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1 Introduction 

Nowadays, imitation learning techniques aim to mimic human behavior in a 

given task: An agent (a learning machine) is trained to perform a task from 

demonstrations by learning a mapping between observations and actions. The 

notion of teaching by imitation has been around for many years, however, the 

field is gaining attention recently due to advances in computing and sensing as 

well as rising demand for complex intelligent applications. The paradigm of 

learning by imitation is gaining popularity because it facilitates teaching 

complex tasks by demonstrations and with minimal expert knowledge of the 

tasks. A big difference with other reinforcement learning techniques is that the 

agent is exploring the environment while is trying to approximate the experts’ 

reward/objective, and thus imitate the expert. In this thesis, we have 

implemented and evaluated the Directed-Info GAIL algorithm [3] in two 

continuous environments. The first environment is a terrain with Hopper, a 

robot-leg from Open-AI gym page1 and the second environment is based on the 

aviation domain using real-world flight trajectories that the algorithm imitates. 

The agent is mimicking the expert trajectories in the first setting as a Hopper 

robot and in the second setting as an aircraft. In both cases, our aim is to split 

the trajectories in different modes of behavior that will help the agent identify 

these modes and learn sub-policies that realize the different modes of behavior 

towards reaching their ends. The Hopper needs to reach the end of terrain 

without falling while the aircraft needs to reach the destination airport while 

departing from an origin airport. The first algorithm that we have implemented 

and evaluated in this thesis towards identifying different modes (patterns of 

behavior), while also learning a policy according to the Directed-Info GAIL 

methodology, is a Variational Auto-Encoder (VAE) [20] with Gumbel-Softmax 

trick [16], which we explain in the next sections. While studying and 

experimenting on VAE we tested different hyper-parameters such as: learning 

                                                 
1 https://gym.openai.com/envs/Hopper-v2/ 
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rates, epochs, activation functions between the hidden layers and batch sizes of 

1 and 32. Towards learning a better policy while exploiting the mode-

identification model learnt, and towards making the agent reach its goal as good 

as the expert we are using the GAIL [1] algorithm. By combining those two 

algorithms we get the Directed-Info GAIL but firstly, we need to discuss some 

background knowledge about basic imitation learning techniques and other 

algorithms used in similar multi-dimensional imitation problems. 

2 Preliminaries 

2.1 Imitation Learning  
In imitation learning, an agent learns how to behave in an environment with an 

unknown cost function by mimicking expert demonstrations. Existing imitation 

learning algorithms typically involve solving a sequencial decision making 

problem, using Reinforcement Learning [5]. Imitation learning is related to 

Reinforcement Learning, but instead of having the AI agent learn from scratch 

through its own exploration, the agent learns decision policies from expert 

demonstrations. 

2.2 Basic Imitation Learning Algorithms 
There are three ways to recover an expert's reward/cost function: the first one is 

via behavioral cloning [6, 7], the second using inverse reinforcement learning 

[8] and the third one with Generative Adversarial Imitation Learning (GAIL) 

[1].  

Behavioral cloning casts the problem as a supervised learning problem over the 

state-action pairs of the experts’ demonstrations. Pros are, that behavioral 

cloning solves the problem as a regression problem, minimizing the error 

between the actions demonstrated and the policy actions, over the states of the 

historical trajectories. The cons are that this method suffers from compounding 

errors and a regret bound that grows quadratically in the time horizon of the 

task leading to poor performance. On the other hand, inverse reinforcement 
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learning aims at deriving a cost function that assigns minimal cost to 

trajectories demonstrated by experts and maximal cost to trajectories generated 

by other policies. Other cons of the method include assumptions on the linearity 

of the cost function, and the high computational cost incurred via the steps of 

cost approximation and policy computation (using the approximated cost 

function). 

GAIL obtains a model-free imitation learning algorithm that enhances the 

performance in imitating complex behaviors in high-dimensional environments 

in a continuous state-action space, without approximating the cost function: 

However, these happen with a high sample complexity. 

2.2.1 Behavioral Cloning   
From the time humans are born they learn to imitate actions from the people 

around them. While they observe different situations in their environment, they 

learn very quickly the appropriate actions based on these observations. The 

straightforward and simplest form of imitation learning is called behavioral 

cloning [6, 7]. It uses the expert’s observations and action demonstrations and 

applies supervised learning. The loss function is being chosen depending on the 

application, e.g the mean squared error is often used. The learning task exploits 

state-action pairs, where states are usually observations from the expert 

demonstrations.  The agent learns from experience in a self-supervised way and 

this experience leads to learning a model that is used by the agent to perform a 

particular task towards an objective, without explicitly given a reinforcement 

signal. Behavior cloning succeeds better with a big amount of training data, 

because of the compounding error caused by covariate shift. Imitation Learning 

cannot be completely solved with behavior cloning: In traditional supervised 

learning, the training distribution is separated from the learned model, while in 

imitation learning, the agent’s policy affects what state is queried next. Thus the 

training and testing distributions are no longer equivalent, and this 

inconsistency is known as covariate shift. Intuitively, the covariate shift is the 

difference between the expected error on the agent’s distribution of data 

produced using the policy and the supervisor’s distribution. 
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2.2.2 Inverse Reinforcement Learning (IRL)   
Inverse reinforcement learning (IRL) is the problem of inferring the reward 

function of an agent, given its policy or observed behavior. It does not need such 

a big training set to work optimally, compared to behavioral cloning. 

Inverse Reinforcement Learning, aims at deriving a cost function that assigns 

minimal cost to trajectories demonstrated by experts and maximal cost to 

trajectories generated by other policies. Given that many policies may be able to 

generate the same trajectories, the maximum entropy inverse reinforcement 

learning approach aims to find the maximum-entropy policy [9,10]. Actually, 

this process comprises two steps:  

The first one outputs a desired cost function according to the following formula,  

                       )    [     )])     [     )]               (1) 

which can be alternativelly [4, 8, 18, 19] be stated as follows using a regularizer: 

       )                  )               )    [     )]     [c(s,a)]   (2) 

where,    )                  is a convex cost function regularizer,     is the 

expert policy (provided by the demonstrated trajectories) and Π is the set of all 

policies, H(π) is the entropy function and    is its weighting parameter.  

The second step is to find a policy that minimizes the expected cumulative cost 

and maximizes the entropy by using the cost function approximation, into a 

standard reinforcement learning problem: 

    )                 )    [     )]                            (3) 

Specific instances of this process result into apprenticeship learning methods, 

e.g. the one described in paper [18], assuming that the cost function is given by 

a linear combination of basis functions, which result to feature vectors over 

states and actions. The linearity assumption can be a constraining one for 

complex problems, although basis functions can be arbitrarily complex. In 

addition, the hand-crafted state features are a big engineering burden. Finally, 

this method  is computationally expensive as it runs a Reinforcement Learning 

algorithm at every cost function update, to find a policy that performs optimally 

in connection with the approximated cost function. 
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2.3 The GAIL Algorithm 
The main aspect of Generative Adversarial Imitation Learning(GAIL) consists of 

learning a policy through expert demonstrations  without specifically interacting 

with the expert and without approximating and/or using a reinforcement signal. 

2.3.1 GAIL  
GAIL [1] can imitate multiplex behavior as it does not apply constraining 

assumptions on the cost function and scales to big, continuous state-action 

environments. The optimal policy from expert demonstrations is directly learnt 

from GAIL, quite competently, since it does not need to derive a cost function 

that will be used by a Reinforcement Learning method to derive a policy. 

Actually, it aims to bring the distribution of the state-action pairs of the imitator 

as close as possible to that of the expert. GAIL utilizes an architecture similar to 

Generative Adversarial Networks to optimize the following objective: 

             )      [        )]     [   (       ))]        )     (4) 

where, π is the imitator policy,    is the expert’s policy, D is a binary classifier 

called discriminator that distinguishes state-action pairs generated from π and 

  .     )     [         )] , is the γ-discounted causal entropy of the policy π. 

As shown in [1], Eq. (4) provides a way to solve the two steps in the imitation 

process described by Eq. (2) and (3). 

The GAIL authors [1] to start their research for an imitation learning algorithm 

that both bypasses an intermediate IRL step and is suitable for large state-

action spaces, they study policies found by reinforcement learning on costs 

learned by IRL on the largest possible set of cost functions C in Eq. (1): all 

functions                       . It is critical when using expressive cost 

function classes, like Gaussian processes and neural networks, to properly 

explain complex expert behavior without demanding hand-crafted features. 

Here, it is shown what IRL can do when finding the best cost function with 

respect to expressiveness, by examining its capabilities with         . 
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With such a large C, IRL can easily overfit when provided a finite dataset. 

Therefore, the GAIL authors incorporate a (closed, proper) convex cost function 

regularizer. Now, equation (2) is the definition of an IRL primitive procedure, 

which finds the best cost function that distinguishes the expert by other lower 

value policies, with the cost regularized by ψ. 

There is a significant importance in a policy given by     ̃), where  ̃ is the cost 

function approximation achieved by IRL. The definition of RL  ̃) is critical to 

transform optimization problems over policies into convex problems. So we 

have a policy π   Π and we define its occupancy measure              as 

      )       )∑    
            ). The occupancy measure can be explained 

as the distribution of state-action pairs that an agent encounters when 

navigating through the environment with policy π, and it permits us to write 

  [     )]  ∑       )     )    for any cost function c. A basic result is that the 

set of valid occupancy measures                 can be written as a feasible 

set of affine constraints: if     ) is the distribution of starting states and 

        ) is the dynamics model, then  

             ∑      )      )   ∑         )         )     .  

