
 

    

 

NIKOS PSYLLAKOS, ΜΤΝ 1916 

SUPERVISOR: MARIA HALKIDI, ASSOCIATE PROFESSOR 

  

Community 
Detection in 
Signed & 
Directed 
Graphs 
      
 
Master Thesis 
 
 
 

2021 

npsyllakos@gmail.com 
OTE 

27-Jun-21 



Community Detection in Signed & Directed Graphs 

 
 

1 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Community Detection in Signed & Directed Graphs 

 
 

2 
 
 

Table of Contents                                                                                                                                             

Acknowledgements ........................................................................................................................  4 

Abstract...........................................................................................................................................  5 

Keywords ........................................................................................................................................  5 

Περίληψη ........................................................................................................................................  6 

Λέξεις-Κλειδιά ................................................................................................................................ 6 

Introduction ....................................................................................................................................  8 

        Challenge Representation ....................................................................................................... 8 

        Graph clustering challenge  ..................................................................................................... 9 

        Type of Graphs  ...................................................................................................................... 10 

        Thesis Scope  .......................................................................................................................... 13 

Community Detection for Signed Graphs  ................................................................................... 14 

         Theoretical Basis  .................................................................................................................. 14 

         Similarity definition and configuration  ................................................................................ 15 

         Reference and Citation  ........................................................................................................ 19 

                Co-citation and Co-reference Matrices     ...................................................................... 20 

          Similarity Measure – Similarity Matrices .............................................................................  21 

Proposed Approach for Community Detection in Signed and Directed Graphs ........................ 25 

         Community detection - Graph clustering algorithms      ...................................................... 25 

         Affinity Propagation Clustering  ............................................................................................ 25 

               Affinity Propagation Algorithm  ...................................................................................... 25 

               Affinity Propagation Parameters Tuning  ........................................................................ 27 

          Spectral clustering  ............................................................................................................... 28 

                Spectral Clustering Methodology  .................................................................................. 28 



Community Detection in Signed & Directed Graphs 

 
 

3 
 
 

                Spectral Clustering in Signed & Directed Graphs    ........................................................ 30 

Experimental Evaluation  ............................................................................................................. 31 

           Environment and Tools ....................................................................................................... 31 

           Datasets (Real World and Generated)    ............................................................................. 36 

            Experimental Procedure – Results  .................................................................................... 37  

            Clustering Validation  ......................................................................................................... 41  

                   Similarity Validation – Normalization Issues    ............................................................. 41  

Conclusion – Future Work  ........................................................................................................... 48  

              Conclusion – Methodology evaluation  ........................................................................... 48  

              Future work – Possible Expansion  ................................................................................... 50  

Bibliography  ................................................................................................................................. 51  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Community Detection in Signed & Directed Graphs 

 
 

4 
 
 

 
 
 
Acknowledgements 

 
I would first like to thank my supervisor, Maria Halkidi, Associate Professor in the Department of Digital 
Systems, University of Piraeus, for giving me the opportunity to work on such an exciting project for my 
master thesis.  
Your expertise was crucial in formulating the research questions and methodology and your persistent 
feedback coached my thinking and directed my work to a higher level. 
Finally, I must express my very profound gratitude to my wife for providing me with unfailing support 
and continuous encouragement throughout my years of study and through the process of researching 
and writing this thesis. This accomplishment would not have been possible without her.  
 

Nikos Psyllakos 
June 2021 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Community Detection in Signed & Directed Graphs 

 
 

5 
 
 

 

 
 
Abstract 
 
In recent 2 decades, one of the most popular methods for processing data , is to convert it to a network, 
where data units are vertices and their relations are the links that connects them. 
Such Networks in a clustering problem are usually represented as graphs where each element to be 
clustered is represented as a node and the distance between two elements is modeled by a certain 
weight on the edge linking the nodes. Graph clustering aims at partitioning a set of nodes into different 
groups called clusters or communities that share some form of similarity, similarity score can be 
formulated by using a distance-based criterion, a topology structural criterion or an “attitude” (polarity) 
criterion. These clusters will help us to explore information hidden in the data , there is a wide area of 
applications as e.g. Social Network Analysis, Statistical Data Analysis, Machine Learning, Data mining, 
Consuming Behavior Analysis, VLSI design, Computer graphics and Gene analysis. 
 
This particular Thesis is putting under the spotlight Signed and Directed graphs and examines two 
community detection algorithms that cluster nodes with similar characteristics, the goal of the 
procedure is to emerge the Similarity score as the main and most important factor of Graph Clustering 
between nodes based on the connectivity pattern they follow including both directionality and polarity 
of the links which connects them. 
 
The initial step is to work with the negative and positive subgraph of the examined Data Set. For each 
Subgraph we apply Coupling (Reference) and Cocitation as the Methodologies by which Directionality 
dominates criteria to reach Similarity and we calculate the appropriate co-citation and co-reference 
matrices. The Reference or bibliographic coupling Matrix of two nodes in a directed network is the 
number of nodes to which both these two nodes point  on the other hand the Cocitation Matrix of two 
nodes in a directed network is the number of nodes that point to these both exact nodes. The procedure 
continues with the similarity Matrix calculation normalized by taking account of the degree of each node 
and under the influence of Amsler [Amsler, 1972] who pointed out that Co-citation and Bibliography 
coupling can be combined. And finally we apply two clustering algorithms affinity propagation and 
spectral clustering, both standalone and combined. 
 

In this Thesis, we provide a concluded implementation of these proposed algorithms in Python, 
and the datasets that were used to evaluate in practice their precision and certainty. 
We display that these two algorithms have the theoretically expected results for both random 
Generated signed directed graphs and real networks data sets.  
 
Keywords 
 
Signed and Directed Graphs, Social Network Analysis, Graph Clustering, Adjacency Matrix, Community 
Detection, Similarity Score, Co-Citation, Co-Reference, Affinity Propagation, Spectral Clustering, Python, 
Directionality, Polarity. 
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Περίληψη 
 
Τις τελευταίες 2 δεκαετίες μια από τις δημοφιλέστερες μεθοδολογίες για την επεξεργασία δεδομένων 
είναι η μετατροπή τους σε δικτύωμα όπου οι μονάδες δεδομένων ταυτίζονται με τους κόμβους και οι 
σχέσεις που τις συνδέουν είναι οι ακμές του δικτυώματος. 
Τέτοια Δίκτυα σε ένα πρόβλημα συσταδοποίησης συνήθως αντιπροσωπεύονται από Γράφους όπου 
κάθε συστατικό στοιχείο αντιπροσωπεύεται από κόμβους και οι σύνδεσμοι ανάμεσα στα συστατικά 
στοιχεία μοντελοποιούνται με συγκεκριμένης βαρύτητας ακμές. Η συσταδοποίηση σε γράφους 
στοχεύει στην κατηγοριοποίηση των κόμβων ενός γράφου σε ομάδες (συστάδες) ή κοινότητες, οι 
κόμβοι αυτοί μοιράζονται κάποιο βαθμό ομοιότητας, ο οποίος υπολογίζεται με κριτήρια την απόσταση 
ανάμεσα στους κόμβους του γράφου την τοπολογική δομή αλλά και την «συμπεριφορά»  ανάμεσα 
στους κόμβους (φίλοι ή εχθροί). Οι συστάδες αυτές μας βοηθούν να εξερευνήσουμε τις πληροφορίες 
που κρύβονται μέσα στα σύνολα δεδομένων. Η μεθοδολογική αυτή προσέγγιση χρησιμοποιείται 
ευρέως σε επιστημονικά πεδία όπου είναι απαραίτητη η μελέτη και ανάλυση συμπεριφορικών 
μοντέλων η κοινωνιολογικών στερεοτύπων , όπως η ανάλυση κοινωνικών δικτύων, η στατιστική 
ανάλυση δεδομένων, η Εξόρυξη Δεδομένων, η Μηχανική Μάθηση, ο σχεδιασμός ολοκληρωμένων 
κυκλωμάτων, η Βιολογία και άλλα. 
 
Η παρούσα Διπλωματική εργασία βάζει στο μελετητικό επίκεντρο τους Υπογεγραμμένους και 
Κατευθυντικούς γράφους και εξετάζει δύο αλγορίθμους εντοπισμού κοινοτήτων που συσταδοποιούν 
κόμβους με παρόμοια χαρακτηριστικά , ο σκοπός της διαδικασίας είναι η ανάδειξη του βαθμού 
ομοιότητας ως το κύριο και πιο σημαντικό παράγοντα συσταδοποίησης γράφων ανάμεσα σε κόμβους 
με βάση το μοτίβο συνδεσιμότητας ακολουθώντας ταυτόχρονα και την κατευθυντικότητα αλλά και την 
πόλωση των συνδέσμων που τους διασυνδέουν. 
 
Στο αρχικό στάδιο εργαστήκαμε παράλληλα με τους θετικούς και αρνητικούς υπογράφους 
συγκεκριμένων συνόλων δεδομένων για κάθε υπογράφο εφαρμόσαμε τις μεθοδολογικές προσεγγίσεις 
Coupling (Reference) και Cocitation  αναλύοντας αναφορές και συνδέσεις μεταξύ των κόμβων για 
υπολογίσουμε τους ανάλογους πίνακες η διαδικασία συνεχίστηκε με τον υπολογισμό του Πίνακα 
ομοιότητας και τις αναγκαίες κανονικοποιήσεις παίρνοντας υπόψη το βαθμό κάθε κόμβου αλλά και την 
επιστημονική εργασία του Αμσλερ που ανέδειξε ότι οι μεθοδολογικές  προσεγγίσεις Coupling 
(Reference) και Cocitation μπορούν να συνδυαστούν. Τέλος εφαρμόσαμε δύο αλγορίθμους 
συσταδοποίησης affinity propagation και spectral clustering, τόσο ανεξάρτητα όσο και σε συνδυασμό.  
 
