IHHANEHIETHMIO HEIPAIQX

oA Xp1NUOTOOIKOVOUIKIG KOl XTATIGTIKIG

Tupa Xratictiknc ko Ac@aretikng Emotiung

Merantoyuoxé lpoypappa otnv EQoppoopévn ratietiki

Amotipnon Opowdtnrag Ohotikov Tpoytov Kivodpevov
AvTIKELPEVOV

Baoiing I'ewpydxac

Aumlopatikny Epyocio
mov vroPAnnke oto Tuquo Ztatwotikhig kot Aceoiotikig Emommung tov
[Moavemommuiov Ilelpodg ®g pEPOG TOV AMOUTACE®V Yo TNV AmOKINGN TOV

Mertamtoylakov AmAdpoatog Ewdikevong omv Epappoopévn Ztatiotikn.

Mewparag
Yentéupprog 2021



H mopovoa Aumhopatikiy Epyacia eykpifnke opdpova amd v Tpuein EEetaoctiky Emtponn
nmov opicOnke and ™ I'ZEX tov Tpnuatog Xtotiotikig kot Aceoiotikig Emoetiung tov
[ovemomuiov Iepoibdg oty v’ apOuod ...... GLVESPIOON TOV GUUPOVO, LE TOV ECHOTEPIKO
Kavoviepo Asttovpyiag tov Ilpoypaupatog Metantoylokdv Znovddv otnv Eeapuocuévn

2TOTIOTIKN

Ta pén e Emtponig nrov:

—  Nwdhoog Ieréxng
—  Mépxog Kovtpog
—  EkevBéprog Kopidong

H éyxpion g Aummhopotikn Epyaciog amd to Tunpa Ztatiotikng kot Acpoiotikng Emotiung

tov [Tavemotuiov Tepaidg dev VTOINADVEL ATOSOYN TV YVOU®DY TOL GLYYPOPEQ.



UNIVERSITY OF PIRAEUS

School of Finance and Statistics

Department of Statistics and Insurance Science

Postgraduate Program in Applied Statistics

Evaluation of similarity in holistic trajectories

Vasilis Georgakas

MSc Dissertation
submitted to the Department of Statistics and Insurance Science of the University of
Piraeus in partial fulfilment of the requirements or the degree of the Master of Science
in Applied Statistics

Piraeus
September 2021



2TOVG YOVEIS O KAl OTOV GOEPPO OV



Evyapiwetiec

Ba Ndera va evyapiotiow Bepud tov emPAénovia kabnyntr pov, k. Nikoroo [Teréxn,
v TNV ToAvTun Bondeta, ™ otpién ka tnv kafodMyncn Tov TNV LAOTOINGT TG TAPOVCAG
dmlopotikng epyociag. Emiong evyapiotd Bepud tov kabnyntéc, k. Mapko Kovtpa kot K.

EXevBépio Koidn yio tnv cupUETOYN TOVS GTNV TPIUEAT] ETTPOTN KOl VTOGTHPIEN TOVG.

Téhog, B ® va o éva pLeydAo EVYOPIOTM GTNV OIKOYEVELD LLOV Y10 TV VTOGTHPEN Kot

TNV GUUTOPAGTOGT) OV LoV £3MGAV KATAE TNV SIIPKELL TOV GTOVIDV LLOV.






Iepidnyn

Mo moAAd ypdvia n €pevva TOVEO GTNV OTOTIUNOM OUOOTNTAG TPOYIDV EMIKEVIPOONKE GE
dodidototeg akorlovbicg onpeimv, Aapufdavovtag veoyn Lovo TANPOPopieg YMPOL Kot XPOVOL,
OV OVOUALOVTOL OKATEPYOOTEG TPOYIEG. 6Td00, N awénuévn xpnon texvoroyiov GPS kot
KOW®VIKGV dIKTO®V, 001YNGE TOALEG TPOGEYYIGEIS GTOV EUTAOVTIGHUO OVTMOV TOV KIVOOUEVOV
OVTIKEWEVOV IE TOMOATAEC SIOOTACELS CLUTEPIAAUPAVOUEVTG TNG CUOGLOAOYIKT O1AGTAONG.
Q¢ amotéAeGUa, Ol TO TPOCPATEG TPOCEYYIOELS EYOVV TPOTEIVEL UETPO OUOLOTNTOG TOV
vrootnpifovv 10 YOpo, TO YPOVOo Kol TN onuacworoyia. ‘Evag tpdmog cOykpiong g
OTOTEAECLLATIKOTNTOG Kot TNG OTPapOTNTAG ALTAOV TOV LETPMV OUOLOTNTOG EIvaL 1] LETATPOTN
TOV TPOYLOV KOl O LTOAOYIOUOS TNG OUOWOTNTOG HETAED NG OapyKNG TPoyds Kol Tov
LETACYNUOTICUEVOV TPOYLDY. LT SUTA®UOTIKY poG, Tpoteivoupe pio péBodo mov epapuolet
SLOPOPETIKOVG TOTOVG UETAGYNUATICUADV GE GUAGLOAOYIKEG TPOYIEG Kot dnUiovpyel GhVoA
KIVOOLEVOV  OVTIKEWEVOY  oOUemve  Le  mpokaboplopévo ovvieheot . Avtol ot
LETAGYNUOTIGHOL, EXOVV TNV IKOVOTNTO VO LETAHOPPADVOLY TIC TANPOPOPIEG TOV YDPOL, TOV
YPOVOL KaBDS Kot OAA T YOPAKTNPIOTIKA TNG ONUOCIOAOYIKNG dtdotaons. [ kdBe chvoro,
VTOAOYICOVLLE TV OPOIOTNTA TNG OPYLKNG TPOYLIS OE GYECT LE TIG LETACYNUOTIGUEVEG TPOYIES,

YPNOUYLOTOLDOVTOC SLOPOPETIKG LETPA. OUOLOTNTOG,






Abstract

For many years the research on evaluation of similarity of trajectories has focused on two-
dimensional sequences of points, considering only space and time information, called raw
trajectories. However, the increase use of GPS technologies and social media, has led many
approaches to enrich these moving objects with multiple dimensions including semantic
dimension. As a result, most recent approaches have proposed similarity measures that support
space, time and semantics. A way to compare the effectiveness and the robustness of these
similarity measures is to transform the trajectories and compute the similarity between the seed
trajectory and the transformed trajectories. In our thesis, we propose a method that applies
different types of transformations over semantic trajectories and creates sets of moving objects,
according to a predefined rate r. These transformations, have the ability to transform the
information of space, time and as well as all the attributes of the semantic dimension. For each
set, we calculate the similarity of the original trajectory in relation to the transformed

trajectories, using different similarity measures.
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Chapter 1. Introduction

In the last decades, the research on moving objects has attracted a lot of attention,
driven by major developments in the field of technology, due to the use of smartphones with
high accuracy GPS-enabled which keeps track of the location of the user, large amounts of data
are available, representing the movement history of moving objects, known as trajectories.
When an object is moving, its data that describes the information of its motion is collected
through its movement in the form of space and time, called raw trajectories. A raw trajectory
refers to a sequence of sample points T = <pi, pz, ... , pn> With pi = (X, Vi, ti), where X, y
represents the position of the object in space and t corresponds to the time dimension. An
example of a raw trajectory is illustrated in Figure 1-1. In this figure, assume we have a
trajectory T, where small circles correspond to the sampled points. The spatial coordinates and
the time instants can be seen next to the trajectory points. The last point of the trajectory in the

figure is located at the coordinates (102, 55) at time instant 7.

Figure 1-1: Example of a Raw Trajectory
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In recent years, trajectory similarity analysis has experienced significant growth, and
several measures have been proposed for raw trajectory similarity, basically considering the
properties of space-time. Movement similarity measures are useful for several application
domains. Typical examples include collecting trajectories in taxicabs for the safety of the
passenger, so we can detect if the taxi driver took a different path than the one he is supposed
to use. For example, assume that a large number of taxis take the similar routes between two
destinations, then we may identify the representative trajectory between these two destinations,
and can further infer future locations based on the historical movement of a taxi. More examples
are, tracking animals for their migration patterns or identifying their specie by their trajectory
and on applications that support friend recommendation based on the paths they follow on their

daily life and how similar they are, what is useful in sharing a car or a taxi.



Similarity measures have been proposed for several purposes such as clustering
techniques for grouping most similar trajectories such as in (Lee, Han, & Whang, 2007), (Zhao,
2011), in (Pelekis, Kopanakis, Kotsifakos, Frentzos, & Theodoridis , 2011) where they study
the effect of uncertainty in Trajectory Databases clustering and SemT-OPTICS for semantic
trajectory clustering proposed in (Pelekis, Sideridis, Tampakis, & Theodoridis, 2016),
extending the well-known T-Optics (Nanni & Pedreschi, 2006) clustering algorithm that was
focused on raw trajectories. Furthermore, more measures proposed for classification of objects
according to their trajectories, predicting their location based on trajectories that follows the
same paths, outlier detection by identifying the individuals that have different movement from
the majority etc. Most state-of-the-art methods on similarity measurement have focused on raw
trajectories. These approaches have considered the physical properties of raw trajectories and
a summary of these measures is presented in (Ranacher & Tzavella, 2014). Some examples of
these approaches include the well-known DTW (Dynamic Time Wrapping) (Berndt & Clifford,
1994), developed for time series, LCSS (Longest Common SubSequence) (Vlachos, Kollios,
& Gunopulos, Discovering similar multidimensional trajectories, 2002), EDR (Edit Distance
on Real sequence) (Chen, Ozsu, & Oria, Robust and fast similarity search for moving object
trajectories, 2005), ERP (Edit Distance with Real Penalty) (Chen & Raymond, On the marriage
of edit distance and Lp norms, 2004) and UMS (Uncertain Movement Similarity) (Furtado,
Alvares, Pelekis , Theodoridis, & Bogorny, 2018). The majority of these measures, compute
the similarity score by comparing all points of one trajectory with all points of another to
compute their distance in space by using dynamic programming approach (DP). DTW is a
distance-based measure and on the other hand LCSS and EDR are e-threshold based strategy
meaning that they use threshold to determine if two sample points match or not. Their main
drawback is that they force a match on all dimensions in order to find similarity between
trajectory points, not allowing partial similarity. ERP can handle local time shifting, which is
essential for time series similarity matching, and is a metric. UMS focus only on the spatial
dimension and use ellipses to compute the similarity of trajectory sample points as proposed in
(Pfoser & Jensen, 1999). Furthermore, it avoids to use a fixed point threshold which makes it a

parameter free method.

All the aforementioned works are focused only on spatio-temporal information of raw
trajectories and are not eligible to take into consideration the semantics of a trajectory. More
recently, an enormous effort is being made to add more data due the explosion of big data
generated on the internet and the increasing use of social media, mobility data can be enriched
with several kinds of semantic information, transforming raw trajectory into a semantic
trajectory. The notion of semantic trajectory has several definitions and can be found in the

literature for a semantic trajectory, such as (Alvares, et al., 2007) and (Bogorny, Renso, Aquino,



Siqueira, & Alvares, 2014). Basically, a semantic trajectory is a sequence of locations with
semantic data, such as the name and the type of the visited sites by a moving object, and the
activities performed at each point. For the sake of simplicity, semantic trajectories are
represented as a sequence of visited places called stops and moves, as originally introduced by
(Spaccapietra, et al., 2008).

Figure 1-2 shows an example of a semantic trajectory, where trajectory A has four stops
(Home, Work, Gym and Restaurant) and three moves (Main Street, Stanford Street, Charles
Street). Note that in Figure 1-2 the trajectory is distributed along with the spatial coordinates,
the time interval that the stop occurred, the category of the place and the street where the
movement object moves. More attributes can be added to the stops and moves such as the
activity of the stop, the transportation means etc., but the basic attributes that a trajectory should

have are space, time and semantics.

Figure 1-2: Semantic Trajectory A with stops and moves
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Most measures that were proposed for semantic trajectories does not consider all three
dimensions (space, time and semantics) like MSTP (Maximal Semantic Trajectory Pattern
Similarity) (Ying, Lu, Lee, Weng, & Tseng, 2010) which considers only the semantic
dimension of a trajectory through stay cells. It assigns semantic terms to these cells and defines
measure of semantic similarity based on the stay cells of each trajectory. An approach with the
same drawback as MSTP (can’t handle all dimensions) since it is focused only on space and
semantics, proposed in (Liu & Schneider, 2012) that splits a semantic trajectory into sub-
trajectories and based on the longest common subsequence of visited sites, it calculates the
semantic similarity of multiple trajectories. Two extensions of DTW that can handle multiple
dimensions were proposed, known as MD-DTW (Holt, Gineke, Reinders, & Hendriks, 2007)
which is built for multi-dimensional time series and (Shokoohi-Yekta, Hu, Jin, Wang, & Keogh,
2017). Most recently in (Furtado, Kopanaki, Alvares, & Bogorny, 2016) it is proposed the

MSM (Multidimension Similarity Measure), which measures the similarity of semantic



trajectories in all dimensions (space, time and semantics). In this approach, they manage to
compute the distance of each dimension with a different distance function and give different
weight for each dimension. However, due to the increase of social media, large amounts of
trajectory data are generated by users that allow us to make comparisons and users analysis
based on the type and the activities performed at each site. In (Arboleda, Fernandez, & Bogorny,
2017) a similarity method was proposed that considers semantic aspects for finding similarity
of trajectories, considering visited sited and activities performed in these sites. In (Petry,
Ferrero, Alvares, Renso, & Bogorny, 2019) they proposed a new similarity measure called
MUITAS (MUItIple-Aspect TrAjectorySimilarity) for multiple-aspect trajectories which
considers both dependent and independent and semantically related attributes. In all previous
approaches, the measures do not consider both stops and moves of a semantic trajectory.
Considering this, in (Lehmann, Alvares, & Bogorny, 2019), they proposed a new semantic
trajectory similarity measure that extends MSM, called as SMSM (Stops and Moves Similarity
Measure), and takes into account both stops and moves, as well as their space, time and
semantic dimensions. Furthermore, it considers the order between stops and gives different
weights to stops, moves and dimensions according to the needs of the experiment.

