
 Service-oriented Environments for:

‘Here We Are’

Vehicle Accident Statement & Car

Damage Detection

ΜΕ1905

Nikitas Michail Kastis

Supervising Professor: Dimosthenis Kiriazis

PIRAEUS 2021

University of Piraeus

Department of Digital Systems

Postgraduate Program "Information Systems & Services"

Ηλεκτρονική Δήλωση

Ατυχήματος Και Ανίχνευση

Βλάβης Σε Υπηρεσιοστρεφή

Περιβάλλοντα

[2]

Acknowledgements

It has been two special years for me since I decided to change career path

and join the current MSc program at University of Piraeus, and there are many

people that I would like to mention and thank here.

First, I would like to thank my supervisor, Dr. Dimosthenis Kiriazis, for his

unconditional support, for his patience and constant feedback he provided

throughout my MSc studies.

I would also like to acknowledge my colleagues in the MSc course, especially

Dimitris Kakomitas. Collaborating, discussing, and even arguing with Dimitris not

only helped me get a deeper understanding of Computer Science, but also

feeling confident for my career change.

Additionally, I would like to thank my two friends, Afroditi Tzifa and Ioannis

Mourelatos for being so understanding and supportive when things got tough.

Finally, I would like to thank my family because they love me so much! I love

them too! Especially, my twin brother, Dr. Kastis Eleftherios, who was always

there, any time of the day, to support me!

Kastis Nikitas

[3]

Abstract

This paper aims to present the creation of an application using Microservices

technology and Machine Learning. ‘HereWeAre’ is a web application for

reporting vehicle accidents and consists of three microservices.

Each microservice is built in Python language using FastApi framework and

relational Postgres database. The first service is an Authentication System while

the second one concerns the vehicle accident statement. The third service

uses image analysis models, created with TensorFlow, to detect vehicle

damage in Python. User interface is build in React.

Next steps would include a React-Native user interface for mobile devices,

more services and the development of better models as more data will be

collected.

To run this application, you need: docker desktop, minikube, makefile and Linux

system or a Linux subsystem in windows. To get access to the source code,

please contact me at email: nikitaskastis15@gmail.com.

mailto:nikitaskastis15@gmail.com

[4]

Πίνακας περιεχομένων

Acknowledgements .. 2

Abstract .. 3

1.INTRODUCTION ... 6

1.1 APPLICATIONS LIKE “HERE WE ARE” .. 7

1.1.1 Web Forms... 7

1.1.2 Mobile App Assisto: Report Your Car Accident 7

1.1.3 Car Damage Recognition by Altoros ... 7

1.1.4 Claim Genius ... 8

1.2 WHAT DOES “HERE WE ARE” APP OFFER MORE? ... 8

2. SERVICE-ORIENTED ARCHITECTURE ... 9

2.1 CONTAINERS .. 9

2.1.1 Container History .. 9

2.2 DOCKER .. 10

2.2.1 Docker History ... 10

2.2.2 Docker Desktop .. 10

2.2.3 Docker Vocabulary .. 11

2.3 MICROSERVICES ... 11

2.3.1 Microservices History and Future ... 12

2.3.2 Benefits and Challenges of Microservices .. 12

2.4 ORCHESTRATION OF MICROSERVICES.. 13

2.5 KUBERNETES .. 13

2.5.1 Kubernetes History .. 14

2.5.2 Kubernetes Vocabulary ... 14

2.5.2 What Does Kubernetes? .. 15

3. OTHER TECHNOLOGIES IN ‘HERE WE ARE’ APP .. 16

3.1 BACK-END APPLICATION ... 16

3.1.1 Python .. 16

3.1.1.1 Pros and Cons of Python ... 17

3.1.1.2 Python History ... 17

3.1.2 FastAPI Framework ... 19

3.1.2.1 Pros and Cons of FastAPI framework ... 19

3.1.2.2 FastAPI History .. 20

3.1.3 Tensorflow Library ... 20

[5]

3.1.3.1 TensorFlow History .. 20

3.1.4 SQLAlchemy .. 20

3.2 DATABASE ... 21

3.2.1 PostgreSQL .. 21

3.3 FRONT-END ... 21

3.3.1 React ... 21

3.3.1.1 React History .. 22

3.3.1.2 React Now ... 22

3.3.2 Redux ... 23

4. MACHINE LEARNING ... 24

4.1 SUPERVISED LEARNING .. 24

4.2 UNSUPERVISED LEARNING ... 25

4.3 OVERFITTING ... 26

4.4 CONVOLUTIONAL NEURAL NETWORKS .. 26

4.5 CREATING MODELS IN TENSORFLOW.KERAS .. 27

4.6 THE FLOW TO GIVE A PREDICTION .. 29

4.7 CREATED MODELS – IT DOES NOT ALWAYS WORK 31

4.7.1 First model – Sequential.. 31

4.7.2 Second model – InceptionV3 .. 40

5. CREATING THE APPLICATION .. 47

5.1 CREATE APPLICATION FLOW ... 47

5.2 DEVELOPING EACH CONTAINER .. 49

5.3 AUTHENTICATION MICROSERVICES ... 51

5.4 ACCIDENT STATEMENT MICROSERVICE .. 55

5.5 VEHICLE DAMAGE DETECTION MICROSERVICE ... 60

5.6 FRONT END: REACT @ REDUX .. 62

5.6.1 How Redux works? .. 62

5.7 KUBERNETES .. 64

6. CONCLUSIONS ... 72

6.1 PROBLEMS CREATING THE APP ... 72

6.2 FUTURE WORKS ON ‘HERE WE ARE’ ... 72

7. REFERENCES ... 74

8. USER INTERFACE ... 79

[6]

1.INTRODUCTION

In the last 30 years, the rapid progress in information technology has led people

and organizations to demand newer, faster, more reliable, and more secure

applications. Especially, during the Covid-19 pandemic, as described in the

Organization for Economic Co-operation and Development Outlook 2020

(OECDO20), usage of internet services increased by 60% in the first semester of

2020 in some countries. More bureaucratic activities become digitized,

students attend school classes remotely, while co-workers learn to co-operate

via online rooms, achieving cost reduction for the companies. According to

OECDO20, the governments of these countries stressed the national need for

digital transformation, after decades of a slow-paced approach. Irreversible

changes prepare us for future opportunities where most services and human

interactions may depend on digital technologies more than ever before. [1]

The year 2021 has also been exceptional. Apart from the massive vaccine

research and production, Artificial Intelligence (AI) meets explosive growth,

shifting the relevant community from advanced language translate models to

NoCode platforms that achieve building without much coding knowledge.

Following the current trend, HereWeAre web application is created to digitize

vehicle accident statements, providing both drivers and insurance companies

access to drivers’ statements, photos from the accident, a car damage

detection AI system, etc.

Googling “online accident statement”, the first results show instructions on how

to complete the paper forms and/or give examples of completed forms over

the last decades. Most insurance companies offer e-mail services for vehicle

accident statements. Our objective is to create a new application that is easy

to use, safe, fast, and also includes sketch and photos in the accident

statement.

[7]

1.1 APPLICATIONS LIKE “HERE WE ARE”

1.1.1 Web Forms

There are insurance company sites like Asfalish.gr that provide the user with the

ability to complete a form about a vehicle accident, to add/remove other

drivers, and to send the form, without editing, saving, history, files or sketch

options.

1.1.2 Mobile App Assisto: Report Your Car Accident

User can find information in the page www.assis.to where they can add any

accident between one or two vehicles. This app has a very nice user interface

(UI) with animations, since the user can keep their personal data, their vehicle

accident statement history and add photos in a vehicle accident or even a

sketch. Moreover, this app uses gps services.

It is available in 42 countries, and collaborates with many insurance

companies, and other stakeholders in repairing vehicle damage field, like

Carglass-Belgium. It has more than 50,000 subscribers, who have rewarded with

a 3.3/5 grade (based on 558 users).

A major weakness of the app is that the user cannot make a statement for an

accident with more than 2 vehicles.

1.1.3 Car Damage Recognition by Altoros

Altoros is an IT consultant company that provides services to more than 2000

organizations. Among the services included in their site, there is Car Damage

Recognition. This system uses ML algorithms with an API that utilizes computer

vision, as it is described in their webpage. The model follows these steps: [2]

✓ Identifying the car:

✓ Car parts localization/segmentation

✓ Check in photo quality

✓ Photo stream processing

✓ Understanding the damage:

✓ Car part damage level estimation

✓ AI-generated estimated cost

✓ Repair or Replace decision

✓ Overall car damage estimation

Commercially, it is addressed to the insurance company, and not for public

usage.

http://www.assis.to/

[8]

1.1.4 Claim Genius

Claim genius is a mobile app that uses AI technology over image analysis to

predict the repair estimation, suggesting the repair or the replacement of the

damaged part of the vehicle. Commercially, it is addressed to the carriers, and

again not to the public.

1.2 WHAT DOES “HERE WE ARE” APP OFFER MORE?

This new web application combines the services of all the above apps, having

a vehicle accident statement system and a vehicle damage detection system;

it is free-source for users and aims to develop partnerships with all the insurance

companies and other industries relative to vehicles.

User can declare a car accident for more than 2 cars, draw a sketch over the

accident, add photos, add the detected damage to the accident statement,

and keep track of their vehicle accident statements. If the other drivers’

companies are partners with the app, this enables drivers to respond to the car

accident, so all insurance companies can have all data in the application.

Additionally, using filtering that is added in the accident section, they can find

an accident by address, city, date or last name of the driver who made the

statement.

[9]

2. SERVICE-ORIENTED ARCHITECTURE

The architectural style of service-oriented architecture encourages the use of

services with loose coupling. In the field of software design, application

components give services to other components through a network using a

communication protocol.

Microservices are a modern interpretation of service-oriented architectures

used in building distributed software systems.

2.1 CONTAINERS

A container is an executable unit of software, that includes the code along

with all its dependencies, enabling the app to run fast and be reliable in every

computable environment, from a desktop to the cloud. [3]

The advantages of using containers in apps are:

✓ Containerized apps can be deployed, scaled or patched faster

✓ DevOps know that their containerized apps will run smoothly, regardless

the platform where these apps are deployed.

✓ Container technology needs fewer physical resources than VM

environments as it does not have an operation system in it.

✓ Agile business is better supported with container technology. [4]

2.1.1 Container History

Container technology came to life in 1979, when chroot was in development.

Chroot command isolated processes into their own separated filesystems,

facilitating testing without affecting global system environment. [5]

In 2000, Chroot was followed by jail command including additional features

that provided users the ability to configure software installations, assign IP

addresses, and modify each jail, although included apps did not have much

of functionality. In 2004, Solaris containers appeared, which used Solaris Zones

to create full app environments.

In 2006, engineers in Google designed process containers that isolated and

limited the sources that a process used. In 2008, these containers were merged

to the Linux Kernel 2.6.24, leading to the Linux Containers (LXC), as they are

known today. LXC provide virtualization at OS by permitting multiple

segregated Linux environments to run on a shared Linux kernel. [6]

In 2013, Google open-sourced container stack with the LMCTFY project, that

ended two years later, as Google offered its core concepts to the project

libcontainer, which was added to Docker 0.9. [7]

[10]

2.2 DOCKER

Docker is a container technology. It’s a platform system using OS-level

virtualization for creating and managing containers. It enables user to isolate

the apps they are working on from infrastructure and to eliminate time

between coding and executing it in production.

2.2.1 Docker History

In 2008, 3 friends, Solomon Hykes, Sebastien Pahl and Kamel Founadi, created

the company DotCloud. Their goal was to create technologies based on

containers that everyone could use. 5 years later, DotCloud changed to

Docker. [8]

Docker was released in March 2013, using LXC as its default environment. Later,

libcontainer replaced LXC. Except for the above-mentioned Google

contribution, other main contributors are: Docker team, Huawei, IBM, Red Hat,

Cisco and Microsoft. [9]

In November 2019, cloud-computing Mirantis acquired Docker enterprise,

including Docker Engine, with the vision to accelerate Kubernetes-as-a-

Service.

2.2.2 Docker Desktop

Docker desktop is an open-source, downstream product that contains Docker

Engine. Instead of creating a full Linux Virtual Machine, Docker Desktop is as

optimized and light-weighted, achieving a much better performance.

Docker desktop supports Windows Sub-system for Linux 2 based engine, which

brings an important change in its architecture; it permits the user to leverage

Windows and Linux containers in one machine, without emulator. In addition,

its container tasks run faster and Docker desktop utilizes only the required

recourses. [10]

[11]

1. Docker - Usage of WSL 2 based engine

2.2.3 Docker Vocabulary

Image A package including all dependencies and info needed to

have a container created and running. Once an image is

created, it’s immutable, until it’s removed.

Container Running instance of docker image.

Volume Preferred tool for data persistence. A volume can last more

than a container, keeping data every time a container stops or

restarts.

Dockerfile A file that includes building instructions for a docker image. It

starts stating the base image in the top line. Then it guides the

user about requirement installments and demonstrates how to

copy the files to the working environment.

Build An action that builds a container image following Dockerfile

information. [11]

Compose A tool used to define and to run multi-container apps (Docker-

compose.yaml).

2.3 MICROSERVICES

Developing an app in microservices architecture is based in the logic of

creating small and separated services that can work together via network calls.

As separated and autonomous, a microservice needs to have the ability to

change without affecting the rest microservices of an app. [12]

[12]

2.3.1 Microservices History and Future

In 2005, Dr. Peter Rodgers utilized the term “Micro Web Services” on a cloud

computing presentation, promoting the idea of well-organized software

components-services that apply the architectural fundamentals of REST and

Web services along with Unix-like pipeline scheduling. Emphasizing in the

simplicity and flexibility of this service-oriented architecture, he originated a

functional model that led to microservices. [13]

According to Juval Löwy in 2007, each class is a service in building systems,

instructing Windows Communication Foundation to acquire the technology to

support this particular use of services. [14]

In March 2012, James Lewis presents a case study “Micro Services – Java, the

Unix Way” at 33rd Degree in Kraków. Former director for the Cloud Systems of

Netflix, Adrian Cockcroft characterized this approach as “fine-grained SOA”.