Στη Διπλωματική παρέχουμε μια ολοκληρωμένη εφαρμογή των προτεινόμενων αλγορίθμων σε Python 
και τα σύνολα δεδομένων πάνω στα οποία εργαστήκαμε για να αξιολογήσουμε την δουλειά που έγινε 
σε επίπεδο ακρίβειας και ορθότητας. Δείξαμε ότι οι αλγόριθμοι αυτοί απέδωσαν τα αναμενόμενα από 
την θεωρία αποτελέσματα τόσο σε τυχαία παραγόμενους γράφους αλλά και σε δεδομένα πραγματικών 
δικτυωμάτων.  
 
Λέξεις-Κλειδιά 
Υπογεγραμμένοι και Κατευθυντικοί γράφοι, Ανάλυση Κοινωνικών Δικτύων, Συσταδοποίηση Γράφων, 
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Ανίχνευση Κοινοτήτων, Μέτρο Ομοιότητας, Affinity Propagation, Spectral Clustering, Python, 
κατευθυντικότητα, πόλωση. 
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1. Introduction to Graphs 
 

1.1 Challenge Representation  
 
“A picture speaks a thousand words” is one of the most commonly used phrases. But a graph speaks so 
much more than that. We can name Graphs the mathematical structures used to study pairwise 
relationships between objects and entities.  
The visual representation of data, in the form of graphs, assist us to gain actionable insights and make 
by far better data oriented decisions based on them. To categorize and understand the wide usage of 
Graphs/Networks we must adopt terminology from graph theory. Graph theory is a specific sector of 
mathematics that emerged in the 19th and 20th century. It was a need of times as it allowed experts to 
describe phenomena from various fields: communication infrastructures, drawing and coloring maps, 
scheduling tasks and social networks mainly because it provides a better way of dealing with abstract 
concepts like relationships and interactions. 
 
Every graph is a collection of nodes that can be connected to each other by means of edges. Each edge 
of a graph connects exactly two nodes. In a formal notation, a graph G is defined as follows: 
A graph G consists of a collection N of nodes and a collection E of edges, for these elements we write   
G = (N, E).  
Each edge e belongs to E collection is said to join two nodes, which are called its end points. If the edge 
e joins u, v which belongs to N collection of nodes, we represent it formally by writing e = (u, v). 
Nodes u and v in this case are said to be adjacent. Edge e is said to be incident with nodes u and v, 
respectively. The nodes u and v are called the end nodes of the edge (u,v). If two edges have the same 
end nodes they are parallel.  An edge of the form (v,v) is a loop.  
 
A Graph is simple if it has no parallel edges and loops.  A Graph is said to be Empty if it has no edges 
meaning E is empty. A Graph is a Null Graph if it has no nodes meaning N and E are empty. 
 Edges are Adjacent if they have a common node; nodes are Adjacent if they have a common edge. The 
degree of the node v, written as d(v), is the number of edges with v as an end node. We must 
acknowledge at this point that by convention, we count a loop twice and parallel edges contribute 
separately. Isolated nodes are nodes with degree 1.  
A Graph is Complete if its edge set contains every possible edge between ALL of the nodes. 
 
Any Walk in a Graph G = (N,E) is a finite, alternating sequence consisting of nodes and edges of the 
graph G. Any Walk is Open if the initial and final nodes are different. Any Walk is closed if the initial and 
final nodes are the same. Any Walk is a Trail if ANY edge is traversed at most once and consequently a 
Trail is a Path if ANY node is traversed at most once (Except for a closed walk). Any Closed Path is a 
Circuit. [ Wilson. 1986] 
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There are many types of Graphs as shown in the following figure  
 
 

 Figure 1.Graph Types 
 
 
 

1.2 The Graph clustering Challenge 
 
The Graph clustering challenge is the organized methodology of the detection of clusters or 
communities within a Graph. Cluster or community in a network is typically considered as a group of 
nodes with better connectivity (and/or stronger interactions) among its members than with the nodes 
of different communities. 
The main types of Graphs that are used in Social Networks are summarized in the following categories:  
Directed, Undirected, Signed and Unsigned 
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Directed social networks are distinguished from undirected ones by the presence of directed edges 
between nodes. An example for directed network could be followership in Twitter where a user/node 

simply ‘follows’ another. Alternatively, undirected social networks consist of undirected edges 
between nodes. Facebook is an example for undirected networks with edges depicting only mutual 
friendships. 
 

 
Figure 2.Followership 
 
Another type of classification deals with nature of interactions (positive or negative) involved in social 
networks. In this type of classification, a social network could be categorized as either signed or 
unsigned. Unsigned networks are described by the presence of a single type of interaction, usually being 
positive in nature. In unsigned networks all nodes are the same, either the describe friends or strangers. 
But in the real world, relationships are not always positive by nature. Signed networks, capture this 
aspect of society allowing explicit show of trust or distrust among nodes. They can be designated as 
friends or foes. In this case, a node is said to be friends with the other if the node approves the opinion 
among themselves, or foes if a node disapproves the opinion among themselves.  
E-opinions, Slashdot and Wiki are some of the examples of signed networks that indicate trust/friends or 

distrust/foes explicitly among themselves using an edge-weight of +1 and −1 correspondingly. 
 

1.3 Type of Graphs  
 
A Directed graph is a set of objects (called nodes) that are connected together, where all the edges are 
directed from one node to another. A directed graph is usually called as a digraph or a 
directed network.  We can formally define a directed graph as G = (N,E), consisting of the set N of nodes 
and the set E of edges, which are ordered pairs of elements of N. 
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Figure 3.Directed Graph 
 
An Undirected graph is a set of objects (called nodes) that are connected together, where all the edges 
are bidirectional. An undirected graph is usually called as an undirected network. We can formally define 
an undirected graph as G = (N,E), consisting of the set N of nodes and the set E of edges, which are 
unordered pairs of elements of N. 
 

 
 
Figure 4.Undirected Graph 
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A signed Graph can be defined as a directed graph, G = (N, E) where N is the set of nodes in a network,  
E ⊆ N × N is the set of edges such that (u, v) indicates a link between u ∈ N and v ∈ N 
 s: E → {+1, −1} assigns the edge weight. If node A is connected to node B as a friend, there should be a 
directed edge from node A to node B with a trust score of +1. Meanwhile, if A is connected to B as a foe, 
there should be an edge directed from A to B with a distrust score of −1. 
 

 
Figure 5.Signed Graph 
 
The most basic kind of a signed network is a homogeneous signed network.  
Formally, a homogeneous signed network is represented as a graph with the adjacency matrix 
 A ∈ {−1, 0, 1}n×n , which denotes the relationships between entities: 
 

 
Equation.1 
A signed network can also be heterogeneous. In a heterogeneous signed network, there can be more 
than one kind of entity, and relationships between two, same or different, entities can be positive and 
negative. For example, in YouTube, there are two kinds of entities—users and videos, and every user can 
either like or dislike a video. Therefore, the YouTube network can be seen as a bipartite signed network, 
in which the positive and negative links are between users and videos. [Chiang et al.2014] 
 
The most efficient way to represent a Graph is by using an adjacency matrix. It is a matrix of 
size NxN where N is the number of nodes. 
 

 
Figure 6.Adjacency Matrix 
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The above produced from a directed weighted graph and the adjacency matrix M that is corresponding 
to. The matrix is of size 5x5 as there are 5 nodes in total. The cost from node A to B is 4 and it’s given 
in M[A][B]. Similarly, the cost from one node to itself is zero, so all the diagonal elements would always 
be zeros.  
 

 
Equation.2 
 
For an undirected graph, Α is also symmetrical A = AT. If the Graphs Edges are weighted, a Weight 
Matrix is produced in which the element   is representing the weight of an edge connecting the nodes i 
and j. 
 
The most common process of detecting communities in networks follows a twostep approach: 
First, a quality measure (or objective function) needs to be specified, that captures the notion of 
community structure as groups of nodes with better internal connectivity than external (or more 
generally, an objective criterion which quantifies the desired properties of a community. 
Then, using algorithmic techniques, the nodes of the network are assigned to specific communities, 
optimizing the objective function. The optimization process of the objective functions is usually based on 
the favored approach of employing heuristics or other approximation techniques. [Vazirgiannis et al. 
2013] 
 

1.4 Thesis Scope 
 
The main object of our work is to focus on Signed and Directed graphs and to propose community 
detection algorithms that cluster nodes with similar characteristics, the goal of the procedure is to 
emerge the Similarity score as the main and most important KPI (key point indicator) of Graph 
Clustering between nodes based on the connectivity pattern they follow including both directionality 
and polarity of the links which connects them. 
We initiate our research with the extraction of negative and positive subgraph of the examined Data Set 
and then we will attempt to apply Coupling (Reference) and Cocitation as the Methodologies by which 
Directionality dominates criteria to reach Similarity by calculating the appropriate co-citation and co-
reference matrices. The procedure concludes with the similarity Matrix calculation under the theoretical 
influence of Amsler [Amsler, 1972] who pointed out that Co-citation and Bibliography coupling can be 
combined and the appliance of two clustering algorithms affinity propagation and spectral clustering, 
both standalone and combined. 
On a practical level we provide a concluded implementation of these proposed algorithms in Python and 
the datasets that were used to evaluate in practice their precision and certainty. 
We display that these two algorithms have the theoretically expected results for both random 
Generated signed directed graphs and real networks data sets. 
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2. Community Detection for Signed and Directed Graphs 

 
2.1 Theoretical Basis  
A signed graph can be used to model any system containing two types of antithetical relationships, 
such as like/dislike, for/against, etc. Such a graph is considered structurally if it can be partitioned into 
two or more mutually balanced hostile subgroups each having internal solidarity. 
 