In order to evaluate all the similarity measures many approaches use information
retrieval evaluation technique. Specifically, they use the Precision-Recall approach, computing
the Mean Average Precision (MAP), as stated in (Manning, Raghavan, & Schiitze, 2008) and
the Area Under Curve (AUC) values, as stated in (Baeza-Yates, Ricardo, & Ribeiro-Neto,
2011). The MAP value is calculated by considering the average precision in all levels of recall
and the AUC value is calculated based on the area under the ROC curve. In our thesis, we will
compute the average and the median similarity score of the initial trajectory in relation to other

trajectories that we will create.

Despite the significant amount of data and research that has become available over the
past years, existing trajectory similarity measurements only consider a portion of the
information contained in trajectory data and therefore the methods they use may not be
interpreted well in both semantic meaning and geographic distributions. As a result, enriching
trajectories with semantic geographic information and applying data mining techniques on
moving objects proof a good way in discovering behavioral patterns of moving objects that are
more accurate and easy to interpret like proposed in (Alvares, et al., 2007), (Chakri & Raghay,
2016), (Wan , Zhou, & Pei, 2017). However, the complexity of moving objects and the lack of
real datasets with semantic information, lead to the need of generating realistic datasets that
demonstrates the mobility life of a population of moving objects such as Hermoupolis
simulator presented in (Pelekis, Sideridis, Tampakis, & Theodoridis, 2016). Nevertheless, our

work will not focus on this field of research.
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1.1. Objective

In our thesis we will propose a method in which we will apply a set of transformations
over a seed trajectory. The trajectories that will be used for our experiment will consider stops
and its attributes, and therefore the transformations over the original trajectory will change the
information of stops. In addition, the method of the transformations supports multiple
dimensions, such as space, time and semantics, meaning that the types of the transformations

will consider applying changes on all dimensions, depending on the proposed transformation.

In (douglasapeixoto, 2018) a benchmark system for trajectory similarity/distance
measures was proposed with the following functionalities: i) choose well -suited techniques, ii)
guide to select appropriate parameters, iii) reduce the development complexity. To support
these functionalities, they designed a tool which apply trajectory data transformations, re-
implement state-of-the-art trajectory distance measures within a common framework and
calculate a mean to evaluate these techniques with different parameters. The languages used to
design this tool were mostly Java and HTML, having the following application main GUI

window:

Figure 1-3: Application main GUI window

Distance Measure | Distance Chart
Open Trajectory Dataset A: Configure Dataset B Transformations:
Open
Add Noise: Rate: Distance:
Open Trajectory Dataset B:
Shift Points: Rate: Distance:
Open
Add Points: Rate:
Output Configuration
Remove Points: Rate:
Result’s Directory:
Sampling Rate: Rate:
Open
Normalization: Min: Max: Scale: Rate:
MIN-MAX - 1 100 Time Shift: Start Time:
Sort Results By: Rotation: Angle:
DISTANCE -
Translation: X Y:
Trajectory Distance Function:
EUCLIDEAN ~ | parameters Help Start

Some of the type of transformation applied on this work are: i) add noise to the given
trajectory, ii) add some extra sample points to the given trajectory, iii) delete sample points
from the given points, iv) randomly shift some of the trajectory points, etc. After completing
these transformations in order to investigate their effectiveness and compare the similarity of
the trajectories, they use some similarity/distance measure such as DTW, Euclidean Distance,
EDR, ERP, LCSS, STLCSS (Spatial-Temporal Largest Common Subsequence distance)

(Vlachos, Gunopoulos, & Kollios, Robust similarity measures for mobile object trajectories,
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2012) and other spatio-temporal similarity measures. The main drawback of this method is that
all the transformation are based on the space or/and time information of a trajectory. As a result
as, we cannot apply this tool on similarity measures that consider semantic dimension. In our
work, we will extend the transformations on multiple dimension trajectories and similarity

measures that consider stops and the semantic information of the moving objects.

We follow a similar approach to the one proposed in (Furtado, Kopanaki, Alvares, &
Bogorny, 2016), which is based on transforming a seed trajectory into many semantic
trajectories according to predefined criteria and rates. In our thesis, we are able to implement
controlled transformations over the trajectories, which allows us to compare the impact of each

transformation in every similarity measure that we will use.
The transformation that we will apply on the trajectories will be the following:

I.  Transformation of adding stops
Il.  Transformation of deleting stops
I1l.  Replacement of stops
IV.  Replacement of possible matching stops (semantic dimension)
V.  Position change of stops

In Chapter 3 and Chapter 4 we will analyze in greater depth the methodology and the tools we

used for each kind of transformation that was mentioned.

1.2. Scope and Outline

In our thesis we tried to extend (douglasapeixoto, 2018) work and apply controlled
transformations on semantic multiple-aspect trajectories, by changing the information of our
original trajectory in space, time and semantic dimension according to the type of
transformation which we apply. We evaluate and investigate the effectiveness of our method

by finding the similarity of the original trajectory in relation to all transformed trajectories.

The rest of our thesis is organized as follows: Chapter 2 describes the preliminary
concepts and the related work for this thesis. Chapter 3 presents our proposed method for the
controlled transformation of semantic trajectories, the basic concept of the types of the
trajectory transformations and the pseudo-algorithms and the techniques applied so we can
achieve all the transformations. Chapter 4 presents the evaluation techniques that we will use
and the experiments and the results obtained from it. Chapter 5, presents the conclusion of our

thesis and lastly, in Chapter 6 we present the bibliography used for our research.
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Chapter 2. Preliminary Concepts and Related Work

In this chapter we present the preliminary concepts and related works for this thesis.
This chapter is organized as follows: Section 2.1 presents the preliminary concepts. Section 2.2
presents a review of trajectory similarity measures and their characteristics, which are focusing

on raw or semantic trajectories.

2.1. Preliminary Concepts

In this section, we first introduce in Subsection 2.1.1 the preliminary concepts about
trajectories and we formalize the operations and notations that will be used frequently in the
remainder of the thesis. In addition, we present in Subsection 2.1.2 some distance measures and
pruning methods and in Subsection 2.1.3 we look at some basic concepts about similarity

measures and some evaluation techniques.

2.1.1. Raw and Semantic Trajectories

A trajectory is a sequence of time-stamped point records describing the motion history
of any kind of moving objects, such as people, animals, vehicles etc. However, the continuous
location record for a moving object is usually inaccurate or not available and therefore a

trajectory is a discrete representation of a moving object, as formalized below.

Definition 1 (Trajectory sample point). A trajectory sample point p is a location in d-

dimensional space, and t is the time stamp when p is observed.

Definition 2 (Trajectory). Trajectory is a sequence of trajectory sample points, ordered by time

stamps t. Trajectory T Is represented by a sequence of trajectory sample points. Therefore, T =

[p1, P2, ..., pnl.

The main research in the field of trajectory similarity measuring in terms of moving
objects are focused to deal either with raw trajectories or semantic trajectories. When an
individual is moving, its location is collected along time in the form of sequences of space-time

points, called raw trajectories, as formalized in Definition 3.

Definition 3 (Raw Trajectory). A raw trajectory is a time-ordered sequence T = <pi, p2, ...
pn=> of points pi = (Xi, Vi, ti), where X, y represents the position of the object in space and t

corresponds to the time dimension.

An example of a raw trajectory is illustrated in Figure 1-1: Example of a Raw
Trajectory. In this figure, assume we have a trajectory T, where small circles correspond to

the sampled points. The spatial coordinates and the time instants can be seen next to the
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trajectory points. The last point of the trajectory in the figure is located at the coordinates
(102, 55) at time instant 7.

However, due to the explosion and the increasing use of social media such as Facebook,
Instagram, Twitter, etc., internet channels and the facility to enrich trajectories with more
context information as linked open data, there are new approaches that have used background
geographic information and social media data to enrich these trajectories with a semantic
dimension, transforming raw trajectories into semantic trajectories (Alvares, et al., 2007),
(Parent, et al., 2013), (Zhang, Han, Shou, Lu, & Porta, 2014). For the sake of simplicity, in this
work we consider semantic trajectory to be a sequence of important places called stops, as
originally introduced in (Spaccapietra, et al., 2008). Semantic trajectories are more complex
and have more data associated than raw trajectories, because they consider space time and
semantics. In addition to space and time, a semantic trajectory has data, such as the type or the
place of the visited sites by the moving object, the activities performed at each site etc.
(Bogorny, Renso, Aquino, Siqueira, & Alvares, 2014). Several definitions can be found in the
literature for a semantic trajectory for the sake of simplicity, semantic trajectories are
represented as sequences of stops and moves. Stops are the most important parts of trajectories
for most applications, representing the geographic space that an object has visited for limited
time, and the moves are the trajectory points between stops, which is an extension of the

definition originally introduced in (Spaccapietra, et al., 2008).

Definition 4 (Semantic Trajectory). A semantic trajectory A = <Si, M1, Sz, My, ..., Sk,Mk, Sk+1>
is a sequence of stops and moves, where each stop si, has a set of attributes {ds1, ds2, ..., dsq}
characterizing it according to g-dimensions, and each move mj has a set of attributes {dm1, dmo,

..., dmr} Characterizing it according to r-dimensions.

Figure 1-2, shows an example of a semantic trajectory, where trajectory A has four
stops. Note that in Figure 1-2, the trajectory is distributed along with the spatial coordinates,
the time interval that the stop occurred, the category of the place and the street where the
movement object moves. More attributes can be added to the stops and moves such as the
activity of the stop, the transportation means etc., but the basic attributes that a trajectory should

have are space, time and semantics.

2.1.2. Distance measures and pruning methods

The last few years, many similarity measures were proposed (LCSS, ERP, EDR, UMS
etc.) focusing on raw trajectories, which find the similarity between two trajectories,
considering only the spatial or/and temporal dimensions. Most recently, with the trajectory

semantic enrichment, emerged the need for similarity measures like MSTP, MSM, SMSM etc.,
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that support space, time and semantics. In addition, there are several methods developed for
time-series similarity. Most of these measures can be adapted to work with trajectory data.
Euclidean distance was proposed as a distance measure between time series. The most
commonly used equal-size discrete sequence-only distance measure is Lp-norm distance. It is
a distance measure that pair-wisely computes the distance between the points between
trajectories. Some of the similarity measures are distance-based like Dynamic Time Warping
(DTW) and other are e-threshold-based. Some approaches that were proposed based on -
threshold are Longest Common Subsequence (LCSS), Edit Distance on real Sequence (EDR),
Multidimensional Similarity Measure (MSM) etc.

In the last years, many people have brought up many pruning and preprocessing
methods (FastMap algorithm, lower bound methods) to accelerate the efficiency of many
similarity measures. Most similarity measures are implemented using a dynamic programming
approach (DP), that has a quadratic O(nm) complexity where n and m are the sizes of the
trajectories. In a DP approach, an all pair-wise point-to-point comparison is performed to
determine the exact similarity between two trajectories. However, similarity measures need to
deal with huge volume of trajectory data, making it a complex issue to deal with the trajectory
data and the proposal of fast and accurate measures has an important role in trajectory data
analysis. In (Furtado, Pilla, & Bogorny, 2018) a new strategy was presented, called Fast
Trajectory Similarity Measuring (FTSM), which focuses on the reduction in the number of
element comparisons required in the similarity computing between trajectories. FTSM instead
of using DP approach, adopts an approach that takes advantage of distance properties in
Euclidean spaces to reduce the number of pair-wise point comparison required to obtain the
matching of each element. The advantage of FTSM over DP approaches relies on its ability to
prune unnecessary comparisons to determine the matchings, reducing the number of distance
operations in the similarity computation and consequently reducing its computational

complexity, and can be applied on many similarity measures such as EDR, LCSS, MSM etc.

2.1.3. Similarity measures and evaluation techniques

In order to compare two trajectories we use a similarity measure. In related works and
in this thesis, the similarity measure are based on (Lin, 1998), where two trajectories are more
similar as the commonality between each other increases, and they are less similar as their

differences increase, as formalized in Definition 5.

Definition 5 (Similarity Measure). A similarity measure on two objects A and B is a function
sim: 4 x B> [0, 1], such that the objects are more similar when the score returned by sim(A,B)

increases.
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In Section 2.2 we present the similarity measures for raw and semantic trajectories. We
define some operators and symbols, that will be used throughout the remainder of this thesis in
Table 2-1.

