

UNIVERSITY OF PIREAUS
Department of Digital Systems

Postgraduate Programme “Information Systems & Services”

MSc Diploma Thesis

Cloud gateways for
heterogenous data sources

Προσαρμοστικές πύλες υποδομών υπολογιστικών
νεφών για διαφορετικές πηγές δεδομένων

Author: Dimitrios-Stylianos Kakomitas
Academic Supervisor: Prof. Dimosthenis Kyriazis
Piraeus, September 2021

Page 1 of 75

Page 2 of 75

Table of Contents
Table of Figures ... 4

Abstract ... 5

Keywords ... 5

Acknowledgements ... 6

1 Introduction ... 7

1.1 Overview of “Cloud” and cloud computing ... 7

1.1.1 Service Types of Cloud Computing ... 8

1.1.2 Deployment Models of Cloud Computing: ... 9

1.2 Microservices ... 9

1.3 Problem Statement .. 10

2 Gateways ... 12

2.1 Gateways Overview .. 12

2.2 Gateway capabilities .. 13

2.2.1 Authentication and Security ... 13

2.2.2 Data Transformation ... 14

2.2.3 Data Serialization .. 14

2.2.4 Monitoring .. 14

2.2.5 Service Registry and Discovery ... 15

2.2.6 Orchestration .. 16

3 Related Technologies and Methodologies .. 18

3.1 RESTful APIs .. 18

3.1.1 History of REST .. 18

3.1.2 REST API Design .. 18

3.1.3 OpenAPI Specification ... 20

3.2 Serverless ... 20

3.3 Reverse Proxy Server .. 21

3.4 Proxy Server ... 22

3.5 DevOps ... 23

3.5.1 Docker ... 23

3.6 Event Streaming ... 25

Page 3 of 75

3.6.1 Kafka .. 25

4 Cloud Gateway Implementation ... 26

4.1 Architecture .. 26

4.2 Initial approach and considerations ... 27

4.3 API Gateway Component ... 27

4.3.1 Service Discovery .. 28

4.3.2 Monitoring – Metrics .. 29

4.3.3 Fault Tolerance ... 32

4.3.4 Load Balancing .. 33

4.3.5 Caching .. 34

4.3.6 Transporters .. 34

4.4 Twitter Microservice .. 34

4.5 File parsing microservices .. 38

4.6 Storage microservice .. 42

4.7 Authentication Mechanism .. 44

4.8 Reverse Proxy ... 46

4.9 Streams ... 48

4.10 Serialization .. 49

4.11 Infrastructure & Deployment ... 58

4.11.1 Containerization .. 58

4.11.2 Installation and Configuration .. 61

5 Conclusion ... 66

5.1 Conclusion .. 66

5.2 Future Steps ... 66

5.2.1 Kubernetes .. 66

5.2.2 Enriching the available data sources .. 67

5.2.3 Migrating to GraphQL ... 67

5.2.4 CI/CD ... 68

5.2.5 OpenWhisk .. 68

6 References ... 70

Page 4 of 75

Table of Figures
Figure 1: Amazon’s microservices system representation ... 10

Figure 2: OpenAPI specification example ... 20

Figure 3: Reverse Proxy Architecture ... 21

Figure 4: Proxy Architecture ... 22

Figure 5: Cloud Gateway Architecture .. 27

Figure 6: Microservices Comparison ... 28

Figure 7: MoleculerJS - Service Discovery & Service Registry .. 29

Figure 8: Swagger Stats UI-Summary .. 30

Figure 9: Swagger UI-Request and Errors ... 31

Figure 10: Recent Tweets Filtered-SwaggerUI .. 36

Figure 11: Twitter stream endpoint - SwaggerUI ... 37

Figure 12: GTD microservice -SwaggerUI ... 41

Figure 13: Water Quality microservice .. 42

Figure 14: Data from Water Quality microservice stored in MongoDB by the Storage

microservice .. 43

Figure 15: Keycloak Cloud Gateway realm creation ... 45

Figure 16: Create Keycloak gateway-user in the Cloud Gateway realm 45

Figure 17: Keycloak access token obtained after authorization request 46

Figure 18: Authorized request with bearer token returning a response 46

Figure 19: Traefik Architecture ... 47

Figure 20: Traefik WebUI .. 48

Figure 21: Kafka's console consumer tool output .. 49

Figure 22: Avro encoded API response for demonstration purposes .. 58

Figure 23: systemctl command for ensuring docker installation ... 62

Figure 24: docker-compose build command output .. 64

Figure 25: docker ps command output ... 65

Figure 26: Kubernetes Cluster example .. 67

Figure 27: OpenWhisk programming model .. 69

file:///C:/Users/dimka/Google%20Drive/UnipiMSc/MSc-Thesis_v0.3.docx%23_Toc83716264
file:///C:/Users/dimka/Google%20Drive/UnipiMSc/MSc-Thesis_v0.3.docx%23_Toc83716265
file:///C:/Users/dimka/Google%20Drive/UnipiMSc/MSc-Thesis_v0.3.docx%23_Toc83716266
file:///C:/Users/dimka/Google%20Drive/UnipiMSc/MSc-Thesis_v0.3.docx%23_Toc83716268
file:///C:/Users/dimka/Google%20Drive/UnipiMSc/MSc-Thesis_v0.3.docx%23_Toc83716272
file:///C:/Users/dimka/Google%20Drive/UnipiMSc/MSc-Thesis_v0.3.docx%23_Toc83716273
file:///C:/Users/dimka/Google%20Drive/UnipiMSc/MSc-Thesis_v0.3.docx%23_Toc83716282
file:///C:/Users/dimka/Google%20Drive/UnipiMSc/MSc-Thesis_v0.3.docx%23_Toc83716286

Page 5 of 75

Abstract
Cloud computing has gained wide popularity during last decade. More and more organizations

and enterprises are moving their infrastructure in serverless platforms in order to enjoy the

benefits and the flexibility that the cloud technology provides. Serverless platforms offer the

possibility to deploy and execute services as functions f(x) and compose serverless workflows.

Certain types of services, e.g., analytical services, require access to data in order to operate and

provide results. Accessing external data resources in serverless environments can often become

a problem due to several restrictions because of platform policies that might exist. Alongside

this fact, specific efficiency considerations may arise regarding the long running tasks running on

the cloud.

Extracting data from different data sources is a challenging task in itself. There are literary

countless external APIs, database technologies and file formats, that in order to be consumed

different tools, libraries, or protocols need to be utilized.

A unified gateway component, operating as a single point of entry for the cloud platform may

prove to be the solution to these above-mentioned problems. The main goal of this component

is to combine and orchestrate several microservices, each one responsible to collect data from a

specific data source and additionally provide data-cleansing and data-transformation

mechanisms in order to produce datasets that meet the standards of the gateway’s users . The

collected data would be accessible via REST endpoints of a single API.

The “Cloud Gateway”, as will be mentioned in the rest of this thesis, was designed, and

implemented considering the problems and challenges of a production environment like load

balancing, scalability, high availability, authentication, and authorization strategies etc. On top of

this, state-of-the-art methodologies and tools will be utilized to achieve the goals without

compromising performance.

To avoid misinterpretation, the designation “Cloud Gateway” does not refer to a gateway that

combines PaaS infrastructure from different cloud providers, but to a gateway that is acting as

intermediate between any cloud platform and its external and heterogeneous data sources from

which data should be fetched.

Keywords
Gateway; Cloud Infrastructure; Microservices; DevOps; REST API.

Page 6 of 75

Acknowledgements
First of all, I would like to express my sincere gratitude to my supervisor Prof. Dimosthenis Kyriazis

for mentoring and offering great guidance, feedback, and support throughout the composition

of my thesis. I would like to thank him for giving me the opportunity to work on such an

interesting topic and expand my knowledge over these area and “state-of-the-art” technologies.

Also, I would like to thank my family and beloved ones for their support and patience through

this academic journey.

A special thanks to PhD candidate George Manias for offering valuable advice in writing the thesis

and to my colleagues for helping to overcome technical difficulties during the implementation

part.

Page 7 of 75

1 Introduction
This thesis is covering a lot of the technical aspects of gateways and gateway related technologies

thus there are many references to Grey Literature e.g., blogs, documentation, tutorials, and

other web resources instead of normal literature e.g., scientific papers, as it is recommended for

new technologies [1].

1.1 Overview of “Cloud” and cloud computing
The term “cloud” has made its first appearance since the very early days of computing, but its

usage has been escalated during the last decade. Cloud servers are servers that are located in

data centers and companies or individuals that use them do not have physical access to these

machines. The cloud relies on the technology called virtualization. Virtualization enables running

multiple “computers” in a single physical machine, called virtual machines (VMs). VMs are

isolated and do not interact with each other and work in their own sandboxes. In that way a

physical server can host many virtual servers making very efficient use of hardware and allow

business to find the required resources to run their applications. Cloud vendors quickly became

very popular offering flexible services that can meet even the most demanding requirements.

Moreover, this technology has made fundamental changes to the Information Technology field,

by changing how the software is been developed, deployed and also how services are billed.

Many organizations and enterprises have already migrated to cloud, and more are expected to

do in near future. Some key advantages of cloud computing include [2]:

• Lowering the costs spent on infrastructure: Typically, only a small percentage of the

resources are used and high demand on resources is required only for a relatively short

period of time. The cloud technology enables such dynamic resource provisioning by

scaling up or down depending on the current demand.

• Faster development and deployment: The process of moving new software from

development to production has become faster and more secure by using automation

tools for deploying and testing before going public. The latter offers quality control and

disaster recovery.

• Instant access to resources: new business and startups with limited access to resources

and infrastructure. Cloud technology facilitates on reducing the upfront costs, allowing to

getting faster to market.

• Supports innovation: Cloud technology removes technical barriers that are produced

from the operation and scaling, so companies can focus more on developing their

products further and be innovative.

• Delivery of new services: By enabling human-machine interaction with sensors and

wearable devices.

Page 8 of 75

But in contrast with the advantages mentioned above, there are several disadvantages and risks

of acquiring cloud technology. The main risks involve:

• Security: The most important issue of the Cloud is security of data. There are profound

risks of storing sensitive information like medical data in 3rd party cloud service provides.

These platforms are prone to attack and even if the best security practices are followed

data breaches can cause great damage to organizations [3].

• Inflexibility: Choosing and adapting a cloud computing provider, often leads to a

phenomenon named “lock-in”, meaning that inability of clients to change to another

vendor because their dependent on their current vendor [4].

• Shortage of staff skills: Cloud environments management is complex since tools and

technologies can vastly differ from one cloud provider to another leading to the need for

extra investment in training and more competitive salaries [5].

• Cost for certain types of applications: The cost efficiency of cloud is based on the fact that

services can utilize resources only when needed. But this is a problem for long running

tasks that demand resources for long period of time.

Business wise, cloud computing is still in at an early adoption stage with studies estimating that

only 10% of the workload that can be transferred to cloud have been implemented. The reasons

that many companies remain sceptic is deal with the idea of storing data in remote location

outside from the company premises, and others are still considering the costs that remain

relatively high comparing with current solutions. After all, moving to cloud requires a digital

transformation and probably rethinking the existing business processes [6].

1.1.1 Service Types of Cloud Computing
Cloud computing offers four (4) different service types each one providing different capabilities

and flexibility each satisfying specific business requirements [7]:

1. Infrastructure-as-a-Service (IaaS): A company can rent physical servers, VPNs or storage

from a provider and build their cloud infrastructure on top of that.

2. Platform-as-a-Service(PaaS): A company does not buy actual resources from a provider,

but instead they pay for the resources the use. Those providers they often provide

development tools and specialized technologies that are more performant on their

platform. Examples of those providers are Amazon AWS, Microsoft Azure, Heroku etc.

3. Software-as-a-Service (SaaS): Clients do not buy any resources or software from the

provider. Instead, the buy a service that satisfies their business needs without dealing

with technical issues. Billing systems for SaaS application are often some available price

tiers, depending in the needs of the client. Examples of this model in Shopify, Dropbox,

etc.

4. Function-as-a-Service(FaaS): This is the most recent model for cloud computing, and it is

often referred as serverless computing. A well-known example of this model is Google’s

Page 9 of 75

Firebase 1. Clients can connect a frontend application to Firebase without requiring a

backend system. It offers out of the box goods like authentication, authorization,

databases and even running small pieces of software as “cloud-function” and be billed

only when they use them.

1.1.2 Deployment Models of Cloud Computing:
Depending on how the cloud infrastructure is utilized by clients there are four (4) deployment

models [8]:

1. Private Cloud: This type of cloud is often found in large enterprises when there is the

need for a dedicated server and network, usually for security policy reasons.