Signed social networks can be divided into two categories: explicit networks and implicit networks. In 
the explicit networks, users can directly tag the polarity (positive or negative) to the relationship 
between two users. For example, participants on Epinions can explicitly express trust or distrust of 
others; users on Slashdot can declare others to be either friends or foes. In the implicit networks, users 
do not directly mark the polarities of relationships. However, the relationship polarities can be mined 
from the interaction data between users. For example, in Twitter, we have very large-scale complex 
graphs where the nodes model users and Tweets, while the edges model interactions such as Replies, 
Retweets, or Mentions. A user may support some of users he follows (positive) and be against the 
others (negative).  So the relationship of "following" between users in Twitter can have polarity by 
two simple rules: "The friend of my enemy is my enemy" and "The enemy of my enemy is my friend" 
 
A positive link in a unsigned network just means a ‘relationship’, while a positive link in signed 
networks denotes a ‘positive relationship’, and a negative one denotes a ‘negative relationship’. In a 
signed social network, the relationships between parties may be political alliances and oppositions, 
there are positive relationships–friendship, trust and like, as well as negative relationships–hostility, 
mistrust and dislike. The communities in signed networks are defined as the groups of nodes in which 
positive links are dense and between which negative links are also dense. A signed graph can be used 
to model any system containing two types of antithetical relationships, such as like/dislike, 
for/against etc. Such a graph is considered structurally balanced if it can be partitioned into two or 
more mutually balanced hostile subgroups each having internal solidarity. [Mendonca,2015] 
A signed network G consists of a set of N nodes U = {u1, u2, . . . , uN}, a set of positive links Ep, and a set 
of negative links En. There are two major ways to represent a signed Network G Leskovec [Leskovec et 
al. 2010a] suggests that positive and negative links should be viewed as closely related features in 
signed networks. One way is to represent both positive and negative links into one adjacency matrix A ∈ 
RN×N, where Aij = 1, Aij = −1 and Aij = 0 denote positive, negative, and missing links from ui to uj , 
correspondingly . Then we can proceed to independent networks analysis, we separate a signed 
network into a network with only positive links and a network with only negative links and then use 

two adjacency matrices to represent these two networks, respectively. In particular, it uses Ap ∈ RN×N to 
represent positive links where Ap

ij= 1 and Ap
ij = 0 denote a positive link and a missing link from ui to uj. 

Similarly, An
ij∈ RN×N is used to represent negative links where An

ij = 1 and An
ij = 0 denote a negative link 

and a missing link from ui to uj. It is easy to convert one representation into the other with the following 

rules: A = Ap −An and Ap = (|A|+A)/2 and An = (|A|−A)/2 , where |A| is the component-wise absolute 
Value of A. 
 
Relationships between users in Social Networks can be also Directed like in Twitter. Directed graphs 
are used to show asymmetrical relationship between users, while on the other hand Signed Networks 
are used to describe the Relationship’s status between users.  
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In a Signed Directed network, positive/negative and in/out links determine four different types of 
connectivity. For example, celebrities in a social network tend to receive more in-links than out-links 
due to their popularity, while advertisers tend to form many out-links 
in order to disseminate information. Because of the asymmetric and personalized nature, symmetric 
metric space is not adequate to model preferential attachment.  
 
Based on these we can expand our two rule theory with two more conditions, the following four 
rules:  

 “A friend of my friend is my friend,”  

 “A friend of my enemy is my enemy,”  

 “An enemy of my friend is my enemy,”   

 “An enemy of my enemy is my friend.” 
 

   
Figure 7a.Signed and Directed Social Network Rules                                       

 
Figure 7b.Signed Social Network                                        Figure 7c.Signed and Directed Social Network  
 
So our challenge is to work following hybrid logic of both the Directed Network Community and the 
Signed Network Community detection Algorithms. 
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2.2 Similarity definition and configuration 
 

In order to select the proper Methodology we have to demarcate our Theoretical and Experimental 
Environment. We must try to formulate a Method which will form in an optimized way clusters in Signed 
and Directed Network. Our Method will be based on Similarity Criteria and can be seen as a combination 
of already existing approaches. 
A signed graph is a special type of graph that is useful for representing sentiment networks.  
As we can see in Figure 8 a signed graph is complete because all the possible relations between nodes 
exist .A signed graph is also directed because each node is both a source and a destination node for 
directed asymmetric ties. 
 

Figure 8.Signed Graph 

Signed graphs have a number of unique properties. Some of them are the basis for entire network 
theories, such as balance theory or status theory. Reciprocity, just as in weighted graphs, takes on a 
different meaning in valued graphs. In the usual graph theory sense, all the relations in Graphs as in 
Figure 8 are “reciprocal” because the graph is complete and thus all the dyads are mutual. 
Reciprocity is better defined as mutual dyads that have the same sentiment going from one node to the 
other. In a signed graph mutual dyad, the relationship is reciprocal if both people think that they are 
friends or both people hate one another. A mutual dyad in a signed graph is non-reciprocal if one person 
likes the other person, but that person hates the first person. In the graph theoretic sense, reciprocal 
dyads in a signed graph are those that are connected by two asymmetric edges of the type: either 
positive or negative. A dyad is non-reciprocal if the two nodes are connected by asymmetric edges of 
different types. 
 
Nodes A and C in Figure 8 have a mutually positive relationship A likes C and C reciprocates by 
liking A back. Accordingly A and D have a mutually negative relationship, A hates D and D reciprocates by 
hating A back. While the notion of “reciprocity” in negative interactions like hating, or bullying seems 
unreasonable(because people tend to think of reciprocity as a genuine positive thing), negative 
reciprocity makes sense as a driver of human behavior, and may explain important phenomena like the 
escalation of violence among urban gangs or political parties through our political history. [Papachristos,  
et.al 2013]. 
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But it is not oracular that all relationships will resemble mutuality, we must see that we can also identify 
nodes like B and C which shares a non-reciprocal sentiment relation B likes C but C does not reciprocate 
the sentiment and on the contrary C dislikes B. This brings us to another property of signed graphs, 
which is that this type of “imbalance” can drive us to think that there is something wrong with this 
dyadic state, and things must evolve to a new status either C will start to hate B (because of the received 
depreciation ), or C ultimately convinces B to like them back. 
 
The idea that there are some states in a signed graph that makes “more sense” than others (because the 
various sentiment relations are reciprocated) is the core backbone of the “balance” concept which 
concludes to the formulation of the balance theory. 
This “Balance Concept” can be summarized in the formulation of the idea of Similarity. The Core Idea is 
to assign edge similarity scores as well as node similarity scores simultaneously that’s why we are 
trying to describe in both levels (Directionality and Polarity of Edges). 
We introduce a concept of S{similarity} between vertices of directed graphs. Let say that GA and GB are two 
directed graphs with, respectively, nA and nB vertices.  
We define a Similarity matrix S whose real entry sij expresses how similar vertex j (in GA ) is to 
vertex i (in GB ).We may define that sij is their similarity score. 
The similarity matrix can be obtained as the limit of the normalized even iterates of  

Sk +1 = BSkA
T + BTSkA 

Equation.3 
Where A and B are adjacency matrices of the graphs and S0 is a matrix whose entries are all equal to 1.  
In the special case where GA = GB = G, the matrix S is square and the score sij is the similarity score 
between the vertices i and j of G. We point out that Kleinberg's "hub and authority" method to identify 
web-pages relevant to a given query can be viewed as a special case of our definition in the case where 
one of the graphs has two vertices and a unique directed edge between them. In analogy to Kleinberg, 
we show that our similarity scores are given by the components of a dominant eigenvector of a non-
negative matrix. [Vincent D. Blondel .2003] 
The Polarity level comes into our Similarity Concept by featuring two disjoints of Edges Positive Links 
E+ and Negative Links E- so that our Signed Graph is a set of three sets:  

Gs = (E+, E-, V) 
Equation.4 
Each “Polarized” Matrix can be treated as the previously analyzed GA and GB. 
Our Process evolves by the computation of Positive adjacency matrix A+ and Negative adjacency 
matrix A- and then with the calculation of their Transpose Matrices. 
Transpose of positive adjacency matrix: AT+ 
Transpose of negative adjacency matrix: AT- 
This leads us to the necessity of estimating our normalization factors based on degree which will 
symmetrize the coupling Matrices based on “balance” and eventually that will lead us to the final and 
Conclusive Similarity Matrix. 
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 Figure 9. 

 out-positive degree:The number of outgoing edges which have positive sign {Out_Degree(+)} 

 out-negative degree:The number of outgoing edges which have negative sign {Out_Degree(-)} 

 in-positive degree: The number of incoming edges which have positive sign {In_Degree(+)} 

 in-negative degree: The number of incoming edges which have negative sign {In_Degree(-)} 
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2.3 Reference and Citation 

 
Coupling (Reference) and Cocitation are the Methodologies by which Directionality emerges as criteria 
to Similarity. 
 