Table 2-1: Symbol explanation

Symbol Explanation
p A trajectory sample point
A B Trajectories
m, n Number of points of trajectory A and B, respectively

dist(pi, pj) Distance between two sample points p; and p;
dist(A, B) Distance between two trajectories A and B
di The ith-dimension of data in a point

€ Distance threshold between two points matching

2.2. Related Works

2.2.1. < Dynamic Time Warping (DTW) >

A well-known method used to measure the similarity between trajectories is Dynamic
Time Warping (DTW), developed for time series in (Berndt & Clifford, 1994). DTW finds the
best match between the elements of two sequences, creating a matrix with all possible
combinations of two elements in the sequences with the distance between them as the entries.
The total distance between two sequences is the sum of the entries of the minimum contiguous
path in the matrix. The problem of DTW is that it is sensitive to noise, because it finds at least
one match for all elements and then sums the distance values. For example, when a trajectory
A has a stop that is very distant from all the stops of B, even if all the other stops of A and B are
close, the distance will be dominated by the distant stop. A formalization of DTW between two

trajectories A and B with lengths n and m is defined as in Equation 1

Equation 1
0 ifn=0andm=20
o ifn=0orm=0
dist(Head(A),Head(B) +
DTW(A, B) = ist(Head(A), Head(B)

min {DTW (Rest(A), B),
DTW (A, Rest(B)),
DTW (Rest(A), Rest(B))} otherwise
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An extension of DTW was proposed that can handle sequence of elements that have
more than one dimension, called Multi-Dimensional Dynamic Time Warping (MD-DTW)
(Holt; Reinders; Hendriks; 2007). The MD-DTW algorithm takes k-dimensions into account
when finding the optimal synchronization between two series. MD-DTW normalizes the
distance values in the different dimensions and then creates a matrix with entries at the sum of
the distance in all dimensions. Finally, it runs DTW over the matrix and find the minimum
contiguous path. The MD-DTW algorithm is presented in Table 2-2. However, MD-DTW has
the same limitation of DTW, meaning that they find at least one match for all elements and then

sum the distance values, so they are both sensitive to noise.

Table 2-2: The MD-DTW Algorithm (Source: (Holt, Gineke, Reinders, & Hendriks, 2007))

Let A, B be two series of dimension K and

¢ Normalize each dimension of A and B separately to a zero mean and unit variance
o If desired, smooth each dimension with a Gaussian filter

e Fill the M by N distance matric D according to:
DG )= ., _,|AG k) — B(, k)|

e Use this distance matrix to find the best synchronization with the regular DTW

algorithm

The distance measure Dynamic Time Warping adaptive (DTWa) proposed in
(Shokoohi-Yekta, Hu, Jin, Wang, & Keogh, 2017) extends the classical DTW distance measure
to multiple data dimensions. DTWa has two possible approaches (DTW,, DTWp) and is based
on how the DTW computes the distance between two multidimensional sequences. DTW; is
the summed distances of all dimensions independently measured. In DTW, the independence
of dimensions is no longer allowed, and the distance is computed considering mutual
dependence between all dimensions. Then, we must decide which approach is more accurate
and export an adaptive distance measure DTW,, by using a training dataset and performing our
classification algorithm and some evaluations. Consider a dataset D = {T1, T2, ..., Tm} @
collection of M such time series and Q as a M-dimensional time series, the algorithm is
presented below in Table 2-3.

Table 2-3: Adaptive classification algorithm (Source: (Shokoohi-Yekta, Hu, Jin, Wang, &
Keogh, 2017))

Procedure adaptive_Classifier (Q, trainData, threshold)
Input: A time series query, Q, the labeled data, trainData, a threshold;
Output: An adaptive distance measure to classify Q, DTWa;
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minD < Nearest_Neighbor_Distance_D (Q, trainData);
minl € Nearest_Neighbor_Distance I (Q, trainData);
S €& minD / minl;
if S > threshold
DTWa €< DTWy;
else
DTWa € DTWq;
end if
Return DTWa

©O© 00 NOoO O b W B

2.2.2. <Longest Common Subsequence (LCSS) >

The Longest Common Subsequence (LCSS) (Vlachos, Gunopoulos, & Kollios, Robust
similarity measures for mobile object trajectories, 2012) was proposed for raw trajectory
similarity measuring, considering the distance of points in space dimension, introducing a
matching threshold when looking for the longest common subsequence between two
trajectories. In LCSS, given two trajectories A and B, and a sample point a; and b, for each
trajectory, they match if the distance between them is less or equal to a given threshold €. In
other words, LCSS find all match pairs (ai, bi) where d(aj, bi) < €, as we present in Equation 2.
Therefore, LCSS value is not a parameter free and its effectiveness highly relies on the value
of . In addition, LCSS is not a metric distance measure because it doesn’t satisfy the triangle
inequality. This approach reduces the effects of noise by quantifying the similarity between a
pair of elements to binary values: 0 if the elements do not match and 1 otherwise. Then, the
longest matching sequence is used to calculate the similarity. The longer the common
subsequence of matches between two trajectories, the more similar they are. The algorithm of

LCSS(as, b1) is given by Equation 3.

Equation 2
true dist(a;, bix) <&
match(a,b) = and dist(a;y, b;y) < &
false otherwise
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Equation 3

0 ifn=0andm=20
] 1+ LCSS(Rest(A),Rest(B))  if match(Head(A), Head(B))
LESS(A,B) = imax{LCSS(Rest(A),B), otherwise
LCSS(A, Rest(B)}

However, in case where one of the dimensions does not match, the pair of elements is
considered as dissimilar. Two main drawbacks of this approach are the need of a match in all
dimensions for an element to be considered similar and that it considers only the similar
subsequence, ignoring gaps that may vary in size of the sequences, which makes this approach
to be inaccurate on many circumstances. For example, in Figure 2-1 given three sequences A,
B and C with four, five and six elements, wee distinguish that, four elements of B and C match
with the elements of A, since the distance between the points is less than the threshold . The
longest subsequence of matching elements is four in both cases and so the total LCSS similarity
of A and B is the same as the similarity of A and C even though B and C have different number

of elements that do not match with the elements of sequence A.

Figure 2-1: LCSS example for trajectories A, B and C
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LCSS measures the similarity of two trajectories and by using the Equation 4 and
Equation 5 it can be transformed to LCSS distance. The LCSS distance and the normalized

LCSS distance is presented respectively below.
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Equation 4

dist;css (A B) = size(A) + size(B) - 2*LCSS(A, B)

Equation 5

LCSS(A,B)
size(A)+size(B)—2+LCSS(A,B)

diStLCSS (A, B) = 1

Another disadvantage of LCSS is that the value of LCSS relies on the size of compared
trajectories. Therefore, when the sampling rate of the trajectories change, the result can be quite
different.

2.2.3. < Edit Distance on Real sequence (EDR) >

Edit Distance on Real sequence (EDR) (Chen & Raymond, On the marriage of edit
distance and Lp norms, 2004) is an evolution of LCSS, following an approach similar to the
one proposed in LCSS. The distance between a pair of elements is quantized to binary values,
and a matching threshold is used to reduce the effects of noise. Compared to LCSS, EDR is not
only robust to noise, it also assigns penalties according to the sizes of the gaps in between
similar shapes, which makes it more accurate. EDR computes the distance of two sequences by
adding 0 when the elements match and 1 otherwise. Given a pair of trajectory element vectors
ai and b; from two trajectories A and B of lengths n and m, respectively, are said to match
(match(ai, by) = true) if and only if dist(a; ., bj,) < € and dist(a;, b;,) < €, Where ¢ is the
matching threshold. EDR uses subcost(a,, b;), as follows in Equation 6 to represent the
contribution of ai;, b; to the value of EDR distance. The algorithm of EDR between two

trajectories is defined as Equation 7.

Equation 6

0 if match(aq, by) = true

subcost(a,b) = { 1 otherwise
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Equation 7

{n ifm=0
m ifn=20
EDR(4,B) = min{EDR(Rest(A),Rest(B)) + subcost(Head(A),Head(B)),
EDR(Rest(A),B) + 1,EDR(A, Rest(B)) + 1} otherwise

As we mentioned before, the main drawback of LCSS is that it ignores possible gaps
that may vary in size of the sequence, but since this approach increases the distance by 1 when
the elements do not match, it solves this problem. Given the previous example that we applied
in LCSS in Figure 2-1,the distance between A and B is not the same as the distance between A
and C. Therefore, we distinguish that B and C have the same number of elements that matches

with the elements of sequence A, but they have different distance score.

EDR is neither parameter free nor a metric distance measure. Moreover, the limitation
of EDR is that the distance value of EDR highly relies on the parameter ¢, which it may cause
inaccuracy and ineffectiveness in some cases. For example, assume there are three trajectories
with the same length A = {a, a2, a3, as}, B = {ba, by, bs, ba} and C = {cy, ¢z, C3, €4}, as we can
see in Figure 2-2. According to the ¢ that we defined the distance of A and B is EDR(A, B) =0
same as EDR(A, C) = 0. However, we can clearly see that trajectory A is closer to trajectory B
than trajectory C.

Figure 2-2: EDR example for trajectories A, B and C
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As we mentioned before LCSS and EDR are robust to noise and solves the problem of
DTW of being sensitive to noise. For example, in Figure 2-3, there are three trajectories Ry =
{p1, P2, p3, P4}, Rz = {p1, P2, Ps, pa} and Rs = {ps, Pz, Ps, Po}. Assume that Ry is the trajectory
we will compare with the other two trajectories. Obviously, psis the distant point, since it is far
away from all the other points. Based on DTW measure the trajectory Rs is the most similar
trajectory to Ry, even though Rz have 3 points that match with the points of R1. This is because,
DTW is highly effected by the noisy point ps, making it inaccurate. From the Figure 2-3 we can
clearly distinguish that the most similar trajectory to R; is the trajectory R,. Since, LCSS and
EDR is robust to noise and is not affected by distant points, they both rank first R, in terms to
similarity to Rs.

Figure 2-3: Comparison of DTW, LCSS and EDR approaches (Source: (Su, Liu, Zheng, Zhou,
& Zheng, 2020))

P1 P2 P3 Pq4

Ri trajectory ——

LCSS and EDR have not been proposed for semantic trajectories, but both measures
can be easily extended to handle other dimensions (e.g. semantics). However, both measures
demand that all trajectory elements should be homogenous and as a result they can’t always
represent semantic trajectories as a sequence of heterogeneous elements. Moreover, in the case

we want to consider both stops and moves, the proposed measures are not valid.

2.2.4. < Edit Distance with Real Penalty (ERP) >

Edit Distance with Real Penalty (ERP) (Chen & Raymond, On the marriage of edit
distance and Lp norms, 2004) is a distance function proposed for time-series. ERP is a distance
measure for trajectories that can be seen as a combination of Lp-norm and edit distance. ERP
differs from EDR in avoiding the ¢ tolerance and it computes the distance between two
sequences of points by aligning the sequences, allowing possible gaps in the sequence when
there are points that do not match. ERP uses real penalty between two non-gap elements, but a

constant value for computing the distance for gaps. Specifically, given two time series R and S

22



with length m and n, and the elements r;, si, i, ERP uses edit distance to get match pairs (ri, si)
and then calculates the Li-norm distance between the elements for every sample point from q;
to a constant. The distance formula between the sample points used by ERP is the following

Equation 8:
Equation 8
|y — sil if 1, s;not gaps
distgrp(ry, i) =1 |ri — g1 if siisagap
si — g1 if ryisa gap

where g a constant that the user define its value. In this work an appropriate value of g is any
value that satisfies the triangle inequality, but it is suggested to pick g = 0. The ERP distance
between R and S is defined in Equation 9.

Equation 9

ITlsi — gl if m=0

1 — gl if n=0
ERP(R,S) = { min{ERP(Rest(R), Rest(S)) + distggp(Head(R), Head(S)),

ERP(Rest(R),S) + distggrp(Head(R), g),

ERP(R,Rest(S)) + distgrp(Head(S), g)} otherwise

Furthermore, because of the use the parameter g, ERP is not parameter free method.

2.2.5. < Mining User Similarity from Semantic Trajectories >

In (Ying, Lu, Lee, Weng, & Tseng, 2010), they proposed a novel approach for
recommending potential friends based on users semantic trajectories of mobile users. The raw
trajectories become semantic trajectories though stay cells. A stay cell represents a place where
the user made a stop such as school, gym, restaurant, etc., as we can see on Figure 2-4. .In
addition, in the following table (2.4) there are all the information of the semantic trajectories.
Based on the Figure 2-4 we have two trajectories, where the subsequence of the pattern are for
trajectory P = <{School}, {Park}, {Park, Work}, {Coffee}, {Restaurant}> and for trajectory Q
= <{School}, {Park}, {Gym}, {Coffee}, {Restaurant}>.
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Figure 2-4: Example of MSTP for trajectories P and Q (Source: (Ying, Lu, Lee, Weng, &
Tseng, 2010))

P trajectory

Q trajectory

Restau
rant

Coffee

Table 2-4: Moving patterns of trajectories P and Q

Trajectory Semantic Trajectory
Trajectory P <{School}, {Park}, {Park, Work}, {Coffee}, {Restaurant}>
Trajectory Q <{School}, {Park}, {Gym}, {Coffee}, {Restaurant}>

The core of this framework is a novel similarity measurement, called Maximal
Semantic Trajectory Pattern Similarity (MSTP-Similarity), for measuring the similarity
between two semantic trajectories based on the stay cells of each trajectory. The more common
parts the trajectories have the more similar they are. As a result, it uses the Longest Common
Sequence (LCS) between two semantic trajectories to represent their longest common part. The
difference from LCSS approach is that, MSTP defines a ratio between each trajectory of the
common part to a pattern P as follows on Equation 10.