 [15]

In 2018, the value of Global Cloud Microservices Market was $649.04 million,

while projections set the value at $3,054.23 Million, with Compound Annual

Growth Rate at 21.37% during this period. [16]

2.3.2 Benefits and Challenges of Microservices

An example of the microservices architecture is described in image 2:

2. Microservices architecture

Client may send its calls to an Api Getaway, which will further send these calls

to the appropriate services. Each service may use its own database.

Orchestration will be described in the next chapter.

Advantages:

✓ Agility: The independence of each microservice makes updates much

easier. Either bug fixing or new add-ons in a service does not need the

redeployment of the entire app, only of the specific service

[13]

✓ Scalability: Using an orchestrator, each microservice can request more

resources, without creating further issues to the app

✓ Preventing dependency problems: Adding new features in

microservices is easier, because developers will not need to check or

rewrite code in the app, due to the autonomy of each service

✓ Usage of different technologies: Each service can be written in the

language that fits best and make use of the appropriate database,

relational or no-relational. This also helps to data isolation

✓ Fall down isolation: When a microservice confronts a problem and

becomes unavailable, the entire app goes on

✓ Makes developer happier: Creating smaller teams that work on smaller

services than a whole app is a key for better communication and higher

productivity.

Challenges:

✓ Handling the architecture may be complex

✓ Too many technologies are difficult to handle

✓ Bad architecture that depends on the communication between the

services can cause latency

✓ Updating services that are vital to other services in the app should not

break them. [17]

2.4 ORCHESTRATION OF MICROSERVICES

To understand “orchestration”, let us think an orchestra of musicians. Each

musician has a particular role, and the whole group needs timing,

coordination, arrangements, etc. to generate a beautiful result. That’s what

microservices need too, and orchestration tools are the solution to achieve

that.

Following the sharp rise of container adoption, container orchestration

technology is expanding rapidly and massively. Orchestration services allow

developer teams to control, schedule, track and operationalize containers at

scale in a more efficient way.

Benefits of using orchestration to app architecture:

✓ Enables communication between containers

✓ Shows developer the right time to run new containers

✓ Ensures high availability across your infrastructure. [18]

2.5 KUBERNETES

Kubernetes or K8s, is described in “Kubernetes.io” as “an open-source system

that is used to automate deployment, scaling, and management of

containerized apps”. [19] William Henry, cloud strategist in Red Hat, writes: “In

[14]

other words, you can cluster together groups of hosts running Linux containers,

and Kubernetes helps you easily and efficiently manage those clusters. The

power of the open-source cloud-native comes only in part from individual

projects such as Kubernetes. It derives, perhaps even more, from the breadth

of complementary projects that come together to create a true cloud-native

platform” [20]

2.5.1 Kubernetes History

Kubernetes has its etymological root in the Greek word “κυβερνήτης”-

“helmsman”. Brendan Burns, Craig McLuckie and Joe Beda founded

Kubernetes and soon enough, other Google engineers joined. It was first

announced in mid-2014 by Google and hit version 1.0 on July 21, 2015. The

same day, Google donated the whole project to the Cloud Native Computing

Foundation, run by the Linux Foundation. [21]

Over the last six years, Kubernetes is synonymous with the cloud-native

development. Microsoft Azure and Amazon AWS initially offered different

solutions to community but finally became supporters of K8s. The competition

among cloud providers comes to who will run containerized apps with

Kubernetes more efficiently. [22]

2.5.2 Kubernetes Vocabulary

Node Nodes are ‘worker’ machines – physical or virtual – on clusters

that include all that is needed to run app containers, plus

container runtime and more services.

Cluster Cluster includes a group of nodes that run containers.

Pods The smallest object in the Kubernetes ecosystem that

represents a bunch of one or more containers running together

in a cluster.

Kubernetes

API

As Kubernetes official site describes Kubernetes API as “the

application that serves Kubernetes functionality through a

RESTful interface and stores the state of the cluster”. It is the key

of the system that follows developer orders and makes them

reality.

Kubernetes

Control

Panel

As Kubernetes official site describes “Kubernetes Control Panel

maintains a record of all of the Kubernetes Objects in the

system and runs continuous control loops to manage those

objects’ state.” Essentially, it checks if all behave properly. Its

place is between Kubernetes and a cluster.

Master In every cluster there is a master node and some “worker”

nodes as well. Master node includes kube-apiserver, kube-

controller-manager and kube-scheduler processes for state

management of the cluster.

[15]

Kubectl Command line interface for managing operations on each

Kubernetes cluster. It follows a standard syntax for running

commands: kubectl [command] [TYPE] [NAME] [flags]

Minikube Minikube is a tool to run Kubernetes on a local machine that is

used to simplify learning and developing for Kubernetes. [23]

2.5.2 What Does Kubernetes?

It is hard to maintain manually deployment of containers. There are problems

like:

✓ a container crashes and goes down, then it needs to be replaced,

otherwise the application container will be unreachable.

✓ a containerized microservice needs more or less instances in relation to

traffic spikes or lower traffic hours.

✓ traffic is not distributed equally among multiple container images.

And here comes Kubernetes…

Using Kubernetes, developer can define in a Kubernetes configuration file the

desired architecture, which containers to be deployed, the number of running

instances, if it should be scaled up, if containers should be replaced, etc., and

share that configuration file to any cloud provider and then create the

resources and the deployment specified in the file.

Here is an example of configuration file:

apiVersion: v1

kind: Service

metadata:

 name: hereweare-deployment-service

 labels:

 app: hereweare

spec:

 type: LoadBalancer

 ports:

 - port: 80

 selector:

 app: hereweare

That is the general idea of Kubernetes: a standardized way to describe the way

to deploy containerized application on a multi machine set up. [24]

[16]

3. OTHER TECHNOLOGIES IN ‘HERE WE ARE’ APP

3.1 BACK-END APPLICATION

To create each microservice in the back-end we used Python language, in

FastAPI framework, while TensorFlow library was used for the creation of the

image-based prediction models.

3.1.1 Python

Python is an open-source programming language that is used in web

development projects, data management, artificial intelligence, machine

learning algorithms, video games, operating systems. It supports procedural,

functional and object-oriented programming, among many programming

paradigms. Google, Netflix, Facebook, Instagram, Amazon, Quora, slack, intel,

Nasa, Dropbox, e-bay, Spotify, Uber are among the companies that use Python

either for recommendations to the clients or for structural programs. [25]

Based on a Kaggle survey that took place in October 2019 over 19717 data

scientists, Python is by far the most popular language. [25]

3. Kaggle survey 2019 in data scientists

In another survey, held by Stack Overflow, that took place among 83052

software developers worldwide from May 25, 2021 to June 15, 2021, Python

came third after JavaScript and HTML/CSS. [26]

[17]

4. Kaggle survey 2021 in developers

3.1.1.1 Pros and Cons of Python

Pros:

✓ As an interpreted language, Python uses an interpreter that executes

code line-by-line and not the entire code. This makes Python easier to

debug.

✓ One apparent reason of popularity of Python is the number of available

libraries. Machine learning, game development, web development for

Python programmers does not start from scratch, since over 137,000

libraries provide already written functions for them.

✓ Permits asynchronous coding in web development.

✓ Easily readable with a simple syntax utilizing English words.

✓ Open-source language, updated frequently from a wide community

with more than 10,000 developers. [27]

Cons:

✓ Slower than compiled languages, like C or C++.

✓ Python faces compatibility issues with mobile operating systems.

✓ Python consumes more memory, because it is flexible with data-types.

✓ Python has a quite underdeveloped database access layer

✓ Python programmers noted that Python gives errors that appear only at

runtime.

3.1.1.2 Python History

Guido van Rossum conceived Python in the late ‘80s and started its

implementation in the Netherlands in December 1989 as a next step to ABC

programming language. [28]

In February 1991, the labeled version 0.9.0 was published by Van Rossum,

presenting, already, classes with inheritance, functions, core datatypes (dict,

list, str, etc.) and exception handling.

[18]

In January 1994, Python 1.0 was released, and Van Rossum stated “Python

acquired lambda, reduce(), filter() and map(), courtesy of a Lisp hacker who

missed them and submitted working patches”.

In October 2000, Python 2.0 appeared, introducing list comprehensions and

garbage collector while newer versions of Python 2 supported nested scoped,

type unification, with statement, etc.

In December 2008, Python 3.0 was released and it was the first language to

break backward compatibility. Version 3.0 had fundamental changes, such as:

✓ Print, from statement, became a built-in function.

✓ Raw-input became input and returns string.

✓ Support of function annotations.

✓ Types str/Unicode were unified, bytes and bytearray were introduced.

 [29]

5. Image Source: stackoverflow.blog 1

Due to the growth of data analytics and machine learning during the 2010s,

python went to become one of major programming languages reaching levels

of java and JavaScript.

[19]

On July 12, 2018, Python world was shocked hearing that Van Rossum decided

to remove himself totally from decision making of Python future. [30]

3.1.2 FastAPI Framework

FastAPI is a high-performance web framework for the purpose of building APIs

using Python 3.6+ and standard Python type hints. FastAPI is used mostly in

authentication projects and forms for web apps, deploying AI models,

company management. Companies Uber and Netflix are among the FastAPI

users. [31] [32]

Having a fully functional API with Uvicorn server already installed is simple as:

✓ Copying in main.py file the code below:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def root():

 return {"message": "Hello World"}

✓ running unicorn main:app –reload.

3.1.2.1 Pros and Cons of FastAPI framework

Pros:

✓ Fast like Node.js and GO, due to Pydantic and Starlette. Pydantic offers

settings management and data validation, providing user friendly errors.

Starlette is a framework/toolkit – very lightweight, offering asyncio

services.

✓ Development speed is extreme.

✓ Lower possibility of user errors or bugs and less time debugging.

✓ Not complicated, easy to learn, straightforward.

✓ Short, minimizing code duplication.

✓ Based on the open standards of APIs, OpenAPI and JSON Schema.

Cons:

✓ There are times that developers need to write custom validator,

because using Pydantic validation is not always intuitive.

✓ As a new framework, fastAPI has a smaller community, comparing the

other frameworks. [33]

[20]

3.1.2.2 FastAPI History

FastAPI was initially released on December 8, 2018. It was created by Sebastián

Ramírez, because he was not satisfied with the existing web frameworks like

Flask. Two and a half years later, Stack Overflow Developer survey named

FastAPI as the third most loved web framework. [34]

3.1.3 TensorFlow Library

TensorFlow is an open-source library that provides workflows to train and build

models. TensorFlow can be used to generate large-scale neural networks.

TensorFlow includes tools for prediction, discovering, classification, perception,

etc. Some cases that developers use TensorFlow are voice recognition, text

base applications (like fraud detection in Finance), image recognition, video

detection, etc. [35]

3.1.3.1 TensorFlow History

Google Brain team started working on a closed-source machine learning

system, which later became TensorFlow, for internal use in Google. Its core was

written in a combination of highly optimized C++, Python and CUDA, while the

first well-supported language was Python. [36]

It was open sourced by Google in September 2015, while version 1.0.0 reached

on February 11, 2017. In December of the same year Kubeflow was introduced,

a project that permits TensorFlow to be deployed in Kubernetes. In March 2018,

TensorFlow 1.0 was announced by Google from JavaScript. In August 2018,

keras was integrated within the TensorFlow v1.10.0 package for the first time.[37]

The release of TensorFlow 2.0 took place in September 2019. Nowadays,

TensorFlow provides stable Python and C APIs, while without API backwards

compatibility guarantee, is available for: C++, Java, Go, JavaScript, Swift. There

are third-party packages for C#, Haskell, MATLAB, R, Julia, Scala, Crystal,

OCaml and Rust. [38]

3.1.4 SQLAlchemy

SQLAlchemy library is used to facilitate communication between Python

programming and databases. This library is mostly used as an Object Relational

Mapper (ORM) tool that matches classes written in Python to tables on

relational databases and transforms functional calls to SQL statements. [39]

[21]

3.2 DATABASE

Relational databases were selected, due to application will have to handle

well-structured data, with clear relationships among them, that will demand

complex queries. Relational databases follow ACID properties from transaction

operations. ACID stands for:

✓ Atomicity: ensures the validation of all the data. If transaction fails, no

updates take place at all.

✓ Consistency: guarantees that a processed data transaction does not

damage the structural integrity of the database.

✓ Isolation: all transactions are isolated from the other data transactions.

✓ Durability: completed transactions are permanent. [40]

3.2.1 PostgreSQL

PostgreSQL is an open-source relational database with many features: user-

defined types, table inheritance, sophisticated locking mechanism, foreign key

referential integrity, views, rules, subquery, nested transactions, multi-version

concurrency control, asynchronous replication, native microsoft windows

server version, tablespaces, and point-in-time recovery. It has been developing

for over two decades and is based on a proven good architecture which has

created a strong perception of its users around reliability, data integrity and

proper operation. [41]

3.3 FRONT-END

To create front-end, React library was selected. Redux library is used for

application state management.

3.3.1 React

React is a free, open-source JavaScript library that is used for building user

interfaces. React splits UI into independent, reusable pieces using components.

Components act like JavaScript functions, as they accept inputs (props in

React language) and return React elements. Components can be function or

class components and usually are written using JavaScript Syntax

Extension(JSX). Let us check an example of a function component:

const welcome = (props) => {

return(

<div>Welcome, {props.name}!

</div>)

} [42]

[22]

3.3.1.1 React History

Jordan Walke, Facebook software engineer, created React influenced by XHP,

an HTML component library for PHP. It was first introduced on Facebook News

Feed in 2011. Instagram -acquired already by Facebook- followed in 2012.