2. Public Cloud: This type of cloud is managed by a vendor and many clients are hosted

together in the vendor’s infrastructure.

3. Hybrid Cloud: This type of cloud is a combination of both of the above types. It consists

of on-premises infrastructure and public cloud with the required orchestration between

the two platforms. A use case for this is backup mechanisms to the public cloud in order

to support the proprietary infrastructure.

4. Multi-cloud: This type is the deployment of a client’s services into different public cloud

providers.

1.2 Microservices
Nowadays the monolithic approach on designing information systems, tends to disappear. Many

organizations are starting to migrate their monolith applications to sets of modular

microservices. Microservices are small and modular software services that alone satisfy a

business process and are completely decoupled from each other. Microservices architecture is

efficient especially for bigger and more complex information systems, since it is easier to

understand and develop each business process separately and in isolation. Furthermore, it

supports developing different parts of the same system simultaneously and by different teams,

making the development process faster and more precise. Also, microservices architecture can

help on overpassing a serious problem that arises very often in large enterprise systems and is

called technical depth. Technical depth is the additional work that a system requires, because the

of wrong design decisions or use of technological stack. Each microservice can be maintained,

refactored and also be reimplemented without having a huge impact on the system as whole.

The Microservices architecture also has its own drawbacks. Managing and leading many

developer teams can be very challenging. The classic waterfall approach in building software

cannot apply in this case. That is the reason that new more “agile” techniques are used, ensuring

1 https://firebase.google.com/

Page 10 of 75

the efficient cooperation between different software teams. Deploying microservices can also be

a challenging part, especially in the on first deployments. Many microservices means that many

different servers, databases, protocols that have to be mastered in order to have the desired

result. The complexity of this particular task is so complex that a new kind of engineers are

appeared into business and are called DevOps. DevOps engineers combine software

development(Dev) with IT operations(Ops), combining this new term. This new specialty is

popular that in the Stack Overflow’s 2020 developer survey [9] lists 3rd in terms of annual income.

Many well-known enterprises have made the transition to microservices and resulted to

innovations that disrupted the business. Amazon was one of the first adapters, initially trying to

improve their own codebase. Until then, different components were tightly coupled, and it was

very hard to deploy new features into production. These bottlenecks led to the refactoring of the

codebase following a service-oriented architecture. Amazon open the way and alongside

developed products like Amazon AWS (Amazon Web Services) to help other enterprises to follow

their example [10].

Figure 1: Amazon’s microservices system representation

1.3 Problem Statement
Obtaining data from heterogenous data sources is a very challenging task. There are any different

adapters, APIs that each one requires integration in order to be consumed leading to a problem

Page 11 of 75

known as information overload. Since Integration with each data source consists of different

technologies and methodologies, the implementation of it can been approached as a different

component. This is an ideal case to follow the microservices architecture, running each

component as standalone having no other dependencies.

But developing and maintaining many microservices can easily end up to absolute chaos as a

network grows and new services are added, removed, or replaced. Furthermore, applying the

different policies and authentication mechanisms to each microservice, clearly is not an efficient

option.

Additional to this problem, in cloud environments like a FaaS platform, there are cases that strict

policies and regulations does not allow access to several data sources. But although in some cases

policies is not the problem, data-mining tasks like data parsing, web-scrapping are not optimal

for cloud environments because are “long running” tasks, meaning that they require system

resources for longer time periods, a fact contrary to the philosophy of cloud services that

resources are invoked only when needed and for short periods of time. This makes such services

extremely cost insufficient and hence other solutions must be found.

Thus, creating a unified a unified Gateway that orchestrates all this microservices and it is

responsible for applying centralized policies like authentication, and authorization and also

sharing many characteristics with cloud platforms like resiliency, scalability and elasticity but not

necessarily running on cloud infrastructure but instead on a distributed network of dedicated or

virtual servers.

Page 12 of 75

2 Gateways

2.1 Gateways Overview
Gateways can be roughly described as the entry and exit point of a network. Gateways are

designed based on the API Gateway, which is an architecture pattern that is similar with Facade

pattern, a widely used term from the object-oriented programming domain. This pattern is

actually an abstraction layer between multiple services and the user.

The latter implies that all incoming and outgoing traffic of a network has to be routed through it.

“Cloud Gateway” is a microservices gateway connecting a cloud network with external and

heterogeneous data sources, by providing services that are responsible for extracting, cleansing,

transforming, encoding and storing data [11]. The gateway architecture makes the design and

management of a system considerably simpler and cleaner since it abstracts microservices from

their consumers and creates a central location for managing and applying policies.

To this end, Cloud Gateway offers several key features that are including below:

• Ability to serve and establish communication between different clients and services.

• Monitoring each microservice and provide uptime alerts if it is not accessible.

• Provides flexibility of adding and removing microservices.

• Allows services discoverability since all available services are registered in a central

registry.

• Enables better security policies like central authentication provider and throttling to avoid

misuse of the resources.

Also, a Gateway can work as an optimal location to perform data transformation tasks, in order

to ensure that each service will receive data exactly in the needed form and schema and to install

data analysis mechanisms since all the traffic is routed through the Gateway. To this end, the

component will, also, be able to direct incoming data into the appropriate data store based on

their privacy level. Therefore, it makes easy to differentiate the queries/requests having to be

redirected to the overall data management, analysis, and storage system of the internal cloud

platform. Furthermore, flexible schemas and metadata across multiple frameworks and sources

will be defined. Finally, this component will provide the ability to design API specifications and

blueprints, and aid in providing security in policy makers and managing APIs centrally.

Organizations and companies that deliver software using the microservices approach, are

connecting every component using APIs.

Since integration and connectivity becomes a very important part of the business process, having

a standalone API gateway component becomes more and more essential.

Moreover, developing apps in a serverless environment requires the use of APIs to provision the

required infrastructure. Using an API Gateway facilitates the deployment, management, and

utilization of serverless functions through various single points.

Page 13 of 75

2.2 Gateway capabilities

2.2.1 Authentication and Security
Security is an essential requirement for every Information System. Implementing the

authentication and authorization mechanisms in the Gateway level, is a good tactic since every

API request to each microservice would require implementing the authentication mechanism for

each microservice. Since the Gateway is the single-entry point of access to the system, every

request can firstly be authenticated in Gateway level, and then the request will be redirected to

the needed microservice. This way, the Gateway is responsible for Identity and Access

Management (IAM). For implementing authentication in Gateways, Federation Identity

Management is a common solution. Federation Identity relies in identity providers that can verify

your identity across multiple platforms by using a set of attributes of the authenticated entity.

The most common federated identity management technologies include:

• OAuth: This authentication method includes three roles, user, consumer, and service

provider. The authentication flow is: 1) consumer gets the request token and secret from

provider. 2) Consumer then redirects user to service provider so that the former can

authorize a request token. 3) The service provider returns the token to the consumer in

order to have access to restricted resources on behalf of the user.

• OpenID Connect: It involves 3 parties in the authentication process, the client, an identity

provider, and the end user. The flow of the authentication process is that the client

redirects the user to the provider where the user is requested to enter his credentials and

to authorize access to the client. Afterwards, the authentication provider sends

authorization code to the client, that it can be used for later request of authentication

tokens from the provider.

• Security Assertion Markup Language (SAML): This authentication method has three

actors, principal, service provider and identity provider. XML is used to pass

authentication messages between the actors, that they are called assertions. This

method has several disadvantages because of the XML, making it not suitable for modern

asynchronous background API requests that are used commonly in single page

applications (SPAs), mobile apps, smart TVs, etc.

The Gateway must provide mechanisms that protect the resources from unauthorized access and

attacks. For that reason, there are several :

• Firewall that keeps a Whitelist/Blacklist for Ips that have access or not to the resources.

• Blocking requests that have suspicious headers.

• Rate limiting the requests a user can make to a specific resource for a given time frame,

so to avoid abuse.

• Limit maximum number of connections for a single client.

• Limit maximum number of connections of multiple clients to a specific microservice.

Page 14 of 75

It is also very important to use encryptions for all endpoints available from the API Gateway.

SSL/TLS encryption can protect clients from attacks like Man-in-the-middle attack and prevent

credentials leaking.

2.2.2 Data Transformation
Data transformation includes mechanisms that are responsible for checking the reliability of the

data provided by performing filtering on the obtained datasets before providing them to the

cloud’s services. Inaccurate records or corrupt data must be removed from the datasets and

incomplete data must be identified before storing inside the cloud’s infrastructure. Data also

must be evaluated according to privacy level. Not any data such as personal information must be

stored that will to comply with GDPR regulations 2.

2.2.3 Data Serialization
Data serialization can be described as the process of transforming data into another format in

order to be transmitted. When data is transported then it can be deserialized into its initial form.

2.2.3.1 Apache Avro

Apache Avro is an open-source serialization system for exchanging big data between different

applications. Every Avro-encoded message includes both the definition and the data. The

definition or schema is in JSON format, a feature that makes it very easy to read and understand.

The data is store in binary making it very size efficient. By default, it includes markers that can

help with the serialization of big datasets by splitting into subsets. The greatest advantage of Avro

is support for data schemas and data types. Avro also includes APIs for many programming

languages including NodeJS. These features make possible to transport data from a modern

scripting language like JavaScript to strictly typed and compiled languages like C [12].

Other serialization systems include Thrift, Protobuf. The key difference of Apache Avro is the

aforementioned data schema allowing full processing of the data without intermediate steps and

code generation. This fact also helps with significantly reducing size of serialized data because

there is no need to constantly send data schema along with the actual data [13].

2.2.4 Monitoring
As mentioned before, the fact that all traffic is routed through the Gateway facilitates the overall

monitoring of the system. The latter refers in two separate types of monitoring.

2 https://gdpr.eu/what-is-gdpr

Page 15 of 75

Health monitoring: Health monitoring includes all those meaningful statistics that give us an

accurate view of our system status and especially:

• resources usage (CPU, Memory, etc.)

• network usage and status

• system logs that are very helpful for possible troubleshooting

• backups and system recovery mechanisms

Traffic and Data monitoring: Traffic and Data monitoring is about collecting metrics, events, and

metadata by monitoring that data flows in the system for example the API requests. Except the

fact that enables generating insights via graphical interfaces, reports and alerts it also a very

useful tool for finding possible policy violations, attacks, and unauthorized access to specific

resources.

2.2.5 Service Registry and Discovery

2.2.5.1 Service Registry

While scaling up, new microservices have to be added in the network, to be replaced or removed.
Services very often are requiring data from other services in order to perform a task. That means
that by updating a service its connections should be reestablished in some way. That is the reason
why, microservices instances have to dynamically assign locations. The Gateway’s registry keeps
track of the instances by running an internal database in which all the available services are
stored. The registry is important to be updated every time there is a change in the availability
status of each microservice. There are several ways that this task can be achieved:

• The Self-registration model: The service itself is responsible for ensuring the registry that

is currently active or offline. In most cases the service registry offers a REST API where

services can send POST requests with minimum payload, also known as “heartbeat”, in

order to make known that are still online. When the service registry receives no

“heartbeat” from the registered services, assumes that the services are offline and flags

them as unavailable. The disadvantage of this model is, despite being very simple and

straightforward, it requires implementing the previously cited methodology to all

services, in different languages and frameworks and also it adds some extra payload in

the service registry to achieve that handshake.

• The Third-party registration model abstracts service registry to the deployment platform

level. This way the registry is directly polling the development environment to find

registered service instances and get updates on their status. Some of the most popular

container management solutions like Kubernetes and Amazon EC2 offer service built-in

service registries.

The service registry is a critical component and is important to maintain its high availability.

Creating a cluster with more available replicas in case a problem occurs is a good

workaround. Of course, techniques like caching the registry are totally the wrong approach

Page 16 of 75

because a cached version of the registry status, may differ from its real status. Providing out

of date information to the microservices and users, will trigger a series of problems.

2.2.5.2 Service Discovery

Because microservices may have multiple instances that have dynamic location, there is the need
for a discoverability mechanism. There are two types of service discovery:

• Client-Side: In this case, clients are responsible to find the location of the instances of

services that aim to use. Initially the client makes a request to service registry that returns

a response with the preferred instance to use. The load balancing logic also takes part on

that decision. In most cases, the service registry is updated with the status of all services

and using popular algorithms like round-robin or other weighting algorithms to select the

most appropriate usage at that particular moment. Client-side discovery can be

performed in two ways. 1) Active discovery: The registry makes periodic requests to all

targets to obtain their status, generating some additional traffic. 2) Passive discovery: By

monitoring requests that are routed to targets, the service registry is able to distinguish

healthy from unhealthy nodes based on the response. If a target is marked as unhealthy,

no further requests are routed to it.