Furthermore, there is a one-to-one correspondence between Π and O. [1] 

According to the duality principle associated with the optimization theory, it 

assumes that optimization problems can be perceived as the primal problem or 

the dual problem. IRL is a dual of an occupancy measure matching problem, 

and the recovered cost function is the dual optimum. Classic IRL algorithms 

that solve reinforcement learning repeatedly in an inner loop, such as the 

maximum entropy inverse reinforcement learning algorithm in reference [19] 

that runs a variant of value iteration in an inner loop, can be interpreted as a 

form of dual ascent, in which one repeatedly solves the primal problem 

(reinforcement learning) with fixed dual values (costs). Dual ascent is effective if 

solving the unconstrained primal is efficient, which in the case of IRL it 

amounts to reinforcement learning. The induced optimal policy is the primal 

optimum. The induced optimal policy is obtained by running RL after IRL, 

which is exactly the act of recovering the primal optimum from the dual 

optimum. Strong duality implies that the induced optimal policy is indeed the 

primal optimum, and therefore matches occupancy measures with the expert. 
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IRL is traditionally defined as the act of finding a cost function such that the 

expert policy is uniquely optimal, but now, we can alternatively view IRL as a 

procedure that tries to induce a policy that matches the expert’s occupancy 

measure. The next sub-section describes in detail the details behind the GAIL 

algorithm, the new regularizer, and the algorithm itself. 

2.3.2 More detailed information on GAIL  
The authors of GAIL proposed a new cost regularizer that gives a solution to the 

use of other regularizers that lead into two basic problems. The first one is 

directing to an imitation learning algorithm that exactly matches occupancy 

measures but is not tractable in large environments. The second one is to have 

indicator regularizers    for the linear cost function classes leading to 

algorithms incapable of matching occupancy measures without good tuning. 

This new regularizer on the other hand, addresses both of these aspects and is 

defined according to the following formulation: 

     )  {    [ (     ))]         
                                  

         )   {            )         
                                  

     (5) 

 It places a low penalty on cost functions c that assign an amount of negative 

cost to the expert state-action pairs; if c, however, assigns large costs (close to 

zero, which is the upper bound for costs attainable for    ) to the expert, then 

    will heavily penalize c. Perhaps the most important difference between     

and   , however, is that     forces costs to lie in a small subspace, whereas      

allows for any cost function, as long as it is negative everywhere. The choice of 

    is motivated by the following fact: 

  
  (       )           )     [         ))]        [   (         ))]    (6) 

where the maximum ranges over discriminative classifiers                ). 

Equation (6) is the optimal negative log loss of the binary classification problem 

of distinguishing between state-action pairs of   and   . It turns out that this 

optimal loss is (up to a constant shift) the Jensen-Shannon divergence  

   (       )                    )  )                    )  ), which is a 

squared metric between distributions. Treating the causal entropy H as a policy 

regularizer, controlled by λ ≥ 0, they obtain a new imitation learning objective: 

                     )      )            )        )              (7) 
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towards finding a policy whose occupancy measure minimizes Jensen-Shannon 

divergence to the expert’s. Equation (7) minimizes a true metric between 

occupancy measures, so, unlike linear apprenticeship learning algorithms, it can 

imitate expert policies exactly. 

Ψ-regularized inverse reinforcement learning implicitly seeks a policy whose 

occupancy measure is close to the expert's, as measured by ψ*. Here, occupancy 

measure (ρ), as specified above, is the distribution of state-action pairs 

encountered while navigating the environment with the policy. 

Equation (7) draws a connection between imitation learning and generative 

adversarial networks, which train a generative model G by having it confuse a 

discriminative classifier D. The job of D is to distinguish between the 

distribution of data generated by G and the true data distribution. When D 

cannot distinguish data generated by G from the true data, then G has 

successfully matched the true data. In our setting, the learner’s occupancy 

measure    is analogous to the data distribution generated by G, and the 

expert’s occupancy measure     is analogous to the true data distribution. So in 

reference [1] authors propose a new practical algorithm which is called 

generative adversarial imitation learning (GAIL) for solving Eq. (7) for model-

free imitation, which does not need a specific transition function in large 

environments. More specifically, the basic outcome is to find a saddle point (π, 

D) of the expression 

  [   (     ))]     [   (         ))]       )                         (8) 

To do so, there is an introduction of a function approximation for π and D: GAIL 

fits a parameterized policy   , with weights θ, and a discriminator network 

                ), with weights w. Then, it alternates between an Adam 

gradient step on w to increase Eq. (8) with respect to D, and a Trust Region 

Policy Optimization (TRPO) step on θ to decrease Eq. (8) with respect to π. The 

TRPO prevents the policy from changing too much due to noise in the policy 

gradient. The discriminator network can be interpreted as a local cost function 

providing learning signal to the policy, specifically, taking a policy step that 

decreases expected cost with respect to the cost function      )  

          ) will move toward expert-like regions of state-action space, as 

classified by the discriminator (they derived an estimator for the causal entropy 



  -19- 

gradient       )). It is important to clear out that TRPO [17] is an iterative 

procedure for optimizing policies, while assuring monotonic improvement. The 

next figure shows how GAIL works in pseudocode. 

 

Figure 1. Algorithm Generative Adversarial Imitation Learning (GAIL). [1] 

2.3.3 GAIL Framework 
In this work we have used the GAIL implementations described in [4]: GAIL 

alternates between an Adam gradient step on w to increase equation (4) with 

respect to D, and a step on θ using the Trust Region Policy Optimization (TRPO) 

algorithm [17] to decrease equation (4). TRPO optimizes the following 

objective: 

        
 

             [
      )
     )          )] 

Subject to          
[         

    )||      ))]                        (9) 

where       is the distribution of states generated using the prior-to-update (old) 

policy       , q is an action sampling distribution that we consider equal to      , 

   is the updated policy with parameters θ,       is the state-action value 

function of the old policy and δ is a constant that constraints the KL divergence 

between       and   , preventing the policy from changing too much due to 

noise in the policy gradient. The TRPO optimization problem is solved as 

described in [17], using the conjugate gradient method. In reference [4], the 

authors set       , so they omit       ) from the equation (4), following the 

practice in article [1].  
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A subtle point in this implementation is that, instead of approximating Q, they 

used a separate critic algorithm [12] to approximate the state advantage, 

evaluating the impact of the selected action to the update of policy network, 

defined as: 

              )    (       ))        )                                     , 

The aim is to lower the gradient variance. So they use the Generalized 

Advantage Estimation (GAE) algorithm introduced in [13], which provides a 

balance between low variance and a small amount of bias introduced. Formally, 

the advantage from the sampled state-action pairs is estimated as follows: 

  
       )      )   

  )     
  )     

  )   ) 

where γ   [0, 1] is the discounting factor, β a hyper-parameter and 

  
  )       )                                )               (10) 

Algorithm 1 in Figure 2 shows a part of the GAIL implementation used, in more 

detail.  

Specifically, the authors in [4] pre-train G using Behavioral Cloning. Then, at 

each GAIL iteration, the algorithm samples from the initial state distribution 

and G generates roll-out trajectories. It uses the generated state-action samples 

and the samples of the historical trajectories to update the D parameters w. D is 

updated with cross entropy loss that pushes the output for the demonstrated 

state-action samples closer to   and    state-action samples closer to  . Next, 

the imitation algorithm takes a policy update step using the TRPO [17] update 

rule and logD(s, a) as the cost function approximation, to update θ. It must be 

noted that the t parameter in the denotation of the approximation of the state 

advantage in Algorithm 1 is left implicit, for simplicity of the presentation.  
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Figure 2. Algorithm Generative Adversarial Imitation Learning (GAIL) using Behavioral 
Cloning for pre-training and TRPO step with KL-constrained natural gradient step.  

2.3.4 Generalized Advantage Estimation (GAE)  and the trade-
off  between variance  and bias  

The main problem formulation in reinforcement learning is to maximize the 

expected total reward of a policy. A key problem is the long time delay between 

actions and their positive or negative effect on rewards: This is called the credit 

assignment problem in the reinforcement learning literature (Minsky, 1961; 

Sutton & Barto, 1998), and the distal reward problem in the behavioral 

literature (Hull, 1943). A solution to the credit assignment problem is proposed 

by using value functions, they make it possible to predict how good is an action 

before the delayed reward arrives. Value functions are being used by 

reinforcement learning algorithms in many non-identical ways.  

This approach aims at algorithms that optimize a parameterized policy and use 

value functions to help approximate how the policy could be improved. It is 

possible to obtain an unbiased estimate of the gradient of the expected total 

returns, when using a parameterized stochastic policy (Williams, 1992; Sutton 

et al., 1999; Baxter & Bartlett, 2000). These noisy gradient approximations can 

be used in a stochastic gradient ascent algorithm. The variance of the gradient 

estimator scales badly with the time horizon, since the outcome of an action is 

depended on the effects of past and future actions. Actor-critic methods use a 

value function rather than the empirical returns, acquiring an estimator with 

lower variance at the cost of introducing some bias [12]. There is a large 

possibility, that the introduction of bias can harm the algorithm to fail converge 
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and give some solution that is not the optimal one. So, while high variance 

needs more samples, bias can be destructive.  

Reinforcement learning can be reduced to stochastic gradient descent, if 

someone uses policy gradient methods, which provide unbiased gradient 

estimates. Nevertheless, due to variance and high sample complexity, their 

success of solving hard control problems is low. GAE’s authors delivered an 

unofficial inspection of the problem of advantage function estimation and 

explained the generalized advantage estimator, which has two parameters γ, λ 

which adjust the bias-variance tradeoff. In previous sections, it is described how 

to combine this idea with trust region policy optimization and a trust region 

algorithm that optimizes a value function, both defined by neural networks. 

Combining these techniques, we are able to make the agent learn to solve 

difficult control tasks that have previously been out of reach for generic 

reinforcement learning methods. In our experiments as GAE authors suggested, 

choosing an appropriate intermediate value of λ in the range [0.9, 0.99] usually 

results in the best performance [13]. 