React became open-sourced in May 2013.

In 2015, the first version of React Native is released by Facebook and becomes

available for iOS and Android. React Fiber was announced in April 2017 and it

was replacing Stack, the React rendering algorithm till then.

React hooks were introduced as part of React 16.8 in February 2019, supporting

a new easier way of handling component logic and behavior. [43]

3.3.1.2 React Now

In a Stack Overflow 2021 Developer survey, 67,593 developers were asked

“Which web frameworks and libraries have you done extensive development

work in over the past year, and which do you want to work in over the next

year? “. React came first, surpassing jQuery. [44]

6. StackOverflow Survey 2021 in developers

In image 7, the download stats for React, Vue, Angular and Angular Core are

presented based on the official data provided by npm.inc, the company that

supports node package manager, the npm client and the npm registry.

[23]

7: Based on https://www.npmtrends.com/@angular/core-vs-angular-vs-react-vs-vue

3.3.2 Redux

Redux is a predictable state container for JS Apps and helps developers write

apps that behave consistently and centralize application’s state. React -Redux

library is a library that offers Redux designed to work with the React component

model, optimizing performance by re-rendering each component only when

there is data change in it. [45]

[24]

4. MACHINE LEARNING

Before entering the TensorFlow world, some machine learning fundamentals

should be described. Machine learning is a data analysis method that

automates analytical model building. It is based on algorithms that iteratively

learn from given data. [46] Today, it is used for a wide range of topics, like fraud

detection, customer segmentation, email spam filtering, pricing models, image

classification, etc. For the image classification problem, the (almost) only

possible machine learning approach is neural networks. Neural networks are

described as the method of creating models after biological neuron systems in

a mathematical way.

There are two different data science approaches of machine learning:

Supervised learning, like classification and regression, and unsupervised

learning.

Labeled data in supervised learning make the type of the output expected. In

unsupervised learning the type of result cannot be predicted. For example, a

model based on labeled data with images of dogs, cats and camels answers

if an image has a dog, a cat or a camel. In unsupervised learning, the model

may create groups of small or big animals.

4.1 SUPERVISED LEARNING

Supervised learning includes the algorithms that use labeled historical data to

get trained and based on that they predict the new data label. A neural

network gets data and the correct labels, and during the training and

validating process it compares its outputs with the correct labels to find errors,

and then modifies the created model accordingly. The whole process looks like

the one described in image 8

8. Process steps in supervised learning

As the image depicts, after acquiring and cleaning the data, data should be

split in two or three categories: training data, validating data and test data. For

the purposes of ‘HereWeAre’ images were split in two categories training and

validating.

In order to evaluate a model, the model answers can be either correct or

incorrect. Concentrating all the answers of the model and comparing with the

real answers to find a relation layer between them, metrics are needed.

[25]

In classification problems, widely used metrics are accuracy, recall, precision,

F1-score. To understand the metrics, we need a confusion matrix:

 What’s predicted?

 total Positive negative

What’s the truth positive True positive False negative

negative False positive True negative

Accuracy is the quotient of the number of correct predictions (true positive and

true negative) over the number of total predictions. It’s preferred in balanced

classes of data.

Recall is the fraction of true positive predictions among the sum of true positives

and false negatives. It demonstrates the ability of the model to find true positive

results.

Precision is the ratio between true positive predictions and total positive

predictions (true positive plus false positive). It depicts the ability of the model

of showing true positives that are actually true positives.

F1 score, given by the following formula, is a measure to check extreme

differences between precision and recall:

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

In regression problems, common evaluation metrics are mean absolute error,

mean squared error, root mean square error, etc. [47]

Creating supervised learning models needs skills and expertise for labeling

inputs and outputs. Furthermore, training them consumes time.

4.2 UNSUPERVISED LEARNING

Unsupervised learning, in contrast to supervised, does not make use of historical

labels, but only raw data. There are several methods that fall under the

umbrella of the unsupervised learning, like:

✓ Clustering: setting in groups/clusters unlabeled data based on similar

characteristics)

✓ Anomaly detection (finding the outliers of a dataset)

✓ Dimensional reduction (reducing features of a dataset, in order to

compress or better understand trends).

Creating unsupervised learning models without human intervention may result

in inaccurate outcomes. [48]

[26]

4.3 OVERFITTING

Overfitting happens when a model in training time fits too much on the training

data that includes the data noise and results in high errors on validating sets.

9. Overfitting ends up in high errors in validating sets

4.4 CONVOLUTIONAL NEURAL NETWORKS

Generally, neural networks consist of node layers: an input layer, one or more

hidden middle layers and an output layer. Each node has an associated

weight and bias. When the output of each node surpasses the bias, gets

activated and sends data to the next layer of the neural network.

Convolutional neural networks (CNN) are a tool that is used for computer and

classification vision tasks. The term “convolutional” stands for the mathematical

operation used in the network, called convolution – a specialized kind of linear

operation, performed in the hidden layers. [49]

The input in a CNN is a tensor with a shape: N inputs * input height * input width

*input channels(colors). Exiting from a convolutional layer, it becomes

abstracted to a feature/activation map. Each convolutional neuron processes

only in its sensory space sending data to the next layer. Convolution works in

reducing the number of weights a neuron will receive to a significantly smaller

number of learnable parameters, and hence reducing the computational

resources needed.

A CNN may also include pooling layers alongside the before-mentioned

convolutional layers. Pooling layers' responsibility is to combine the outputs of

same layer neuron clusters into one neuron in the next layer. Most common

pooling layers are average and max pooling. [50]

Layers have full connectivity when each node in one layer connects with all

the nodes of the next layer. This may cause overfitting, so trimming connectivity

methods are usually used.

[27]

The vectors of weights and bias of each node are called filters or kernels and

represent a particular feature that the model tries to detect during training and

to place in the input.

4.5 CREATING MODELS IN TENSORFLOW.KERAS

Explaining TensorFlow.Keras implementations used:

import tensorflow.keras.backend as K

Keras offers high-level building blocks for creating deep learning models.

Backend engine of Keras is a specially designed, well-optimized tensor control

library that handles low-level operations such as convolutions, tensor products,

and so on. Instead of choosing a single tensor library and having Keras

implementation bound to that library, more backend engines can be plugged

into Keras. [51]

from tensorflow.keras import regularizers

Regularizers are used for applying penalties on layer's kernel, bias or output

during optimization. These penalties are summed into the loss function, the

method that predicts the error of the neural network. Applying L1 and L2 is used

to reduce overfitting and large weights are a sign for that.

L1 regularization penalty is computed as: loss = l1 * reduce_sum(abs(x)), while

L2 regularization penalty is given by: loss = l2 * reduce_sum(square(x)). Default

values for l1 and l2 are 0.01 [52]

from tensorflow.keras.models import Model

Keras models define the structure of the layers. There are two available types:

Sequential

Model

Sequential model simplifies the layer-by-layer creation of

models in a sequential order. It should not be used when one

of the layers has more than 1 input or 1 output tensor.

Sequential example:
from keras.models import Sequential

from keras.layers import Dense

model=Sequential()

model.add(Dense(64,input_shape=8,)) mode.add(Dense(32))

Functional

API

Functional API is used for creating models with multiple inputs

and outputs.

Functional API example:
from keras.layers import Input, Dense

from keras.models import Model

input=Input(shape=(32,))

layer=Dense(32)(input)

[28]

model=Model(inputs=input,outputs=layer)

//To create model with multiple inputs and outputs:

model=Model(inputs=[input1,input2],outputs=[layer1,layer2,layer3])

Creating the model, these functions should be filled:

✓ compile, when optimizers, loss function, metrics, etc., are selected.

Optimizers are the algorithms or methods used to adjust the weights

and the learning rate of the model, aiming to reduce the losses. Low

learning rate demands more epochs in order to train the model, but it

is preferred cause high learning rate may not achieve to select best

weights. Loss depends on the type of the problem. If the problem is

multi-class classification, categorical_crossentropy should be selected,

if the problem is binary classification, then, binary_classification should

be selected, etc. Metric shows the metric refererences that will be

shown apart from loss.

✓ Fit, when training_data, validation_data, epochs, batches, callbacks,

etc., are selected. Epochs refer to the times the model passes (forward

and backward) the entire dataset. Batches are the number of images

the model is fed to be trained in each iteration.

Epochs = Batch Size * Iteration

from tensorflow.keras.layers import Dense, Dropout, Activation,

BatchNormalization, Conv2D, GlobalAveragePooling2D , MaxPool2D, Flatten

In layers we describe how the model is going to be created:

✓ Dense refers to a layer -each neuron is connected to each neuron- that

is added to the model. The first argument (units) is actually the neurons

of the layer.

✓ Dropout is used to turn off a percentage of neurons to each layer during

training. It is a way to avoid overfitting during training.

✓ Activation refers to the activation function that describes how the

output of one node emerged from the set of inputs of that node. This

function could be sigmoid, binary, etc. In models created, the

activation function used is α rectified linear unit, where if x ≤ 0, f(x) = 0,

else f(x) = x. Its plot is shown in image 10.

10. Plot of Relu activation function (in red)

[29]

✓ Conv2D refers to the numbers of filter values used for each image to

train the model and to the input of the images (width, height, number

of colors)

✓ Pooling choices takes as input the last convolutional layer parameters

and reduces them by either selecting the max value or the average

value of each window selected in the arguments.

✓ Flatten is the function that serializes a multidimensional tensor.

from tensorflow.keras.preprocessing.image import ImageDataGenerator

Imagedatagenerator is a tool to expand the length of the dataset by

modifying -zooming, rotating, blurring, etc. the images of the dataset.

from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger

Callbacks in Keras are functions that can be activated when the model has

the best metric or the less loss estimated at one epoch.

from tensorflow.keras.applications.inception_v3 import InceptionV3

Inception v3 is a CNN used in image analysis and object detection. It started

as a module for Googlenet. Inception-v3 is 159 layers deep and has size

92MB. [53] The third edition of Google's Inception CNN was originally introduced

during the ImageNet Recognition Challenge. ImageNet can be thought of as

a database of classified visual objects. It was trained using a dataset of 1,001

classes from more than 1 million classified images. [54]

Inception values for image dimensions are 299x299, if include_top argument is

“True”. Different image dimensions can be selected, if included_top is stated

“False”.

4.6 THE FLOW TO GIVE A PREDICTION

Preparing ‘HereWeAre’, one of the first ideas was the creation of a service that

a user would provide image of the damaged car as an input and get

information about that damage as an input.

To create models in TensorFlow, two image datasets were used. First dataset

created by Ting Neo. [55] Structure of data followed the rule that “each class

has its data in its own folder”. So, in the validation set, “damaged cars” was a

different folder from “car without damage”. Second dataset is found in

Peltarion site. [56] There all data were separated to training and validation and

classes were described in csv files.

[30]

To clear datasets: first dataset had some images removed and images from

the second dataset were added. The selected model should find in a where

the vehicle has damages to satisfactory percentages.

Two models were selected among the others:

First model follows 4 steps/sub-models, all steps are sequential models.

9. Steps of predicting car damage in model 1

In the first two steps, it is checked that the image depicts a damaged car, while

the rest examine if the damage is smaller or bigger and where the vehicle is

damaged.

First check includes 4600 images that are separated equally in two classes:

“car” and “notacar”. 80% of the images are used for training and 20% are used

for validation.

Second check includes 2300 images, which are also separated equally in two

classes: “damaged” and “whole”. Again, 80% of the images are used for

training and 20% are used for validation.

Third check includes 1334 images and includes 6 classes: bumper (13.9% of

images), door (22.9% of images), glass (9% of images), front light (9.2% images),

back light (8.6% images) and bigger damage (36.3% of images). Due to the

low number of images training – validation split is 85%-15%.

Fourth check includes 1510 images and includes 3 classes: front (42.78% of

images), rear (29.39% of images), side (27.83% of images). Due to the low

number of images training – validation split is 85%-15%.

Second model follows 2 steps/sub-models, both based in inception_v3

application.

First check includes 3450 images, that are separated equally in three classes:

“notacar”, “damaged” and “whole”. 80% of the images are used for training

and 20% are used for validation.

Second check includes 1905 images and includes 7 classes: front (24.34% of

images), rear (12.17% of images), side (12.43% of images), bumper (11.11% of

images), door (18.25% of images), glass (7.4% of images) and light (14.29%

images). 85% of the images are used for training and 15% are used for

validation.

A model that has size bigger than 200MB will be rejected.

[31]

4.7 CREATED MODELS

Creating each model, average dimensions of images should be found.

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

data_dir = "C:\\Users\\Nikitas\\Downloads\\carOrnot"

test_path = data_dir + "\\validation\\"

train_path = data_dir + "\\training\\"

dim1 = []

dim2 = []

for image_filename in os.listdir(train_path + 'notAcar\\'):

 img = imread(train_path + 'notAcar\\' + image_filename)

 if len(img.shape) == 3:

 d1, d2, colours = img.shape

 else:

 d1, d2 = img.shape

 dim1.append(d1)

 dim2.append(d2)

print(np.mean(dim1))

print(np.mean(dim2))

Now, average dimensions are available.

