UNIVERISTY OF PIRAEUS - DEPARTMENT OF INFORMATICS
NANENIZTHMIO MEIPAIQY — TMHMA MNMAHPO®OPIKHZ

MSc «Advanced Informatics and Computing Systems - Software Development
and Artificial Intelligence»
NMMZ «Mponyuéva ZuoTthuara NMAnpo@opikng — Avartrtugn AoyiouiIKou
kal Texvntg Nonuoouvneg»

MSc Thesis

MeTatTuyiakn AlaTpiRn

Thesis Title: Bitcoin Address Classification using Unsupervised
Machine Learning

TitAog AloTpIBAG: Tagivounon dieubuvaewy Bitcoin XpnoIuoTToIVTAS Un
ETTOTITEUOMEVN MNXAVIKA EKNABNON

Student’s name-surname; STAMATIOU ANGELOS

OvOouaTETTWVUHO QOITATH: 2TAMATIOY AITEAOZ
Father’s name: PANAGIS
MaTtpwvupo: MANAIHZ
Student’s ID No:
MNxN/19046
Ap1Buég MnTtpwou:
Supervisor: Constantinos Patsakis, Associate Professor
EmBAéTTWV: KwvoTavrivog MNatodkng, AvarrAnpwtig Kabnyntig

loUAiog 2021/ July 2021

3-Member Examination Committee

TpiyeAng E€eTaoTikA ETiTpoTN)

Constantinos Patsakis Efthmios Alepis Evangelos Sakkopoulos
Associate Professor Associate Professor Assistant Professor
KwvoTtavTivog Matodkng EuBupiog AAETTNG EudyyeAog ZakkOTTOUAOG

AvammAnpwTg KaBnynmig AvarmmAnpwthg Kabnyntig Emikoupog Kabnyntng

MSc Thesis Angelos Stamatiou

Abstract

To Bitcoin €ival éva ynelakd KpUTTTOVOUIoMA, TTou TTapoucidoTtnke 1o 2008 atmrd tov Satoshi
Nakamoto, TTapéxovrag weudoavwvupia aTng XpRoTteg Tou. Epdoov Ta dedouéva Tou Bitcoin
Blockchain civai diaBéoipa dnuoaiwg, oi cuvaAAayEG Tou PTTOPOUV va TTAPOUV TN HOopPQr eVOg
kateuBuvouevou ypdgou, yia €ig BaBog avaAuan. H tmmapouca diatpiffi TTapouciddel pia véa
TIPOCEYYION YIA TN HEIWON TNG AVWVUMIAG TTOU TTAPEXETAI, XPNOIUOTTOIWVTAG UN-ETTIRBAETTOMEVN
pMaBnon otov ypdeo Twv cuvaAlaywv. Méow Tng ekudBnong avatrapdoTtacng KoupBou, Ta
XOPAKTNPIOTIKA TOU KOUBOU PtTopouv va e§axBouv kal va xpnoigotroinBolv amd évav Logistic
Regression Classifier, yia va TTpoBA&wel TNV €TIKETA KABE KOUPBouU Tou ypdgou. Na va atrAoTroinBei
n mpocBacn ota dedouéva, Ta dedouéva Tou blockchain eiorixbnoav oe pia Bacn dedouévwv
MySQL. H amédoon Ttng TAfpoug TrpoTeivopevng AlUong aloAoynbnke, eKTEAWVTAG Tov
TagivounTA o€ éva uttooUvoAo Twv dedouévwy Tou blockchain, emiTtuyxdvovtag péyiotn akpiBeia
76.39%.

Bitcoin is a decentralized digital cryptocurrency, introduced in 2008 by Satoshi Nakamoto,
providing pseudonymity to its users. Since Bitcoin blockchain data is publicly available,
transactions can be modeled to a directed graph, for further analysis. This dissertation presents
a novel approach to reduce the anonymity provided, by using Unsupervised Machine Learning
on the transactions graph. By using node representation learning, node features can be extracted
and used by a Logistic Regression Classifier to predict the label of each graph node. To simplify
data access, blockchain data was imported to a MySQL Database. Performance of the complete
proposed solution was evaluated, by executing the classifier on a sub-set of the blockchain data,
achieving a maximum accuracy of 76.39%.

Bitcoin Address Classification using Unsupervised Machine Learning 1

MSc Thesis Angelos Stamatiou

Acknowledgments

First and foremost, | would like to express my gratitude to my supervisor, Dr. Konstantinos
Patsakis, for his assistance and guidance during the process of writing this dissertation. In
addition, | would like to express my gratitude to my family and friends, for their continued support
and motivation as | pursue my academic goals.

Bitcoin Address Classification using Unsupervised Machine Learning 2

MSc Thesis Angelos Stamatiou

Contents
F Y 0] 1 - (o O P PP T PP PPPPUPRPPPP 1
ACKNOWIEAGMENLS e e e e e e e e e e st e e e e e e s s ssantaaeeeeaeeseasntaneeeeeeesannnne 2
1070] 0111 0 1 3PP TP P PP RTTT R PPPPP 3
IO [0 11 o (Ui 1T o IO PP PSPPI PRSPPI 4
P = 7= Lod (o | (o]0] o o [P PP PPUPTTPPPPN 5
P2 R =) oo o PR URTOPRPT PP PTRRPRI 5
2. 1.1 BIOCKCR@IN ..ttt 5
2% I Y/ T3 11 Vo SRR 7
2.1.3 BitCOIN COrE ClIENT.....iiiiiiiiieitiiee ettt e e e e e s e e e e 8
2.2 IMYSQLu ettt ettt ettt ettt ettt ettt ettt et ettt ettt en et er e ereeeens 8
2.3 SEEHAIGIAPNueiiiiiiiiieii e —————————————————————————————— 8
3. Processing BitCOIN DALAccciiuiiieiiiiieei ittt ettt ettt e e e e enees 11
3.1 SOIULION DESIGN .. s 11
3.1.1 SOIULION AFCIITECIUIEeeieiiieeee ettt e et e s 11
3.L.2 DALADASE ...t 11
3.1L.3 AAAIrESS Graph .ot 12
3.2 SCriptS iIMPIEMENTALION s 13
T A o T 11T o o) PP P T PPPPPPPRT 13
G T 1 = T L= 0) 14
3.2.3 TranSaACHONS_TEIIEVEI.PY .eeeiitiieeiitiee ettt ettt ettt e et e e e et e e e e aaeas 16
.28 ALY ZEE DY e ————————————————————————————————— 20
4. Implementation evaluation and challenges diSCUSSIONcoocviiiiiiiiiiiniiie e 28
I = o Tod] = 1T T o > £ 28
2 I - = 0] 0T} o 29
4.3 Machine Learning taSKcooiiiiiiiiiiie et 30
O O = 1 = o T 33
5. Conclusions and FULUIE WOTKccoiuiiiiiiiiie ettt 34
= 1] oo =1 o])Y/ PPt 35
ADDIEVIATIONS ...ttt b e e e ettt e st bt e e s b e e e e e abb e e e e abreee et 37
(€110 11TV TP PTPTT PSPPI 38
LISE OF FIQUIES ... ettt ettt ettt e sttt skttt e e s bttt e e s bbb e e e s nbbeaesannneee s 39
LIST OF TADIES ...ttt et e s bt e sk e 40

Bitcoin Address Classification using Unsupervised Machine Learning 3

MSc Thesis Angelos Stamatiou
1. Introduction

Bitcoin is a digital cryptocurrency introduced in 2008 [1], featuring a publicly accessible distributed
ledger. Bitcoin has attracted the attention of researchers from a variety of fields, gaining
widespread popularity due to its unique characteristics, such as the lack of a centralized authority
[3] and high-level degree of anonymity.

Since its release in 2009 [2], Bitcoin blockchain has reached more than 300 GB in size
[31], becoming a challenge for researchers to perform analytical tasks on its data. Bitcoin
transactions can be modeled as a directed graph, on which graph analysis can be executed. By
using an existing labeling system [28], the performance of Machine Learning tasks on the graph
can be explored. This dissertation aims to provide a complete solution on how to perform a
classification task using unsupervised Machine Learning algorithms on Bitcoin blockchain data
stored in a MySQL Database.