• Server-side: In this case there is the need for implementing a DNS server or using a 3rd

party DNS service. All requests are routed to the DNS that also handles the registration of

instances. Internally the DNS uses similar to client-side discovery algorithms, in order to

select the most appropriate target instance.

2.2.6 Orchestration
The word ‘orchestration’ itself implies to a musical orchestra, a perfectly organized group of

musical instruments that all together create music. In the technology word, the meaning of

orchestration is similar but instead of musical instruments there are microservices, each one

having a specific responsibility and purpose in order for a system to actually work meaning by

accomplished the business logic [14].

Orchestration in gateway level is possible but should be avoided especially because the gateway

should be considered as a component itself with specific responsibilities and by implementing

orchestration at this level, the single responsibility rule is being violated. On the contrary, the

progress made in virtualization technology has led to the creation of “containers” that can be

really helpful for orchestrating our system. Containers are a type of virtual machine, but it

bundles together all the needed parts for a microservice to be able to run smoothly.

Running different containers across multiple servers, demands offering many resources for this

purpose. Orchestration can help developers to keep track of these services and containers and

Page 17 of 75

also making it easier for future scaling. It also can make connectivity and data flows from one

component to another and to ensure high availability of services in general.

Following the container strategy, there are many orchestration tools that you can utilize. Some

examples are Kubernetes by Google, that is the most popular among the others, ECS (Elastic

Container Service) by Amazon that is the go-to solution for AWS, Azure Kubernetes Service (AKS)

that is a Kubernetes version optimized for running on Azure, Apache Mesos for running both

containerized and non-containerized instances of services ,etc.

Page 18 of 75

3 Related Technologies and Methodologies

3.1 RESTful APIs

3.1.1 History of REST
REST stands for Representational State Transfer and is an architectural style for

intercommunication between client-server applications over the World Wide Web. It was

defined in 2000 by Roy Fielding in his PhD dissertation “Architectural Styles and the Design of

Network-based Software Architecture” .

3.1.2 REST API Design
Nowadays, the API (Application Programming Interface) is an essential part of any application

because it enables the interaction with clients and the integration with other services and in

many cases defines the business success and growth.

Therefore, the need for a set of best practices has emerged in order to avoid building an API that

has poor performance, it is not maintainable and scalable. The most important practices are

listed below [15] :

• JSON for HTTP requests and responses: Using a REST API requires using JSON format for

both payload and responses. Data in JSON format can easily be especially manipulated

and in some languages e.g., JavaScript built-in methods are provided to do so. To ensure

JSON API responses the Content-Type header have to be set to “application/json;

charset=utf-8” for every request.

• Proper naming conventions: It is very important for a REST API to have a strong and

consistent naming convention strategy. When an API is named properly, is it easy to use

and understand. In the opposite case, a poor naming strategy can lead to confusion and

misusage of the API from its own users. A common naming convention is using nouns

instead of verbs in endpoints following the CRUD (Create, Read, Update, Delete)

operations. e.g., “GET”, “POST” => “/posts” and “DELETE“, “PUT” => “/posts/:id” .

• Filtering and Pagination: Reponses from APIs contain many records making difficult to

read or most importantly cause timeouts and memory overload error. In order to

maintain good performance and ensure readability and searchability of the responses,

pagination and filtering must be used.

• Caching: Caching mechanisms can help retrieving data from local the memory instead of

repeating the same queries to the server. Using caching can significantly reduce resources

usage and increase performance.

• Versioning: Following a versioning system is important for both our system’s

maintainability and for our users. The most popular versioning system is Semantic

Versioning [16] following the MAJOR.MINOR.PATCH pattern.

1. MAJOR version for backwards incompatible changes,

Page 19 of 75

2. MINOR version for newly added backwards compatible functionality to the API,

3. PATCH version for backwards compatible patches and bug fixes,

Using semantic versioning the issue of what in programming world is referred as

“dependency hell” can be handled. The latter implies the inability to further extend a system

because an application uses many shared libraries and this library may depend on another

library causing compatibility problems to the system, adding on complexity, and causing the

frustration of the users.

• Error Handling: To eliminate the possibility of an error to bring the cause confusion and

panic, we need to gracefully handle it and return well defined responses that indicated

the kind of error that occurred. This allows maintainers to better understand and fix

possible bugs faster. Common error HTTP status codes are:

➢ 400: Bad Request

➢ 401: Unauthorized Request – Only authorized users have access to this resource

➢ 403: Forbidden – Access to that resource is forbidden

➢ 404: Not Found – Resource not found

➢ 500: Internal server error – Generic error indicated some problem with the server

➢ 502: Bad Gateway – Invalid server response

➢ 503: Service Unavailable – Error occurred in server

• Security Practices: To ensure we are not exposing sensitive data in our REST APIs

permission mechanisms, e.g., roles and authentication should be supported by the

application. Furthermore, since the REST APIS exchange information over the HTTP

protocol, SSL/TLS3 encryption will add an extra layer of security in the communication

channel.

3 https://en.wikipedia.org/wiki/Transport_Layer_Security

Page 20 of 75

3.1.3 OpenAPI Specification

The term OpenAPI specification (OAS), formerly Swagger Specification, is a programming-

language agnostic framework for describing RESTful web services. It consists of a set of rules

for implementing and API that is well-defined and readable both by people and machines [17].

The OpenAPI promotes the API Drive Development, that its main concept supports that API

definition must be implemented even before the development lifecycle stats. The benefits of

using OAS in API development includes [18]:

• Improved Developer Experience: Developers can easily interact with the REST API and

have a better understanding of its capabilities and problems. Providing good developer

experience is very important factor for success especially when your product is focusing

on the integration with other platforms like for example payment gateways e.g., Stripe.

• Independence between developer teams: A definition of an API help teams that work in

different parts of an application, like back-end/front-end teams, to always stay aligned

without affecting each other’s progress.

3.2 Serverless
The term “serverless” means not using servers and was firstly referring to peer-to-peer (P2P)

software. Serverless computing in the cloud context, has become very popular, and it is

considered one the “hottest” topics in the IT . More and more companies choose to adapt a

serverless model for their infrastructure and many new serverless providers are appearing in the

market.

The term “serverless” means hiding all the server operations from developers and allowing

caring only for the business logic and remove the caring about the operational hustle like

Figure 2: OpenAPI specification example

Page 21 of 75

deployment, scaling, monitoring and resource management. More specifically, serverless

applications are a combination of fully provided back-end solution (backend as a service – BaaS)

providing out of the box features like authentication, databases, storage, and messaging system

with stateless and ephemeral use of computing resources from custom applications that are

invoked only when needed (function as a service – FaaS).

The billing model for serverless applications is the “pay as you go” meaning you are billed only

when you are using resources. To enjoy most out of these there are quite a few parameters.

Serverless should me short-running tasks because long running tasks might not be cost efficient.

Serverless providers provide support for many technologies and tools. Interpreted languages like

Python and JavaScript can be considered as more efficient for such environments because of the

shorter latency during cold starts when comparing to compiled languages like Java or C#. Cold

start is the referring to the time needed to create a new instance of the application on the

stateless cloud resources. Of course, cloud functions cannot be a compared by any means to

programming functions in terms of size but is a good choice for low-latency and mission critical

tasks functionalities.

One serious disadvantage of serverless in public cloud is the (till now) absence of SLAs making it

impossible to be used by health, government, or banking organizations. In those cases, private

cloud can be used as an alternative but in this case the IaaS concerns would not be avoided.

3.3 Reverse Proxy Server
In contract with a forward proxy, a reverse proxy server stands in front of a group of server

machines, intercepting all requests from clients [19].

Some of the most important reasons for using reverse proxies are including:

Figure 3: Reverse Proxy Architecture

Page 22 of 75

• Protection from attacks: If a website is using a reverse proxy, it is much more difficult for

attackers to trace its real IP and perform attacks like DDoS (Denial of service) attack or

attract spam bots.

• Caching: It is possible to cache content since all traffic is handled there. Users can access

a website from a proxy server that is closer to their location than the origin server. All

other users that try to access the website from the same location will view the cached

version of the website from the proxy. That will benefit the performance and remove

some serious load from the origin servers.

• Load Balancing: A website with many visitors is usually served not by a single machine but

by a group (pool) of machines. A reverse proxy server can act like a load balancer

receiving all requests and simply distribute them among the available instances,

maintaining the good overall performance of the website.

• Global Server Balancing: To reduce slow load times, that originate from the distance

between the client and the origin server, placing servers around the world and having

proxy servers to distribute the request to the closest location, can have a positive impact

in performance and it is very important for mission critical systems.

• Encryption: SSL/TLS encryption and description can be performed in the proxy server

instead of the origin server, removing in that way a serious load from the origin.

3.4 Proxy Server
A proxy, web proxy or proxy server is a computer that stands in front of a group of client

machines. All requests made from clients are coming through the proxy server before reaching

the internet.

In a typical internet communication example, a user would communicate directly with an origin

server. In the case presented in figure a proxy server is in place acting as a middleman and

Figure 4: Proxy Architecture

Page 23 of 75

controlling all incoming and outcoming traffic. The most important reasons proxy servers are

used are:

• Blocking access to certain content: Restricting certain user groups from accessing online

content is usually applied to school networks.

• Identity protection: Using proxy server to access the Internet is considered an identity

protection measure. It is much harder for the clients to be tracked back since their IP is

not appearing in the server access log, but instead the proxy’s IP is visible.

• Overcome restrictions: In some cases, there are certain restrictions in Internet usage by

government, organization, etc. Clients can overcome those restrictions by using a proxy

server.

3.5 DevOps
DevOps is a relatively new IT field that can be generally described as the mix of development

“Dev” and operations “Ops”. It includes all essential processes for development and deploying

software in production environments. DevOps engineers are using automation tools and scripts

to ensure the fast, stable, and risk-free deployment of new software. Also, scalability when

required, and overall monitoring of the infrastructure of the organization. Migrating legacy

software to the cloud is also a complex process that a DevOps engineer could be responsible for.

DevOps is not just automating the deployment of an application following the old monolithic

approach. Instead, the importance of DevOps is obvious when different teams develop different

software components using the microservices architecture and interconnecting every

component with an API [20]. Continuous integration and continuous delivery (CI/CD) are very

important for the business processes and can add great value for clients from early stages of

software delivery.

3.5.1 Docker

3.5.1.1 About Docker

Docker is a virtualization platform that that gives the ability to run applications in isolated

environments called containers. Each container contains all necessary software to run and

application and a be very size efficient. Multiple containers can be running simultaneously on

the same host. It is written in Go programming language and the underlying technology that uses

to provide containers is called namespaces.

By using Docker in your workflow, you can dramatically speed up the development progress and

deploy faster and safer in production. One other advantage of using containers is the ability to

share between developers exactly the same developer environment

Page 24 of 75

3.5.1.2 Docker Terminology

Image Image is a set of instructions used to create a container. Images
can use other images for example NodeJS can use alpine Linux as
its base image. Images are immutable once there are created.
Uses can create their own images and even publish it in a registry
making it public for other to use. Images are stateless.

Container Container is a running instance of an image. I can be fully
controlled by the Docker API or the command line. Containers are
stateful meaning that files, configuration settings etc. are being
stored until the container is deleted

Dockerfile Dockerfile is a document that contains the commands for building
an Image.

Docker-compose Docker compose is a tool for building and running complex
applications consisted by many services hosted in different
containers. It uses a single YAML file named docker-compose.yml
to configure all services .

Docker-Desktop Docker Desktop is a user-friendly application for Windows and
Mac that allows creating and controlling containers by using a UI
interface. It comes with docker-engine, docker-compose,
Kubernetes. It also provides the ability to download certified
directly from Docker registry.

Registry Docker Registry, named Docker Hub, is a registry where everyone
can download or upload Docker images from public or private
repositories.

Volume Volumes is a docker native mechanism to persist data of
containers. It is the recommended storing mechanism. [21]

Docker daemon Docker daemon or dockerd, listens for requests to Docker API such
as docker commands, and manages docker objects.

Docker objects Docker objects is referring to all Docker related entities like
containers, images, volumes, networks etc.

Page 25 of 75

3.6 Event Streaming
Event streaming is the process of capturing real-times data from different kind of sources like

IoT devices, sensors, databases in the form of events. An event in, business terms, is something

that happened in an environment of observation. Some real-life use cases of using event

streaming are:

• Automobile: Tracking of vehicles in order to reveal its exact location at any moment

• Healthcare: Real time notifications of patient’s condition and alerts in case of emergency

incidents.

• Banking and Trading: Real time processing of transactions, and alerts on stock value

changes.

• Meteorology: Capturing real-time events from meteorological stations and sensors in

order to provide forecasts and alerts in case of extreme weather conditions.

