

UNIVERSITY OF PIRAEUS

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGIES
DEPARTMENT OF DIGITAL SYSTEMS

Postgraduate Program of Studies

MSc Digital Systems Security

MASTER THESIS

Linux Malware Analysis

Ανάλυση κακόβουλου Λογισμικού σε "Linux" Περιβάλλον

Ioannis Dervisis

Supervisor Professor: Christos Xenakis

Piraeus
17/03/2021

MASTER THESIS

Linux Malware Analysis

Ανάλυση κακόβουλου Λογισμικού σε "Linux" Περιβάλλον

Ioannis Dervisis

SID: 1908

Abstract

The scope of this thesis is the study of Malware Analysis on Linux environments in a
systematic and detailed manner, based on SAMA methodology. Moreover, the ENISA guidelines
were advised for creating a modular laboratory, capable of isolating the infected VMs and providing
them with Internet connection or a simulated one by applying the appropriate rules. A variant of
“Skidmap” cryptomining trojan was selected as the sample to be analyzed and extensive effort was
given in reversing its code as well as studying its behavior to fully understand the intentions. Beyond
its core functionality are findings such as the communication means, the servers used to deploy their
next stage, the evasive techniques, and the way that those were bypassed.

SUBJECT AREA: Linux Malware Analysis
KEYWORDS: Malware Analysis; SAMA; Skidmap

Acknowledgements

 First and foremost, I would like to express my sincere gratitude to my colleague and friend
Konstantinos Valsamakis, who greatly contributed for the completion of this thesis.
 I would also like to thank my supervisor, Prof. Christos Xenakis for his guidance, inspiration,
and assistance, and all the professors that generously shared their knowledge.
 I owe my deepest gratitude to Hellenic Air Force for their financial support and for giving me
the opportunity to develop myself as well as to Prof. Panagiotis Karampelas and Lieutenant Colonel
George Karaferis for believing in me.
 Finally, I would like to acknowledge the support and love of my family and friends.

Table of Contents

1 Introduction .. 1

2 Theoretical Background ... 2

2.1 Definitions ... 2

2.2 The ELF file structure ... 3

2.2.1 The executable header .. 3

2.2.2 Program Headers .. 6

2.2.3 Sections ... 7

2.2.4 Section Headers .. 9

3 Methodology and Tools .. 12

3.1 Methodology ... 12

3.2 Tools ... 13

4 Lab Setup .. 16

4.1 Network Topology ... 16

4.2 REMnux GW VM Setup .. 17

4.2.1 Import Appliance .. 18

4.2.2 System Update .. 19

4.2.3 Network Configuration ... 19

4.2.4 Additional Software Installation .. 20

4.2.5 Firewall Scripts .. 22

4.2.6 Configuration of “BurpSuite Community Edition” .. 27

4.3 REMnux Analysis VM Setup ... 29

4.3.1 Importing Appliance ... 30

4.3.2 Network Configuration ... 30

4.3.3 Firewall Script Testing ... 31

4.3.4 Applying system updates ... 36

4.3.5 Additional Software Installation .. 36

4.4 Ubuntu VM.. 37

4.4.1 Creating a new machine .. 37

4.4.2 Ubuntu Installation ... 40

4.4.3 Network Configuration ... 40

4.4.4 Firewall Script Testing ... 41

4.4.5 Applying system updates ... 43

4.4.6 Additional Software Installation .. 43

5 The use case of “Skidmap” malware .. 44

5.1 Classification .. 44

5.1.1 Malware transfer .. 44

5.1.2 Using “DIE” .. 45

5.1.3 Calculating the “ssdeep” checksum ... 46

5.1.4 Applying “YARA” rules ... 47

5.1.5 Antivirus ... 47

5.1.6 Unpacking ... 48

5.1.7 Unpacked sample classification ... 48

5.2 Code Analysis ... 49

5.2.1 The “writepam” function ... 49

5.2.2 The “writePublic” function .. 53

5.2.3 Debian ... 54

5.2.4 CentOS – RedHat .. 58

5.2.5 Returning to “main” function ... 61

5.2.6 Downloaded files ... 63

5.2.7 Installation files .. 67

5.2.8 Other binaries .. 72

5.2.9 Other script files ... 87

5.3 Behavioral Analysis .. 89

5.3.1 Lab Modification .. 89

5.3.2 CentOS and Nethserver VMs .. 94

5.3.3 WireShark .. 97

5.3.4 Strace .. 101

5.3.5 chkrootkit ... 105

5.3.6 Filesystem analysis .. 106

5.3.7 Other Findings ... 108

5.4 Summary .. 109

5.5 Conclusions .. 112

6 Abbreviations ... 113

7 Bibliography and References ... 115

List of Figures

Figure 2.2.1.1 – ELF Views ... 3

Figure 2.2.1.1 - The ELF header structure .. 4

Figure 2.2.1.2 – Analyzing the “e_ident” array... 5

Figure 2.2.2.1 – The program header structure ... 6

Figure 2.2.3.1 – Redirecting “.text” function calls through “.plt” stub .. 8

Figure 2.2.3.2 – Transferring control to dynamic linker .. 9

Figure 2.2.3.3 – Completed “lazy binding” procedure ... 9

Figure 2.2.4.1 – Section header structure ... 10

Figure 2.2.4.1 – “SAMA” higher level hierarchy ... 12

Figure 2.2.4.1 – Lab Architecture .. 17

Figure 2.2.4.2 – Discovering the Virtual Host-Only Network Adapter .. 17

Figure 2.2.4.1 – The use of InetSim and BurpSuite on REMnux GW .. 18

Figure 4.2.1.1 – REMnux GW Adapters .. 18

Figure 4.2.3.1 – The edited /etc/network/interfaces ... 19

Figure 4.2.3.2 – Network Connectivity Verification .. 20

Figure 4.2.4.1 – The modified dnsmasq.conf .. 20

Figure 4.2.4.2 – Installing Web GUI for “iptables” .. 21

Figure 4.2.4.3 – The “iptables” web GUI ... 21

Figure 4.2.5.1.1 – The internet.firewall file .. 22

Figure 4.2.5.1.2 – The “reset-iptables.sh” file .. 23

Figure 4.2.5.2.1 – The “inestim.firewall” file ... 24

Figure 4.2.5.2.2 – The inetsim.conf.backup file ... 25

Figure 4.2.5.3.1 – the burp_internet.firewall file ... 26

Figure 4.2.5.4.1 – The inetsim-burp.conf ... 26

Figure 4.2.5.4.2 – The burp_inetsim.firewall ... 27

Figure 4.2.6.1.1 – Proxy Options tab ... 27

Figure 4.2.6.1.2 – Proxy Listener Addition .. 28

Figure 4.2.6.1.3 – Traffic Redirection through “BurpSuite Community Edition” 28

Figure 4.2.6.1.4 – Saving the newly created “burp-internet_proxy-listeners.json” 29

Figure 4.2.6.1.5 – Verifying availability of saved proxy listeners .. 29

Figure 4.3.1.1 – Setting up the network adapter .. 30

Figure 4.3.2.1 -Modifying “etc/netplan/01-netcfg.yaml” .. 30

Figure 4.3.3.1 – Testing "internet.firewall" connections ... 31

Figure 4.3.3.2 – Testing “inetsim.firewall" HTTP connections .. 31

Figure 4.3.3.3 – Testing "inetsim.firewall" HTTPS connections ... 32

Figure 4.3.3.4 – Testing “burp_inetsim.firewall” and “burp_internet.firewall” connections 32

Figure 4.3.3.5 – Downloading CA Certificate... 32

Figure 4.3.3.6 – Navigating to “Preferences” ... 33

Figure 4.3.3.7 – Modifying trust settings .. 33

Figure 4.3.3.8 – Converting “.der” to “.crt” ... 34

Figure 4.3.3.9 - Adding "portswigger.crt" to the Cas .. 34

Figure 4.3.3.10 – Checking the installation of “portswigger.crt” ... 35

Figure 4.3.3.11 – Switching to simulated traffic ... 35

Figure 4.3.3.12 – “InetSim” response .. 36

Figure 4.3.5.1 - Updating "ClamAV" signature database ... 36

Figure 4.3.5.2 – Executing “gdb-pwndbg” ... 37

Figure 4.4.1.1 – Naming the VM and selecting OS ... 38

Figure 4.4.1.2 – Creating new VDI .. 39

Figure 4.4.2.1 – Filling the credential-related fields ... 40

Figure 4.4.3.1 – Creating a new Wired profile ... 41

Figure 4.4.3.2 – Configuring “IPv4” tab ... 41

Figure 4.4.4.1 – Checking the VM’s behavior under “burp_internet.firewall” 42

Figure 4.4.4.2 – Checking the VM’s behavior under “burp_inetsim.firewall” 42

Figure 5.1.1.1 - Password protected sample ... 44

Figure 5.1.1.2 – Decompressing the sample ... 45

Figure 5.1.2.1 – Viewing sample characteristics on “DIE” ... 46

Figure 5.1.2.2 – The MD5 hash of the sample .. 46

Figure 5.1.3.1 – Calculating “ssdeep” ... 47

Figure 5.1.4.1 – Applying “YARA” rules ... 47

Figure 5.1.5.1 – Scanning “Skidmap” sample with “ClamAV” anti-virus engine 47

Figure 5.1.5.2 – Searching SHA256 hash on “VirusTotal” ... 48

Figure 5.1.6.1 – Unpacking “UPX” packed sample .. 48

Figure 5.1.7.1 – Checking “unpacked_sample” on VirusTotal ... 49

Figure 5.1.7.2 – Applying “http” as filter ... 49

Figure 5.2.1.1 – Examining “pam_unix.so” existence .. 50

Figure 5.2.1.2 – access arguments ... 50

Figure 5.2.1.3 – Replacing system’s “pam_unix.so” .. 50

Figure 5.2.1.4 – “Selecting the “binarypam” bytes ... 50

Figure 5.2.1.5 – Selecting format .. 51

Figure 5.2.1.6 – Converting copied bytes .. 51

Figure 5.2.1.7 – Setting access and modification timestamp ... 52

Figure 5.2.1.8 – Converting UNIX hexadecimal to timestamp ... 52

Figure 5.2.1.9 – Verifying altered timestamps ... 52

Figure 5.2.1.10 – Checking “setenforce” for execute permission ... 52

Figure 5.2.2.1 – Getting access to “/root/.ssh/authorized_keys” .. 53

Figure 5.2.2.2 – Printing the “/root/.ssh/authorized_keys” ... 53

Figure 5.2.2.3 – Granting “authorized_keys” the immutable attribute .. 54

Figure 5.2.3.1 – OS detecting ... 54

Figure 5.2.3.2 – Dynamically searching for the other comparison operand 55

Figure 5.2.3.3 – identifying the md5 hash ... 55

Figure 5.2.3.4 – Changing file permissions and executing miner2 ... 55

Figure 5.2.3.5 – “miner2” download methods .. 56

Figure 5.2.3.6 – Selecting the “ApplySig.py” ... 57

Figure 5.2.3.7 – Selecting signatures database .. 57

Figure 5.2.3.8 – Sugar pool and author’s wallet .. 57

Figure 5.2.3.9 – Sugar transactions .. 58

Figure 5.2.4.1 – Comparing MD5 hashes .. 58

Figure 5.2.4.2 – Downloading the given file .. 59

Figure 5.2.4.3 – Inserting URL to ANY.RUN ... 60

Figure 5.2.4.4 – Decrypting and Decompressing the downloaded file ... 60

Figure 5.2.4.5 – Decrypting “cos8.tar.gz” .. 60

Figure 5.2.4.6 – Decompressing "8cos.tar.gz" .. 61

Figure 5.2.4.7 – Actions performed on the extracted files ... 61

Figure 5.2.5.1 – Comparing MD5 hashes .. 62

Figure 5.2.5.2 – cron and ld.so changes ... 62

Figure 5.2.5.3 – File removal and program kills ... 62

Figure 5.2.5.4 – Killing running processes .. 63

Figure 5.2.5.5 – Configuring “cron” to run “pamdicks.org” ... 63

Figure 5.2.6.1 – Failing to recover the contents of “cos7.tar.gz” .. 63

Figure 5.2.6.2 – VT results for “cos7/bin/pamdicks-sugar” .. 66

Figure 5.2.6.3 – VT results for “cos7/rm” ... 66

Figure 5.2.6.4 – VT results for unpacked “cos7/rm” .. 67

Figure 5.2.7.1 – The first part of “cos8/install.sh” .. 68

Figure 5.2.7.2 – The second part of “cos8/install.sh” ... 69

Figure 5.2.7.3 – The “cos8/install-net.sh” script ... 69

Figure 5.2.7.4 – The “cos7/install.sh” script ... 70

Figure 5.2.7.5 – the argument of “install-net.sh” .. 70

Figure 5.2.7.6 – the “cos7/install-net.sh” script .. 71

Figure 5.2.7.7 – The “install-ssh.sh” installation script ... 72

Figure 5.2.8.1 – Hardcoded “pam_unix.so” password ... 72

Figure 5.2.8.2 – The CPU miner software ... 73

Figure 5.2.8.3 – Cryptocurrency mining pool and wallet address .. 73

Figure 5.2.8.4 – Possible mining pools.. 74

Figure 5.2.8.5 – Failing to check “monero” wallet’s balance .. 75

Figure 5.2.8.6 – Altering “iproute.ko”, “netlink.ko” and “cryptov2.ko” ... 75

Figure 5.2.8.7 – Dropping “loadxjump”, “systemd-udeved”, “kswaped” and “mingety” 76

Figure 5.2.8.8 – The creation of “netlink.ko” .. 77

Figure 5.2.8.9 – Main functionality of “cos8/bin/kaudited” .. 78

Figure 5.2.8.10 – The function "mal_kswaped_create" ... 78

Figure 5.2.8.11 – The certificated created by “kaudited” of “cos8.tar.gz” 79

Figure 5.2.8.12 – TCP keepalive error .. 79

Figure 5.2.8.13 - The core functionality of “kswaped” .. 80

Figure 5.2.8.14 – The core functionality of “mingety”... 80

Figure 5.2.8.15 – Clearing log and “cron” files... 81

Figure 5.2.8.16 – The malicious “rm” binary .. 82

Figure 5.2.8.17 – The “system-udeved.service” file ... 82

Figure 5.2.8.18 – The “cos8.tar.gz” “netlink.ko” module .. 83

Figure 5.2.8.19 – The "hacked_getdents" function ... 83

Figure 5.2.8.20 – Analyzing “crytpov2” .. 85

Figure 5.2.8.21 – Multiple LKM versions ... 86

Figure 5.2.9.1 – The “clear.sh” script .. 88

Figure 5.2.9.2 – The “last.sh” script ... 88

Figure 5.2.9.3 – Editing the “var/run/xiscsd” .. 89

Figure 5.3.1.1 – The “inetsim-skidmap.firewall” script ... 90

Figure 5.3.1.2 – The “burp_inetsim-skidmap.firewall” script .. 91

Figure 5.3.1.3 – Modifying “inetsim-skidmap.conf” .. 92

Figure 5.3.1.4 – Checking the ”InetSim” responses .. 93

Figure 5.3.2.1 – Error while moving "network-7.9"... 95

Figure 5.3.2.2 – Assigning IP address to “Nethserver” VM .. 96

Figure 5.3.3.1 – Requesting for “http://a.powerpfwish.com/miner2” ... 97

Figure 5.3.3.2 - TCP connections to "sugar.cpuminer.com" .. 98

Figure 5.3.3.3 – Requesting for “http:a.powerofwish.com/cos7.tar.gz” .. 98

Figure 5.3.3.4 – “pamdicks.sugar” DNS queries .. 99

Figure 5.3.3.5 – Downloading “co8s.tar.gz” ... 100

Figure 5.3.3.6 – “pamdicks.org” DNS requests ... 100

Figure 5.3.4.1 – “pam_unix.so”, “SELinux” and “authorized_keys” related system calls 101

Figure 5.3.4.2 – Tracing “chattr” related system calls .. 102

Figure 5.3.4.3 – Fingerprinting OS and searching for a way to download “miner2” 102

Figure 5.3.4.4 – Tracing “miner2” related system calls .. 103

Figure 5.3.4.5 – Viewing the first part of the “strace” output .. 103

Figure 5.3.4.6 – Viewing the “CentOS” specific system calls ... 104

Figure 5.3.4.7 – Viewing the infinite code looping ... 104

Figure 5.3.4.8 – Failing to locate “/usr/bin/kaudited” file on “CentOS” v8 105

Figure 5.3.5.1 – Applying “chkrootkit” on “Ubuntu” VM .. 105

Figure 5.3.5.2 – Applying “chkrootkit” on “Nethserver” VM .. 106

Figure 5.3.5.3 - Applying “chkrootkit” on “CentOS” VM ... 106

Figure 5.3.6.1 – Viewing the filtered “changes” file .. 107

Figure 5.3.6.2 – Viewing the files that failed the MD5 comparison .. 108

Figure 5.3.7.1 – Revealing the protection mechanism ... 108

Figure 5.3.7.1 – Correlation of OS, downloaded file and “pam_unix.so” backdoor version 109

Figure 5.3.7.2 – CentOS v7 related files ... 110

Figure 5.3.7.3 – CentOS v8 related files ... 111

List of Tables

Table 2.2.1.1 – The “e_type” possible values .. 5

Table 2.2.1.2 – The “e_machine” values ... 5

Table 2.2.2.1 – The “p_type” values .. 7

Table 2.2.2.2 – The “p_flag” values ... 7

Table 2.2.4.1 - Section header types .. 10

Table 2.2.4.2 – Section header flags ... 11

Table 2.2.4.3 – “sh_type”, “sh_link” and “sh_info“” field correlation ... 11

Table 3.2.1 – List of Analysis tools .. 13

Table 5.1.7.1 – Classification findings ... 48

Table 5.2.6.1 – MD5 hashes of the decompressed files .. 64

Table 5.2.6.2 - MD5 hashes of the unpacked binaries .. 65

Table 5.2.8.4.1 – The binaries and the accepted M55 hash .. 77

Table 5.2.8.6.1 – The LKMs of “CentOS” v7 and their MD5 hash .. 87

Table 5.2.8.6.2 - The LKMs of “CentOS” v8 and their MD5 hash .. 87

Table 5.3.1.1 – Available “.firewall” scripts for “Skidmap” analysis .. 94

Table 5.3.3.2 – DNS requests ... 99

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 1

1 Introduction

According to the ENISA Threat Landscape 2020 annual report [1] regarding the most
frequently encountered cyberthreats, the category "malware" holds the first place since 2013. It is
observed that in 2020 alone, 677 million programs were related to malicious activity worldwide,
where cryptominers were one of the most prevalent malware family. This number is disturbing and
demonstrates the criticality of this matter as well as the importance of the malware analysis field of
study.

It was attempted to report the actions performed during the malware analysis process in an
informative and detailed manner, so that minimum knowledge is required by the reader and more
individuals to be inspired and get involved with this field. However, it was considered necessary to
define some key concepts of this field as well as to briefly introduce the Linux (ELF) executable file
structure.

Moreover, the methodology that this thesis is relied upon is the “Systematic Approach to
Malware Analysis” (SAMA) [2], and it was selected as it best describes the series of actions needed
to perform such an analysis. Also, a plethora of tools was tested, but those of preference are listed.
Although the tools suggested in SAMA are mainly targeted to PE analysis, it is a generic
methodology that can be applied on any sample and therefore it was adjusted for the ELF malware
as well.

The Lab that was set up is modular, meaning that additional VMs with the appropriate
configuration (adapter attachment to the internal network, IP assignment and CA certificate
installation, etc.) can be added as needed. The benefit of this approach is that the network
connection of every analysis VM can be controlled from a single VM (the GW) with the use of the
appropriate script. Internet connection and simulated internet connection, with or without interception
are the possible states that can be applied. However, each VM is addressed to a specific stage of
the analysis as well as to a specific filetype and therefore it differs significantly from the rest of the
VMs, so each configuration is separately described.
 An “Agent Tesla” variant was selected as the use case of Windows malware analysis which
revealed many interesting findings. Beneath its core functionality the multiple infection stages, the
obfuscation mechanisms, the ways to bypass them and the C2 communication methods were
unraveled. The core functionality consists of credential harvesting methods which were enabled, and
persistence techniques, geolocation services, keylogger and screen capturing options which were
disabled.
 As for the Linux OS, a “Skidmap” variant is studied. Since it is a relatively new malware, it
remains undetected from most AV engines and its analysis is extended due to the variety of different
dropped files depending on the Linux OS and its version. There are multiple persistence and evasive
techniques implemented which exponentially raise the effort and time needed for the analysis.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 2

2 Theoretical Background

In this chapter, the basic terminology of Malware Analysis is explained [3] [4] [5], and a brief
overview of the PE and ELF files structure is presented [6].

2.1 Definitions

Malware, short for malicious software, is the family of software that is taking advantage of
the system's resources which is being executed, on behalf of its author, without the user's consent
or by deceiving the user to give his consent.

Malware analysis is the systematic and detailed examination of a malware sample in an
isolated environment, aiming to extract adequate information about its functionality and behavior in
order to understand the extent and the effects of an infection, and provide information in order for
treatment measures to be created.

Static Analysis is the type of Malware Analysis where information regarding the malware
sample is extracted without executing its code.

Dynamic Analysis is the type of Malware Analysis where information regarding the malware
sample is extracted by executing its code.