The Reference or bibliographic coupling of two nodes 𝑖 and 𝑗 in a directed network is the number of 
other nodes to which both 𝑖 and 𝑗 point 

 

 
                                                                                                                                                            Figure 10. 
Where: 
𝐁 is a 𝑛 × 𝑛 matrix 
Α is the Adjacency Matrix of the initial Graph (Network) 
It is symmetric since  
𝐁𝑇 = (𝐀𝑇𝐀) = 𝐀𝑇𝐀 = 𝐵                                                                                                       Equation.5 
 
We define bibliographic coupling network in which there is a link if 𝐵𝑖𝑗 > 0 for 𝑖 ≠ 𝑗 
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On the other hand the Cocitation of two nodes 𝑖 and 𝑗 in a directed network is the number of nodes 
that point to both 𝑖 and 𝑗 

 

 
                                                                                                                                                             Figure 11. 
Where: 

𝐂 is a 𝑛 × 𝑛 matrix 
Α is the Adjacency Matrix of the initial Graph (Network) 
It is symmetric since  
𝐂𝑇 = (𝐀𝐀𝑇)= 𝐀𝐀𝑇 = 𝐶                                                                                                         Equation.6 
 

We define cocitation network in which there is a link if 𝐶𝑖𝑗 > 0 for 𝑖 ≠ 𝑗 
 

2.3.1 Co-citation and Co-reference Matrices 
 
By processing the above theoretical background we are forming Bibliographic Coupling B Matrix for 
both Positive and Negative ties normalized with out-positive degree (number of outgoing edges, with 
positive sign) and out-negative degree (number of outgoing edges, with negative sign) in an attempt to 
factorize the connection between Directionality and Polarity.  
 
 
 
 



Community Detection in Signed & Directed Graphs 

 
 

21 
 
 

Positive Co-Reference Matrix (B+): 
Β+ = Α+Τ Α+                                                                                                                                                                                                                               Equation.7a 
Negative Co-Reference Matrix (B-): 
Β- = Α-Τ Α-                                                                                                                                                                                                                                   Equation.7b 
Where Α+ and Α-  are the Adjacency Matrices of  positive and negative links (ties) exclusively and we 
formulate them as Positive Adjacency Matrix (A+) & Negative Adjacency Matrix (A-) 
Likewise we are forming Cocitation C Matrix for both Positive and Negative ties normalized with in-
positive degree (number of incoming edges, with positive sign) and in-negative degree (number of 
incoming edges, with negative sign) in an attempt to factorize the connection between Directionality 
and Polarity.  
Positive Co-Citation Matrix (C+): 
C+ = A+ A+T                                                                                                                                                                                                                                   Equation.8a 
Negative Co-Citation Matrix (C-): 
C- = A- A-T                                                                                                                                                                                                                                 Equation.8b 
Where Α+ and Α- are the Adjacency Matrices of exclusively positive and negative links (ties) and we 
formulate them as Positive Adjacency Matrix (A+) & Negative Adjacency Matrix (A-). 
 

2.4  Similarity Measure – Similarity Matrices  
 
Our next objective was to connect Citation and Reference of two nodes. Our main influence was the 
work of Amsler [Amsler,1972] who pointed out that Co-citation and Bibliography coupling can be 
combined. The relationship of co-citation between two nodes can be used to measure the number of 
common in-links of two nodes, whereas bibliographic coupling can be used to measure the number of 
common out-links of two nodes (Figure 12.).  
According to Amsler, two nodes A and B are related if: 

 A and B are cited by the same node. 

 A and B cite the same node. 

 A cites a third node C that cites B. 
Our goal is to delimit the similarity measure, as the function that evaluates the similarity between two 
nodes of an examined Graph.  
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 Figure 12. 
Studying Co-citation (Small 1973), Bibliographic coupling (Kessler 1963) and Amsler (Amsler 1972) and 
the work on the P (penetrating) – Rank formula by (WEIREN YU 2019), we can express Amsler 
Similarity in our case as  Amsler Similarity Modification: 
S = λ * Cin * Sim_in + (1-λ) * Cout * Sim_out                                                                                       Equation.9 
where λ is the weight factor balancing the importance of in- and out-links; and Cin and Cout are in-and 
out-link damping factors. 
 

 Figure 13. 
 

Where Sim_in describes the incoming similarity as the sum of C+ , C− co-citation matrices in reference 

with the in-degrees of nodes. Similarly, Sim_out describes outgoing similarity as the sum of B+ , B− co-
reference matrices in reference with the out-degrees of nodes. 
 
On practical level in-similarity and out-similarity are frequency matrices. So Sim_in, Sim_out are the 
Similarity Matrices based on incoming and outgoing links which we can formulate with the above 
methodology: 
 “Incoming Link Similarity Matrix” = Positive Co-Citation Matrix (C+) + Negative Co-Citation Matrix (C-) 

Sin(i,j) = (C+[i,j] + C-[i,j]) 
Equation.10a 
"Outgoing Link Similarity Matrix” = Positive Co-Reference Matrix (B+) + Negative Co-Reference Matrix 
(B-) 

Sout(i,j) = (B+[i,j] + B-[i,j]) 
Equation.10b 
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Whereas formulated in Equations 7 & 8 respectively: 
Positive Co-Citation Matrix (C+): 
C+ = A+ A+T 

Negative Co-Citation Matrix (C-): 
C- = A- A-T 

And  
Positive Co-Reference Matrix (B+): 
Β+ = Α+Τ Α+ 

Negative Co-Reference Matrix (B-): 
Β- = Α-Τ Α- 

Where Α+ and Α-  are the Adj Matrices of only positive and negative links (ties) and we can call these 
Positive Adjacency Matrix (A+) & Negative Adjacency Matrix (A-) respectively. 
 
Finally we compute the Total Similarity Matrix as the normalized sum of “Incoming Link Similarity 
Matrix” and "Outgoing Link Similarity Matrix”: 
“Total Similarity Matrix” = “Incoming Link Similarity Matrix” + "Outgoing Link Similarity Matrix” * 
Normalization Factor. 

Similarity[i, j] =[ Sin(i,j) + Sout(i,j)] 
Equation.11a 
We conclude to a normalization factor which is Degree Dominated where In-degree is the number of 
head endpoints adjacent to a node and Out-degree is the number of tail endpoints adjacent to a node.  
A node has a large impact in a network when it has a large number of neighbors. The importance of a 
node could be reflected by the node degree, which is the sum of the positive degree and the absolute 
value of the negative degree. 

deg(v) = degP(v) + |degN(v)| 
Equation.11b 
Where deg(v) represents the node degree, and deg P(v) and deg N(v) are the positive degree and the 
negative degree of the node, respectively. It is legitimate to assume that if the degree of a node is 
larger than those of its neighbors, then the node is more likely to be a center of a community than its 
neighbors. 
Based on the above we formulated the Normalization Factor as the inverse maximum of the node 
degrees, i.e., Deg(i) and Deg(j) which denote the total sum of edges for nodes i and j respectively. 
 

Similarity[i, j] =[ Sin(i,j) + Sout(i,j)]/max(Deg (i) , Deg (j))  
Equation.12 
During our research we experimented allot with the Normalization issue and we worked in parallel with 
2 major cases, normalizing our Similarity at the final stage of its formation or normalizing the main 
components that it consists of. 
 
With that in mind in an alternate scenario that we will also represent in our experiments evaluation 
sector we normalized Positive Co-Reference Matrix (B+), Negative Co-Reference Matrix (B-), Positive 
Co-Citation Matrix (C+) and Negative Co-Citation Matrix (C-) using as benchmark the out-positive 
degree (number of outgoing edges, which have positive sign), out-negative degree (number of outgoing 
edges, which have negative sign), in-positive degree (number of incoming edges, which have positive 
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sign) and in-negative degree ( number of incoming edges, which have negative sign). [Zadeh, Goel 
2012] 
 
Positive Co-Reference Matrix (B+) = Positive Co-Reference Matrix (B+)/ (number of outgoing edges, 
which have positive sign) 
Equation.13a 
Negative Co-Reference Matrix (B-) = Negative Co-Reference Matrix (B-)/ (number of outgoing edges, 
which have negative sign) 
Equation.13b 
Positive Co-Citation Matrix (C+) = Positive Co-Citation Matrix (C+)/ (number of incoming edges, which 
have positive sign) 
Equation.13c 
Negative Co-Citation Matrix (C-) = Negative Co-Citation Matrix (C-)/ (number of incoming edges, which 
have negative sign) 
Equation.13d 
 
In any case our main tool don’t change and that is Similarity, incoming similarity and outgoing 
similarity signify the number of common edges between nodes i and j based on the in-coming and out-
going links respectively. So their sum can only mean the total number of edges these two nodes have 
in common. If these nodes have in common all their edges, that summarization is always equal to the 
degree Deg(i) and the degree Deg(j), and similarity will always reach one (1) which is its maximum value.  
So whenever we achieve similarity score between two nodes equal to 1 it’s an indication that these 
two nodes have 100% similarity. 
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3. Proposed Approach for Community Detection in Signed and Directed Graphs 

 
3.1 Community detection - Graph clustering algorithms 
 
Clustering , is a key element of data analysis and plays a significant role regarding the data structure 
partitioning in a broad range of applications, from segmenting customers for more effective advertising 
to Telecommunication Networks optimization. Distance and similarity are the basis of the most 
important clustering algorithms in our case .Distance in order to recognize the relationship among data 
and similarity when you focus on certain dealing data features.  
So the implementation of specific algorithms makes Clustering possible. There is no magic wand, a 
panacea algorithm that can solve every problem that’s why the acknowledgement of the problem we 
are facing is critical. We must fully understand the problem we want to solve, pick after rigorous 
research the appropriate criteria (for example in our case Similarity) in order to choose cautiously the 
eligible algorithm. Implementing a certain clustering algorithm crudely means that we're going to give 
the algorithm a lot of input data with no labels and let it find these groupings in the data that is designed 
to find. Those groupings are the partitions widely called clusters. 
 