3.6.1 Kafka
Apache Kafka is a distributed streaming platform. Kafka main concepts are the “producers” that

are the applications responsible for producing events to Kafka and “consumers” that listen for

those events. Consumers and producers are functioning totally asynchronous and independently

giving Kafka the ability to scale.

The Kafka broker is responsible for enabling the communication between producers and

consumers. [22]. The received messages from producers are stored in disk with a unique key and

also enables consumers to retrieve messages by topic, key, or partition.

Kafka groups events in “topics”. A producer can be configured to send new events to a particular

topic and respectively a consumer to listen to it for updates. One topic can be connected to many

consumers and many producers. There is configuration available to store events for a selected

period of time and not delete them right after consumption. Also, the consuming frequency can

be configured.

In order to install in production, Kafka is requiring Zookeeper as a dependency (from Kafka

version 2.8 that won’t be necessary, but this is not a stable update [23]). Zookeeper is an open-

source software distributed under Apache license. It allows synchronization between Kafka

nodes and also allows monitoring topics and partitions. One other responsibility of Zookeeper is

maintaining the relationship of leader-follower in nodes, so whenever a leader node fails, all

other nodes and replicas has to be informed and new leader node is selected by polling between

the available nodes. [24]

Page 26 of 75

4 Cloud Gateway Implementation

4.1 Architecture
The Cloud Gateway has been designed and implemented following the microservices

architecture. It consits of five (5) basic components:

1. API Gateway Micrsoservice: It is the most important component of Cloud Gateway. It is

responsible for essential processes e.g., routing, applying authentication, middleware,

serving the administration and monitoring panels, service registry and discovery etc.

2. Storage Microservice: Receives all data obtained by the other microservices and persist

them in the database.

3. Twitter Microservice: Responsible for obtaining data from Twitter using Twitter’s REST

API and streams.

4. GTD Microservice: Responsible for obtaining and parsing a global terrorism dataset in

CSV format.

5. Water Quality Microservice: Responsible for obtaining and parsing a water quality

dataset in XLSX format.

Additional compononents that support the operation of Cloud Gateway are incuding:

• Kafka: Used for message streaming of data between data microservices and the storage

microservice.

• MongoDB: The database used for persisting data from external sources.

• Keycloak: Serves as the authentication and authorization mechanism.

• Postgres: The database used by Keycloack for storing users, realms etc.

• Traefik: Used as the Cloud Gateway’s reverse proxy and load balancer.

Page 27 of 75

Figure 5: Cloud Gateway Architecture

4.2 Initial approach and considerations
The initial approach was to build the Cloud Gateway using a non-gateway specific frameworks

LoopBack 4 [25] . Each component was built in a different technological stack. Even though, the

microservices architecture was used, the development progress of every component started to

become more difficult leading to bulk containers with all the different bootstrapping for every

framework used. The biggest problem appeared in the deployment stage with slow build times

and constant misconfigurations between the components, and also complex Dockerfiles in

order to setup each container. After researching market trends [26], microservices oriented

frameworks seemed like a better solution for building the microservices gateways than more

generic frameworks.

4.3 API Gateway Component
For the main gateway component, the MoleculerJS framework is utilized. MoleculerJS is a

lightweight Node.js framework oriented in building and managing microservices. It provides

many out-of-the-box features that make the development process faster easier.

NodeJS is built with V8 runtime engine and can be very efficient for input-output (IO) heavy tasks

but for CPU bound tasks like calculations, have high demand on resources. For IO-bound tasks

that consist of the Gateways main functionality NodeJS is an excellent choice. Along with a very

Page 28 of 75

large community, many innovative enterprises add NodeJS to their main technology stack as it

increases productivity and offers high performance at a much lower cost.

In terms of performance, moleculer is considered one of the fastest Node.js frameworks

according to benchmarks measuring all critical parts of the framework.

4.3.1 Service Discovery
In a microservices environment the running instances of services dynamically change location

inside networks. In order for client or services to be able to make requests to a service it must

use a service-discovery mechanism. MoleculerJS provides a bult-in module to handle service

discovery but also to handle service discovery and registry but also supports integration with 3rd

party in-memory data stores like Redis or etcd3.

For reasons of simplicity, the Cloud Gateway uses the local driver that may be very easy to

configure and faster since it all happens in a local scope, but it comes with serious drawbacks like

affecting request load time In production environments that are consisted by a large number of

nodes, it is not recommended to use that option since it uses the already existing transporter

module (in our case simple TCP) that serves all the requests and adds extra load.

Figure 6: Microservices Comparison

Page 29 of 75

The underlying concept of service discovery is the exchange of heartbeats packets between the

registry and the available nodes, to list the working services. If a node fails to broadcast a

heartbeat is not used to serve requests made for this particular service.

Figure 7: MoleculerJS - Service Discovery & Service Registry

4.3.2 Monitoring – Metrics
Monitoring is a very important aspect when developing microservices in order to ensure that all

exposed APIs are working as expected without errors and also get metrics for API calls to ensure

that your infrastructure can handle the incoming traffic load or to detect attacks, etc. For the

Cloud Gateway monitoring we have utilized swagger-stats, a Node.js library that collects metrics

and traces API requests. [27] Metrics are in Prometheus format, so that enables integration with

other popular metrics and alerting systems like Prometheus [28] and Grafana [29]. Also, further

integration is supported for in depth analysis of the requests using Elasticsearch 4 and Kibana5.

4 https://www.elastic.co/elasticsearch
5 https://www.elastic.co/kibana/

Page 30 of 75

Figure 8: Swagger Stats UI-Summary

 Some very interesting and important metrics that are provided include:

• CPU and memory utilization

• Error logging and latest error that occurred

• Request tracing and long request tracing with details request details like headers,

parameters, and times

• Statistics and summaries, overall payload measurement during periods of time

• Timelines to help you analyze trends of each request and peak periods

• Bult-in Telemetry UI with minimum configuration and many settings that provides good

user experience.

For utilizing swagger stats for Cloud Gateway, the npm package @slanatech/swagger-stats 6 was

installed, and in order to collect metrics it was configured as middleware on every request in the

gateway microservice.

6 https://swaggerstats.io/guide/#installation

Page 31 of 75

Figure 9: Swagger UI-Request and Errors

Configuration for enabling Prometheus metrics on MoleculerJS requiring adding the following

code to the moleculer.config.js file:

metrics: {
 enabled: true,
 reporter: {
 type: "Prometheus",
 options: {
 port: 3030,
 path: "/metrics",
 defaultLabels: registry => ({
 namespace: registry.broker.namespace,
 nodeID: registry.broker.nodeID
 })
 }
 }
},

Afterwards, in order to use swagger stats in the api.service.js file it is required to add

swMiddleware in the routes section.

module.exports = {
 name: "api",
 mixins: [
 ApiGateway,
],
 settings: {
 port: process.env.PORT || 3000,
 ip: "0.0.0.0",
 use: [
 swMiddleware
],

Page 32 of 75

 routes: [
 {
 path: "/api",

 whitelist: [
 "**"
],
 use: [
 swMiddleware,
 ...keycloakMiddleware,
]

4.3.3 Fault Tolerance
In a multi-node microservices environment, there is the possibility for every request to fail for

various reasons like networking problem, timeouts etc. In order to handle these errors ensure

service resiliency, there are several strategies available. If the reason of failure is a connectivity

issue, it is possible that the Retry Pattern [30], meaning the practice of repeating the same

request is the most suitable. But the reason of failure is caused by a more serious problem, by

repeating the same request over and over we increase the load to the services, utilize crucial

resources like memory and CPU, until the requests timeout, a scenario that would possibly affect

other working microservices. A suitable strategy for this problem, and a fitting solution for Cloud

Gateway implementation, is “The Circuit Breaker Pattern”. This pattern simply abandons the

retry attempts of a more liking to fail request, by running as a proxy on a retry pattern counting

the failures and cutting the circuit when the number exceed a specified limit. [31]

In Cloud Gateway implementation the "Circuit Breaker Pattern” is used along with other

precautionary measures. MoleculerJS has built-in configuration for setting up the preferred fault-

tolerance solution or a combination of them. The configuration for the circuit-breaker requires

adding the following code in the moleculer.configuration.js file:

circuitBreaker: {
 // Enable feature
 enabled: true,
 // Threshold value. 0.5 means that 50% should be failed for tripping.
 threshold: 0.7,
 // Minimum request count. Below it, CB does not trip.
 minRequestCount: 10,
 // Number of seconds for time window.
 windowTime: 60,
 // Number of milliseconds to switch from open to half-open state
 halfOpenTime: 10 * 1000,
 // A function to check failed requests.
 check: err => err && err.code >= 500 && err.code >= 401
}

The “check” value of the JSON object, accepts a function that declares all the error that indicate

a non-working service and responses with these codes are considered as failures.

Page 33 of 75

Furthermore, a good practice to set timeouts for requests. A long running request in most cases

indicates a problem and in order to prevent utilizing resources for a long period of time it is

reasonable to have a relatively small timeout. in configuration for setting up the preferred fault-

tolerance solution or a combination of them. The configuration for timeout simply requires

adding the timeout time in milliseconds in the moleculer.configuration.js file:

requestTimeout: 30000

4.3.4 Load Balancing
In distributed systems that a single service is server by many different nodes, in order to

effectively use the available processing power and equally distribute the workload, a load

balancing technique is required. There are several different algorithms for this purpose, mainly

divided in two (2) categories [32]:

• Static load balancers: Performance of processors is determined before the execution.

There is a master processor, responsible for allocating tasks and slave processors that

calculate their load and submit back to master. The main advantage of static load

balancers is the small delays in communication because the task-allocating node is

predefined from the beginning although the static scheme may not be optimal.

• Dynamic load balancers: The work distributed to processors is defined during runtime.

There is also a master node responsible for distributing tasks and slave nodes that are

reporting their current load.

Since all nodes on Cloud Gateway are supposed to have the same available resources, load-

balancing is implemented following the “Round-Robin Algorithm” strategy. All workload is

distributed equally between the nodes, always respecting the threshold for maintaining good

performance. Extra communication between nodes regarding the current status of the nodes is

not required.

Load balancing is part of MoleculerJS registry module. It supports a few load balancing

techniques including “Round-Robin”, add in addition there is support for custom made load

balancers. In order to activate “Round-Robin”, the following code in moleculer.config.js file is

required [33]:

// Settings of Service Registry. More info:
https://moleculer.services/docs/0.14/registry.html
registry: {
 // Define balancing strategy. More info:
https://moleculer.services/docs/0.14/balancing.html
 // Available values: "RoundRobin", "Random", "CpuUsage", "Latency", "Shard"
 strategy: "RoundRobin",

},

Page 34 of 75

4.3.5 Caching
Caching in microservices is important, especially when good performance is required. By using

caching mechanisms, when a client makes a request to access data, the response is stored in

temporary locations for a pre-selected amount of time (TTL: time to live) [34]. When a client

makes the same request inside the lifespan period, the cached response will be received without

reaching the origin server. That is a common mechanism used in almost every modern service

served over Internet.

MoleculerJS offers out-of-the-box caching solutions using either “In Memory” caching of 3rd party

caching solutions like Redis or LRU cachers [35]. For simplicity reasons and since 3rd party

solutions is a concern in production and multi-node implementation, we are using “In Memory”

caching configuration with the TTL configured at 1000 seconds since the data-refreshing process

is a scheduled task meaning that responses will stay the same for a long period of time. There

are options available to clear caches after a data-refresh, so there are not concerns about sending

the latest data version with every request.

The configuration for selecting a caching mechanism is simple and only requires the following

code in the moleculer.config.js file.

cacher: {
 type: "Memory",
 options: {
 ttl: 1000
 }
},

4.3.6 Transporters
The service registry in order to work correctly requires the exchange of status information

between the nodes. This requires a transporter module responsible for operating a channel of

communication [36].

MoleculerJS provides support for some popular message brokers like NATS, Redis, MQTT, AMQP

and Kafka. For Cloud Gateway implementation the message broker of choice is Kafka since it is

also utilized for another component (see section 4.3.5). For configuring Kafka as message broker,

the following code is required in moleculer.config.js file:

transporter: {
 type: "kafka",
}

4.4 Twitter Microservice
Twitter is one of the most popular microblogging and social networking platforms with a total

revenue up to $1.19 billion [37]. Every day, million users produce over 500 million tweets per

Page 35 of 75

day, resulting in a huge database widely used for data mining, surveys, sentiment analysis, market

research etc. [38]

Furthermore, Twitter is launching the API v2, a new improved version which promises to provide

a better developer experience by giving access to a wide variety of data sources and tools. Twitter

assures the quality of its data by applying spam filters, access to all results of a query and not

only to a partition of results, user-friendly and simplified JSON objects, shorter URLs and OpenAPI

specification to test endpoints and watch for any changes. [39]

Twitter Microservice is a component of the Cloud Gateway, providing access to Twitter data to

the gateway’s clients without the need to directly connect to Twitter API. It has been

implemented in NodeJS utilizing the twitter-v2 npm package7.