4.7.1 First model – Sequential

Sequential. model 1, created to answer if the image contains a car or not:

image_shape = (211, 262, 3)

image_gen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1,

 height_shift_range=0.1, rescale=1/255,

 shear_range=0.1, zoom_range=0.1,

 horizontal_flip=True, fill_mode='nearest')

model = Sequential()

model.add(Conv2D(filters=64, kernel_size=(3, 3), input_shape=image_shape,

activation='relu'))

model.add(MaxPool2D(pool_size=(2, 2)))

……………………………more layers added………………………………………….

model.add(Flatten())

model.add(Dense(64))

model.add(Activation('relu'))

model.add(Dropout(0.2))

……………………………more layers added………………………………………….

model.add(Dense(1, activation='sigmoid'))

sdg = optimizers.SGD(lr=0.0005, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='binary_crossentropy', optimizer=sdg, metrics=['accuracy'])

early_stop = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

batch_size = 16

train_image_gen = image_gen.flow_from_directory(train_path,

target_size=image_shape[:2], color_mode='rgb', batch_size=batch_size,

[32]

 class_mode='binary')

test_image_gen = image_gen.flow_from_directory(test_path,

target_size=image_shape[:2], color_mode='rgb', batch_size=batch_size,

 class_mode='binary', shuffle=False)

results = model.fit_generator(train_image_gen, epochs=100,

validation_data=test_image_gen, callbacks=[early_stop])

model.save('carOrnot11.h5')

✓ Average size of images in this model is 211*262 and the model is feed

with colored images. Hence, the image shape is (211,262,3).

✓ ImageDataGenerator is used to apply random transformations in each

image while the model is training. It shifts each given image horizontally

and vertically in a percentage of 10% of total width and height. It shears,

zooms-in and zooms-out by 10%, and may flip horizontally the image. To

cover the generated empty space during transformation, nearest pixels

will be copied and used.

✓ Sequential model is used to build a model as a simple stack of layers.

✓ Added conv2D layers use 64 filters with kernel size 3*3 and activation

function ‘relu’. Filter number is usually chosen to be a power of two. Due

to the small dataset and the binary problem (Car or Not), the selected

value of filters is 64. To determine the optimal number of layers, several

attempts with different numbers of layers were explored and the one

with the best results was selected. Kernel size is selected 3*3, which is a

common choice, used to move kernel by 3 rows or columns of pixels in

the image map. Relu activation is preferred because it does not

activate all the neurons at the same time. Negative input values do not

activate neuron.

✓ MaxPool2D layer 2*2 downsamples inputs’ spatial dimension by getting

the max value for each 2*2 input window.

✓ Flattening is used to transform the data into a 1-dimensional array for

inputting it to the next layer.

✓ Dense layers start with 64 neurons in the first layer, the next layer has 16

neurons and the last layer is described below. To determine the optimal

number of layers, several attempts with different numbers of layers were

explored and the one with the best results was selected. Activation

function is ‘relu’ again and dropout 0.2 meaning that a random 20% of

the input units will be set to 0. This is done to avoid overfitting.

✓ In the last dense layer, both sigmoid activation and 1 neuron are

selected to generate one value, like a regression task. If the value is

higher than 0.5 then the model predicts: “It’s a car”

✓ Stochastic Gradient Descent(SGD) Optimizer is the iterative method to

optimize the model. The selected learning rate is 0.0005, in order to train

slowly the model, making tiny updates to the weights of the neuron

network. Momentum is usually set to 0.9. The momentum term increases

for dimensions whose gradients point in the same directions and reduces

updates for dimensions whose gradients change directions. [57]

[33]

✓ Cross entropy is used during the model training to compare the

predicted probabilities of the model with the real classes in order to

decrease loss. Accuracy metric is added to be shown during epochs.

✓ Early stops are used when the model does not show smaller losses in

validation data for 5 consecutive epochs, restoring the best weights it

got during training.

✓ Models usually are fed with batch sizes of 32 images, but this model will

be fed with 16 images at each iteration, due to the small datasets,

aiming for better performance.

✓ Flow from directory identifies classes automatically. We have two

different folders, one for ‘cars’ and one for not ‘cars’, so the class mode

must be stated as ‘binary’.

✓ Shuffle in validation set is set False, to allow generator map filenames to

the batches that are yielded by the data generator.

✓ Fit generator gets train image generator and test image generator to

train the model for 100 epochs. This procedure will automatically stop if

val_loss does not get smaller in 5 consecutive epochs.

11. Results of model Sequential Model 1 in PyCharm

12.Plot of accuracy in training data & accuracy in validation data for each epoch in Model 1

[34]

Accuracy, precision, recall, f1-score = 88%, while 32 epochs took place. Epoch

28 generated the model with the higher accuracy for validation data. Epochs

stopped when val_loss value was lower.

Sequential. model 2, created to answer if the image contains a vehicle

damaged:

image_shape = (221, 319, 3)

image_gen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1,

 height_shift_range=0.1, rescale=1/255,

 shear_range=0.1, zoom_range=0.1,

 horizontal_flip=True, fill_mode='nearest')

model = Sequential()

model.add(Conv2D(filters=64, kernel_size=(3, 3), input_shape=image_shape,

activation='relu'))

model.add(MaxPool2D(pool_size=(2, 2)))

……………………………more layers added………………………………………….

model.add(Flatten())

model.add(Dense(64))

model.add(Activation('relu'))

model.add(Dropout(0.2))

……………………………more layers added………………………………………….

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

model.summary()

early_stop = EarlyStopping(monitor='val_loss', patience=10,

restore_best_weights=True)

batch_size = 16

train_image_gen = image_gen.flow_from_directory(train_path,

target_size=image_shape[:2], color_mode='rgb', batch_size=batch_size,

 class_mode='binary')

test_image_gen = image_gen.flow_from_directory(test_path,

target_size=image_shape[:2], color_mode='rgb', batch_size=batch_size,

 class_mode='binary', shuffle=False)

results = model.fit_generator(train_image_gen, epochs=250,

validation_data=test_image_gen, callbacks=[early_stop])

model.save('wholeordamaged23a.h5')

✓ Average size of images in this model is 221*319 and the model is feed

with colored images. Hence, the image shape is (221,319,3).

✓ Next steps are the same with the previous model as it is a binary

classification problem. In this model, the selected optimizer for this

model is Adam (Adaptive Moment Estimation). Adam is an algorithm for

first-order gradient-based optimization of stochastic objective functions,

based on adaptive estimates of lower-order moments. [58] Best

properties of the AdaGrad and PMSProp algorithms are combined in

Adam, generating an optimization algorithm that can handle sparse

gradients on noisy problems. Default earning rate is 0.001.

✓ Early stops are used when the model does not show smaller losses in

validation data for 10 consecutive epochs, restoring the best weights it

got during training.

[35]

✓ Flow from directory identifies classes automatically. We have two

different folders, one for ‘whole’ and one for ‘damaged’, so the class

mode must be stated as ‘binary’.

✓ Fit generator gets train image generator and test image generator to

train the model for 250 epochs. This procedure will automatically stop if

val_loss does not get smaller in 10 consecutive epochs.

13.Results of Sequential Model 2 in PyCharm

14.Plot of accuracy in training data & accuracy in validation data for each epoch in Model 2

Accuracy, precision, recall, f1-score = 89%, while 65 epochs took place. Epoch

55 generated the model with the higher accuracy for validation data. Epochs

stopped when val_loss value was lower.

[36]

Sequential. model 3, created to answer is the damage small and if yes where

is it? Unlike previous problems, model 3 meets a multi-class classification.

Additionally, the data structure is different. Data are not organized in different

folders based on their class, but they are placed in one folder, while a csv file

describes for every image its class. Data are separated 85% train – 15%

validation (validation is stated as test in the algorithm). In 80%-20% separation

case generated models with low metrics.

traindf = pd.read_csv('NewTrain.csv')

testdf = pd.read_csv('NewTest.csv')

traindf.id = traindf.id.astype(str)

testdf.id = testdf.id.astype(str)

traindf.id += ".jpeg"

testdf.id += ".jpeg"

datagen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1,

 height_shift_range=0.1, rescale=1/255,

 shear_range=0.1, zoom_range=0.1,

 horizontal_flip=True, fill_mode='nearest')

train_generator = datagen.flow_from_dataframe(

dataframe=traindf,

directory="C:\\Users\\Nikitas\\Downloads\\preprocessed\\image\\train",

x_col="id", y_col="label", subset="training", batch_size=8, shuffle=True,

class_mode="categorical", target_size=(224, 224))

test_datagen=ImageDataGenerator(rescale=1./255.)

test_generator = test_datagen.flow_from_dataframe(

dataframe=testdf,

directory="C:\\Users\\Nikitas\\Downloads\\preprocessed\\image\\test",

x_col="id", y_col="label", batch_size=8, shuffle=False,

class_mode="categorical", target_size=(224, 224))

image_shape = (224, 224, 3)

model = Sequential()

model.add(Conv2D(filters=64, kernel_size=(3, 3), input_shape=image_shape,

activation='relu'))

model.add(MaxPool2D(pool_size=(2, 2)))

……………………………more layers added………………………………………….

model.add(Flatten())

model.add(Dense(64))

model.add(Activation('relu'))

model.add(Dropout(0.2))

……………………………more layers added………………………………………….

model.add(Dense(6, activation='softmax'))

sdg = optimizers.SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=sdg, metrics=['accuracy'])

model.summary()

early_stop = EarlyStopping(monitor='val_loss', patience=15,

restore_best_weights=True)

train_image_gen.class_indices

results = model.fit_generator(train_generator, validation_data=test_generator,

epochs=150, callbacks=[early_stop])

model.save('newcheck14.h5')

[37]

✓ Using pandas dataframe, train and test generators are created through

the function flow_from_dataframe. Parameters are: the columns of the

dataframes that state the filename and the class of the image, the

directory of the images, the batch size, the class_mode, etc. Batch size

selected is 8, which is smaller than the two aforementioned models,

since this dataset responds better in this size. Class mode is categorical.

✓ Average size of images in this model is 224*224 and the model is feed

with colored images. Hence, the image shape is (221,224,3).

✓ Last dense layer has 6 neurons, the number of the different classes of

images, while its activation function is softmax. Softmax normalizes the

output of the network to a probability distribution over predicted output

classes.

✓ Fit generator gets train image generator and test image generator to

train the model for 150 epochs. This procedure will automatically stop if

val_loss does not get smaller in 10 consecutive epochs.

15.Classification Report for Sequential Model 3 in PyCharm

16.Confusion Matrix for Sequential model 3 in PyCharm

[38]

17.Plot of accuracy in training data & accuracy in validation data for each epoch in model3

Accuracy is 80% and while it’s a multiclassification problem, total precision,

recall and f1-score are quite high. The confusion matrix in image 16 depicts the

predictions of the model for each class. For example, 73 images of the class

‘unknown’(bigger damage) had 67 right predictions, while 2 images were

predicted as “door”, 1 image was predicted as “glass_shutter” and 2 images

were predicted as “head_lamp”. Epoch 72 had the higher accuracy for

validation data. Epochs stopped when val_loss value was lower.

Sequential. model 4, created to answer where is the big damage?:

image_shape = (193, 263, 3)

image_gen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1,

 height_shift_range=0.1, rescale=1/255,

 shear_range=0.1, zoom_range=0.1,

 horizontal_flip=True, fill_mode='nearest')

model = Sequential()

model.add(Conv2D(filters=64, kernel_size=(3, 3), input_shape=image_shape,

activation='relu'))

model.add(AveragePooling2D(pool_size=(2, 2)))

……………………………more layers added………………………………………….

model.add(Flatten())

model.add(Dense(64))

model.add(Activation('relu'))

model.add(Dropout(0.2))

……………………………more layers added………………………………………….

sdg = optimizers.SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True)

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer=sdg, metrics=['accuracy'])

[39]

model.summary()

early_stop = EarlyStopping(monitor='val_loss', patience=30,

restore_best_weights=True)

batch_size = 8

train_image_gen = image_gen.flow_from_directory(train_path,

target_size=image_shape[:2], color_mode='rgb', batch_size=batch_size,

 class_mode='categorical')

test_image_gen = image_gen.flow_from_directory(test_path,

target_size=image_shape[:2], color_mode='rgb', batch_size=batch_size,

 class_mode='categorical', shuffle=False)

train_image_gen.class_indices

results = model.fit_generator(train_image_gen, epochs=150,

validation_data=test_image_gen,

 callbacks=[early_stop])

model.save('carpart30c.h5')

✓ Average size of images in this model is 193*263 and the model is feed

with colored images. Hence, the image shape is (193,263,3).

✓ Next steps are the same with the previous models: selected optimizer is

SDG with learning rate 0.0001, decay acts like l2, to keep weights in lower

values. Batch size is 8 as it brings better results for this data set than bigger

sizes.

✓ Early stops are used when the model does not show smaller losses in

validation data for 30 consecutive epochs, restoring the best weights it

got during training.

✓ Model gets trained for 250 epochs. This procedure will automatically

stop if val_loss does not get smaller in 30 consecutive epochs.

18. Results of model "CarPart30c" in Pycharm

[40]

19.Plot of accuracy in training data & accuracy in validation data for each epoch in model4

Accuracy: 65%, precision:66%, recall:64% and f1-score:64%. Not high metrics.

Test Sequential Model

To check if the model predicts correctly, 70 images were used to test it. 4 of the

are images without a car, 1 image has a car without damage and all other

images have car damaged in several ways.

20. Test images

Unfortunately, the model did not find a car in 7 images and did not find

damages in 5. Generally, accuracy was 57%. Quite low. Model failed when the

image included people and when the image is a bit blur.