In malware analysis, the term obfuscation can be defined as the processing of a malware’s
code by its author, in order to render it unreadable and thus harden the process of code inspection
and reverse engineering.

Packing is the obfuscation technique that uses compression to achieve its purpose.
Since malware can be renamed in order to deceive the end user, hash functions are used to

uniquely identify them. File renaming does not affect the hash function result, as it is not part of the
code. The process of hash derivation is also known as file fingerprinting. Upon obtaining the
fingerprint of the sample, it can be used to collect more information about it by providing it as an
input to “VirusTotal” or similar online tools.

Backdoor is a method of bypassing authentication in a computer system or software which
can be used by an attacker as an entry point to launch an attack.

Rootkit a malicious piece of code that is very hard to identify, and its main functionality is
usually to hide its existence and the activity of a malware that comes along with it. They are extremely
dangerous because they modify the infected System‘s OS internally, rendering their detection
extremely challenging.

Remote administration tool (RAT) is generally a feature that a malware provides, but lately,
the existence of really sophisticated pieces of code that provide nothing more than remote access,
rendered them as a specific malware category. Its purpose, very similar to desktop sharing software,
provides the attacker with unauthorized administrative access.

Cryptominer can be categorized as a malware which sole purpose is to use the infected
systems resources in order to mine digital currencies called ”cryptocurrencies”. There are also rare
occasions where ”cryptominers” have been reported to steal data.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 3

2.2 The ELF file structure

ELF stands for Executable and Linkable Format and is the default file format of Linux binary
files for Executable files, object files, shared libraries and core dumps. It was in 1999 when the ELF
was chosen as the standard because of its flexibility, extensibility, and cross-platform support for
different address sizes and endian formats. By design it is not limited to specific hardware
architecture, processor or instruction set thus it is in use by many different Unix and Unix based
operating systems like Linux, Solaris, OpenBSD. In addition, it can be found on many mobile devices
that run Android OS and surprisingly enough, it can even be found on game consoles like the
PlayStation and the Wii.

It consists of four types of components, the executable header, the program headers, the
sections and the section headers. Program headers, as well as section headers are optional
components depending on the view (Figure 2.2.1.1).

Figure 2.2.1.1 – ELF Views

2.2.1 The executable header

The very first component of an ELF file is the executable header. This part of the binary
confirms that the inspected file is an ELF one and provides the analyst with information regarding
the file type and the mapping to the rest of the components.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 4

Figure 2.2.1.1 - The ELF header structure

The structure of the header is defined in the “/usr/include/elf.h” file and has the above format

(Figure 2.2.1.1). A 16-byte array named “e_ident” is immediately observed. The very first four bytes
of this field which are “0x7F” followed by “0x45”, “0x4c”, and “0x46” ASCII character codes that
translate into the three letters E, L, and F. Those bytes are also called “magic bytes” and they
identify a binary, in this case an ELF one. Right after the “magic bytes”, comes the EI_CLASS byte
which denotes the ELF’s specification regarding the architecture; 32-bit files contain the value of 1,
opposing to the 64-bit that contain the value of 2. The following byte (EI_DATA) is referred to the
endianness of the file and may have the value 1 when it is using little-endian or the value of 2 when
it comes to big-endian. Next, comes the EI_VERSION which is a byte reserved for the version of the
ELF file, where the only valid value can be 1 and translates to EV_CURRENT. Next in the line is the
EI_OSABI byte which identifies the operating system and application binary interface (ABI) to which
the file is targeted and the EI_ABIVERSION that provides information about the specific version of
the ABI. The default values are 0 which means that it is designed for UNIX System V. The rest bytes
of the array (positions 9 to 15) are used for padding and their value is set to 0, as they are reserved
for possible future use (Figure 2.2.1.2).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 5

Figure 2.2.1.2 – Analyzing the “e_ident” array

 The field that succeeds the “e_ident” array is the “e_type” which defines the binary type. The
following table (Table 2.2.1.1) depicts the possible values of this field among with their meaning [7].

Table 2.2.1.1 – The “e_type” possible values

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

 Right after it is the “e_machine” field which describes the architecture of the system on which
the binary is going to run. The following table (Table 2.2.1.2) shows some possible “e_machine”
values [8].

Table 2.2.1.2 – The “e_machine” values

Name Value Meaning

EM_386 3 Intel 80386

EM_X86_64 62 AMD x86-64 architecture

EM_ARM 40 Advanced RISC Machines ARM

 The next filed, named “e_version” is almost identical to the “EI_VERSION” byte in the
“e_ident” array mentioned above. It indicates the current version of the “ELF” specification which is
always set to 1.
 One of the most important fields for malware analysis is the “e_entry” field as it provides the
analysts with information about the entry point of the binary. Entry point is the first address where
the Instruction pointer will be pointing after the binary is loaded into virtual memory, in other words it
is the start of the executable code.
 “E_flag” field is reserved to provide more information regarding the targeted architecture. If it
refers to x86 binaries, the value of this field is set to 0.
 The “e_ehsize” field is the one that holds the executable header’s size in bytes. For 32-bit
x86 binaries the size is 52 bytes, while for 64-bit x86 binaries the header size is always 64 bytes.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 6

 Finally, “ELF” binaries contain a section named “.shstrtab” (string table section) where all
section names of the file are stored as strings. The value of the execution header’s field “e_shstrndx”,
is an index to the header of this section.

2.2.2 Program Headers

As you may already know, static linking is a process that takes place in the linking phase,
during compilation time by a program named linker, which differs from the compiler. On the other
hand, dynamic linking is happening during the execution, by the dynamic linker, which is part of the
operating system. The information that these programs need to perform the linking (section headers
and program headers), are contained in two separate tables: the section header table and the
program header table. The offsets (in bytes) from the beginning of those tables are indicated by
“e_shoff” and “e_phoff” fields of the executable header. In case, there is not such a table, which may
be possible since both section and program headers are optional, those values are set to 0. In
addition, the “e_phentsize” and “e_shentsize” fields store the size of each program or section header,
while the “e_phnum” and “e_shnum” store the number of headers in each table.
 In ELF binaries, there are two different views of the code and data. The first one is the section
view and it is described/defined by the section headers, one for each section. Τhe other view is the
segmented view, that is described/defined by the program headers. The section view is a structure
intended to be used by the linker during the link time (part of the compilation phase). On the contrary,
the segmented organization of the ELF file is suitable for the dynamic linker to perform it task, which
is the linking of the executable (and any other libraries or objects) on virtual memory at runtime.
 The program or a section header can be thought as the properties of each segment or each
section respectively. While sections have their own address space on the binary, there is not a
segment part. This happens because segments are just another way of viewing the code. Segments
are a construction of 0 or more sections.

 The segments view as well as the mapping between segments and sections can be viewed
using of the following command:

$ readelf –wide –segments <file>

 The fields of each program header are shown on the following figure (Figure 2.2.2.1), as they
are defined in the “/usr/include/elf.h” file.

Figure 2.2.2.1 – The program header structure

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 7

 First of all, the “p_type” field is observed, which denotes the type of the segment. The most
common values of this field [9] are presented on the following table (Table 2.2.2.1)

Table 2.2.2.1 – The “p_type” values

Name Value Meaning

PT_LOAD 1
Loaded into memory when setting up
the process

PT_DYNAMIC 2
Information to the interpeter on how to
parse and prepare the binary for
execution

PT_INTERP 3
The name of the interpreter that is to be
used to load the binary

PT_PHDR 6
Encompasses the program header
table

 The next field in the row, is the “p_flags” and holds the permissions of the specific segment.
The possible values [9] are listed on the following table (Table 2.2.2.2)

Table 2.2.2.2 – The “p_flag” values

Name Value Meaning

PF_X 1 Execute

PF_W 2 Write

PF_R 4 Read

 The “p_offset” field indicates the offset from the beginning of the binary at which the first byte
of the segment appears.

The “p_vaddr” contains the virtual address of the first byte of the segment in memory.
The “p_paddr” is a legacy field which was used to specify the address in physical memory at

which to load the segment. It is unused and always set to zero since all binaries get executed in
virtual memory.

The “p_filesz” is nothing more than the size in bytes of the segment in the binary
The “p_memsz” indicates the size in bytes of the segment in memory.
The “p_align” field is responsible for the memory alignment in bytes for the segment. If the

value is set to either 0 or 1 it indicates that no special alignment is required, else it must contain a
value that is a power of 2 and “p_vaddr” modulo “p_align” must be equal to “p_offset” modulo
“p_align”.

2.2.3 Sections

Right below the program headers are the sections of the binary. These can be listed using
the following command:

$ readelf –sections –wide <file>

 In ELF specification? There are two sections whose sole purpose is to initialize and finalize
the binary; the “.init” and the “.fini”, which are executable sections. Understandably, therefore, the
instructions of the “.init” section must be executed prior to any other section’s instruction, and upon

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 8

completion, the control is then transferred to binary’s main entry point. Similarly, the instructions of
the “.fini” section are executed post to the completion of the main program.
 The actual main program’s code is located in the “.text” section. Since it contains executable
code, the section must be executable.
 Besides executable code, though, binaries consist of data, either constant or variable.
Constant data is stored on the “.rodata” (read only data) section which is not meant to alter during
execution and thus it is not writable. On the contrary, a lot of variables are often altered during
execution, and the section they are stored in, needs to be writable. There are two different sections
for this reason; the “.data” section where the initialized variables are stored and the “.bss” (block
started by symbol) section where space is reserved for uninitialized variables.

It is therefore important to note that if a section is writable and executable at the same time,
it is prone to tampering and exploiting techniques. It is often a packing indication. [5]

During the linking phase of the compilation of a program, the linker resolves statically only a
fraction of the calls that the binary contains. More often, it is the dynamic linker that performs last
time relocations which are happening during runtime. In reality though, these relocations do not
actually resolve when the binary is loaded to virtual memory, instead they are postponed until the
actual call to the unresolved location is made. This procedure is commonly known as “lazy binding”.
 To achieve this, the Procedure Linkage Table (“.plt”) and the Global Offset Table
(“.got”) sections are used. As a matter of fact, “.got” section is not meant to be used only for the “lazy
binding” process, and in Linux systems there is a special section, named “.got.pl”, for this purpose.
 The role of the “.plt” section is to direct calls from the “.text” section to the location that the
actual function code resides. Initially, when such a call is made, the control is transferred to the “.plt”
stub. However, the address of the actual function is still unknown (Figure 2.2.3.1).

Figure 2.2.3.1 – Redirecting “.text” function calls through “.plt” stub

 Consequently, the “.plt” transfers the control to the dynamic linker in order to get the address
of the function. Next, after the address is resolved and stored on the “.got.plt”, the function is
executed (Figure 2.2.3.2).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 9

Figure 2.2.3.2 – Transferring control to dynamic linker

 Once the “lazy binding” has been completed for this function, the “.got.plt” holds the correct
address of the function, and any other call to it won’t have to go through the dynamic linker again
(Figure 2.2.3.3).

Figure 2.2.3.3 – Completed “lazy binding” procedure

Typically, a binary contains a lot of sections regarding relocation. The name of those sections
always starts with the prefix “.rel.*” or “.rela.*”.

2.2.4 Section Headers

 The fields for both 32-bit and 64-bit section headers are listed below (Figure 2.2.4.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 10

Figure 2.2.4.1 – Section header structure

 The very first field is the “sh_name” stores the value of an index to the string table (“.shstrtab
section”). In case this field is zeroed, the section does not have a name.
 Next, comes the “sh_type” which contains an integer that gives information to the linker about
the structure of a section’s contents. The important section header types are illustrated below (Table
2.2.4.1):

Table 2.2.4.1 - Section header types

Name Value

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_REL 9

SHT_DYNSYM 11

The “SHT_PROGBITS” holds information that are defined by the program such as machine

instructions or constants.The “SHT_SYMTAB” holds static symbol tables and the “SHT_DYNSYM”
hold symbol tables used by the dynamic linker that describe the type and name of specific addresses
or file offsets. It is important to note that if the binary is stripped, the static symbol table may not
exist. The “SHT_REL” or “SHT_RELA” sections are especially important for the linker as they hold
relocation entries in a formatted way (defined by the structures inside “elf.h”). The linker then can
analyze those entries to perform any necessary relocations. Note that these sections are used for

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 11

static linking purposes. On the other hand, “SHT_DYNAMIC” contains information for dynamic
linking purposes, formatted accordingly.
 More information about the sections can be obtained through the “sh_flags” field. If a section
is writable at runtime, the “SHF_WRITE” flag will be turned on. Furthermore, the “SHF_ALLOC” flag
can be helpful during the static analysis, since it indicates that this section will be loaded into virtual
memory upon execution. Additionally, the “SHF_EXECINSTR” flag is an indication that the section
contains executable instructions (Table 2.2.4.2).

Table 2.2.4.2 – Section header flags

Name Value

SHF_WRITE 1

SHF_ALLOC 2

SHF_EXECINSTR 4

 Moreover, the “sh_addr”, “sh_offset”, and “sh_size” are self-explanatory fields of a section
header as they contain the virtual address, the file offset and the size of the section respectively.

Some sections are related to each other. This relationship is denoted by the “sh_link” field of
the section header, which contains the index of the related section. The “sh_info” field is a similar to
“sh_link” field, meaning that it contains an index of a different section, and is used for additional
information as seen in the table below (Table 2.2.4.3):

Table 2.2.4.3 – “sh_type”, “sh_link” and “sh_info“” field correlation

sh_type sh_link sh_info

SHT_DYNAMIC
The section header index of the string
table used by entries in the section.

0

SHT_HASH
The section header index of the
symbol table to which the hash table
applies.

0

SHT_REL
SHT_RELA

The section header index of the
associated symbol table.

The section header index of the
section to which the relocation
applies.

SHT_SYMTAB
SHT_DYNSYM

The section header index of the
associated string table.

One greater than the symbol table
index of the last local symbol
(binding STB_LOCAL).

SHT_GROUP
The section header index of the
associated symbol table.

The symbol table index of an entry
in the associated symbol table. The
name of the specified symbol table
entry provides a signature for the
section group.

SHT_SYMTAB_
SHNDX

The section header index of the
associated symbol table section.

0

 If any alignment in memory needs to be performed for efficiency reasons, then the base
address of the section needs to be a multiple of the value in the “sh_addralign” field. In case of 0 or
1, it means that no alignment is needed.

Last but not least, there is the “sh_entsize” field, which is used when a section contains a
table, and denotes the size of each entry in the table.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 12

3 Methodology and Tools

In this chapter, the methodology that was used during the analysis of “Skidmap” is described.
In addition, the selected tools as well as a brief description of their capabilities is listed.

3.1 Methodology

The methodology that this thesis is based on is the “SAMA” methodology [2], where the
Malware Analysis procedure is divided into a sequence of four major stages that need to be
accomplished. Those stages are the “Initial Actions”, the “Classification”, the “Code Analysis” and
the “Behavioral Analysis” (Figure 2.2.4.1).

Figure 2.2.4.1 – “SAMA” higher level hierarchy

 The first stage, named “Initial Actions”, is a set of steps that aim at preparing a suitable for
analysis environment. The first prerequisites for it be suitable is to be secure, so that an infected
machine will not be able to spread the malware on the rest of the network. Additionally, the working
environment must be modified appropriately so that can be used as a reference point for the next
stages of the analysis. Therefore, a snapshot of the machine prior to its infection must be captured.

The “Classification” stage describes the first actions that are taken to a newly obtained
suspicious sample. Consequently, as the name of this stage may imply, it involves the fingerprinting
of the sample with the use of hash algorithms, the collection of its characteristics with file analysis
tools, the similarity with other samples, the information extraction from open sources, the
identification of the protection mechanisms that have been deployed as well as their bypassing.

The next stage is called “Code Analysis” and it is the most time-consuming stage. Static and
dynamic means are used to understand the sample’s functionality.

The last stage of this methodology, “Behavioral Analysis”, can be described as the set of
actions to be performed in order to extract information about an executed sample, by inspecting its
impact on the system.

Every stage of “SAMA” is described in great detail and is thoroughly analyzed into a series
of steps to be completed. For each step a series of tools is suggested and the information that should

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 13

be extracted on each stage are defined. Nevertheless, it was decided to strictly adhere to the higher-
level of the methodology and take into consideration each step’s instructions rather that strictly abide
by them.

The main reason for this decision lies in the fact that the specimens found during the analysis
may alter the analysis workflow. While “SAMA” suggests that the new specimen is fully analyzed
after the analysis of the original one, such procedure might be excessively time consuming. A partial
“Classification” and “Code Analysis” of the dropped file, prior the completion of the original sample
analysis, may be sufficient and serve better the purpose of the analysis. Moreover, the dynamic code
analysis is described as a process that follows the static code analysis. During the “Skidmap” case
study though, it was considered that those methods are mutually dependent and are cycled multiple
times while reviewing the code of the sample. In addition, it is considered that some steps of the
behavioral analysis appertain to Forensics field. Another matter that should be taken in consideration
is that new findings may require the creation of a new environment, hence a new specimen will return
to “Initial Actions” stage rather than the “Classification” one. Finally, although this methodology can
be applied in any OS, the tools that are proposed are mainly “Windows” oriented, thus it had to be
adapted to be applicable to Linux malware analysis.

3.2 Tools

While the methodology suggests specific tools for each step of the analysis stages, the
chosen tools may vary between analysts as it is a matter of personal preference.

The tools that were used throughout the Analysis stages “Skidmap” malware are listed in
the following table (Table 3.2.1):

Table 3.2.1 – List of Analysis tools

Tool Description

ANY.RUN [10]

Online sandbox whose free version provides a
32-bit Windows 7 environment for up to five
minutes. If a file is uploaded to the VM it cannot
exceed the 16 MB.

Applysig [11]
Plugin for “Ghidra” software which extend its
capabilities to apply IDA FLIRT signatures.

Burp Suite Community Edition [12]
The free and therefore limited-feature edition of
Burp Suite which can act as a man in the
middle and intercept the network traffic.

CentOS [13]
CentOS is a community-driven free Linux
distribution

chmod [14]
A UNIX command that is used to change file
permissions.

Chkrootkit [15]
A shell script that checks system binaries for
modifications relevant to known rootkits

Clamav [16] An open-source AV engine.

CyberChef [17]
A software for analyzing and converting
multiple data formats

Detect it easy [18]

A cross platform application for inspecting files.
Hash calculation, string inspection, obfuscator
detection, entropy diagrams, section and
header viewer are some of its features.

Dnsmasq [19]
A lightweight, easy to configure DNS
forwarder, designed to provide DNS services
on a small scale network.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 14

distrowatch [20]
A website that contains updated information
about all the Linux and BSD distributions

Exeinfope [21]
A portable tool that can be used for inspection
of PE executable file.

file [6]
A command that identifies the file type of the
given input. It is not based on the file extension
to determine its type, but rather

gcc [22] The well-known C and C++ compiler

gedit [14] A GUI-based text editor for GNOME desktops.

Ghidra [23]
An open-source reverse engineering software
created by NSA

Git [24]
is a free and open-source software distribution
platform

InetSim [25]
A software that is used to simulate Internet
services

iptables [14]
A Linux command to set firewall rules to the
incoming and outgoing packets

iptables web GUI [26]
A graphical user interface for easier
modification of IPtables.

Make [27]
A tool used for building and maintaining groups
of programs from source code

md5sum [28]
A command used for the computation of MD5
checksum

Nethserver [29] A CentOS based server

ping [14]
A command that is used to verify connectivity
between two systems.

Pwndbg [30] Is a python module to be loaded into GDB

Python [31]
A programming language that is directly
interpreted

readelf [32]
Unix built-in command that displays
information about ELF format object files

REMnux [33]
A Linux toolkit mainly for malware analysis and
reverse-engineering purposes.

SciTE [34]
A text editor that comes pre-installed on
REMnux systems

sig-database [35] A collection of IDA FLIRT signatures

ssdeep [36]

ssdeep is a program for computing context
triggered piecewise hashes (CTPH). Another
more sophisticated way of sample
identification.

stat [37] A Linux command to get the status of the file

strace [38]
A tool that, as its name implies, traces system
calls of a running program.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 15

tar [39] Is Linux file archiver

Ubuntu [40]
Of the most famous computer operating
systems based on the Debian Linux
distribution.

UPX [41]

It stands for “Ultimate Packer for eXecutables”
and it is open source. It can be used for both
packing and unpacking and it supports many
file formats.

Virtualbox [42]
One of the best free and powerful solutions
regarding virtualization provided by Oracle.

Wireshark [43]
The most famous network protocol analyzer
used. Can provides network examination at a
microscopic level.

YARA [44] YARA rules are another way of identifying
malwares by creating rules that look for certain
characteristics. YARA rules [45]

7z – 7za [46] File archiver

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 16

4 Lab Setup

The lab setup is based on the ENISA guidelines [47] and consists of two kinds of VMs: the

GW VM and the Analysis VMs. The “REMnux” distribution is based on “Ubuntu 18.04 LTS” and was
selected for both the GW VM and the Analysis VM for the “Classification” and the “Code Analysis”
stages. The main benefit of its selection is that it is a malware analysis-oriented distribution, and
consequently comes with many related tools preinstalled. For the “Behavioral Analysis” stage an
“Ubuntu” 20.04 VM was preferred over other distributions as it is one of the most popular Linux
distributions for personal use. The “REMnux” distribution could be used as well but since it is a well-
known malware analysis tool, it is always possible that it may be “flagged” by some malware.