The microservice has two (2) basic functionalities:

1. Searching and filtering tweets: By utilizing the Search Tweets endpoints [40] of the

Twitter API v2, Cloud Gateway’s users have access to the most recent tweets. The filters

that can be applied include:

• Keyword search

• The start and end time parameters to limit tweet results to a specific period of

time

7 https://github.com/HunterLarco/twitter-v2

Page 36 of 75

• Max number of tweets in order to limit the results returned

2. Stream tweets for a specific period of time: By utilizing the Filtered Stream endpoints

[41], Cloud Gateway allow users to capture tweets in real-time related to a specific topic

for a pre-selected time window. The available parameters for the endpoint are including:

• Keyword

Figure 10: Recent Tweets Filtered-SwaggerUI

Page 37 of 75

• Duration (milliseconds): The duration parameter specifies the duration of the

stream capturing process. There is a max-duration limit, in order to ensure

gateway’s users are not abusing the service and also Twitter’s rate limits policy

[42].

After finishing the data capturing process, the obtained data are mapped into key-value

messages as required for Kafka. By using a Kafka producer, the results are sent to “twitter” Kafka

topic.

const {Kafka} = require("kafkajs");
const kafka = new Kafka({
 brokers: ["kafka:9092"],
 clientId: "twitter-producer",
});
const producer = kafka.producer();

let stream = clientBearer.stream("tweets/search/stream", streamParams);

setTimeout(() => {
 stream.close();
}, parseInt(ctx.params.duration));

let results = [];

Figure 11: Twitter stream endpoint - SwaggerUI

Page 38 of 75

for await (const {data} of stream) {
 results.push(data);

 let message = {
 key: data.id,
 value: data.text
 };

 try {
 emitMessage(message);
 }catch (e) {
 console.error(e);
 }
}

async function emitMessage(message) {
 await producer.connect();

 await producer.send({
 topic: topic,
 messages: [message],
 });
}

4.5 File parsing microservices
Parsing data from files of different format has always been a challenge for data science. Different

formats, different delimiters and compressions systems can lead add to the complexity of the

task. Another serious problem is the parsing of really large data files. In this case common parsing

techniques are not working because it is not possible to fit the entire file in the heap memory

and the resources are limited.

The Cloud Gateway provides two (2) different file reading microservices along with an FTP client

in order to access the files from remote locations. This scenario includes an FTP server, on which

data providers are responsible for uploading the files that are going to be processed by the

gateway’s services. Of course, other types of file repositories can be used, and the Cloud Gateway

supports integration with popular storage providers like Google Drive [43] and Dropbox [44] by

using the required libraries and adding the required configuration. For the purposes of this

dissertation only the FTP has been implemented.

4.5.1.1 Obtaining files via FTP

The aim of this component is to retrieve files from a remote location where there are updated

data sources available by the data owners. Using the FTP protocol, the data files will be

temporarily downloaded internally to the microservice in order to be parsed.

async function downloadFiles() {
 const client = new ftp.Client();

Page 39 of 75

 try {
 await client.access({
 host: FTP_HOST,
 user: FTP_USERNAME,
 password: FTP_PASSWORD,
 secure: false
 });

 await client.downloadTo("./data/events_new.csv", "./files/events_new.csv");
 }
 catch(err) {
 console.log(err);
 }
 client.close();
}

Datasets will be updated by their owners occasionally. In order to ensure that the Cloud Gateway

always uses the latest dataset available, a job scheduler has been implemented using the @

node-schedule/node-schedule npm package for NodeJS [45]. The job scheduler has been

configured to performs a dataset update every day at 12:00am. Both the job scheduler and the

ftp client are parts of the API service component.

const schedule = require("node-schedule");

schedule.scheduleJob("* * * 0 * *", function(){
 downloadFiles();
});

4.5.1.2 CSV files parser

The GTD microservice, consumes the GTD(Global Terrorism Database) dataset, an open-source

database containing information about terrorism attacks from 1970 to 2019. It provides data rich

records, including exact locations, number casualties, date, etc. This data can be used by

analytical services to analyze terrorism attack patterns and predict imminent disasters [46].

The GTD microservice is responsible for parsing the dataset file that originally is in CSV format

containing over 190900 records and 169MB in size. A scheduled job is responsible to partially

run the paring as a background task, transforming each record in Avro schema and send each

message to Kafka using a Kafka producer. After that the Kafka is responsible to send the data to

the storage component to be stored permanently. This task ensures that the storage microservice

will always be updated with the latest version of the dataset so it can be queried by the Gateway’s

clients.

const {Kafka} = require("kafkajs");
const kafka = new Kafka({
 brokers: ["kafka:9092"],
 clientId: "gtd-producer",
});

Page 40 of 75

const producer = kafka.producer();
const topic = "gtd";

async function emitMessage(message) {
 await producer.connect();

 await producer.send({
 topic: topic,
 messages: [message],
 });
}

async function reparseFile(filePath) {
 const csvFile = fs.readFileSync(filePath);
 const csvData = csvFile.toString();

 Papa.parse(csvData, {
 header: true,
 worker: true,
 delimiter: ";",
 step: function (row) {
 let message = {
 key: JSON.stringify(row.data.eventid),
 value: JSON.stringify(row.data)
 };

 try {
 emitMessage(message);
 } catch (e) {
 console.error(e);
 }
 },
 transformHeader: header => header.trim(),
 complete: function () {
 console.log("All done!");
 }
 });
}

const schedule = require("node-schedule");

schedule.scheduleJob("* * * 1 * *", function () {
 reparseFile(inputFile);
});

The GTD microservice provides a REST endpoint to access and query data. The available

parameters are including:

• Page number: The page number of paginated data to return

• Iyear: Year of attack

• Imonth: Month of attack [1-12]

• Citi: City of attack

Page 41 of 75

The implementation was done in NodeJS and the npm package used for CSV parsing is

@mholt/PapaParse [47].

Figure 12: GTD microservice -SwaggerUI

4.5.1.3 XLSX file parser

The Water Quality microservice consumes the “Water Quality performance results” dataset that

consists of data about water quality of communities in South Australia, extracted from extensive

tests carried out by Australian Water Quality Centre (AWQC) [48].

The Water Quality microservice is responsible for parsing the dataset files in XLSX format in order

to extract data. Similarly, to the GTD microservice, the parsing procedure is a scheduled job that

run in the background and while parsing the data are formatted in Kafka suitable format and sent

to the Kafka’s water-topic in order to be later sent and stored in the storage component. The

service is implemented in NodeJS and for the CSV parsing the @SheetJS/sheetjs npm package is

utilized [49].

Page 42 of 75

Figure 13: Water Quality microservice

The Water Quality microservice provides a REST endpoint to access and query data. The available

parameters are including:

• Page number: The page number of paginated data to return

• region_name

• disinfection

4.6 Storage microservice
The Storage microservice is responsible for persisting the data obtained from different and

heterogenous sources inside the Cloud Gateway for easier access and more manipulation and

filtering capabilities.

The Cloud Gateway uses MongoDB, an open-source and cross-platform NoSQL8 database that

structures data in documents that are similar to JSON objects and have dynamic schemas. The

8 https://en.wikipedia.org/wiki/NoSQL

Page 43 of 75

choice of utilizing MongoDB has been made considering its scaling capabilities by providing

multiple replicas of data and “sharding” meaning the distribution of data in shards that each one

can be located in different server [50]. Additionally, a NoSQL solution was needed because of the

flexibility in storing in many cases inconsistent data coming from various data sources.

The microservices consists of two (2) main parts. The first part is consuming the data that is

produced by the other microservices and is transported via Kafka. One Kafka consumer per topic

is always active and waits for new data to arrive. When the consumer receives new messages,

each message will be deserialzed and will be sent to MongoDB container to be stored in the

corresponding data collection. For each data source a new collection will created automatically

in MongoDB .

Figure 14: Data from Water Quality microservice stored in MongoDB by the Storage microservice

For the implementation of the microservice the MoleculerJS was utilized along with the

MongoDB adapter [51].

const {Kafka} = require("kafkajs");

const kafka = new Kafka({
 brokers: ["kafka:9092"],
 clientId: "water-producer",
});

const { ServiceBroker } = require("moleculer");
const DbService = require("moleculer-db");
const MongoDBAdapter = require("moleculer-db-adapter-mongo");

const broker = new ServiceBroker();

broker.createService({
 name: "water",
 mixins: [DbService],
 adapter: new MongoDBAdapter("mongodb://mongo:27017/water"),
 collection: "water",

Page 44 of 75

});

const topic = "water";
const consumer = kafka.consumer({ groupId: "test-group" });

const run = async () => {
 await broker.start();
 this.adapter.clear();

 await consumer.connect();
 await consumer.subscribe({ topic: topic, fromBeginning: true });

 await consumer.run({
 eachMessage: async ({ topic, partition, message }) => {
 console.log("received message");
 broker.call("water.create", {
 title: JSON.parse(message.key),
 content: JSON.parse(message.value),
 });
 },
 });
};

broker.stop();
run().catch(console.error);

4.7 Authentication Mechanism
The Cloud Gateway utilizes Keycloak as authentication and authorization mechanism. Keycloak is

an open-source identity and access management system that offers a variety of security

mechanisms [52].

The Keycloak server setup requires a running Keycloak server and administrative access to

Keycloak’s admin panel [53].

Next, creating a new realm and a user and associate new users with this, in order to given them

access to applications and produce the required keys required that will be used for integration

with the main application. The keys produced for demonstration purposes include:

KEYCLOAK_SERVER_URL = "http://localhost:8080/auth"

KEYCLOAK_CLIENT_ID = "keycloak-client"

KEYCLOAK_CLIENT_SECRET = "551144c7-cc06-4f06-8a89-8bae11717714"

KEYCLOAK_REALM = "cloud-gateway"

KEYCLOAK_AUTH_URL = http://localhost:8080/auth/realms/cloud-
gateway/protocol/openid-connect/auth

http://localhost:8080/auth/realms/cloud-gateway/protocol/openid-connect/auth
http://localhost:8080/auth/realms/cloud-gateway/protocol/openid-connect/auth

Page 45 of 75

Figure 15: Keycloak Cloud Gateway realm creation

Figure 16: Create Keycloak gateway-user in the Cloud Gateway realm

For Keycloak integration the with the main application, the Keycloak Node.js Adapter9 was

installed and used as middleware in the moleculer API routes to authorize and authenticate

every request.

After finishing both Keycloak server setup and integration with the application, accessing Cloud

Gateway’s resources without providing a valid authentication token is no longer possible and

requests result in “401 authorized” errors.

In order to obtain the access token an authorization request must be made to Keycloak server

using as request parameters the credentials.

9 https://github.com/keycloak/keycloak-nodejs-connect

Page 46 of 75

Figure 17: Keycloak access token obtained after authorization request

The authorization request returns an access token that must be included in every future request

to the Cloud Gateway’s resources.

Figure 18: Authorized request with bearer token returning a response

4.8 Reverse Proxy
The Cloud Gateway utilizes Traefik, a popular HTTP reverse proxy and a load balancer software

by TraefikLabs. It requires minimum effort for integration with infrastructure components like

Docker and Kubernetes. Traefik instead of requiring manual route configuration for each service

component, bundles to the registry service or orchestrator API and generates all routes

automatically so this services to be available for public and ready to use. Continuously updating

its configurations can be really helpful feature especially in a microservices environment that

changes in each microservice are very common issue and component restarts are required [54].

Traefik also provides a UI to monitor metrics and toggle configurations.

Page 47 of 75

Figure 19: Traefik Architecture

Page 48 of 75

4.9 Streams
Cloud Gateway utilizes Kafka for event streaming between components. More specifically, a

different Kafka topic is created for each data source. That means that every microservice will

stream and consume data only for the dedicated topic. The current implementation includes

three (3) topics “gtd”, “water” and “twitter” named after the microservices that they serve.

Using the kafka-console-consumer.sh, a console consumer that is contained in the Kafka

installation, to demonstrate the consumption of messages coming from the Water Quality

Microservice. The tool can be found by connection on the Kafka container via SSH and is located

in the ‘./opt/bitname/kafka/bin’ directory. To initiate the script run the following console

command that includes as parameters the server and the topic for consuming.