4.7.2 Second model – InceptionV3

Inception module is selected to generate the second model, since it

combines:

✓ high-performance on convolutional neutral networks,

[41]

✓ ability to extract features from input data at varying scales through

varying filter sizes

✓ minimal increase in utilization of computing resources. [59]

InceptionV3. model1, created to answer if the image contains a vehicle with

damages (0:damaged, 1:not_damaged, 2:not a car):

K.clear_session()

n_classes = 3

img_width, img_height = 224,224

data_dir = "C:\\Users\\Nikitas\\Downloads\\insurance_project-

master\\insurance_project-master\\new\\data1a"

validation_data_dir = data_dir + "\\validation\\"

train_data_dir = data_dir + "\\training\\"

nb_train_samples = 2760

nb_validation_samples = 690

batch_size =64

train_datagen = ImageDataGenerator(

 rescale=1. / 255,

 shear_range=0.2,

 zoom_range=0.2,

 horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(

 train_data_dir,

 target_size=(img_height, img_width),

 batch_size=batch_size,

 class_mode='categorical')

validation_generator = test_datagen.flow_from_directory(

 validation_data_dir,

 target_size=(img_height, img_width),

 batch_size=batch_size,

 class_mode='categorical',

 shuffle=False)

inception = InceptionV3(weights='imagenet', include_top=False,

input_shape=(224,224,3))

x = inception.output

x = GlobalAveragePooling2D()(x)

x = Dense(64)(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = Dropout(0.5)(x)

predictions = Dense(n_classes, kernel_regularizer=regularizers.l2(0.005),

activation='softmax')(x)

model = Model(inputs=inception.input, outputs=predictions)

model.compile(optimizer=SGD(lr=0.0001, momentum=0.9),

loss='categorical_crossentropy', metrics=['accuracy'])

checkpointer =

ModelCheckpoint(filepath="C:/Users/Nikitas/Documents/is_car_damaged2.hdf5",

verbose=1, save_best_only=True)

csv_logger = CSVLogger("C:/Users/Nikitas/Documents/history_is_car_damaged2.log")

[42]

history = model.fit_generator(train_generator,

 steps_per_epoch = nb_train_samples // batch_size,

 validation_data=validation_generator,

 validation_steps=nb_validation_samples // batch_size,

 epochs=15,

 verbose=1,

 callbacks=[csv_logger, checkpointer])

model.save("C:/Users/Nikitas/Documents/is_car_damaged2.hdf5")

tf.keras.models.save_model(model,"C:/Users/Nikitas/Documents/is_car_damaged2")

Preparation of data generators is exactly the same with the aforementioned

models. 2760 images are used to train the model and 690 images are used to

validate the model. Let’s explore how inception V3 model 1 is created:

✓ The pre-trained weights of ImageNet are selected in inception V3

function argument “weights”

✓ In the same function, include_top refers to the fully-connected layer at

the top of the network, if it is included or not. If it is True, image shape

should be (299,299,3). Since image shape for the dataset is (224,224,3),

we stated it as false.

✓ In the output of this function, GlobalAveragePooling2D with default

arguments is applied. That is: the last channels’ 4d tensor with shape

(batch_size, rows, cols, channels) is transformed to 2D sensors with shape

(batch_size, channels)

✓ Dense 64 is selected, since bigger number brought quite fast results with

high accuracy and low loss in training data, but not so good metrics in

validation data. Last layer of dense has 3 units, as the classes of the

classification problem.

✓ Model is ready to get trained and compiled. Learning rate is declared

at 0.0001.

✓ ModelCheckpoint checks the model with the best weights, that is only if a next

epoch generates a model with better weights the previous one will be

overwritten. Criterion is the lower val_loss.
✓ CVS logger saves the metrics of all epochs, in order to create plots.

✓ Model gets trained for 15 epochs.

21.17. Results of model "InceptionIsDamagedCar" in Pycharm

[43]

22.Plot of accuracy in training data & accuracy in validation data for each epoch in

InceptionV3 model

Accuracy: 94%, precision:94%, recall:94% and f1-score:94%. These are high

metrics from a model that run only 15 epochs.

InceptionV3. model 2, Created to answer where vehicle is damaged (0: front,

1: rear, 2: side, 3: bumper, 4: door, 5: glass, 6: light):

K.clear_session()

n_classes = 7

img_width, img_height = 224,224

data_dir = "C:\\Users\\Nikitas\\Downloads\\preprocessed\\new"

validation_data_dir = data_dir + "\\validation\\"

train_data_dir = data_dir + "\\train\\"

nb_train_samples = 1618

nb_validation_samples = 288

batch_size = 16

train_steps_per_epoch = np.ceil((nb_train_samples/batch_size)-1)

validation_steps_per_epoch = np.ceil((nb_validation_samples/batch_size)-1)

train_datagen = ImageDataGenerator(

 rescale=1. / 255,

 shear_range=0.2,

 zoom_range=0.2,

 horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(

 train_data_dir,

 target_size=(img_height, img_width),

 batch_size=batch_size,

 class_mode='categorical')

validation_generator = test_datagen.flow_from_directory(

[44]

 validation_data_dir,

 target_size=(img_height, img_width),

 batch_size=batch_size,

 class_mode='categorical',

 shuffle=False)

inception = InceptionV3(weights='imagenet', include_top=False,

input_shape=(224,224,3))

x = inception.output

x = GlobalAveragePooling2D()(x)

x = Dense(128)(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = Dropout(0.5)(x)

predictions = Dense(n_classes, kernel_regularizer=regularizers.l2(0.005),

activation='softmax')(x)

model = Model(inputs=inception.input, outputs=predictions)

model.compile(optimizer=SGD(learning_rate=0.0001, momentum=0.9),

loss='categorical_crossentropy', metrics=['accuracy'])

checkpointer =

ModelCheckpoint(filepath="C:/Users/Nikitas/Documents/predict_all.hdf5", verbose=1,

save_best_only=True)

csv_logger = CSVLogger("C:/Users/Nikitas/Documents/predict_all.log")

history = model.fit_generator(train_generator,

 steps_per_epoch = train_steps_per_epoch,

 validation_data=validation_generator,

 validation_steps= validation_steps_per_epoch,

 epochs=80,

 verbose=1,

 callbacks=[csv_logger, checkpointer])

model.save("C:/Users/Nikitas/Documents/predict_all.hdf5")

tf.keras.models.save_model(model,"C:/Users/Nikitas/Documents/predict_all")

Dataset was created by mixing the two datasets, cleaning and classifying

images into folders for the next classes: front, rear, side, bumber, door, glass,

light. 1618 images are used to train the model and 288 images are used to

validate the model. Let’s explore how inception V3 model 1 is created:

✓ The pre-trained weights of ImageNet are selected in inception V3

function argument “weights”

✓ In the same function, include_top is stated false since image shape for

the dataset is (224,224,3).

✓ In the output of this function, GlobalAveragePooling2D with default

arguments is applied.

✓ Dense 128 is selected, since this is the number that brought highest

metrics in validation data. Several attempts were made. Last layer of

dense has 7 units, as the classes of the classification problem.

[45]

✓ Model is ready to get trained and compiled. Learning rate is declared

at 0.0001.

✓ ModelCheckpoint checks the model with the best weights, that is only if a next

epoch generates a model with better weights the previous one will be

overwritten.
✓ CVS logger saves the metrics of all epochs, in order to create plots.

✓ Model gets trained for 80 epochs.

23.Classification Report for InceptionV3 predict_all

Classification report in image 23 shows that the model has 76% accuracy but

recall is relatively low if the car is damaged in the rear or the side.

24.Confusion matrix of model InceptionV3 model 2 predict_all

Confusion matrix in image 24 shows that when the damage occurs on the rear-

end of the car, the model may give wrong answers, such as: on front or on the

bumper. Additionally, when the damage is on the side, the model may give a

result of: damage on the front, side or the door.

[46]

25..Plot of accuracy in training data & accuracy in validation data for each epoch in

InceptionV3 model 2

To check if the model gives correct predictions, the same 70 images were used

to test it. The model responded rather well, giving 80% correct answers, while

the wrong answers were mainly the following: predicted damaged door

instead of damage on the side part. To be clear, when damage is referred as

on the side part means that the damage is bigger than a door damaged.

So, until more images of damaged cars become available, we choose the

second model, since this one provides more accurate results.

[47]

5. CREATING THE APPLICATION

5.1 CREATE APPLICATION FLOW

At start, the application flow was created:

✓ User visits web application. First step is “login”. If the user is not a member,

he should register first. On register, user has to choose an email and a

username that are not already used and has to agree to terms and

conditions. Otherwise, app returns to register screen.

✓ When the user logins, he is directed to home screen. If he has not filled

his personal data, he is directed to fill the profile form.

✓ If he wants to declare a vehicle accident, he should already have

added the vehicle to his vehicle list. Otherwise, he has to go the vehicle

screen in order to fill forms about the vehicle and its insurance.

✓ In the accident page, he selects the vehicle he was driving in the

accident, add place and time data and complete the fields about

injuries due to the accident and road problems.

✓ Next step is to add the reasons of the accident and describe how

accident happened and whose fault it was.

✓ Next, he adds accident photos and draws the accident.

✓ Form also includes fields about the other driver that should be filled. If

there were more than two vehicles in the accident, user can add all of

them. Each other driver can respond in the same page in the same way.

✓ Last step before completing the accident statement is to add an image

in the damage detection page, to let know the insurance company the

damage degree.

✓ State accident statement as completed.

✓ Insurance company employees have access to accident data, and

when they want the can state accident as case closed.

[48]

26. Flow of accident statement

[49]

5.2 DEVELOPING EACH CONTAINER

Developing α vehicle accident statement app as a system of microservices

starts by separating each microservice, related to its business objective, and

declaring the ways of communication between them if that is necessary. So, in

this app there are 3 microservices in back end: authentication system,

accident statement system and detect the vehicle damage detection system.

Each microservice has open apis, so restrictions are set in almost every call to

match the restrictions of the app, and some of them are described below.

In development stage, to start the app, first step is to have Desktop Docker

running. Each technology used in the app should be written in the

requirements.txt file. Starting the code, server.py is being written. It includes the

function that returns an app using the FastAPI framework.

Then, Dockerfile is created, as it is described in the code below: pulling the

docker image of python 3.8, setting the environment, copying requirements to

the app, installing the necessary dependencies, copying all files to the app

and start.

FROM python:3.8

RUN cat /etc/issue

RUN pip3 install --upgrade pip

COPY ./requirements.txt ./app/requirements.txt

install requirements

RUN pip3 install -r ./app/requirements.txt

RUN rm -r /root/.cache

copy files and start

COPY . /app

WORKDIR /app

CMD ['bash']

Next step is the creation of the docker-compose.yaml file:

version: '3.7'

services:

 server:

 build:

 context: .

 dockerfile: Dockerfile

 volumes:

 - /var/run/docker.sock:/var/run/docker.sock

 command: uvicorn app.api.server:app --reload --workers 2 --host 0.0.0.0 --port 8000

 env_file:

 - ./.env

 image: ${APP_IMG}:${APP_TAG}

 ports:

 - 8000:8000

[50]

 depends_on:

 - db

 db:

 image: postgres:12.1-alpine

 volumes:

 - postgres_data:/var/lib/postgresql/data/

 env_file:

 - ./.env

 ports:

 - 5432:5432

Here, two volumes of the container are configured. Different volumes permit

the database to keep running when the server volume is down. As env is

configured, the connection between FastAPI and PostgreSQL is established

whenever the app starts. Instead of docker commands, makefile is used to

simplify the commands:

✓ “docker build -f Dockerfile -t ${APP_IMG}:${APP_TAG} .” is replaced by

“make build-img”

✓ “docker-compose up -d” is replaced by “make compose-up”.

So, container with server and db is up and running. Following, migration will

create the database architecture. As before, using the makefile:

✓ ‘docker-compose exec server alembic revision -m "$(m)" ’ is replaced

by make make-migration

✓ ‘docker-compose exec server alembic upgrade head’ is replaced by

‘make migrate’.

For the creation of each microservice, the same steps are followed, changing

the ports. In development, when an app is in still a local system, a network

between the docker containers is needed. When all containers are up, docker

pages “Containers/Apps” and “Images” should contain them with an

indication that they are “IN USE”.

27. Containers of 'HereWeAre'

[51]

28. Images of 'HereWeAre'

In each container, server shows the outcome of each request.

29.Logs of herewearevehicles container

5.3 AUTHENTICATION MICROSERVICES

The authentication microservice verifies that the user has the rights to use the

app, checks the layer of the authorization of their actions in the app, and holds

their personal data.

Starting from the database of the authentication system, it includes two tables:

users, profiles. The database schema is shown below:

[52]

30.Entity Relationship Diagram for authentication database

User table is used for the authentication and the authorization of each user. A

user has to provide a unique username, a unique email and a password to

become a member. App checks the uniqueness of email and username, then

generates text, known as salt, to hash user password and saves them in the

database, returning a token to user by JWT library based on username. This

token is used every time they make a request.

Token creation using JWT:

 def create_access_token_for_user(

 self, *,

 user: UserBase,

 secret_key: str = str(SECRET_KEY),

 audience: str = JWT_AUDIENCE,

 expires_in: int = ACCESS_TOKEN_EXPIRE_MINUTES,

) -> str:

 if not user or not isinstance(user, UserBase):

 return None

 jwt_meta = JWTMeta(

 aud=audience,

 iat=datetime.timestamp(datetime.utcnow()),

 exp=datetime.timestamp(datetime.utcnow() + timedelta(minutes=expires_in)),

)

 jwt_creds = JWTCreds(sub=user.email, username=user.username)

 token_payload = JWTPayload(

 **jwt_meta.dict(),

[53]

 **jwt_creds.dict(),

)

 access_token = jwt.encode(token_payload.dict(), secret_key,

algorithm=JWT_ALGORITHM)

 return access_token

Get username from token:

 def get_username_from_token(self, *, token: str, secret_key: str) -> Optional[str]:

 try:

 decoded_token = jwt.decode(token, str(secret_key),

audience=JWT_AUDIENCE, algorithms=[JWT_ALGORITHM])

 payload = JWTPayload(**decoded_token)

 except (jwt.PyJWTError, ValidationError):

 raise HTTPException(

 status_code=status.HTTP_401_UNAUTHORIZED,

 detail="Could not validate token credentials.",

 headers={"WWW-Authenticate": "Bearer"},

)

 return payload.username

User APIs

31. Open APIs for authentication microservice

The columns is_active, is_superuser, is_master depict the user’s type of

authorization. In the authentication system there are three levels of

authorization. Users of the web app may have one of the three roles:

simple_user, insurance company, admin.