 

2.4 Info GAIL Algorithm 
The goal of imitation learning is to mimic expert behavior without access to an 

explicit reward/cost signal. The expert datasets created by humans, show 

inconsistencies due to latent variables that are frequently not explicitly 

modeled. In Info Gail paper [2], authors propose a new algorithm that can infer 

the latent structure of expert demonstrations in an unsupervised way. Their 

method, built on top of GAIL, can not only imitate complex behaviors, but also 

learn interpretable and meaningful representations of complex behavioral data, 

including visual demonstrations. Compared with various baselines, Info Gail 

can better capture the latent structure underlying expert demonstrations, often 

recovering semantically meaningful factors of variation in the data. The makers 

of Info Gail solved the problem of learning from policies created by several 

experts. A latent variable c is assigned into the policy function        ) to 

identify non-identical type of behaviors appearing in the demonstration. The 

proposal employs an information-theoretic regularization enforcing that high 
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mutual information is needed between c and the state-action pairs in the 

generated trajectory [2]. This concept appeared in a previous proposal on 

InfoGAN (Chen et al., 2016) [15]. Finally, there was an introduction of a 

variational lower bound       ) of the mutual information  

I(c; τ) between latent variable c and the state-action pairs in the generated 

trajectory to the loss function in GAIL. 

                    )        )          )           )      )          )          (11) 

The constructed objective can be derived as, 

         
 

   [        )]      [           )]          )       )       (12) 

Info Gail maps the differences between different trajectories to the latent 

variables, as trajectories may originate from a variety of experts.  

While Info Gail identifies inter trajectory variations, we aim to model intra-

trajectory variations. Latent codes in our work correspond to sub-tasks 

(variations) within any single demonstration. As shown in [1], mutual 

information-based loss is not working in our problem setting. We will explain 

this in section 3.2. 

3 The Directed-Info GAIL 
Algorithm 

As noted in the Directed Info-GAIL paper “the use of imitation learning to learn 

a single policy for a complex task that has multiple modes or hierarchical 

structure can be challenging”[3]. This thesis explores the use of Directed-Info 

GAIL algorithm, which is based on the generative adversarial imitation learning 

(GAIL) framework [4] to automatically learn subtask policies from 

unsegmented demonstrations of trajectories in robotic and aviation 

environments, given that flights and robots’ paths have indeed different modes 

of behavior in different segments of trajectories, depending on task and 

trajectories’ contextual features. 
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3.1 Detailed Description of Directed-Info Gail 
Directed Info-Gail [3] serves a great aspect in Deep Imitation Learning while it 

can break a single policy into smaller sub-policies. A monolithic policy for each 

task ignores the shared sub-structure between different tasks, so this algorithm 

can identify sub-tasks to achieve a variety of behavior. The benefits of learning 

sub-task specific policies are the following:  

a) Each of the sub-tasks is smaller and easier to learn.  

b) There is so much to achieve from shared learning . 

c) The agent needs to learn how to combine these smaller tasks. 

The research that has been done from the authors of Directed-Info Gail 

Algorithm has shown that, if someone has unsegmented expert demonstrations 

of a complex task then the agent can learn to identify different patterns of 

behavior and take better decisions than other similar model-free imitation 

algorithms. The goal of the agent is to learn to segment task demonstrations in 

sub-tasks, learn smaller policies for each sub-task, and learn a policy which 

switches between sub-tasks. Hence, someone can comprehend this by imagining 

the algorithm as a graphical model so as to model sub-tasks given the 

demonstrations in high-dimensional environments, e.g like the aviation 

environment. Directed-Info Gail shows that using mutual information 

maximization as in Info-Gail can be problematic and that using directed/causal 

information can solve this problem.  

 

Figure 3. C nodes dictate the sub-activity latent variables and τ nodes are the observed expert 
demonstrations. The left graph corresponds to the Info Gail algorithm while the right one to the 
Directed Info-Gail. [1] 

In Figure 3(right), we can see the latent code c that is being used by the policy to 

produce a trajectory by following a specific mode of behavior. The current 

trajectory up to a specific time-point and the previous latent variable produce 

the latent code in the next time-point.  

The indicated problem [2, 3] can be seen in the following Info Gail objective: 
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     )            (    )       ( |           ))[                )]     )       )  (13) 

Notice that      ) depends on the complete trajectory τ, hence we cannot use q 

at test time since the future is unknown. To overcome this limitation, the 

Directed-Info GAIL’s authors suggest to force the policy to generate trajectories 

that maximize the directed information flow from trajectories to the sequence of 

latent sub-activity variables, instead. So we will use the directed information 

instead of mutual information. We can replace the dependence on τ (as 

indicated in Figure 3 (left)) with a dependence on the trajectory generated up to 

current time t:                          ) (as indicated in Figure 3 (right)). 

A new variational lower bound is proposed, based on the directed/causal 

information, I(τ → c) which uses an approximate posterior                 ) 

instead of true posterior                 ),  

      )  ∑       (    )       ( |           )
 

[                   )]     )       )   ) 

Notice       ) now depends on     , thus we can use q at test time since it only 

depends on the past. Combining the GAIL objective with this lower bound we 

have the following objective: 

 

              [        )]     [          )]           )       )    (15) 

 

where       )  ∑        (    )       ( |           )                    ), H is the policy 

entropy (that we do not use), and we can learn a posterior distribution over the 

next latent factor c given the latent factors discovered up to t and the trajectory 

followed up to t, thereby removing the dependence on the future trajectory. In 

equation (15) we need to maximize the objective whereas the loss must be 

minimized. To calculate the loss in equation (  ) we need to sample from the 

prior distribution       ), as we explained. In order to approximate this 

distribution, together with a first approximation of the expert policy, we first 

train a variational auto-encoder (VAE) on the expert trajectories. The models 

learnt by VAE are exploited in conjunction to GAIL towards learning a policy 

that imitates the expert samples, mimicking the behaviour modes 

demonstrated. 
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3.2 Detailed Description of the implementation 
of the Directed-Info Gail algorithm 

This section aims to provide a better understanding of the Directed-Info GAIL 

algorithm. At the end of the previous sub-section we talked about mapping 

different sub-policies in the latent features: This is achieved using Variational 

Auto-Encoder and adding a variational lower bound to GAIL objective.  

As proposed in [3] the Variational Auto-Encoder is used in a different way than 

the vanilla version, also approximating the expert policy, given the 

demonstrated trajectories. The VAE is made up of one encoder and one decoder. 

In the vanilla version, the auto-encoder is often used for reconstruction of the 

input data but in this thesis, we used the encoder to produce latent variables, 

which divide the trajectory in sub-tasks. The decoder aims to learn predicting 

the actions of the expert policy. Figure 4(right) gives an overview of the 

complete method. The VAE pre-training step is used to learn an approximate 

prior over the latent variables. So the Figure 4(left) also shows the design of the 

VAE architecture. The VAE consists of two multi-layer perceptrons that play the 

role of the encoder and the decoder. The encoder uses the current state    and 

the previous latent variable      to produce the current latent variable   . We 

used the Gumbel-softmax trick [16] to obtain samples of latent variables from a 

categorical distribution. The decoder then takes    and    as input and outputs 

the action   . We saved only the weights and biases of the encoder and the 

decoder, which will we ‘feed’ in GAIL which has 2 MLP networks, one predicts 

the latent variables at any time step (called “encoder clone”) and the other 

initializes the policy network used by the GAIL generator G.  

The predicted latent variables are concatenated with the GAIL policy rollouts, 

that are created by the generator and pass them through the TRPO policy 

network (MLP network), that predicts the action and generates rollouts. We 

present this methodology in Figure 5 in more detail.  

To summarize, Directed-Info GAIL contains a TRPO agent, a generator, a 

discriminator network, a critic network, an encoder clone and a policy to 

produce the actions (as the decoder does). The generator produces rollouts 

while the discriminator discriminates the samples it gets from the generator and 

the expert. 
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Figure 4. Directed-Info GAIL overall architecture. 

 

We use the following objective, which maximizes the lower bound of the 

probability of the trajectories    ), to train our VAE, 

           )   ∑      [               )]  ∑    [                )              )]          (16) 

In Figure 4, on the left the VAE pre-training step allows us to get approximate 

samples from the distribution       ) to optimize the Eq. (15). This is done by 

using q to obtain samples of latent variable sequence c by using its output on the 

expert demonstrations. In practice, we fix the weights of the network q to those 

obtained from the VAE pre-training step when optimizing the Directed-Info 

GAIL loss in equation (15). 
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Figure 5. Directed-Info Gail’ detailed approach.  

In Figure 5: D stands for Discriminator, G for Generator, S for State, C for latent 

variable and a dictates the action. MLP is the encoder clone. The sequence of 

latents is predicted by the encoder clone using the pre-trained (exploiting expert 

samples) Variational Auto-Encoder.  

More specifically, in our work we followed the GAIL framework in section 2.3.3, 

but now the generator now takes as input states and latent variables predicted,  

and the policy model is pre-trained using the decoder of the Variational Auto-

Encoder. In addition to those, the imitation algorithm takes a policy step using 

the TRPO [17] update rule and         ) as the cost function approximation to 

update θ, together with the penalty of the encoder defined as 

                   ). In our setting, we set          , which is a regularizer of L1 

variational lower bound and we set       , so we omit       ) from the 

equation (15), following the practice demonstrated in [1, 3, 4]. GAIL alternates 

between an Adam gradient step on w to maximize equation (15) with respect to 

D, and a step on θ using the Trust Region Policy Optimization (TRPO) 

algorithm [17] to minimize equation (15). 

We can explore the Directed-Info GAIL in pseudocode in the next Figure. 
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Figure 6. Algorithm 2 Directed-Info Generative Adversarial Imitation Learning (GAIL). 

The GAIL framework appears in Algorithm 2. In line 9, when the policy step is 

applied using the TRPO rule in conjunction to the cost function we are 

subtracting logq, which is the penalty enforced by the encoder clone, where q is 

the approximate posterior distribution. 
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4 Environments and 
definition of the trajectory 
imitation problem 

In this thesis, we approach the data-driven trajectory prediction problem as an 

imitation learning task together with the identification of modes of behavior, in 

two settings: The Hopper simulated robotic setting, and an aviation setting.  