The rest of the dissertation is structured as follows. Chapter 2 presents an overview of
the Bitcoin blockchain, MySQL Databases and the StellarGraph [7] Python library. Chapter 3
propounds in detail the suggested solution implementation, describing the parsing of Bitcoin
blockchain data, imported to the Database and performing the unsupervised Machine Learning
task. Chapter 4 analyzes the performance evaluation conducted for the proposed solution and
challenges raised during development. Chapter 5 discusses the evaluation results and considers
future work.

Bitcoin Address Classification using Unsupervised Machine Learning 4

MSc Thesis Angelos Stamatiou
2. Background

This chapter presents the technologies that were utilized in the development of the approach,
such as the Bitcoin blockchain, MySQL and the StellarGraph Python library. These technologies
are further described in the next sections.

2.1 Bitcoin

Bitcoin is a decentralized cryptocurrency, developed by an unknow person or group of people
using the pseudonym of Satoshi Nakamoto [1]. The actual Bitcoin blockchain network
implementation was released as an open-source software in 2009 [2], enabling users to perform
peer-to-peer transactions, without the need for intermediaries [3]. Transactions are verified by the
network nodes and are publicly available through a distributed ledger, called a blockchain. The
following sub-sections include the technical background of the Bitcoin blockchain, required for the
understanding of later chapters in this dissertation, based on the book "Mastering Bitcoin" [2].

2.1.1 Blockchain

The Bitcoin blockchain is a public ledger that stores all validated Bitcoin transactions. It is
implemented as an ordered back-linked list of blocks. Each block is linked to the previous block
by including the hash of the previous block in its header and must conform to a specific pattern
of, e.g., trailing zeros. This inclusion affects the block hash of the current block. Changing a block
requires changing all the following blocks, a task with enormous computation requirements as the
blockchain grows. This concept provides the immutability of the ledger, a key feature of blockchain
security. In fact, the immutability, decentralization, and auditability make blockchains an extremely
attractive technology for building new solutions [34].

Block

The data structure of a block is described in Table 1. The Block Header field contains the
metadata of the block, detailed in Table 2, used for the block hash calculation. The calculation of
the hash is executed by hashing the Block Header twice, using the SHA256 algorithm, resulting
in a 32-byte block hash, uniquely identifying the block in the blockchain. An additional
identification method is its position in the blockchain, called the block height, indicating the
distance of the block from the genesis block (first block of the chain). Since two or more blocks
can compete for the same position in the blockchain during a fork in the chain, the block height is
not a unique identifier.

Table 1: Bitcoin block structure

Field Description Size

Block Size The size of the block 4 bytes

Block Header Metadata of the block 80 bytes
Transaction Counter How many transactions follow 1-9 bytes (Varint)
Transactions The transactions recorded in this block Variable

Table 2: Bitcoin block header structure

Field Description Size

Version A version number to track software/protocol upgrades 4 bytes

Previous Block Hash A reference to the hash of the previous (parent) block in | 32 bytes
the chain

Merkle Root A hash of the root of the merkle tree of this block’s | 32 bytes
transactions

Bitcoin Address Classification using Unsupervised Machine Learning 5

MSc Thesis Angelos Stamatiou

Timestamp The approximate creation time of this block (seconds | 4 bytes
from Unix Epoch)
Difficulty Target The proof-of-work algorithm difficulty target for this block | 4 bytes
Nonce A counter used for the proof-of-work algorithm 4 bytes
Addresses

A Bitcoin address is an identifier of 27-34 alphanumeric characters, beginning with the number 1,
3 or bcl, acting in the same way as a bank account number. Users can share their address with
other people to allow them to exchange Bitcoins. There are currently three address formats in
use in Bitcoin Mainnet:

1. Pay to Public Key Hash (P2PKH) or Legacy Address Format, starting with the number
1. Example: 17VZNX1SN5NtKa8UQFxwQbFeFc3igRYhem

2. Pay to Script Hash (P2SH) or Compatibility Address Format, starting with the number
3. Example: 3EKtnHQD7RIAE6UzM|2ZifTOYgRrkSgzQX

3. Bech32 or Segwit Address Format, starting with “bc1”. Example:
bc1gw508d6gejxtdgdy5r3zarvary0cs5xw7kv8f3t4

Transactions

A transaction is the data structure, described in Table 3, holding the information of a Bitcoin
transfer form one or more source addresses to one or more destination addresses.

Table 3: Bitcoin transaction structure

Field Description Size

Version Specifies which rules this transaction follows. 4 bytes

Input Counter Defines how many inputs are included. 1-9 bytes (Varint)
Inputs One or more transaction inputs. Variable

Output Counter Defines how many outputs are included. 1-9 bytes (Varint)
Outputs One or more transaction outputs. Variable

Locktime A Unix timestamp or block number. 4 bytes

Each transaction consumes and produces spendable chunks of bitcoin, called unspent
transaction outputs (UTXO). Figure 1 depicts a simplified Bitcoin transaction example, including
the fields relevant for this dissertation, described in Table 4.

Bitcoin Address Classification using Unsupervised Machine Learning 6

MSc Thesis Angelos Stamatiou

Transaction

Txid: 5db15a........d7b4011
Timestamp: 2011-04-20 05:41

Inputs Outputs
Txid: 0845a776....... 6ea7l Address: 124my1......... 9j3ZFAp
Vout: 1 Amount: 0.10000000 BTC
Address: 195Ru............ mPhwvjiy
Amount: 28.59000000 BTC
Vout: 1

Figure 1: Simplified Bitcoin transaction example

Table 4: Simplified Bitcoin transaction structure

Field Description Size
Txid Transaction hash 32 bytes
Timestamp | Creation time of block containing the transaction 4 bytes
Address Bitcoin wallet address 32 bytes
Amount Bitcoin value in satoshis (10-8 bitcoin) 8 bytes
Vout Output index 4 bytes

2.1.2 Mining

The process of adding new coin generation, added to the money supply, is known as mining.
Miners independently verify and include new transactions, propagated on the Bitcoin network,
into new blocks during this process. Next step of the process is solving a computationally intensive
cryptographic problem, known as Proof-of-Work (PoW), to verify and transmit the newly created
block on the Bitcoin network. Mining secures the system and allows for network-wide consensus
without the need of a central authority. A miner who successfully adds a block to the blockchain
is rewarded with a block reward, along with all transaction fees included in the block.

Proof-of-Work Algorithm

A hashing algorithm converts a data input and into a fixed-length deterministic output, a digital
fingerprint of the input. The output hash will always be the same, for any given input, and can be
easily computed and verified by anyone using the same hash algorithm. Bitcoin’s block hash is
computed by hashing block’s header data through SHA-256 repeatedly, while incrementing the
nonce field, until the hash is smaller or equal to the target difficulty. For further details regarding
the consensus mechanism of Bitcoin, the interested reader may refer to “The Bitcoin Backbone
Protocol: Analysis and Application” [35].

Bitcoin Address Classification using Unsupervised Machine Learning 7

MSc Thesis Angelos Stamatiou
2.1.3 Bitcoin Core Client

Bitcoin Core Client is an open-source project maintaining the Bitcoin client software, based on
Satoshi Nakamoto’s original Bitcoin client. It includes both “full-node” software, maintaining a full
copy of the blockchain, as well as a Bitcoin wallet to execute transactions [4]. Client uses blk*.dat
files, to store the blocks as soon as they are received. The data in blk.dat files is stored in binary
format, with each new block being appended to the file's end. Figure 2 depicts the genesis block,
by reading the first 293 bytes of blk0O0000.dat file. For detailed information refer to Bitcoin Wiki:
Protocol Documentation [5].

Figure 2: Bitcoin genesis block

2.2 MysQL

MySQL is an open-source relational database management system (RDBMS), developed,
distributed and supported by Oracle Corporation [6]. Relational databases organize data to tables
containing data types related to each other, structuring the data. Using the SQL language,
programmers can build, modify, and extract data from the relational database. Users have the
option of using MySQL as a free open-source product under the GNU General Public License or
purchasing a standard commercial license from Oracle. Main features provided are as follows:

o Ease of Management — The software is simple to install and uses an event scheduler
to automatically schedule activities.