Simple_user is the client that has a vehicle accident and wants to make a

statement. They should have is_active column equal to true. Insurance

company is the company that collects the accidents statements from the

client. They should have is_superuser column equal to true.

[54]

Admin is the controller of the flow of the app that intervenes when someone of

the previous roles causes problems. They should have is_master column equal

to true.

Admin is able to make an account inactive:

@router.put("/activate_not/{id}", response_model=UserPublic, name="users:block-

activate-user")

async def block_activate_user(id:int,

 current_user: UserInDB = Depends(get_current_active_user),

 users_repo: UsersRepository = Depends(get_repository(UsersRepository)),

)-> UserPublic:

 if current_user.is_master:

 return await users_repo.block_unblock_user(id= id)

 else:

 raise HTTPException(status_code=HTTP_401_UNAUTHORIZED, detail="No access")

Admin can set a user as superuser:

@router.put("/superuser/{id}", response_model=UserPublic, name="users:superuser")

async def superuser(id:int,

 current_user: UserInDB = Depends(get_current_active_user),

 users_repo: UsersRepository = Depends(get_repository(UsersRepository)),

)-> UserPublic:

 if current_user.is_master:

 return await users_repo.superuser(id= id)

 else:

 raise HTTPException(status_code=HTTP_401_UNAUTHORIZED, detail="No access")

At profiles table, there are personal data provided by each user. Column

user_id, as it is depicted in the schema, is a foreign key that refers to the users

table, at id column. UserPublic model as stated in user models includes the

profile data of the user, so the response in get-current-user is like the below:

{

 "email": "nikitaskastis@gmail.com",

 "username": "Nikitas",

 "email_verified": false,

 "is_active": true,

 "is_superuser": false,

 "is_master": false,

 "created_at": "2021-08-09T14:22:58.559302+00:00",

 "updated_at": "2021-08-09T14:22:58.559302+00:00",

 "id": 2,

 "access_token": null,

 "profile": {

 "first_name": "NIKITAS",

 "last_name": "KASTIS",

 "phone_number": "697-999-7777",

 "licence_number": "ME1905",

 "licence_category": "C",

 "licence_expire_date": "2040-12-31",

 "image": null,

[55]

 "created_at": "2021-08-09T14:22:58.566879+00:00",

 "updated_at": "2021-08-09T14:42:29.041204+00:00",

 "id": 2,

 "user_id": 2,

 }

}

5.4 ACCIDENT STATEMENT MICROSERVICE

Accident statement microservice holds the data of the accident statements.

When a user has a valid insurance that is one of the co-operative insurance

companies, they can declare an accident with their accident statement. They

can include images and a sketch of the accident.

At most requests, the app checks the current user to give the appropriate

response. As described above, the current user’s check takes place in the

previous microservice. So, this microservice is dependent on the previous one.

If there is no current user, response is: “Not authenticated”.

oauth2_scheme = OAuth2PasswordBearer(tokenUrl=f"{API_PREFIX}/users/login/token/")

async def get_user_from_token(

 *,

 token: str = Depends(oauth2_scheme),

 user_repo: UsersRepository = Depends(get_repository(UsersRepository)),

) -> Optional[UserInDB]:

 try:

 username = auth_service.get_username_from_token(token=token,

secret_key=str(SECRET_KEY))

 user = await user_repo.get_user_by_username(username=username)

 except Exception as e:

 raise e

 return user

def get_current_active_user(current_user: UserInDB = Depends(get_user_from_token))

-> Optional[UserInDB]:

 if not current_user:

 raise HTTPException(

 status_code=status.HTTP_401_UNAUTHORIZED,

 detail="No authenticated user.",

 headers={"WWW-Authenticate": "Bearer"},

)

 if not current_user.is_active:

 raise HTTPException(

 status_code=status.HTTP_401_UNAUTHORIZED,

 detail="Not an active user.",

 headers={"WWW-Authenticate": "Bearer"},

)

 return current_user.

[56]

Entity Relationship Diagram is remarkably more complicated in Accident

Statement services. Database includes 9 tables: vehicles, insurance,

insurance_company, roles, accident, accident_statement,

accident_statement_sketch, accident_statement_image and

temporapy_accident_driver_data.

The insurance company table includes all the insurance companies that the

user can get a vehicle insurance. Insurance companies can only be added by

admin.

@router.post("/", response_model=InsuranceCompanyPublic, name="insurance-

company:create-insurance-company", status_code=HTTP_201_CREATED)

async def create_new_insurance_company(

 current_user: UserPublic = Depends(get_current_active_user),

 new_insurance_company: InsuranceCompanyCreate = Body(..., embed=True),

 insurance_company_repo: InsuranceCompanyRepository =

Depends(get_repository(InsuranceCompanyRepository)),

) -> InsuranceCompanyPublic:

 if current_user.is_master:

 created_insurance_company = await

insurance_company_repo.create_insurance_company(new_insurance_company=ne

w_insurance_company)

 else:

 raise HTTPException(status_code=HTTP_401_UNAUTHORIZED, detail="No access")

 return created_insurance_company

[57]

32.Entity Relationship Diagram for vehicle database

[58]

In the vehicles table, there are information about the vehicles of each user,

while insurance and roles are tables that populate the vehicle with info about

the signed vehicle insurance and if they are the owner or a user of the vehicle.

Insurance and role are different tables, because they keep track of every

change. So each vehicle has many insurances and each user may have many

roles in the vehicle over the years.

Accident table has info about the place and the time each accident

happened and if there were injuries or road problems. It is populated with data

from the accident statement table and data of the rest drivers, who are

declared as participants in the accident. In the accident statement there is a

column car_damage that saves the prediction from the other microservice, if

it is used. Accident_statement_images table includes photos from the accident

that users have provided and accident_statement_sketch has a list of

coordinates of the sketch of the user saved as string.

As the open api page shows, back-end calls, which suggest the user add or

update data, are based on the routes of the vehicles and the accidents.

Vehicle APIs

33.Open APIs for vehicles in vehicle microservice

At the api call where the user requests to get all their vehicles, each vehicle is

populated by the last insurance added. Additionally, insurance cannot be

updated, if the last added insurance has not expired. If the user represents an

insurance company (is_superuser), they can get all the vehicles that have last

insurance in the same insurance company.

34.Insurance can not be updated if the last insurance has not expired

[59]

The vehicle sign column in the vehicle table should have unique entries. As

someone can drive or owe the vehicle, there are different roles, as they are

stated in the role table. If a different user add the same vehicle, the app

updates the information that there is a new driver for the vehicle, but no new

vehicle is added to the database.

Accidents APIS

35.Open APIs for accidents in vehicle microservice

Access to see and edit accident data is given only to the drivers that are

added to the accident, while their respective insurance companies have only

access to see the data.

Accident_statement has a column with the boolean variable “done”. User can

set an accident statement as “done=True”, as long as they have filled all the

necessary fields, they have added sketch, photos and the other driver of the

accident.

36. Accident statement cannot be completed when...

When this is saved as True, neither changes can be made on the accident

statement and the accident_statement_sketch nor more accident_statement

photos can be added.

Only the driver that declares the accident can add the rest drivers that are

involved, while they cannot add themselves independently. Moreover, the

driver that declares the accident is the only one that can remove a driver from

the accident as long as has not updated their statement as “done” = True or

that driver has not made a statement.

[60]

37. When statement is stated as done, no changes can be made

A driver cannot make an accident statement if they have not updated a valid

insurance for the vehicle at the time of the accident.

If a driver has made an accident statement, they cannot add another

statement, but only update the current one.

Adding image in a FastAPI call cannot be achieved through a json body

request. As a multipart/ form-data call, it will get an image as a file and save it

in the database as binary string.

5.5 VEHICLE DAMAGE DETECTION MICROSERVICE

Database volume is included, as damaged vehicle photos are not too many,

and the correct predictions will be saved to improve the future reliability of the

detection model. It consists of only one table “prediction” that has the

following columns: id, image, prediction, stated_correct and the timestamps.

38.One table for damage detection database

As it is depicted in the api page of the microservices, no authentication is

needed. Everyone can add an image to check damage. Predictions that are

not correct are deleted from the db. The boolean variable stated_correct is

used to protect the correct predictions from the prediction. When it has “True”

value, the prediction cannot be deleted.

[61]

39.Open APIs for damage detection microservice

In vehicle damage detection, user adds an image to get an answer about the

damage that the app detected. This answer comes from the before-

mentioned selected model as it was described in the previous chapter. Due to

the small number of damaged vehicles, the app saves the photos to generate

more efficient models in the future.

@router.post("/predict")

async def new_predict(

 file: UploadFile = File(...),

 prediction_repo: PredictRepository = Depends(get_repository(PredictRepository)),

):

 extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png", "JPG", "JPEG", "PNG")

 if not extension:

 raise HTTPException(status_code=HTTP_400_BAD_REQUEST, detail="Image must be

jpg or png format!")

 image_wanted = read_imagefile(await file.read())

 image_check = image_wanted.resize(car_image_shape[0:2])

 check_array = image.img_to_array(image_check)/255

 check_array = np.expand_dims(check_array, axis=0)

 result1 = is_damaged_model.predict(check_array)

 print(result1)

 if result1.argmax() != 0:

 return "Sorry, I cannot see any vehicle damage. Please, try again"

 else:

 part = car_part_model.predict(check_array)

 if part.argmax() == 0:

 a = 'damage on the front part'

 elif part.argmax() == 1:

 a = 'damage on the rear'

 elif part.argmax() == 2:

 a = 'damage on the side'

 elif part.argmax() == 3:

 a = 'damage on the bumper'

 elif part.argmax() == 4:

 a = 'damage on the door'

 elif part.argmax() == 5:

 a = 'damage on the glass'

 else:

 a = 'damage on the lamp'

 contentsImage = await file.read()

 new_predict = Predict_Create(image = contentsImage, prediction= a)

[62]

 prediction = await prediction_repo.predict(predict = new_predict)

 return prediction

First model check that there is a car, and that the car has some damage. In

case the first model does not detect a car, the user gets the message “Sorry, I

cannot see any vehicle damage. Please, try again” and the app returns.

Otherwise, if damage gets detected, the image goes to the second model

that predicts if the damage is on the door, bumper, glass, head light, taillight

or, if it’s a bigger damage in the car on the front, rear or side part.

5.6 FRONT END: REACT @ REDUX

Creating an app that is full of forms and data transfer, a predictable state

container like Redux is needed, that centralizes the application state and

enables a consistent response to users’ requests.

5.6.1 How Redux works?

Initial state makes important variables reachable in every React component.

All actions are created to make changes to the state, most of them making

requests - api calls to the backend. The response of the request has two results,

either success or failure, and depending to the result, each Redux reducer

updates initialstate.

Initial state of app:

export default {

 auth: {

 isLoading: false,

 error: false,

 user: {},

 allUsers: {},

 },

 vehicles: {

 isLoading: false,

 error: null,

 data: {},

 currentVehicle: null,

 accidentData: {},

 currentAccident: null,

 insuranceCompanyData: {},

 }

}

Example of Reducer that updates the state according to the success or not of

the request. So, when the app gets a request to fetch user data from token

isLoading gets value ‘true’ and the loading sign appears on the user interface.

[63]

If the request is successful, user gets updated. Otherwise, the error message

gets updated.

export default function authReducer(state = initialState.auth, action = {}) {

 switch (action.type) {

 case FETCHING_USER_FROM_TOKEN:

 return {

 ...state,

 isLoading: true

 }

 case FETCHING_USER_FROM_TOKEN_SUCCESS:

 return {

 ...state,

 isLoading: false,

 user: action.data

 }

 case FETCHING_USER_FROM_TOKEN_FAILURE:

 return {

 ...state,

 isLoading: false,

 error: action.error,

 user: {}

 }

Due to many api calls, additional functions were created to make coding for

these requests faster and simpler. Following function was used to make a Post

api call:

const apiPost = ({ url, params, types:{REQUEST, SUCCESS, FAIL},

 onSuccess = (response) => ({ type: response.type, status: response.status }),

}) => {

 return async (dispatch) => {

const token = await localStorage.getItem(‘access_token');

 const fullUrl = baseURL.concat(url);

 const defaultConfig = {

 headers: {

 'Content-Type': 'application/x-www-form-urlencoded',

 Authorization: token ? Bearer ${token} : '',

 },

 };

 try {

 const response = await axios.post(fullUrl, params, defaultConfig,);

 dispatch({

type: SUCCESS,

 status: response.status,

payload: response.data,

 });

 return onSuccess({ type: SUCCESS, ...response });

 } catch (error) {

const errorResponse = (({ response }) => ({ response }))(error,);

 dispatch({ type: FAILURE,

status: errorResponse?.response?.status,

[64]

payload: errorResponse?.response?.data?.error, });

 } };

 };

 export default apiPost;

 Action using the function above is:

Actions.registerNewUser = ({ username, email, password }) => {

const params = new URLSearchParams();

 params.append('email', email);

 params.append('username', username);

 params.append('password', password);

 return (dispatch) =>

 dispatch(

 apiPost({

 url: `/users/`,

 params,

 types: {

 REQUEST: REQUEST_USER_SIGN_UP,

 SUCCESS: REQUEST_USER_SIGN_UP_SUCCESS,

 FAILURE: REQUEST_USER_SIGN_UP_FAILURE

 },

 onSuccess: (res) => {

 const access_token = res?.data?.access_token?.access_token

 localStorage.setItem("access_token", access_token)

 return dispatch(Actions.fetchUserFromToken(access_token))

 },

 })

)

}

5.7 KUBERNETES

Having installed minikube, we create a Deployment yaml file.