Equation 10
ratio(LCS(P, Q), P) = lliifﬁiﬁs‘Pl'Z’l'M(Pi,Lcsj)’
where
Equation 11
M(P, LCS)) = BOSlif 1es; is matching to P,
otherwise

24



Then, it computes the similarity score of two patterns, by averaging the ratios of the
common part to them, avoiding the drawback of LCSS that does not differentiate matching gaps
of various sizes. Given P and Q, there are two approaches that calculates the similarity of two
patterns (Equal Average (EA) and Weighted Average (WA)), as shown in Equation 11 and
Equation 12.

Equation 12

ratio(LCS(P,Q),P)+ratio(LCS(P,Q),Q)

MSTP — Similarityg, (P, Q) = 2

Equation 13

MSTP — Similarityy, (P, Q@) = lPl*mtio(LCS(P'Q)';);“?FMM(LCS(P'Q)’Q)

However, MSTP has huge limitations due to the fact that it’s a measure focusing only

on the semantic information of a trajectory, so it can’t handle multiple dimensions.

2.2.6. < Similarity Measurement of Moving Object Trajectories>

The work of (Liu & Schneider, 2012) proposed a novel approach to measure the
similarity between trajectories that are focusing on two aspects, the geographic and semantic
similarity. Firstly, it splits a trajectory into sub-trajectories, by using a speed ratio to identify
their movement patterns. Then, it defines the similarity measurements in geometry, which
introduces three concepts we must take into consideration: i) how close in distance are the
centroids of the trajectories, ii) the difference of the lengths between trajectories iii) the cosine
similarity between the directions of two sub-trajectories. After that, it defines the semantic
similarity between trajectories, which is symmetric, by adopting the longest common
subsequence algorithm, introduced in LCSS. This approach have many limitations since it’s
not considering the time dimension and it demands spatial matching in order to consider similar

two trajectories.
2.2.7. < Multidimensional Similarity Measuring for Semantic Trajectories
(MSM) >

Multidimensional Similarity Measure (MSM) was proposed in (Furtado, Kopanaki,
Alvares, & Bogorny, 2016) which measures the similarity of semantic trajectories or

multidimensional sequences. MSM is a multidimensional similarity measure for sequences,

which overcomes various drawbacks of the aforementioned approaches when dealing with
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semantic trajectories, such as the sensitivity to noise, tolerance for possible gaps with different
size and the prevalence of the worst dimension similarity when elements of the sequence do
not match in all dimensions. In this approach, in order to determine if two elements match in a
dimension, each dimension have its own distance function and threshold, as can be seen in
Equation 14. For example, two elements can match in one dimension unlike other dimensions

that they may not match.

Equation 14

if disty(a,b) < maxDisty

(1
matchy(a,b) = {0 otherwise

MSM in order to compute the matching score, it considers the dimensions separately
and therefore has the ability to give different importance in each dimension Dy. This is
accomplished by proposing a pre-defined importance weight wgy that corresponds to the weight
of each dimension. The matching score between the elements is computed in Equation 15,

where MSM sums the matching value for all D dimensions and multiplies it by its weight wg.

Equation 15

score(a, b) :ZLDzll(matchk (a,b) *wy)

To compute the similarity score between two trajectories, MSM tries to find only the
best matching score of each element a in relation to B. For that reason, it calculates the parity
between them, as follows in Equation 16, which is the sum of the highest score of all stops a of

the trajectory A, when compared with all the stop of trajectory B.

Equation 16

parity(4, B) = ), _ max{score(a,b):b € B}

Finally, MSM calculates the multidimensional similarity measure MSM(A, B) between
the trajectories A and B by averaging the parity values of A with B and of B with A, as presented

in Equation 17.

Equation 17

0 if |Al|=0V|B| =0
MSM(A, B) =1 parity(AB)+parity(B,A)

otherwise
|A|+|B|
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The comparison of two semantic trajectories A and B with the proposed similarity
measure MSM can be seen in Figure 2-5. In this figure, where A = {ay, ...,as} and B = {by, ...,
bs} are two semantic trajectories, we have three dimensions for each element of A and B: Space
(D1) — Time (D) and Semantics (D3). Specifically, the two semantic trajectories are presented
below in Table 2-5. MSM calculates matching score for all dimensions between all pairs of
elements of A and B (with the use of Equation 14 and Equation 15), by using an appropriate
distance function and threshold for each dimension. Then, it computes the parity (Equation 16),
by summing the best matching score of each stop of trajectory A in relation B and of each stop
of trajectory B in relation to A. Finally, it calculates the similarity score of A and B by applying

the function describes in Equation 17.

Figure 2-5: MSM example for trajectories A (blue) and B (red)
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Table 2-5: Information for trajectories A and B

Trajectory A {((25, 101), [11:30pm — 8:30am], Home),
((52, 68), [9:30am — 6:00pm], Work),

((123, 49), [7:00pm — 8:30pm], Gym)),

((72, 56), [9:00pm — 11:00pm], Restaurant)}
Trajectory B {((160, 23), [11:30pm — 7:30am], Home),
((160, 31), [7:45am —9:00am], Gym),

((222, 142), [10:00am — 6:00pm], Work)),
((205, 76), [6:30pm — 8:00pm], Coffee),
((83, 4), [9:45pm — 11:45pm], Cinema)}
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To sum up, this approach considers separately each dimension, such as space, time and
semantics and it supports the definition of individual importance weights for each dimension.
MSM is more robust and effective than LCSS and EDR in the domain of semantic trajectories,
by allowing partial dimension matching and many-to-many elements matching, and by ignoring
the order of the stops. However, the sequence of the stops may play a decisive role on some
applications, resulting in decreasing the accuracy in trajectory similarity analysis. Furthermore,
MSM just like in MSTP ignores the moves between the stops, as it was developed to consider

only the stops.
2.2.8. < Unveiling Movement Uncertainty for Robust Trajectory Similarity

Analysis (UMS) >

UMS (Uncertain Movement Similarity), a parameter-free trajectory similarity measure
for raw trajectories, was proposed in (Furtado, Alvares, Pelekis , Theodoridis, & Bogorny,
2018). UMS is exclusively focusing on the spatial dimension that covers the gaps between
trajectory sampled points, where two moving objects considered similar if they share a similar
path in space. The main difference of UMS with related similarity measures that were proposed,
is that in order to improve the accuracy in trajectory similarity analysis, it uses an elliptical
representation of trajectory to compute the distance between two trajectories. This approach
doesn’t need a distance threshold or linear interpolation, as the ellipses are dynamically defined

according to the distance between two consecutive trajectory points.

An example is illustrated in Figure 2-6, where the trajectories R = {ri, I, I3, rs, s} and
S = {s1, S2, S3, S4} are represented as two elliptical trajectories E(R) (Blue) and E(S) (Red)
according to UMS, but the shape of trajectories is different. The similarity score of UMS is

based on three premises: alikeness, shareness and continuity.
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Figure 2-6: Movement ellipses for trajectories R and S

Alikeness represents how similar are two elliptical trajectories based on their shapes
in space, i.e. a high alikeness score indicates that the trajectories have similar shapes. Given
two trajectories R and S, a trajectory point r € R and an elliptical trajectory E(S), the alikeness

is computed, as follows on Equation 18.

Equation 18
AR S) = 2. rerMatch(r,E(S)) * > sesMatch(s,E(R))
(RS = length(R) length(S) !
where
Equation 19
1 if e’ € E(s)|within(r,e")
match(r, E(S ={ !
@ E5)) 0 otherwise

Shareness answers the question of how much space covered by the two movement
ellipses, share in a common area. Given two trajectories R and S, a trajectory point r € R and

an elliptical trajectory E(S), the shareness is computed, as follows on Equation 20.

Equation 20

_ 1,3 epShare(rEQ)) | ¥ ogshare(sER)
S(R: 5) = 2( length(R) + length(S)

),

where

share(r, E(S)) =1 - mg?)dpnd (r, e"),and d,,q is the reference point normalized distance.
e'€E(s
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The third premise is continuity: the movements ellipses order represents individuals
traveling in the same direction. Given two trajectories R and S, a trajectory point » € R and an
elliptical trajectory E(S), let U = <first(r1, E(S)), ..., first(rn1, E(S)), first(r,, E(S))> and V =
<first(sy, E(R)), ..., first(sm1, E(R)), first(sn, E(R))> be two sequences with the first matching
positions of all elements r € R and s € §, the continuity is computed as follows on Equation
21.

Equation 21
_ 2 o<isy YalAW;) » o<j<v] VLA (V)
LR 9= length(R) length(s) '
where
Equation 22
valid(i )_{ 1 if k=1vu#-1)Uk>Tu+#—-1Aug= ugq)
o otherwise

Finally, the similarity score of two trajectories is computed as follows on Equation 23.

Equation 23

UMS(R, §) = LEED « o )

UMS is more robust and precise than related similarity measures to the movement
uncertainty, as it solves the problem of variations in the sampling rate caused by the sampling
rate and the heterogeneity of this kind of data, but it can’t handle trajectories with higher sample
rate, because the movement ellipses will be smaller as the sampling rate grows, making lower
the shareness value. In addition, UMS can’t handle multiple dimensions, since it considers only

the spatial dimension.
2.2.9.< MUITAS: Towards semantic-aware multiple-aspect trajectory
similarity measuring >

A new similarity measure for big trajectory data that involves multiple semantic
dimensions was proposed in (Petry, Ferrero, Alvares, Renso, & Bogorny, 2019), called
Multiple-aspect Trajectory Similarity (MUITAS). MUITAS is flexible enough to consider both

dependent and independent attributes and therefore taking into account the semantic

relationship between attributes. In addition, this approach can handle each attribute differently,
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by allowing the definition of weight and giving the importance needed to each attribute.
MUITAS, introduces new terms, called aspect and multiple-aspect trajectory. Aspect is any sort
of information annotated to the trajectory such as the weather, the transportation means, etc.

Firstly, we must define an application g2 = (A, D, 4, F, W), where A = {a, a, ..., an}
is a non-empty set of attributes, A={disty,dist,, ...,dist} is a non-empty set of distance functions,
A={01,02,...,0} is a none empty set of distance thresholds, F ={f1,f,,...,£} is a non-empty set of
features, and W ={w1,wy,...,wi} is a non-empty set of weights. disti and ¢; are the distance
function and threshold of attribute a;. For each feature fi &, we define a corresponding weight
wi éW such that Z'iill w; = 1. Note that, not all applications have the same features, meaning
that they may have different distance functions and/or different thresholds. Then, given two
trajectories p €P and g €Q and an application ¢ = (A, D, 4, F, W), to compute the similarity
for two multiple-aspect trajectories we define a function to calculate the matching score
between the p and q, as follows in Equation 24,

Equation 24

score(p, ) =L y1; (matchy; (p, q) * w;

where

Equation 25

lf Va] € fl,dlStJ(p,Q) < 51’

1
matche;(p,q) = {
! i®,4) 0 otherwise

In order to proceed forward and propose the multiple-aspect trajectory similarity
measure MUITAS we will use a parity function defined by MSM. It calculates the parity
between them, as follows in Equation 26, which is the sum of the scores of the best matches of

the points of trajectory P, when compared with all the points of trajectory Q.

Equation 26

parity(P, Q) = ), ., max {score(p,q):q € Q}

Finally, the similarity of two multiple-aspect trajectories P and Q, computed by

MUITAS, is given by the average parity of P and Q, in the following Equation 27.
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Equation 27

0 if IPl=0VvI[QI=0
MU[TAS(P,Q): parity(P,Q)+parity(Q,P)
[Pl+]Ql

otherwise

Let us consider the example shown in Figure 2-7, with trajectories P and Q, where each
trajectory has three attributes: the category of place visited, the temperature and the price range
of the place (low, medium, high). In this example, trajectory P and Q visit the same place (hotel)
on the first POI, with the same temperature, but different price range. After that, they visit

different category of places with slightly different temperature, but with the same price range.

Figure 2-7: Example of MUITAS for trajectories P and Q

P Trajectory
P1 P2 ps
? Hotel Q Restaurant

------------------ {§35°-39°
€ Medium

{}28°-32°
€ High

------------------ (26°-30°
€ High

Q Trajectory
(o] 02 03
f Hotel ﬂ Coffee ﬂ Bar
B28°320 ----------ooooood > 290330 --------oooooos > [§26°-28°
€ Low € Medium € High

Although MUITAS focused on multiple-aspect trajectories, the proposed similarity can
be applied to any type of trajectory and adjust to different applications and scenarios.
Furthermore, it overcomes the limitation of state-of-art methods, by allowing partial attribute
dependence, being robust to noise and by using different distance function for different
attributes and weighting them. However, due to the fact that it needs to use huge amount of
heterogeneous data attributes, it makes the trajectory similarity more complex than similar
existing methods.
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2.2.10. < SMSM: a similarity measure for trajectory stops and moves >

In the work of (Lehmann, Alvares, & Bogorny, 2019) Stops and Moves Similarity
Measure (SMSM) was proposed, a similarity measure for semantic trajectories. SMSM is an
extension of MSM, which takes into account both stops and moves, considers the sequence of
the stops, allows different semantics for the moves and by supporting the definition of weights
for stops, moves and dimensions, it provides more or less importance for each part of trajectory.
SMSM is the first similarity measure to consider both stops and moves of semantic trajectories

and overcomes the limitation of MSM.