$kafka-console-consumer.sh --bootstrap-server kafka:9092 --topic water

Figure 20: Traefik WebUI

Page 49 of 75

Figure 21: Kafka's console consumer tool output

4.10 Serialization
In Cloud Gateway all components are used only for the Global Terrorism Component:

Avro serialization is utilized only for the GTD component that handles large records and JSON

serialization may have a negative impact for the performance and resource consumption of the

microservice. Messages are Avro-serialized before are sent to Kafka inside the GTD microservice,

and finally are deserialized in when consumed in Storage microservice and before are stored in

the database.

In order to utilize Avro Schema in NodeJS implementation, the external npm package avsc10 has

been installed as a dependency. That helped significantly reduce the size of the encodings in

comparison with the non-serialized JSON format.

An example of a non-serialized object in JSON format as it was extracted from the original CSV

file is:

{

 "eventid": 1,

 "iyear": 1970,

 "imonth": 1,

 "iday": 0,

 "approxdate": null,

 "extended": 0,

 "resolution": null,

 "country": 101,

 "country_txt": "Japan",

 "region": 4,

 "region_txt": "East Asia",

10 https://github.com/mtth/avsc

Page 50 of 75

 "provstate": "Fukouka",

 "city": "Fukouka",

 "latitude": 33.58,

 "longitude": 130.396,

 "specificity": 1,

 "vicinity": 0,

 "location": null,

 "summary": null,

 "crit1": 1,

 "crit2": 1,

 "crit3": 1,

 "doubtterr": -9,

 "alternative": null,

 "alternative_txt": null,

 "multiple": 0,

 "success": 1,

 "suicide": 0,

 "attacktype1": 7,

 "attacktype1_txt": "Facility\/Infrastructure Attack",

 "attacktype2": null,

 "attacktype2_txt": null,

 "attacktype3": null,

 "attacktype3_txt": null,

 "targtype1": 7,

 "targtype1_txt": "Government (Diplomatic)",

 "targsubtype1": 46,

 "targsubtype1_txt": "Embassy\/Consulate",

 "corp1": null,

 "target1": "U.S. Consulate",

 "natlty1": "217",

 "natlty1_txt": "United States",

 "targtype2": null,

 "targtype2_txt": null,

 "targsubtype2": null,

 "targsubtype2_txt": null,

 "corp2": null,

 "target2": null,

 "natlty2": null,

 "natlty2_txt": null,

 "targtype3": null,

 "targtype3_txt": null,

 "targsubtype3": null,

 "targsubtype3_txt": null,

 "corp3": null,

 "target3": null,

Page 51 of 75

 "natlty3": null,

 "natlty3_txt": null,

 "gname": "Unknown",

 "gsubname": null,

 "gname2": null,

 "gsubname2": null,

 "gname3": null,

 "gsubname3": null,

 "motive": null,

 "guncertain1": 0,

 "guncertain2": null,

 "guncertain3": null,

 "individual": null,

 "nperps": null,

 "nperpcap": null,

 "claimed": null,

 "claimmode": null,

 "claimmode_txt": null,

 "claimed2": null,

 "claimmode2": null,

 "claimmode_txt2": null,

 "claimed3": null,

 "claimmode3": null,

 "claimmode_txt3": null,

 "compclaim": null,

 "weaptype1": 8,

 "weaptype1_txt": "Incendiary",

 "weapsubtype1": null,

 "weapsubtype1_txt": null,

 "weaptype2": null,

 "weaptype2_txt": null,

 "weapsubtype2": null,

 "weapsubtype2_txt": null,

 "weaptype3": null,

 "weaptype3_txt": null,

 "weapsubtype3": null,

 "weapsubtype3_txt": null,

 "weaptype4": null,

 "weaptype4_txt": null,

 "weapsubtype4": null,

 "weapsubtype4_txt": null,

 "weapdetail": "Incendiary",

 "nkill": null,

 "nkillus": null,

 "nkillter": null,

Page 52 of 75

 "nwound": null,

 "nwoundus": null,

 "nwoundte": null,

 "property": 1,

 "propextent": null,

 "propextent_txt": null,

 "propvalue": null,

 "propcomment": null,

 "ishostkid": 0,

 "nhostkid": null,

 "nhostkidus": null,

 "nhours": null,

 "ndays": null,

 "divert": null,

 "kidhijcountry": null,

 "ransom": 0,

 "ransomamt": null,

 "ransomamtus": null,

 "ransompaid": null,

 "ransompaidus": null,

 "ransomnote": null,

 "hostkidoutcome": null,

 "hostkidoutcome_txt": null,

 "nreleased": null,

 "addnotes": null,

 "scite1": null,

 "scite2": null,

 "scite3": null,

 "dbsource": "PGIS",

 "INT_LOG": -9,

 "INT_IDEO": -9,

 "INT_MISC": 1,

 "INT_ANY": 1,

 "related": null

 }

The data schema used for serialization and deserialization of the transported messages is listed

below.

const avroValueScheme = avro.Type.forSchema({
 "type": "record",
 "name": "recordValue",
 "fields": [{
 "name": "iyear",
 "type": ["int", "null"]
 }, {
 "name": "imonth",

Page 53 of 75

 "type": ["int", "null"]
 }, {
 "name": "iday",
 "type": ["int", "null"]
 }, {
 "name": "approxdate",
 "type": ["string", "null"]
 }, {
 "name": "extended",
 "type": ["int", "null"]
 }, {
 "name": "resolution",
 "type": ["string", "null"]
 }, {
 "name": "country",
 "type": ["int", "null"]
 }, {
 "name": "country_txt",
 "type": ["string", "null"]
 }, {
 "name": "region",
 "type": ["int", "null"]
 }, {
 "name": "region_txt",
 "type": ["string", "null"]
 }, {
 "name": "provstate",
 "type": ["string", "null"]
 }, {
 "name": "city",
 "type": ["string", "null"]
 }, {
 "name": "latitude",
 "type": ["double", "null"]
 }, {
 "name": "longitude",
 "type": ["double", "null"]
 }, {
 "name": "specificity",
 "type": ["int", "null"]
 }, {
 "name": "vicinity",
 "type": ["int", "null"]
 }, {
 "name": "location",
 "type": ["string", "null"]
 }, {
 "name": "summary",
 "type": ["string", "null"]
 }, {
 "name": "crit1",
 "type": ["int", "null"]
 }, {
 "name": "crit2",
 "type": ["int", "null"]
 }, {
 "name": "crit3",
 "type": ["int", "null"]
 }, {
 "name": "doubtterr",
 "type": ["int", "null"]
 }, {
 "name": "alternative",
 "type": ["int", "null"]
 }, {
 "name": "alternative_txt",
 "type": ["string", "null"]
 }, {
 "name": "multiple",
 "type": ["int", "null"]
 }, {
 "name": "success",
 "type": ["int", "null"]
 }, {
 "name": "suicide",
 "type": ["int", "null"]
 }, {
 "name": "attacktype1",
 "type": ["int", "null"]

Page 54 of 75

 }, {
 "name": "attacktype1_txt",
 "type": ["string", "null"]
 }, {
 "name": "attacktype2",
 "type": ["int", "null"]
 }, {
 "name": "attacktype2_txt",
 "type": ["string", "null"]
 }, {
 "name": "attacktype3",
 "type": ["int", "null"]
 }, {
 "name": "attacktype3_txt",
 "type": ["string", "null"]
 }, {
 "name": "targtype1",
 "type": ["int", "null"]
 }, {
 "name": "targtype1_txt",
 "type": ["string", "null"]
 }, {
 "name": "targsubtype1",
 "type": ["int", "null"]
 }, {
 "name": "targsubtype1_txt",
 "type": ["string", "null"]
 }, {
 "name": "corp1",
 "type": ["string", "null"]
 }, {
 "name": "target1",
 "type": ["string", "null"]
 }, {
 "name": "natlty1",
 "type": ["string", "null"]
 }, {
 "name": "natlty1_txt",
 "type": ["string", "null"]
 }, {
 "name": "targtype2",
 "type": ["int", "null"]
 }, {
 "name": "targtype2_txt",
 "type": ["string", "null"]
 }, {
 "name": "targsubtype2",
 "type": ["int", "null"]
 }, {
 "name": "targsubtype2_txt",
 "type": ["string", "null"]
 }, {
 "name": "corp2",
 "type": ["string", "null"]
 }, {
 "name": "target2",
 "type": ["string", "null"]
 }, {
 "name": "natlty2",
 "type": ["string", "null"]
 }, {
 "name": "natlty2_txt",
 "type": ["string", "null"]
 }, {
 "name": "targtype3",
 "type": ["int", "null"]
 }, {
 "name": "targtype3_txt",
 "type": ["string", "null"]
 }, {
 "name": "targsubtype3",
 "type": ["int", "null"]
 }, {
 "name": "targsubtype3_txt",
 "type": ["string", "null"]
 }, {
 "name": "corp3",
 "type": ["string", "null"]
 }, {

Page 55 of 75

 "name": "target3",
 "type": ["string", "null"]
 }, {
 "name": "natlty3",
 "type": ["string", "null"]
 }, {
 "name": "natlty3_txt",
 "type": ["string", "null"]
 }, {
 "name": "gname",
 "type": ["string", "null"]
 }, {
 "name": "gsubname",
 "type": ["string", "null"]
 }, {
 "name": "gname2",
 "type": ["string", "null"]
 }, {
 "name": "gsubname2",
 "type": ["string", "null"]
 }, {
 "name": "gname3",
 "type": ["string", "null"]
 }, {
 "name": "gsubname3",
 "type": ["string", "null"]
 }, {
 "name": "motive",
 "type": ["string", "null"]
 }, {
 "name": "guncertain1",
 "type": ["int", "null"]
 }, {
 "name": "guncertain2",
 "type": ["int", "null"]
 }, {
 "name": "guncertain3",
 "type": ["int", "null"]
 }, {
 "name": "individual",
 "type": ["int", "null"]
 }, {
 "name": "nperps",
 "type": ["int", "null"]
 }, {
 "name": "nperpcap",
 "type": ["int", "null"]
 }, {
 "name": "claimed",
 "type": ["int", "null"]
 }, {
 "name": "claimmode",
 "type": ["int", "null"]
 }, {
 "name": "claimmode_txt",
 "type": ["string", "null"]
 }, {
 "name": "claimed2",
 "type": ["int", "null"]
 }, {
 "name": "claimmode2",
 "type": ["int", "null"]
 }, {
 "name": "claimmode_txt2",
 "type": ["string", "null"]
 }, {
 "name": "claimed3",
 "type": ["int", "null"]
 }, {
 "name": "claimmode3",
 "type": ["int", "null"]
 }, {
 "name": "claimmode3_txt",
 "type": ["string", "null"]
 }, {
 "name": "compclaim",
 "type": ["string", "null"]
 }, {
 "name": "weaptype1",

Page 56 of 75

 "type": ["int", "null"]
 }, {
 "name": "weaptype1_txt",
 "type": ["string", "null"]
 }, {
 "name": "weapsubtype1",
 "type": ["int", "null"]
 }, {
 "name": "weapsubtype1_txt",
 "type": ["string", "null"]
 }, {
 "name": "weaptype2",
 "type": ["int", "null"]
 }, {
 "name": "weaptype2_txt",
 "type": ["string", "null"]
 }, {
 "name": "weapsubtype2",
 "type": ["int", "null"]
 }, {
 "name": "weapsubtype2_txt",
 "type": ["string", "null"]
 }, {
 "name": "weaptype3",
 "type": ["int", "null"]
 }, {
 "name": "weaptype3_txt",
 "type": ["string", "null"]
 }, {
 "name": "weapsubtype3",
 "type": ["int", "null"]
 }, {
 "name": "weapsubtype3_txt",
 "type": ["string", "null"]
 }, {
 "name": "weaptype4",
 "type": ["int", "null"]
 }, {
 "name": "weaptype4_txt",
 "type": ["string", "null"]
 }, {
 "name": "weapsubtype4",
 "type": ["int", "null"]
 }, {
 "name": "weapsubtype4_txt",
 "type": ["string", "null"]
 }, {
 "name": "weapdetail",
 "type": ["string", "null"]
 }, {
 "name": "nkill",
 "type": ["int", "null"]
 }, {
 "name": "nkillus",
 "type": ["int", "null"]
 }, {
 "name": "nkillter",
 "type": ["int", "null"]
 }, {
 "name": "nwound",
 "type": ["int", "null"]
 }, {
 "name": "nwoundus",
 "type": ["int", "null"]
 }, {
 "name": "nwoundte",
 "type": ["int", "null"]
 }, {
 "name": "property",
 "type": ["int", "null"]
 }, {
 "name": "propextent",
 "type": ["int", "null"]
 }, {
 "name": "propextent_txt",
 "type": ["string", "null"]
 }, {
 "name": "propvalue",
 "type": ["int", "null"]