¢ Robust Transactional Support — Holds the ACID property (Atomicity, Consistency,
Isolation, and Durability), as well as allowing distributed multi-version support.

e Comprehensive Application Development — MySQL comes with plugin libraries
that allow you to integrate the database into any program. For application creation, it also
supports stored procedures, triggers, functions, views, and many other features.

e High Performance - With distinct memory caches and table index partitioning, it
provides quick load utilities.

e Low Total Cost of Ownership — This reduces licensing costs and hardware
expenditures.

e Secure Data Protection — MySQL has robust processes in place to ensure that only
authorized users have access to databases.

e High Availability - MySQL supports high-performance master/slave replication as
well as server clustering.

e Scalability & Flexibility — MySQL allows you to run deeply embedded applications
and create data warehouses that can store massive amounts of data.

2.3 StellarGraph

StellarGraph is a Python library for solving machine learning tasks on graphs and networks, like
Representation learning, Classification and Link prediction [7]. The library provides cutting-edge
graph machine learning algorithms, simplifying pattern discovery on graph-structured data,
supporting analysis for many kinds of graphs (e.g., homogenous, heterogenous, etc.).
StellarGraph is built on TensorFlow2 and its Keras high-level API, along with Pandas and NumPy,
resulting in a user-friendly, flexible and expandable library. Current version includes the graph
machine learning algorithms described in Table 5.

Bitcoin Address Classification using Unsupervised Machine Learning 8

MSc Thesis

Angelos Stamatiou

Table 5: StellarGraph supported algorithms

Algorithm Description

GraphSAGE Supports supervised as well as unsupervised representation
learning, node classification/regression, and link prediction for
homogeneous networks [x8].

HInSAGE Extension of GraphSAGE algorithm for heterogeneous
networks [33].

attri2vec Supports node representation learning, node classification,

and out-of-sample node link prediction for homogeneous
graphs with node attributes [9].

Graph Attention Network

(GAT)

The GAT algorithm supports representation learning and node
classification for homogeneous graphs [10].

Graph Convolutional Network
(GCN)

The GCN algorithm supports representation learning and node
classification for homogeneous graphs [11].

Cluster Graph Convolutional
Network (Cluster-GCN)

An extension of the GCN algorithm supporting representation
learning and node classification for homogeneous graphs [12].

Simplified Graph
Convolutional network (SGC)

The SGC network algorithm supports representation learning
and node classification for homogeneous graphs [13].

(Approximate) Personalized
Propagation of Neural
Predictions (PPNP/APPNP)

The (A)PPNP algorithm supports fast and scalable
representation learning and node classification for attributed
homogeneous graphs [14].

Node2Vec

The Node2Vec and Deepwalk algorithms perform
unsupervised representation learning for homogeneous
networks, taking into account network structure while ignoring
node attributes [15].

Convolutional Network

Metapath2Vec The metapath2vec algorithm performs unsupervised,
metapath-guided representation learning for heterogeneous
networks, taking into account network structure while ignoring
node attributes [16].

Relational Graph | The RGCN algorithm performs semi-supervised learning for

node representation and node classification on knowledge
graphs [17].

Classification

ComplEx The ComplEx algorithm computes embeddings for nodes
(entities) and edge types (relations) in knowledge graphs, and
can use these for link prediction [18].

GraphWave GraphWave calculates unsupervised structural embeddings
via wavelet diffusion through the graph [19].

Supervised Graph | A model for supervised graph classification based on GCN [11]

layers and mean pooling readout.

Watch Your Step

The Watch Your Step algorithm computes node embeddings
by using adjacency powers to simulate expected random
walks [20].

Deep Graph Infomax

Deep Graph Infomax trains unsupervised GNNs to maximize
the shared information between node level and graph level
features [21].

Continuous-Time Dynamic | Supports time-respecting random walks which can be used in
Network Embeddings | a similar way as in Node2Vec for unsupervised representation
(CTDNE) learning [22].

DistMult The DistMult algorithm computes embeddings for nodes

(entities) and edge types (relations) in knowledge graphs, and
can use these for link prediction [23].

Bitcoin Address Classification using Unsupervised Machine Learning

MSc Thesis Angelos Stamatiou
DGCNN The Deep Graph Convolutional Neural Network (DGCNN)
algorithm for supervised graph classification [24].
TGCN The GCN_LSTM model in StellarGraph follows the Temporal

Graph Convolutional Network architecture proposed in the
TGCN paper with a few enhancements in the layers
architecture [25].

For the execution of the Address classification task using unsupervised Machine Learning, Deep
Graph Infomax [21] with Graph Convolutional Network (GCN) [11] algorithm was utilized for the
nod representation learning. Deep Graph Infomax makes use of graph convolutional network
architectures, to maximize mutual information between patch representations and corresponding
high-level summaries of graphs. The learned patch representations summarize subgraphs
centered around nodes of interest, reused for downstream node-wise learning tasks.

Bitcoin Address Classification using Unsupervised Machine Learning 10

MSc Thesis Angelos Stamatiou
3. Processing Bitcoin Data

This chapter describes the design and implementation of the proposed solution, allowing the
execution of the Bitcoin Address classification task. Section 3.1 describes the complete solution,
including an overview of the architecture, database, and generated Address graph. The
implementation of the proposed solution’s various components is presented in detail in Section
3.2.

3.1 Solution Design

3.1.1 Solution Architecture

The solution architecture high-level view is illustrated in Figure 3. Script parser.py parses blk*.dat
files of the Bitcoin blockchain and produces files containing the fields relevant to this dissertation,
as described in Table 4. Script reader.py parses the output files of parser.py script and imports
retrieved information to the Database. This streamline method was chosen, to simplify parsing
and importing steps, and enabling batch execution. Imported data are then processed by
transactions_retriever.py script, which generates the execution dataset for the analyzer.py script.
Finally, analyzer.py script performs the Address classification task using unsupervised Machine
Learning.

blk files
parser.py ‘ ‘
[—D transactions_retriever.py

Structured Data

Bitcoin Blockchain Outputt files MySQL Execution Dataset

Structured Data

v
Parsed Data
{ - analyzer.py FT””"
reader.py
Researcher

Solution

Figure 3: Solution architecture

3.1.2 Database

MySQL offers a free and open-source relational database management system, allowing full
control and customization to satisfy the solution’s requirements. Due to the massive dataset, row
compression was enabled, reducing the total disk size as presented in Table 6. Additionally, field
indexing was included, for faster query execution, drastically improving data retrieval time. Figure
4 depicts the Database schema, populated by the parsed data of parser.py script.

Table 6: Database row compression

Table | Original Size | Compressed Size | Compression Ratio
X% 119 GB 77.2GB 1.54
‘tx_in® | 530 GB 291 GB 1.82
“tx_out’ | 480 GB 284 GB 1.69
Overall | 1129 GB 652 GB 1.73

Bitcoin Address Classification using Unsupervised Machine Learning 11

MSc Thesis

“# hid Y ARCHAR(255)

“ timestamp DATETIME
¥

tdd_index0

timestam p_index0
L

Figure 4: Database schema

3.1.3 Address Graph

“* putput_tdd VARCHAR(255)
Zyout BIGINT

“» address W ARCHAR{255)
“#value DOUEBLE

output_bed_index1

vout_index1

address_index
.

Angelos Stamatiou

< gutput_txid VARCHAR{255)
“consume_txdd VARCHAR(255)
2 vout BIGINT

v
consume_txid_indexd
output_bdd_indexd
vout_indexd
.

To perform the Address classification task, a graph is generated to represent the relations
between Database records. Each transaction can be described as a graph node, connected with
the inputs and outputs addresses. An input address sends some Bitcoin to the transaction and
an output address receives it. This results to a Directed Graph, depicted in Figure 5, with two
node types, transaction in yellow and address in orange. As link weight, the amount transferred
between the nodes is used. Additionally, each link holds the transaction timestamp.

