smtpclient.Host” contents were changed to “smtp.mail.com”, which is used by “europe.com”. Also,
the new email account was given as input to both the sender and the recipient fields of the email
(Figure 5.3.5.1).

Figure 5.3.5.1 – Modifying the email parameters

 In a similar way, we enabled the keylogging and screen capturing capabilities and reduced
the stalling time from 20 to 2 minutes (Figure 5.3.5.2) for each of those capabilities.

mailto:amaryllisawanes@europe.com

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 70

Figure 5.3.5.2 – Enabling screen capturing and key logging capabilities

 This modified version was later transferred via “REMnux GW” VM to the appropriate (for the
behavioral analysis) state of the “Windows 10” VM. After executing the malware, we were able to
access the received emails. As expected, three different emails were sent:

● the “KL_IEuser/MSEDGEWIN10” - containing the captured keystrokes (Figure 5.3.5.3),
● the “SC_IEuser/MSEDGEWIN10” containing the captured screenshot as an attachment

(Figure 5.3.5.4), and finally,
● the “PW_IEuser/MSEDGEWIN10”, containing the collected credentials (Figure 5.3.5.5).

Figure 5.3.5.3 – The email of the keystrokes captured

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 71

Figure 5.3.5.4 – The email of the captured screenshot

Figure 5.3.5.5 – The email of credentials harvested

5.4 Summary

To sum up, the malware was classified but no obfuscator was identified, hence the code was
inspected to provide a way to deobfuscate the sample. The decryption method (token 06000006)
was identified and provided to “de4dot.exe”, producing an executable that downloaded its payload
from 6 different “hastebin” URLs. The responses from the URL requests were collected and
assembled in one file, as the original code would have processed them. Once this file was provided
to the sample and after debugging a new PE file (“exp_PE1.exe”) was extracted and analyzed. The
obfuscation applied in this executable was like the original file, though each class used its own
decryption method. Therefore, all the tokens were collected and passed to a powershell script which
used the “de4dot.exe” recursively, each time with a different method token. Although the code of the
produced file (“exp_PE1_d.exe”) was “legible”, the code optimization applied by “de4dot” made the
thread hiding technique, that took place in this file, unable to bypass. The obfuscated as well the
deobfusctated files were debugged side by side resulting in exporting another PE file (exp_PE2.exe).
In this executable there were 2 layers of obfuscation: one string encryption identical to the original
sample, which was bypassed using the same process, with a different method token (token
0600022D) and one identical to the “exp_PE1.exe”, meaning that there was one decryption method
for each class. For the second obfuscation layer, all the method tokens were collected and the
powershell script was modified accordingly to retrieve the file containing the “Agent Tesla” code.
After 791 iterations of “de4dot.exe” the file was created, renamed, and manual renaming was applied
(Figure 5.4.1).

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 72

Figure 5.4.1 – Tracing code that is executed

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 73

After analyzing the “Agent Tesla” executable, the code that was not executed was traced,
starting from the “exp_PE1_d.exe”, since another set of “hastebin” URLs was found during its
analysis. The same process of collecting and assembling the URL responses was followed once
again as it was followed on the deobfuscated version of the original sample. This time, though, there
were no methods capable of generating a new executable (after all the URL requests were never
called). Therefore, the deobfuscated version of the original file was used to produce the new PE file
“exp_PE3.exe”. It was decrypted similarly to “exp_PE1.exe”, and the produced file was examined.
Due to its similarity to “exp_PE1.exe”, it was suspected that another PE file would be produced.
However, the final executable was “REMCOS” RAT instead of “Agent Tesla”. No more “hastebin”
URLs were found to repeat this process (Figure 5.4.2).