� In the aviation environment, the flights paths (trajectories) are from 

Barcelona’s airport to Madrid.  

� In the Hopper trajectories are performed by a two-dimensional one-

legged robot. Its goal is to bounce as far as possible without falling. There 

is more information about the hopper environment on the Open-AI 

page2. 

4.1 Aviation Environment 
In the aviation domain, using artificial intelligence to predict aircrafts’ 

trajectories can be challenging. In this thesis, we will study about aircrafts’ 

trajectories from Barcelona to Madrid. The aircraft trajectory describes the 

movement of the aircraft both in the air and on the ground. The  most relevant 

observations are: longitude (l), latitude (f) and altitude (h). The raw trajectory 

can be demonstrated as a sequence of |T| pairs           ), where    is a 3d 

point (l, f, h) and     the corresponding timestamp. An enriched trajectory is a 

raw trajectory enhanced with a vector     , consisting of categorical and 

numerical variables,                ). The predicted trajectory is the future 

evolution of the aircraft state given the current flight conditions. 

The datasets we used are flights, with meteorological features from METAR and 

NOAA. In total there are 528 real flight trajectories. Demonstrated trajectories 

are enriched with eleven (11) numerical variables corresponding to 6 

meteorological features at the corresponding 3D state position and time, 

                                                 
2 https://gym.openai.com/envs/Hopper-v2/ 
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provided by NOAA, and 5 features specifying actual weather conditions at the 

arrival airport at the time of arrival, provided by METAR. The NOAA features 

are pressure surface, relative humidity, temperature, wind speed gust surface, 

u-component of wind, v-component of wind. Features from METAR include 

wind direction, wind speed in knots, pressure altimeter in inches, visibility in 

miles, wind gust in knots.  

THE EVALUATION REWARD: 

As far as the reward is concerned, and as pointed out, the reward signal to the 

agent is unknown, as only the expert trajectories are known during imitation 

learning. However, we use the evaluation reward to evaluate the policy of the 

agent as external observers. This type of reward do not play any role in the 

learning process and does not impact the agent behavior in the environment. 

More specifically, the evaluation reward, is as follows: 

If the aircraft is within a specific distance from the destination airport the 

reward for that particular time-step is 0, if it gets out of the boundaries there is 

a penalty.  The reward function is the following: 

                                  )      [                    ]            ,  

The maximum destination distance of the trajectory (denoted above as 

destination distance) is set to 5000 meters radius from the destination airport. 

So as long the great-circle distance between the current point and the 

destination is smaller than the destination distance the reward is 0. The penalty 

function is the following: 

                                         )        , 

The variable point[longitude, latitude] is the current destination of the aircraft 

in the particular time-step, self.destination are the coordinates of the airport of 

Madrid and the distance function calculates the great-circle distance between 2 

points. The great-circle distance is the shortest distance between two points on 

the surface of a sphere. The mean rewards’ values at test time are between -

379.6 – 0. 

4.2 Aviation Trajectory Imitation Problem 
AI models in Reinforcement and Imitation learning represent among others a 

main policy, therefore, a strategy that an agent uses in pursuit of goals, but here 



-32- 

 

our goal is to identify the policy of aircraft trajectory evolution (i.e predict the 

aircraft trajectory), together with sub-policies. Forming the trajectory prediction 

to a data-driven problem, and presuming a set                        of 

historical, demonstrated enriched trajectories, the trajectory prediction problem 

can be defined as follows: Given    and a cost function ‘cost’, the objective is to 

predict a trajectory    such that 

          
 

  [              )] 

where,   dictates the expected cumulative costs for all states   generated along 

the trajectory by following a policy        ) describing the probability of 

applying an action   at an enriched state            with mode c. Actually, 

according to the above equation, the ultimate objective is to find the policy   

that determines the generation of a minimal expected-cumulative-cost 

predicted trajectory   . The algorithm is going to divide the task in smaller sub-

policies that will help the agent distinguish different patterns of behavior in 

different states along the aircraft’s trajectory on specific time instances 

depending on aircraft and contextual (e.g meteorological) features. So we can 

provide the approach to solve the following problem: The data-driven aircraft 

trajectory prediction problem as an imitation learning task in a hierarchical 

manner: Learning the behavior modes, and sub-policies corresponding to these 

modes so as to imitate the whole trajectories.  

Let us assume a set                        of historical, raw or enriched aircraft 

trajectories, depending on the experiment, generated by an expert policy   . 

These trajectories have a number of states       . The objective is to find sub-

policies that ultimately minimize the difference between the expected 

cumulative cost of the predicted trajectories and of the trajectories in   . As 

noted in paper [1], this objective is equivalent to finding a policy π that brings 

the distribution of the state-action pairs generated by it, as close as possible to 

the distribution of the state-action pairs demonstrated by trajectories in   . As 

pointed out in section 4.1 and as done in [4], we aim at determining the progress 

of the trajectory in space every    seconds, i.e. at time instances             

 )             , given the position of the aircraft at time instance   . 
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As done in [4] the set of agent actions A contains all the possible triples (∆l, ∆f, 

∆h) that specify the difference between states’ position information in 3D, given 

the constraint that this difference must be attainable within the constant ∆t 

period considered. Indeed, these actions can be determined by the 

demonstrated trajectories clear and effectively, although in low-quality 

surveillance data space-time constraints concerning the evolution of aircraft 

states may be violated. This action set has three additional important effects. 

We can tune the resolution of the predicted trajectory by changing the ∆t. Given 

a specific ∆t (5 seconds), and the evolution of the trajectory until reaching the 

destination airport, we can determine the estimated time of arrival, which is 

simply (∆t |Tπ|), given the predicted trajectory Tπ. The transition between 

positions is deterministic given an action: Given position (l, f, h) and an action 

(∆l, ∆f, ∆h), the position in the next state is (l+∆l, f +∆f, h+∆h). 

Given the above, extending the problem specified in [4] the data-driven aircraft 

trajectory prediction problem as an imitation learning task is specified as 

follows: 

Given a set                       of historical, enriched aircraft trajectories, 

and a time step ∆t, we need to determine a policy π   Π and different modes of 

behavior that the policy follows towards optimizing the objective specified by 

equation (15). This policy, given the initial state of aircraft 

              )       , decides the evolution of the trajectory at any time 

instant         )              Precisely, it regulates            )     ), 

basically the evolution of the aircraft position at state            )     , after 

∆t time steps.  

4.3 Hopper Environment 
OpenAI research company has created many robots’ simulations, one of those is 

the Hopper, which we used in our experiments. The Hopper, as mentioned 

above, is a one-legged robot that needs to reach its goal without falling in the 

environment. If it falls the environment resets and the robot starts again from 

the beginning. Towards successful execution of tasks, Hopper’s creators, added 

some constraints to check hopper’s height and angle bounds and if it reaches its 

destination they activate a Boolean variable called ‘done’. In this thesis we 
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programmed Hopper to do 10 jumps (1000 time-steps) in each episode. The 

documentation on Hopper’s observations, which we used to train the algorithms 

were not clear, but we know that Hopper has three joints and the features 

acquired are surely position and velocity. We can further explore these in the 

code of Hopper’s environment. So basically, the dataset consists of eleven 

observations and three actions at each time point. 

 

THE EVALUATION REWARD: 

As specified in the aviation domain, and without explicit knowledge of the 

reward signal from the environment, we are using an evaluation reward that 

represent Hopper’s successful behavior. We can understand from the Hopper 

environment that the evaluation reward in each step equals to: 

                              )          , 

“posafter” stands for the future position after the step, the variable “posbefore” 

is referring to the position of hopper before the step and self.dt is the time 

needed for this action. The hopper gains +1 if it's still alive (up and running) at 

any time-step.  Also, every time the step function is a squared sum of the 3 

actions’ values multiplied by 0.001 and all this gets subtracted to the reward 

variable. Usually, the step function is called maximum 1000 times (i.e. 

constructing trajectories of 1000 time steps).  The mean rewards’ values at test 

time are in the range of 2719.25-3762.89, depending on how good the agent’s 

policy has learned to act in every state. So we can expect to have a positive 

number for total reward. 

4.4 Hopper Trajectory Imitation Problem 
Similarly to the aviation domain, the algorithm is going to divide the task in 

smaller sub-policies that correspond to different modes of behavior. So we can 

provide a formulation of the problem we address here: The data-driven hopper 

trajectory prediction problem aims to learn a policy model that imitates expert 

trajectories and the pre-training of the variational auto-encoder aims to solve 

the problem regarding the identification of sub-policies. 
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Let us assume a set                       of historical hopper trajectories, 

depending on the experiment, generated by an expert policy   . These 

trajectories have a number of states        . The objective is to find sub-policies, 

that they will ultimately minimize the difference between the expected 

cumulative cost of the predicted trajectories and of the trajectories in   , given 

an approximation of the cost function (discriminator) together with the penalty 

of the pre-trained encoder that penalizes any state-action pair generated by any 

policy in       }. As noted in paper [1], this objective is equivalent to finding a 

policy π that brings the distribution of the state-action pairs generated by it, as 

close as possible to the distribution of the state-action pairs demonstrated by 

trajectories in   . In this project, we want to predict the hopper’s position at 

specific time steps, given an initial time instant   . Especially, we aim at 

determining the progress of the trajectory in space every    seconds, i.e. at time 

instances              )             , given the position of the leg robot at 

time instance    [4]. 
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5 Algorithms’ Structure 

Here we provide details on the algorithms implemented and used in the 

experiments. More analytically: the inputs, the size of the hidden layers, the 

output layers and the activation functions which had been applied. 

5.1 GAIL Framework 

5.1.1 Behavioral Cloning – Pre-Training   
As we described in section 2.2.1 when using Behavioral Cloning the agent learns 

in a supervised way. The data is split in training and validation, in 10 folds with 

K-Fold Cross Validation, the epochs used are 100, with batch size of 64 and with 

loss function the mean squared error together with Adam Optimizer as the 

authors in reference [4] suggested.  