The main advantage of this Lab architecture is its modular nature and the scalability that it
offers. More VMs can be added if needed by the under-investigation sample or if other type of
malware analysis (Windows, Android, etc.) will take place. In the case of “Skidmap” analysis two
additional Analysis VMs were later needed to be added. Both are “CentOS” based, one on version
7.7 and one on version 8.2. The first one is “Nethserver” as there was no such “CentOS” version still
available. Some “Classification and “Code Analysis” steps were performed on “Nethserver” VM,
while both were used for “Behavioral Analysis” stage. In this chapter, only the preparation of
“REMnux GW”, “REMnux Analysis” and “Ubuntu” VMs are described, while “Nethserver” and
“CentOS” VMs were installed accordingly to “Ubuntu VM”

On other advantage it that the access to the Internet, or the Fake Internet provided by
“InetSim”, can be centrally controlled by the GW. In order to achieve this, “iptable” rules were written
and saved to scripts that provide easy transition between the desired states. Also “BurpSuit
Community edition” and “INetSim” were used to interrupt the network traffic and to provide fake
network services, respectively.

 The hypervisor that was preferred is “VirtualBox” due to its open-source nature and due to
the longer experience using it. However, any other hypervisor is eligible for the needs of this lab.

4.1 Network Topology

 The core component of the topology (Figure 2.2.4.1) is the “GW REMnux” which provides
connectivity between the three different subnets of this lab.

The first ethernet interface (eth0) provides connectivity to the internet through NAT, meaning
that its IP address is dynamically assigned by DHCP.

The second ethernet interface (eth1) acts as the core node in a simple star topology where
every peripheral node is connected to. IP address assignment in this subnet 10.0.0.0/24 was
statically inserted. The subnet consists of:

● “REMnux GW” VM (10.0.0.1)
● “Analysis REMnux” VM (10.0.0.4)
● “Ubuntu” VM (10.0.0.5)
● “CentOS” VM (10.0.0.6), and
● “NethServer” VM (10.0.0.7)

The last ethernet interface (eth2) is responsible for the connectivity with the host, and its IP

address (192.168.56.10) is statically inserted. To correctly assign this address, the command
“ipconfig” was issued on the Host-PC and the VirtualBox Host-Only subnet was discovered (Figure
2.2.4.2).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 17

Figure 2.2.4.1 – Lab Architecture

Figure 2.2.4.2 – Discovering the Virtual Host-Only Network Adapter

4.2 REMnux GW VM Setup

 The “REMnux GW” VM is of outmost importance for the Malware Analysis Laboratory due to
the services that provides to the rest of the VMs (Analysis VMs). “INetSim”, “iptables” and “BurpSuite
Community Edition’’ software is used in conjunction to provide internet or Simulated Internet services
as well as the ability to intercept the traffic.

The possible services that can be provided to each of the analysis VM are shown in the figure
below (Figure 2.2.4.1). This is achieved by executing the appropriate script and by enabling (if
needed) the according “burp” proxy listeners. The actions regarding the software installation as well
as the development of the “.firewall” and “.json” files are analyzed in the following subsections (4.2.1
- 4.2.6).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 18

Figure 2.2.4.1 – The use of InetSim and BurpSuite on REMnux GW

4.2.1 Import Appliance

 For the appliance to be imported the latest “REMnux” VM was downloaded from the official
repository [33]. For the appropriate installation window to appear the “Ctrl+I” key combination was
simultaneously hit.
 There are three separate network adapters on the “REMnux GW” VM (Figure 4.2.1.1). The
first one is responsible for the Internet connectivity, so it was attached to NAT. The second one was
attached to the “Internal Network” named “intranet” while the last one was set to “Host-Only” and
was responsible for secure file sharing with the host PC.

Figure 4.2.1.1 – REMnux GW Adapters

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 19

4.2.2 System Update

 After the first boot of the GW VM, the latest updates were applied to the system by typing the
following commands to a terminal:

• $ sudo apt-get update

• $ sudo apt-get upgrade

Then, a snapshot was captured to avoid repeating this process in case of system failure.

Generally, the VM’s state was saved after completing a time-consuming step of the analysis or
before moving to a step that might need to be repeated (either because it is a trial attempt or because
more than one attempts are needed before reaching to a conclusion).

4.2.3 Network Configuration

 The “ifupdown” installation was performed in order for the new network manager (“netplan”)
to be disabled, as the network management through “/etc/network/interfaces” was preferred. To be
able to use the “ifconfig command”, the “net-tools” package was also installed. The corresponding
command was:

• $ sudo apt install ifupdown net-tools

 Additionally, another change based on personal preference was made. This was to rename
the interfaces with the older naming convention [48]. Therefore, the three adapters were configured
inside the “/etc/network/interfaces” file as illustrated below (Figure 4.2.3.1)

Figure 4.2.3.1 – The edited /etc/network/interfaces

 A restart of the interfaces was needed so the commands “ifdown” and “ifup” were used
sequentially. In addition, several “ping” command verified that the network was succesfully
configured (Figure 4.2.3.2). The actual commands that were used, are:

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 20

• $ sudo ifdown eth0, eth1, eth2

• $ sudo ifup eth0, eth1, eth2

• $ ping -c 4 -I eth0 8.8.8.8

• $ ping -c 4 -I eth2 192.168.56.1

Figure 4.2.3.2 – Network Connectivity Verification

 At that point, another snapshot was captured.

4.2.4 Additional Software Installation

The “INetSim” software provided dynamic name translation services, when simulated internet

was provided to the Analysis VMs. On the other hand, “INetSim” was disabled when connectionr thr
the internet was required. Thus, another tool was used to act as the DNS, named “dnsmasq”.

This was installed by typing the following line into the “GW”’s terminal:

• $ sudo apt-get install dnsmasq

 The configuration file of “dnsmasq” was copied and its contents were altered to those shown
bellow
 (Figure 4.2.4.1).

Figure 4.2.4.1 – The modified dnsmasq.conf

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 21

 Moreover, a web GUI [26] for “iptables” was downloaded in order to test the “.firewall” scripts.
A visual representation of the “iptables” (rules, chains & tables) and the network traffic had a great
impact when developing those files. The installation processes started with downloading the file:

• $ sudo git clone https://github.com/puux/iptables.git

 Then, the following commands followed, in order to install and run the server:

• $ cd /iptables

• $ sudo npm install

• $ node server.js

 The interface was available by visiting localhost on port “1337” (Figure 4.2.4.2 & Figure
4.2.4.3).

Figure 4.2.4.2 – Installing Web GUI for “iptables”

 The default credentials are Username: Admin, Password: empty.

Figure 4.2.4.3 – The “iptables” web GUI

The installation process of “BurpSuite Community Edition” was as easy as downloading the

latest 64-bit installation file for Linux OSes [49] and entering the following command into a terminal:

• $ sudo bash <downloaded file>

The rest of the processes was guided, and the “/opt/BurpSuiteCommunity” folder was

selected as the installation folder

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 22

4.2.5 Firewall Scripts

 The scripts provided by ENISA on their “Artefact handling” VM (“styx32.ova”) [50] were
modified accordingly for the needs of this Lab environment. As a result, four “.firewall” scripts were
created that were responsible for the routing changes to be applied on demand.

4.2.5.1 The “internet.firewall” script

 The first script that was created was the “internet.firewall” script (Figure 4.2.5.1.1) in order
for the Analysis VMs to access the WWW.

Figure 4.2.5.1.1 – The internet.firewall file

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 23

The script begins with the termination of all the related services (“systemd-resolved”,
“dnsmasq” and “inetsim”) that may be activated from any other “.firewall” script and ends with the
reactivation of those needed.

After the services are stopped, the “/etc/network/interfaces.internet” that was created for this
specific script is being restored as the “/etc/network/interfaces” in use. After a series of failed
attempts, it was decided that a separate “interfaces” script for each of the “.firewall” scripts would
simplify the troubleshooting process.

 The original “/etc/network/interfaces” that was previously created (Figure 4.2.3.1) was saved
as “/etc/network/interfaces.backup”.

The bash script flags “xeu” were set for the script to be more verbose while being executed
and to abort in case an error was encountered.
 In the line 20 of “internet.firewall” another script dedicated for clearing the “iptables” [51] is
being executed (Figure 4.2.5.1.2).

Figure 4.2.5.1.2 – The “reset-iptables.sh” file

 For the Internet to be accessed from the Analysis VMs, three “iptables” rules are applied.
The first one is responsible for redirecting the traffic from the “intranet” interface to the “NAT” while
the second allows for the responses to be returned in the same way. The third rule masquerades
the outgoing traffic so that NAT can be achieved. Also, comments have been typed in the “iptables”
rules that declare their functionality.
 IP forwarding is important for the routing to be, so it was applied in every “.firewall” script that
was created. (line 32).

4.2.5.2 The “inetsim.firewall” script

 The simulated traffic is routed via the “inetsim.firewall” script (Figure 4.2.5.2.1) to the analysis
machines. The iptables of this file are blocking the access to port 22, the SSH port, from the intranet
and redirect the rest of the incoming traffic from this adapter to the IP address that “INetSim” is
configured to be listening to.

The services that are needed for those setting to be effective are of course different from
those needed by the “internet.firewall” script, so they are disabled and enabled accordingly.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 24

Figure 4.2.5.2.1 – The “inestim.firewall” file

 The “inetsim.conf” file located on the “/etc/inetsim” path are of great importance as it contains
a set of options that define the simulated services such as the default response to a URL request.
On this script, the “inetsim.conf.backup” (Figure 4.2.5.2.2) which is also located on the “/etc/inetsim/”
path which replaces the default “inetsim.conf”.

The “inetsim.conf.backup” contains the following modifications:

• the enabling of all the available services, and

• the assignment of “10.0.0.1” in the “service_bind_address” and “dns_default_ip” fields.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 25

Figure 4.2.5.2.2 – The inetsim.conf.backup file

Apart from those differences that are mentioned above, no other significant one exists
between those two files.

Since DNS resolving was handled by the “INetSim” software, the “system-resolved” and the
“dnsmasq” services were stopped.

4.2.5.3 The “burp_internet.firewall” script

When malware analysis is carried out, a controlled environment is required. Thus, the ability
to intercept the network traffic is important. To provide such control mechanism, the
“burp_internet.firewall” script was created (Figure 4.2.5.3.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 26

Figure 4.2.5.3.1 – the burp_internet.firewall file

 The “internet.firewall” and “burp_internet.firewall” file only differ on the “iptables” rules that
are applied. The redirection from ports 80 and 443 to 8080 and 8443 respectively, was required as
“BurpSuite Community Edition” was configured to listen to those ports. Therefore, corresponging
rules were included in this script.
 For this script to be functional, “BurpSuit Community Edition” must be already executed and
listening to the above mentioned ports.

4.2.5.4 The “burp_inetsim.firewall” script

 The final script that was written during the Lab setup, was the “burp_inetsim.firewall”, capable
of intercepting the simulated traffic that is generated by the “INetSim”.
 This script is similar to the “inetsim.firewall” file, but it uses a different “INetSim” configuration
file, which was named “inetsim-burp.conf” (Figure 4.2.5.4.1). In this file the “service_bind_address”
is set to 0.0.0.0, http_bind_port” is set to 880 and “https_bind_port” is set to 8443.

Figure 4.2.5.4.1 – The inetsim-burp.conf

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 27

The redirection from the default http and https ports (80 and 443 respectively) to ports 880

and 8443, is achieved via “BurpSuit Community Edition” rather than “iptables” software. Therefore,
there are no such rules implemented on this script (Figure 4.2.5.4.2).

Figure 4.2.5.4.2 – The burp_inetsim.firewall

4.2.6 Configuration of “BurpSuite Community Edition”

Since this software edition is not the paid version, only a temporary project can be created,
meaning that no changes are saved. For this reason, once the proxy listeners were configured, they
were exported to “burp-internet_proxy-listeners.json” and “burp-inetsim_proxy-listeners.json”. As
their name suggests, “burp-internet_proxy-listeners.json” is meant to be used in conjunction with the
“burp_internet.firewall”, while “burp-inetsim_proxy-listeners.json” is meant to be used in conjunction
with the “burp-inetsim.firewall”. Both files contain the proxy listeners of each other, so that the
transition between “burp_inetsim.firewall” and “burp_internet.firewall” can take place faster.

Beneath the proxy listener configuration, “PortSwigger” (the company that developed
“BurpSuite”) must be imported as a CA on the Analysis VMs. This process, however, is described
separately for each Analysis VM, since the process differs slightly depending on the OS.

4.2.6.1 Proxy Listeners Configuration

 After launching “BurpSuite Community Edition” with administrative privileges and selecting
“Temporary Project” as well as “Use Burp defaults” on the prompted windows, the program is started.
From the main menu, the tab “Proxy” and then tab “Options” were selected (Figure 4.2.6.1.1).

Figure 4.2.6.1.1 – Proxy Options tab

The default listener was removed and a new one was added by the “Proxy listener” sections.

The new listener was bound to port “8080” from the “Binding” tab of the “Add a new proxy listener”
window that had emerged, as shown in the figure below (Figure 4.2.6.1.2).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 28

Figure 4.2.6.1.2 – Proxy Listener Addition

 On the “Request handling” tab, the “Support Invisible proxying (enable only if needed)” option
was checked on the corresponding checkbox.
 The same process was repeated for the port “8443”.
 The “8080” and “8443” listeners were made to be used in conjunction with
“burp_internet.firewall”, but they were not yet exported.
 Next, two new proxy listeners were added, bound to ports “80” and “443”. In order for ports
below ”1024” to be selected, root privileges are required. Both listeners, though, were set up to be
redirecting the traffic to IP “10.0.0.1”, ports “880” (Figure 4.2.6.1.3) and “8443” respectively.

Figure 4.2.6.1.3 – Traffic Redirection through “BurpSuite Community Edition”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 29

 At that point, it was ascertained that the “intercept” option was enabled from the
corresponding tab, and the proxy listeners regarding “8080” and “8443” ports were activated.

Those options were saved using the “Options” (cog) icon as “burp-internet_proxy-
listeners.json” (Figure 4.2.6.1.4) under “lab/rules”.

Figure 4.2.6.1.4 – Saving the newly created “burp-internet_proxy-listeners.json”

 Finally, the active listeners were switched (the listeners regarding ports “8080” and “8443”
were disabled, and those regarding “80” and “443” were enabled) and saved as “burp-inetsim_proxy-
listeners.json” inside “/lab/rules” directory.

It was then tested whether “Burp-internet_proxy-listeners.json” and “burp-inetsim_proxy-
listeners.json” were available and functional each time “BurpSuite” was executed (Figure 4.2.6.1.5).

Figure 4.2.6.1.5 – Verifying availability of saved proxy listeners

4.3 REMnux Analysis VM Setup

The “REMnux Analysis” VM was created by importing the same OVA file that was used on
“REMnux GW” VM, since it comes with many malware analysis related tools already preinstalled.
However, modifications to network adapters and related files had to be made before it can be
completely functional. Before taking the final snapshot of the VM, additional tools were installed.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 30

4.3.1 Importing Appliance

For the appliance to be imported, “Ctrl+I” shortcut was hit, and the prompted import wizard
was followed. The downloaded OVA file was selected, and 4 GB of RAM as well as 2 cores of CPU
were assigned.

The “Adapter 1” was attached to the “Internal Network” named “intranet” that was created
while setting up the “REMnux GW” VM (Figure 4.3.1.1). Those options were made available from
the “Settings” (cog) icon, under “Network” group of options.

Figure 4.3.1.1 – Setting up the network adapter

 The rest of the adapters were ensured to be deactivated, as well as any method of
communicating with the Host machine. On the “General” group options, under the “Advanced” tab,
“Shared Clipboard” and “Drag’n’Drop” were set to “Disabled”. Additionally, “Enable USB Controller”
and “Enable Audio” were unchecked from “USB” and “Audio” group of options, respectively. Finally,
prior to the first snapshot, it was verified that no shared folders existed between Guest and Host
from the corresponding group of options.

4.3.2 Network Configuration

Figure 4.3.2.1 -Modifying “etc/netplan/01-netcfg.yaml”

After booting the VM for the first time, the “/etc/netplan/01-netcfg.yaml” file had to be modified

so that static IP address was assigned (Figure 4.3.2.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 31

Next, the command “sudo netplan apply” was inserted in the terminal and the state of the VM
was saved into a new snapshot.

The “REMnux GW” VM was then booted and the connectivity between “Analysis” and “GW”
VMs was validated via a series of “ping” commands.

4.3.3 Firewall Script Testing

While testing the “internet.firewall” and “inetsim.firewall” scripts (Figure 4.3.3.1, Figure 4.3.3.2
and Figure 4.3.3.3) it was identified that due to INetSim limited SSL support, “https” requests would
return an error regarding self-signed certificate. Furthermore, it was confirmed that when executing
the “internet.firewall” and “inetsim.firewall” scripts on “REMnux GW”, the “Ubuntu” VM behaved as
intended.

Figure 4.3.3.1 – Testing "internet.firewall" connections

Figure 4.3.3.2 – Testing “inetsim.firewall" HTTP connections

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 32

Figure 4.3.3.3 – Testing "inetsim.firewall" HTTPS connections

 Moreover, while running “burp_internet.firewall” and “burp_inetsim.firewall” scripts on
“REMnux GW” VM and simultaneously requesting for “https://www.google.com” on a “REMnux
Analysis” terminal (Figure 4.3.3.4), it was observed that the CA certificate of “PortSwigger” needed
to be imported both on the system and on the browser of the “Analysis” VM.

Figure 4.3.3.4 – Testing “burp_inetsim.firewall” and “burp_internet.firewall” connections

Therefore, the “burp_internet.firewall” was executed via terminal and the “BurpSuite

Community Edition” was run by typing:

• $ sudo ~/BurpSuiteCommunity/BurpSuiteCommunity

A new temporary project was created, and the previously created “burp_internet-

proxy_listeners.json” configuration file (4.2.6.1) was imported. The intercept option was disabled and
the “10.0.0.1:8080” was typed on the address bar of the “Firefox” web browser. The download option
for the CA certificate was available (Figure 4.3.3.5).

Figure 4.3.3.5 – Downloading CA Certificate

 The downloaded certificate was imported to “Firefox”, as described on the official site [52].
First, the “Preferences” option was chosen (Figure 4.3.3.6) from the browser’s settings menu.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 33

Figure 4.3.3.6 – Navigating to “Preferences”

Afterwards, the word “Certificates” was typed on the search bar and the “View Certificates”

button was pressed. The “Certificate Manager” window popped up, and at the the “Import…” option,
located at the bottom of “Authorities” tab, was pressed. After navigating to the “Downloads” folder
the “cacert.der” file was selected. When prompted, “Trust this CA to identify websites.” was checked
(Figure 4.3.3.7).

Figure 4.3.3.7 – Modifying trust settings

 The “PortSwigger CA” was ensured to be imported and the “intercept” option was enabled to
check its functionality.
 For the downloaded certificate to be imported to the system, however, additional actions had
to be taken [53] [54]. Firstly, the DER certificate was converted into a usable public key (Figure
4.3.3.8), using the command:

• $ openssl x509 -in cacert.der -inform DER -out portswigger.crt

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 34

Figure 4.3.3.8 – Converting “.der” to “.crt”

The converted certificate was copied to the “/usr/local/share/ca-certificates” folder and the

following command updated the list of CA certificates (Figure 4.3.3.9):

• $ sudo update-ca-certificates

Figure 4.3.3.9 - Adding "portswigger.crt" to the Cas

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 35

 The functionality of the imported certificate was validated by visiting “google.com”, via the
terminal, while “intercept” was on. The traffic was intercepted as expected and no certificate error
occurred (Figure 4.3.3.10).

Figure 4.3.3.10 – Checking the installation of “portswigger.crt”

Furthermore, once the certificate was imported, the functionality of “burp_inetsim.firewall”

could be tested. Thus, the appropriate proxy listeners were activated, and the script was executed
(Figure 4.3.3.11).

Figure 4.3.3.11 – Switching to simulated traffic

 Once again, the “google.com” was visited via terminal, and “InetSim” responded with the
default “index.html” (Figure 4.3.3.12) without complaining about the certificate.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 36

Figure 4.3.3.12 – “InetSim” response

 Once every script was successfully tested, the “internet.firewall” was executed and a new
snapshot was taken.

4.3.4 Applying system updates

A full system update was performed by typing:

• $ sudo apt-get update && sudo apt-get upgrade

4.3.5 Additional Software Installation

 Although “REMnux” distribution comes with “ClamAV” already preinstalled on it, its
signatures had to be updated. Thus, the “clamav-freshclam” service (responsible for automatic
update of the signatures) was stopped and the signature database updating was forced through the
“sudo freshclam” command (Figure 4.3.5.1).

Figure 4.3.5.1 - Updating "ClamAV" signature database

 Additionally, the portable edition of “Detect It Easy” software for 64-bit Linux systems was
downloaded [55] and extracted under “/opt” directory

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 37

 For the dynamic analysis, “peda”, “pwndbg” and “gef” “gdb” plugins were installed [56] to
improve user experience. However, “pwndbg” was preferred over the other options and was
therefore used on the scenario of “Skidmap” malware.

The commands to download and install those plugins in home directory were [57]:

• $ cd ~ && git clone https://github.com/soaringk/gdb-peda-pwndbg-gef.git

• $ cd ~/gdb-peda-pwndbg-gef

• $./install.sh

After installation, they were available by typing “gdb-peda”, “gdb-pwndbg” or “gdb-gef” on the

terminal (Figure 4.3.5.2).