Partition’s meaning, value and structure vary and we can assume that they are dependent on the type of 
the Graph which is the research’s object. In our case we study about Signed and Directed graphs so we 
must combine criteria found in Signed and Directed networks separately and combined in order to give 
materiality to the concept of Similarity. Effective partitions for Signed Networks tend to have more 
positive links within communities and more negative links between communities while accordingly in a 
Directed network the in- and out-connectivity of the nodes contain information about the role of each 
node making a distinction between “leaders” and “followers”, according to the predominance of their 
in- or out-degree. So in a brute manor in Signed and Directed Networks we are looking for clusters 
containing nodes which belong to a wide spectrum starting from positive leaders like Mahatma Gandhi 
and ending with Scapegoats like Judas Iscariot. 
 
Given the fact that we compute the Similarity Matrix of the initial Graph (Network) in order to reach 
the Similarity measure we chose two algorithms to evaluate our Methodology. We chose algorithms 
that allow us to work directly and indirectly with the evaluated Similarity Matrix Affinity Propagation 
and Spectral Clustering. 
 

3.2 Affinity Propagation Clustering 
 
3.2.1 Affinity Propagation Algorithm 
 
Affinity propagation (AP) was first published in 2007 by Brendan Frey and Delbert Dueck in Science, is 
an algorithm that identifies centers of clusters, also called exemplars to form its clusters around them. 
This algorithm simultaneously considers all the points in the set as probable candidates to become 
exemplars and propagates repeatedly exchange of messages between the nodes of the Graph until the 
emergence of good exemplars and clusters [Frey and Dueck.2007]. 
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 In contrast to other traditional clustering methods, Affinity Propagation does not require any 
predefined information about the under process network which means that you do not require to 
specify the number of clusters.  
In an attempt to depict the Affinity Propagation mechanism in plain English we can detail that each data 
point sends messages to all other points informing its targets of each target’s relative attractiveness to 
the sender. Each target then responds to all senders with a reply informing each sender of its availability 
to associate with the sender, given the attractiveness of the messages that it has received from all other 
senders. Senders reply to the targets with messages informing each target of the target’s revised 
relative attractiveness to the sender, given the availability messages it has received from all targets. The 
message-passing procedure proceeds until a consensus is reached. Once the sender is associated with 
one of its targets, that target becomes the point’s exemplar. All points with the same exemplar are 
placed in the same cluster. Affinity Propagation let us work directly with the Similarity Matrix 
Let’s see how all of this gets formulated: 
There are two kinds of messages exchanged in every iteration of the AP algorithm: Responsibility and 
Availability.  
The responsibility message r(i , k), quantifies how well-suited element k is, to be an exemplar for 
element i , taking into account the nearest contender k’ to be an exemplar for i. 

 
Equation.14 
 
The similarity s(i,k) indicates how well the data point with index k is suited to be the exemplar for 
data point i. 
The Responsibility matrix R is initialized with all of its elements set to zero, r(i , k) can be thought of as 
relative similarity between i and k. It makes countable how similar is i to k, compared to some k’, taking 
into account the availability of k’. In terms of Matrix elements i refers to the row and k refers to the 
column of the related matrix. 
The availability message a(i ,k), sent from candidate exemplar point k to point i, reflects how 
appropriate it would be for point i to choose point k as its exemplar. A separate equation is used for 
updating the elements on the diagonal of the availability matrix A rather than the elements off the 
diagonal of the availability matrix. 
 

  
Equation.15 
 
The above equation is indicating that if you want to understand each iteration phase you have to sum 
all the values above 0 along the column except for the row whose value is equal to the column in 
question. In each iteration, the responsibility matrix is primarily updated using the availability matrix 
of the previous iteration. Then the availability matrix is updated. Availability is self-responsibility of k 
plus the positive responsibilities of k towards elements other than i. This procedure may be 
terminated after a fixed number of iterations, after changes in the values obtained fall below a 
threshold, or after the values stay constant for some number of iterations. (Figure 14.)                                                                      
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Figure 14.  Exemplars procedure visualization                                                                
 
Finally the Criterion Matrix is calculated after the updating is terminated. Criterion matrix C is the sum 
of Responsibility matrix R and Availability matrix A. 

  
Equation.16 
The element with the highest criterion value in each row would be designated to be an exemplar. 
Elements corresponding to the rows which share the same exemplar are clustered together. 
 
 
 
3.2.2 Affinity Propagation Parameters Tuning 
 
There are certain parameters in Affinity propagation algorithm that can be tinkered and eventually 
tuned in order to achieve maximum performance.  
These are some parameters that we focused and experimented on: 

 Damping: Computing responsibilities and availabilities according to simple update rules will 
often lead to oscillations caused by "overshooting" the solution, so the responsibility and 
availability messages are "damped" like this:  msg_new = (damping factor)(msg_old) + (1-
damping factor)(msg_new) 

 Iteration: In affinity propagation, a single iteration involves computing all responsibility 
messages based on the current availability messages, the input similarities and the input 
preferences, and then computing all availability messages based on the responsibility messages, 
which were just updated. 

 max_iter: The maximum number of iterations. When the number is reached iterations 
mechanism halts. Default value is 200. 

 convergence_iter: Affinity propagation iteratively computes responsibilities and availabilities, if 
decisions for the exemplars and the cluster boundaries are unchanged the algorithm terminates 
and the number of convergence iterations is reached. Default value is 15 

 Affinity: Defines whether the distance metric we will choose to use is going to be Euclidean or 
Precomputed. In cases like ours where our input is Similarity Matrix affinity is set to 
Precomputed. 
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 Preference: This preference value indicates how strongly a data point thinks itself should be an 
exemplar. The number of exemplars, ie of clusters, is influenced by the input preference value. 
Default value is the median of the similarity matrix so if we want Affinity Propagation to be less 
eager in splitting clusters we must set the preference value lower. 

 

3.3 Spectral Clustering 
 
3.3.1 Spectral Clustering Methodology  
 
Spectral clustering [Luxburg.2006] methods are based on different types of input matrixes, such as the 
adjacency matrix, the standard Laplacian matrix, and the normalized Laplacian matrix. The standard 
Laplacian matrix is defined as L = D - A , where A  is adjacency matrix and D  is a diagonal matrix with 
elements Dii being the degree of the ith node. 
In the case of directed graphs the elements of L are given by: 

 
Equation.17 
 
 
The diagonal elements Iij of L are therefore equal the degree of node vi and off-diagonal 
elements  Iij are -1 if vertex vi  is adjacent to vj and 0 otherwise. 
The normalized Laplacian matrix is defined as:  

NL = D—1/2 L D1/2 = D—1/2 (D-A) D1/2 = I - D—1/2 A D1/2 
Equation.18 
Where A is adjacency matrix and D  is a diagonal matrix with elements Dii being the degree of the ith 
node.  
And its elements are similarly defined as: 

  
Equation.19 
Almost all above matrixes are constructed with the adjacency matrix and diagonal matrix of networks. 
These matrixes are able to illustrate only the local relationship between a node and its direct neighbors. 
This is why; the community number must be set in advance for the spectral clustering method based on 
standard Laplacian matrix. The normalized Laplacian matrix can solve this problem to some extent, 
because it has nontrivial eigenvalues close to the biggest eigenvalue 1. The eigenvector elements 
corresponding to these eigenvalues present ladder distribution. The proper community number of 
communities can be estimated by the ladders. However, when the community structure of network is 
not clear, the eigenvector elements cannot show obvious ladder distribution but an approximately 
continuous curve. In this case, we cannot get the proper community number from the ladder 
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distribution of eigenvector elements. One way is to perform Eigenvalue decomposition we extract the 
eigenvector corresponding to the 2nd lower eigenvalue which is named algebraic connectivity. 
The eigenvector corresponding to the algebraic connectivity is named after Fiedler (Fiedler Vector) 
and then we perform Spectral Clustering. The smallest non-zero eigenvalue is called spectral gap and 
the corresponding eigenvector is used for the task of spectral clustering. 
 
The resulting Modularity is Q 

  
Equation.20 
 
 
 
A similar approach can be reached by the Donetti & Muñoz Algorithm [Donetti & Muñoz .2004] 

 
 
The following Steps lead to successful partioning: 

-First few eigenvectors of Laplacian are computed (let’s say k) 

-Eigenvector components used to represent vertices as points in k dimensional Euclidean space   

-Hierarchical clustering used to group points   

-Modularity is used to pick best partition of resulting dendrogram 
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3.3.2 Spectral Clustering in Signed & Directed Graphs 
 
Spectral clustering is an EDA technique that reduces complex multidimensional datasets into clusters of 
similar data in rarer dimensions. The main outline is to cluster the all spectrum of unorganized data 
points into multiple groups based upon their uniqueness and is one of the most popular forms of 
multivariate statistical analysis.  
‘Spectral Clustering uses the connectivity approach to clustering’, wherein communities of nodes (i.e. 
data points) that are connected or immediately next to each other are identified in a graph. The nodes 
are then mapped to a low-dimensional space that can be easily segregated to form clusters. Spectral 
Clustering uses information from the eigenvalues (spectrum) of special matrices (i.e. Affinity Matrix, 
Degree Matrix and Laplacian Matrix) derived from the graph or the data set. 
In Spectral Clustering we can’t work directly on the Similarity Matrix therefore we must create a 
Similarity Graph from the Similarity Matrix G = (V,E). Each vertex vi in this graph represents a data point 
xi. Two vertices are connected if the similarity sij between the corresponding data points xi and xj is 
positive or larger than a certain threshold, and the edge is weighted by sij. The problem of clustering can 
now be reformulated using the similarity graph: we want to find a partition of the graph such that the 
edges between different groups have very low weights (which means that points in different clusters are 
dissimilar from each other) and the edges within a group have high weights (which means that points 
within the same cluster are similar to each other). 
So we can work accordingly like in any other Graph.  
 