5.1.2 Trusted Region Policy (TRPO) agent with a 
Discriminator and an Actor critic - GAIL 

For GAIL we used the Trusted Region Policy algorithm [17].  The settings for the 

GAIL algorithm are as follows: 

Gamma = 0.995 for the discounted reward, lamda = 0.97, max_kl= 0.01 and 

logstd = 0.6. The algorithm makes 1500 updates which correspond to mini 

batches and in each update almost 50000 state-action pairs (mini batch size) 

are used. The maximum path size of each trajectory in the Hopper and aviation 

domains is 1000.  

The policy network, is consisted of two hidden layers of 100 units with tanh 

activation function and outputs three actions in the Hopper and in the aviation 

environment. The discriminator, uses the same hidden layers as the policy but 

the output layer has 1 unit. The discriminator epochs are set to 100. The loss 

function is called ‘Categorical Cross Entropy with logits’. The critic algorithm 

follows a similar architecture. The input comprises only the expert 

demonstrations, two hidden layers of 100 units and the output layer has 1 unit 
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to estimate the advantage. The loss we used is mean-squared error with Αdam 

optimizer with an initial learning rate of 0.001 and the epochs are set to 100. 

5.2 Directed Info-Gail Framework 

5.2.1 Variational Auto-Encoder with Gumbel-Softmax Trick – 
Pre-Training   

As suggested in the original Directed-Info GAIL paper, to compute the mean 

squared error loss of the VAE, we need to sample from the prior distribution on 

behavior modes. In order to approximate this distribution we first pre-train a 

VAE on the expert trajectories. The VAE is being formed of two multi-layer 

perceptrons that serve as encoder and decoder. The encoder in the first run uses 

an initialized random one-hot encoded latent variable (1. 0. 0.) or (1. 0. 0. 0. 0.) 

of shape three or five along with the observations which comprise the first state, 

in order to produce the next latent variable, sampled from the Gumbel-Softmax 

distribution. Generally, in the next runs the encoder uses the previous latent 

variable      along with the current state    (the observations) to produce the 

current latent   . The decoder then takes    and    as input, to decode the action 

in the proposed environment, according to the expert demonstrations. Each 

network consists of 2 hidden layers with 100 units in each layer and Tanh as a 

non-linearity function. We used Adam as optimizer with an initial learning rate 

of 0.0001. For the VAE pre-training step we set the VAE learning rate to     . 

For the Gumbel-Softmax distribution we set an initial temperature       and 

minimum temperature        . The temperature decays (annealing rate = 

0.00003) using an exponential decay with the following schedule τ = max(0.1, 

exp−k*t), where      –    and t is the current epoch. We used batch size of 32 

as suggested, while we encountered problems when trying to train the VAE with 

batch size of 1. We applied 2000 epochs for training the VAE, as suggested in 

the Directed-Info Gail paper [3] and we applied 50000 embedded iterations in 

the Hopper environment, which are the state-action pairs. The same structure 

applies in the aviation environment but the main difference with the hopper 

environment is that we use 327000 samples so 327000 embedded iterations 

which basically are 478 flight trajectories. In the aviation domain, the aircraft 

doesn’t necessarily reach its destination in 1000 time-steps like Hopper, it can 
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reach it in more or less time-steps. Next, we apply the GAIL algorithm  

[1, 4] as shown in section 5.1.2. G has a dense output layer with size equal to the 

number of action variables (i.e. three), while the output layer of D has one node. 

G outputs for each action variable the mean of a Gaussian distribution with 

logarithm of standard deviation equal to 0.9, resulting to a stochastic policy. To 

initialize the policy’s parameters, we use Variational Auto-Encoder minimizing 

the Mean Square Error between demonstrated actions and the policy actions, 

over the training set, using Adam optimization. This has been trained with 2000 

epochs. GAIL is trained for 1500 epochs. At each round the policy generates a 

batch of 50000 state-action samples. The number of episodes needed to acquire 

this number of samples is not constant. 

5.3 Basic Parameters 
Hopper Hyper-parameters used in the experiments: 

¾ Behavioral Cloning, 100 epochs with k-fold cross validation (k=10),  

50000 state-action pairs 

¾ GAIL, 1500 epochs, 50000 state-action pairs 

¾ VAE-Batch1, 2000 epochs, 50000 state-action pairs 

¾ VAE-Batch32, 2000 epochs, 50000 state-action pairs 

¾ Directed-Info GAIL, 1500 epochs, 50000 state-action pairs 

Aviation Hyper-parameters used in the experiments: 

¾ Behavioral Cloning, 100 epochs with k-fold cross validation (k=10),  

327000 state-action pairs 

¾ GAIL, 1500 epochs, 327000 state-action pairs 

¾ VAE-Batch1, 2000 epochs, 327000 state-action pairs 

¾ VAE-Batch32, 2000 epochs, 327000 state-action pairs 

¾ Directed-Info GAIL, 1500 epochs, 327000 state-action pairs 
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6 Experimental Evaluation  

In this section, we will demonstrate the results of the algorithms implemented: 

Variational Auto-Encoder and Directed-Info Gail (D-INFO GAIL), in both 

evaluation settings. We will also present some results from the Behavioral 

Cloning (Bcloning) algorithm and the Generative Adversarial Imitation 

Learning (GAIL) algorithm, as described and used in reference [4].   

6.1 Experimental Setting 
Datasets utilized in our experiments include in the aviation environment: radar 

tracks (surveillance data representing raw trajectories) for flights from 

Barcelona to Madrid and from the 1st to the 24th of April 2016 , weather data 

obtained from National Oceanic and Atmospheric Administration (NOAA), and 

weather reports from airports (METAR). In the Hopper environment we used 

the position and velocity of the robot from starting point to the goal which is the 

end of the terrain. The hopper experts’ dataset was generated by berkley’s code3, 

which used an MLP policy consisted of 2 hidden layers of 64 units and tanh as 

the activation function between of the layers. The aim is to predict trajectories 

with the different modes of behavior along the path in both environments. 

To implement the generative model G and the discriminator D in GAIL we have 

used two neural networks, each consisting of two dense layers of 100 nodes, 

each layer with tanh activation, as described in the previous section. The input 

for G in the aviation domain comprises the four 3D position and temporal 

variables per state, the six meteorological features provided by NOAA and five 

meteorological features at the destination airport at the time of the arrival 

provided by METAR. In the other setting the input G comprises the 11 features 

of Hopper4. D takes as additional input the three action variables. At each 

episode the method selects a starting point regarding a trajectory in the training 

                                                 
3 https://github.com/berkeleydeeprlcourse/homework/tree/master/hw1 
4 There isn’t any documentation on hopper’s state features, everything is written is based from the 
environment’s code. 
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set and uses G to generate roll-outs. In aviation domain, the roll-outs terminate 

either when a trajectory point lies within a 5km radius from the destination 

airport, or when the trajectory has 1000 points, or when it lies outside the 

bounding box defined by the geographic (longitude, latitude) coordinates 

(−3.7038, 41.4) , (2.9504, 39.9864).  

To evaluate the proposed approach we provide results regarding the prediction 

of Barcelona-Madrid trajectories and the Hopper trajectories, in the following 

experimental settings:  

¾ Raw aircraft trajectories  with 3 modes 

o 478 training trajectories 

o 50 testing trajectories 

¾ Raw aircraft trajectories  with 5 modes 

o 478 training trajectories 

o 50 testing trajectories 

¾ Enriched aircraft trajectories with Raw+Noaa with 3 modes 

o 478 training trajectories 

o 50 testing trajectories 

¾ Enriched aircraft trajectories with Raw+Noaa with 5 modes 

o 478 training trajectories 

o 50 testing trajectories 

¾ Enriched aircraft trajectories with Raw+Noaa+Metar with 3 modes 

o 478 training trajectories 

o 50 testing trajectories 

¾ Enriched aircraft trajectories with Raw+Noaa+Metar with 5 modes 

o 478 training trajectories 

o 50 testing trajectories 

¾ Hopper trajectories with 3 modes 

o 50 training trajectories 

o 50 testing trajectories 

¾ Hopper trajectories with 5 modes 

o 50 training trajectories 

o 50 testing trajectories 
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The Directed-Info GAIL results reported are generated from 5 independent 

experiments per setting all the other algorithms are tested in 1 experiment, 

considering each of the 50 test trajectories. Generally, we report on the testing 

mean rewards (evaluated in testing) for each case. 

6.2 Evaluation rewards gained by the 
Algorithms 

6.2.1 Training 
In this subsection, we are going to demonstrate the evaluation rewards achieved 

by Directed-Info GAIL while the agent is being trained in both environments: 

Results are indicative, from a single experiment. 

First, in the Hopper setting: 

      

Figure 7. Directed-Info GAIL training rewards (3 Modes)     Figure 8. Directed-Info GAIL training rewards(5 Modes) 
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Second, in the Aviation domain: 

      

Figure 9. Directed-Info GAIL training rewards (3 Modes)   Figure 10. Directed-Info GAIL training rewards(5 Modes) 

      

Figure 11. Directed-Info GAIL training rewards (3 Modes) Figure 12. Directed-Info GAIL training rewards(5 Modes) 
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Figure 13. Directed-Info GAIL training rewards (3 Modes) Figure 14. Directed-Info GAIL training rewards(5 Modes) 

We can figure out from these figures that in the first epochs the reward in both 

environments is low but as the epochs advance till 1500, the reward improves. 

This is because, before we train the agent with GAIL we pre-trained the model 

using the VAE: We needed to apply some bias in GAIL agent’s actions, as it is 

essential to have some randomness at earlier epochs. That is the reason of the 

low reward at start in Directed-Info GAIL. 
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6.2.2 Testing 
Tables 1, 2 show the evaluation results while testing the agent in both 

environments with different state features (11 observations in the Hopper and 

4D point [long, lat, alt, timestamp], plus the contextual weather features 

depending on the experiment in the aviation) and 3 or 5 modes.  