Figure 4.3.5.2 – Executing “gdb-pwndbg”

Finally, a “ghidra” plugin capable of applying “IDA FLIRT” signatures, named “ApplySig” [11]

was downloaded and decompressed to the “~/ghidra_scripts/” directory. The signature database that
was used in conjunction with this plugin was “sig-database” [35]

4.4 Ubuntu VM

The choice of “Ubuntu” OS for the “Behavioral Analysis” stage was made as it is the most
popular Debian based distribution. Note that in order to make the VM “malware friendly" all the
modifications that took place are thoroughly in this section.

4.4.1 Creating a new machine

The latest LTS version of “Ubuntu” was downloaded from the official webpage [40]. Since the
downloaded file was not in an “.ova” format, but in an “.iso” one, the machine needed to be installed
instead of being imported. This can be achieved either by Selecting “Machine” from the “Oracle VM
VirtualBox Manager’s” menu bar and selecting the “New…” menu item from the drop-down list (or
by simply pressing the “Ctrl+N” shortcut). Once “Ubuntu” was provided as name on the
corresponding field, “Type” and “Version” values were automatically changed to “Linux” and “Ubuntu
(64 bit)” respectively. The “Machine Folder” was also changed to the desired one (Figure 4.4.1.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 38

Figure 4.4.1.1 – Naming the VM and selecting OS

 On the next window of the installation wizard, the memory that was allocated to the VM was
altered to 4098 MB which is considered a realistic value for a modern system. Regarding the hard
drive, a new dynamically allocated “VDI” of 150GB was created (Figure 4.4.1.2), which is also
considered to be a reasonable hard drive partition capacity value. The reason why those values
needed to be realistic is because modern malware might check them to identify the existence of a
virtual environment.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 39

Figure 4.4.1.2 – Creating new VDI

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 40

 Once the VM was created, the “Adapter 1” was attached to the “Internal Network” named
“intranet” and the “USB”, “Audio”, “Shared folders”, “Drag’n’Drop” and “Shared Clipboard” options
were modified accordingly for the VM to be isolated, as per “REMnux Analysis” VM (0)

4.4.2 Ubuntu Installation

A new snapshot was taken as a precautionary measure for the possibility of installation
failure, before going forth with this process. Afterwards, the Instance was started, and “Boot” was
selected. On the pop-up window, an optical disk selector was added, and the downloaded file
(“ubuntu-20.04.2-desktop-amd64.iso”) was selected. Consequently, this file was chosen as the start-
up disk.

After selecting the desired language, the “Install Ubuntu” option was chosen, and the English-
US keyboard layout was preferred. Moreover, “Normal installation” was selected, as it would install
more packages that a normal user might have already installed, and the option “install third-party
software…” was checked for performance reasons. When asked for installation type “Erase disk and
install Ubuntu” was selected and the “Install Now” button was pressed. On the pop-up window the
upcoming disk changes were allowed by pressing the “Continue” button.

The “Amaryllis Awanes” and “soxband” names, anagrams of “malware analysis” and
“sanbox” were typed on the “Your name:” and “Your computer’s name:” fields, respectively. In this
way, a possible virtual environment discovery based on username or computer name blacklisting
might be avoided. The password set was “M4lw4r3” (Figure 4.4.2.1).

Figure 4.4.2.1 – Filling the credential-related fields

 After completing the installation process and upon restarting the VM, the “Livepatch” and the
“Location services“ were disabled, while the “Don’t send system info” option was enabled.

4.4.3 Network Configuration

On the “Ubuntu” VM, the network configuration was achieved via the GUI. After hitting the
“Super key” (windows key on most keyboards), “Settings” was typed and the corresponding
application was started. While on the “Network” tab, a new wired profile was created by pressing the
button with the “cross” symbol (Figure 4.4.3.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 41

Figure 4.4.3.1 – Creating a new Wired profile

A new window, named “New Profile”, emerged and the tab “IPv4” was selected. Then, the

option “Manual” was applied for the “IPv4 Method”. The “Address” field was set to “10.0.0.5” and the
“Netmask” field was set to “255.255.255.0”. Moreover, the IP address of the “REMnux GW”,
“10.0.0.1”, was inserted on the “Gateway” and “DNS” fields (Figure 4.4.3.2).

Figure 4.4.3.2 – Configuring “IPv4” tab

After configuring the “Ubuntu” VM, “REMunx GW” VM was booted to verify the network

communication. This was accomplished via “pinging” the GW:

• $ ping 10.0.0.1

4.4.4 Firewall Script Testing

For the “Ubuntu” VM to behave as intended for each of the “REMnux GW” scripts, the
“PortSwigger” CA certificate had to be downloaded and imported to both the “Firefox” browser and
the system. The CA certificate import procedure is described in detail on the corresponding
subsection (4.3.3) of the “REMnux Analysis Setup” section.

Upon successful completion of the installation, the requests to “https://google.com”, as well
as their responses, were tested for all the “.firewall” scripts (Figure 4.4.4.1, Figure 4.4.4.2).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 42

Figure 4.4.4.1 – Checking the VM’s behavior under “burp_internet.firewall”

Figure 4.4.4.2 – Checking the VM’s behavior under “burp_inetsim.firewall”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 43

 Once every script was successfully tested, the “internet.firewall” was executed and a new
snapshot of the “Ubuntu VM” was taken.

4.4.5 Applying system updates

The instance was booted again, and a full system update was performed by typing:

• $ sudo apt-get update && sudo apt-get upgrade

Since a full update can be a time-consuming process, another snapshot was taken upon

completion.

4.4.6 Additional Software Installation

The additional software that was needed to be installed on the “Ubuntu” VM was the file
archiver “7z”, the “chkrootkit” software and its dependencies (“gcc”).

An active connection to the Internet was needed, so no changes were made to the “REMnux
GW” VM.

To install the “7z” software, the following command was typed on the terminal:

The installation of “chkrootkit” was the netxt. Therefore, the “latest source tarball” package

was downloaded from the official site [58], which was later decompressed using the following
command:

• $ tar xzf p chkrootkit.tar.gz

Continuing with the installation of its dependencies, the following command was given:

• $ sudo apt-get install gcc

Finally, the source code was compiled with the command:

• $ sudo apt-get install p7zip-full

• $ sudo make sense

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 44

5 The use case of “Skidmap” malware

The sample that was chosen for the “Linux” malware analysis was a variant of “Skidmap”

trojan. This sample might not be as popular as the one analyzed in the previous chapter, but the
choice was mainly made due to the fact that the malware is a “crypto miner” trojan meaning that it
takes advantage of the system’s resources and adapts advanced techniques to make its malicious
activity undetected. Taking into consideration that most cryptocurrency prices have vastly risen in
the past months, it is expected that the presence of such malware to be more frequent in the
upcoming years. Additionally, it performs various ways for the attacker to gain access to the infected
machine and adapts advanced persistence techniques.

Similarly, to the “Windows” malware analysis use case, the present chapter focuses on the
“Classification”, “Code Analysis” and “Behavioral Analysis” of the above-mentioned malware.
Although it is considered that the “Lab Setup” achieves the goals of “Initial Actions” stage of SAMA
methodology, several malware-specific modifications had to be implemented.

5.1 Classification

The first stage of “Skidmap” malware analysis that is described in this chapter is

“Classification”. The sample’s unique identifiers ware collected by hash functions, the “YARA” rules
were used to extract information about its functionalities along with online research. Moreover,
“ClamAV” AV was used in conjunction to online AV engines (VirusTotal) to measure and evaluate
its concealing capabilities. The file characteristics were viewed via “DIE” software and the “UPX”
packer was identified. The sample unpacking was achieved though the same tool used for packing.

5.1.1 Malware transfer

The variant of “Skidmap” that was downloaded to the “REMnux GW” can be found on the
“Malware Bazaar” webpage [59], by typing the appropriate keyword followed by the sample’s
SHA256 number to the search field, as shown below:

sha256:f005c2a40cdb4e020c3542eb51aef5bac0c87b4090545c741e1705fcbc8ca120

The downloaded sample is protected with the traditional “infected” password, which was

revealed prior its downloading (Figure 5.1.1.1).

Figure 5.1.1.1 - Password protected sample

The malware transfer, from the GW REMnux” VM to the “Analysis REMnux” VM, was

accomplished once again by inserting the following command on the GW VM:

$ python -m SimpleHTTPServer

The IP address and the port 8000 was then inserted on the address bar of the “REMnux

Analysis” VM:

http://10.0.0.1:8000

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 45

Re-enabling the “intranet” adapter prior to the transfer and isolation of the VM after this
procedure was completed, were necessary steps that occurred before a fresh snapshot. At that
point, the sample was ready to be decompressed, which was achieved by inserting the command:

$ 7z x <filepath>

The password “infected” was inserted when prompted (Figure 5.1.1.2).

Figure 5.1.1.2 – Decompressing the sample

5.1.2 Using “DIE”

“Detect It Easy” is a powerfull tool with numerous capabilities. It can be used for various steps
of the “SAMA” methodology, replacing some command line tools that were traditionally being used
in ELF malware analysis (s.a. “file”, “readelf”, “TrID”, “strings” etc.). Thus, further investigation of the
“Skidmap” sample was performed with this tool.

A 64-bit ELF executable of little endianness probably packed with “UPX” v3.91 software was
detected. It was also concluded that it was stripped, since no sections were available (Figure
5.1.2.1). The “Strings” and “Entropy” features of “DIE” verified that the sample was packed.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 46

Figure 5.1.2.1 – Viewing sample characteristics on “DIE”

Although the hashed that derive from this sample were already known (since they are

provided by “Malware Bazaar” webpage), they were verified using the “Hash” feature of “DIE” (Figure
5.1.2.2), replicating the procedure that would occur if the sample was unknown. Additionally, the
software calculated the hash of each program segment.

Figure 5.1.2.2 – The MD5 hash of the sample

5.1.3 Calculating the “ssdeep” checksum

For the “ssdeep” calculation, the “ssdeep” command line tool had to be used, since “DIE”
does not perform that kind of inspection. The following command was given:

Next, the output was compared with the repository’s calculations (Figure 5.1.3.1). As

expected, they were matching.

• $ ssdeep <filepath>

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 47

Figure 5.1.3.1 – Calculating “ssdeep”

5.1.4 Applying “YARA” rules

Unfortunately, the “YARA” rules that were applied to check the sample, did not identify any
of its characteristics or functionalities (Figure 5.1.4.1). The command given was

• $ yara-rules <filepath>

Figure 5.1.4.1 – Applying “YARA” rules

5.1.5 Antivirus

The sample was then scanned with the “ClamAV” antivirus, which identified it as
“Unix.Trojan.Skidmap-9811570-0” (Figure 5.1.5.1).

Figure 5.1.5.1 – Scanning “Skidmap” sample with “ClamAV” anti-virus engine

Moreover, the SHA256 hash of the sample was submitted to “VirusTotal” online platform,

where 24 engines identified it as malicious (Figure 5.1.5.2).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 48

Figure 5.1.5.2 – Searching SHA256 hash on “VirusTotal”

5.1.6 Unpacking

“Vanilla UPX” packed samples (not packed with custom “UPX”) can be unpacked with the
“upx” command line tool (Figure 5.1.6.1). The command given was:

Figure 5.1.6.1 – Unpacking “UPX” packed sample

5.1.7 Unpacked sample classification

The “Classification” stage was repeated for the unpacked sample (Table 5.1.7.1).

Table 5.1.7.1 – Classification findings

Type Finding

MD5 9e6f454fd1ead5c0abcd4eec173d571e

SHA256 528d3b624ad90d0677214ee17b740c94193dde56aa675f53c03d25a58f45583d

ssdeep
24576:KOc51pm37C1xmrIOA+3GarpxJLvw0sMomxPC:
KOc51pm37C1xaIOA+3GanJLvgMom

YARA-rules
ldpreload
Big_Numbers1
MD5_Constants

clamscan Unix.Trojan.Skidmap-9811570-0 FOUND

entrypoint 0x400de0

compiler gcc-5 (5.4.0-6ubuntu1~16.04.12)

The “unpacked_sample” was not stripped and the section headers along with the unpacked

program headers were available for further analysis.

Additionally, 34 engines classified the unpacked sample as malicious (Figure 5.1.7.1).

• $ upx -d <filepath> -o <output path>

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 49

Figure 5.1.7.1 – Checking “unpacked_sample” on VirusTotal

 Most importantly, strings were no longer unreadable, and crucial information was extracted
by applying “http”, “ip”, “root”, “cron” and other neutral and Unix oriented keywords as filters to the
corresponding field of “DIE” (Figure 5.1.7.2).

Figure 5.1.7.2 – Applying “http” as filter

5.2 Code Analysis

 Once the sample was successfully unpacked, it was in the appropriate form to be statically
inspected via “Ghidra” software. Therefore, the file was imported, and upon success it was dragged
and dropped on the code viewer (dragon icon). Automatic analysis was accepted on the prompted
window. Since the file is statically linked, the procedure of analysis lasted more than usual. Then,
the word “main” was applied as a filter on the “Symbol Tree” window.
 At the same time, the file was dynamically examined using the “pwndbg” program. Once
started, a breakpoint was set, and it the debugged file was executed. The commands used, were:

• $ sudo gdb-pwndbg <filename>

• pwndbg> br main

• pwndbg> r

5.2.1 The “writepam” function

 Delving deeper into this function, it was observed that the existence of “pam_unix.so” file was
being checked by two separate “access” calls, one per directory that it could possibly be located.
Those are “lib64/security” and “/lib/x86_64-linux-gnu/security” (Figure 5.2.1.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 50

Figure 5.2.1.1 – Examining “pam_unix.so” existence

 The access command is checking for different characteristics on the file, based on the given
arguments [60] [61].

Figure 5.2.1.2 – access arguments

 Right after, the path to “pam_unix.so” file, was passed on “fopen64” along with “wb”
parameters [62]. The purpose of this part of code is to prepare the file for being written, and
consequently, an “fwrite” call followed. Either “binarypam8” or “binarypam” can be written on the
“pam_unix.so” depending on the argument that was initially passed on “writepam” function. However,
the first time that “writepam” was encountered, “writepam(0)” was called, which means that the
“binarypam” branch was selected. After replacing the “pam_unix.so” [63], the opened file was closed,
with an “fclose” call (Figure 5.2.1.3).

Figure 5.2.1.3 – Replacing system’s “pam_unix.so”

Both “binarypam8” and “binarypam” were extracted to be further analyzed. In order for the

analysis to take place, the “Select” option from the menu bar was selected, along with the “Bytes…”
choice of the drop-down menu. Then the “Select Forward” method was chosen and the value
“178168” was inserted on the “Length” field of “Byte Selection” according to the value appearred on
Ghidra (Figure 5.2.1.4).

Figure 5.2.1.4 – “Selecting the “binarypam” bytes

Next, the selected bytes were “right clicked” and the “Copy Special…” option was selected.

On the new prompted window, the choice “Byte Sting” format was applied (Figure 5.2.1.5).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 51

Figure 5.2.1.5 – Selecting format

The selected bytes were pasted on the “REMnux” preinstalled software, named “CyberChef”

and there the option “From Hex” was selected from the “Operations” menu (Figure 5.2.1.6).
The “CyberChef” output was then saved to disk, as “binarypam8”.
The same process was repeated for the “binarypam” file.

Figure 5.2.1.6 – Converting copied bytes

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 52

 Beneath those lines, there was code responsible for modifying the access and modification
timestamps [64] of the file (Figure 5.2.1.7).

Figure 5.2.1.7 – Setting access and modification timestamp

 The actual timestamp (Figure 5.2.1.8) was being set to Thursday, 23 February 2012 1:26:37
AM , on both access and modification timestamps (Figure 5.2.1.7). It was concluded that the author
implements this evasive technique to minimize the detection chances.

Figure 5.2.1.8 – Converting UNIX hexadecimal to timestamp

The change of timestamps was verified using the command “stat pam_unix.so” while on the

“lib/x84_64-linux-gnu/security” (Figure 5.2.1.9).

Figure 5.2.1.9 – Verifying altered timestamps

Afterwards, two more “access” calls were checking the execute permissions of the

“setenforce” file, whether it is located under either “/usr/sbin” or “/sbin” directories (Figure 5.2.1.10).
The author aimed to execute the command “setenforce 0” and set “SELinux” to permissive mode
[65] [66] if “setenforce” had such permissions.

Figure 5.2.1.10 – Checking “setenforce” for execute permission

However, since the access control was not being controled by SELinux on Ubuntu-based

systems , “setenforce” could not be found, and therefore the control returned to main whithout
executing the rest of the “writepam” code.
 The rest of the code included a check for the “/etc/selinux/config” presence in a similar
manner that the “pam_unix.so” file’s presence was checked, so that “SELINUX=disabled”, and
“SELINUXTYPE=targeted” were written in it.
 Before returning to “main”, the modification and access time of the configuration file, would
be set to the previously mentioned timestamp (page 52), calling once again the “utime” function.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 53

5.2.2 The “writePublic” function

The “writepam” function was succeeded by the “writePublic”. There, the sample performed
another persistence technique by checking the existence of “/root/.ssh” directory. If the file did not
exist, it would create it with read, write and execute permissions for user only (the hexadecimal value
“0x1c016“ can be translated to the octet “07008” or “-rwx------” as UNIX permissions). Once it would
be created, its contents could be modified with its own “authorized_keys”, and therefore, make the
system susceptible to remote SSH connections (Figure 5.2.2.1).

Figure 5.2.2.1 – Getting access to “/root/.ssh/authorized_keys”

The hardcoded ssh key was printed by inserting the command “x/2s 0x4a7dc8” in the

“pwdbg” (Figure 5.2.2.2) command line, which can be translated as “show the next two variables as
strings, beginning from the address provided”.

Figure 5.2.2.2 – Printing the “/root/.ssh/authorized_keys”

Upon releasing the file descriptor, the sample proceeded with checking the execute

permission of the “/usr/bin/chattr” file and in case of failure, the execute permissions of /bin/chattr”
file. The purpose of this procedure was to rename the original “/usr/binchattr” into “/usr/bin/t” and
then to use this file in order to set the immutable filesystem attribute on the “authorized_keys” file

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 54

(Figure 5.2.2.3). By setting this attribute, the malware author intended to make the file undeletable
by root users [67].

Figure 5.2.2.3 – Granting “authorized_keys” the immutable attribute

On the other hand, if the condition failed, the sample would check if it could execute

“/usr/bin/chattr” or “/bin/chattr” and in case of success, the sample would proceed with the execution
of “chattr –ia –R /root.ssh/”. By inserting this command, the immutable and append attributes would
be recursively removed from the contents of “/root/.ssh”, so that they can be altered. Consequently,
it would proceed with the removal of the “root/.ssh/authorized_keys” file in order to create the
backdoor and add its own ssh-rsa key.

5.2.3 Debian

Another sophisticated procedure that was observed in this sample, was the existence of a
routine that checked whether the infected system's OS Linux flavor was “CentOS” or “RedHat” based
(Figure 5.2.3.1) [68] [69]. If the OS was identified as either of them, a separate function, named
“centos” would be called. The “centos” function is analyzed in the next subsection (page 58).

Figure 5.2.3.1 – OS detecting

On the other hand, if no “/etc/centos-release” or “/etc/redhat-release” was discovered, which

means that the system should most likely be Debian based, the malware would search for the
“tmp/miner2” file. If the miner was accessible, its MD5 would be calculated and compared to a
hardcoded md5 checksum (Figure 5.2.3.2). The online research of this md5 checksum showed that
it is connected with “skidmap” and is possibly another cryptocurrency miner (Figure 5.2.3.2 & Figure
5.2.3.3) [70] [71].

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 55

Figure 5.2.3.2 – Dynamically searching for the other comparison operand

Figure 5.2.3.3 – identifying the md5 hash

Upon successful comparison, the file permissions would be changed to “-rwxr-xr-x” via

“chmod” command and the miner was executed (Figure 5.2.3.4). Efter the miner was executed,
“Skidmap” would be terminated.

Figure 5.2.3.4 – Changing file permissions and executing miner2

 On the other hand, failure of locating the “tmp/miner2” file would trigger a series of attempts
to download the desired binary as “tmp/miner2”, change its permissions and finally execute it (Figure
5.2.3.5). The list of the tools that could be used to download the miner includes the following:

• /usr/bin/curl

• /usr/bin/wget

• /usr/bin/cur

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 56

• /usr/bin/url

• /usr/bin/get

• /usr/bin/wge

Figure 5.2.3.5 – “miner2” download methods

The “miner2” file was retrieved via the “ANY.RUN” online sandbox [72] after providing the

“https://a.powerofwish.com/miner2” URL and inspecting the corresponding response. During the
“Classification” stage, the md5 hash was compared to the hardcoded string but they were not
matching. Also, the “UPX” packer was identified, and the following command was inserted to the
terminal:

• $ upx -d miner2 -o unpacked_miner2

 Although, the analysis of “miner2” is beyond the scope of the current thesis, the

unpacked miner was imported to “ghidra”. Afterwards, “ApplySig.py” was selected from the script
manager (Figure 5.2.3.6), and the appropriate “.sig” file was chosen.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 57

Figure 5.2.3.6 – Selecting the “ApplySig.py”

 Upon various attempts, and upon taking into consideration the fact that the main program
was compiled with gcc-5 (5.4.0-6ubuntu1~16.04.12), “libc6_2.23-0ubuntu9_amd64.sig” was applied
and rendered the code more readable (Figure 5.2.3.7).