4f102a7b......9b01bf

Figure 5: Bitcoin transactions graph

Bitcoin Address Classification using Unsupervised Machine Learning

12

MSc Thesis Angelos Stamatiou

3.2 Scripts implementation

3.2.1 parser.py

To retrieve the Bitcoin transactions information required for this dissertation, a modified version
of Blockchain parser by Denis Leonov [26] was created. In this alteration, default output was
replaced by the information of the transactions included in the file. This was achieved by
employing btcpy [27], a python library providing tools to handle Bitcoin data structures. After
extracting each transaction’s RawTX, the hex string of the transaction, function create_record
deserializes the transaction and appends the extracted information to the output, as shown in
Figure 6.

def

tx = Transa

for txout i

Figure 6: parser.py/create_record

This script produces a CSV file for each blk*.dat file in parses. Output files consist of lines
containing the entities extracted from each deserialized transaction, described in Table 4. Each
line starts with the entity type, followed by the information described in Table 7. An output example
is depicted in Figure 7.

Table 7: parser.py output format

Entity type | Information

tx txid, timestamp

txin output_txid, consume_txid, vout
txout consume_txid, vout, address, value

Bitcoin Address Classification using Unsupervised Machine Learning 13

MSc Thesis Angelos Stamatiou

Figure 7: parser.py output example

3.2.2 reader.py

As parser.py execution has been concluded, output files must be parsed to import extracted
information to the Database. Python script reader.py parses the output files and generates the
MySQL Database records, further described in the following sections.

main script

When executing the script, a Database connection is created using the utility function
init_database. Then, each file with index in specific range is parsed by function parse_file. Finally,
the Database connection is terminated using the utility function close_database.

Figure 8: reader.py main

parse_file function

This function parses a file and maps extracted data to TX, TXIN and TXOUT class objects. These
classes represent the corresponding Database tables, including the record creation query for

Bitcoin Address Classification using Unsupervised Machine Learning 14

MSc Thesis Angelos Stamatiou

each one, depicted in Figure 10. After parsing is concluded, all parsed records are inserted to the
Database, using batching commit for optimization.

(db, file):
start_time time.time ()
print ('S > j £ '+ str(file) + ° a " + time.strftime(, time.gmtime (start_time)))
with open(file, newline as £:
reader = csv.reader (£)
records = list(reader)

tx list = []

txin list = []

txout_list = []

for record in records:
if record[0] = "

tx = TX(record[1], record[2].replacs(';', ''))

tx_list.append(tx)

elif record[0]
txin = TXTN(record[1], record[2], record[3].rsplacs(';', ''})
txin list.append(txin)

else:
txout = TROUT (record[1], record[2], record[3], rscord[4].replacs(';', ''})
txout_list.append (txout)

commit_counter = 0;
for tx in tx list:
tx.insert_record(db)
if (commit_counter == 10000):
db. commit () ;
commit_counter = 0
else:
commit_ counter += 1
db. commit ()

for tmin in txin list:
txin.insert record(db)
if (commit_counter == 10000):
db.commit () ;
commit_ counter = 0
else:
commit_counter += 1
db.commit ()

for txout in txout_list:
txout.insert_record (db)
if (commit counter == 10000} :
db.commit () ;
commit_counter = 0
else:
commit counter += 1
db.commit ()

print ("Finished r ing file ' + str(file) + "! ims: ' + tims.strftime(, time.gmtims(time.time() - start_tims)))

(self, txid, timestamp):
self.txid = txid
self.timestamp = timestamp

(self

return 'TX 0 timest 1 self.timestamp)

(self, db)
cursor = db.cursozr()
cursor.exscute (s (* {0 J\') ' . format (self.txid, self.timestamp))

(self, output_txid, consume txid, vout)
self.output_txid = output_txid
self.consume_txid = consume_txid

self.vout = vout

ut={2}]".format (self.output_txid, self.consume_txid, self.vout)

(self, db):
cursor = db.cursor()

cursor.exescute (' ' .format (self.output_txid, self.consume txid, self.vout))

(self, output txzid, vout, address, value):

self.output_txid = output_txid
self.vout = vout
self.address = address

self.value = value

(self):
return 'TXOUT 0 3}]'.format (self.output_txid, self.vout, sclf.address, self.value)

(self, db)
cursor = db.cursor()

cursor.execute (' ' .format (self.output_txid, self.vout, sclf.address, self.value))

Figure 10: reader.py/classes

Bitcoin Address Classification using Unsupervised Machine Learning

MSc Thesis Angelos Stamatiou

init_database function

This utility function initializes a connection with the MySQL Database and creates the DB schema
in case it is not present.

Figure 11: reader.py/init_database

close_database function
This utility function closes an active connection to the Database.
) :

if db is not None and db. is_-:::n:nnn&-:::t&n:i {):

Figure 12: reader.py/close_database

3.2.3 Transactions_retriever.py

This Python script generates the execution dataset for the analyzer.py script. A random address
sample is retrieved from the Entity-address dataset for 2010-2018 Bitcoin transactions [28], used
in papers Characterizing Entities in the Bitcoin Blockchain [29] and A Probabilistic Model of the
Bitcoin Blockchain [30]. Additionally, a dataset containing malicious addresses was kindly
provided by the authors of “An Analysis of Bitcoin Laundry Services” [32], further enriching the
dataset variety. For each address in the sample, all their transaction ids are retrieved from the
Database, to create the execution dataset output files, further described in the following sections.

main script

When executing the script, each file in the original dataset is parsed using function read_csv_file,
producing the random sample and the full addresses list. A database connection is initialized
using the utility function init_database. For each produced sample, function execute_query
retrieves all their transactions, appending them to the transaction set. After finishing records
fetching, Database connection is terminated using utility function close_database. Finally, a CSV
file containing the retrieved transactions is generated, along with a CSV file containing the full
addresses list for each original dataset file, by utility function generate_csv_file.

Bitcoin Address Classification using Unsupervised Machine Learning 16

MSc Thesis Angelos Stamatiou

58838
[T

ns

5
i

B EAB88S8
B @D

R

gmtimes (time.time() - tc _time)))

Figure 13: transactions_retriever.py/main

read_csv file function

This function parses a CSV file, using the file configuration depicted in Figure 15, which identifies
the file path, address position and address limit. Function produces a list containing all the parsed
addresses, along with a random sample of them.

+ file[0])

w[file[1]1])
d: " + str(len(addre

resses i 3) = 1 ddresses)

EXCHANGES
GAMBLING 1
HISTO
MALICIOL

Figure 15: transactions_retriever.py/file configuration

Bitcoin Address Classification using Unsupervised Machine Learning 17

MSc Thesis Angelos Stamatiou

execute_query function

This function executes the queries depicted in Figure 17, appending retrieved records to the
transaction set.

ery, label):

'+ time.strftime('%H:3M:%3", time.gmtime(time.time() - guery time)))

Figure 16: transactions_retriever.py/execute_query

Figure 17: transactions_retriever.py/queries

generate_csv_file function

This utility function produces a CSV file containing the input list. An output example is depicted in
Figure 19.

logging.info('Gen

with open(csv file, "w')
file.write (header +
for record in r

file.write(r

logging.info ('

Figure 18: transactions_retriever.py/generate_csv_file

Bitcoin Address Classification using Unsupervised Machine Learning 18

MSc Thesis Angelos Stamatiou

Figure 19: transactions_retriever.py/generage_csv_file output example

Bitcoin Address Classification using Unsupervised Machine Learning 19

MSc Thesis Angelos Stamatiou

init_database function
This utility function initializes a connection with the MySQL Database.

)

Figure 20: transactions_retriever.py/init_database

close_database function

This utility function closes an active connection to the Database. "RESTART" command is used
as to reset Database cache for memory optimization.