� In the Hopper environment we tested 2 different environment versions 

and the evaluation reward ranges of [0-3800].  

� In the Aviation environment the evaluation reward ranges of [-400 – 0]. 

 

 

Table 1. Evaluation Rewards for Bcloning/ Gail, VAE/ Directed-Info GAIL, in the Hopper 
environment 
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Table 2. Evaluation Rewards for Bcloning/ Gail,VAE/ Directed-Info GAIL, in the Aviation 
environment 

Regarding the results in table 1, it must be noted that when we used VAE with 

batch size 1 for pre-training the hopper, which regularly is used in online 

learning, the results were poor (eg.  1500 reward). So we use batch size of 32 for 

pre-training the VAE in the rest of our experiments. The results were really 

better, the agent when was trained using VAE with batch size of 32 scored more 

than 2000 extra reward points than with batch size of 1. In the Hopper 

environment version 1(Hopper-V1), we evaluated the agent using behavioral 

cloning (for pre-training) and GAIL. Results were a little better on version 2 

(Hopper-V2) which we decided to use in the rest of our experiments. These 

versions correspond to the changes that the Hopper’s makers did in the 

environment. We can understand from table 1 that VAE did a better job with 3 

modes than in the scenario with VAE with 5 modes, and Directed-Info GAIL 

reached almost the same mean reward after 50 episodes in both mode settings. 

It seems that Directed-Info GAIL managed to score the highest cumulative 

mean reward in Hopper. 

 

It must be noted, in all of our experiments with Behavioral Cloning for pre-

training we used batch size of 64. 
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Second, in the Aviation environment, we can understand from table 2 that the 

experiments made with Variational Auto-Encoder and Directed-Info GAIL are 

improving the policy of our agent and let it gain the highest cumulative reward 

than previous algorithms such as Behavioral Cloning and GAIL. We can 

understand as a matter of the policy that with 3 modes in cases with raw 

trajectories and enriched trajectories with NOAA, the method scored better 

rewards than in the 5 modes. The approach with enriched trajectories with 

NOAA and METAR for meteorological features did good but not the best. 

However, these state features are the more dynamic and necessary in this 

setting. Thus, for the setting with METAR features we can say that the aircraft 

scored better rewards in 5 modes than 3.  

 

The hopper has imitated the expert perfectly when the reward is closer to 3800 

while the aircraft when the reward is close to 0. 

 

In the next sub-sections we will discuss more about how the modes/latent 

variables of hopper and aircraft indicate interesting patterns of behavior 

depending on the setting.  
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6.3 Hopper Trajectories 

6.3.1  Modes 
In the next images, we have captured some of the different hopper states in 

rendering while evaluating the agent (hopper). The Latent Variables in Figure 15 

are three (0, 1, 2) and they are getting started enumerated by 0. After five 

experiments, we can presume that mode 2 most commonly appears in states 

that the robot leg is reaching the peak, 0 when is ascending and 1 when is 

landing. In the other experiment we made, which we used five latent variables 

(0, 1, 2, 3, 4), the path is getting split differently, as we can see it in Figure 16. In 

this case, after five experiments we can conclude that mode 0 is reaching the 

peak, 4 is for ascending and 1 is for landing, but there are two extra modes that 

correspond to when hopper is in mid-air with value of 2 and mode 3 is just 

before landing. 

 

Figure 15. Evaluating Modes in Hopper Environment with 3 Modes 

 

Figure 16. Evaluating Modes in Hopper Environment with 5 Modes 

6.3.2 Latent variables and training loss 
In the next figures we are exploring, how the encoder of VAE divides the sub-

tasks in Hopper’s trajectories. We present some epochs while the network is 

trained, and second, while testing the agent. For simplicity of the presentation, 
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only the first trajectory of the dataset will be demonstrated. The y axis indicates 

the Latent Variables which in the first experiment are integers 0, 1 and 2, and in 

the second experiment the latents are 0, 1, 2, 3 and 4. The x axis indicates 

Hopper’s time-steps with a maximum limit of 1000.  

     

Figure 17. VAE, Latent Variables in first epoch           Figure 18. VAE, Latent Variables in 500th epoch 

   

Figure 19. VAE, Latent Variables in 1500th epoch       Figure 20. VAE, Latent Variables in 2000th epoch 
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Figure 21. VAE, Testing 3 Latent Variables   Figure 22. Training Loss of the VAE(3modes) 

 

We can clearly see in figures 17-20 that while the encoder is trained with the use 

of expert trajectories, the first mode discovered is 1, which corresponds to 

landing. The same as the above can be seen in testing in Figure 21. When hopper 

environment is reset, the robot is already touching the terrain so after the first 

jump almost in 180th time-step, hopper is landing. Reaching the peak 

corresponds to mode 2 and ascending to 0. Sub-section 6.3.1 further refers to 

detecting these modes, as also presented in figures 15-16. We can see in Figure 

22, the training loss of the Variational Auto-Encoder (VAE)’s pre-training. The 

Mean-Squared Error loss function is being used to train the network. The y axis 

indicates the training mean loss across all the dataset (50000 state-action 

pairs). And the x-axis indicates the training epochs which are 2000. It’s 

important here to say that given that the hopper environment is a simulated 

setting, the expert’s observations from the dataset are really precise, the loss is a 

float in 0.4-0.0001, and the loss is never equal to 0. 

In the second experiment, with the use of 5 modes, figures 23-27 show the 

modes along the trajectory. 
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Figure 23. VAE, Latent Variables in the first epoch  Figure 24. VAE, Latent Variables in the 500th epoch 

 

     

Figure 25. VAE, Latent Variables in the 1500th epoch Figure 26. VAE, Latent Variables in the 2000th 
epoch 
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Figure 27. Testing 5 Latent Variables               Figure 28. Training Loss of the VAE(5modes)  

 

So in this case, mode 1 indicates the landing phase, as in using the 3 modes 

showed in the previous experiment. In most cases the neural network has done 

well but there are always flaws in the modes between 1000 time-steps. The 

latent variable 0 corresponds to reaching the peak, while 4 is ascending, 2 

appears more frequently when the robot leg is in mid-air. Mode 3 is before 

landing as we can see in Figure 27 and mode 1 appears just after. This pattern 

continues appearing in the next time-steps, in a periodic manner. The training 

loss is a float number very close to 0 but never 0. 
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6.4 Aviation Trajectories  

6.4.1 Modes and predictions 
In figures 29-34, the 50 red trajectories in each case are generated using 

behavioral cloning while the 50 blue trajectories are generated by GAIL using 

behavioral cloning for pre-training. 

 

Figure 29. Barcelona to Madrid, Behavioral Cloning Results with raw trajectories. 

 

Figure 30. Barcelona to Madrid GAIL Results with behavioral cloning for pre-training and raw 
expert trajectories. 
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In figures 29-30, we can see the trajectories generated by behavioral cloning 

and GAIL in a visual way: The policy learned by GAIL imitates expert 

trajectories successfully, and the aircraft reaches the destination airport, scoring 

a high reward. 

 

Figure 31. Barcelona to Madrid, Behavioral Cloning Results with expert trajectories  
enriched with NOAA. 

 

Figure 32. Barcelona to Madrid Gail Results with behavioral cloning for pre-training  
and expert trajectories enriched with NOAA. 

Figures 31-32 show the results of behavioral cloning and GAIL for trajectories 

enriched with meteorological features from NOAA. As noted above, the policy 

learned by GAIL imitates expert trajectories successfully, and the aircraft 
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reaches the destination airport, scoring a high reward. In Figure 31, it is clear 

that behavioral cloning has difficulties in imitating experts’ trajectories because 

of compounding error caused by covariate shift. 

 

Figure 33. Barcelona to Madrid, Behavioral Cloning Results with expert trajectories enriched 
with NOAA and METAR. 

 

Figure 34. Barcelona to Madrid Gail Results with behavioral cloning for pre-training with 
expert trajectories enriched with NOAA and METAR. 

Figures 33, 34 show results from trajectories enriched with NOAA and METAR, 
resembling better real flight scenarios considering the weather along the flight 
and the weather in the destination airport. Trajectories generated from the 
behavioral cloning policy shown in Figure 33, do not reach the destination, in 
contrast to those generated by GAIL and shown with Figure 34. 
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Figure 35. Barcelona to Madrid Variational Auto-Encoder Results with 3 Modes (features: 3D 
Point with timestamp without meteorological features). 

 

Figure 36. Barcelona to Madrid Directed-Info Gail Results with Variational Auto-Encoder for 
pre-training with 3 Modes (features: 3D Point with timestamp without meteorological features). 

In figures 35, 36 we can see the results with 3 modes in raw trajectories using 

Variational Auto-Encoder and Directed-Info GAIL. We can see that the agent 

using the VAE was able to identify 2 of the 3 modes. Green color (mode: 2) is the 

take-off along with the flight and dark pink color (mode: 0) indicates the 

landing phase in the destination airport. 
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Figure 37. Barcelona to Madrid, Variational Auto-Encoder Results with 5 Modes (features: 3D 
Point with timestamp without meteorological features). 

 

Figure 38. Barcelona to Madrid, Directed-Info Gail Results with Variational Auto-Encoder for 
pre-training with 5 Modes (features: 3D Point with timestamp without meteorological features). 

In figures 37, 38 we can see the results with 5 modes in the raw trajectories. We 

can see that the agent using the VAE was able to identify only 1 of the 5 modes. 

Most probably this happened because the raw state features are not enough to 

indicate splitting the trajectory in 5 modes. So the brown color (mode: 1) is the 

whole mode identified by VAE and we can see in Figure 38 that GAIL algorithm 

slightly improved the policy. 
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Figure 39. Barcelona to Madrid Variational Auto-Encoder Results with 3 Modes (features: 3D 
Point with timestamp and NOAA meteorological features). 