Figure 5.2.3.7 – Selecting signatures database

While there are many versions of miner2 samples in the wild, they all differ in the

cryptocurrency that they focus. Upon file inspection with the use of “ghidra”, some hardcoded strings
within the binary were detected, providing enough information regarding the cryptocurrency that was
being harvested.
. It was identified that the cryptocurrency mined was a coin named “sugar”, and that the
infected machines where contributing “hash power” to the pool “sugar.minerpool.com” while the
funds were transferred to the malware author’s wallet (Figure 5.2.3.8):

• ”sugar1qddpk0wgqtgufenz6z9zh4cjgrehk8ezud422p5q”

Figure 5.2.3.8 – Sugar pool and author’s wallet

One important thing to notice regarding blockchain technology, is the transparency between

all transactions, thus one can verify every transaction made by one address. Therefore, in the case

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 58

of “miner2”, and upon investigating the wallet address in sugar chain [73] the transactions that were
achieved up to that date showed that the wallet was highly active. It was calculated that over 17000
euros had been received to this wallet while the current balance was over 2000 euros (Figure
5.2.3.9).The calculations were made taking into consideration the BTC/Euro exchange rate, which
at the time of writing is 30435€.

Figure 5.2.3.9 – Sugar transactions

5.2.4 CentOS – RedHat

On the contrary, if the sample could identify the infected system as a Centos based
distribution, the “centos” function would be executed. The parameter passed on this function,
determined the file that would be downloaded. Either “cos8.tar.gz” or “cos7.tar.gz” might be the input
of the “downFile” function, that as its name implies, it was responsible for downloading the given
input.

After thoroughly investigating the “downFile” function, it was found out that the sample was
checking the accessibility of “/usr/include/cos8.tar.gz” (or “/usr/include/cos7.tar.gz” if “cos7.tar.gz
was provided as input”). Upon success, the current directory was changed to “/usr/include” and the
MD5 hash of the file was calculated. The purpose of this calculation was to compare it with the hash
“b8ab70d213015aee203039e12cca5344” (Figure 5.2.4.1). The hash comparison process was
repeated for the digests “974f911ee11c61f080dd838d59f27d66” and
“a82a49df9c4cbbdb162b4e9fc46ae4a5”. In case that the outcome of the MD5 did not match with
any of the hardcoded hashes, the function would exit. Although an online research about those
hashes was performed, no valuable information was extracted.

Figure 5.2.4.1 – Comparing MD5 hashes

On the contrary, if the file could not be located, the malware would attempt to download it,

using the same variety of tools (one per attempt) that was encountered on the Debian path [page
55]. Those are:

• /usr/bin/curl

• /usr/bin/wget

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 59

• /usr/bin/cur

• /usr/bin/url

• /usr/bin/get

• /usr/bin/wge

The downloaded file would be saved inside /usr/include folder and its execution would follow
(Figure 5.2.4.2).

Figure 5.2.4.2 – Downloading the given file

 Both “cos8.tar.gz” and “cos7.tar.gz” were downloaded via “ANY.RUN”, by providing the
“http://a.powerofwish.com/cos8.tar.gz” and “http://a.powerofwish.com/cos7.tar.gz” arguments in the
URL filed (Figure 5.2.4.3) [74] [75].

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 60

Figure 5.2.4.3 – Inserting URL to ANY.RUN

Once the control returned to “centos” function, the directory was changed to “/usr/include”

and the downloaded file was decrypted providing the password “jcx@076”, and then decompressed
(Figure 5.2.4.4).

Figure 5.2.4.4 – Decrypting and Decompressing the downloaded file

The files were transferred through the “REMnux GW” VM, using Python (python -m

SimpleHTTPServer) and by visiting “10.0.0.0:8000” on the “REMnux Analysis” VM. For this to be
feasible, the VM was turned off, and the “intranet” adapter was set back on. A new snapshot was
taken once the VM was isolated again. The above procedure of decrypting (Figure 5.2.4.5) and
decompressing (Figure 5.2.4.6) was manually performed on the analysis VM, to better understand
the sample’s code.

Figure 5.2.4.5 – Decrypting “cos8.tar.gz”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 61

Figure 5.2.4.6 – Decompressing "8cos.tar.gz"

The next lines of code were changing the current directory to the extracted one (“cos8” or

“cos7”). In case of failing to access the directory, it would be deleted (“/bin/rm -rf /usr/include/cos*”).
On the contrary, upon successful directory change, a series of installations (“./install.sh” & “./install-
net.sh”) would take place prior to the directory removal. Finally, either “/usr/bin/systemd-udeved” or
“/usr/bin/kaudited” would be executed, once again depending on the downloaded file; “cos8.tar.gz”
or “cos7.tar.gz” respectively (Figure 5.2.4.7).

Figure 5.2.4.7 – Actions performed on the extracted files

5.2.5 Returning to “main” function

While tracing the code back to the “main” function, it was figured out that the access to
“/usr/bin/kaudited” file was checked. If this check was successful, the MD5 hash would be calculated
so that it can be later compared to the “1da3de8db15766d42b8955683094caaa” and in case of
failure with the “71ce5a1cf2ceea4a004b0d6347208360” MD5 hashes (Figure 5.2.5.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 62

Figure 5.2.5.1 – Comparing MD5 hashes

 If the comparison failed, the program would loop back to the OS fingerprinting stage (page
54). Otherwise, a series of system calls would follow. First, the “immutable” and the “append”
attributes would be removed from the contents of the directories: “/var/spool/cron”, “/etc.cron.d”,
“/etc/cron.hourly”, “/etc/ld.so.conf.d”. The renaming of “chattr” to “t” was already encountered before
[6.2.2]. Next, all the contents of the first three directories name above, plus the
“/etc/ld.so.conf.d/dynist-x86_64.conf” would be removed. Finally, the directory “/var/spool/cron/root”
would be created and the immutable attribute would be set back to “/etc/cron.d” and
“/etc/cron.hourly” (Figure 5.2.5.2).

Figure 5.2.5.2 – cron and ld.so changes

 In addition to the previously mentioned call, “pc”, “cc”, “px”, “1.jpg” and “pm.sh” were being
removed and “httpdz”, “migrations”, “crloger1” and “crlogger27” were being killed. Moreover the
“immutable” and “append” attributes of “usr/lib64/dyninst” were being removed prior to the removal
of the contents of this directory (Figure 5.2.5.3).

Figure 5.2.5.3 – File removal and program kills

 The MD5 hash of “/user/bin/kaudited” was calculated once again, and the 3 first characters
of the result were stored on a variable. The access to the “kaudited file” and the capability of
calculating its MD5 could grant access to the rest of the code. If any process that contained the
strings “kaudited”, “kswaped”, “systemd-network”, “rctlcli”, “irqbalanced”, “ip6network” or “pamdicks”
was returned, would be eventually killed (Figure 5.2.5.4).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 63

Figure 5.2.5.4 – Killing running processes

 In addition, those programs were being removed from the “/usr/bin” directory. Also,
“iproute.ko”, “netlink.ko”, “cryptov2.ko” would be removed from the “/lib/udev/ssd_control” directory.
Next, “pamdicks.org” would be renamed to “/tmp/mmm”, executed and then copied to “/usr/bin”.
Finally, the “immutable” and “append” attributes were removed from the “/etc/cron.d” folder, so that
the cron rule “0 1 * * * root /bin/cp /usr/bin/mmm /tmp/mmm && /tmp/mmm” could be saved to
“/etc/cron.d/watch”. Upon completion, the “immutable” attribute was added to the contents of
“/etc/cron.d” (Figure 5.2.5.5). The “cron” rule schedules the copy (from “/usr/bin” folder to “/tmp” one)
and the execution of “mmm” file every day at 01:00 [76]

Figure 5.2.5.5 – Configuring “cron” to run “pamdicks.org”

5.2.6 Downloaded files

From previous steps, it was already known that the “miner2” file was meant to be downloaded
and executed when the infected system was “Debian” based. The coin and the pool that was mined,
as well as the author’s wallet, were obtained by importing the unpacked “miner2” file to “ghidra”
software. Therefore, it was suspected that those this kind of information could be obtained if further
analysis the contents of “cos8.tar.gz” and “cos7.tar.gz” would occur. Although the contents of
“cos8.tar.gz” on “REMnux Analysis” VM were successfully extracted, those of “cos7.tar.gz” were not
recoverable (Figure 5.2.6.1).

Figure 5.2.6.1 – Failing to recover the contents of “cos7.tar.gz”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 64

 At that time, it was estimated that cos7.tar.gz was a previous version the “cos8.tar.gz” and
the hardcoded password was not capable of decrypting it. However, during the behavioral analysis,
a version 7 “CentOS” VM was created, where “cos7.tar.gz” could be decrypted and decompresses,
while “cos8.tar.gz” was failing to do so. In this way, every related file hash was managed to be
calculated (Table 5.2.6.1).
 The “md5sum” tool was used on both “REMnux Analysis” and “CentOS” VMs:

• $ md5sum cos8* & md5sum cos8/bin/*

• $ md5sum cos7* & md5sum cos7/bin/*

Table 5.2.6.1 – MD5 hashes of the decompressed files

file md5

encrypted cos7.tar.gz 7b8fafb9d1a746909d20acd696330e48

unencrypted cos7.tar.gz b647803e76ca2f89ad177e7797c0d3c6

encrypted cos8.tar.gz b5ba00a3bcad8bdc720f71aba0167f21

unencrypted cos8.tar.gz e913612aa41a8bc232299346b09448f5

cos8/

clear.sh 39a147674eacf937f88537eb53226e95

install-net.sh d41d8cd98f00b204e9800998ecf8427e

install.sh 61dca576c462abefe8825381e88cbc10

last.sh d94c0adf178a0c540b287d2b7aad1787

rctl.sh 08b38e9f77255bb2d4d5f6c21c580372

readme.txt 1ecf152e4c1bf2245277dab50c3d7341

cos8/bin/

ip6network d0b1b4992930a0d96a2732dae55bc7f7

kaudited 112f37fb20a75ea3c03a2b5a5a2dd22f

pamdicks.org f12b6dba36142396851f37b65631bf75

pamdicks-sugar 0db60a841d35089660885e275f50271f

scp 6ea8421d044f9c62599490ad7023fd36

ss 3b402e8bcaa88e7d613475d1bb5dd238

ssh a9393a3c6358554ab4a475109b09b886

system-udeved.service e527392047e9328d623bbf0edc467a0f

wtmp a40ca6f5fe465d766f90c558e277aa42

cos7/

clear.sh cb1db36f2aca451200533d87007c6943

install-net.sh 8ddf91f48da357632920f51a6cecd878

install.sh 235ad45e137282fb09b6c75bbb1dd352

install-ssh.sh bb9d49ade493c7c0538afdb25e0a61da

last.sh d94c0adf178a0c540b287d2b7aad1787

rctl.sh 08b38e9f77255bb2d4d5f6c21c580372

readme.txt 1ecf152e4c1bf2245277dab50c3d7341

cos7/bin/

ip6network 3c6ffbf3d7a1354a4877f7601f002db5

kaudited 2803107a11f76ff279dc0802cb14d0b8

network-7.0 e96d1a8be74bf00011f630444edd3574

network-7.1 e5d05f3767a650ad5d534bdfd8ce2ffb

network-7.2 376016032e9b50120cc60c1651b1f242

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 65

network-7.3 376016032e9b50120cc60c1651b1f242

network-7.4 45cde38fe5f84078712f899603c1dcba

network-7.5 45cde38fe5f84078712f899603c1dcba

network-7.6 d44908e9849b1841272618bd51a40182

network-7.7 d44908e9849b1841272618bd51a40182

network-7.8 d44908e9849b1841272618bd51a40182

pamdicks.org f12b6dba36142396851f37b65631bf75

pamdicks-sugar 0db60a841d35089660885e275f50271f

rm 2180930dfa432258042e6c90b518874c

scp 814fbdeea184a0d95d4a88e3d5b65944

ss ca0395ee5c4b96cac1d2e3985df42380

ssh c936fa0be296a06f29a0cddea8eead4a

wtmp 6cb32495ffe0a7cb891abdf79718db65

 Almost all files that were included in the “bin” subdirectory, were packed with “UPX”, hence
they could be unpacked by using the “upx” command:

• $ upx -d <filename> -o <unpacked filename>

 The md5 hashes of the unpacked files, are listed on the following table (Table 5.2.6.2).

Table 5.2.6.2 - MD5 hashes of the unpacked binaries

file md5

cos8/bin/

up_ip6network 1182a608c07fd9d91eee50b54d7bac0d

up_kaudited 124116d27901ea10d548013c2968b7d8

up_pamdicks.org c292e2a3e97d6a9a8667556e4219489e

up_pamdicks-sugar 67a6128b1140967506390137ee6a340b

up_scp e71998f6eba9c1ee3fd72654dad51512

up_ss 4a95da9e2901f0115a56525cdb30ec97

up_ssh 47956d2b89fc085a2ae84dffa606989d

cos7/bin/

up_ip6network 9d568708ce6679970004ec7e145537fa

up_kaudited f2c16944dbe116e928108e4d170dc8e5

up_pamdicks.org c292e2a3e97d6a9a8667556e4219489e

up_pamdicks-sugar 67a6128b1140967506390137ee6a340b

up_rm f3eda9bab1244305d976c4f07b23ce4c

up_scp 11dc19c5b27cc29e0ced42743a059731

up_ss 586e14bdeaa163831f24c60c970b595b

up_ssh 0f3c1977084375bcb98f522880b78d50

up_wtmp a40ca6f5fe465d766f90c558e277aa42

 By comparing the above checksums, it was concluded that “last.sh”, “rctl.sh” and “readme.txt”
files are the same for both “cos7.tar.gz” and “cos8.tar.gz”. Moreover, “network-7.0” is the same as
“network-7.1”, “network-7.2” is the same as “network-7.3” and the files “network-7.6”, “network-7.7”
and “network-7.8” are identical. Finally, the “wtmp” file of “cos8” is the unpacked version of “cos7”.
 Instead of proceeding with the classification of each downloaded file, it was decided to upload
the obtained checksums to “VirusTotal” in order to retrieve further information. However, only
“pamdicks-sugar” (Figure 5.2.6.2), “rm” (Figure 5.2.6.3) and “up_rm” (Figure 5.2.6.4) were identified
as malicious [77] [78] [79].

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 66

Figure 5.2.6.2 – VT results for “cos7/bin/pamdicks-sugar”

Figure 5.2.6.3 – VT results for “cos7/rm”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 67

Figure 5.2.6.4 – VT results for unpacked “cos7/rm”

 Since most of the hashes did not match any entry of the platform’s database, they were
uploaded once obtained. Only a subset of them was identified as malicious from a small portion of
available AV engines, although 3 months had already passed since the appearance of this sample
on “Malware Bazaar” repository.

5.2.7 Installation files

After the “cos8.tar.gz” decompression, the scripts “install.sh” and “install-net.sh” were
examined since it was noticed that they were possibly executed inside “centos” function during the
analysis of the sample.

The script “install.sh” performed various file changes, more specifically it changed the current
directory to “/usr/include/cos8/bin/” and moved the “kaudited” file into “/usr/bin” as “systemd-udeved”,
alongside with “ssh”, “scp”, “ip6network”, “systemd-udeved.service”, and “wtmp” . It then checked
the total amount of system’s RAM memory to decide which binary between “pamdicks.org” or
“pamdicks-sugar” would be used. In either way, it will be moved as “/usr/bin/pamdicks.org” If the total
amount of memory exceeded the value of 13.6 GB than the pamdick.org would be selected and the
non-selected binary would be removed from the system. In case the file that provided this kind of
information was absent, the “pamdicks-sugar” would be preferred over the “pamdicks.org” (Figure
5.2.7.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 68

Figure 5.2.7.1 – The first part of “cos8/install.sh”

Furthermore, the script proceeded with the addition of a hashtag character in front of

“Include”, “GSSAPIAuthentication”, “GSSAPIDelegateCredentials” strings found inside the
“/etc/ssh/ssh_config” file, essentially commenting out every line that starts with these strings.
Subsequently, the “llib/systemd/system/” path would be created for the “systemd-udeved.service” of
“cos8” to be relocated. Then, a symbolic link would be created for the paths:

• /etc/systemd/system/multi-user.target.wants/systemd-udeved.service

• /etc/systemd/system/graphical.target.wants/systemd-udeved.service

Also, the timestamp of the aforementioned file and its links would be altered to “2019-05-23
10:48:00”. Once again it was ensured that the “SELINUX” configuration file would contain the lines
“SELINUX=disabled” and “SELinux=targeted” and that setenforce would be set to permissive mode
(Figure 5.2.7.2), just as the malware author implemented on the “writepam” function (5.2.1).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 69

Figure 5.2.7.2 – The second part of “cos8/install.sh”

The “install-net.sh” file though was empty (Figure 5.2.7.3).

Figure 5.2.7.3 – The “cos8/install-net.sh” script

Once the files were extracted from “cos7.tar.gz”, and upon performing some basic

classification steps (calculating MD5 checksum, searching and uploading the files to VT and
unpacking the binaries) the installation files located in “cos7” folder were analyzed. At first glance,
the “cos7install.sh” script showed a high degree of similarity to the corresponding file of ‘cos8’.
However, the “kaudited” file was moved to “/usr/bin” path without being renamed to “system-udeved”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 70

and managed by system-udeved.service. Another key difference is the replacement of “/bin/rm” file
with the “rm” binary that was downloaded, which was commented out on “cos8/install.sh” script.
Finally, when it comes to the changes of “/etc/ssh/config” no “Include” lines are commented out
(Figure 5.2.7.4).

Figure 5.2.7.4 – The “cos7/install.sh” script

 Opposing to “/cos8/install-net.sh”, the “/cos7/install-net.sh” was not empty. It was already
known from the analysis of “centos” function that “install-net.sh” would be executed with an argument
being passed to it, but the possible value could not be clarified from the code analysis (Figure
5.2.7.5).

Figure 5.2.7.5 – the argument of “install-net.sh”

While examining the installation script, it was evident that the argument was defining the file

that would replace the “/etc/init.d/network” file. Moreover, the timestamp would be modified based
on the file being transferred (Figure 5.2.7.6).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 71

Figure 5.2.7.6 – the “cos7/install-net.sh” script

 The investigation of “install-net.sh” was originally triggered but an error produced while
running the sample on a “CentOS” environment, which was referring that “network-7.9” could not be
located, in conjunction with the absence of such a file inside the “cos7” folder. As a result, it was
concluded that the function which “Ghidra” was unable to successfully translate, was responsible for
storing the version of the system to a variable.
 The “install-ssh.sh” installation file would copy the “/sbin/sshd” binary to “/usr/bin/ip6network”,
in case of the following OSes:

• Centos6.8

• Centos7.4

• Ubuntu14.04.5

• Ubuntu16.04.3

Moreover, “/etc/ssh/ssh_config” would be modified so that the lines starting with
“GSSAPIAuthertication” and “GSSAPIDelegate/Credentials” were commented out (Figure 5.2.7.7).
It is worth mentioning that this file is not present in “cos8.tar.gz” package.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 72

Figure 5.2.7.7 – The “install-ssh.sh” installation script

5.2.8 Other binaries

Upon inspecting the installation files, it was observed that most of the dropped files were
participating in the installation process and it was therefore decided to proceed with their analysis.
A brief analysis for these files had already been performed when downloaded (5.2.6) that included
their unpacking. Furthermore it was able to proceed with strings inspection, take a glimpse of the
code using “Ghidra” and gather public information for other “Skidmap” variants from other analysts
[80] [70] [81] [82] .Taking all these under consideration, useful conclusions regarding the purpose of
those files were deduced.

5.2.8.1 The “binarypam” and “binarypam8”

This binary is in essence a backdoored version of the standard PAM Unix authentication
module. The “pam_sm_authenticate” function normally just calls “unix_verify_password” to perform
a check whether the authenticating password is valid. In this specific version of the module there is
a hardcoded password illustrated in the figure below (Figure 5.2.8.1.1).

Figure 5.2.8.1.1 – Hardcoded “pam_unix.so” password

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 73

5.2.8.2 The “pamdicks-sugar” binary

The file “/cos7/bin/pamdicks-sugar” is almost identical to the cryptocurrency binary, “miner2”,
found in Debian distribution (5.2.3) and contains the same CPU miner software (Figure).

Figure 5.2.8.2.1 – The CPU miner software

As it is illustrated in the figure below (Figure 5.2.8.2.2), the miner contains the same

cryptocurrency (“Sugar”) and mining pool in which the infected host attempt to connect, as well as
the same wallet address in the sugar blockchain that was mentioned in Debian subsection of code
analysis. The “pamdicks-sugar” file of “cos8.tar.gz” did not contain any major changes.

Figure 5.2.8.2.2 – Cryptocurrency mining pool and wallet address

5.2.8.3 The “pamdicks.org” binary

In case the resources were more than the set threshold, the “pamdicks.org” file would be
preferred over the “pamdicks-sugar” one. Therefore, it was suspected that this was also another
cryptocurrency miner software.