A move always start and end with in a stop and can be characterized by different
attributes. SMSM introduces a new concept, described as movement element e = <stopS, move
stopE>, which is the move between two consecutive stop, stopS and stopE. A semantic
trajectory will be considered as a sequence of movement elements, as follows: ST = <e; = (51,
M1, S2), ..., en = (Sn, Mn, Sn+1)>. Given two semantic trajectories A and B, the similarity of a
movement element of trajectory A with another movement element of trajectory B is divided in
two parts, their stops and their moves. To determine if two elements match we define the match
function, presented in Equation 28, where it returns 1 if the distance of two movement elements
is less than the threshold, and O otherwise.

Equation 28

if disty(a,b) < maxDisty

(1
matchy(a,b) = { 0 otherwise

SMSM in order to compute the total score for two movement elements a and b, it
considers the stops and moves separately, therefore it has the ability to give different importance
in each of them, depending on the needs of the application. This is accomplished by setting Wsiop
and Wmove, the weights of the stops and the moves, respectively. The total score for movement

elements is computed in Equation 29.

Equation 29

score(a, b) = scoreStop(a, b) * Wstop + ScoreMove(a, b) * Wi ope

The functions scoreStop(a, b) and scoreMove(a, b) are defined in Equation 30 and
Equation 31 respectively, where r and g are the number of dimensions of stops and moves.
This is accomplished by proposing a pre-defined importance weight wy that corresponds to the

weight of each dimension. The score of the stops, computed in Equation 30, is given by the
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weighted sum of the matching values for all D¢ dimensions of the start and end stops of two

movement elements. The scoreMove highly depends on the function matchStops(a, b).

Equation 30

scoreStop(a, b) :Z}::ll(matchk (astops, bstops) + match,, (astopE, bstopE)) = 2% Wy

Equation 31

SCOI’EMOVE(a, b) = { ZLqil(matchk (amover bmove) * Wy if matChStOPS(a; b)
0 otherwise

To compute the similarity score between two trajectories, SMSM aims at finding only
the best matching score of each element a in relation to B. For that reason, it calculates the
parity between them, as follows in Equation 32, which is the sum of the highest score of all

stops of the trajectory A, when compared with all the stop of trajectory B.

Equation 32

parity(4, B) = 3, _ max {score(a,b):b € B}

Finally, SMSM calculates the stops and moves similarity measure SMSM(A, B)
between the trajectories A and B by averaging the parity values of A with B and of B with A,

over the sum of the number of elements in A and the number of elements in B, as presented in

Equation 33.
Equation 33
0 if|Al=0V|B| =0
SMSM(A, B) = parlty(A,lli)lizlJ;lrlty(B,A) otherwise

Let us consider the trajectory shown in Figure 1.2, where trajectory A represents the
daily routine of a man. Considering the notation stop name ((x, y), [start timestamp - end
timestamp]), the man has the following movement behavior: stays at Home ((25, 101),
[11:30pm — 8:30am]), then he goes to work via Main street ((52, 68), [9:30am — 6:00pm]), and
from there goes to Gym via Stanford street ((123, 49), [7:00pm — 8:30pm)]), finishing the day
moving via Charles street to the Restaurant ((72, 56), [9:00pm — 11:00pm]).
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In conclusion, the main contributions of this approach are that it considers the order
between stops, it deals with all dimensions (space, time and semantic), it doesn’t ignore the
moves between stops and it allows partial dimension matching by not forcing a sequence. For
all the aforementioned reasons, SMSM is more robust and flexible than similar measures
(LCSS, EDR, MSM, etc.) developed for raw or semantic trajectories.

2.2.11. < Simulating our LifeSteps by Example>

In (Pelekis, Sideridis, Tampakis, & Theodoridis, 2016) was proposed SemT-OPTICS
for semantic trajectory clustering, extending the well-known T-OPTICS (Nanni & Pedreschi,
2006) clustering algorithm that was originally designed for raw trajectories. SemT-OPTICS
relies on an effective spatio-temporal-textual similarity function over semantic trajectories. The
main idea behind this method is to measure the similarity between two timelines and transmit
the information to an effective clustering algorithm, so as to divide an SMD (a semantic
mobility timeline consisting of a set of timelines) into clusters that contain similar timelines
according to a distance measure. However, global timeline clustering may sometimes result in
a misleading result, and therefore suggested a novel distance metric that leads into a clustering
algorithm (SemT-OPTICS) which can be applied to both timelines and LifeSteps (Definition
6) by selecting the appropriate metric. Mobility timeline is a sequence of LifeSteps and each
LifeStep can be abstracted as a pair of values (6, ), where 8 is a spatio-temporal value that
provides an approximation of a portion of the movement of the user, and x provides a

corresponding textual description giving semantics to 6.

Definition 6: (LifeStep). Given a road network G (V, E) (V is a set of vertices, E is a set of
edges), a LifeStep Is corresponds to a (raw) sub-trajectory ©” of a moving object, which is valid
in G, and is defined as a tuple <lIs-id, Is-flag, MBB (Minimum Bounding Box), tags, T-link>,
where Is-id is the LifeStep identifier, Is-flag is a flag taking values from set {*Move’, ‘Stop’},
MBB is a tuple <MBR (Minimum Bounding Rectangle), [tstart, tend]> corresponding to the
3D approximation of t’, with MBR ([tstart, tend]) being the 2D enclosing rectangle of the
spatial projection (the 1D interval of the temporal projection, respectively) of t’ in 2D plane
(1D timeline, respectively), tags is a set of keywords describing the corresponding activities

and semantic annotations related to this portion of movement, and T-link is a link to 7’.

Below we give the definition of the distance between two LifeSteps Dis, which must
be set in such a way that leads to an intuitive measure for all possible pairs of LifeSteps types.
Note that Stop and Move LifeSteps may have very different sizes and for that reason the defined

function should takes this into account in order to be effective.
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Definition 7: (D.s). Given two LifeSteps Is; and Is;, their distance Dis (Isi, Is;) is defined by
using the following monotone, ranking function with respect to distance proximity of their
MBBs disty, and text relevancy of their sets of keywords dist:

Equation 34

Dys(Is;, lsj) = A = distg(Is;, lsj) + (1 —2) * disty(Is;, lsj),

where
Equation 35
] mbbd(ls- U ls-) — mbbd(ls- N ls~)
disto(Isy15) = Factuyra * < ;naxcjiistd (SMD) —
and
Equation 36

diStK(lSi, lSJ) =1- < K(lSi)*KS(lS]') )

||lc(ls,-)||2+ ||lc(ls]-)||2—1c(lsi)*x(lsj)

where the textual distance dist, is measured by Jaccard distance and w, is used to weight each
the three dimensions composing the spatio-temporal component, while A€[0,1] is used to tune
the relative importance between the two components. In addition, maxdist;(SMD) works as

a normalization factor.

To determine the function that measures the distance between two mobility timelines
(Dwr), which is a metric, they proposed a suitable modification of the Edit distance with Real
Penalty (ERP) (Chen & Raymond, On the marriage of edit distance and Lp norms, 2004).

Furthermore, Dis is used in order to measure distance Dyt and is defined as follows:

Definition 8: The distance Dwr between two mobility timelines mt; and mt; of arbitrary length,

is given by:

Equation 37

(DMT (R(mtl),R(mt])) + DLS(lSi,l - lSj,l)r
Dyr(mt;, mtj) = min< Dyr (R(mtl-),R(mt]-)) + Dys(Isi; — gap),
Dyt (R(mtl-), R(mtj)) + DLS(gap — lSj,l)
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R(mt;) indicates the LifeSteps that remained after we removed the first LifeStep of the i-th
timeline Isi. The value of the gap is similarly determined as defined in (Chen, Ozsu, & Oria,
Robust and fast similarity search for moving object trajectories, 2005) and usually its value is

gap = 0, since it’s the first value of the time scale for the time series.

2.2.12. Similarity measures characteristics

In Table 2-6 we summarize some of the characteristics of the most related measures
discussed in this thesis. We compare all measures considering the robustness to noise, if the
measure uses different distance functions, if the measure compares all pairs of elements (pair-
wise similarity), if the measure uses matching threshold, if the measure is able to handle
multiple dimensions (space, time and semantics), if the measure takes into account the sequence
of the points, if the measure takes into account the stops and the moves of the trajectory, the
use of weights for the dimensions and the allowance of partial dimension matching and if it
supports multiple-aspect trajectories. A similar table was firstly created in (Lehmann, Alvares,
& Bogorny, 2019) where they compared the main characteristics of most related similarity
measures in relation to the similarity measure they proposed.

Table 2-6: Similarity measures characteristics (Source: (Lehmann, Alvares, & Bogorny,
2019))

DTW | LCSS | EDR | ERP | MSTP | Liu | MSM | UMS | MUITAS | SMSM

Robust to noise V4 V4 V4 v v V4 v v

Different v Vv N

distance

function

Trajectory gaps v v v v v v

Pair-wise v v

similarity

Matching V4 v v V4 V4 V4
threshold

Space v v v v v v v v v

dimension

Time v v v v v v

dimension

Semantic v v v v v

dimension

Full sequence v v

Partial V4 V4 V4 V4 V4 V4 V4

sequence
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No sequence

Support stops

Support moves

Dimension

weighting

Partial

matching

Multiple-aspect

trajectories
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Chapter 3. A method for the controlled transformation of

semantic trajectories

This chapter presents in Section 3.1, the different types of transformations applied to
the trajectories, and in Section 3.2 we describe the pseudo-algorithms and the techniques that

we will apply in order to transform the semantic trajectories.

3.1. Trajectory Transformations

Since the similarity measures are not easy to compare, we can’t distinguish easily
which method is the best. In order to compare the similarity measures we will conduct an
objective experimental evaluation, by using similar approaches that was proposed in the (Wang,
Su, Zheng, Sadiq, & Zhou, 2013), (Su, Liu, Zheng, Zhou, & Zheng, 2020). Based upon these,
our evaluation procedure works as follows. We firstly define a trajectory as the seed semantic
trajectory (original trajectory). Then we perform several types of transformations on the seed
semantic trajectory according to different criteria and rates, in a controlled way (by using
parameters), resulting in several sets of transformed trajectories. For each transformation, we
will calculate the distance between the original and the transformed trajectories, which allow
us to see the impact of each transformation over the original trajectory. Therefore, for every
similarity measure, the trajectory with a lower degree of transformation should have higher
similarity score with the original trajectory, and vice versa. However, this will not necessarily
apply to all similarity measures/trajectory transformations, as some similarity measures may

not be particularly affected by the rate of the type of trajectory transformation.

These transformations are controlled by four parameters, ratio, sampling frequency,
scale and distance. In our work we will only use the parameter ratio, since we want to primarily
focus on the part of semantic transformations of the our seed trajectory. This parameter is used
to specify the percentage of sample points to be changed in a trajectory. For instance, ratio =
0.1 means that 10% of the sample points need to be changed by the transformation function.
Below, we describe in detail all the types on transformations applied over the seed trajectory,

which are based on the transformation of point shift.

Point shift transformation means modifying the sample point sequence of a trajectory,
while its shape and trend are not modified. A distance measure with the capability of handling
point shifting should keep the low distance values between a trajectory and its point shifted
counterparts. In our work we present examples and experimental observations of the five types

of transformation, applied over the seed semantic trajectory.
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In Figure 3-1 we present an example of a semantic seed trajectory Q with 6 stops, which
details the day of an office worker, where the following movement behavior is : stays at Home
((4,12), [07:30am — 8:30am]), then he goes to Work ((136, 248), [9:00am — 5:00pm]), and from
there he goes to Gym ((49, 111), [5:15pm — 6:00pm]), then he goes to the shopping stores ((6,
88), [7:00pm — 8:15pm]), from there he goes to Restaurant ((96, 231), [9:00pm — 11:00pm]),
finishing the day to the Bar ((104, 201), [11:45pm — 02:00am]).

Figure 3-1: Seed trajectory Q with 6 stops

Trai Q Gym Restaurant
rajectory ) _11.
@ (5:150m - 6:00pm] (® [9:00pm — 11:00pm]

/.e\\

/?(49, lli)\Sbopping sto;es'” 3(96' 231)\\\

4
Work , \/ \\\\ Bar
I \

Home/@ [9:00am — 5:00pm] © 17:000m -8:15pm] (® [11:45pm - 02:00am]
Q (136, 248) Pis.88) ® (104, 201)
(© [07:30am - 8:30am]
P 12)

i.  Transformation of adding stops

In this transformation, a number of stops (sampling points) are randomly generated and
added to the transformed trajectory. The stops that are added to the trajectory, have the same
dimensions with the stops of the original trajectory, i.e. the added sample point must have space,
time and semantic dimensions if the seed trajectory is multidimensional (time, space and
semantic). However, the stops that will be added, will have randomly generated elements that
won’t necessarily have any matching with the stops of the seed trajectory. In addition, the points
that we add (pi), must be between two continuous sampling points pi.1 and pi+1, which is over
the seed trajectory, meaning that we can’t add a stop which will be the first or the last stop of
the transformed trajectory. In order to control the transformation, the user defines a parameter,
called ratio r. For example, if we have a trajectory T with a size of n, adding ratio r means that
we add nxr sampling points. The added stops will probably not match in the spatio-temporal
dimensions. However, the semantic element is randomly selected from all the semantic
elements in the dataset used, i.e. if the semantic elements of the dataset used are (Home, Work,
Gym, Restaurant, Bank), then the semantic element to be selected will be among the elements

we mentioned, and therefore we may have a match on the semantic dimension.