Page 57 of 75

 }, {
 "name": "propcomment",
 "type": ["string", "null"]
 }, {
 "name": "ishostkid",
 "type": ["int", "null"]
 }, {
 "name": "nhostkid",
 "type": ["int", "null"]
 }, {
 "name": "nhostkidus",
 "type": ["int", "null"]
 }, {
 "name": "nhours",
 "type": ["int", "null"]
 }, {
 "name": "ndays",
 "type": ["int", "null"]
 }, {
 "name": "divert",
 "type": ["string", "null"]
 }, {
 "name": "kidhijcountry",
 "type": ["string", "null"]
 }, {
 "name": "ransom",
 "type": ["int", "null"]
 }, {
 "name": "ransomamt",
 "type": ["int", "null"]
 }, {
 "name": "ransomamtus",
 "type": ["int", "null"]
 }, {
 "name": "ransompaid",
 "type": ["int", "null"]
 }, {
 "name": "ransompaidus",
 "type": ["int", "null"]
 }, {
 "name": "ransomnote",
 "type": ["string", "null"]
 }, {
 "name": "hostkidoutcome",
 "type": ["int", "null"]
 }, {
 "name": "hostkidoutcome_txt",
 "type": ["string", "null"]
 }, {
 "name": "nreleased",
 "type": ["int", "null"]
 }, {
 "name": "addnotes",
 "type": ["string", "null"]
 }, {
 "name": "scite1",
 "type": ["string", "null"]
 }, {
 "name": "scite2",
 "type": ["string", "null"]
 }, {
 "name": "scite3",
 "type": ["string", "null"]
 }, {
 "name": "dbsource",
 "type": ["string", "null"]
 }, {
 "name": "INT_LOG",
 "type": ["int", "null"]
 }, {
 "name": "INT_IDEO",
 "type": ["int", "null"]
 }, {
 "name": "INT_MISC",
 "type": ["int", "null"]
 }, {
 "name": "INT_ANY",
 "type": ["int", "null"]
 }, {

Page 58 of 75

 "name": "related",
 "type": ["string", "null"]
 }]
});

Figure 22: Avro encoded API response for demonstration purposes

4.11 Infrastructure & Deployment

4.11.1 Containerization
The Cloud Gateway utilizes Docker that enables running each microservice on a separate

container. The components that are being containerized and all combined make the Cloud

Gateway are listed below:

1. API Gateway

2. GTD Microservice

3. Twitter Microservice

4. Water Quality Microservice

5. Storage Microservice

6. Keycloak Server

7. Postgres Database

8. Kafka Server

9. Zookeeper

Page 59 of 75

10. Traefik

11. MongoDB

To configure, customize, build, and deploy all containers, the Docker Compose tool has been

utilized. The docker-compose.yml file contains all the information to build and deploy the project.

version: "3.3"

services:
 api:
 build:
 context: .
 image: moleculer-gateway
 env_file: docker-compose.env
 environment:
 SERVICES: api, openapi
 PORT: 3000
 depends_on:
 - zookeeper
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.api-gw.rule=PathPrefix(`/`)"
 - "traefik.http.services.api-gw.loadbalancer.server.port=3000"
 networks:
 - internal

 water-quality:
 build:
 context: .
 image: moleculer-gateway
 env_file: docker-compose.env
 environment:
 SERVICES: water-quality
 depends_on:
 - zookeeper
 networks:
 - internal

 storage:
 build:
 context: .
 image: moleculer-gateway
 env_file: docker-compose.env
 environment:
 SERVICES: storage
 depends_on:
 - zookeeper
 networks:
 - internal

 twitter:
 build:
 context: .
 image: moleculer-gateway

Page 60 of 75

 env_file: docker-compose.env
 environment:
 SERVICES: twitter
 depends_on:
 - zookeeper
 networks:
 - internal

 gtd:
 build:
 context: .
 image: moleculer-gateway
 env_file: docker-compose.env
 environment:
 SERVICES: gtd
 depends_on:
 - zookeeper
 networks:
 - internal

 mongo:
 image: mongo:4
 volumes:
 - data:/data/db
 ports:
 - 27017:27017
 networks:
 - internal

 zookeeper:
 image: bitnami/zookeeper
 environment:
 - ALLOW_ANONYMOUS_LOGIN=yes
 ports:
 - 2181:2181
 networks:
 - internal

 kafka:
 image: bitnami/kafka
 environment:
 - KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181
 - KAFKA_CFG_ADVERTISED_LISTENERS=PLAINTEXT://kafka:9092
 - ALLOW_PLAINTEXT_LISTENER=yes
 depends_on:
 - zookeeper
 networks:
 - internal
 ports:
 - 9092:9092

 traefik:
 image: traefik:v2.1
 command:
 - "--api.insecure=true" # Don't do that in production!

Page 61 of 75

 - "--providers.docker=true"
 - "--providers.docker.exposedbydefault=false"
 ports:
 - 3000:80
 - 3001:8080
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock:ro
 networks:
 - internal
 - default

 postgres:
 image: postgres
 volumes:
 - /postgres_data:/var/lib/postgresql/data
 environment:
 POSTGRES_DB: keycloak
 POSTGRES_USER: keycloak
 POSTGRES_PASSWORD: password

 keycloak:
 image: quay.io/keycloak/keycloak:latest
 environment:
 DB_VENDOR: POSTGRES
 DB_ADDR: postgres
 DB_DATABASE: keycloak
 DB_USER: keycloak
 DB_SCHEMA: public
 DB_PASSWORD: password
 KEYCLOAK_USER: admin
 KEYCLOAK_PASSWORD: Pa55w0rd
 ports:
 - 8080:8080
 depends_on:
 - postgres

networks:
 internal:

volumes:
 data:

4.11.2 Installation and Configuration
Cloud Gateway is hosted for demonstration purposes, a Virtual Private Server (VPS). The VPS run

on Ubuntu 18.04 LTS version operating system.

Requirements for installing and run Cloud Gateway include:

• Docker

• Docker-compose

• Git

Page 62 of 75

4.11.2.1 Installing Docker

Before starting the Docker installation process ensuring that all existing packages are updated

and install prerequisite packages [55].

$ sudo apt update

$ sudo apt install apt-transport-https ca-certificates curl software-

properties-common

Next, it is important to add the repository key as long as with the repository itself.

$ sudcurl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo

apt-key add –

$ sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu (lsb_release -cs) stable"

Updating the existing resources after a new installation is suggested after installing new

software

$ sudo apt update

After executing the commands above next step is to proceed with the actual Docker installation.

$ sudo apt install docker-ce docker-ce-cli containerd.io

Figure 23: systemctl command for ensuring docker installation

To systemctl command ensures Docker installation was successful

$ sudo systemctl status docker

Also, giving It is important to give users that are going to use Docker permission in order to be

able to run Docker commands.

$ sudo usermod -aG docker user

https://download.docker.com/linux/ubuntu

Page 63 of 75

4.11.2.2 Installing Docker Compose

Docker Compose is a tool that enables running application consisted of many different

containers, using a single YAML11 file. Using the available service definitions, it is possible to

configure and fully customize containers before the building process.

The latest Docker Compose version is available at the official GitHub repository. Current stable

version is 1.29.2. Files are stored at /usr/local/bin/docker-compose to enable global access to the

command from anywhere on the server [56].

$ sudo curl -L

"https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

Executable permissions are required to Docker Compose binary.

$ sudo chmod +x /usr/local/bin/docker-compose

4.11.2.3 Installing Cloud Gateway

Before starting with the installation, Git12 version must be installed in the system.

$ sudo apt install git

After finishing with Git installation, it is time to install the Cloud Gateway by cloning the project

from the GitHub repository.

$ git clone https://github.com/demetriskako/cloud-gateway.git

Please note that this is a private repository and access can be provided upon request on the

email to the author.

Next step is to navigate inside the new directory named “cloud-gateway” where the source

code is located. Before building the project an .env file should be provided, containing private

keys and tokens that are required for connections with other services and configuration. A

.env.test file is also provided inside the project’s directory in which all required keys are listed.

CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET,

BEARER_TOKEN, KEYCLOAK_SERVER_URL, KEYCLOAK_CLIENT_ID,
KEYCLOAK_CLIENT_SECRET, KEYCLOAK_AUTH_URL, KEYCLOAK_REALM, KEYCLOAK_USER,

KEYCLOAK_USER_PASSWORD, KAFKA_PRODUCTION_BROKER, FTP_HOST, FTP_USERNAME,
FTP_PASSWORD

After providing the .env file the project is ready to be built.

11 https://www.redhat.com/en/topics/automation/what-is-yam
12 https://git-scm.com/book/en/v2/Getting-Started-What-is-Git

https://github.com/demetriskako/cloud-gateway.git

Page 64 of 75

$ docker-compose build

The results and the output of the building process are appearing in the console.

If no error has occurred, then next step is to initiate the project.

Figure 24: docker-compose build command output

Page 65 of 75

$ docker-compose up

Figure 25: docker ps command output

The ‘ps’ command can be used to ensure all containers are up and running.

$ docker ps

If all the deployment was successful are available services must be accessible on their

corresponding port.

MongoDB Port: 27017

Traefik Dashboard http://server_ip:3001/

Cloud Gateway Dashboard http://server_ip:3000/

OpenAPI Specification http://server_ip:3000/api/openapi/ui

Swagger Metrics http://server_ip:3000/api/swagger-stats/#/

Page 66 of 75

5 Conclusion

5.1 Conclusion
When building microservices, choosing the right tools and technologies is very challenging.

Choices for every organization or enterprise should be made based several factors like staff skill

availability, learning curve, industry acceptance, support community and learning curve,

otherwise technical restrictions and limitations that might occur will affect the progress of the

project. As described in this dissertation, adapting the microservices architecture but not using

a specialized framework to support this architecture is not enough. Instead, using generic

frameworks and trying to orchestrate the different services using different technologies will slow

down the overall progress since much more time is required for the configuration and these

systems are more prone to error and misconfigurations.

Using a microservices oriented framework like MoleculerJS, benefited the development of the

“Cloud Gateway” by providing out-of-the-box, production-level quality of modules like Load-

Balancing, Fault-Tolerance mechanisms and also by providing a very descriptive documentation

page that covers every part in detail. Furthermore, the fact that MoleculerJS is NodeJS

framework, enables easy integration with almost every other tool and technology, by simple

installing additional packages from npm repository to support new functionalities, ensuring the

interoperability with future components that will be added in the Cloud Gateway. Additionally,

the popularity of JavaScript makes the Molecule framework appealing to contribution from

individual developers or enterprises since is an open-source project.

Regarding the overall conclusions on Cloud Gateway, using a dedicated service as gateway to

manage and orchestrate other services and components enabled the easier and more secure

implementation of policies and provided a unified and robust REST API. The Cloud Gateway’s

clients can consume the data available without having to consider technical, legal issues since

these are supposed to be implemented in the Gateway level.

5.2 Future Steps

5.2.1 Kubernetes
As it is stated in previous chapters, hosting the gateway in cloud environments cannot be efficient

for various reasons. Although it is possible to enjoy the advantages of a distributed system by

deploying instances of the Cloud Gateway on multiple nodes. Running a custom container

management system on-premises can be very complicated, therefore using Kubernetes13 is a

good solution for this problem.

13 https://kubernetes.io/

Page 67 of 75

Kubernetes is an open-source platform initially developed by Google. It provides a framework to

build distributed systems, and caring processes like scaling and fail tolerance and also tools that

for creating deployment patterns of your services [57].

Figure 26: Kubernetes Cluster example

Utilizing Kubernetes will certainly add extra value to Cloud Gateway because it can help

overcoming problems resulting from usage growth, and also provide a better management over

the Gateway’s components.

5.2.2 Enriching the available data sources
Το this day the Cloud Gateway consists of three (3) data microservices. In the future more

microservices will be implemented covering the most common file formats regrading file-

parsing, and consuming the most popular 3rd party APIs e.g.,

5.2.3 Migrating to GraphQL
GraphQL is a query language developed by Facebook14 as an alternative to the REST architecture

of their API. This technology transitions the query decision to the client, removing the

responsibility provide accurate data from the server. GraphQL server instead of exposing

endpoints, exposes a schema-defined database that can be queried by clients. The clients should

also implement resolvers in order to receive and deserialize responses [58]. The data can be

retrieved from different and multiple data structures if need by using tools like Apollo15.

14 https://www.facebook.com/
15 https://www.apollographql.com/

Page 68 of 75

GraphQL enables the combination of multiple APIs in one and since the main business goal of

Cloud Gateway is to provide data from heterogenous data sources to clients, it will be ideal to

make it possible with a single request.