A deeper inspection revealed various sockets for the victim to try to connect:

• xmr.cpuminerpool.com:3335

• xmr.cpuminerpool.com:443

• pool.minexmr.com:7777

• pool.minexmr.com:80

• dero.cpuminerpool.com:443

• sg.minexmr.com:5555

• dero.ss.dxpool.com:7777

• dero.miner.rocks:30182

However, only some of them could be possibly called inside the “main” function (Figure
5.2.8.3.1):

• dero.cpuminerpool.com:443

• dero.ss.dxpool.com:7777

• xmr.cpuminerpool.com:3335

• xmr.cpuminerpool.com:443

• pool.minexmr.com:7777

• pool.minexmr.com:80

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 74

Figure 5.2.8.3.1 – Possible mining pools

Moreover, two separate wallets were found, one for “monero” and one for “dero” coins, which

made sense since the pools were targeting both of those coins.

 The “monero” wallet:

• 49zeTpiAXTW2sgujzswAGSPcPf5Xw8KkF2efMx3swz6dKYZnsWGDmCzXPf76jee1CxNC
hnrgbrxPPJdWi1G5z1XEDGCKZcm

The “dero” wallet:

• dERokwuEQ3mGJNxMoqWpP1UJQUtZVoYKNRa3dMPvcD5K1j8RoBGQzZJJWaR6Fgr5b
MMxK8LUdfAAHY8EBgDVxsUPAUZmDjhDJb

Although it was attempted to view the balance of those accounts, no information regarding

the transactions was extracted (Figure 5.2.8.3.2).
The version included in “cos8.tar.gz” did not differ dramatically.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 75

Figure 5.2.8.3.2 – Failing to check “monero” wallet’s balance

5.2.8.4 The “kaudited” binary

The “kaudited” file is of most importance regarding the malware’s functionality on “CentOS”

systems. After all, its execution happens immediately after the installation process is finished (5.2.4).
The first thing that was noticed during the analysis the “cos7/bin/kaudited” binary was the

modification of the “iproute.ko”, “netlink.ko” and “cryptov2.ko” kernel modules, based on the kernel
version of the system (Figure 5.2.8.4.1).

Figure 5.2.8.4.1 – Altering “iproute.ko”, “netlink.ko” and “cryptov2.ko”

 When the kernel modules had been modified, the “pam_unix.so” backdoor was deployed
once more. In addition, the security levels of the system were lowered by altering the
“/etc/selinux/config”.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 76

Figure 5.2.8.4.2 – Dropping “loadxjump”, “systemd-udeved”, “kswaped” and “mingety”

 Furthermore, the MD5 checksum of the following binaries (Table 5.2.8.4.1) located in
“/usr/bin/” folder, was calculated, and compared with the corresponding, hardcoded hashes. If they

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 77

did not match, they were removed and replaced with bytes located in the “kaudited” code (Figure
5.2.8.4.2).

Table 5.2.8.4.1 – The binaries and the accepted M55 hash

Binary MD5 hash

loadxjump a92423ade2af0a35ba9999f488c1e948

systemd-network 4be02494cb9d569f4de5a05d9b6a4c9f

kswapped f882adda86d599bec125c6f3a55062e7

mingety 4c5b044490e80e10a1df7b0bccb8163

 Finally, the modules were inserted to Linux Kernel via “insmod” commands.

This version of “kaudited” included in the “cos8.tar.gz” created and loaded only one Linux
Kernel module, the “netlink.ko” (Figure 5.2.8.4.3).

Figure 5.2.8.4.3 – The creation of “netlink.ko”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 78

Figure 5.2.8.4.4 – Main functionality of “cos8/bin/kaudited”

After getting the current version, the correct “netlink.ko” kernel module was created (Figure

5.2.8.4.3) and the “pamlinx.so” backdoor redeployed. Once again, “/etc/selinux/config” was modified
to contain “SELINUX=disabled” and “SELINUXTYPE=targeted”. Instead of “loadxjump” the
“pkeeminfo” was located and the rest of binaries were created without first comparing them to an
MD5 checksum (Figure 5.2.8.4.4, Figure 5.2.8.4.5).

Figure 5.2.8.4.5 – The function "mal_kswaped_create"

 The LKMs are analyzed in a separate subsection (5.2.8.6).
 In the same function where “loadxjump” and “pkeeminfo” were created, the creation of the
“/etc/rctlconf/certs/rctl_ca.crt” CA certificate was also encountered. In both “Nethserver” and
“CentOS” they were identical (Figure 5.2.8.4.6).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 79

Figure 5.2.8.4.6 – The certificated created by “kaudited” of “cos8.tar.gz”

The “loadxjmp” binary was using the configuration file “/etc/rctlconf/rctlcli.cfg” and a modified

version of “rctl” (remote Linux control) tool [83]. Through code analysis it found out that the
“/var/run/xiscsd” could contain information similar to “rctlcli.cfg” (“wan”, “class”) though it could not
be located during the dynamic code or behavioral analysis.

In addition, a correlation with “rctl.c” and “r1” domain URLs could be made by viewing the
“loadxjump” code (Figure 5.2.8.4.7).

Figure 5.2.8.4.7 – TCP keepalive error

 The “r1” domain URLs included:

• r1.franceeiffeltowers.com

• r1-443.franceeiffeltowers.com

• r1.googleblockchaintechnology.com

• r1-443.googleblockchaintechnology.com

• r1.howoldareyou999.com

• r1-443.howoldareyou999.com

• r1.mylittlewhitebirds.com

• r1-443.mylittlewhitebirds.com

The next malicious component, that was dropped from "kaudited" [80], is the
“/usr/bin/kswaped” binary, which is responsible for the transmission of "/usr/include/ilog.h" and
"/usr/include/olog.h" contents (Figure 5.2.8.4.8). Yet again it checked for the presence of those log
files and upon success it connected and sent their contents a to "info.onlinetalk.tk" and
"info.ipsfwallet.tk. Finally, before those files were removed, they were copied with an additional “.h”
extension in their filename.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 80

Figure 5.2.8.4.8 - The core functionality of “kswaped”

Another insteresting file which was dropped yet again by "kaudited" is the "mingety" binary.
This one is responsible for prohibiting the analyst from using some well-known process analysis
tools. To achieve this, the processes that contain the keywords "sysdig", "unhide" or "busybox"
reusult in an unexpected system reboot [84] (Figure 5.2.8.4.9). A simple file renaming though could
bypass this protection mechanism, since it is based on a simple “grep” command. It is worth
mentioning that “sysdig” and “unhide” made their appearance on “skidmap’s” early analysis reports
[85].

Figure 5.2.8.4.9 – The core functionality of “mingety”

The last binary dropped by “kaudited” is the “systemd-network”. It preforms the renaming of

the miner to “usr/bin/pamdicks” and it is responsible for its execution.
After every binary had been dropped, the “kaudited” cleared several log files and “cron”

schedules (Figure 5.2.8.4.10).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 81

Figure 5.2.8.4.10 – Clearing log and “cron” files

5.2.8.5 Rest of the dropped binaries

The rest of the binaries included in the file like “ip6network”, “rm”, “scp”, “ss”, “ssh” and
“wtmp” are altered copies of the legitimate linux files where:

• The “scp” Linux command which is made for securely copying files between Linux systems
[14]

• The “ss” Linux command is used to display network socket related information [86]

• The “ssh” Linux command is used to loggin into a remote shell and can also be used to to
execute a command on a remote system [14]

• The “wtmp” is a Linux file containing all the data of “utmp” which holds all the logs of the
logins/logouts of users and many other system events [87].

• As it was already figured out during the investigation of the “installation-ssh.sh” script file
(5.2.7), the “ip6network” is a copy of “/sbin/sshd”.

• By viewing the code of the “rm” binary, it was identified that it is related with
“/var/spool/cron/root” which indicates a scheduled activity. Also, a string that indicates a
scheduled request via “curl” or “url” is evident (Figure 5.2.8.5.1). The requested URL though
could not be retrieved.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 82

Figure 5.2.8.5.1 – The malicious “rm” binary

 Finally, the “system-udeved.service” file was dropped on CentOS v8 systems where
kaudited is renamed to systemd.udeved (Figure 5.2.8.5.2).

Figure 5.2.8.5.2 – The “system-udeved.service” file

5.2.8.6 Kernel Modules

The kernel module “netlink.ko” is installed via the “kaudited” binary as previously mentioned
in CentOS 8. It will not be visible in the list of loaded modules and it performs various techniques to
hide any malicious activity related to miner. As it is evident in the figure below (Figure 5.2.8.6.1), the
module initiates some functionalities regarding the protection and concealment of the rootkit, then it
disables the “write-protected” permissions and performs various techniques to hide the TCP and
UPD traffic related to miner and it also hides the CPU usage on the infected machine.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 83

Figure 5.2.8.6.1 – The “cos8.tar.gz” “netlink.ko” module

On the other hand, at “CentOS” v7 there were 3 modules instead, “iproute.ko”, “netlink.ko”

(which is similar to that found on “CentOS v8”), and “cryptov2.ko”.

Figure 5.2.8.6.2 – The "hacked_getdents" function

From the “iproute.ko” module it was evident that the author had maliciously edited the

“getdents” function (Figure 5.2.8.6.2), which is a systemic function responsible for viewing the
contents of directories [88]. The files that the author hid are:

• kswaped

• kaudited

• ip6network

• ip4network

• systemd-network

• xpropd

• xcond

• pluto

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 84

• mingety

• xiscsd

• tplinkd

• pascald

• gemdos2d

• gloofields

• hopformdit

• pkeeminfo

• pamdicks

• rxmlb2

• mdpsloads

• infiniex

• lzmoinfo

• picsmanager

• perkiseek

• sequemanx

• oddobjump

• pdxmlmrg

• mpidrubit

• hansiupxd

• helpmaninfo

• mpartinconf

• raid.ko

• iptable_mac.ko

• snd_pcs.ko

• usb_pcs.ko

• ipv6_kac.ko

• usb_control

• S94ip6netwok

• S95systemd-network

• pptpctrl

• ndptxeinfo

• libxml2info

• pkeeminfo (once more)

• grub2-infolist

• loadpixcare

• loadxjump

• irqbalanced

• libpcmcia.so

• ld.so.preload

• vpnserver

• ssd_control

• iproute.ko

• cryptov2.ko

• acpi_console.ko

• raid_console.ko

• ilog.h

• olog.h

• tinymapper

• udp2raw

• tinyvpn

• rctlconf

• rctlcli

• rctlser

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 85

• rctl_cert.pem

• rctl_priv.pem

• rctl_ca.crt

• rctlcli.cfg

The "crypto.v2" kernel module’s sole purpose is to observe specific network traffic. More
specifically, it installs two “netfilter” hooks in the kernel that will inspect incoming traffic and will allow
any packet that is not TCP or UDP and in case of TCP or UDP, it will selectively let the traffic pass
or not according to certain ports (Figure 5.2.8.6.3).

Figure 5.2.8.6.3 – Analyzing “crytpov2”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 86

Figure 5.2.8.6.4 – Multiple LKM versions

All the LKMs that could possibly infect a “CentOS” system were extracted from the “kaudited”

files (Figure 5.2.8.6.4) by applying the same technique that was used for the extraction of
“binarypam” and “binarypam8” binaries (5.2.1). When downloaded, they were saved to a different
folder (v1 to v9) so that they are grouped together. In order to calculate all the MD5 checksums, the
following command was entered on the terminal:

• $ md5sum v*/*

A lot of the LKMs could not be found via their MD5 hash on the VT online platform. For this

reason, they were uploaded. The newly uploaded files were identified by significantly fewer AV
engines (4 – 8 engines) than those that were uploaded on previous dates (7 – 30 engines).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 87

Table 5.2.8.6.1 – The LKMs of “CentOS” v7 and their MD5 hash

LKM MD5

iproute.ko

e2573d2cb355821ada600b30223f1fed

5fd025a785397c8d4136024440f049c7

a36460ead268ce98095fb03aa5e1a9ca

2ee204622154a0f969ed72f2812ba2f0

22732077665d5911d5eb0e0f886c80aa

19ffede9e27db53ef8e6ec9ad6e72442

9c54f0a492f3246dcdbe94c2cb9f010c

b116a39ed0aab864f749126f8040ef6e

f4200fe0b7830f02cbb9a4bc4fb21ff2

netlink.ko

108aaeeb98f823e6537a78ed2e8b3149

50c5c713dec7d851dfb66d6dbdab105c

fd82981da07001593bc8ed05eb590c81

6d417f7e0c6c1efa04de496e7f929dc3

b09597414e0cdd770199c38bc42ddc2a

4fa0361bed25459e0915bab92ccc5a8f

aaf05cf0a5474a57c9c3637d40eba73d

76d5be89fee2eb8706720115f13499aa

342afdc4b589cc99de4eee246467ef8f

cryptov2.ko

7b9f41526f66af2e862616f0db9bcb4c

0f53a6613e638dee2280322a753217d4

2ee204622154a0f969ed72f2812ba2f0

502ef9ac3c9e41f19eb4a1fd60d79b4b

a0fad3be742656a5c3b7da3e6a2e7b68

31add101b8007c771eeaad335fe3f06f

506663c0216a29694db598ce2d379d7d

01faddbb9db6c5dd54654dd9468bfb65

0c6e5b9f04fcff56ed882e112abea263

For the LKMs that were related to “CentOS” v8 systems, only 2 AV engines (Avast, AVG)

were able to identify them as malicious.

Table 5.2.8.6.2 - The LKMs of “CentOS” v8 and their MD5 hash

LKM MD5

netlink.ko

b2eade99d74995c22f7773a0dda9cf58

ce3f759be3b933e72a3e63f0208679b4

dcd83a1a7d2d5dcd1023ff930e745dac

5.2.9 Other script files

The “clear.sh” script file located in the uncompressed “cos7” and “cos8” folders would stop

and disable the “auditd” [89], “abrtd” (automated bug reporting tool’s daemon) [90] and “firewalld”
[91] daemons, as well as it would clear the following log files from “/var/log” directory (Figure 5.2.9.1):

• messages

• secure

• yum.log

• cron

• audit.log

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 88

• auth.log

• syslog

• lastlog

• btmp

Figure 5.2.9.1 – The “clear.sh” script

 The “last.sh” was located on both “cos7” and “cos8” folders as well. By using this script, the
attacker is using the “wtmpclean” software [92] to alter login records of “wtmp” [87] (Figure 5.2.9.2).

Figure 5.2.9.2 – The “last.sh” script

 By using this script, the “class” value of the “/var/run/xiscsd” file can be modified accordingly
to the given argument (Figure 5.2.9.3). This value is used by a modified version of “rctl” software
[83] to remotely control the system.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 89

Figure 5.2.9.3 – Editing the “var/run/xiscsd”

5.3 Behavioral Analysis

This last stage of the analysis did not only verify the observations and assumptions made on
earlier stages, but also provided with information that fueled back the “Code Analysis” stage.

5.3.1 Lab Modification

The Lab was modified for the analysis of “Skidmap” sample. The need for the files requested
to be served as a response, on a simulated environment, was covered with the use of “InetSim”.
More specifically, the software’s capability to return fake files based on a static path was utilized.

Therefore, the ANY.RUN webpages [72] [75] [74] were visited and the desired files (“miner2”,
“cos8.tar.gz”, “cos7.tar.gz”) were downloaded to the “REMnux GW” VM. The files were “zipped” and
password-protected with the key “infected”. The compressed files were copied to the
“/var/lib/inetsim/http/fakefiles” folder, “unzipped”, and finally deleted through the following series of
commands:

• $ cp ~/Downloads/miner2.zip /var/lib/inetsim/http/fakefiles/miner2.zip

• $ cp ~/Downloads/cos8.tar.gz.zip /var/lib/inetsim/http/fakefiles/cos8.tar.gz.zip

• $ cp ~/Downloads/cos7.tar.gz.zip /var/lib/inetsim/http/fakefiles/cos7.tar.gz.zip

• $ cd /var/lib/inetsim/http/fakefiles/

• $ sudo 7z x miner2.zip

• $ sudo 7z x cos8.tar.gz.zip

• $ sudo 7z x cos7.tar.gz.zip

• $ sudo rm miner2.zip

• $ sudo rm cos8.tar.gz.zip

• $ sudo rm 7z x cos7.tar.gz.zip

Moreover, the scripts that were responsible for the simulated traffic (“inetsim.firewall”), and

for the intercepted simulated traffic (“burp_inesim.firewall”) should be replaced by new ones. Those
were named “inetsim-skidmap.firewall” and “burp_inetsim-skidmap.firewall” respectively. The
original files were copied to the new ones with the commands:

• $ sudo cp inetsim.firewall inetsim-skidmap.firewall

• $ sudo cp burp_inetsim.firewall burp_inetsim-skidmap.firewall

The correct “InetSim” configuration file (“inetsim-skidmap.conf” and “brup_inetsim-

skidmap.conf”) and the appropriate command to execute “InetSim” with “/var/lib/inetsim” as the data

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 90

directory (“sudo /usr/bin/inetsim --config /etc/inetsim/inetsim.conf --data-dir /var/lib/inetsim”) were the
only modifications needed to both scripts.

Figure 5.3.1.1 – The “inetsim-skidmap.firewall” script

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 91

Figure 5.3.1.2 – The “burp_inetsim-skidmap.firewall” script

 On the “inetsim-skidmap.firewall” the “inetsim-skidmap.conf” would be used. However, it was
not yet created. Consequently, the “inetsim.conf.backup” file was used as the base to configure the
“inetsim-skidmap.conf” to serve the files as needed.

The commands for creating and then opening this file with “scite” text editor, are:

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 92

• $ sudo cp /etc/inetsim/inetsim.conf.backup /etc/inetsim/inetsim-skidmap.conf

• $ sudo scite /etc/inetsim/inetsim-skidmap.conf

The configuration file was modified so that the “REMnux GW” would respond with the files

“miner2”, “cos8.tar.gz”, “cos7.tar.gz” when the appropriate request was sent (Figure 5.3.1.3).

Figure 5.3.1.3 – Modifying “inetsim-skidmap.conf”

 For this step, many failed attempts preceded until the appropriate mime type [93] was
provided.
 Similarly, the “burp_inetsim-skidmap.conf” was created for the needs of “burp_inetsim-
skidmap.firewall” file. The “inetsim-burp.conf” was the base of the newly created configuration file,
which was later edited using the “scite” text editor. The actual commands are:

• $ sudo cp /etc/inetsim/inetsim-burp.conf /etc/inetsim/burp_inetsim-skidmap.conf

• $ sudo scite /etc/inetsim/inetsim-skidmap.conf

The same lines as on the “inetsim-skidmap.conf” were added on the opened file. Those are:

• http_static_fakefile /miner2 miner2 application/octet-stream

• http_static_fakefile /cos8.tar.gz cos8.tar.gz application/octet-stream

• http_static_fakefile /cos7.tar.gz cos7.tar.gz application/octet-stream

Afterwards, the “inetsim-skidmap.firewall” was executed on a “REMnux GW” terminal and

the requests were simulated on the “REMnux Analysis” terminal. As shown on the following figure
(Figure 5.3.1.4), the responses were the ones that the sample would expect. This process was
repeated while “burp_inetsim-skidmap.firewall” and “BurpSuite Community Edition” were running,
and the appropriate proxy listeners were applied (“burp_inetsim-proxy_listeners.json”). When every
single test met the expectations, a new snapshot was taken.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 93

Figure 5.3.1.4 – Checking the ”InetSim” responses

The following table (Table 5.3.1.1) lists all the “.firewall” scripts, that could be used alongside

with the “Ubuntu” VM for the behavioral analysis of the “Skidmap” sample, and matches them with
the corresponding “InetSim” configuration file. Additionally, a detailed description of the services that
can be provided by executing them (in conjunction with the appropriate proxy listeners of “BurpStite
Community Edition”) is added on the rightmost column.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 94

Table 5.3.1.1 – Available “.firewall” scripts for “Skidmap” analysis

Script Name InetSim configuration file Description

internet.firewall X Provides internet access

burp_internet.firewall X
Provides intercepted internet
access

Inetsim.firewall inetsim.conf.backup
Provides simulated internet
access

burp-inetsim.firewall inetsim-burp.conf
Provides intercepted
simulated internet access

inetsim-skidmap.firewall inetsim-skidmap.conf
Provides simulated internet
access with custom
responses

burp_inetsim-skidmap.firewall burp_inetsim-skidmap.conf
Provides intercepted
simulated internet access
with custom responses

5.3.2 CentOS and Nethserver VMs

Upon completion of the lab modification, the need for an additional VM was identified. The
code analysis pointed out that different parts of the malware were executed depending on the OS
flavor (5.2.3) and therefore a CentOS/RedHat OS “.iso” file was downloaded.