An example of this transformation over the original trajectory is illustrated below in

Figure 3-2, where we can see the transformed trajectory. Suppose the parameter r has a value
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of 17%. Therefore, a random stop will be added, which may have a match with the stops of the
seed trajectory. In this example, we will add a stop between the sampling points gs and g-. This
sampling point (gs) indicates that, after the restaurant the moving object goes to a friend’s home
((112, 213), [11:10pm — 11:40pm]). As we can clearly see on the Figure 3-2, the stop gs doesn’t
have any matching on any dimension.

Figure 3-2: Transformation of adding stops for r = 17%

Trai Q Gym Restaurant
rajectory ) _11.
@ (5:150m - 6:00pm] (® [9:00pm — 11:00pm]
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® [11:1ﬁ)pm—11:40pﬁ1~]\ ar

- (112, 213)

Home/@ [9:00am — 5:00pm] O [7:0§pm_8:15pm] (® [11:45pm - 02:00am]
Q (136, 248) (6, 88) ? (204, 201)

[07:30am — 8:30am]

?,12)

ii.  Transformation of deleting stops

In this transformation, a number of stops are randomly removed from the seed
trajectory to generate a transformed trajectory. Similar to transformation of adding sampling
points, we control the transformation according to the parameter r. Since we randomly delete
stops from the trajectory, the sequence of the stops is changing, affecting the effectiveness of
similarity measures that takes into account the sequence and the order of the stops. As a result,
the impact of the transformation over the seed trajectory will be more crucial for similarity
measures that are affected by the change of the order of the stops. The distance between the
seed trajectory and the transformed trajectory, will be dramatically reduced, as we increase the

parameter ratio.

Let us consider an example shown in Figure 3-3, where we apply the transformation of
deleting stops over our seed trajectory. Suppose the parameter r has a value of 33%. Therefore,
two random stops will be deleted from the seed trajectory, resulting in a transformed trajectory
which will have 4 stops. In this example, the length of the transformed trajectory is reduced by

two stops and the order of the last two stops will change by deleting the sampling points gz and

Qa.
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Figure 3-3: Transformation of deleting stops for r = 33%
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iii.  Replacement of stops

In this transformation, the stops of the original trajectory are replaced with randomly
generated stops that do not have any matching with the seed trajectory on the semantic
dimension. The replaced sampling points of the transformed trajectory have different elements
than the stop of the original trajectory on all dimensions (time, space and semantic). Similar to
the aforementioned transformations, the number of sampling points to be replaced will be

decided by the parameter r.

In the Figure 3-4, is presented an example of a transformed trajectory, where we apply
the transformation of replacement of stops over our seed trajectory. Suppose the parameter r
has a value of 17% and therefore one stop will be replaced by a randomly generated stop. More
specifically, the sampling point gs will be replaced by a stop described as: Bank ((56, 62),
[6:00pm — 6:30pm]). We can clearly see that this sampling point have no matching with any of
the stops of the original trajectory and it doesn’t affect any of the other stops or the sequence

of the stops.
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Figure 3-4: Replacement of Stops for r = 17%
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iv.  Replacement of possible matching stops (semantic dimension)

In contrast to the previous transformation we mentioned, in this one, the stops of the
seed trajectory are replaced by stops with possible matching in semantic dimension with the
seed trajectory. Therefore, the stops are randomly generated and replaced according the
parameter r we define. This transformation doesn’t affect any other stop but only the sampling
point that has been randomly selected to be replaced.

In the example shown below in Figure 3-5, we see that the sampling point g2 has been
replaced by another stop, which has the same partial matching with the stop of the seed
trajectory. More specifically, the semantic dimension remains the same (Work), but the spatio-

temporal dimensions have different elements than those in the seed trajectory.

Figure 3-5: Replacement of possible matching stops for r = 17%

Traj Q Gym Restaurant
rajectory . urar
@ [5:15pm — 6:00pm] @ [9:00pm — 11:00pm]

‘B ,’
e\
-
N ~
/‘ ~ .7 N

.~Q (49, 111] ~ Shopping stores ~ Poos B

4 ~ -
Work ., \/ \\\\ Bar
I \

Home (® [7:00pm - 8:15pm]

ol [9 45am 6:00pm] ' (® [11:45pm - 02:00am]
R (148, 76) 6 28) ® (104, 201)
[07 30am — 8:30am)]
Qw4 12)

43



v.  Position change of stops

In this transformation, the order of the stops, according to the value of r, is randomly
changed. In this case, the transformation may affect more stops than those that changed, because
the spatial and semantic dimension must change between the stops that we changed their order.
For example, in case the value of r is 10% over a seed trajectory with 10 stops, the order of one
stop will be changed, but this will probably affect the sequence and the dimensions of at least
two stops. This transformation, will mostly affect the similarity measures that takes into account
the sequence of the stops, unlike other measures (like UMS) that are not affected by the

sequence of the stops.

An example of this transformation over the seed trajectory is illustrated below in Figure
3-6, where we can see the transformed trajectory. Suppose the parameter r has a value of 17%.
and therefore, the position of a stop will change. However, we note that changing the position
of the stop g4, will also affect the sampling point gs. The following movement behavior is :
stays at Home ((4, 12), [07:30am — 8:30am]), then he goes to Work ((136, 248), [9:00am —
5:00pm]), and from there he goes to the shopping stores ((49, 111), [5:15pm — 6:00pm]), then
he goes to Gym ((6, 88), [7:00pm — 8:15pm]), from there he goes to Restaurant ((96, 231),
[9:00pm — 11:00pm]), finishing the day to the Bar ((104, 201), [11:45pm — 02:00am]).

Figure 3-6: Position change of stop for r = 17%

Traiect Q Gym Restaurant
rajectory e — 11
j O 7:00pm - &:15pm] (® [9:00pm — 11:00pm]

\

3(49, 111)~~ Shopping stores ﬂ(%’ Ips
~ S Bar

Home ’ @ [5:15pm — 6:00pm]

/@’[9: %am—S:OOpm] 3(6 88) @ [11:45pm — 02:00am]
( )

136, 248) ® (104, 201)

~

(® [07:30am - 8:30am]
P4 12)

3.2. Algorithms for trajectory transformations

In this section we will describe and analyze the methods and the algorithms used for
our datasets in order to achieve the aforementioned types of trajectory transformations. First of
all, the techniques and the algorithms we constructed for our thesis are programmed in language
R.
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The dataset that we will use for the similarity measures MSM and UMS is a 4 day

scenario generated by Hermoupolis algorithm. The dataset has 8 columns (scenariolD, Moid,

MPid, edgelD, realX, realY, realTime, episodesems) and its form is the following:

Picture 1: A 4 day scenario (Original dataset)

File Edit
scenarioID
4]

Format View

0NV R WN

AR B R R PB R ERRBPERRPERERRPR BB RE B S
=
IS

MPid

14083
16184«
61404
56231
44420
61482
61482
16192
14089
14083
44420
56231
61404
61404
24427
16192
44426
32037
16192
44426
16192
56234
56231
61404
14083
44420
32038
16184«

= | =53

edgeID realX realY realTime episodesems ~
473664.4762 4200702.635 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING

@ 473286.4141 4201188.845 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473659.0907 4200680.8835 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
A473667.7075 A200670.6475 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473683.864 A200668.0885 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473680.6327 A200698.7965 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473680.6327 A200698.7965 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING

3 473209.94 4201155.578 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473656.9365 A200696.2375 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473664.4762 4200702.635 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473683.864 A200668.0885 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
A473667.7075 A200670.6475 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473659.0907 4200680.8835 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473659.0907 4200680.8835 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473039.7582 4200893.2805 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING

3 473209.94 4201155.578 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473690.32660000003 4200674.486 2.0 1;2013-11-10 0:0:0.09;STOP; CROSSING; RELAXIN
473613.8525 A4200743.579 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING

3 473209.94 4201155.578 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473690.32660000003 4200674.486 2.0 1;2013-11-10 0:0:0.09;STOP; CROSSING; RELAXIN

3 473209.94 4201155.578 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473688.1724 4200689.84 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
A473667.7075 A200670.6475 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473659.0907 4200680.8835 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473664.4762 4200702.635 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473683.864 A200668.0885 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING
473613.8525 A4200743.579 Q.9 1;2013-11-1@ ©:0:0.0;STOP; CROSSING; RELAXING

@ 473286.4141 4201188.845 Q.9 @:0:@

1;2013-11-1@

.8;STOP ; CROSSING ; RELAXING

Ln 1, Col 1 100%  Windows (CRLF) UTF-8

The meaning of each column is described on the table below:

Table 3-1: Explaining of the columns of the dataset

scenariolD

is the id of the mobility scenario run in hermoupolis. Usually is 1
though hermoupolis may run multiple mobility scenarios at the same

time.=>1

Moid

is the id of the moving object=>34

MPid is the id of the mobility profile followed by the corresponding moving
object=>2

edgelD is the id of the network edge moving object is moving on=>161839

realX is the coordinate X (in cartesian meters)=>473286.4141

realY is the coordinate Y (in cartesian meters)=>4201188.845

realTime is the time step of the generator hermoupolis in
seconds=>27671.39092144424

episodesems is the semantics of the current position of the moving object. Consist

of the episode id which is the id of the current episode moving object
is on, timestamp which is the current timestamp in YYYY-MM-DD
HH:MI:SS format, type of episode which can be STOP or MOVE,
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episode tag which is a word describing the episode and activity tag
which is a word describing moving object's current activity=>2;2013-
11-10 7:35:59.731;MOVE;DRIVE; TRANSPORTATION

Firstly we read the dataset in R and we sort the data by the id of the moving object

(Moid). The dataset is clustered in 4 classes 0, 1, 2 and 3 (MPid), so we create a row for each

stop and move the moving object made and we split the dataset into 4 datasets, where each one

will contain moving objects of only one class. Afterwards, we split the column episodesems

into 5 new columns i.e. the id of the episode, the timestamp, the type of episode, the act of the

moving object and the activity tag of the moving object. Finally, we name each column and we

save the 4 new datasets we created. With the modification we made, our dataset is in the format

we desire, so that we can implement our transformations.

To be able to find the similarity score with the help of MUITAS we used the same

dataset but in different format. However, the logic behind the algorithms for the transformations

are the same as on the other similarity measures . The format of this dataset is the following:

Picture 2: MUITAS dataset

1 |tid label day hour
2 1 7 Sunday

3 1 7 Sunday

4 1 7 Sunday

5 1 7 Sunday

6 1 7 Sunday

7 1 7 Sunday

3 1 7 Monday

9 1 7 Monday

10 1 7 Monday

11 1 7 Monday

12 1 7 Monday

13 1 7 Tuesday

14 1 7 Tuesday

15 1 7 Tuesday

16 1 7 Wednesday
17 1 7 Wednesday
18 1 7 Wednesday
19 1 7 Wednesday

0
7
10
15
13
13
7
10
14
15
19
5
12
17
4

8 ADMINISTRATION

10

14 SOCIALIZING

Act

RELAXING
WORKING
WORKING
WORKING

WITHDRAWING

RELAXING
WORKING
WORKING
EATING

WORKING
RELAXING
WORKING
WORKING
RELAXING
WORKING

RELAXING

ActTag

CROS5ING
CROS5ING
DRIVING_SCHOOL
CROS5ING

BANK

CROS5ING
CROS5ING
DRIVING_SCHOOL
FAST FOOD
CROS5ING
CROS5ING
CROS5ING
FERRY_TERMINMNAL
CROS5ING
CROSSING
PUBLIC_BUILDING
CROS5ING

CAFE
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Then, we present the methods we applied, so that we can transform the trajectories
according to the type of transformation we define. We distinguish that the dataset “4 day
scenario” contains both stops and moves, and also many variables that are not needed to
compute the similarity score between the trajectories. As a result, we will delete all the moves

and the variable we don’t need for our final dataset.
I.  Delete Stops

In this transformation we delete sample points according to the predefined rate r.
Firstly, we read one of our datasets we created before. Then, we randomly select one trajectory
and define it as our seed trajectory. After that, we create a variable called “TrajNum”, which
defines how many transformed trajectories we will construct. However, our most important
variable is called rate and the role of this variable is to control the amount of transformations
over our seed trajectory. The following pseudo-algorithm (Figure 3-7) is the core of the
transformation of deleting stops and requires the format of the dataset showed on Picture 3 (for
MSM and UMS) or the format showed on Picture 2 (for MUITAS).

Figure 3-7: Pseudo-Algorithm for deleting stops

#Read the dataset

1 data < dataset

#Randomly select a trajectory as our seed trajectory
2 t € random trajectory

#define the number of transformed trajectories, the rate r and the number of stops

3 TrajNum € n #user defines the n (i.e. 500)
4 rate €< r #define rate from 0 to 1 (i.e. 0.5)
5 count € number of stops of the trajectory

#repeat n times, so we generate n transformed trajectories
6 for (i = 1 to TrajNum) {

#delete stops according to the rate

7 delete (rate*count) STOPS

8 END #end the loop

The dataset (4 day scenario) we construct with this pseudo-algorithm has 7 columns
called EpisodelD, Type, realX, realY, Start.Time, End.Time and Act.. Therefore, our dataset
contains the original trajectory and n transformed trajectories, which describes the space (x,y)
of the stop, the start and the end time of the stop and the activity performed by the moving
object on this sample point. In addition, the dataset for MUITAS has 6 columns called tid, label,

day, hour, Act and ActTag and just like the first dataset it contains the seed trajectory and n
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transformed trajectories, which describes the time of the sample point and all the attributes of
the moving object. Then, we delete the separators (“) from the text document, so we can apply

the similarity measures. The format of the text document is illustrated below on Picture 3.