Figure 5.4.2 – Tracing code that cannot be executed

Plenty of information was extracted on both occasions. A plethora of obfuscation/encryption

layers was implemented, where the obfuscator was not identified and an adjustment to the
deobfuscation tool was needed. Numerous evasive techniques were encountered, but fortunately
not every single one of them was applied. Agent Tesla seems to provide credential harvesting as

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 74

the core functionality, and geolocation, persistence, keylogger as well as screen capturing are
optional. Moreover, there are 4 possible options to communicate with the attacker: TOR, FTP, SMTP
and telegram. The SMTP method was selected in this variant, which was modified and tested.
Finally, there is an indication that “Eazfuscator.NET” might be the obfuscator used since its call was
found while tracing code that was not executed.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 75

6 Conclusions

This Thesis focuses on the on the preparations and the necessary steps needed to safely
analyze and recognize the functionality of an unknown sample. While the sample downloaded was
randomly selected from “Malware Bazaar, it ended up being a modern variant of “Agent Tesla”
malware which was analyzed, and valuable conclusions were made hoping to assist on the cause
of “Malware fighting” and educating professionals as to how to identify from these kinds of attacks.

“Agent Tesla” can be described as a spyware with RAT capabilities. It is spread usually via
malicious documents through e-mail, where after execution on the system, it copies itself in multiple
areas of the systems and ensure persistence through “startup” registry keys. It then harvests every
credential that can retrieve in various browsers and send them to the attacker via SMTP protocol.

While this sample may not be the most sophisticated or complex, it gives a good example on
how to approach an obfuscated PE malware. The fact that the infection technique is segregated in
more than one stages, and the malware needs to download additional code from six different URLs,
have its advantages. It was observed that the AV engines are unable to detect that malicious code
is served especially when the binary is segmented in six parts. Therefore, network traffic monitoring
is not enough to identify such attacks. Only after reporting such domains and correlating them with
malicious activity is an effective countermeasure to this evasive technique, but malware authors
constantly change them.
 Last it was concluded that although the rise in malwares is significant over the past years,
there are few cases where the sample has been written from scratch. Most of the samples in the
wild, are known malwares modified for the needs of every attacker.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 76

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 77

7 Abbreviations

ASCII American Standard Code for Information Interchange

ASLR Address Space Layout Randomization

AV Antivirus

CA Certification Authority

CPU Central Processing Unit

C2 Command and Control

DIE Detect It Easy

DLL Dynamic Link Library

DNS Domain Name System

ELF Executable and Linkable Format

FLARE FireEye Labs Advanced Reverse Engineering

FTP File Transfer Protocol

GB Gigabyte

GNOME GNU Network Object Model Environment

GNU GNU’s Not Unix

GUI Graphical User interface

GUID Globally Unique Identifier

GW Gateway

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ID Identifier

IP Internet Protocol

LTS Long Term Support

MAC Media Access Control

MB Megabyte

MD5 Message Digest 5 algorithm

NAT Network Address Translation

NSA National Security Agency

OS Operating System

OVA Open Virtual Appliance

PE Portable Executable

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 78

PC Personal Computer

RAM Random Access Memory

RSA Rivest–Shamir–Adleman

SAMA Systematic Approach to Malware Analysis

SN Serial Number

SSH Secure Shell

TLS Transport Layer Security

URL Uniform Resource Locator

VDI VirtualBox Disk Image

VM Virtual Machine

VT VirusTotal

WWW World Wide Web

YARA
Yet Another Recursive Acronym

Yet Another Ridiculous Acronym

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 79

8 Bibliography and References

[1] ENISA, "ENISA Threat Landscape 2020: Cyber Attacks Becoming More Sophisticated,

Targeted, Widespread and Undetected — ENISA," 20 October 2020. [Online]. Available:

https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020. [Accessed 02

March 2021].

[2] J. B. Higuera, C. A. Aramburu, J.-R. B. Higuera, M. A. S. Urban and J. A. S. Montalvo,

"Systematic Approach to Malware Analysis (SAMA)," MDPI - Applied sciences, p. 31, 17

February 2020.

[3] A. Mohanta and A. Saldanha, Malware Analysis and Detection Engineering: A

Comprehensive Approach to Detect and Analyze Modern Malware, Berkeley: Appress, 2020.