 

Figure 40. Barcelona to Madrid Directed-Info Gail Results with Variational Auto-Encoder for 
pre-training with 3 Modes (features: 3D Point with timestamp and NOAA meteorological 
features). 

In figures 39, 40 we can see the results with 3 modes in the corresponding 

enriched trajectories with NOAA. We can see that the agent using the VAE was 

able to identify all 3 modes. Green color (mode: 1) indicates the take-off and the 

landing, where the aircraft gains or loses altitude, the blue color (mode: 2) 

shows the whole flight where the aircraft has high altitude. The red color  

(mode: 0) appears in some trajectories, indicating changes in longitude, latitude 

and altitude and significant changes in the NOAA contextual features which 
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were: relative humidity and temperature, u-component of wind and v-

component of wind. Directed-Info GAIL in Figure 40, appears to have improved 

the policy, so the aircraft in each trajectory reaches the destination airport. 

 

Figure 41. Barcelona to Madrid, Variational Auto-Encoder Results with 5 Modes (features: 3D 
Point with timestamp and NOAA meteorological features). 

 

Figure 42. Barcelona to Madrid, Directed-Info Gail Results with Variational Auto-Encoder for 
pre-training with 5 Modes (features: 3D Point with timestamp and NOAA meteorological 
features). 

In figures 41, 42 we can see the results with 5 modes from both algorithms with 

enriched trajectories with NOAA. The purple color (mode: 0) indicates big 

increase or decrease in altitude when the aircrafts takes-off and landing. Green 
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(mode: 3) and orange color (mode: 4) show changes in altitude depending on 

the meteorological NOAA features, while the orange mode in some trajectories 

in Figure 41 indicate turns. Red color (mode: 2) appears to represent sudden 

changes in all NOAA features. Blue color (mode: 1) in the trajectories appears 

before landing.  

 

 

Figure 43. Barcelona to Madrid Variational Auto-Encoder Results with 3 Modes (features: 3D 
Point with timestamp and NOAA&METAR meteorological features). 

 

Figure 44. Barcelona to Madrid Directed-Info Gail Results with Variational Auto-Encoder for 
pre-training with 3 Modes (features: 3D Point with timestamp and NOAA&METAR 
meteorological features). 
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In figures 43, 44 we can see the results with 3 modes from both algorithms with 

enriched trajectories with NOAA and METAR. In this case, the algorithm 

doesn’t appear to divide the trajectory like the previous experiments. The modes 

seem to be switching too often, so we can hypothesize that the algorithm has 

identified different patterns of behavior than the other settings. The green color 

(mode: 2) indicates big increase or decrease in altitude when the aircraft takes-

off or landing. Red color (mode: 1) indicate changes in altitude depending also 

on the meteorological NOAA features. Blue color (mode: 0) appears at the end 

of the flight.  

 

 

Figure 45. Barcelona to Madrid, Variational Auto-Encoder Results with 5 Modes (features: 3D 
Point with timestamp and NOAA&METAR meteorological features). 
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Figure 46. Barcelona to Madrid, Directed-Info Gail Results with Variational Auto-Encoder for 
pre-training with 5 Modes (features: 3D Point with timestamp and NOAA&METAR 
meteorological features). 

In figures 45, 46 we can see the results with 5 modes from both algorithms with 

enriched trajectories with NOAA and METAR. Red color (mode: 1) indicates the 

take-off and the landing of the aircraft. The blue color (mode: 0) indicates the 

en-route phase. Inspecting meteorological features, dark pink color (mode: 4) 

appears mostly when there is a change in wind speed gust surface. Green color 

(mode: 2) appears mostly when there was a shift in wind features. Yellow color 

(mode: 3) appears mostly in cases when relative humidity and temperature was 

changing. 

6.4.2 Latent Variables and training loss 
In the aviation environment, in the following we are exploring how the encoder 

of the VAE indicates the trajectories modes. First, in epochs while the models 

are trained, and then while testing. For simplicity of the presentation, only the 

first trajectory of the dataset is demonstrated. The y axis is for latent variables, 

which in the first experiment are integers 0, 1 and 2 and in the second 

experiment the latents are 0, 1, 2, 3 and 4. x axis indicates the aircraft’ time-

steps with a maximum limit of 1000. There is a difference between the time-

steps of Hopper and those in the aviation domain. In aviation domain as noted 

before the maximum limit is 1000 but one trajectory isn’t necessarily 1000 

steps-long as in Hopper. For that reason in the figures that follow a part of the 
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second trajectory may appear. For simplicity of the presentation, as we describe 

the figures, we examining only the first trajectory (591 time-steps). A part of the 

second trajectory will also appear in the figures after the 591th time-step 

because in the aviation domain the whole flight isn’t necessary 1000 time-steps. 

These trajectories are exploited in all different experiments with various 

meteorological features.  

Experiment with 3 modes and Raw observations: 

     

Figure 47. VAE, Latent Variables in the first epoch  Figure 48. VAE, Latent Variables in the 500th epoch 

   

Figure 49. VAE, Latent Variables in the 1500th epoch  Figure 50. VAE, Latent Variables in the 2000th 
epoch 
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Figure 51. VAE, Testing 3 Latent Variables         Figure 52. Training Loss of the VAE (3modes) 

As can be seen in figures 47-50, while the VAE is being trained, at 2000th epoch 

mode 1 appears at the start of the trajectory but resulted in testing in Figure 51 to 

not be identified while the take-off and the journey were identified together (in 

the same mode: 2). Only the landing is appearing separately. 

Experiment with 5 modes and Raw observations: 

     

Figure 53. VAE, Latent Variables in the first epoch  Figure 54. VAE, Latent Variables in the 500th epoch 
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Figure 55. VAE, Latent Variables in the 1500th epoch   Figure 56. VAE, Latent Variables in the 2000th 
epoch 

  
Figure 57. VAE, Testing 5 Latent Variables         Figure 58. Training Loss of the VAE (5modes) 

 

In this setting, the VAE didn’t identify any patterns of aircraft’s behavior and we 

can say this was the worst experiment. This can be seen in Figure 58, in the 

training loss because it isn’t minimized as we would expect, as the epochs 

advance. We have a speculation this happened because of the random 

initialization of the Xavier weights in the pre-training of the VAE (in this 

particular experiment) or the raw trajectories individually cannot be split into 

five different patterns of behavior. 
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Experiment with 3 modes and Raw+NOAA observations: 

     

Figure 59. VAE, Latent Variables in the first epoch  Figure 60. VAE, Latent Variables in the 500th epoch 

   

Figure 61. VAE, Latent Variables in the 1500th epoch  Figure 62. VAE, Latent Variables in the 2000th 
epoch 
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Figure 63. VAE, Testing 3 Latent Variables           Figure 64. Training Loss of the VAE (3modes) 

In this setting, mode 1 indicates the take-off and the landing phase, while mode 2 

appears in the middle of the flight. NOAA meteorological features can only be seen in 

sections 6.4.1 and 6.4.3 while these figures aren’t sufficient to show these patterns of 

behavior. 

Experiment with 5 modes and Raw+NOAA observations: 

     

Figure 65. VAE, Latent Variables in the first epoch  Figure 66. VAE, Latent Variables in the 500th epoch 
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Figure 67. VAE, Latent Variables in the 1500th epoch  Figure 68. VAE, Latent Variables in the2000th 
epoch 

  

Figure 69. VAE, Testing 5 Latent Variables         Figure 70. Training Loss of the VAE (5modes) 

In this setting, with 5 modes and enriched trajectories with NOAA, the 

algorithm identified the following modes: 0 Mode appears in take-off and 

landing. We can’t say for sure what modes 2-3-4 represent. They might be 

changes in the weather and we can’t show it in these figures. Figure 70 shows 

the training loss in epochs. 
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Experiment with 3 modes and Raw+NOAA+Metar observations: 

     

Figure 71. VAE, Latent Variables in the first epoch  Figure 72. VAE, Latent Variables in the 500th epoch 

   

Figure 73. VAE, Latent Variables in the 1500th epoch  Figure 74. VAE, Latent Variables in the 2000th 
epoch 
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Figure 75. VAE, Testing 3 Latent Variables           Figure 76. Training Loss of the VAE (3modes) 

In this setting, the algorithm appears to have identified 2 modes in Figure 75. However, 

there are 49 trajectories where the algorithm has identified 3 modes. The patterns 

identified mostly depend on the NOAA and METAR features. As Figure 76 shows, the 

training loss appears to be decreasing while the epochs advance. 

Experiment with 5 modes and Raw+NOAA+Metar observations: 

     

Figure 77. VAE, Latent Variables in the first epoch  Figure 78. VAE, Latent Variables in the 500th epoch 
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Figure 79. VAE, Latent Variables in the 1500th epoch  Figure 80. VAE, Latent Variables in the 2000th 
epoch 

  

Figure 81. VAE, Testing 5 Latent Variables          Figure 82 Training Loss of the VAE (5modes) 

In the last setting with trajectories enriched with NOAA and METAR features, 

figures 77-81 show the modes identified by the VAE. The aircraft seems to be at 

take-off and landing phases when mode 1 appears. Changes regarding the 

meteorological features are indicated by modes switching between 2, 3 and 0. 

Figure 82 shows the training loss in subsequent epochs. 

6.4.3 Deviations between experts and generated trajectories 
by Directed-Info Gail. 

In all of the following figures, there is one expert trajectory with color red. The other 

colors indicate the identified sub-tasks of the generated predicted trajectory. The colors 
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of the generated trajectory are the same as in section 6.4.1. By depicting pairs of expert 

and predicted trajectories we can visually inspect the deviations of the policy 

trajectories from expert trajectories, and how the modes are split in the best and worst 

case scenarios, given the rewards scored. 