For example, in the following deployment object for ‘hereweare’(here we are

1st container):

✓ kind of resource in this file is ‘deployment’

✓ name declared for the deployment is ‘hereweare-deployment’, in the

cluster of ‘here-we-are,

✓ deployed in 2 replicas/instances of the pod of the given container,

✓ its set up template has metadata label app: ‘hereweare’ and is

matched in the selector

✓ and the specifications for the containers that will be run inside the

Pods in this deployment

apiVersion: apps/v1

kind: Deployment

[65]

metadata:

 name: hereweare-deployment

 namespace: here-we-are

 labels:

 app: hereweare

spec:

 replicas: 2

 selector:

 matchLabels:

 app: hereweare

 template:

 metadata:

 labels:

 app: hereweare

 spec:

 containers:

 - name: hereweare

 image: hereweare:dev

 imagePullPolicy: Never

 command: ["uvicorn"]

 args:

 [

 "app.api.server:app",

 "--host",

 "0.0.0.0",

 "--port",

 "8000",

 "--workers",

 "2",

]

Next step is Service yaml file that specifies the name of the port, port number,

target port and the type of service. In the same example, port name is web,

port selected is 8000 and selected port 8000. Type selected is LoadBalancer,

aiming to create an outside available IP address and automatically distribute

incoming requests across all pods no matter of which a pod runs.

apiVersion: v1

kind: Service

metadata:

 name: hereweare-app

 namespace: here-we-are

 labels:

 app: hereweare

spec:

 type: LoadBalancer

 ports:

 - name: web

 port: 8000

 targetPort: 8000

 selector:

[66]

 app: hereweare

To have greater independence of the pods for the database containers,

persistent volumes will be created.

Persistent Volume object:

✓ Like before kind of resource is declared for the file: Persistent Volume.

✓ Name added in metadata for the persistent volume is hereweare-

postgres-pv-volume and gets labels for type: ‘local’ and app:

‘hereweare-postgres’

✓ Storage capacity for the persistent volume is 1Gigabyte.

✓ A Persistent Volume Claim requesting the same storageClass can be

bound to this volume.

✓ Host path is used for development and testing. Persistent Volume uses a

file/directory on the Node to emulate network-attached storage.

✓ PersistentVolumeReclaimPolicy Retain means that the PV even after

PVC is deleted.

✓ ReadWriteMany means that the volume can be mounted as read-write

by many Nodes

apiVersion: v1

kind: PersistentVolume

metadata:

 name: hereweare-postgres-pv-volume

 labels:

 type: local

 app: hereweare-postgres

spec:

 storageClassName: manual

 capacity:

 storage: 1Gi

 accessModes:

 - ReadWriteMany

 hostPath:

 path: "/mnt/data/auth/"

 persistentVolumeReclaimPolicy: Retain

Persistent Volume Claim object:

✓ Kind of resource is declared for the file: Persistent Volume Claim. It

requests a Persistent Volume Storage.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: hereweare-postgres-pv-claim

 labels:

 app: hereweare-postgres

spec: # Access mode and resource limits

[67]

 storageClassName: manual

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

Hereweare-postgres-secret, referred below, is another object that includes the

environmental variables from a secret file whose name is "postgres-secret"

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hereweare-postgres

 labels:

 app: hereweare-postgres

spec:

 selector:

 matchLabels:

 app: hereweare-postgres

 tier: postgres

 replicas: 1

 template:

 metadata:

 labels:

 app: hereweare-postgres

 tier: postgres

 spec:

 containers:

 - image: postgres:12.1-alpine

 name: postgres

 imagePullPolicy: "IfNotPresent"

 envFrom:

 - secretRef:

 name: hereweare-postgres-secret

 ports:

 - containerPort: 5432

 name: postgres

 volumeMounts:

 - mountPath: /var/lib/postgresql/data

 name: hereweare-postgres-persistent-storage

 volumes:

 - name: hereweare-postgres-persistent-storage

 persistentVolumeClaim:

 claimName: hereweare-postgres-pv-claim

apiVersion: v1

kind: Service

metadata:

 name: hereweare-postgres

[68]

 labels:

 app: hereweare-postgres

spec:

 type: LoadBalancer

 ports:

 - port: 5432

 targetPort: 5432

 protocol: TCP

 selector:

 app: hereweare-postgres

 tier: postgres

Makefile is used again:

create-local-cluster:

 minikube start

 kubectl create ns here-we-are

 kubectl apply -n here-we-are -f .\hereweare\k8s\hereweare-postgres.yaml

 kubectl apply -n here-we-are -f .\herewearevehicles\k8s\herewearevehicles-

postgres.yaml

 kubectl apply -n here-we-are -f .\herewearepredict\k8s\detect-

postgres.yaml

images:

cd hereweare & make build-img

 cd herewearevehicles & make build-img

 cd herewearepredict & make build-img

 cd herewearefrontend & make build-img

deploy: images

 kubectl apply -n here-we-are -f .\hereweare\k8s\hereweare-api.yaml

 kubectl apply -n here-we-are -f .\herewearevehicles\k8s\herewearevehicles-

api.yaml

 kubectl apply -n here-we-are -f .\herewearepredict\k8s\detect-api.yaml

 kubectl apply -n here-we-are -f .\herewearefrontend\k8s\front.yaml

migrate:

 kubectl -n here-we-are exec deploy/hereweare-deployment -- alembic

upgrade head

 kubectl -n here-we-are exec deploy/herewearevehicles-deployment --

alembic upgrade head

 kubectl -n here-we-are exec deploy/detect-deployment -- alembic upgrade

head

delete-local-cluster:

 minikube stop

 minikube delete

✓ Make create-local-cluster starts minikube, creates the cluster “here-

we-are” and the three persistent volumes for the databases.

[69]

40. Starting minikube and creating persistent volumes

✓ Then, minikube -p minikube docker-env | Invoke-Expression, to point

docker-machine to minikube’s docker environment.

✓ Make deploy builds the images and recursively creates those

Kubernetes objects.

41.Created services in Minikube

✓ Make migrate makes the migrations to the databases.

Minikube dashboard command opens the here-we-are Kubernetes panel.

42. Minikube dashboard

Here we can see deployments, pods, logs for every pod, replica-sets, etc.

[70]

43.Minikube deployments for here-we-are namespace

Here we see all deployments working with all pods, while front deployment

had to restart 2 times.

44. Front deployment had 2 restarts

With minikube tunnel command, we can see the app in the browser, and

check logs for each pod.

[71]

45. Logs for hereweare deployment

46. Logs for detect deployment

47. Logs for herewearevehicles deployment

[72]

6. CONCLUSIONS

6.1 PROBLEMS CREATING THE APP

Creating the app, many problems appeared:

✓ The third role of app users “master” is created mainly to take charge of

activating - deactivating a user’s account or not. Insurance companies

should not have the right to do that, since a user may have vehicles

insurance in different insurance companies.

✓ Generating predicting models with layers with big amounts of filters and

neurons end up in .h5 files with 1GB sizes. This made container run slow

and use more sources. To avoid this, lighter models were selected with

the same results.

✓ Front-end had the nav option for the master to visit page “View all

accidents”. But when there were many accidents declared, the

response was too slow and quite expensive. So, the page “View

accidents” was deprecated, and master could request to view

accidents through the user page, in the tab view user accident

statements.

✓ Few images of damaged cars were available in creative commons, and

no dataset that included prices for repairing damages. Insurance

companies could not provide any data. So, detect damage system was

limited to locate the accident in the car.

6.2 FUTURE WORKS ON ‘HERE WE ARE’

In ‘HereWeAre’, when more data of the third microservice will be gathered,

better models can be created. One step further, insurance companies can

provide data of damage cost, so the model can predict monetary values of

repairing a car damage.

Furthermore, ‘Here We Are’ is an application that can have more

microservices added, such as the following:

✓ A “statistics” microservice that can be used by insurance companies to

adjust their pricing policy. This microservice may provide information

about the cities that has more vehicle accidents, the most common

reasons of an accident. This tool is also useful for the respective

authorities to check the road regulations and maybe adjust them in

roads that have high number of accidents.

✓ A microservice that lets users know where roads have traffic due to

vehicle accidents.

Additionally, ‘HereWeAre’ can add a chat service, using Socket.io, if drivers

and insurance companies want to communicate via the website instantly.

[73]

Sockets can be used to update live the information to all users without the need

of refreshing the page.

Finally, although ‘Here We Are’ is a mobile friendly web application, one of the

next steps include the development of a mobile front app in React Native. This

will permit push notifications, maps, etc.

[74]

7. REFERENCES

[1] OECD (2020), Digital Transformation in the Age of COVID-19: Building

Resilience and Bridging Divides, Digital Economy Outlook 2020

Supplement, OECD, Paris, www.oecd.org/digital/digital-economy-outlook-

covid.pdf

[2] Altoros (2019), Using machine learning to automate car damage

assessment and document workflows, Intel® AI Builders Showcase,

Grand Ballroom West, Vladimir Starostenkov, Siarhei Sukhadolski

[3] IBM Cloud Education (2021), What are containers? Accessed 13

August 2021, www.ibm.com/cloud/learn/containers

[4] NetApp, What are containers?, Accessed 14 August 2021,
www.netapp.com/devops-solutions/what-are-containers/

[5] Section (2019), Bora Basyildiz, A Brief History of Container Technology,

Accessed 13 August 2021, www.section.io/engineering-education/history-of-

container-technology/

[6] A Cloud Guru (2018), Ell Marquez, The History of Container

Technology, Accessed 14 August 2021, Pluralsight,
acloudguru.com/blog/engineering/history-of-container-technology

[7] Docker (2014), Docker 0.9: introducing execution drivers and

libcontainer, Accessed 14 August 2021, Docker,
www.docker.com/blog/docker-0-9-introducing-execution-drivers-and-libcontainer/

[8] Docker Blog (2018), Solomon Hykes, Au Revoir, Accessed 16 August

2021, Docker, www.docker.com/blog/author/solomon-hykes/

[9] GitHub-Gist(2016), Arnaud Porterie, “Docker – Updated project

statistics, Accessed 16 August 2021, Github,
gist.github.com/icecrime/18d72202f4569a0cab1ee60f7583425f

[10] Docker Docs (2020), Docker Desktop WSL 2 backend, Accessed 16

August 2021, Docker, docs.docker.com/docker-for-windows/wsl

[11] Microsoft |Docs (2021), Docker terminology, Accessed 16 August

2021, Microsoft, docs.microsoft.com/en-

us/dotnet/architecture/microservices/container-docker-introduction/docker-

terminology

[12] Newman S. (2015), Building Microservices, 1st edition, USA, O’Reilly

Media, Inc.

[13] Dataversity (2021), Keith D Foote, A Brief History of Microservices,

Accessed 17 August 2021, Dataversity, www.dataversity.net/a-brief-history-

of-microservices/

http://www.oecd.org/digital/digital-economy-outlook-covid.pdf
http://www.oecd.org/digital/digital-economy-outlook-covid.pdf
http://www.ibm.com/cloud/learn/containers
http://www.netapp.com/devops-solutions/what-are-containers/
http://www.section.io/engineering-education/history-of-container-technology/
http://www.section.io/engineering-education/history-of-container-technology/
https://acloudguru.com/blog/engineering/history-of-container-technology
http://www.docker.com/blog/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://www.docker.com/blog/author/solomon-hykes/
https://gist.github.com/icecrime/18d72202f4569a0cab1ee60f7583425f
http://www.docs.docker.com/docker-for-windows/wsl
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-terminology
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-terminology
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-terminology
http://www.dataversity.net/a-brief-history-of-microservices/
http://www.dataversity.net/a-brief-history-of-microservices/

[75]

[14] Löwy J. (2007) Programming WCF Services, 1st edition, USA, O’Reilly

Media, Inc.

[15] James Lewis, MartinFowler(2014), Microservices, a definition of this

new architectural term, Accessed 17 August 2021,
martinfowler.com/articles/microservices.html

[16] Verified Market Research (2021), Cloud Microservices Market 2020

Trends, Market Share, Industry Size, Opportunities, Analysis and

Forecast by 2026, Accessed 17 August 2021, Market Reports,
www.instanttechnews.com/technology-news/2021/02/23/cloud-microservices-

market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-

2026/

[17] Microsoft |Docs (2019), Microsoft Architecture Style, Accessed 17

August 2021, Microsoft, docs.microsoft.com/en-

us/azure/architecture/guide/architecture-styles/microservices

[18] Kong (2021), Microservice Container Orchestration Tools, Accessed 25

August 2021, Kong Inc. – KongHQ, konghq.com/learning-

center/microservices/microservices-orchestration/

[19] The Kubernetes Authors, Kubernetes, Accessed 25 August 2021, The

Linux Foundation, kubernetes.io/

[20] Gordon Haff, William Henry (2017), From Pots and Vats to Programs

and Apps, Red Hat,
s3.amazonaws.com/grhpublic/packaging_book_FINAL_ebook.pdf

[21] Frederic Lardinois (2015), As Kubernetes Hits 1.0, Google Donates

Technology to Newly Formed Clous Native Computing Foundation,

Accessed 28 August 2021, TechCrunch, techcrunch.com/2015/07/21/as-

kubernetes-hits-1-0-google-donates-technology-to-newly-formed-cloud-native-

computing-foundation-with-ibm-intel-twitter-and-others/

[22] Jacek Chmiel, (2020), Kubernetes – how hot can it get? Accessed 28

August 2021, Avenga, www.avenga.com/magazine/kubernetes/

[23] Laurianne MacLaughlin (2020), Kubernetes Glossary for Executives,

Accessed 28 August 2021, The Enterprisers Project,
enterprisersproject.com/sites/default/files/kubernetes_glossary.pdf