(db, cursor):
lljgging .info { "Clos
if db i= ne

close ()

logging.info('Dat

Figure 21: transactions_retriever.py/close_database

3.2.4 Analyzer.py

This Python script performs an unsupervised Machine Learning task, using Deep Graph Infomax
[21] and Graph Convolutional Network (GCN) [11] algorithms for node representation learning.
After node features have been extracted, classification of each node on the temporal network
graph for the Bitcoin transactions dataset is executed, using Logistic regression. Described
functionality is further detailed in the following sections.

main script

During the script's execution, an output folder is created, using utility function
create_output_folder. Execution records are retrieved by executing function
retrieve_execution_records. StellarGraph object is created by executing function
generate_graph. Finally, the ML task is performed using function execute_graph_ML.

tion records dict)

33", time.gmtime (time.time() - total time)))

Figure 22: analyzer.py/main

Bitcoin Address Classification using Unsupervised Machine Learning 20

MSc Thesis Angelos Stamatiou

create_output_folder function

This utility function generates a folder that will contain all files generated in execution,
distinguished by timestamp.

logging.info |
o t fo

os.mkdir (outpu
logging.info (¢
return output_fo

Figure 23: analyzer.py/create_output_folder

retrieve_execution_records function

This function parses the generated dataset of transactions_retriever.py script and builds the
execution records dictionary, used for labeling graph nodes. Generated dictionary contains an
address list for the address type contained in each file. Each file is parsed using utility function
read_csv_file.

Figure 24: analyzer.py/retrieve_execution_records

read_csv_file function

This utility function parses a CSV file generated by transactions_retriever.py script, containing a
list of records.

(file)
logging.info('F

row in
if row[0] nmot in records:

records.add(row[0])

logging.info('Records und: 3 = cords)))

return records

Figure 25: analyzer.py/read_csv_file

Bitcoin Address Classification using Unsupervised Machine Learning 21

MSc Thesis Angelos Stamatiou

generate_graph function

This function generates the StellarGraph object, to execute the unsupervised Machine Learning
task. A database connection is initialized using the utility function init_database. A networkx graph
is created using the records retrieved by executing functions execute txin_query and
execute_txout_query, as described in Section 3.1.3. After finishing records fetching, Database
connection is terminated using utility function close_database. For the generated graph, a
graphML file is created for further visualization in external tools. Finally, the networkx graph is
converted to a StellarGraph object. A generated graph example is depicted in Figure 27.

Figure 27: analyzer.py/generate graph example

Bitcoin Address Classification using Unsupervised Machine Learning 22

MSc Thesis Angelos Stamatiou

execute_txin_query and execute_txout_query functions

These functions execute the TXIN_QUERY and TXOUT_QUERY, depicted in Figure 30, and
convert retrieved data to networkx graph nodes and links. Utility function retrieve_address_flag is
used to determine each address flag.

def

ct, result
alue, flag=flag)

Node_Type - TRAD CTION.value, flag=Node Flag.TRI ICN.value)

result[1l], weight=result[3], timestamp—datetime.timestamp (result[2]))

alue, flag=Node Flag.TRAN

_ result[1])
sult[1], t ode z t] alue, flag=flag)
ult[1])

result[1l], weight=result[3], timestamp=datetime.timestamp (result[2]})

ing.info(

Figure 29: analyzer.py/execute_txout_query

Figure 30: analyzer.py/queries

Bitcoin Address Classification using Unsupervised Machine Learning 23

MSc Thesis Angelos Stamatiou

retrieve_address_flag function

This utility function identifies an address flag based on the execution records dictionary. If an
address doesn’t exist in any of the known address type records, unknown flag is used.

- JERV I

Figure 31: analyzer.py/retrieve_address_flag

init_database function
This utility function initializes a connection with the MySQL Database.

def (O
logging.info(" = con 1o .. ')

Figure 32: analyzer.py/init_database

close_database function

This utility function closes an active connection to the Database. "RESTART" command is used
as to reset Database cache for memory optimization.

(db, cursor)
logging-info('Closing T = connection...")
if db i= not None and db.is

cursor.execute ('RES

close ()

logging.info('Data

Figure 33: analyzer.py/close_database

Bitcoin Address Classification using Unsupervised Machine Learning 24

password="root', database='btc’

MSc Thesis Angelos Stamatiou

execute_graph_ML function

This function performs the unsupervised Machine Learning task. Node representation model is
generated for the given StellarGraph object, using function deep_graph_infomax. Graph nodes
dataset is then split into K folds, to evaluate the classifier accuracy. Each fold follows a 70/30
train-test split of the original dataset, generated by StratifiedShuffleSplit function of scikit-learn
library. For each fold, function train_and_evaluate is executed, to train the classifier with the fold’s
train set and evaluate its accuracy using the fold’s test set. Each fold’s predictions are extracted
to a file, along with the general execution statistics and best fold predictions, for further analysis.
Execution output example is depicted in Figure 35.

Figure 34: analyzer.py/execute_graph_ML

E-Fold walidation statistic

Figure 35: analyzer.py/execute_graph_ML output

deep_graph_infomax function

This function performs the unsupervised training for node representation learning, using Deep
Graph Infomax and GCN algorithms, provided by the StellarGraph library. As per usual StallGraph
workflow, data generators are created. Since this is an unsupervised task, all nodes are passed
to the CorruptedGenerator. A GCN model is created, along with the DeepGraphinfomax model,
which will execute the ML task. Generated model is trained to learn the node features and the
final embeddings are extracted. When executing this function, a history file is generated,
containing the plot of loss over each training epoch, depicted in Figure 37.

Bitcoin Address Classification using Unsupervised Machine Learning 25

MSc Thesis

senerator (st
tor (fullb

ompile (loss=tf.nn.sigmo

info(

logging.info ("

= o

es ing (monit

.fit (gen,

logging.info ("

logging.info(

Figure 36: analyzer.py/deep_graph_infomax

Angelos Stamatiou

1.0~

0.8 1

0.4 1

0.2 1

— train

0 50 ll{;ll[} lSID ZEI}D
epoch

Figure 37: analyzer.py/deep_graph_infomax loss over epochs

Bitcoin Address Classification using Unsupervised Machine Learning

T
250

T
300

T
350

26

MSc Thesis Angelos Stamatiou

train_and_evaluate function

This function performs a classification task using Logistic Regression, for a given features model
of graph nodes. Logistic Regression classifier is created and trained on the provided train set and
predicts the nodes class of the test set.

, max iter

+ str(gcn_a
return gcn :

Figure 38: analyzer.py/train_and_evaluate

Bitcoin Address Classification using Unsupervised Machine Learning 27

MSc Thesis Angelos Stamatiou
4. Implementation evaluation and challenges discussion

This chapter presents a performance evaluation of the proposed solution, detailed in Chapter 3,
as well as challenges raised during the design and development process. The performance
evaluation follows the solution workflow structure. After the Bitcoin blockchain is parsed and data
are imported to the Database, an execution dataset is generated and the Address classification
task using unsupervised Machine learning is executed. The solution is evaluated in terms of
processing time, storage usage and classification accuracy of the corresponding components.
Table 8 presents the hardware and Table 9 the various software and libraries used for the
implementation and evaluation of the proposed solution.

Table 8: System hardware

Component Description

CPU Intel Core i7 6700K, 4C/8T @ 4,5 GHz

RAM 32 GB @ 3200 MHz

GPU NVIDIA GeForce GTX 1070

Disks 1 x Samsung SSD 850 Evo 250 GB
1 x Samsung NVMe SSD 970 Evo Plus 1 TB
1 x Seagate ST2000DMO006 Barracuda HDD 2
B

Table 9: Software and libraries

Software/Library Version

Windows 10 Pro 20H2, OS build 19042.964

NVIDIA Driver 466.11

MySQL Community Server - GPL 8.0.21

Python 3.85

chainside-btcpy 0.6.5

networkx 25

stellargraph 1.2.1

tensorflow 24.1

scikit-learn 0.24.0

4.1 Blockchain parsing

Using parser.py script, the Bitcoin blockchain was parsed until file blk02399.dat, sizing 298 GB in
total. All blk*.dat files were parsed after 60 hours. Output file size averaged at 180 MB, with a total
size of 426 GB. Figure 39 depicts the parsing time to reach each blk*.dat file, and Figure 40
demonstrates the size increase of the Bitcoin blockchain from 2009 until 2021. Since the parsing
time of each blk*.dat file is almost identical, total elapsed time has a steady increase as the
blockchain grows.