[4] M. Sikorski and A. Honig, Practical malware analysis: the hands-on guide to dissecting

malicious software, San Fransisco: No Starch Press, 2012.

[5] R. Wong, Mastering Reverse Engineering: Re-engineer your ethical hacking skills,

Birmigham: Packt Publishing, 2018.

[6] D. Andriesse, Practical Binary Analysis: Build Your Own Linux Tools for Binary

Instrumentation, Analysis, and Disassembly, San Francisco: No Starch Press, 2019.

[7] "ANY.RUN - Interactive Online Malware Sandbox," ANY.RUN, [Online]. Available:

https://any.run/. [Accessed 10 October 2020].

[8] "Download Burp Suite Community Edition - PortSwigger," PortSwigger, [Online]. Available:

https://portswigger.net/burp/communitydownload. [Accessed 15 oCTOBER 2020].

[9] horsiq, "GitHub - horsicq/Detect-It-Easy: Program for determining types of files for Windows,

Linux and MacOS.," 14 February 2021. [Online]. Available: https://github.com/horsicq/Detect-

It-Easy. [Accessed 25 February 2021].

[10] wtfsck, "GitHub - de4dot/de4dot: .NET deobfuscator and unpacker.," 29 August 2020.

[Online]. Available: https://github.com/de4dot/de4dot. [Accessed 12 December 2020].

[11] linux.die.net, "dnsmasq(8): lightweight DHCP/caching DNS server - Linux man page,"

[Online]. Available: https://linux.die.net/man/8/dnsmasq. [Accessed 14 December 2021].

[12] 0xd4d, "Chocolatey Software | dnSpy 6.1.8," 10 December 2020. [Online]. Available:

https://chocolatey.org/packages/dnspy. [Accessed 15 December 2020].

[13] Elena Opris - Softpedia, "Download Exeinfo PE 0.0.6.3," 26 November 2020. [Online].

Available: https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/ExEinfo-

PE.shtml. [Accessed 12 December 2020].

[14] P. Kacherginsky, "FLARE VM: The Windows Malware Analysis Distribution You’ve Always

Needed! | FireEye Inc," FireEye Inc, 26 July 2017. [Online]. Available:

https://www.fireeye.com/blog/threat-research/2017/07/flare-vm-the-windows-malware.html.

[Accessed 02 October 2020].

[15] "Ghidra," National Security Agency, [Online]. Available: https://ghidra-sre.org/. [Accessed 12

January 2021].

[16] Alphabet inc, [Online]. Available: https://www.google.com/intl/en/gmail/about/. [Accessed 17

November 2020].

[17] T. Hungenberg and M. Eckert, "INetSim: Internet Services Simulation Suite - Project

Homepage," 19 May 2020. [Online]. Available: https://www.inetsim.org/. [Accessed 05

October 2021].

[18] C. Negus, Linux Bible, Indianapolis: John Willey & Sons inc., 2020.

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 80

[19] puux, "GitHub - puux/iptables: iptables WEB gui," 05 November 2018. [Online]. Available:

https://github.com/puux/iptables. [Accessed 22 December 2020].

[20] Kaspersky, "Free Virus Removal Tool | Free Virus Scanner and Cleaner | Kaspersky,"

Kaspersky, [Online]. Available: https://www.kaspersky.com/downloads/thank-you/free-virus-

removal-tool. [Accessed 12 December 2020].

[21] M. Ochsenmeier, "Winitor," [Online]. Available: https://www.winitor.com/. [Accessed 12

October 2020].

[22] Softpedia, "Download Process Monitor 3.61," 11 January 2021. [Online]. Available:

https://www.softpedia.com/get/System/System-Info/Microsoft-Process-Monitor.shtml.

[Accessed 14 January 2021].

[23] Python Software Foundation, "Welcome to Python.org," Python Software Foundation,

[Online]. Available: https://www.python.org/. [Accessed 22 February 2021].