[24] Maximilian Schwarzmüller (2020), Docker & Kubernetes: The Practical

Guide, udemy.com/course/docker-kubernetes-the-practical-

guide/learn/lecture/22627559#overview

[25] Business Browdaway(2020), Bob Hayes, Usage of Programming by

Data Scientists: Python Grows while R Weakens, Accessed 14 August

2021, businessoverbroadway.com/2020/06/29/usage-of-programming-languages-

by-data-scientists-python-grows-while-r-weakens/

[26] Statista (2021), Shanhong Liu, Most used programming languages

among developers worldwide, as of 2021, Accessed 14 August 2021,

https://martinfowler.com/articles/microservices.html
http://www.instanttechnews.com/technology-news/2021/02/23/cloud-microservices-market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-2026/
http://www.instanttechnews.com/technology-news/2021/02/23/cloud-microservices-market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-2026/
http://www.instanttechnews.com/technology-news/2021/02/23/cloud-microservices-market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-2026/
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://konghq.com/learning-center/microservices/microservices-orchestration/
https://konghq.com/learning-center/microservices/microservices-orchestration/
https://kubernetes.io/
https://s3.amazonaws.com/grhpublic/packaging_book_FINAL_ebook.pdf
https://techcrunch.com/2015/07/21/as-kubernetes-hits-1-0-google-donates-technology-to-newly-formed-cloud-native-computing-foundation-with-ibm-intel-twitter-and-others/
https://techcrunch.com/2015/07/21/as-kubernetes-hits-1-0-google-donates-technology-to-newly-formed-cloud-native-computing-foundation-with-ibm-intel-twitter-and-others/
https://techcrunch.com/2015/07/21/as-kubernetes-hits-1-0-google-donates-technology-to-newly-formed-cloud-native-computing-foundation-with-ibm-intel-twitter-and-others/
http://www.avenga.com/magazine/kubernetes/
https://enterprisersproject.com/sites/default/files/kubernetes_glossary.pdf
http://www.udemy.com/course/docker-kubernetes-the-practical-guide/learn/lecture/22627559#overview
http://www.udemy.com/course/docker-kubernetes-the-practical-guide/learn/lecture/22627559#overview
http://businessoverbroadway.com/2020/06/29/usage-of-programming-languages-by-data-scientists-python-grows-while-r-weakens/
http://businessoverbroadway.com/2020/06/29/usage-of-programming-languages-by-data-scientists-python-grows-while-r-weakens/

[76]

www.statista.com/statistics/793628/worldwide-developer-survey-most-used-

languages/

[27] BoTreeTechnologies(2020), Parth Barrot, Pros and Cons of PythonL A

Definite Python Web Development Guide, Accessed 14 August 2021,

Tntra, www.botreetechnologies.com/blog/pros-and-cons-of-python/

[28] Artima (2003), Bill Venners, The Making of Python A Conversation with

Guido van Rossum, Part I, Accessed 4 September 2021,
www.artima.com/articles/the-making-of-python

[29] Exyte (2020), Vasilisa Sheromova, A brief history of Python, Accessed 4

September 2021, exyte.com/blog/a-brief-history-of-python

[30] The Register(2018), Simon Sharwood, Python creator Guido van

Rossum sys.exit()s as language overlord, Accessed 4 September 2021,
www.theregister.com/2018/07/13/python_creator_guido_van_rossum_quits

[31] The Netflix Tech Blog(2020), Kevin Glisson, Marc Vilanova, Forest

Monsen, Introducing Dispatch, Accessed 4 September 2021, Netflix,
netflixtechblog.com/introducing-dispatch-da4b8a2a8072

[32] Uber Engineering(2019), Piero Molino, Yaroslav Dudin, Sai Sumanth

Miryala, Ludwig v0.2 Adds New Features and Other Improvements to

its Deep Learning Toolbox Accessed 4 September 2021, Uber,
eng.uber.com/ludwig-v0-2/

[33] Educative (2021), Erin Schaffer, Python REST API tutorial: Getting

started with FastAPI, Accessed 4 September 2021,
www.educative.io/blog/python-fastapi-tutorial

[34] Stack Overflow (2021), 2021 Developer Survey, Accessed 4 September

2021, insights.stackoverflow.com/survey/2021/?utm_source=social-

share&utm_medium=social&utm_campaign=dev-survey-2021

[35] Exastax (2017), Top 5 Use Cases of Tensorflow, Accessed 4 September

2021, www.exastax.com/deep-learning/top-five-use-cases-of-tensorflow/

[36] Usenix (2016), Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,

Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul

Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

Xiaoqiang Zheng, TensorFlow: A system for large-scale machine

learning, Accessed 5 September 2021, Google Brain,
www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[37] Google (2018), Google Git, Refactor Dependencies so keras_support

can be imported directly.
chromium.googlesource.com/external/github.com/tensorflow/tensorflow/+/v1.10.0

[38] Wikipedia, TensorFlow, Accessed 5 September 2021,
 en.wikipedia.org/wiki/TensorFlow

http://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
http://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
http://www.botreetechnologies.com/blog/pros-and-cons-of-python/
http://www.artima.com/articles/the-making-of-python
https://exyte.com/blog/a-brief-history-of-python
http://www.theregister.com/2018/07/13/python_creator_guido_van_rossum_quitsm
https://netflixtechblog.com/introducing-dispatch-da4b8a2a8072
https://eng.uber.com/ludwig-v0-2/
http://www.educative.io/blog/python-fastapi-tutorial
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
http://www.exastax.com/deep-learning/top-five-use-cases-of-tensorflow/
http://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://chromium.googlesource.com/external/github.com/tensorflow/tensorflow/+/v1.10.0
https://en.wikipedia.org/wiki/TensorFlow

[77]

[39] Auth0 (2017), Bruno Krebs, SQLAlchemy ORM Tutorial for Python

Developers, Accessed 5 September 2021, auth0.com/blog/sqlalchemy-orm-

tutorial-for-python-developers/

[40] Imaginary Cloud (2021), Mariana Berga, Tiago Franco, SQL vs NoSQL:

When to use?, Accessed 7 September 2021,
www.imaginarycloud.com/blog/sql-vs-nosql/

[41] Postgres Tutorial, What is PostgreSQL? Accessed 7 September 2021,
www.postgresqltutorial.com/what-is-postgresql/

[42] React, A JavaScript Library for Building User Interfaces, Accessed 7

September 2021, reactjs.org/

[43] Rising Stack (2021), Rising Stack Engineering, The History of React.js on

a Timeline. Accessed 7 September 2021, blog.risingstack.com/the-history-of-

react-js-on-a-timeline/

[44] Stack Overflow (2021), 2021 Developer Survey, Accessed 7 September

2021,insights.stackoverflow.com/survey/2021/?utm_source=social-

share&utm_medium=social&utm_campaign=dev-survey-2021

[45] Redux, Dan Abramov and the Redux documentation authors, React-

Redux, Accessed 7 September 2021, react-redux.js.org/

[46] California Data Science, What is machine learning and why it is

important? Accessed 12 September 2021,
californiadatascience.com/machine-learning

[47] Towards Data Science, Teemu Kanstrén (2020), A look at Precision,

Recall, and F1-core. Accessed 24 September 2021,
towardsdatascience.com/deep-learning-understand-the-inception-module-

56146866e652

[48] Ian Goodfellow, Yoshua Bengio, Aaron Courville (2016), Deep

Learning, MIT Press

[49] IBM Cloud Education (2021), Supervised vs. Unsupervised Learning:

What’s the difference, Accessed 12 September 2021,
www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning

[50] IBM Cloud Education (2021), Convolutional Neural Network, Accessed

12 September 2021, www.ibm.com/cloud/learn/convolutional-neutal-networks

[51] Keras Backend, Accessed 12 September 2021, faroit.com/keras-

docs/1.2.0/backend/

[52] Machine Learning Mastery (2019), Jason Brownlee, Use Weight

Regularization to Reduce Overfitting of Deep Learning Models,

Accessed 12 September 2021, machinelearningmastery.com/weight-

regularization-to-reduce-overfitting-of-deep-learning-models/

https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/
http://www.imaginarycloud.com/blog/sql-vs-nosql/
https://www.postgresqltutorial.com/what-is-postgresql/
https://reactjs.org/
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://react-redux.js.org/
https://californiadatascience.com/machine-learning
https://californiadatascience.com/machine-learning
https://towardsdatascience.com/deep-learning-understand-the-inception-module-56146866e652
https://towardsdatascience.com/deep-learning-understand-the-inception-module-56146866e652
http://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
http://www.ibm.com/cloud/learn/convo
https://faroit.com/keras-docs/1.2.0/backend/
https://faroit.com/keras-docs/1.2.0/backend/
https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-learning-models/
https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-learning-models/

[78]

[53] John Macintyre, Lazaros Iliadis, Ilias Maglogiannias, Chrisina Jayne

(2019), Engineering Applications of Neural Networks Page106, Springer

Nature Switzerland AG 2019

[54] Intel (2019), Adam-Milton-Barker, Inception V3 Deep Convolutional

Architeture For Classifying Acute Myeloid/Lymphoblastic Leukemia,

Accessed 14 September 2021,
software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-

convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html

[55] Ting Neo, Accessed 30 August 2020, Access to the image dataset is made

available under the Open Data Commons Attribution License:

opendatacommons.org/licenses/by/1.0/.

[56] Peltarion, Accessed 15 May 2021, peltarion.com/knowledge-

center/documentation/terms/dataset-licenses/car-damage

[57] Sebastian Ruder (2016), An overview of gradient descent optimization

algorithms, Accessed 22 September 2021, ruder.io/optimizing-gradient-

descent/

[58] Kingma Diederik, Ba Jimmy (2014), Adam: A Method for Stochastic

Optimization, Cornell University, Accessed 23 September 2021,
arxiv.org/abs/1412.6980

[59] Towards Data Science, RIchmode Alake (2020), Deep Learning:

Understanding The Inception Module, Accessed 24 September 2021,
towardsdatascience.com/deep-learning-understand-the-inception-module-

56146866e652

https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://docs.google.com/forms/d/e/1FAIpQLSfuMMGafmiZ35alIgYkZeyGkR6gHhBURjxJPSe6aB6CWjN1EA/viewform
https://opendatacommons.org/licenses/by/1.0/
https://opendatacommons.org/licenses/by/1.0/
https://peltarion.com/knowledge-center/documentation/terms/dataset-licenses/car-damage
https://peltarion.com/knowledge-center/documentation/terms/dataset-licenses/car-damage
https://ruder.io/optimizing-gradient-descent/
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/deep-learning-understand-the-inception-module-56146866e652
https://towardsdatascience.com/deep-learning-understand-the-inception-module-56146866e652

[79]

8. USER INTERFACE

Here is the welcome page of ‘Here We Are’! Crediting freepik.com for website

images.

Select burger button on the upper-right side of the page, to open navigation.

[80]

Select purple button, to go to login page. If you do not have an account,

select ‘Sign up here’.

Complete the form and press Sign Up.

App directs you to Profile Page. Selecting “Update Profile Info” you can update

your personal information. Remember to check information for each input.

Press “Update Profile” button and, thanks to virtual DOM, update time is

minimum.

[81]

Through navigation, go to Vehicle Information, and add vehicles. On the right

side of the screen, you can see the vehicles you have added.

So, if you have filled in the form correctly, when you press Add Vehicle, you are

redirected to the vehicle page, to update info about the insurance and if you

are owner of the vehicle.

[82]

Once you update insurance info, ‘Update Insurance’ button is hidden, till the

insurance expires. In case you don’t have an updated insurance, then an

information badge appears to let you know that you should update your

insurance.

In case you want to make a vehicle accident statement select from navigation

‘Accident Information’. On the right part you can see your accident history.

[83]

In case you have not entered your information, the form declare accident

does not appear. Additionally, you cannot select a vehicle that does not have

a valid and updated insurance.

So, if you have filled in the form correctly, when you press Declare Accident,

you are redirected to the accident page, to make your accident statement,

add sketch, photos, and the other driver(s) that were in the accident.

[84]

So, the form has all your data, and you have to Update Statement.

[85]

Once you complete the statement, ‘Add Accident Photo’ and ‘Draw

Accident’ buttons and the link for damage detection appear.

Draw the accident and press ‘Update Accident Drawing’, and you will see it in

your statement right away.

[86]

Next, add accident photos, one-by-one. If you want to view one, you can

select the image in the Select Image Option and press the “Open Image”

button that just appeared and the selected image opens in a new window.

To add the other driver’s data,

Pressing “+” button, pending statements show the driver that has not used the

page to make a response to the accident statement. You can add another

driver if you want, or delete one, if they have not made an accident statement.

[87]

To use damage detection, either select the link in the accident statement or

use navigation.

Press “Select Photo to Detect Damage” and add a photo of your damaged

car. For example, let us upload the photo below:

The happy detective asks if the detection system is correct. And he is correct!

So let’s press “Yes”. Then he asks if you want to add the prediction to an

accident statement you have made.

[88]

Pressing yes, you have to select in which accident you can add the prediction.

Confirm and you are redirected to accident statement.

Let us see now how the other driver updates the statement. Say that they have

an account and have already added the vehicle in their account with the

insurance updated.

Accident information page has already the accident and has a warning that

the user should add an accident statement.

Pressing the “View Accident Info” they go to the same page, where they

cannot – of course- edit anything in the statements of the other drivers. But they

can see the exact same data, the sketch, the photos, everything.

[89]

They can find their data as the first driver stated in Pending statements, and

they can add a statement. Select the button, and the same accident

statement opens. Adding the data and pressing “Create Statement” button,

they are no more in pending statements, and the page looks like this:

[90]

[91]

Now they can update their statement, the same way the first user did. The only

difference is that they cannot add or remove other drivers.

When the form is completed, each driver can declare his accident statement

as completed.

If a master user is logged in, navigation is different.

[92]

By searching a user, master may block him or see user’s accidents. If the user is

blocked, then master can activate user’s account.

If an insurance company is logged in, navigation is different:

By searching a vehicle, insurance company may block him or see user’s

accidents. If the user is blocked, then master can activate user’s account.

[93]

Pressing “Get all open cases” button, insurance company can view all its open

cases of accidents. There is a “search by last name of driver, address, date,

city” field that filters accidents according to user input.