Bitcoin Address Classification using Unsupervised Machine Learning 28

MSc Thesis Angelos Stamatiou

Elapsed Time
72
60
» 48
5
036
I
24
12
00
T O =4 O d O dOWerdOWerd Oerd Ocd O cd O ecrdd O O cd O cdOcdOWedH O edH O dH O H O
O MO VW ANIDODIN AN AT AN ONMOOMOOVUANOWL ANOWOLL d 0 < AN <
A A N MO N TN ONMNOOOODODO A dAdANMOMNMSTSE TN O ONOOOOOO A ANANM
™ A A H A A A AN AN NN NN
Blk file
Figure 39: parser.py parsing time
Blockchain Size
2009-01-03 blockchain.com/charts 2021-05-08

Figure 40: Block chain size [31]

4.2 Data import

To import the parsed Bitcoin blockchain data to the MySQL Database, reader.py script was
executed. All output files of parser.py script were parsed after 9 days 2 hours 32 minutes and 29
seconds, resulting in 652 GB of disk size for the Database, using row compression and field
indexing. Figure 41 depicts the parsing time to process each result file sequentially, showing again
a steady increase as the blockchain grows.

Bitcoin Address Classification using Unsupervised Machine Learning 29

MSc Thesis Angelos Stamatiou

Elapsed Time
240
192
[7,]
= 144
=2
o
T %
48
00
0N ANOOWOWMONST T ANOOOUMONST IR0 ANOOOOUMOINS 100 W1 N
OMmMOoO OWMmMOoO~NMONMmoOoO~Nmo NN oONNSSONSORNSdAHINS dnN< o
HANANND TN O O N0 OO A AN AN NSO WOWNOW0WWoO O O N
Lo B o B O TR I O IO IR A O B L AR B o N o I o VI o\ I N
Result file

Figure 41: reader.py parsing time

4.3 Machine Learning task

By executing transactions_retriever.py script, the generated dataset was utilized by analyzer.py
script to create the graph on which the Address classification task using unsupervised Machine
learning was executed. The graph contained 22236 nodes and 27290 edges in total, distributed
among the classes as presented in Table 11.

Table 10: Generated graph class count

Class Count Percentage
Transaction 906 4.07%
Unknown 4590 20.64%
Exchanges 806 3.62%
Gambling 1495 6.72%
Historic 5103 22.95%
Malicious 269 1.21%
Mining 8299 37.32%
Services 768 3.45%

For node representation learning, the machine learning model was configured using the
default values provided by the StellarGraph demos. Specifically, the GCN model used by
DeepGraphinfomax was configured with one hidden layer of 128 units, using the ReLU (Rectified
Linear Unit) activation function. DeepGraphinfomax model was configured with TensorFlow’s
sigmoid_cross_entropy_with_logits as the loss function, along with the Adam learning rate
optimizer. Figure 42 shows the loss reduction as epochs increase.

Bitcoin Address Classification using Unsupervised Machine Learning 30

2279
2346

MSc Thesis Angelos Stamatiou

1.0 1 .
— ftrain
0.8
uw
v D 6 N
O
0.4
0.2 1
T T T T T T T T
0 50 100 150 200 250 300 350

epoch

Figure 42: Loss over epochs

After the dataset has been shuffled and split into 10 folds by the StratifiedShuffleSplit
function, each fold contained 15565 nodes as the train set and 6671 as the test set. Random state
was constant, so that folds would remain the same between each execution. Logistic Regression
classifier processed each fold to determine which one had the best accuracy. Average accuracy
of folds over epochs is depicted in Figure 43, showing a slight increase as epochs are rising, with
400 epochs as the optimal configuration.

Folds Average Classification Accuracy

80.00%
79.00%
78.00%
77.00%
76.00%
75.00%
74.00%

Accuracy

73.00%
72.00%
71.00%
70.00%
10 20 50 80 100120150180200220250280300320350380400420450480500
Epochs

Figure 43: Folds average classification accuracy over epochs

Bitcoin Address Classification using Unsupervised Machine Learning 31

MSc Thesis Angelos Stamatiou

Best overall classification accuracy of 76.39% was achieved using 480 epochs on fold 7.
Figure 44 presents the classes composition for both the predicted and actual sets. Figure 45
depicts the predicted class of nodes for each class of the actual set, further detailed in Table 11.

Class composition

3000
2588490
2500
1941

- 2000
c 143 531
S 1500 £377
o
(&)

1000 M Prediction

448
500 228272 250242 230 WActual
, W m — “m
o & & & Y Ry & &>
L& ® SO ARNC
(\6 \)& (\? (,)'b((\ ‘2\\ @'b (,’Q/
«&Ib <F
Class
Figure 44: Class composition of predicted and actual sets
Predicted classes of actual set

3000

2500

2000 M Services
E B Mining
= 1500
o m Malicious
(&)

1000 M Historic

Gambling
500 M Exchanges

—_— B Unk
0 - - . | — e

B Transactions

\’\O(\ OQ\Q ng’ \\Qéo 0{\(’ .\o\{" L \(\% '\OQ:?
Q S . N K\
AS)) @) N\
& 000 & L I &}\ 3 &
+ o
,\‘\’b <
Class

Figure 45: Predicted classes of actual set nodes

Bitcoin Address Classification using Unsupervised Machine Learning 32

MSc Thesis Angelos Stamatiou

Table 11: Predicted classes of actual set nodes details

< 0

2 |c S |2 2 2 |2

@ % = 5 2 o o 3 ©

2 c < c [e) o £ 3 =

I = [3) 1) = c - o

P c b] 9 © =) o
Class [D i O T = p=] <
Transaction 129 40 0 8 35 2 35 23 47.43%
Unknown 0 1376 0 0 1 0 0 0 99.93%
Exchanges 0 9 216 11 0 6 0 0 89.26%
Gambling 0 5 13 3 424 3 0 0 0.67%
Historic 66 0 2 41 1188 5 229 0 77.60%
Malicious 0 0 0 0 17 64 0 0 79.01%
Mining 5 6 19 64 276 0 2120 0 85.14%
Services 28 0 0 0 0 202 0 0.00%

Through further inspection of Table 11, it’'s obvious that the Logistic Regression classifier
deals with problems in identification of the nodes of Gambling and Services classes, mislabeling
them mainly as Historic and Mining classes respectively. Furthermore, Transaction nodes may
be mislabeled as Address nodes. On the other hand, identifying Malicious addresses stands at a
very respectable 79.01%. Further optimizing of the classifier and improving of the class system,
using detail subclasses provided by the Dataset, should be explored, to identify potential
classification accuracy improvements.

4.4 Challenges

Various challenges were encountered during the implementation of the proposed solution, due to
the massive data size. The Bitcoin blockchain was weighted 298 GB at the time of development,
resulting in an inefficient and time-consuming parsing and importing of data to the Database. To
overcome this issue, the process was split into two distinct modules, to enable concurrent
execution of each module on different files, as each process was executed faster when not
bounded by the other one. Additionally, data import could be further optimized with the usage of
a batching commit code.

After importing all the data into the MySQL Database, disk size was 1129 GB. Due to this
size, a slow 2 TB HDD drive was used to host the Database, resulting in slow query execution
times. Row compression was enabled, reducing the total size to 652 GB, allowing the usage of a
faster NVME SSD 1 TB drive. To further increase Database performance, field indexing was
enabled, along with the modification of MySQL configuration parameter innodb_buffer_pool_size,
which was set to 16 GB, to increase the Database RAM cache size, for faster query executions.

The initial approach of executing the unsupervised Machine Learning task, included the
generation of the execution dataset and ML processing at the same script, which was slowing
development process, as the dataset was rebuilt in each execution. To overcome this issue,
execution dataset build was removed from the script and transactions_retriever.py script was
created. This resulted in faster development times and repetition of executions with different
configurations, on the same dataset, without the need to rebuild the dataset.