The 7.9(2009) version of “CentOS” was downloaded in an “.iso” format from the official
repository [94] and the installation process was almost identical to the one followed during the
“Ubuntu” VM creation (4.4). The major difference beyond the static IP that was assigned (10.0.0.6)
was the different package manager that those distros were using. While Debian distributions use
“apt”, CentOS/RedHat default one is “yum” Thus, the commands used to update the OS were:

• $ sudo yum check-update

• $ sudo yum update

The other key difference between “CenOS” and “Ubuntu” VMs is the folder that the

certificates are stored as well as the command which should be used in order to update the trusted
CAs. The commands which were used to copy the certificate and update the CAs are:

• $ sudo cp ~/Downloads/portswigger.crt /etc/pki/ca-trust/source/anchors/

• $ sudo update-ca-trust

Before moving forward to the installation of additional tools needed for the behavioral

analysis, it was decided to check if any problems would occur during the execution of the sample. In
order to download the malware, the appropriate script (“burp_internet.firewall”) was run and the
corresponding proxy (burp_internet-proxy_listeners.json) listeners were set on “BurpSuite
Community Edition”. Next, the sample was downloaded, as “p7zip” package did to decompress it.
The commands used were [95]:

• $ sudo yum install epel-release

• $ sudo yum install p7zip

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 95

The “burp_inetsim-skidmap.firewall” was executed and the “burp_inetsim-
proxy_listeners.json” was selected in order to isolate the environment and simulate the Internet traffic
for the “CentOS” VM. Furthermore, the downloaded sample was decompressed (typing the
password “infected” when prompted), and execute permissions were provided, using the following
commands:

• $ 7za x
f005c2a40cdb4e020c3542eb51aed5bac0c87b4090545c741e1705fcbc8ca120.zip

• $ sudo chmod +x
f005c2a40cdb4e020c3542eb51aed5bac0c87b4090545c741e1705fcbc8ca120.elf

Considering that the machine was ready for the first execution of the malware, a new

snapshot was taken.
Upon running the sample, an error popped indicating that no “network-7.9” file was found,

and thus, the “mv” command could not be completed (Figure 5.3.2.1).

Figure 5.3.2.1 – Error while moving "network-7.9"

 This error triggered a chain of actions that included the examination of “cos7.tar.gz” and
“cos8.tar.gz” files (5.2.6), leading to the conclusion thar the “cos7” was an abbreviation referring to
“CentOS” version 7 and “cos8” to “CentOS” version 8, and the examination of the installation scripts
(5.2.7) that were suspected of causing this kind of error.
 Taking those facts into consideration, the “7.9” version of “CentOS” was downloaded and
since the malware author had not implemented a solution for this version, it was decided to create a
new VM based on a previous subversion. Trying to downgrade or trying to download a previous
version were ineffective solutions due to broken links and therefore “distrowatch” web page [96] was
used to find another distribution based on “CentOS”. The VM was shut down and restored to the
state prior to malware execution.
 The “7.7” version of “Netserver” was downloaded and installed similarly to “CentOS”. The
downloaded “.iso” image (nethserver-7.7.1908-x86_64.iso) had to be added and selected. During
installation, the network was modified so that the IP address “10.0.0.7” would be statically assigned
(Figure 5.3.2.2).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 96

Figure 5.3.2.2 – Assigning IP address to “Nethserver” VM

 Additionally, internet connection was provided to the VM though “REMnux GW” to install
GUI and therefore enhance user experience during behavioral analysis. The actual command
given are [97]:

• $ sudo yum group list\

• $ sudo yum groupinstall “GNOME Desktop” “Graphic Administration Tools”

• $ sudo ln -sf /lib/systemd/system/runlevel5.target
/etc/systemd/system/default.target

• $ sudo reboot

After the reboot and logging procedure, the sample and the “p7zip” package were

downloaded, the environment was isolated, the sample was decompressed, execution permission
was granted to the extracted ELF, and a new snapshot was captured in the exact same way that
was previously performed on the “CentOS” VM. When the sample was executed, it was observed
that “mv” command would not generate an error anymore and that the “cos7.tar.gz” file and “cos7”
directory were located on “/usr/include” directory as expected.

Although the name of the compressed file implied so, it was only at that moment that it was
suspected that “cos7.tar.gz” would be functional on “CentOS” version 7 distributions, while
“cos8.tar.gz” was targeting “CentOS” version 8 systems. As a result, it was decided to remove the
current VM and create a new version 8 system, which was considered as a more convenient option
than upgrading the current one. Thus, the version 8.3 (2011) was downloaded from the official
webpage [94] and a new “CentOS” VM was created, following the same installation procedure as
the previous version.

When installing the additional software needed for the “Behavioral Analysis” stage, the
installation of one more dependency was required for the “chkrootkit” installation, comparing to the
“Ubuntu” VM; the corresponding “glibc-static” package. On the “Nethserver” VM it was installed by
typing:

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 97

5.3.3 WireShark

Before the sample was executed on the behavioral analysis VMs (“Ubuntu”, “CentOS” and
“Nethserver”), the “Wireshark” software was started on the “REMnux GW” VM. The network traffic
of “eth1” adapter was captured.

The sample was executed on “Ubuntu” VM in order to analyze its behavior on a “Debian”
environment. When the captured traffic was saved and the filter “http” was applied, the malware's
attempt to download the cryptocurrency miner program was observed (Figure 5.3.3.1).

Figure 5.3.3.1 – Requesting for “http://a.powerpfwish.com/miner2”

To filter the network traffic in order to solely display the TCP packets, the keyword “tcp” was

applied in the corresponding field in Wireshark. Through that action, it was managed to observe the
connections made to the cryptocurrency mining pool “sugar.cpuminerpool.com” (Figure 5.3.2.2).

• $ sudo yum install glibc-static.x86_64

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 98

Figure 5.3.3.2 - TCP connections to "sugar.cpuminer.com"

By analyzing the captured traffic generated by “Nethserver”, the “GET” request made for the

encrypted and compressed package “cos7.tar.gz” wes identified (Figure 5.3.3.3). This was
accomplished by applying the “http” keyword.

Figure 5.3.3.3 – Requesting for “http:a.powerofwish.com/cos7.tar.gz”

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 99

The DNS queries where of great importance as they revealed other possible connections
that the malware might attempt. The requests that were collected, were addressed to the following
URLs which at the time of writing were translated to the corresponding addresses (Table 5.3.3.2).
According to “abuseipdb” [98] the translated IP address behind
“r1.googleblockchaintechnology.com” has been intensively reported regarding unauthorized use of
“pam_unix.so” authentication method

Table 5.3.3.2 – DNS requests

URL IPv4 Address

a.powerofwish.com 172.67.210.251, 104.21.61.142

info.onlinetalk.tk unresolved

sugar.cpuminerpool.com 104.168.88.137

info.ipfswallet.tk unresolved

r1.googleblockchaintechnology.com 122.152.215.115

Moreover, the “Nethserver” VM state was restored using the previous snapshot, and it was

decided to provide it with Internet access so that the actual responses could be retrieved. Therefore,
the active proxy listeners on “BurpSuite Community Edition” were swapped and
“lab/rules/burp_internet.firewall” script was executed on the terminal of “REMnux GW” VM.
Nevertheless, no other connections were observed (Figure 5.3.3.4).

Figure 5.3.3.4 – “pamdicks.sugar” DNS queries

 It is worth mentioning that although “cos8.tar.gz” was downloaded (Figure 5.3.3.5), the
same DNS requests were made.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 100

Figure 5.3.3.5 – Downloading “co8s.tar.gz”

The figure below illustrates the connections made to the alternate cryptocurrency wallet and

pool. This was the case where the system had more than 13.8GB of available RAM memory, thus
the sample proceeded with the selection of the “Monero” cryptocurrency (Figure 5.3.3.6).

Figure 5.3.3.6 – “pamdicks.org” DNS requests

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 101

5.3.4 Strace

While it is debatable whether “strace” can be categorized as a behavioral analysis tool or a
tool for dynamic code analysis, it is believed that it would be preferable if the findings of its usage
were presented in the current section.

The tool that was used to record the system calls produced by the samples execution was
“strace”, and the exact command was:

• $ sudo strace -o strace_out.txt
./f005c2a40cdb4e020c3542eb51aef5bac0c87b4090545c741e1705fcbc8ca120

 To additionally view the system calls produced by child processes the “-f” parameter must be
added:

• $ sudo strace -o strace_out.txt -f
./f005c2a40cdb4e020c3542eb51aef5bac0c87b4090545c741e1705fcbc8ca120

 Between two consecutive executions of “strace” the system should be restored to a previous
state since system changes were made on each execution.

After using the “strace” tool on the “Ubuntu” VM, the “strace_out.txt” file was inspected. In
the beginning of the file, the system calls required for unpacking and executing the sample were
found.

Figure 5.3.4.1 – “pam_unix.so”, “SELinux” and “authorized_keys” related system calls

Then, the “pam_unix.so” was located inside “lib/x86_64-linux-gnu/security/pam_unix.so”

folder and several bytes (“binarypam”) were written inside, replacing the original contents. The
timestamp of the file was changed to “2012-02-22T20:26:37-0500”. Additionally, the files
“/usr/sbin/setenforce”, “/sbin/setenforce” and “/etc/selinux/config” were not found as “SELinux” is not
enabled/installed by default on “Ubuntu 20.04”. The “/root/.ssh” was created and the “ssh-rsa” key

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 102

was stored in “/root/.ssh/authorized_keys”. Furthermore, when the “/usr/bin/chattr” was found, a new
child process was created (Figure 5.3.4.1). The calls that were traced on the child processes were
renaming the “/usr/bin/chattr” to “/usr/bin/t” and setting the immutable filesystem attribute to the
“root/.ssh/authorized_keys” file that was earlier created (Figure 5.3.4.2).

Figure 5.3.4.2 – Tracing “chattr” related system calls

 Since “strace” was executed on a Debian-based OS, “/etc/centos-release” and “/etc/redhat-
release” could not be located, and since the sample had not been previously executed in this system,
the miner binary was not yet downloaded. Thus, the malware tried to find the right tool to download
it. The searching process stopped when “/usr/bin/wget” was found (Figure 5.3.4.3).

Figure 5.3.4.3 – Fingerprinting OS and searching for a way to download “miner2”

 With the use of “wget” the miner was downloaded and saved to “/tmp/miner2”, its permissions
were modified to “-rwer-er-e” and finally, it was executed (Figure 5.3.4.4). Since the Debian-based
systems were downloading “miner2”, the “/user/bin/kaudited” could not be found and the program
was exited.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 103

Figure 5.3.4.4 – Tracing “miner2” related system calls

The first part of the “strace” output included the modification of “pam_unix.so”, the lessening

of security level, the creation of “ssh-rsa" key and the renaming of “chattr” command to “t” which
matched the findings of “Code Analysis” (Figure 5.3.4.5).

Figure 5.3.4.5 – Viewing the first part of the “strace” output

When a “CentOS” release was identified, its exact version was fetched, and the

corresponding file was firstly checked for existence prior its download via “curl” to the “/usr/include"
directory (Figure 5.3.4.6).

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 104

Figure 5.3.4.6 – Viewing the “CentOS” specific system calls

However, when the MD5 hash of “/usr/bin/kaudited” was calculated, the program looped back

to the OS fingerprinting stage (Figure 5.3.4.7). This was most probably due to a mismatch between
the hardcoded strings and the calculated checksum. This loop was continuously triggered which
resulted with the sample malfunctioning and not being able to achieve persistence and continue with
the execution of the rest of the code.

Figure 5.3.4.7 – Viewing the infinite code looping

Last, during the behavioral analysis via “strace” on the “CentOS" VM, it was observed how

the other downloaded files differentiated the execution flow. Instead of proceeding with the
calculation of “kaudited” MD5 hash, the program was terminated similarly to “Debian” VM (Figure
5.3.4.8). The cause of the termination lies to the “install.sh” script of “cos8.tar.gz” where the
“kaudited” file is renamed to “systemd-udeved” prior being moved to the “/user/bin” directory.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 105

Figure 5.3.4.8 – Failing to locate “/usr/bin/kaudited” file on “CentOS” v8

5.3.5 chkrootkit

In the code analysis of “skidmap” sample multiple persistence and hiding techniques were
encountered, including the replacement of Native Linux system files with “backdoored” ones and the
installation of CA certificates. Therefore, the use of “chkrootkit” tool was considered as a choice to
evaluate which of the implemented techniques could be detected.

After the installation of “chkrootikit” and its dependencies, it was executed with “root”
privileges:

• $ sudo ./chkrootkit

 This verified that the system was not infected, and it could potentially prevent an investigation
of a false positive indication. The output was clear of infections and therefore the malicious sample
was executed prior repeating the “chkrootkit” scan.

Figure 5.3.5.1 – Applying “chkrootkit” on “Ubuntu” VM

On the “Ubuntu” VM, the only possible threat that was reported was the execution of

“tmp/miner2”. Upon further investigation, it was concluded that when “chkrootkit” searches for

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 106

“Linux.Xor.DDoS” evidence, it reports all the executables that reside on “/tmp” directory. Therefore,
while the cryptocurrency miner was identified, it may be considered as a false positive indication
regarding the existence of “Linux.Xor.DDoS”(Figure 5.3.5.1).

Figure 5.3.5.2 – Applying “chkrootkit” on “Nethserver” VM

 When “chkrootkit” was used to scan the “Nethserver” or “CentOS” VM, though, a warning for
a possible LKM Trojan made its appearance based on the existence of hidden (from “readdir” and
“ps” commands) processes. On the “Nethserver” VM, the number of those processes was
significantly higher than of those on “CentOS” VM (Figure 5.3.5.2 & Figure 5.3.5.3).

Figure 5.3.5.3 - Applying “chkrootkit” on “CentOS” VM

5.3.6 Filesystem analysis

The filesystem analysis was achieved though Linux Native commands [99], As Unix provides
multiple tools to analyze the file system.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 107

To identify the additions and removals from the system, the total files of the system were
saved prior and post the execution of the sample. Consequently, the outputs were compared using
the “diff” command.

The command prior to the execution was:

• $ sudo find / | grep -v '^/proc' > snapshot1

The commands that were used to capture another snapshot and compare them, were:

• $ sudo find / | grep -v '^/proc' > snapshot2

• $ diff -crB snapshot1 snapshot2 > changes

To filter out the important information the below command was used:

• $ grep -e ‘^+’ -e ‘^- ’ -e ‘^!’ changes

Due to the vast amount of data provided by the tools, it is not physically possible to illustrate

all the changes in this thesis and due to the similarity of the findings (especially between CentOS
versions) it was decided to present the modifications that were captured at “Nethserver” VM (CentOS
v7) which were evaluated to be of high importance . The addition of the LKMs, the creation of the
“ssh-rsa" key, as well as the renaming of “/usr/bin/chattr” to “/usr/bin/t” (Figure 5.3.6.1) are evident.

Figure 5.3.6.1 – Viewing the filtered “changes” file

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 108

While the previous series of commands was based on the file name to identify the
additions/removals on the system, the existence of modified files could be visible by comparing their
md5 checksum, which uniquely identifies them.

Before executing the sample, the following chain of commands were typed in the terminal:

• $ sudo find / -type f ! | -path ‘/proc*’ -print0 | xargs -0 md5sum | tee md5sum.txt

 To create a list of the modified files, the following commands were used:

There were approximately 1600 files that failed the MD5 checking on “Nethserver” VM, hence they
were altered. Among those modifications, were the files related to “SELinux” security module and
the “backdoored” binaries that were installed by the sample to replace the original ones (Figure
5.3.6.2).

Figure 5.3.6.2 – Viewing the files that failed the MD5 comparison

5.3.7 Other Findings

Provided that the malware applied evasive techniques (especially when on a “CentOS” based
distribution) it was infeasible to record all the running processes. Among the running processes, it
was figured out the sample was searching for the existence of the “unhide”, “sysdig” or “busybox”
processes (Figure 5.3.7.1). As expected, any attempt to spawn a process that contained the
keywords “unhide”, “sysdig” or “busybox” on its name, resulted in an unexpected system reboot
(5.2.8.4).

Figure 5.3.7.1 – Revealing the protection mechanism

• $ sudo md5sum -c md5sum.txt 2> /dev/null | grep -i ‘FAILED’ > failed.txt

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 109

5.4 Summary

“Skidmap” is a complex Linux malware with multiple capabilities. It provides numerous ways
for the author to access to the infected system and hide its malicious activities.

First, it replaces the system’s “pam_unix.so” file with its own version that uses the
“Mtm$%889*G*S3%G” authentication password. In addition, it installs an “ssh-rsa” key inside the
“/root/.ssh/” folder, which is the public SSH key for root user. It also lowers the security level of the
system by modifying the “/etc/selinux/config” file. The immutable attribute is removed and added
several times via the “chattr” command which is renamed to “t”. All the file changes are followed by
a change in the access and modification time change so that it does not “raise red flags”. Moreover,
it gets information regarding the OS in order to download the appropriate mining software or package
(Figure 5.3.7.1).

Figure 5.3.7.1 – Correlation of OS, downloaded file and “pam_unix.so” backdoor version

In case it is executed on a “CentOS-based” system, its version is of crucial importance when

it comes to the contents of the downloaded packet (Figure 5.3.7.2 & Figure 5.3.7.3) and the selection
of the appropriate files to install. More specifically, different versions of LKMs that hide installed files
and running processes are installed, which grant the detection and disinfection processes intractable
It also proceeds with routing changes and with the installation of CA certificate. Among other evasive
techniques, the log files are altered and the execution of “unhide” command or “busybox” and
“sysdig” software suites results in unexpected system reboots to hinder the analysis. The crypto-
mining software also varies depending on the system’s RAM and subsequently the cryptocurrency,
the mining pool and the wallet differ.

Worth mentioning is the fact that there is code which is not executed due to a failed MD5
comparison. In that part of the code, the crontab scheduler is cleared and a miner starting task is
inserted. Last but not least, it attempts to remove competitive processes that may belong to a
previous “Skidmap” version.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 110

Figure 5.3.7.2 – CentOS v7 related files

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 111

Figure 5.3.7.3 – CentOS v8 related files

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 112

6 Conclusions

The development of malware cannot be eliminated. As technology invades in every aspect

of our life, we become more dependent on their services. The more dependent that we become, the
more profitable it is someone to attack them. In many cases it is not just an individual but state
sponsored teams that perform such attacks. Thus, it is now necessary more than ever for a combined
effort to understand and prevent such malicious acts.

In this thesis a modern malware that targets Linux Systems, “Skidmap”, was analyzed and
valuable conclusions were made, hoping to assist on this cause.

First of all, it was considered interesting the fact that the author seems to have read some of
the public analysis made in previous versions of the malware and adapt to them. Specifically, it was
discovered that some of the tools that are referred on a Chinese report of this malware [85] were
“bugged”, which means that if they were found on running processes, a reboot would instantly occur.

The direct connection to that report, the origin of the “rctl” remote control software [83] as
well as the percentage of Chinese IP addresses that are associated with “Skidmap” activity [70], are
indications that this malware family is of Chinese origin.

Moreover, it was observed that many open-source projects, either modified versions (miner2,
rctl) of them or the original ones (upx,) are “weaponized” to serve their needs.

Also, although UPX is a packer that is easily bypassed, there are still malware that are
packed by such software. Thus, it is useful to study older packers.

Lately, it is observed that this ever-increasing use of cryptocurrencies (Bitcoin, Ethereum,
etc) has led into a surge in their value, and therefore they have become lucrative targets for
cybercriminals. Consequently, it is estimated that there will be an outbreak of attacks related to
cryptocurrencies in the near future. It is also evident, that malware developers are highly active as it
was observed that this specific variant of “Skidmap” that was studied, made its appearance only four
days after the "Sugar" cryptocurrency was made publicly available.
 Last it was concluded that although the rise in malwares is significant over the past years,
there are few cases where the sample has been written from scratch. Most of the samples in the
wild, are known malwares modified for the needs of every attacker.

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 113

7 Abbreviations

ASCII American Standard Code for Information Interchange

ASLR Address Space Layout Randomization

AV Antivirus

BTC Bitcoin

CA Certification Authority

CPU Central Processing Unit

C2 Command and Control

DER Distinguished Encoding Rules

DIE Detect It Easy

DLL Dynamic Link Library

DNS Domain Name System

ELF Executable and Linkable Format

FLARE FireEye Labs Advanced Reverse Engineering

FTP File Transfer Protocol

GB Gigabyte

GNOME GNU Network Object Model Environment

GNU GNU’s Not Unix

GUI Graphical User interface

GUID Globally Unique Identifier

GW Gateway

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ID Identifier

IP Internet Protocol

LKM Linux Kernel Module

LTS Long Term Support

MAC Media Access Control

MB Megabyte

MD5 Message Digest 5 algorithm

MIME Multipurpose Internet Mail Extensions

NAT Network Address Translation

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 114

NSA National Security Agency

OS Operating System

OVA Open Virtual Appliance

PE Portable Executable

PC Personal Computer

RAM Random Access Memory

RSA Rivest–Shamir–Adleman

SAMA Systematic Approach to Malware Analysis

SELinux Security-Enhanced Linux

SN Serial Number

SSH Secure Shell

TLS Transport Layer Security

UNIX Uniplexed Information and Computing System

URL Uniform Resource Locator

VDI VirtualBox Disk Image

VM Virtual Machine

VT VirusTotal

WWW World Wide Web

YARA
Yet Another Recursive Acronym
Yet Another Ridiculous Acronym

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 115

8 Bibliography and References

[1] ENISA, "ENISA Threat Landscape 2020: Cyber Attacks Becoming More Sophisticated,

Targeted, Widespread and Undetected — ENISA," 20 October 2020. [Online]. Available:

https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020. [Accessed 02

March 2021].

[2] J. B. Higuera, C. A. Aramburu, J.-R. B. Higuera, M. A. S. Urban and J. A. S. Montalvo,

"Systematic Approach to Malware Analysis (SAMA)," MDPI - Applied sciences, p. 31, 17

February 2020.

[3] A. Mohanta and A. Saldanha, Malware Analysis and Detection Engineering: A

Comprehensive Approach to Detect and Analyze Modern Malware, Berkeley: Appress,

2020.

[4] M. Sikorski and A. Honig, Practical malware analysis: the hands-on guide to dissecting

malicious software, San Fransisco: No Starch Press, 2012.