 

 

Figure 83. Barcelona to Madrid Directed-Info GAIL Results with 3 Modes. Features: 3D Point 
with timestamp without meteorological features. The best case scenario with 0 mean reward for 
this testing episode. 
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Figure 84. Barcelona to Madrid Directed-Info GAIL Results with 3 Modes. Features: 3D Point 
with timestamp without meteorological features. The worst case scenario with -71.70  mean 
reward for this testing episode. 

The results in figures 83, 84 were tested using 3 modes. We can see that 

Directed-Info GAIL has learned to identify the take-off and en-route phases 

(indicated with green color) and the landing phase (indicated with dark pink), 

both, in the best and worst case scenario. So the decrease of altitude is the basic 

factor that switches the mode from green to dark pink. In this specific case while 

the policy of the aircraft imitates the expert trajectory with high fidelity, the 

encoder did not indicate one of the three modes needed. 
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Figure 85. Barcelona to Madrid Directed-Info GAIL Results with 5 Modes. Features: 3D Point 
with timestamp without meteorological features. The best case scenario with 0 mean reward for 
this testing episode. 

 

Figure 86. Barcelona to Madrid Directed-Info GAIL Results with 5 Modes. Features: 3D Point 
with timestamp without meteorological features. The worst case scenario with -82.80  mean 
reward for this testing episode. 

We can see in figures 85-86 that Directed-Info GAIL has learned to split the 

modes in brown color in the generated trajectory in the best and worst case 

scenario. The setting with raw trajectories with 5 modes, was the worst 

experiment because we can assume that the observations’ features (longitude, 

latitude, altitude and timestamp) weren’t enough to split the trajectory with 5 
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modes.  In this specific case the policy shows that can predict the expert policy 

with high accuracy but the encoder cannot identify the modes. 

 

 

Figure 87. Barcelona to Madrid Directed-Info GAIL Results with 3 Modes. Features: 3D Point 
with timestamp and NOAA meteorological features. The best case scenario with 0 mean reward 
for this testing episode. 

 

Figure 88. Barcelona to Madrid Directed-Info GAIL Results with 3 Modes. Features: 3D Point 
with timestamp and NOAA meteorological features. The worst case scenario with -107.70 mean 
reward for this testing episode. 
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In this experiment, in figures 87-88 we used 3 modes, with raw trajectories 

enriched with NOAA features. Directed-Info GAIL has learned the modes 

indicated as follows: Green color indicates the take-off and landing phases of 

the aircraft and blue color the en-route phase of the generated trajectory, in the 

best and worst case scenario. In both scenarios the aircraft is switching modes 

from blue to green when there is a decrease in altitude along with a change in 

NOAA meteorological features. Specifically, there was an increase of relative 

humidity and temperature and a decrease in u-component of wind and v-

component of wind. In this experiment the method managed to indicate the 

modes in aircrafts’ behaviors. So we can summarize, that the policy of the 

aircraft in this case is good enough and the encoder identified the modes. 

 

 

Figure 89. Barcelona to Madrid Directed-Info GAIL Results with 5 Modes. Features: 3D Point 
with timestamp and NOAA meteorological features. The best case scenario with 0 mean reward 
for this testing episode. 
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Figure 90. Barcelona to Madrid Directed-Info GAIL Results with 5 Modes. Features: 3D Point 
with timestamp and NOAA meteorological features. The worst case scenario with -134.21 mean 
reward for this testing episode. 

 

In this experiment, with enriched NOAA features and 5 modes, Directed-Info 

GAIL in the best case scenario has learned to split the trajectory in the following 

sub-tasks: the modes with purple color is the take-off and landing of the aircraft 

and modes indicated in red, green and orange color depend on the 

meteorological NOAA features and the trajectory altitude. We found out that the 

orange color was appearing when the aircraft was losing altitude while reaching 

its destination. The red was switching with green mode every time-step until the 

green mode was stabilized. There is an assumption that the red and green mode 

are slightly similar with escalations in longitude, latitude, altitude and almost 

the same NOAA features, but they are different from purple and orange mode. If 

we take a closer look in Figure 89, there was a sudden decrease to 2.7 from 9.7 in 

relative humidity and a little change of temperature, an increase of u-

component of wind and a decrease to v-component of wind, while switching to 

red and green from purple mode after the take-off. In the worst case scenario 

another mode appears before landing with blue color but the red mode didn’t 

appear. In Figure 90, when blue mode appeared there was a sudden change in 

relative humidity from 68.9 decreased to 38.2, an increase in temperature and 

u-component of wind and a light decrease in v-component of wind . That was 
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one good experiment because we were able to see different patterns of aircrafts’ 

behaviors. So we can presume, that the generated trajectory is really close to the 

expert trajectory and the encoder did indicate meaningful modes. 

 

 

Figure 91. Barcelona to Madrid Directed-Info GAIL Results Results with 3 Modes. Features: 
3D Point with timestamp and NOAA&METAR meteorological features. The best case scenario 
with 0 mean reward for this testing episode. 

 

Figure 92. Barcelona to Madrid Directed-Info GAIL Results Results with 3 Modes. Features: 
3D Point with timestamp and NOAA&METAR meteorological features. The worst case 
scenario with -352.08 mean reward for this testing episode. 
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In this experiment we used 3 modes, with raw trajectories along enriched with 

NOAA and METAR features. In the best case Directed-Info GAIL has learned to 

identify the following modes: With green color the take-off, with blue color the 

landing of the aircraft and with red color the en-route phase of the generated 

trajectory. In this case, the algorithm learnt to split the trajectory at take-off and 

landing phases, but in QGIS we checked the trajectory’s modes more precisely 

and we found out that there was another part of the journey with blue mode. So 

there is high probability the weather changed because there was an increase in 

pressure surface and relative humidity. In the worst case the aircraft didn’t 

manage to reach near Madrid’s airport. We predicted this would happen 

because METAR indicated that there will be high gust with value of 30 and wind 

direction 190 degrees and wind speed in knots over 10 at Madrid airport.  The 

colors of the modes are different as we can see in Figure 92 in contrast with 

Figure 91. That was not the best experiment because we weren’t able to see 

similarities we wanted from best and worst case experiment.  In these specific 

scenarios, the policy shows that can predict the expert policy with high 

precision. The encoder indicated the modes better in the best case scenario in 

comparison with the worst scenario in in Figure 92. 
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Figure 93. Barcelona to Madrid Directed-Info GAIL Results Results with 5 Modes. Features: 
3D Point with timestamp and NOAA&METAR meteorological features. The best case scenario 
with 0 mean reward for this testing episode. 

 

Figure 94. Barcelona to Madrid Directed-Info GAIL Results Results with 5 Modes. Features: 
3D Point with timestamp and NOAA&METAR meteorological features. The worst case 
scenario with -253.29 mean reward for this testing episode. 

In this experiment we used 5 modes, with raw trajectories along with timestamp 

and enriched with NOAA & METAR features respectively. In the best case in 

Figure 93, Directed-Info GAIL has learned to identify the take-off and landing 

phases with red color and with blue color the en-route phase of the generated 
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trajectory. While the blue mode appears, the aircraft was gaining altitude over 

20000 and the longitude was decreasing drastically in contrast with the red 

mode where the altitude was increasing but in a lower range (600-19000). In 

the worst case in Figure 94, the algorithm identified 4 modes: with red the take-

off and landing, and with green, blue and dark pink the en-route phase. The 

green mode could be a change in NOAA features while relative humidity and 

temperature were decreasing lower than 93.4 and 269.2 respectively. Also there 

was an increase in u-component of wind and v-component of wind. There is a 

big chance the dark pink mode could appear while the aircraft was making turns 

before landing. There is another color yellow but you can see it in Figure 45 

which has all the trajectories. We checked the data of the yellow mode and we 

decided that there was an increase in altitude and a decrease in relative 

humidity, temperature, u-component of wind and increase in v-component of 

wind. That was one good experiment because we were able to see the differences 

in aircraft behaviors via the identification of modes. According to our 

understanding, the generated trajectory is predicted very similar to the expert 

trajectory and the encoder split the trajectory in the necessary modes. 

 

 

 



  -83- 

7 Conclusions 

In this thesis, we explored a way of model-free imitation learning, using the 

Directed-Info GAIL algorithm. The agent followed a trajectory while was 

switching between subtasks to imitate expert’s behavior, executing the 

appropriate actions under a specific policy learnt. The VAE model according to 

the Directed-Info GAIL methodology is necessary to split the trajectory and 

indicate the different modes of behavior to be followed, depending on the 

experimental setting: For instance, reaching the peak, ascending or landing in 

the hopper environment. But this model is not enough to make the policy of our 

agent able to decode the action in the best way and reproduce (imitate) the 

expert policy towards evolving the trajectories. So, we have to use the GAIL 

framework to monotonically improve agents’ behavior given the expert state-

action pairs. The first algorithm has low bias and high variance as it is 

happening in behavioral cloning approaches. The second algorithm GAIL [1] 

appears to improve the outcome and lower the variance, balancing the bias-

variance trade-off so as to train the agent to imitate the trajectories in the best 

way.  

In the future, we hope that there will be better algorithms that will be able to 

divide a trajectory of a vehicle or of a robot in a more advanced way. More 

specific neural networks can control more accurately the landing at                                                                        

an airport, in the aviation domain. Also, some information in the data of the 

aircrafts’ trajectory is missing while turns are made. This method can be tested 

in the future for different origin-destination airports. There is a lot of space for 

improvement and in the future we hope to make a more consistent algorithm 

that can divide every expert’s trajectory in such way that can be easily be 

comprehended by agents in dynamic environments, in more than 4 dimensions. 

In such a way, after these algorithms are tested in simulations, one can start 

impacting the self-driving domain in real world environments. In future works, 

the VAE pre-training algorithm can be modified in such a way that the latent 

variables are used as a sequence of all previous latent variables while  
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pre-training the agent, instead of using only the previous latent variable at each 

iteration. Last but not least, the game industry can use these algorithms in their 

engines with their environments and map the movement and the actions of 

characters, NPCs or vehicles behaviors in the simulating game world.
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