[24] L. Zeltser, "Get the Virtual Appliance - REMnux Documentation," 15 February 2021. [Online].

Available: https://docs.remnux.org/install-distro/get-virtual-appliance. [Accessed 20 February

2021].

[25] "Scintilla and SciTE," 01 December 2020. [Online]. Available:

https://www.scintilla.org/SciTE.html. [Accessed 03 January 2021].

[26] J. Kornblum and T. OI, "ssdeep - Fuzzy hashing program," 11 April 2018. [Online]. Available:

https://ssdeep-project.github.io/ssdeep/index.html. [Accessed 17 October 2020].

[27] Oracle, "Oracle VM VirtualBox," Oracle, [Online]. Available: https://www.virtualbox.org/.

[Accessed 17 September 2020].

[28] Internet Archive, "Wayback Machine," Internet Archive, 31 December 2014. [Online].

Available: https://web.archive.org/. [Accessed 19 December 2020].

[29] Microsoft, "Virtual Machines - Microsoft Edge Developer," Microsoft, 2020. [Online].

Available: https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/. [Accessed 02

December 2020].

[30] The WireShark Foundation, "Wireshark · Go Deep.," [Online]. Available:

https://www.wireshark.org. [Accessed 10 December 2020].

[31] VirusTotal, VirusTotal, 2021. [Online]. Available: https://github.com/VirusTotal/yara.

[Accessed 02 January 2021].

[32] j0sm1, jovimon, mmorenog and J. Martin, "GitHub - Yara-Rules/rules: Repository of yara

rules," Yara Rules Project, 22 September 2020. [Online]. Available: https://github.com/Yara-

Rules/rules. [Accessed 17 December 2020].

[33] I. Pavlov, "7-Zip," 21 January 2019. [Online]. Available: https://www.7-zip.org/. [Accessed 24

January 2021].

[34] ENISA, "Building artifact handling and analysis environment," February 2014. [Online].

Available: https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-

training-material/documents/building-artifact-handling-and-analysis-environment-handbook.

[Accessed 12 September 2020].

[35] L. Rendek, "How to switch back networking to /etc/network/interfaces on Ubuntu 20.04 Focal

Fossa Linux," LinuxConfig, 26 November 2020. [Online]. Available:

https://linuxconfig.org/how-to-switch-back-networking-to-etc-network-interfaces-on-ubuntu-

20-04-focal-fossa-linux. [Accessed 01 December 2020].

[36] PortSwigger, "Professional / Community 2021.2.1 | Releases," PortSwigger, 16 February

2021. [Online]. Available: https://portswigger.net/burp/releases/community/latest. [Accessed

20 February 2021].

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 81

[37] ENISA, "Technical — ENISA," 04 December 2014. [Online]. Available:

(https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-

material/technical-operational#building. [Accessed 20 November 2020].

[38] x-yuri, "Reset iptables · GitHub," 14 August 2020. [Online]. Available:

https://gist.github.com/x-yuri/da5de61959ae118900b685fed78feff1. [Accessed 01 Decemver

2020].

[39] L. Zeltser, "How to Get and Set Up a Free Windows VM for Malware Analysis," 4 March

2019. [Online]. Available: https://zeltser.com/free-malware-analysis-windows-vm/#.

[Accessed 05 October 2020].

[40] R. McArdle, "Setting Up A Malware Lab," 2020. [Online]. Available:

http://www.robertmcardle.com/Teaching/Modules/Mod3%20-

%20Setting%20Up%20%20A%20Malware%20Lab/Setting_Up_A_Malware_Lab.pdf.

[Accessed 20 Nevember 2020].

[41] FireEye, "GitHub - fireeye/flare-vm," 29 November 2020. [Online]. Available:

https://github.com/fireeye/flare-vm. [Accessed 02 December 2020].

[42] T. #. (a4lg), "Releases · ssdeep-project/ssdeep · GitHub," 7 November 2017. [Online].