 
We begin by performing the Eigen-decomposition procedure on our previously evaluated Similarity 
matrix, following these steps: 
1. Construct the normalized Similarity matrix: L = D−1/2ADˆ −1/2. 
2. Find the eigenvalues and their associated Eigen vectors 
3. Identify the maximum gap which corresponds to the number of clusters by Eigen-gap heuristic. And 
there we compute the optimal number of Spectral Clustering clusters. One major sign to evaluate our 
methodology is Silhouette Coefficient Value, when it is near 1.0 it indicates that the sample is far away 
from the neighboring clusters. A value of 0.0 indicates that the sample is on or very close to the decision 
boundary between two neighboring clusters and negative values indicates that those samples might 
have been assigned to the wrong cluster. 
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4. Experimental Evaluation 

 
4.1 Environment and Tools 
We will proceed to a thorough evaluation of our experimental procedure initially by analyzing the tools 
we used and estimating the functionality of the process stages. 
We selected Python 3.6 for the implementation as our programming language. Upon this we worked 
with specific libraries:  

 Networkx for the Graph Modeling 
 Numpy for the matrices calculations 
 Scikit-Learn (sklearn) for the clustering algorithms  
 csgraph for the Eigen Decomposition 
 Matplotlib for creating two-dimensional plots 
 Graph Objects for creating three-dimensional plots 

 
Python 3.6 
We concluded to this programming language after we evaluated the advantages. 
 We were in a dilemma between Python and R and although a simple research on the net will show up 
many R libraries for Signed and Directed Networks, Python has efficient high-level data structures and a 
simple but effective approach to object-oriented programming. Contrary to programming languages 
that are VM oriented (virtual machines) and consume a lot of memory resources, python doesn’t have 
any of these requirements and thus its suitable for running in devices such as a medium specification 
laptop. Last but not least the existence of a large and dynamic programming community with mature 
developers publishing their work was the source of information essential to overleap many coding 
difficulties.  
 
Networkx 
NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and 
functions of complex networks. This package provides data structures which it makes it able to 
represent many types of networks, or graphs such as simple graphs and directed graphs. The nodes in 
NetworkX graphs can be any Python object and edges may contain inconsistent data. This particular 
feature makes NetworkX perfect in representing networks from a variety of scientific fields. In addition 
to this many graph algorithms are implemented able to calculate network properties and structure 
measures, such as shortest path, centrality, clustering, and degree distribution. NetworkX can read and 
write various graph formats, and provides generators for many classic graphs and graph models, such as 
the Erdos-Renyi, Small World, and Barabasi-Albert models. 
 
Numpy 
Numpy is a Python package. It stands for 'Numerical Python'. It is a library consisting of 
multidimensional array objects and a collection of routines for processing of array. Numeric was the 
ancestor of NumPy and it was developed by Jim Hugunin. Another package Numarray with additional 
functionalities was developed in parallel. In 2005, Travis Oliphant formulated NumPy package by 
incorporating those supplemental features of Numarray into Numeric package. 
A scientist who is working with Numpy a can perform Mathematical and logical operations on arrays, 
Fourier transforms and routines for shape manipulation and operations related to linear algebra. 
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NumPy is often used in collaboration with packages such as SciPy (Scientific Python) 
and Matplotlib (plotting library). This collaboration can be traced widely in this Thesis. 
This combination is widely used as a replacement for MatLab. 
 
 
 
Matplotlib 
Matplotlib is a multi-platform data visualization package built on NumPy arrays and designed to work 
with the broader SciPy stack. It was introduced by John Hunter in the year 2002. It is specially designed 
to visualize 2D plots of arrays. It provides an object-oriented API that helps in embedding plots in 
applications using Python GUI toolkits such as PyQt, WxPythonotTkinter. It can be used in Python and 
IPython shells, Jupyter notebook and web application servers also. The utilization of Matplotlib package 
allows us visual access to huge amounts of data in easily digestible visuals. Matplotlib consists of several 
plots like line, bar, scatter, histogram etc. 
Let’s see some examples of the usage of Matplotlib package in different stages of this Thesis: 
 

Figure 15.    Graph Directionality Visualization 
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Figure 16.    Graph Directionality & Polarity Visualization (green edges manifest positive connections 
while red edges manifest negative connections) 
 
 

 
Figure 17. Similarity Graph Visualization 
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Figure 18.   Similarity Matrix Heatmap  
 
 
 
 
 
 
 
 
Scikit-Learn (sklearn) 
Scikit-learn was initially developed by David Cournapeau as a Google summer of code project in 2007. 
Later Matthieu Brucher joined the project and started to use it as a part of his thesis work. In 2010 INRIA 
got involved and the first public release (v0.1 beta) was published in late January 2010. 
Scikit-learn exposes a wide variety of machine learning algorithms, both supervised and unsupervised, 
using a consistent, task-oriented interface, thus enabling easy comparison of methods for a given 
application. Since the package is built upon the SciPy (Scientific Python) ecosystem, it can easily be 
integrated into applications outside the traditional range of statistical data analysis. 
Some popular groups of models provided by Scikit-learn include (Jason Brownlee PhD, Python Machine 
Learning): 

 Clustering is used for grouping unlabeled data, e.g. KMeans. 
 Cross-validation is used for performance estimation of supervised models on the unseen data. 
 Datasets are used for test datasets and for the generation of datasets with particular properties 

for the investigation of model behavior. 
 Dimensionality Reduction is used for reducing the number of attributes in data for 

summarization, visualization and feature selection such as principal component analysis. 
 Ensemble methods are used for combining the predictions of multiple supervised models. 
 Feature extraction that is used for defining attributes in image and text data. 
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 Feature selection is used for identifying meaningful attributes from which supervised models 
are created. 

 Parameter Tuning is used for getting the most out of supervised models. 
 Manifold Learning that is used for summarizing and depicting complex multi-dimensional data. 
 Supervised Models is a vast array not limited to generalize linear models, discriminant analysis, 

naive Bayes, lazy methods, neural networks, support vector machines and decision trees. 
 
Csgraph  
Csgraph stands for Compressed Sparse Graph, which focuses on Fast graph algorithms based on sparse 
matrix representations. The Csgraph module is a very important feature when dealing with graphs in 
SciPy. We can perform the functions on sparse matrices. We then concert those matrices into sparse 
graphs. It provides functions to represent the graph in different forms. It also consists of features to help 
traverse the matrices either directly or indirectly. In our case it was essential in order to perform Eigen 
decomposition during Spectral Clustering phase were it was not possible to work directly with the 
similarity matrix 
 
Graph Objects 
The plotly Graph Objects module provides an automatically-generated hierarchy of classes called "graph 
objects" that may be used to represent figures, with a top-level class figure. 
Graph objects have several benefits compared to plain Python dictionaries. 

 Graph objects provide precise data validation. If you provide an invalid property name or an 
invalid property value as the key to a graph object, an exception will be raised with a helpful 
error message describing the problem. This is not the case if you use plain Python dictionaries 
and lists to build your figures. 

 Graph objects contain descriptions of each valid property as Python docstrings, with a full API 
reference available. You can use these docstrings in the development environment of your 
choice to learn about the available properties as an alternative to consulting the online Full 
Reference. 

 Properties of graph objects can be accessed using both dictionary-style key lookup (e.g. fig 
["layout"]) or class-style property access (e.g. fig.layout). 

 Graph objects support higher-level convenience functions for making updates to already 
constructed figures (.update_layout (), .add_trace () etc.) as described below. 

 Graph object constructors and update methods accept "magic underscores" (e.g. go.Figure 
(layout_title_text="The Title") rather than dict (layout=dict (title=dict (text="The Title")))) for 
more compact code, as described below. 

 Graph objects support attached rendering (.show ()) and exporting functions (.write_image ()) 
that automatically invoke the appropriate functions from the plotly.io module. 

In this Thesis we used Graph Objects to visualize Graphs and their clusters in a 3D format. It also gave us 
the ability to visualize rotating models. 
Let’s see some examples of the usage of Graph Objects package in different stages of this Thesis: 
In Figure 19 we can see a simple 3D visualization of our examined Graph whereas in Figures 20a and 
20b we can see the 3D visualization of Affinity Propagation (AF) and Spectral Clustering (SC) 
respectively. 
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Figure 19.    
 

  
Figure 20a.                                                                     Figure 20b.    
                          
 

4.2 Datasets (Real World and Generated) 
We have two alternatives of workflow to check our algorithm, either to work with real world datasets or 
with technically generated Synthetic data. 
Firstly we used a series of real world datasets, starting with Bitcoin Alpha trust weighted signed 
network this is a who-trusts-whom network of people who trade using Bitcoin on a platform 
called Bitcoin Alpha. Since Bitcoin users are anonymous, there is a need to maintain a record of users' 
reputation to prevent transactions with fraudulent and risky users. Members of Bitcoin Alpha rate other 
members in a scale of -10 (total distrust) to +10 (total trust) in steps of 1. This dataset contains 3.783 
traders /nodes forming 24.186 trading relationships. It is a Signed and Directed network in which nodes 
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represent Traders and edges represent transactions. Transactions can be either positive, negative or 
neutral on the field of credibility of the trading partners. We run our algorithm but due to technical 
limitations of our CPU, it converged up to a certain limited number of nodes and it stopped processing. 
We then downgraded our effort to smaller datasets we found on Snap i.e. Fraternity (regarding the 
relations between members of US Universities Frat Houses) and Tribes (regarding the relations between 
tribe members) and our Methodology proved functional with the expected results. 
But the loose end (working in large Datasets) remained and we should find a way to tie it up. We turned 
to Synthetic data as a solution of forming data sets with widely calibrated parameters so we can show 
the progressively validation of our Methodology. 
A NetworkX generator that produces random, directed, signed graphs proved was able to be 
constructed in only 2 lines of code in python. 
We used the gnp_random_graph() function which returns a random graph, also known as Erdos-Renyi 
model graph (Gilbert, 1959; Erdős & Rényi, 1961), where we are in control to parametrize willingly the 
number of nodes and positive/negative weights. The model chooses each of the possible edges with an 
already selected probability (referring to the connectivity feature of the graph) and weights are 
randomly picked from a list of possible values with positive weight representing a positive sign 
(visualized as a green link) while negative weight representing a negative sign (visualized as a red link). 
NEW = nx.gnp_random_graph(n, p, directed=True) 
weights = [-1, 1] 
for (edge_src, edge_dst, d) in NEW.edges(data=True): 
    edge_weight = d['weight'] = random.choice(weights) 

Where n is the number of nodes and p is the measure of the preselected connectivity probability. 
This procedure gave us the ability to escalate progressively the size and connectivity of the produced 
graph in order to ratify the correctness of our methodology and the functionality of our algorithm. 
 