[5] R. Wong, Mastering Reverse Engineering: Re-engineer your ethical hacking skills,

Birmigham: Packt Publishing, 2018.

[6] D. Andriesse, Practical Binary Analysis: Build Your Own Linux Tools for Binary

Instrumentation, Analysis, and Disassembly, San Francisco: No Starch Press, 2019.

[7] Oracle Corporation, "File Format (Linker and Libraries Guide)," 2010. [Online]. Available:

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblj/index.html. [Accessed 02

January 2020].

[8] The Santa Cruz Operation, "ELF Header," 28 January 2015. [Online]. Available:

https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html. [Accessed 04 January

2021].

[9] The Santa Cruz Operation, "Program Header," 28 January 2015. [Online]. Available:

https://refspecs.linuxfoundation.org/elf/gabi4+/ch5.pheader.html. [Accessed 04 January

2021].

[10] "ANY.RUN - Interactive Online Malware Sandbox," ANY.RUN, [Online]. Available:

https://any.run/. [Accessed 10 October 2020].

[11] NWMonster, "GitHub - NWMonster/ApplySig: Apply IDA FLIRT signatures for Ghidra," 15

May 2020. [Online]. Available: https://github.com/NWMonster/ApplySig. [Accessed 14

January 2021].

[12] "Download Burp Suite Community Edition - PortSwigger," PortSwigger, [Online]. Available:

https://portswigger.net/burp/communitydownload. [Accessed 15 oCTOBER 2020].

[13] The CentOS Project, "The CentOS Project," 2021. [Online]. Available:

https://www.centos.org. [Accessed 01 February 2021].

[14] C. Negus, Linux Bible, Indianapolis: John Willey & Sons inc., 2020.

[15] N. Murilo and K. Steding-Jessen, "chkrootkit -- locally checks for signs of a rootkit," 07

December 2020. [Online]. Available: http://www.chkrootkit.org/. [Accessed 19 February

2021].

[16] "ClamavNet," ClamAV, [Online]. Available: https://www.clamav.net/. [Accessed 20 January

2021].

[17] GCHQ, "GitHub - gchq/CyberChef: The Cyber Swiss Army Knife - a web app for encryption,

encoding, compression and data analysis," GCHQ, 23 February 2021. [Online]. Available:

https://github.com/gchq/CyberChef. [Accessed 25 February 2021].

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 116

[18] horsiq, "GitHub - horsicq/Detect-It-Easy: Program for determining types of files for Windows,

Linux and MacOS.," 14 February 2021. [Online]. Available:

https://github.com/horsicq/Detect-It-Easy. [Accessed 25 February 2021].

[19] linux.die.net, "dnsmasq(8): lightweight DHCP/caching DNS server - Linux man page,"

[Online]. Available: https://linux.die.net/man/8/dnsmasq. [Accessed 14 December 2021].

[20] "DistroWatch.com: Put the fun back into computing. Use Linux, BSD.," DistroWatch, 31 May

2001. [Online]. Available: https://distrowatch.com/dwres.php?resource=about. [Accessed 08

February 2021].

[21] Elena Opris - Softpedia, "Download Exeinfo PE 0.0.6.3," 26 November 2020. [Online].

Available: https://www.softpedia.com/get/Programming/Packers-Crypters-

Protectors/ExEinfo-PE.shtml. [Accessed 12 December 2020].

[22] M. Kerrisk, "gcc(1) - Linux manual page," Free Software Foundationq, 21 December 2020.

[Online]. Available: https://man7.org/linux/man-pages/man1/gcc.1.html. [Accessed 16

February 2021].

[23] "Ghidra," National Security Agency, [Online]. Available: https://ghidra-sre.org/. [Accessed 12

January 2021].

[24] Git, "Git," [Online]. Available: https://git-scm.com/. [Accessed 27 January 2021].

[25] T. Hungenberg and M. Eckert, "INetSim: Internet Services Simulation Suite - Project

Homepage," 19 May 2020. [Online]. Available: https://www.inetsim.org/. [Accessed 05

October 2021].

[26] puux, "GitHub - puux/iptables: iptables WEB gui," 05 November 2018. [Online]. Available:

https://github.com/puux/iptables. [Accessed 22 December 2020].

[27] M. Kerrisk, "make(1) - Linux manual page," 28 February 2016. [Online]. Available:

https://man7.org/linux/man-pages/man1/make.1.html. [Accessed 25 February 2021].

[28] M. Kerrisk, "md5sum(1) - Linux manual page," March 2020. [Online]. Available:

https://man7.org/linux/man-pages/man1/md5sum.1.html. [Accessed 07 January 2021].

[29] NethServer, "NethServer - operating system for the Linux enthusias," [Online]. Available:

https://www.nethserver.org/. [Accessed 22 January 2021].

[30] T. Faller, "GitHub - pwndbg/pwndbg: Exploit Development and Reverse Engineering with

GDB Made Easy," 26 February 2021. [Online]. Available:

https://github.com/pwndbg/pwndbg. [Accessed 02 March 2021].

[31] Python Software Foundation, "Welcome to Python.org," Python Software Foundation,

[Online]. Available: https://www.python.org/. [Accessed 22 February 2021].

[32] M. Kerrisk, "readelf(1) - Linux manual page," 19 September 2020. [Online]. Available:

https://man7.org/linux/man-pages/man1/readelf.1.html. [Accessed 14 January 2021].

[33] L. Zeltser, "Get the Virtual Appliance - REMnux Documentation," 15 February 2021. [Online].

Available: https://docs.remnux.org/install-distro/get-virtual-appliance. [Accessed 20 February

2021].

[34] "Scintilla and SciTE," 01 December 2020. [Online]. Available:

https://www.scintilla.org/SciTE.html. [Accessed 03 January 2021].

[35] S. Lee, "GitHub - push0ebp/sig-database: IDA FLIRT Signature Database," 02 June 2020.

[Online]. Available: https://github.com/push0ebp/sig-database. [Accessed 02 January 2021].

[36] J. Kornblum and T. OI, "ssdeep - Fuzzy hashing program," 11 April 2018. [Online]. Available:

https://ssdeep-project.github.io/ssdeep/index.html. [Accessed 17 October 2020].

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 117

[37] M. Kerrisk, "stat(2) - Linux manual page," 13 August 2020. [Online]. Available:

https://man7.org/linux/man-pages/man2/lstat.2.html. [Accessed 02 February 2021].

[38] R. O'Neill, Learning Linux Binary Analysis, Birmingham: Packt Publishing, 2016.

[39] M. Kerrisk, "tar(1) - Linux manual page," 13 July 2020. [Online]. Available:

https://man7.org/linux/man-pages/man1/tar.1.html. [Accessed 09 January 2021].

[40] Canonical Ltd., "Download Ubuntu Desktop | Download | Ubuntu," 2021. [Online]. Available:

https://ubuntu.com/download/desktop. [Accessed 02 February 2021].

[41] M. F. Oberhumer, L. Molnár and J. F. Reiser, "UPX: the Ultimate Packer for eXecutables -

Homepage," 23 January 2020. [Online]. Available: https://upx.github.io/. [Accessed 19

October 2020].

[42] Oracle, "Oracle VM VirtualBox," Oracle, [Online]. Available: https://www.virtualbox.org/.

[Accessed 17 September 2020].

[43] The WireShark Foundation, "Wireshark · Go Deep.," [Online]. Available:

https://www.wireshark.org. [Accessed 10 December 2020].

[44] VirusTotal, VirusTotal, 2021. [Online]. Available: https://github.com/VirusTotal/yara.

[Accessed 02 January 2021].

[45] j0sm1, jovimon, mmorenog and J. Martin, "GitHub - Yara-Rules/rules: Repository of yara

rules," Yara Rules Project, 22 September 2020. [Online]. Available: https://github.com/Yara-

Rules/rules. [Accessed 17 December 2020].

[46] I. Pavlov, "7-Zip," 21 January 2019. [Online]. Available: https://www.7-zip.org/. [Accessed 24

January 2021].

[47] ENISA, "Building artifact handling and analysis environment," February 2014. [Online].

Available: https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-

training-material/documents/building-artifact-handling-and-analysis-environment-handbook.

[Accessed 12 September 2020].

[48] L. Rendek, "How to switch back networking to /etc/network/interfaces on Ubuntu 20.04 Focal

Fossa Linux," LinuxConfig, 26 November 2020. [Online]. Available:

https://linuxconfig.org/how-to-switch-back-networking-to-etc-network-interfaces-on-ubuntu-

20-04-focal-fossa-linux. [Accessed 01 December 2020].

[49] PortSwigger, "Professional / Community 2021.2.1 | Releases," PortSwigger, 16 February

2021. [Online]. Available: https://portswigger.net/burp/releases/community/latest. [Accessed

20 February 2021].

[50] ENISA, "Technical — ENISA," 04 December 2014. [Online]. Available:

(https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-

material/technical-operational#building. [Accessed 20 November 2020].

[51] x-yuri, "Reset iptables · GitHub," 14 August 2020. [Online]. Available:

https://gist.github.com/x-yuri/da5de61959ae118900b685fed78feff1. [Accessed 01 Decemver

2020].

[52] PortSwigger, "Installing Burp's CA certificate in Firefox - PortSwigger," [Online]. Available:

https://portswigger.net/burp/documentation/desktop/getting-started/proxy-

setup/certificate/firefox. [Accessed 08 February 2021].

[53] R. Villarreal, "Adding Burp Suite CA Certificate to Kali Linux Certificate Store,"

bestestredteam, 25 May 2019. [Online]. Available:

https://bestestredteam.com/2019/05/25/adding-burp-suite-ca-certificate-to-kali-linux-ca-

store/. [Accessed 08 February 2021].

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 118

[54] A. Russell, "PEM, DER, CRT, and CER: X.509 Encodings and Conversions - SSL.com," 07

July 2020. [Online]. Available: https://www.ssl.com/guide/pem-der-crt-and-cer-x-509-

encodings-and-conversions/. [Accessed 08 February 2021].

[55] horsicq, "Releases DIE-engine," GitHub, 11 January 2021. [Online]. Available:

https://github.com/horsicq/DIE-engine/releases. [Accessed 09 February 2021].

[56] Andreas Pogiatzis, Infosec Writeups, "Pwndbg + GEF + Peda — One for all, and all for one,"

medium, 24 July 2019. [Online]. Available: https://medium.com/bugbountywriteup/pwndbg-

gef-peda-one-for-all-and-all-for-one-714d71bf36b8. [Accessed 09 February 2021].

[57] A. Pogiatzis, "gdb-peda-pwndbg-gef: A script to automatically install Peda+pwndbg+GEF

plugins for gdb," GitHub, [Online]. Available: https://github.com/apogiatzis/gdb-peda-

pwndbg-gef. [Accessed 09 February 2021].

[58] N. Murilo and K. Steding-Jessen, "chkrootkit -- locally checks for signs of a rootkit," 30

October 2014. [Online]. Available: http://www.chkrootkit.org/download/. [Accessed 05

January 2021].

[59] abuse.ch, "MalwareBazaar | Browse malware samples," abuse.ch, 14 December 2020.

[Online]. Available:

https://bazaar.abuse.ch/browse.php?search=sha256%3Af005c2a40cdb4e020c3542eb51aef

5bac0c87b4090545c741e1705fcbc8ca120. [Accessed 15 February 2021].

[60] The Regents of the University of California, "sys/unistd.h Source,"

superglobalmegacorp.com, 04 January 1991. [Online]. Available:

https://unix.superglobalmegacorp.com/NetBSD-0.8/newsrc/sys/unistd.h.html. [Accessed

2021 January 04].

[61] Free Software Foundation Inc, "Testing File Access (The GNU C Library," gnu.org, [Online].

Available: https://www.gnu.org/software/libc/manual/html_node/Testing-File-Access.html.

[Accessed 04 January 2021].

[62] IBM, "fopen, fopen64, freopen, freopen64, fopen_s or fdopen Subroutine," [Online].

Available:

https://www.ibm.com/support/knowledgecenter/es/ssw_aix_71/f_bostechref/fopen.html?view

=embed&origURL=ssw_aix_71/com.ibm.aix.basetrf1/fopen.htm. [Accessed 04 January

2021].

[63] linux.die.net, "pam_unix(8) - Linux man page," [Online]. Available:

https://linux.die.net/man/8/pam_unix. [Accessed 04 January 2021].

[64] M. Kerrisk, "utime(2) - Linux manual page," 21 December 2020. [Online]. Available:

https://man7.org/linux/man-pages/man2/utime.2.html. [Accessed 02 February 2021].

[65] FEDORA (TM), "5.5. SELinux Modes," [Online]. Available: https://docs.fedoraproject.org/en-

US/Fedora/12/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-

Working_with_SELinux-SELinux_Modes.html. [Accessed 01 February 2021].

[66] redhat, "43.2. Introduction to SELinux," [Online]. Available: https://web.mit.edu/rhel-

doc/5/RHEL-5-manual/Deployment_Guide-en-US/ch-selinux.html. [Accessed 02 February

2021].

[67] M. Kerrisk, "chattr(1) - Linux manual page," 21 December 2020. [Online]. Available:

https://www.man7.org/linux/man-pages/man1/chattr.1.html. [Accessed 01 January 2021].

[68] Computer Hope, "What is a File Descriptor?," 16 November 2019. [Online]. Available:

https://www.computerhope.com/jargon/f/file-descriptor.htm. [Accessed 02 February 2021].

[69] Tutorialspoint, "open() - Unix, Linux System Call - Tutorialspoint," [Online]. Available:

https://www.tutorialspoint.com/unix_system_calls/open.htm. [Accessed 02 February 2021].

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 119

[70] Z. Zaifeng and RootKiter, "DNS data mining case study - skidmap," 360 Netlab Blog, 20

November 2020. [Online]. Available: https://blog.netlab.360.com/security-with-dns-data_en/.

[Accessed 2021 February 08].

[71] VirusTotal, "VirusTotal," 01 January 2021. [Online]. Available:

https://www.virustotal.com/gui/file/cf41aa627ddf3a7af4550ebc6f80875fec1eb0e393dad7451

5c28fef8e9cb719/community. [Accessed 08 January 2021].

[72] ANY.RUN, "http://a.powerofwish.com/miner2 - Interactive analysis - ANY.RUN," 12 January

2021. [Online]. Available: https://app.any.run/tasks/bba12759-d6f8-4eb0-ade0-

7277a5e27c78/. [Accessed 10 February 2021].

[73] "Explorer Sugarchain," [Online]. Available:

https://1explorer.sugarchain.org/address/sugar1qddpk0wgqtgufenz6z9zh4cjgrehk8ezud42p

5q. [Accessed 28 January 2021].

[74] ANY.RUN, "http://a.powerofwish.com/cos7.tar.gz - Interactive analysis - ANY.RUN,"

ANY.RUN, 27 January 2021. [Online]. Available: https://app.any.run/tasks/dcb111ab-25df-

4de5-9a3f-8b8b6e0ef09e/. [Accessed 10 February 2021].

[75] ANY.RUN, "http://a.powerofwish.com/cos8.tar.gz - Interactive analysis - ANY.RUN,"

ANY.RUN, 27 January 2021. [Online]. Available: https://app.any.run/tasks/31f0c774-e9f3-

4d8f-8dbc-9408b728577c/. [Accessed 10 February 2021].

[76] Tutorialspoint, "crontab - Unix, Linux Command - Tutorialspoint," [Online]. Available:

https://www.tutorialspoint.com/unix_commands/crontab.htm. [Accessed 02 February 2021].

[77] VirusTotal, "VirusTotal," 13 February 2021. [Online]. Available:

https://www.virustotal.com/gui/file/56e0174d76d82a1c6c127044bb85f696ef4842a140798b3

98691af6fa51b48f0/detection. [Accessed 17 February 2021].

[78] VirusTotal, "VirusTotal," 17 February 2021. [Online]. Available:

https://www.virustotal.com/gui/file/597dcab700a24b6b36f271325b8ecd03f217fa931d9dc72a

2bc777ef3c9dcc92/detection. [Accessed 17 February 2021].

[79] VirusTotal, "VirusTotal," 07 June 2020. [Online]. Available:

https://www.virustotal.com/gui/file/f934baecf959178a7f0dc99f0316e957d6ef3c3a1d1814213

69b309d3cec82ab/detection. [Accessed 17 February 2021].

[80] H. J. Alarcon, "Backdoor.Linux.SKIDMAP.A - Threat Encyclopedia," Trend Micro, 12

September 2019. [Online]. Available: https://www.trendmicro.com/vinfo/us/threat-

encyclopedia/malware/Backdoor.Linux.SKIDMAP.A. [Accessed 08 February 2021].

[81] S. Knight, "Threat Analysis Unit (TAU) Threat Intelligence Notification: Skidmap | VMware

Carbon Black," vmware Carbon Black, 10 December 2019. [Online]. Available:

https://www.carbonblack.com/blog/threat-analysis-unit-tau-threat-intelligence-notification-

skidmap/. [Accessed 08 February 2021].

[82] I. Arghire, "Linux Crypto-Miner Uses Kernel-Mode Rootkits for Evasion |

SecurityWeek.Com," SecurityWeek, 17 September 2019. [Online]. Available:

https://www.securityweek.com/linux-crypto-miner-uses-kernel-mode-rootkits-

evasion?fbclid=IwAR3TYTOUT89R2SmDTg0Yrxq2um8XLTC9F-

NfFJozmTwtEvlvCzB90XFzm4s. [Accessed 08 February 2021].

[83] J. Sun, "GitHub - ycsunjane/rctl: remote linux control," 14 January 2015. [Online]. Available:

https://github.com/ycsunjane/rctl. [Accessed 01 March 2021].

[84] M. Kerrisk, "reboot(2) - Linux manual page," 21 December 2020. [Online]. Available:

https://man7.org/linux/man-pages/man2/reboot.2.html. [Accessed 01 March 2021].

Linux Malware Analysis – A Skidmap case study

Ioannis Dervisis 120

[85] osc_hu8sgifq, "centos7系统被入侵，挂载挖矿木马-pamdicks-(1)临时处理 - osc_hu8sgifq的

个人空间 - OSCHINA - 中文开源技术交流社区<," 19 October 2019. [Online]. Available:

https://my.oschina.net/u/4290481/blog/3374075. [Accessed 01 March 2021].

[86] M. Kerrisk, "ss(8) - Linux manual page," 21 December 2020. [Online]. Available:

https://man7.org/linux/man-pages/man8/ss.8.html. [Accessed 14 February 2021].

[87] die.net, "wtmp(5): login records - Linux man page," [Online]. Available:

https://linux.die.net/man/5/wtmp. [Accessed 01 March 2021].

[88] M. Kerrisk, "getdents(2) - Linux manual page," 21 December 2020. [Online]. Available:

https://man7.org/linux/man-pages/man2/getdents.2.html. [Accessed 27 February 2021].

[89] S. Grubb, "auditd(8): Audit daemon - Linux man page," [Online]. Available:

https://linux.die.net/man/8/auditd. [Accessed 01 March 2021].

[90] ABRT team, "abrtd(8): automated bug reporting tool's daemon - Linux man page," [Online].

Available: https://linux.die.net/man/8/abrtd. [Accessed 01 March 2021].

[91] T. Woerner, "Documentation | firewalld," [Online]. Available:

https://firewalld.org/documentation/. [Accessed 01 March 2021].

[92] D. Madrisan, "GitHub - madrisan/wtmpclean: A tool for dumping wtmp files and patching

wtmp records," 21 July 2013. [Online]. Available: https://github.com/madrisan/wtmpclean.

[Accessed 02 March 2021].

[93] N. S. Borenstein and N. Freed, "RFC 2046 - Multipurpose Internet Mail Extensions (MIME)

Part Two: Media Types," IETF, November 1996. [Online]. Available: view-

source:https://tools.ietf.org/html/rfc2046#section-4.5. [Accessed 10 February 2021].

[94] The CentOS Project, "Download," The CentOS Project, [Online]. Available:

https://centos.org/download/. [Accessed 11 January 2021].

[95] e Learning, "How to Extract 7zip files in CentOS 7," [Online]. Available:

https://elearning.wsldp.com/pcmagazine/extract-7zip-centos-7/. [Accessed 15 February

2021].

[96] DistroWatch, "DistroWatch.com: Put the fun back into computing. Use Linux, BSD.," 31 May

2001. [Online]. Available:

https://distrowatch.com/search.php?ostype=Linux&category=All&origin=All&basedon=CentO

S¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&n

etinstall=All&language=All&defaultinit=All&status=Active#simple. [Accessed 17 February

2021].

[97] Raj, "Install Gnome GUI on CentOS 7 / RHEL 7 - ITzGeek," IT'zGeek, 03 December 2018.

[Online]. Available: https://www.itzgeek.com/how-tos/linux/centos-how-tos/install-gnome-gui-

on-centos-7-rhel-7.html. [Accessed 20 January 2021].

[98] AbuseIPDB , "122.152.215.115 | Tencent Cloud Computing (Beijing) Co. Ltd. | AbuseIPDB,"

[Online]. Available: https://www.abuseipdb.com/check/122.152.215.115. [Accessed 02

March 2021].

[99] Sag47, "Regshot for Linux - LQWiki," 18 October 2010. [Online]. Available:

https://wiki.linuxquestions.org/wiki/Regshot_for_Linux?fbclid=IwAR3RJDtkO6a_W28tqhwBE

hd2cB7FwpSgZAXsCu2GLjIEij2vZA_KPBI5y8Q. [Accessed 19 February 2021].