Picture 3: Format of document after deleting stops

) = | =53
File Edit Format View Help
EpisodeID Type realX realy Start.Time End.Time Act ~
1 STOP 486690.9236 4204812.389 2013-11-10 @:9:0.0 2013-11-1@ 7:41:5.693 RELAXING
3 STOP 482190.7998 42154@2.81@5 2013-11-10 7:56:43.333 2013-11-1@ 9:56:57.861 WORKING
5 STOP 477811.3112 4213919.87 2013-11-10 10:34:32.129 2013-11-1@ 14:48:43.256 WORKING
7 STOP 483130.031 4215987.542 2013-11-10 15:35:3.511 2013-11-1@ 18:23:13.967 WORKING
9 STOP 485025.727 4210231.0715 2013-11-10 18:36:57.959 2013-11-1@ 18:52:4.58 WITHDRAWING
11 STOP 486681.2297 4204818.7865 2013-11-10 19:2:26.37 2013-11-11 6:46:11.56 RELAXING
13 STOP 482932.9217 4216839.689 2013-11-11 7:13:20.206 2013-11-11 9:16:45.293 WORKING
15 STOP 477306.1513 4214853.905 2013-11-11 9:58:7.308 2013-11-11 14:13:35.461 WORKING
17 STOP 475953.3137 4208329.7345 2013-11-11 14:21:39.079 2013-11-11 15:13:13.833 EATING
19 STOP 479442 .,8406 4217325.899 2013-11-11 15:23:48.333 2013-11-11 18:45:32.23 WORKING
21 STOP 487762.6381 4285517.3935 2013-11-11 19:5:47.531 2013-11-12 5:33:53.0@6 RELAXING
23 STOP 483130.031 4215987.542 2013-11-12 5:50:42.338 2013-11-12 11:46:44.148 WORKING
25 STOP 468523.4779 4199467.9175 2013-11-12 12:11:41.138 2013-11-12 16:38:15.@83 WORKING
27 STOP 486460.4242 420480@9.83 2013-11-12 17:4:30.022 2013-11-13 3:27:8.221 RELAXING
29 STOP 479566.9842 4217505.029 2013-11-13 3:48:46.891 2013-11-13 7:50:55.574 WORKING
31 STOP 475626.9524 4209634.8245 2013-11-13 8:2:46.71 2013-11-13 10:3:36.021 ADMINISTRATION
33 STOP 486686.6152 4285293.481 2013-11-13 10:27:26.293 2013-11-13 13:47:15.288 RELAXING
35 STOP 480442 .6665 4202821.487 2013-11-13 13:56:57.288 2013-11-13 16:16:41.391 SOCIALIZING
37 STOP 487003.2826 4204733.06 2013-11-13 16:27:10.799 2013-11-14 1:51:38.32 RELAXING
1 STOP 486690.9236 4204812.389 2013-11-10 @:9:0.0 2013-11-1@ 7:41:5.693 RELAXING
STOP 482190.7998 42154@2.81@5 2013-11-10 7:56:43.333 2013-11-1@ 9:56:57.861 WORKING
3 STOP 477811.3112 4213919.87 2013-11-10 10:34:32.129 2013-11-1@ 14:48:43.256 WORKING
4 STOP 483130.031 4215987.542 2013-11-10 15:35:3.511 2013-11-1@ 18:23:13.967 WORKING
5 STOP 485025.727 4210231.0715 2013-11-10 18:36:57.959 2013-11-1@ 18:52:4.58 WITHDRAWING
6 STOP 486681.2297 4204818.7865 2013-11-10 19:2:26.37 2013-11-11 6:46:11.56 RELAXING
7 STOP 482932.9217 4216839.689 2013-11-11 7:13:20.206 2013-11-11 9:16:45.293 WORKING
8 STOP 477306.1513 4214853.905 2013-11-11 9:58:7.308 2013-11-11 14:13:35.461 WORKING
9 STOP 475953.3137 4208329.7345 2013-11-11 14:21:39.079 2013-11-11 15:13:13.833 EATING o
Ln 1, Col 1 100%  Windows (CRLF) UTF-8

With the above dataset we are able to find the similarity score of seed trajectory in
relation to the transformed trajectories with method UMS and MUITAS. In order to use MSM
we need to define space time and semantic threshold. In order to achieve that, we add in the

start of our dataset the following 3 lines:

SpaceThreshold k1
TimeThreshold k2
SemanticThreshold k3

Il.  Replacement of stops with different elements

In this transformation we replace sample points according to the predefined rate , by
following similar approach to the previous method. The below Figure 3-8 presents the pseudo-
algorithm used for this transformation which requires the format of the dataset showed on
Picture 3 (for MSM and UMS) or the format showed on Picture 2 (for MUITAS).

Figure 3-8: Pseudo-Algorithm of the transformation of replacement of stops with different
elements

#Read the dataset
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1 data < dataset
#Randomly select a trajectory as our seed trajectory
2 t € random trajectory

#define the number of transformed trajectories, the rate r and the number of stops

3 TrajNum € n #user defines the n (i.e. 500)
4 rate < r #define rate from 0 to 1 (i.e. 0.5)
5 count € number of stops of the trajectory

#repeat n times, so we generate n transformed trajectories
6 for (i = 1 to TrajNum) {

#replace stops with different elements according to the rate
7 replace (rate*count) STOPS

8 END #end the loop

Initially, we delete the separators () from the text document, so we can apply UMS
and MUITAS and find the similarity score between the seed trajectory and the transformed
trajectories. In order to use MSM we need to define space time and semantic threshold, same
as before.

I11.  Replacement of possible matching stops

In this transformation we replace sample points with possible matching stops according
to the predefined rate , by following similar approach to the previous method. The below Figure
3-9 presents the pseudo-algorithm used for this transformation which requires the format of the
dataset showed on Picture 3 (for MSM and UMS) or the format showed on Picture 2 (for
MUITAS).

Figure 3-9: Pseudo-Algorithm of the transformation of replacement with possible matching
stops

#Read the dataset

1 data < dataset

#Randomly select a trajectory as our seed trajectory
2 t € random trajectory

#define the number of transformed trajectories, the rate r and the number of stops

3 TrajNum €< n #user defines the n (i.e. 500)
4 rate < r #define rate from O to 1 (i.e. 0.5)
5 count € number of stops of the trajectory

#repeat n times, so we generate n transformed trajectories
6 for (i =1to TrajNum) {
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#replace stops with possible matching elements according to the rate
7 replace (rate*count) STOPS
8 END #end the loop

At first, we delete the separators () from the text document, so we can apply UMS and

MUITAS and find the similarity score between the seed trajectory and the transformed

trajectories. In order to use MSM we need to define space time and semantic threshold, same

as before.

IV.  Position change of stops

In this transformation we randomly change the position between two sample points. As

a result, we swap the information of two random sample points. The algorithm of this method

is illustrated below which requires the format of the dataset showed on Picture 3 (for MSM and

UMS) or the format showed on Picture 2 (for MUITAS).

Figure 3-10: Pseudo-Algorithm for changing the position of the stops

#Read the dataset

1 data < dataset

#Randomly select a trajectory as our seed trajectory
2 t € random trajectory

#define the number of transformed trajectories, the rate r and the number of stops

3 TrajNum € n #user defines the n (i.e. 500)
4 rate €< r #define rate from 0 to 1 (i.e. 0.5)
5 count € number of stops of the trajectory

#repeat n times, so we generate n transformed trajectories
6 for (i =1to TrajNum) {
#change the position of the stops according to the rate

10 STOPx > STOP,
11 STOP, > STOPx
12 END loop 1 #rnd the 1* loop
13 END loop 2 #end the 2" loop

7 for j = 1 to (rate*count) {
8 k €< random number of STOP (from 1 to (number of STOPS))
9 I €< random number of STOP (from 1 to (number of STOPS) that is different from k)

Initially, we delete the separators () from the text document, so we can apply UMS

and MUITAS and find the similarity score of the seed trajectory in relation to the transformed
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trajectories. Same as before, in order to use MSM we need to define space time and semantic
threshold.

V.  Adding stops

In this transformation we randomly add some extra points to the given trajectory
according to the predefined rate (from 0 to 1), by following similar approach to the previous
method. The below Figure 3-11 presents the algorithm used for this transformation which
requires the format of the dataset showed on Picture 3 (for MSM and UMS) or the format
showed on Picture 2 (for MUITAS).

Figure 3-11: Pseudo-Algorithm for transformation of adding stops

#Read the dataset

1 data < dataset

#Randomly select a trajectory as our seed trajectory

2 t < random trajectory

#define the number of transformed trajectories, the rate r and the number of stops

3 TrajNum < n #user defines the n (i.e. 500)
4 rate < r #define rate from 0 to 1 (i.e. 0.5)
5 count € number of stops of the trajectory

#repeat n times, so we generate n transformed trajectories
6 for (i = 1 to TrajNum) {

#add stops according to the rate

7 for j = 1 to (rate*count) {

8 NewSTOP < Create a STOP

9 k € random number of STOP (from 1 to (number of STOPS))
10 Add NewSTOP between stops k and (k+1)

11 END loop 1 #rnd the 1% loop

12 END loop 2 #end the 2" loop

At first, we delete the separators () from the text document, so we can apply UMS and
MUITAS and find the similarity score between the seed trajectory and the transformed
trajectories. Same as before, in order to use MSM we need to define space time and semantic
threshold.
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Chapter 4. Experimental Evaluation

This chapter presents the experiments that will be performed regarding the robustness
and effectiveness of the compared similarity measures of semantic trajectories. To test the
capability of these similarity measures, we apply a set of transformations over the seed
trajectory, computing the similarity between the original trajectory and the transformed
trajectories, using all similarity measures, and then we compare the results of all methods. In
Section 4.1, we present the steps we follow in order to compare the similarity measures, and in

Section 4.2 we present the experiments and analyze the results.

4.1. Evaluation Techniques

In order to be able to compare the similarity measures with each other, we need to
follow some specific steps that will result in showing us to what extent each similarity measure

is affected by the trajectory transformations we mentioned earlier.

The first step we need to do in this experiment is to randomly select a moving object
from the dataset and identify all the elements from its stops. The Figure 4-1 below shows a
moving trajectory from the dataset that we will use for the experiments that will be done in
Section 4.2. Then, we define this moving object K as the seed trajectory which we will find its
distance from each of the other generated trajectories.
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Figure 4-1: Semantic trajectory K with 19 stops

Trajectory K

Relaxing Studying Relaxing Socializing Relaxing

(® [0:0:0- 10:8:38(0) [10:18:13 - 19:16:50? [19:27:11 - 21:9:36{0) [21:18:27 - 23:18:2610) [13:27:27 - 7:42:44]
1(481499, 4209743) 3(480404, 4202293) (481751, 4209719) m 476755, '4563879) f( 480470, 4210268)

Studying ~__.-- --Tating Relaxing Sporting

@ @ @

(® 17:52:7-12:25:14] ® 1231:29-14:5200 (O [14:12:24 - 15:25:6} - - L [15:35:53 - 17:43:34]

9 (480144, 4202508) P (479309, 4204031) P456963, 4210031) ® (471531, 4202634)
Relaxing____---=""" Studying Socializing Relaxing
(© 117:55:55 - 4:12:39(5) [4:21:47 - 11:49:46] ? [12:0:4 - 16:22:8)- - - -(O 116:39:37 - 18:2:20)
Q4475932 2203644) ® (480276, 4209020)

R'e—Ia—x_ir;g— Studying Relaxing

: O 15:27:16- 12:50:56] __ - L5)[12:59:52- 15:8:21]
(® ns:2215- 211010 O 21:26:8-5:18:39) T
® (473353, 4200522) P (482771, 4210091 ?f@s—o—w" 4702531) (482517, 4209590)

- Relaxing
Shopping ___.--~

® [ ------------------- ® [16:47:2—3:44:6]

:47- 16:35:25]
® (472014, 4208630) 9 (480302, 4209015)

In the second step, we will generate n (we define n depending on the accuracy and the
computing cost we want) different trajectories for each transformation that we will apply over
the original trajectory that we have defined. For example, suppose we want to apply the
transformation of deleting stops, over our seed trajectory with 9 stops. Then, for the sake of
our example, let us define our parameter r be equal to 10%. Therefore, we will generate n =
500 transformed trajectories, where in each transformed trajectory we will remove a stop from
the seed trajectory, and so we will have made 500 transformed trajectories with 8 stops. This
process will be followed for all transformations and parameters r that we will define. The more
trajectories we generate, the more precision we have, but also the more computational cost and
vice versa, as for every trajectory we create the computer takes some time so that it can
implement the transformation we want. Therefore, we must find a balance between these two
factors, which in turn will give us the maximum possible accuracy in combination with low-

time consuming speed.
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In the next step, we group all the transformed trajectories, and then we use all the
similarity measures (MSM, MUITAS and UMS) we want to compare with each other, based
on the effects of the trajectory transformations have on these measures. First, we collect all the
transformed trajectories we generated in the previous step and group them according to three
criteria. More specifically, these criteria are the similarity measure, the type of the
transformation and the parameter r. For instance, all the transformed trajectories in which we
have applied the same type of transformation and defined the same parameter value r, are
grouped together. As a result, we group n transformed trajectories for each different type of
transformation and ratio r. Afterwards, we calculate the distance between the seed trajectory
and the transformed trajectories. Therefore, for each specific group of trajectories we have
created, we calculate the distance of each trajectory to the original trajectory we have selected
to transform in the previous steps. The method to calculate the distance between the moving
objects is by applying the functions and algorithms of the same similarity measure (MSM,
MUITAS and UMS) to all the pairs of moving objects, resulting in n different results. In order
to have an accurate picture of the impact of the transformations on the similarity measure we
applied, we calculate the mean and the median of the n similarity distances. Eventually, we end
up with a mean and a median similarity score for the chosen set of trajectories, which means
that, when we transform a trajectory with a certain type of transformation (adding stops,
deleting stops etc.) and with a predefined ratio r, its similarity distance to the transformed
trajectory is approximately equal to the mean/median value we previously calculated.