As analyzer.py script was developed, each consecutive execution of the Logistic
Regression classifier resulted in memory usage reaching system limit. This issue occurred due to
a known memory leak bug in TensorFlow library, which was bypassed by disabling eager
execution. Another memory optimization placed in the code, was the usage of the SQL
“RESTART” query, after records retrieval was completed, to reset the Database memory cache.

Bitcoin Address Classification using Unsupervised Machine Learning 33

MSc Thesis Angelos Stamatiou
5. Conclusions and Future Work

In this dissertation, a complete solution on how to store Bitcoin blockchain data and analyze them
using Machin Learning algorithms, was presented. Bitcoin data were imported to a MySQL
Database using Python scripts, allowing access using complicated queries from other resources,
to fully utilize the parsed information. This enabled the creation of a Python script which creates
a graph and performs a Node Classification task using unsupervised Machine Learning.

The proposed solution was evaluated in terms of processing time, storage usage and
classification accuracy of the corresponding components. Parsing Bitcoin blockchain data to a
more usable format took 60 hours, with an output folder of 426 GB in total size. Importing the
parsed data to the MySQL Database completed after 9 days 2 hours 32 minutes and 29 seconds,
resulting in 652 GB of disk size for the Database, after applying optimizations. Executing the
unsupervised Machine Learning task, the best accuracy achieved was 76.39%, showing that it is
possible to classify Bitcoin addresses without knowing any features.

This work paves the way for further research discussion. Using similar parsing
techniques, a Database containing the complete information of the Bitcoin blockchain can be
created. This will allow researchers to analyze its data with different approaches and extract
information related to their search field. The promising results of the classification task indicate
that the proposed classification method can be further improved, by optimizing and training the
classifier using different architectural approaches, or by using a more detailed class system.
Ideally, such approaches can facilitate blockchain forensics operations and enhance the
capabilities of tracing malicious actors in bitcoin and other cryptocurrencies.

Bitcoin Address Classification using Unsupervised Machine Learning 34

MSc Thesis Angelos Stamatiou
Bibliography

[1] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

[2] Antonopoulos, A. (2014). Mastering Bitcoin: Unlocking Digital Crypto-Currencies. O'Reilly
Media. ISBN 978-1-4493-7404-4.

[3] "Statement of Jennifer Shasky Calvery, Director Financial Crimes Enforcement Network
United States Department of the Treasury Before the United States Senate Committee on
Banking, Housing, and Urban Affairs Subcommittee on National Security and International Trade
and Finance Subcommittee on Economic Policy" (2013) fincen.gov. Financial Crimes
Enforcement Network. Archived from the original on 9 October 2016. Retrieved 1 June 2014.

[4] BitcoinCore. About, url: https://bitcoincore.org/en/about/

[5] Bitcoin. Protocol Documentation, url: https://en.bitcoin.it/wiki/Protocol documentation

[6] "What is MySQL?". MySQL 8.0 Reference Manual. Oracle Corporation. Retrieved 3 April 2020
[7] StellarGraph, url: https://stellargraph.readthedocs.io/en/stable/README.html

[8] Hamilton, W.L., Ying, R., and Leskovec, J. (2017). Inductive Representation Learning on Large
Graphs. Neural Information Processing Systems (NIPS).

[9] Zhang, D., Jie, Y., Zhu, X. and Zhang, C. (2019). Attributed Network Embedding via Subspace
Discovery. Data Mining and Knowledge Discovery.

[10] Velickovic¢, P. et al. (2018). Graph Attention Networks. International Conference on Learning
Representations (ICLR).

[11] Kipf, T. N., Max Welling, (2017). Graph Convolutional Networks (GCN): Semi-Supervised
Classification with Graph Convolutional Networks. International Conference on Learning
Representations (ICLR).

[12] Chiang, W., Liu, X., Si, S., Li, Y., Bengio, S. & Hsiej, C., (2019). Cluster-GCN: An Efficient
Algorithm for Training Deep and Large Graph Convolutional Networks. KDD arXiv:1905.07953.
[13] Wu, F., Zhang, T., A. H. de Souza, Fifty, C., Yu, T. & Weinberger, K. Q. (2019). Simplifying
Graph Convolutional Networks. International Conference on Machine Learning (ICML).

[14] Klicpera, J., Bojchevski, A., Ginnemann, A. & S., (2019). Predict then propagate: Graph
neural networks meet personalized PageRank. ICLR. arXiv:1810.05997.

[15] Grover, A. & Leskovec, J., (2016). Node2Vec: Scalable Feature Learning for Networks. ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).

[16] Dong, Y., Nitesh V. Chawla, & Swami, A. (2017). Metapath2Vec: Scalable Representation
Learning for Heterogeneous Networks. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 135-144.

[17] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018).
Modeling relational data with graph convolutional networks. European Semantic Web
Conference. arXiv:1609.02907

[18] Trouillon, T., Welbl, J., Riedel, S., Gaussier, E. & Bouchard G., (2016). Complex Embeddings
for Simple Link Prediction. ICML.

[19] Donnat, C., Zitnik, M., Hallac, D., & Leskovec, J. (2018). Learning Structural Node
Embeddings via Diffusion Wavelets. SIGKDD, arXiv:1710.10321.

[20] Abu-El-Haija, S., Perozzi, B., Al-Rfou, R. & Alemi, A. (2018). Watch Your Step: Learning
Node Embeddings via Graph Attention, NIPS. arXiv:1710.09599.

[21] Velickovi¢, P., Fedus, W., Hamilton, W. L., Lio, P., Bengio, Y., Hjelm, R. D., (2019). Deep
Graph Infomax. ICLR, arXiv:1809.10341.

[22] Nguyen, G. H., Lee, J. B., Rossi, R. A., Nesreen K. A, Koh, E., & Kim, S. (2018). Continuous-
Time Dynamic Network Embeddings. Proceedings of the 3rd International Workshop on Learning
Representations for Big Networks (WWW BigNet).

[23] Yang, B., Yih,W., He, X., Gao, J., & Deng, L. (2015). Embedding Entities and Relations for
Learning and Inference in Knowledge Bases. ICLR, arXiv:1412.6575

[24] zZhang, M., Cui, Z., Neumann, M. & Chen, Y. (2018). An End-to-End Deep Learning
Architecture for Graph Classification. AAAL.

Bitcoin Address Classification using Unsupervised Machine Learning 35

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4493-7404-4
https://www.fincen.gov/sites/default/files/2016-08/20131118.pdf
https://www.fincen.gov/sites/default/files/2016-08/20131118.pdf
https://www.fincen.gov/sites/default/files/2016-08/20131118.pdf
https://www.fincen.gov/sites/default/files/2016-08/20131118.pdf
https://web.archive.org/web/20161009183700/https:/www.fincen.gov/sites/default/files/2016-08/20131118.pdf
https://bitcoincore.org/en/about/
https://en.bitcoin.it/wiki/Protocol_documentation
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://stellargraph.readthedocs.io/en/stable/README.html

MSc Thesis Angelos Stamatiou

[25] Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M. & Li, H. (2019). T-GCN: A
Temporal Graph Convolutional Network for Traffic Prediction. IEEE Transactions on Intelligent
Transportation Systems.

[26] Leonov, D. (2020). Blockchain parser, url: https://github.com/ragestack/blockchain-parser
[27] btcpy, url: https://github.com/chainside/btcpy

[28] Entity-address dataset for 2010-2018 Bitcoin transactions, url;
https://github.com/Maru92/EntityAddressBitcoin

[29] Jourdan, M., Blandin, S., Wynter, L., Deshpande, P. (2018). Characterizing Entities in the
Bitcoin Blockchain. Data Mining Workshop (ICDMW), IEEE International Conference.
arXiv:1810.11956

[30] Jourdan, M., Blandin, S., Wynter, L., Deshpande, P. (2019). A Probabilistic Model of the
Bitcoin Blockchain. Computer Vision and Pattern Recognition Workshop (CVPRW).
arXiv:1812.05451

[31] Blockchain Size, url: https://www.blockchain.com/charts/blocks-size

[32] Thibault de Balthasar, Julio Hernandez-Castro:An Analysis of Bitcoin Laundry Services.
NordSec 2017: 297-312

[33] Heterogenous GraphSAGE (HINSAGE), url:
https://stellargraph.readthedocs.io/en/stable/hinsage.htmi

[34] Casino, Fran, Thomas K. Dasaklis, and Constantinos Patsakis. "A systematic literature
review of blockchain-based applications: Current status, classification and open issues."
Telematics and informatics 36 (2019): 55-81.

