
THESIS:

Algorithms for Network Functions Coordination
and Placement in Network Function Virtualiza-
tion (NFV) simulated environment

Author: Christos Kopsacheilis

Supervising Committee:
Kostas Tsagkaris, Athanasios Kanatas,
Angelos Rouskas

Athens 2021

Abstract

Network Function Virtualization (NFV) is the current concept and the network ar-
chitecture used from the majority of the providers and operators that get rid of
network functions (such as firewalls, DNS, NATs, load balancers, intrusion detec-
tion devices, WAN accelerators, etc.) from dedicated hardware devices. This decou-
pling enables hosting of network services, known as Virtualized Network Functions
(VNFs), on commodity hardware (for example switches or servers) and thus fa-
cilitates and speeds service deployment and management by providers, improves
flexibility, leads to more efficient and scalable resource allocation and usage, and
reduces in general the costs as the virtualized services can run on less expensive,
generic servers instead of proprietary hardware. This concept is a new chapter in
the evolution of networking, as it introduced high expectations for enhanced eco-
nomical network services, as well as major technical challenges that are currently
been researched.

This thesis addresses three baseline algorithms(RandomSchedule, Shortest Path,
and Load Balance) along with the results achieved by applying them on the problem
of Coordination and Placement in a Network Function Virtualization (NFV) simu-
lated environment. That is the problem for coordination of service mesh consisting
of multiple microservices. This topic is always under constant analysis and research
frommany operators , as the coordination of the services is a complicated a problem
and proposals for better solutions are currently analyzed from many Research and
University Departments.

To the new generation

Contents

List of Figures 9

1 Introduction 12

1.1 Thesis organization . 13

2 State of the Art 14

2.1 Introduction . 14

2.2 Network Function Virtualization (NFV) 14

2.2.1 Network Services before NVF 14

2.2.2 What is NVF? . 14

2.2.3 What is SDN? . 16

2.2.4 NFV Architecture . 18

2.3 Integration of NFV with other technologies 19

2.4 The scope of the analysis and targets of this studying 21

3 Virtual Service and flow coordination 22

3.1 Concept - Problem statement . 22

3.1.1 Problem Formulation . 23

3.1.2 Algorithms proposed . 24

3.2 Experimentation Platform . 26

3.2.1 Simulation . 27

3.2.2 Running the simulator . 32

6

3.3 Results . 34

3.3.1 Random Schedule Results 35

3.3.2 Load Balance Results . 39

3.3.3 Shortest Path Results . 43

3.3.4 Service Coordination Quality 47

3.3.5 Graph Visualization and algorithms comparisons 48

4 Conclusions 57

5 Future directions 58

References 59

Αʹ Manual on how to install the environment and execute the algorithms 60

Βʹ Author Resume 83

7

List of Figures

1 Network Function Virtualization 15

2 A schematic overview of SDN implemented with OpenFlow 17

3 ETSI NFV reference architecture 18

4 ETSI NFV reference architecture 20

5 Mathematical formulation . 23

6 Shortest path Algorithm . 25

7 Abilene topology graph . 26

8 Abilene graphml as viewed in Gephi 30

9 Abilene network topology data(1) 30

10 Abilene network topology data(2) 31

11 Simulation configuration (yaml file) 31

12 SFCs simulation configuration(abc.yaml) 32

13 commands usage(example for rs) 32

14 commands used in CLI . 32

15 commands running . 33

16 Results files . 34

17 Metrics after running rs script . 35

18 Node Metrics after running rs script 36

19 SF placements after running rs script 37

20 Run Flows after running rs script 38

9

21 Metrics after running lb script . 39

22 Node Metrics after running lb script 40

23 SF placements after running lb script 41

24 Run Flows after running lb script 42

25 Metrics after running sp script . 43

26 Node Metrics after running sp script 44

27 SF placements after running sp script 45

28 Run Flows after running sp script 46

29 RS successful flows over dropped flows 48

30 LB successful flows over dropped flows 49

31 SP successful flows over dropped flows 50

32 LB dropped flows over time . 51

33 SP dropped flows over time . 52

34 RS successful flows over dropped flows 53

35 LB successful flows over dropped flows 54

36 SP successful flows over dropped flows 55

37 Algorithms results summary . 56

38 baseline algorithms directory structure 60

39 txt file that shows the requirements 61

40 2 new directories added under /src 61

41 setup.py of coord-sim package . 62

10

42 setup.py of common-utils package 63

43 setup.py of load-balance package 64

44 How to call each algorithm in CLI 81

45 simulation running in the console in INFO level 81

46 visualization using pandas python library 82

11

1 Introduction

Today, ITC (Information Technology companies) and universities research and
use more and more about the Network Function Virtualization (NFV) concept. In
essence, Communications Service Providers (CSPs) and Internet Service Providers
(ISPs) are dealing with competition from Over the top (OTT) media services and
web services, experiencing declining average income per user and have the pressure
to innovate quickly to respond to new technologies such as IoT (Internet of Things),
5G(preparing 6G as well), and cloud edge computing.