4.3 Experimental Procedure – Results 
 
The capability to compound synthetic data gave us the mean to verify our methodology on large 
datasets with a variety of size and node connectivity. We were based on two important metrics the 
number of clusters and the ability or not of our algorithms to converge. We worked in a two level 
approach; we escalated gradually the size and node connectivity while we established two algorithmic 
pipelines simultaneously  by using Affinity Propagation and Spectral Clustering in  both stand alone and 
connected manor. Convergence was described “binary” with a yes or no, based on whether the 
algorithm converged or not. Except from the special case where the Affinity Propagation algorithm 
“bursts” with unexpected results as if all nodes appear to have mutually equal similarity scores, in this 
case we refer to Convergence status as “random”. 
The Results are presented in tables resembling the escalation we described before as we were gradually 
increasing the complexity of the examined Graph. 
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Nodes (No) Connectivity (%) Edges (No) Clusters (No) Convergence 
(Bin) AF AF SC 

  Initial Dataset Graph Exp SpGap Exp  

10 10 8 0 0 0 no 

50 10 248 11 18 11 yes 

100 10 997 19 19 19 yes 

250 10 6318 37 43 37 yes 

500 10 25192 71 69 71 yes 

1500 10 224540 178 150 178 yes 

5000 10 2498026 461 nan 0 random 

Table 1. 
 
 
 

Nodes (No) Connectivity (%) Edges (No) Clusters (No) Convergence 
(Bin) AF AF SC 

  Initial Dataset Graph Exp SpGap Exp  

10 25 21 0 0 0 no 

50 25 569 10 14 10 yes 

100 25 2456 14 20 14 yes 

250 25 15534 34 35 34 yes 

500 25 62072 67 74 67 yes 

1500 25 562528 159 170 159 yes 

5000 25 6248403 473 nan 473 yes 

Table 2 
 
 

Nodes (No) Connectivity (%) Edges (No) Clusters (No) Convergence 
(Bin) AF AF SC 

  Initial Dataset Graph Exp SpGap Exp  

10 50 44 4 2 4 yes 

50 50 1236 10 21 10 yes 

100 50 4934 16 17 16 yes 

250 50 31149 34 57 34 yes 

500 50 124772 66 93 66 yes 

1500 50 1123498 166 182 166 yes 

5000 50 9999569 0 0 0 no 

Table 3. 
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Nodes (No) Connectivity (%) Edges (No) Clusters (No) Convergence 
(Bin) AF AF SC 

  Initial Dataset Graph Exp SpGap Exp  

10 75 70 3 2 3 yes 

50 75 1813 10 18 10 yes 

100 75 7388 18 29 18 yes 

250 75 46751 34 54 34 yes 

500 75 187474 61 96 61 yes 

1500 75 1685752 141 161 141 yes 

5000 75 18755785 0 0 0 no 

Table 4. 
 
 
 
 

Nodes (No) Connectivity (%) Edges (No) Clusters (No) Convergence 
(Bin) AF AF SC 

  Initial Dataset Graph Exp SpGap Exp  

10 90 83 2 6 2 yes 

50 90 2201 11 22 11 yes 

100 90 8809 15 34 15 yes 

250 90 55935 37 75 37 yes 

500 90 224553 67 115 67 yes 

1500 90 2023970 182 207 182 yes 

5000 90 33234562 0 0 0 no 

Table 5. 
 
As we described above we used two algorithmic pipelines simultaneously both stand alone and 
connected. Firstly AF (Affinity Propagation) and SC (Spectral Clustering) worked independently and 
produced No of Clusters through Exemplars (Exp) and Eigen Decomposition plus Spectral Gap (SpGap) 
respectively. 
And then we used both clustering algorithms in the same pipeline: the AF clustering algorithm 
calculated a number of clusters for each given graph, while the Spectral clustering algorithm used the 
output of the AF as input to tune more refined results.  
In order to evaluate our clustering efficiency we calculated the Silhouette Coefficient Value in various of 
the generated graphs and as we can see there are samples that are very close to the decision boundary 
between two neighboring clusters and we can observe an overlapping tendency specially during SC as 
the nodes number rises which is suppressed when the two clustering algorithms function in cooperation 
rather than stand alone. 
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Nodes    Connectivity Degree 
250        25%  
Spectral Silhouette_Score =  -0.0015337561006091534 
 Affinity Silhouette_Score =  -0.0013716720251524723 
250        50% 
Spectral Silhouette_Score =  0.0007317356029707193 
 Affinity Silhouette_Score =  -0.003342205973886501 
250       75% 
Spectral Silhouette_Score =  -0.005294103188455384 
 Affinity Silhouette_Score =   0.0006393376337654699 
250       90% 
Spectral Silhouette_Score =  0.003983825698198112 
 Affinity Silhouette_Score =  -0.002386037845357535 
500      10% 
Spectral Silhouette_Score =  -0.010126577591512228 
 Affinity Silhouette_Score =  0.0004381557057284825 
500     50% 
Spectral Silhouette_Score =  0.0083421385758766 
 Affinity Silhouette_Score =  -0.006408910374657886 
500     75% 
Spectral Silhouette_Score =  -0.006438492356243044 
 Affinity Silhouette_Score =  0.004788414228141365 
500     90% 
Spectral Silhouette_Score =  0.008750706898741047 
 Affinity Silhouette_Score =  0.004073566179062481 
1500   10% 
Spectral Silhouette_Score =  -0.016922260950355397 
 Affinity Silhouette_Score =  0.002943362045551687 
1500   25% 
Spectral Silhouette_Score =  0.016325495267873556 
 Affinity Silhouette_Score =  -0.005110335100224544 
1500   50% 
Spectral Silhouette_Score =  -0.01761335882858793 
 Affinity Silhouette_Score =  0.007413029975112354 
1500   75% 
Spectral Silhouette_Score =  0.014215445485424192 
 Affinity Silhouette_Score =  -0.006849787098136669 
1500   90% 
Spectral Silhouette_Score =  0.020073556433615684 
 Affinity Silhouette_Score =  -0.005782768303717352 
 
 
 
 
 



Community Detection in Signed & Directed Graphs 

 
 

41 
 
 

4.4 Clustering Validation 
 
4.4.1 Similarity Validation – Normalization Issues                                                                                              

 
The only indisputable criteria to validate the accuracy of our methodology were to check for the values 
in the diagonal of the similarity matrix. The KPI (key point indicator) was the appearance of the value of 
1 in the Matrices Diagonal, when this occurred it made undeniable to verify the fact that each node was 
100% similar with itself. 
To achieve this KPI came through the experiment with various normalization methods with different 
characteristics. This proved essential because when you choose to not apply any normalization the 
produced Similarity Matrix has nothing to do with our needs. 

 
Figure 21. Non Normalized Similarity Matrix 
Let’s view the methods we examined in order to choose the normalization formula which can 
optimize our algorithmic procedure. 
Normalization Methodology Explanation: 
Max Degree Normalization: 
normalization_factors = np.zeros((size, size)) 
for i in range(size): 
    for j in range(size): 
        normalization_factors[i, j] = 1 / max(node degrees[i]['final'], 
                                     node degrees[j]['final']) 
We designate the normalization factor as the inverse maximum of the node degrees, D(i) and D(j) which 
are the final holistic sum of edges. Degreed normalization approach incorporates the 
in-degrees and out-degrees of each node in the process. The concept is that when two nodes i and j 
commonly point to a third node k, the similarity of i and j should be inversely related to in-degree of k. 
Similarly, when node h pointed by nodes i and j, the out-degrees of node h should be inversely to the 
similarity of node i and node j. The similarity between two nodes must be high in the same cluster and 
low in different clusters.  
 
So we are successful if we could place high degree (number of edges) between nodes of the same 
community and set low degree between nodes that in different communities.  
In some scenarios we are forming Bibliographic Coupling B Matrix for both Positive and Negative ties 
normalized with out-positive degree( number of outgoing edges, with positive sign) & out-negative 
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degree(number of outgoing edges, with negative sign) and Cocitation C Matrix for both Positive and 
Negative ties normalized with in-positive degree(number of incoming edges, with positive sign) & in-
negative degree(number of incoming edges, with negative sign) in an attempt to factorize the 
connection between Directionality and Polarity. The nodes with higher out-degree are more central 
(choices made). The nodes with higher in-degree are more prestigious (choices received). 

 
Pairwise Normalization 
# Apply Pairwise Similarity Normalisation 
from sklearn.metrics import pairwise_distances 
from scipy.spatial.distance import cosine 
 
final_NormSimilarity = 1-pairwise_distances(similarity, metric="cosine") 
final_NormSimilarity = np.round(final_NormSimilarity, decimals=accuracy) 

Pairwise Normalization with cosine metric works with normalized vectors. We perform it at the final 
stage of the similarity matrix formation in order to ordain the already achieved superiority of the main 
diagonal values at the scale of 0 to 1. 