But we should consider the disadvantages of this technology, e.g., that the implemented or any

other caching mechanisms will not work because the requests do not follow the HTTP

specification, GraphQL can become very “expensive” and affect the overall performance.

5.2.4 CI/CD
The main concept of CI/CD (Continuous integration/Continuous Delivery) is the adaption of

automation in the application lifecycle. The term continuous integration refers to the process of

regular merges of developer branches to a shared repository while, while continuous delivery

refers to automation of the process of running tests and builds before the new software is

merged. On other important term that is worth mentioning is continuous deployment, referring

to automation of the deployment process of new code from the code repository to the

production servers. There are many tools available for building custom CI/CD pipelines e.g.,

Jenkins16 that is a very popular open-source project. CI/CD tools are also provided from vendors

along with hosting or repository services e.g., GitLab CI17 [59].

The Cloud Gateway can be benefitted from the utilization of a CI/CD tool, proving faster

deployment of newest versions of microservices resulting in client satisfaction and quick

feedback, and in addition to improve quality of services by running automated unit and feature

tests ensuring that there is not broken code is not deployed to production.

5.2.5 OpenWhisk
OpenWhisk18 is an open source serverless platform developed by Apache Foundation19.

OpenWhisk takes care of the infrastructure management and resource provisioning and supports

the FaaS cloud model by allowing developers to run their application as actions [60].

16 https://www.jenkins.io/doc/
17 https://docs.gitlab.com/ee/ci/
18 https://openwhisk.apache.org/
19 https://www.apache.org/

Page 69 of 75

Figure 27: OpenWhisk programming model

Utilizing the OpenWhisk API Gateway provides the ability to expose OpenWhisk action as RESTful

endpoints. The Cloud Gateway could easily support such interoperability. A use-case for the

usefulness of this feature, will be the ability of Cloud Gateway to invoke certain OpenWhisk

actions when newer version of data-source is available, instead of the actions to blindly ping the

Gateway to get this kind of information.

Page 70 of 75

6 References

[1] V. Garousi, M. Felderer. and M. V. Mäntylä, "The need for multivocal literature reviews in

software engineering: complementing systematic literature reviews with grey literature,"

in 20th International Conference on Evaluation and Assessment in Software Engineering

(EASE '16), 2016.

[2] S. Marston, Z. Li, S. Bandyopadhyay and A. Ghalsasi, "Cloud Computing - The Business

Perspective," in 44th Hawaii International Conference on System Sciences, Kauai, 2011.

[3] M. Al-Gharibi, M. Warren και W. Yeoh, «Risks of Critical Infrastructure Adoption of Cloud

Computing within Government,» Deakin University Centre for Cyber Security Research

and Innovation, Deakin University, Geelong, Victoria, Australia.

[4] P. Heino, "https://www.linkedin.com/," 2018. [Online]. Available:

https://www.linkedin.com/pulse/monster-cloud-vendor-lock-in-petteri-heino/. [Accessed

09 09 2021].

[5] J. McKendrick, "https://www.zdnet.com/," ZDNet, [Online]. Available:

https://www.zdnet.com/. [Accessed 17 09 2021].

[6] S. Ranger, "www.zdnet.com," ZDNet, [Online]. Available:

https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-

about-the-cloud/. [Accessed 09 09 2021].

[7] Amazon, "aws.amazon.com," Amazon, [Online]. Available:

https://aws.amazon.com/types-of-cloud-computing/. [Accessed 14 09 2021].

[8] «www.intel.com,» Intel, [Ηλεκτρονικό]. Available:

https://www.intel.com/content/www/us/en/cloud-computing/deployment-models.html.

[Πρόσβαση 09 09 2021].

[9] "insights.stackoverflow.com," StackOverflow, 2020. [Online]. Available:

https://insights.stackoverflow.com/survey/2020. [Accessed 09 09 2021].

[10] Aleksandra Kwiecień, "https://www.divante.com/," Divante, [Online]. Available:

https://www.divante.com/blog/10-companies-that-implemented-the-microservice-

architecture-and-paved-the-way-for-others. [Accessed 10 09 2021].

[11] "www.redhat.com," RedHat, [Online]. Available:

https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do.

Page 71 of 75

[12] "www.ibm.com," IBM, [Online]. Available: https://www.ibm.com/topics/avro. [Accessed

08 09 2021].

[13] Apache Avro™, "avro.apache.org," Apache Avro™, [Online]. Available:

https://avro.apache.org/docs/current/#compare. [Accessed 14 09 2021].

[14] "konghq.com," Kong Inc., [Online]. Available: https://konghq.com/learning-

center/microservices/microservices-orchestration/. [Accessed 14 09 2021].

[15] R. Donovan and J. Au-Yeung, "stackoverflow.blog," StackOverflow, 2020. [Online].

Available: https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/.

[Accessed 10 09 2021].

[16] T. Preston-Werner, "https://semver.org/," [Online]. Available: https://semver.org/.

[Accessed 10 09 2021].

[17] SmartBear Softwar, "swagger.io," SmartBear Softwar, [Online]. Available:

https://swagger.io/specification/. [Accessed 09 09 2021].

[18] K. Vasudevan, "swagger.io," 2018. [Online]. Available: https://swagger.io/blog/api-

strategy/benefits-of-openapi-api-development/. [Accessed 10 09 2021].

[19] "www.cloudflare.com," Cloudflare, [Online]. Available:

https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/.

[20] "www.redhat.com," RedHat, [Online]. Available:

https://www.redhat.com/en/topics/devops.

[21] "Docker Docmentation," Docker, [Online]. Available:

https://docs.docker.com/storage/volumes/. [Accessed 09 09 2021].

[22] J. Laskowski, The Internals of Apache Kafka 2.4.0.

[23] "dattell.com," Datell, 2021. [Online]. Available: https://dattell.com/data-architecture-

blog/what-is-zookeeper-how-does-it-support-kafka/. [Accessed 10 09 2021].

[24] E. Vinka, "Cloudkarafka," 2018. [Online]. Available:

https://www.cloudkarafka.com/blog/cloudkarafka-what-is-zookeeper.html. [Accessed 09

09 2021].

[25] "loopback.io," IBM, [Online]. Available: https://loopback.io/doc/en/lb4/. [Accessed 12 09

2021].

Page 72 of 75

[26] A. Kurmi, 2020. [Online]. Available: https://medium.com/microservices-architecture/top-

10-microservices-framework-for-2020-eefb5e66d1a2. [Accessed 09 09 2021].

[27] slana.tech, "swaggerstats.io," [Online]. Available:

https://swaggerstats.io/guide/intro.html.

[28] Prometheus Authors, "prometheus.io," [Online]. Available:

https://prometheus.io/docs/introduction/overview/. [Accessed 09 09 2021].

[29] grafana.com, "grafana.com," [Online]. Available: https://grafana.com/grafana/.

[30] "microsoft.com," Microsoft, [Online]. Available: https://docs.microsoft.com/en-

us/azure/architecture/patterns/circuit-breaker#solution. [Accessed 11 09 2021].

[31] M. Nygard, «Release It! Second Edition,» σε Release It! Second Edition, Pragmatic

Bookshelf, 2018.

[32] S. Sharma, S. Singh και M. Sharma, «Performance Analysis of Load Balancing,» 2008.

[33] "moleculer.services," MoleculerJS, [Online]. Available:

https://moleculer.services/docs/0.14/balancing.html#RoundRobin-strategy.

[34] www.cloudflare.com, "www.cloudflare.com," www.cloudflare.com, [Online]. Available:

https://www.cloudflare.com/learning/cdn/glossary/time-to-live-ttl/. [Accessed 08 09

2021].

[35] moleculer.services, "moleculer.services," [Online]. Available:

https://moleculer.services/docs/0.14/caching.html#Memory-cacher. [Accessed 12 09

2021].

[36] "MoleculrJS Documentation," MoleculrJS, [Online]. Available:

https://moleculer.services/docs/0.14/networking.html. [Accessed 11 09 2021].

[37] "www.prweek.com," PRWeek, [Online]. Available:

https://www.prweek.com/article/1724446/online-ad-demand-very-strong-tech-giants-

perform-q2-2021. [Accessed 08 09 2021].

[38] Towardsdatascience, "https://towardsdatascience.com," [Online]. Available:

https://towardsdatascience.com/mining-twitter-data-ba4e44e6aecc. [Accessed 05 09

2021].

[39] "developer.twitter.com," Twitter, [Online]. Available:

https://developer.twitter.com/en/docs/twitter-api/early-access. [Accessed 14 09 2021].

Page 73 of 75

[40] "developer.twitter.com," Twitter, [Online]. Available:

https://developer.twitter.com/en/docs/twitter-api/tweets/search/api-reference/get-

tweets-search-recent. [Accessed 14 09 2021].

[41] "developer.twitter.com," Twitter, [Online]. Available:

https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-stream/introduction.

[Accessed 19 09 2021].

[42] "developer.twitter.com," Twitter, [Online]. Available:

https://developer.twitter.com/en/docs/twitter-api/rate-limits.

[43] "developers.google.com," Google, [Online]. Available:

https://developers.google.com/drive/api/v3/quickstart/nodejs. [Accessed 14 09 2021].

[44] "dropbox.github.io," Dropbox, [Online]. Available: https://dropbox.github.io/dropbox-sdk-

js/. [Accessed 10 09 2021].

[45] "github.com," [Online]. Available: https://github.com/node-schedule/node-schedule.

[46] University of Maryland, "www.start.umd.edu," [Online]. Available:

https://www.start.umd.edu/gtd/about/. [Accessed 09 09 2021].

[47] "www.papaparse.com," [Online]. Available: https://www.papaparse.com/docs. [Accessed

09 09 2021].

[48] "data.sa.gov.au," DataSA, [Online]. Available: https://data.sa.gov.au/data/dataset/water-

quality. [Accessed 14 09 2021].

[49] "docs.sheetjs.com," [Online]. Available: https://docs.sheetjs.com/. [Accessed 18 09 2021].

[50] "www.mongodb.com," MongoDB, [Online]. Available:

https://www.mongodb.com/basics/scaling. [Accessed 09 09 2021].

[51] "https://github.com/moleculerjs/," MoleculerJS, [Online]. Available:

https://github.com/moleculerjs/moleculer-db/tree/master/packages/moleculer-db-

adapter-mongo. [Accessed 05 09 2021].

[52] "www.keycloak.org," RedHat, [Online]. Available: https://www.keycloak.org/about.

[Accessed 09 09 2021].

[53] keycloak, "keycloak.org," RedHat, [Online]. Available:

https://www.keycloak.org/docs/latest/getting_started/. [Accessed 18 09 2021].

Page 74 of 75

[54] "traefik.io," Traefik, [Online]. Available: https://doc.traefik.io/traefik/. [Accessed 09 09

2021].

[55] J. Harris, "serverspace.io," ServerSpace, [Online]. Available:

https://serverspace.io/support/help/how-to-install-docker-on-ubuntu-20-04/. [Accessed

11 09 2021].

[56] E. Heidi, "DigitalOcean," [Online]. Available:

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-

compose-on-ubuntu-20-04. [Accessed 12 09 2021].

[57] "kubernetes.io," Kubernetes, [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. [Accessed 14 09

2021].

[58] G. Brito, T. Mombach and M. T. Valente, "Migrating to GraphQL: A Practical Assessment,"

in 2019 IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), Hangzhou, China, 2019.

[59] "www.redhat.com," Red Hat, [Online]. Available:

https://www.redhat.com/en/topics/devops/what-is-ci-cd. [Accessed 08 09 2021].

[60] "openwhisk.apache.org," Apache, [Online]. Available:

https://openwhisk.apache.org/documentation.html. [Accessed 11 09 2021].

[61] R. Petrolo, R. Morabito, V. Loscrì and N. Mitton, "The design of the gateway for the cloud

of things," Annals of Telecommunications, no. 72, pp. 31-40, 2017.

[62] "Github," [Online]. Available: https://github.com/HunterLarco/twitter-v2.

[63] elastic.co, "elastic.co," [Online]. Available: https://www.elastic.co/kibana/. [Accessed 10

09 2021].

[64] elastic.co, "elastic.co/elasticsearch," [Online]. Available:

https://www.elastic.co/elasticsearch. [Accessed 10 09 2021].

[65] "github," [Online]. Available: https://github.com/mtth/avsc. [Accessed 02 09 2021].

[66] «graphql.org,» The GraphQL Foundation, [Ηλεκτρονικό]. Available:

https://graphql.org/learn/. [Πρόσβαση 03 09 2021].

[67] "kafka.apache.org," Apache Software Foundation, [Online]. Available:

https://kafka.apache.org/intro. [Accessed 14 09 2021].

Page 75 of 75