[35] Juan A. Garay, Aggelos Kiayias, Nikos Leonardos: The Bitcoin Backbone Protocol: Analysis
and Applications. EUROCRYPT (2) 2015: 281-310

Bitcoin Address Classification using Unsupervised Machine Learning 36

https://github.com/ragestack/blockchain-parser
https://github.com/chainside/btcpy
https://www.blockchain.com/charts/blocks-size
https://stellargraph.readthedocs.io/en/stable/hinsage.html

MSc Thesis

Angelos Stamatiou

Abbreviations
ML Machine Learning
SHA Secure Hash Algorithm
P2PKH Pay to Public Key Hash
P2SH Pay to Script Hash
UTXxoO Unspent Transaction Outputs
PoW Proof-of-Work
RDBMS Relational Database Management System
SQL Structured Query Language
DB Database
API Application Programming Interface
SAGE SAmple and aggreGatE
GAT Graph Attention Network
GCN Graph Convolutional Network
SGC Simplified Graph Convolutional Network
PPNP/APPNP (Approximate) Personalized Propagation of Neural Predictions
RGCN Relational Graph Convolutional Network
CTDNE Continuous-Time Dynamic Network Embeddings
DGCNN The Deep Graph Convolutional Neural Network
TGCN Temporal Graph Convolutional Network
CPU Central Processing Unit
RAM Random Access Memory
GPU Graphics Processing Unit
*CIHT number of Cores/ number of Threads
MHz/GHz Mega/Giga Hertz
MB/GB/TB Mega/Giga/Tera Bytes
SSD Solid State Drive
NVMe Non-Volatile Memory express
HDD Hard Disk Drive
0S Operating System

Bitcoin Address Classification using Unsupervised Machine Learning

37

MSc Thesis
Glossary

Bitcoin

Blockchain

Hash

Mainnet

Satoshi

MySQL

Database schema

Python

StellarGraph

Machine Learning

Classification task
Graph

Script

Function

Angelos Stamatiou

Cryptocurrency invented in 2008 by Satoshi Nakamoto.

Blockchain is a system of recording information in a way that makes it
difficult or impossible to change, hack, or cheat the system.

Hash function coverts data of arbitrary length to a fixed length.
Bitcoin main blockchain.

The smallest unit of the Bitcoin cryptocurrency

Open-source relational database management system.

A database schema represents the logical configuration of all or part of a
relational database.

Python is an interpreted, object-oriented, high-level programming language
with dynamic semantics.

Python library for machine learning on graph-structured data.

Machine learning is an application of artificial intelligence (Al) that provides
systems with the ability to automatically learn and improve from experience
without being explicitly programmed.

A task that requires the use of machine learning algorithms that learn how
to assign a class label to examples from the problem domain.

A common data structure that consists of a finite set of nodes (or vertices)
and a set of edges connecting them

A collection of commands in a file designed to be executed like a program.

A function is a block of code which only runs when it is called.

Bitcoin Address Classification using Unsupervised Machine Learning 38

MSc Thesis
List of

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:

Angelos Stamatiou

Figures
Simplified Bitcoin transaction @Xampleoccuiiiiiiiiei e 7
BitCcOIN gENESIS DIOCK...... et 8
o] (W11 o] g = Trod 11 C=T ot UL = PP 11
Database SCREMIAeiiiiiiiiie et e e a e e e 12
Bitcoin transactions graph.........cooicciiiiiiee e 12
[=T g 0}/ o (=T 1 (=Y =L o7o] (o PSS 13
PArSEr.pY OULPUL EXAMIPIE. ...ttt e e e 14
=T=To [T g o) VAN 1 4=V o [OOSR U PR P PPPPPP 14
reader.pY/Parse_fil€cooi i ————— 15
FEAUEI.PY/CIASSES ..ottt ettt e e e e e s 15
reader.py/init_database............oooiiiiiiiiiiii e 16
reader.py/Close_database.........ceeiiiiiiiiiiiie e 16
transactions_retriever.py/Maincccce e, 17
transactions_retriever.py/read_cSV_file ... 17
transactions_retriever.py/file configurationcccccviiiiiiiii e 17
transactions_retriever.py/eXeCUte_QUEIYccceveiieee e, 18
transactions_retrieVer.PY/QUETIESo.uuiii ittt 18
transactions_retriever.py/generate_csv_filecccooiiiiiii 18
transactions_retriever.py/generage_csv_file output exampleccl. 19
transactions_retriever.py/init_databaseccccciii 20
transactions_retriever.py/close_databaseccccccoviuiiiiiiiei i 20
ANAIYZEL.PY/MAIN .., 20
analyzer.py/create_output_folder.............cco i, 21
analyzer.py/retrieve_eXeCULiON_TECOIScuiiiiiiiieeiiiiie ettt 21
analyzer.py/read_CSV_TIlecuei i 21
analyzer.py/generate_graph ..., 22
analyzer.py/generate graph eXample.... ..o 22
analyzer.py/eXeCute_tXIN_QUETYeeiiiiieeeiiiieee it e sttt e et e e et ee e e s breeeeenes 23
analyzer.py/execute_tXOUL QUENYcocoeeieee e, 23
ANAIYZEL.PY/QUETIES ..., 23
analyzer.py/retrieve_address_flag ..o 24
analyzer.py/init_databasecooiiiiiiiiiii e 24
analyzer.py/close_databasecccceeeeiii 24
analyzer.py/execute_graph_ML.........cooiiiiiiiiiii e 25
analyzer.py/execute_graph_ML OUIPUL.........oocuuiiiiiiiiiiiiiiee e 25
analyzer.py/deep_graph_infomax.........ccccciiii 26
analyzer.py/deep_graph_infomax loss over epochs...............ccco 26
analyzer.py/train_and_eValUatecccueeiiiiiiiiiiiiiee et 27
PArSer.pY ParSiNg tIME. e e 29
= oot ol g =TT 1R=] 74 = 1 3 [PPSRt 29
reader.py PArsiNg TIMEooo ittt 30
[T 1Y =] g =T oo o] £ PRSP 31
Folds average classification accuracy over €pOCNS.........ccuuveeiiiieriiiiiiiieeeee e 31
Class composition of predicted and actual Sets..........ccccccevviiciiiieeiee e 32
Predicted classes of actual Set NOAES.........c.uuiiiiiiiiiii e 32

Bitcoin Address Classification using Unsupervised Machine Learning 39

MSc Thesis Angelos Stamatiou

List of Tables

Table 1: BitCOIN DIOCK SITUCTUIEeiiiieii ittt e e e e e s et e e e e e e e s e ennes 5
Table 2: Bitcoin block header SITUCLUIEcoiuiiiiiiiiie e 5
Table 3: BitCcoin tranSACLION SIUCIUIEviiie ittt e s s b e e e e nneeas 6
Table 4: Simplified Bitcoin transSaction StIUCIUMEeeiiiiiiiiiiiiieeie e 7
Table 5: StellarGraph supported algorithms ..o 9
Table 6: Database rOW COMPIESSION........c.uuuiieeieeeieiiiieeereeeeesistrrarreeeesssstarereeeeesasnanrerereeeessannnnes 11
Table 7: parser.py OULPUL FOIMALooiiiiiiii ettt 13
Table 8: SYStEM NAITWANEeeiiiiiiiee et e et e e e sb e e s abreeeeaaes 28
Table 9: Software and IDrariES.........c.uvii i 28
Table 10: Generated graph Class COUNToiiuiiiiiiiiiie it e e 30
Table 11: Predicted classes of actual set nodes detailscc.ueeevieiiiiiiiiiie e 33

Bitcoin Address Classification using Unsupervised Machine Learning 40