 
Amsler Similarity normalization 
As we have seen in previous chapters we expressed Amsler Similarity in our case as Amsler Similarity 
Normalization:  
S = λ * Cin * Sim_in + (1-λ) * Cout * Sim_out                                                                                       Equation.9 
Where λ is the weight factor balancing the importance of in- and out-links; and Cin and Cout are in- and 
out-link damping factors. After a series of tests on a series of graphs we concluded that we may optimize 
these factors as λ=0.5 Cin=0.4 and Cout=0.6. 
We perform Amsler before Pairwise during the formation of Similarity Matrix with the use of the 
following formulas: 
 

Incoming Link Similarity Sin(i,j) = (C+[i,j] + C-[i,j]) 
 

Outgoing Link Similarity Sout(i,j) = (B+[i,j] + B-[i,j]) 
 

Positive Co-Citation Matrix (C+) 

 
C+ = A+ A+T 

 
Negative Co-Citation Matrix (C-) 

 
C- = A- A-T 

 
Positive Co-Reference Matrix (B+) 

 
Β+ = Α+Τ Α+ 

 
Negative Co-Reference Matrix (B-) 

 
Β- = Α-Τ Α- 

 

Adj Matrix of only positive links Α+ 

Adj Matrix of only negative links Α-   
Table 6. Matrices Formulas 
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We worked in a small real world dataset with only 17 nodes in order to show in a better way the 
differences of every case.  
 
These are the most dominant scenarios: We describe the combination of tools (Equations and 
formulas) we used in each case and we visualized our outcome in the form of the Similarity matrix 
Heatmap where we can show plainly the importance of the diagonal of the Similarity Matrix. 
 
 
1st Scenario: Based on Equation 12. We decided to normalize the Similarity only at a final Stage and 
only according to max Degree where In-degree is the number of head endpoints adjacent to a node and 
Out-degree is the number of tail endpoints adjacent to a node. 

  
Figure 22. Similarity Matrix Visualization 
 
 
 
2nd Scenario: We applied Equation.12 in order to perform Max-Degree normalization during the 
formation of Co-Citation and Bib Coupling Matrices and Pairwise Normalization at the final stage of the 
formation of Similarity Matrix. 
 

   
Figure 23. Similarity Matrix Visualization 
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3rd Scenario: We apply Max Degree normalization by using Equation 12. everywhere during the 
formation of Co-Citation, Bib Coupling Matrices and at the pre-final stage of the formation of Similarity 
Matrix. Then we also apply Pairwise normalization from page 41 at the final stage of the Similarity 
Matrix formation. 
 

  
Figure 24. Similarity Matrix Visualization 
 
 
 
 
4th Scenario: We didn’t apply Max Degree normalization anywhere during the formation of Co-Citation 
and Bib Coupling Matrices .But then we applied Modified Amsler v2.0 formula from Equation.8 , max 
Degree normalization from Equation.12  and Pairwise Normalization at the final stage of the 
formation of Similarity Matrix. 
 

  
Figure 25. Similarity Matrix Visualization 
 
 
The Case scenarios that are qualified by giving best results are the 1st and the 4th. 
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1st Scenario  

Affinity Silhouette Score 0.10063702927459384 

Spectral Silhouette Score 0.06529194576007039 

4th Scenario  

Affinity Silhouette Score    0.19011786311015436 

Spectral Silhouette Score  0.05312464113541116 

Table 7.  Dominant Case Scenarios Comparison  
 
We then compared those test cases on the level of clustering: 
1st Scenario 
Affinity Clustering:  
Number of Affinity Propagation clusters: 6 
Affinity Propagation Cluster centers: [0 1 3 6 7 8] 
Affinity Propagation Clusters:[[0, 14, 16], [1, 5, 11], [2, 3], [4, 6, 12], [7, 9, 15], [8, 10, 13]] 
Spectral Clustering Stand Alone: 
Optimal (Spectral Gap) number of Spectral Clustering clusters [ 1  3  6 14 10] : 5 
Spectral Clustering with AF input: 
Let’s Compare Spectral Clustering where we use as input the Affinity Propagation output VS  
Spectral Clustering where we use optimal number of Clusters input 
Spectral Clustering Clusters: [[0, 3, 5], [4, 6, 12], [2, 8, 13, 16], [10, 14, 15], [7, 9],[1, 11]] 
Spectral Clustering Optimal Clusters: [[1, 3, 5],[2, 4, 6, 12], [0, 14, 10], [8, 13, 16], [7, 9, 11, 15]] 
The above procedure was visualized in Figure 26. Where we can observe for the first time that the use 
of the combinational pipeline tunes our clustering results. 
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Figure 26. Visualization of Clusters by using AF and SC standalone and combined algorithmic Pipelines 
 
4th Scenario 
Affinity Clustering:  
Number of Affinity Propagation clusters: 5 
Affinity Propagation Cluster centers: [0 1 2 6 8] 
Affinity Propagation Clusters: [[0, 14, 15, 16], [1, 5, 7, 11], [2, 3, 9], [4, 6, 12], [8, 10, 13]] 
Spectral Clustering Stand Alone: 
Optimal number of Spectral Clustering clusters [1 6 2 10 3] 
Spectral Clustering with AF input: 
Here Optimal (Spectral Gap) number and Spectral Clustering where we use input the Affinity 
Propagation produce the same number of Clusters. 
Spectral Clustering Clusters: [[1, 13, 8], [2, 4, 6, 12], [3, 5], [0, 14, 10, 16], [9, 11, 15, 7]] visualized in 
Figure.27  
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Figure 27. Visualization of Clusters by using AF and SC standalone and combined algorithmic Pipelines 
 
The resemblance degree of the produced clusters within each scenario and the comparison of the 
Similarity Matrix in every case proved us that the normalization method that will optimize our 
experimental procedure is to apply the Max Degree factor on the final stage of the formation of the 
Similarity measure. 
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5. Conclusion – Future Work 
 

5.1 Conclusion – Methodology evaluation  
In all the experimental procedure our main concern was the values of the main Diagonal of the Similarity 
Matrix so that we could evaluate our method and verify that the normalization procedure was the 
optimal. They had to be equal to 1 in order to claim that every node shows 100% similarity with itself. 
We used three main normalization procedures: 
1. Normalization of the Similarity at the final Stage of its formation and only according to max 

Degree. 
2. Max-Degree normalization during the formation of Co-Citation and Bib Coupling Matrices. 

3. Modified Amsler and max Degree normalization at the final stage of the formation of Similarity 
Matrix. 

The optimal procedure was the 1st because it lead us to the valued 1 diagonal of the Similarity Matrix 
without any other methodological “boost”. The 2nd and the 3rd though they confirmed the dominance of 
the diagonal they needed an additional pairwise normalization to reach values equal to 1. 
Let’s make a visual comparison of the above: 
 
1. Max Degree Normalization on Similarity Matrix 
 

  
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 

2. Max Degree Normalization on Components Matrices Before Pairwise Normalization “boost” 
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Max Degree Normalization on Components Matrices after Pairwise Normalization “boost” 
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3. Amsler and max Degree normalization on Similarity before Pairwise Normalization “boost” 

  
Amsler and max Degree normalization on Similarity after Pairwise Normalization “boost” 

  
 
It’s obvious why the 1st methodological approach became dominant.  
It is Simple Steady and functional even with large datasets. There are common findings during our 
experiment with every methodology referring datasets with low connectivity and escalating size that 
they display random clustering and difficulty to converge.  
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Another important finding is that the superiority of the combined algorithmic pipeline (output of AF 
as input in SC) it enhances the clustering results and this can help us in future research of this model’s 
capabilities. 

 
5.2 Future work – Possible Expansion 
 
One of the most intriguing expansions of our implementations is to work with signed and directed 
graphs with pre-determined communities in massive scale. The sectors of appliance could be 
criminology, telecommunications or politics.   
A large proportion of human trafficking is carried through criminal networks whose members have 
bonds with each other. These bonds can be family, race, color, religion or class oriented. The ability to 
predict the clusters of the succession of any criminal boss can be crucial in the battle against organized 
crime. We can also predict the evolvement of a political party where the predetermined communities 
also called factions rely on the political origin of its members.  
Finally in my line of work in the Telecom Industry we can adjust the network’s resources to service in 
high priority subscribers who are members of the same community not in the same way it is happening 
today. Nowadays every subscriber of every telecom provider around the globe is clustered in a scale of 
importance in fiscal terms. There is no network that has the ability to prioritize the communication 
between two subscribers in similarity terms. The definition of similarity can be tuned during the dataset 
preprocessing whether those two subscribers are possible friends or adversaries, have the same habits 
(seasonality of network’s resources usage) or the same appetite for music, films or games. There also 
some other interesting criteria to form such a dataset that where inspired by the experimental 
procedure of this Thesis. In a Telecom subscribers (nodes) database we can easily define who initiates a 
call and who receives one (Nodes Directionality) and the call duration biased by the call seasonality. 
For example a call over five minutes during working hours is most probable a professional call but a call 
with the same duration after 9 o clock or in weekends is a more intimate event (call between friends or 
lovers). All these parameters can help us to form a Signed and Directed Graph resembling a telecom 
provider subscriber’s database and to perform clustering in order to define prioritization when an intra 
cluster call occurs. This can be feasible after 2023 when 5G core networks will be installed in providers 
and resources slicing can be possible in subscriber level.  
The combined algorithmic pipeline can be an extremely useful tool to manage in a customized manner 
these multi-diverse networks. 
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