Available: https://github.com/ssdeep-project/ssdeep/releases. [Accessed 6 December 2020].

[43] yararules, "GitHub - Yara-Rules/rules: Repository of yara rules," 10 July 2020. [Online].

Available: https://github.com/Yara-Rules/rules. [Accessed 09 December 2020].

[44] Kaspersky, "Virus Removal Tool | Free Virus Scanner and Cleaner | Kaspersky," [Online].

Available: https://www.kaspersky.com/downloads/thank-you/free-virus-removal-tool.

[Accessed 12 December 2020].

[45] M. Huculak, "How to permanently disable Windows Defender Antivirus on Windows 10 |

Windows Central," 14 November 2017. [Online]. Available:

https://www.windowscentral.com/how-permanently-disable-windows-defender-antivirus-

windows-10#disable_defender_registry. [Accessed 09 December 2020].

[46] Check Point Software, "April 2020’s Most Wanted Malware: Agent Tesla Remote Access

Trojan Spreading Widely In COVID-19 Related Spam Campaigns | Check Point Software,"

Check Point® Software Technologies Ltd, 11 May 2020. [Online]. Available:

https://www.checkpoint.com/press/2020/april-2020s-most-wanted-malware-agent-tesla-

remote-access-trojan-spreading-widely-in-covid-19-related-spam-campaigns/. [Accessed 14

February 2021].

[47] ANY.RUN, "Agent Tesla - Malware Trends Tracker by ANY.RUN," ANY.RUN, [Online].

Available: https://any.run/malware-trends/agenttesla. [Accessed 14 February 2021].

[48] abuse.ch, "MalwareBazaar | Browse malware samples," abuse.ch, 09 November 2020.

[Online]. Available:

https://bazaar.abuse.ch/browse.php?search=sha256%3A6d2b23cb8fd5840a7efb893cc21e5b

fe7f13500267b52cee041cc8e9fffd4676. [Accessed 14 February 2021].

[49] VirusTotal, "VirusTotal," 18 November 2020. [Online]. Available:

https://www.virustotal.com/gui/file/6d2b23cb8fd5840a7efb893cc21e5bfe7f13500267b52cee0

41cc8e9fffd4676/details. [Accessed 25 January 2021].

[50] kdollar, "Interaction.Shell(String, AppWinStyle, Boolean, Int32) Method

(Microsoft.VisualBasic) | Microsoft Docs," Microsoft, 30 April 2018. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.interaction.shell?view=net-

5.0. [Accessed 15 January 2021].

Windows Malware Analysis – The use case of Agent Tesla

Konstantinos Valsamakis 82

[51] kdollar, "AppWinStyle Enum (Microsoft.VisualBasic) | Microsoft Docs," Microsoft, 30 April

2018. [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/api/microsoft.visualbasic.appwinstyle?view=net-5.0. [Accessed 15 January 2021].

[52] ncldev, "SecurityProtocolType Enum (System.Net) | Microsoft Docs," Microsoft, 30 April

2018. [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/api/system.net.securityprotocoltype?view=net-5.0. [Accessed 15 January 2021].

[53] A. Afianian, S. Niksefat, B. Sageghiyan and D. Baptiste, Malware Dynamic Analysis Evasion

Techniques: A Survey, 2018.

[54] S. Hickey, "Hooks Overview - Win32 apps | Microsoft Docs," Microsoft, 31 May 2018.

[Online]. Available: https://docs.microsoft.com/en-us/windows/win32/winmsg/about-hooks.

[Accessed 25 November 2020].

[55] E. Hjelmvik, "Installing a Fake Internet with INetSim and PolarProxy - NETRESEC Blog,"

NETRESEC, 09 December 2019. [Online]. Available:

https://www.netresec.com/?page=Blog&month=2019-12&post=Installing-a-Fake-Internet-

with-INetSim-and-PolarProxy. [Accessed 15 January 2021].

[56] "Base64 Encode," 2010. [Online]. Available: https://www.base64encode.org/.