In the final step, we will present diagrammatically the results obtained from the
previous step. Each diagram will describe the results (mean and median) for a similarity
measure and for a type of transformation. The x-axis will show us the value of the parameter r
and the y-axis is measuring the value of the mean/median. Nevertheless, in order to be able to
comparatively see all the similarity measures at the same time, we will form in the diagram all
the resulting curves, by calculating the mean/median distance of the pairs of the trajectories
with each similarity measure. The higher the value of the y-axis the more robust the similarity

measure is in the type of transformation we test.

4.2. Experiments and Results Presentation

For our experiment we will use a dataset which describes the movement behavior of a
moving object for 4 days. We can easily note that this dataset is large enough since it contains
the information of a moving object for 4 days. As a result as, we expect the results of the
similarity measures to be accurate and reliable for our research. A semantic trajectory is

presented in Figure 4-1.
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However, in order to calculate the similarity score with the method MUITAS, we will
use a different format of this dataset. The difference of this format is that it considers multiple-
aspect trajectories that have 2 attributes , the act of the moving object and the activity tag of the
moving object. The reason for using this format instead of the one we aforementioned is that it
have more attributes which will help us to more effectively discern the impact of the
transformations on the similarity measure MUITAS. However, in this format, in order to apply
MUITAS similarity function we need to make some more adjustments on the dataset. In the
following Figure 4-2, an example of a multiple-aspect trajectory is illustrated with 19 stops and

2 attributes (act of the moving object and the activity tag of the moving object).

Figure 4-2: Multiple-Aspect Semantic trajectory with 19 stops
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In this experiment (mainly for MSM), in order to consider whether or not stops match
in each dimension, let the corresponding threshold be set to i) 10 for space ii) 0.5 for time iii)

0.5 for semantics.
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Just like we explained in Section 3.1 we will apply all the types of transformations i)
Transformation of deleting stops, ii) Transformation of adding stops iii) Position change of
stops. iv) Replacement of stops v) Replacement of possible matching stops (semantic
dimension) and each of them will be presented for all the similarity measures.

4.2.1. Transformation of deleting stops

The results from the transformation of deleting stops from the semantic trajectories and

the multiple-aspect trajectories are presented on Figure 4-3, Figure 4-4 and Figure 4-5:

Figure 4-3: Transformation of deleting stops (MSM)
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Figure 4-4: Transformation of deleting stops (UMS)
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Figure 4-5: Transformation of deleting stops (MUITAS)
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In order to better examine the impact of the transformation of deleting stops
comparatively on each similarity measure, we will present the mean and the median similarity
score of the seed trajectory in relation to the transformed trajectories for each similarity measure

on the below figures.

Figure 4-6: Comparison of similarity measures (deleting stops) (Mean)
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Figure 4-7: Comparison of similarity measures (deleting stops) (Median)
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From the two figures above we draw the following conclusions: i) MUITAS is the most
robust similarity measure compared to MSM and UMS, as it maintains the highest similarity
score throughout the increase of rate r from 0 to 1, ii) we notice that all the similarity measures
have almost the same similarity score on most rate values, with MSM getting bigger differences
in the similarity score, the more the value of r increases, iii) the similarity score of UMS is the
only similarity measure that is zero from rate value 0.87 to 1, unlike the rest measures that has

similarity score zero only when all stops are removed from the seed trajectory.

4.2.2. Transformation of adding stops

The results from the transformation of adding stops from the semantic trajectories and

the multiple-aspect trajectories are presented on the following figures:
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Figure 4-8: Transformation of adding stops (MSM)
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Figure 4-9: Transformation of adding stops (UMS)
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Figure 4-10: Transformation of adding stops (MUITAS)
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In order to better examine the impact of the transformation of adding stops
comparatively on each similarity measure, we will present the mean and the median similarity
score of the seed trajectory in relation to the transformed trajectories for each similarity measure

on the below figures.

Figure 4-11: Comparison of similarity measures (adding stops) (Mean)
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Figure 4-12: Comparison of similarity measures (adding stops) (Median)
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From the figures illustrated above we notice the following: i) all the similarity measures
are robust to this transformation as they maintain high similarity score with the lowest value
being equal to 0.73 when the rate has value 1 and use the similarity measure MSM. However,
UMS is the most robust similarity measure on most rate values. ii) we can clearly distinguish
that this transformation has the biggest impact on the similarity method MSM and has similarity
score difference from 0.05 to 0.15, iii) the similarity measures UMS and MUITAS have almost

the same similarity score on all rate values.

4.2.3. Position change of stops

The results from the transformation of changing the position of the stops from the
semantic trajectories and the multiple-aspect trajectories are presented on the following figures:
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Figure 4-13: Transformation of position change of stops (MSM)
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Figure 4-14: Transformation of position change of stops (UMS)
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Figure 4-15: Transformation of position change of stops (MUITAS)

Transformation of position change of stops (MUITAS)
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In order to better examine the impact of the transformation of changing the position of
the stops comparatively on each similarity measure, we will present the mean and the median
similarity score of the seed trajectory in relation to the transformed trajectories for each

similarity measure on the below figures.

Figure 4-16: Comparison of similarity measures (position change of stops) (Mean)
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Figure 4-17: Comparison of similarity measures (position change of stops) (Median)

Transformation of position change of stops

o
Xe)
w [

=
8 N
S
(5]
g 0.9
Qo
((no) 0.85 =@ ISM
>
E 08 UMS
o
= MUITAS
E 075
(9p]

0.7

o [

From the figures above we draw the following conclusions: i) this transformation has
almost no effect on the similarity measure of UMS regardless of the value of rate r, as we notice
that its similarity score fluctuates around 0.95 and therefore UMS has the most robustness on
the transformation of position changing of the stops, ii) the similarity measure MUITAS have
slightly higher similarity score than MSM on all rate values with a difference in their similarity
score around 0.02-0.09 and iii) we notice that this transformation has small impact on MSM

and MUITAS, increasing as we increase the value of rate, as they maintain high similarity score.

4.2.4. Replacement of stops

The results from the transformation of replacement of stops from the semantic

trajectories and the multiple-aspect trajectories are presented on the following figures:
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Figure 4-18: Transformation of replacement of stops (MSM)
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Figure 4-19: Transformation of replacement of stops (UMS)
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Figure 4-20: Transformation of replacement of stops (MUITAS)

Transformation of replacement of stops (MUITAS)
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In order to better examine the impact of the transformation of replacement of the stops
comparatively on each similarity measure, we will present the mean and the median similarity
score of the seed trajectory in relation to the transformed trajectories for each similarity measure

on the below figures.

Figure 4-21: Comparison of similarity measures (replacement of stops) (Mean)
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Figure 4-22: Comparison of similarity measures (replacement of stops) (Median)
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From the figures illustrated above we notice the following: i) the similarity measures
UMS and MUITAS have almost the same similarity score on all rate values with a really small
difference and also these methods are very robust, as their lower similarity score is around 0.7
at rate 0.93 and higher, ii) MSM similarity score seems to be steadily decreasing. The higher
the value of rate r the smaller the similarity score, which is equal to 0.35 at its lowest score,
making this method not so robust when we replace more stops.

4.2.5. Replacement of possible matching stops

The results from the transformation of replacement of possible matching stops from the

semantic trajectories and the multiple-aspect trajectories are presented on the following figures:

Figure 4-23: Transformation replacement of possible matching stops (MSM)
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Figure 4-24: Transformation replacement of possible matching stops (UMS)
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Figure 4-25: Transformation replacement of possible matching stops (MUITAS)

Transformation of replacement of possible matching stops (MUITAS)
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In order to better examine the impact of the transformation of replacement of possible
matching stops comparatively on each similarity measure, we will present the mean and the
median similarity score of the seed trajectory in relation to the transformed trajectories for each

similarity measure on the below figures.

68



Figure 4-26: Comparison of similarity measures (replacement of possible matching stops)
(Mean)
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Figure 4-27: Comparison of similarity measures (replacement of possible matching stops)
(Median)
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The results from this transformation is quite similar to the previous results we had. In
more detail from the figures illustrated above we draw the following conclusions: i) the
similarity measures UMS and MUITAS have almost the same similarity score on all rate values
with a small percentage of a larger difference in relation to the transformation of replacement
of stops, and also these methods are very robust, as their lower similarity score is around 0.7 at
rate 0.93 and higher, ii) MSM similarity score seems to be steadily decreasing. The higher the
value of rate r the smaller the similarity score, which is equal to 0.4 at its lowest score, making
this method not so robust when we replace more stops iii) MUITAS is the most robust similarity

measure on this transformation with a small difference in relation to UMS.
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Chapter 5. Conclusion

In this work we proposed a method which enables us to transform a trajectory in five
different ways. The proposed technique is robust enough to consider multiple dimensions,
where we can modify and change all the dimensions (space, time and semantics), including the
attributes of the stops, for instance, the type of stops, the activity of the moving object, the point
of interest, the weather, the price etc. To the best of our knowledge these transformations are
the first to be constructed and tested on semantic trajectories that supports multiple dimensions

(space, time and semantics) on the programming language R.

As aforementioned our proposed method allows us to apply five transformations over
a multiple-dimension trajectory. The types of transformation are the followings: i)
transformation of adding stops, ii) transformation of deleting stops, iii) replacement of stops
with different elements, iv) replacement of possible matching stops and v) position change of
stops. In order to control to what extent we will modify every trajectory we predefine a rate,
called r which takes values from 0 to 1. Using these transformations we generated random sets
of semantic trajectories or multiple aspect trajectories that were dissimilar from the seed
trajectory, in many aspects, such as the time and the coordinates of the sample point, the order

of the stop and the semantic information of the sample point.

The experiments performed by using data of a four day scenario of moving objects. We
propose a method in which we transform a seed trajectory into many semantic trajectories
according to rate r. In our thesis we are able to implement controlled transformation over the
trajectories, which allows us to compare the impact of each transformation in every similarity
measure that we use. After applying these transformations, we use the similarity measures
MSM, UMS and MUITAS in order to test and draw conclusions about the effectiveness and

robustness of all the types of transformations.

From the experiments performed in Chapter 4 we noticed that in every type of
transformation applied, UMS and MUITAS are the most robust similarity measures. These
measures maintain a high similarity score in every transformation, besides when we delete stops
from the trajectory, which is logical because the higher the rate r we define the fewer stops the
transformed trajectory have. As a result, when we define high rate r, we end up computing the
similarity score of our seed trajectory with 19 stops in relation to 500 transformed trajectories
with a lot lower stops. It is obvious that the similarity score will fluctuate in low levels for all
similarity methods. Except of the transformation of deleting stops, in the rest transformations,
MUITAS and UMS maintain a similarity score higher than 0.7, which makes them robust

regardless of the value of rate r that we define. In contrast to these similarity, some types of
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transformations have big impact on the similarity measure MSM, making this method the least
robust to all type of transformations. MSM have slightly lower similarity score at almost all
values of rate r than MUITAS and UMS. In addition, when we transform the semantic trajectory
by replacing the stops regardless if the new stop match or not with our old stop, the impact of
this transformation is huge and is increasing as we increase rate r. One more observation we
made on the transformations of adding stops and position changing of stops, is that MSM is
robust to both of these transformation, as it maintains high similarity score, higher than 0.7 at

all levels of r.

A conclusion we drew from the transformation of changing the position of the stops
that seems very interesting is that this transformation has almost no impact on the similarity
measure UMS. That is explained because UMS when computing the similarity of two
trajectories tends to build ellipses and compare the ellipses created of one trajectory with the
other one. As a result, when we make a transformed trajectory where we change the position of
some stops, the transformed trajectory will have almost the same ellipses and their similarity
score will remain at high levels. Furthermore, as we performed our experiment we noticed that
UMS similarity score highly depends on the dataset we use. Our dataset which is about a 4 day
scenario of a moving object clustered in 4 classes. UMS have small differences of similarity
score for every different class we used, which is not something we expect as it doesn’t happen

on the rest similarity measures.

Judging by the validity of the algorithms on the aforementioned datasets and by the
results we presented on the previous chapters, we can see that the transformations applied on
the datasets and as a consequence the random sets of semantic trajectories we generate, give us
the ability to evaluate and compare the effectiveness of the similarity measures we desire in a
controlled way (in our case MSM, UMS and MUITAS). Some extensions to our work that can
be completed with slight changes to the algorithms, are the expansion of our transformations
by constructing more types of trajectory transformations or a mix of them in order to compare
the robustness of the similarity measures in more aspects, or trajectory transformations that

consider both stops and moves.
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