Proprietary single-function boxes are chained together in order for Traditional
network services to be built. The design of these services is not standard, the thech-
nology used is not cheap, require lengthy and thorough prior analysis before de-
ployed and most of the times cannot be shared with any other service. Once de-
ployed, the operations andmanagement of these services are largely non-automated,
with each box presenting its own management interface. This technique of creating
network services is very expensive, and offers no practical way of creating dynamic
services.

NFV is the key-technology currently used by most of the operators, that can
assist in solving these business challenges. Once virtualized, the Virtual Network
Functions (VNFs) can be hosted on commodity hardware or a server. Virtualization
does not stop at replacing physical boxes with virtual machines, but can go further
by using microservices, containers, and cloud native techniques. Managing the Life-
cycle of these services (such as initial deployment, configuration changes, upgrades,
scale-out, scale-in, self-healing, etc.), can also be automated. These VNFs can also
be chained and managed in a dynamic and automated fashion. All these advances
enable the creation and management of flexible network services.

12

1.1 Thesis organization

This thesis is organized into 4 core chapters (introduction not included). Be-
sides the present chapter introducing the context , objectives and contributions of
the thesis, the manuscript is organized as follows:

I Chapter 2 provides the background information related to this thesis. It presents
an overview of what NFV is. The chapter also gives an overview of the state
of the art of the in NFV and reviews the positive impact that this concept
brings.

I Chapter 3 provides the main topic of the thesis , which are the algorithms
proposed for the VNF - Service function (SF) service coordination and flow
scheduling problem alongwith the results by using the proposed algorithms(Concept,
Experimentation platform and Results).

I Chapter 4 provided some conclusions regarding the chapter 3 analysis.

I Chapter 5 provides some future directions, regarding the thesis Problem and
what can be further researched.

13

2 State of the Art

2.1 Introduction

Software-DefinedNetworking (SDN) andNetwork FunctionVirtualization (NFV)
are enabling network programming and the automated provisioning of virtual net-
working services. Combining these paradigms , we can overcome the limitations of
traditional clouds and networks by enhancing their dynamic networking capabili-
ties. Since these paradigms have motivated this thesis and our investigations, this
chapter on the state of the art will provide an overview of NFV architecture, resource
allocation challenges and reflect the convergence trend between cloud computing,
software networks, and the virtualization of Service functions.

2.2 Network Function Virtualization (NFV)

2.2.1 Network Services before NVF

Communication Service Providers (CSPs) go beyond simply providing net-
work connectivity for their enterprise customers. They also offer additional ser-
vices and network functions like Network address translation (NAT), Firewall, En-
cryption, Domain Name Service (DNS), Caching, etc. Traditionally, these network
functions were deployed using proprietary hardware at the customer premises. This
approach provides additional revenue but deploying multiple proprietary devices is
costly andmakes upgrades difficult (i.e., every time a new network function is added
to a service, a truck roll is required to install the dedicated new hardware device).
Consequently, service providers began exploring ways to reduce cost and accelerate
deployments through Network Function Virtualization (NFV).

2.2.2 What is NVF?

Network Function Virtualization (NFV) [1], [2], [3] is an innovative way to
design, deploy, and manage networking services by decoupling functions (such as
firewalls, DPIs, load balancers,Service functions, etc.) from dedicated hardware and
moving them to virtual servers. Several use cases of NFV are discussed in [4]. Note
that manageability, reliability, stability, and security are considered in [4] as the
key performance parameters in both physical and in software based virtualized net-
works.

14

Figure 1: Network Function Virtualization

I Hardware Flexibility: Due to the fact that NFV regularly uses Commercial-
Off-The-Shelf (COTS) hardware, network administrators have the freedom
to select and build the hardware the most effective way to suit their needs and
requirements.

I Scalability and Elasticity: New services and capacity-hungry applications
keep network operators (especially cloud providers), on their toes to keep
up with the fast increasing demands of consumers. Scaling the network ar-
chitecture with virtual machines is faster and easier, and it does not require
purchasing additional hardware.

I Reduced PowerConsumption andComplexity:Efficiency in space, power,
and cooling. Communications service providers (CSPs) may be physically
restricted space, electricity and cooling capacity in a data center, so they will
choose equipment carefully to consume these finite and/ or expensive items
effectively resources. NFV provides better energy efficiency resulting from
consolidation resources.

I Faster Life Cycle:New network services can now be deployed more quickly,
in an on-demand and on-need basis, providing benefits for end users as well
as the network providers.

I Increased Revenue: The combination of introducing new services faster and
existing servers in amore dynamicway can jointly result in increased revenue.

I Reduced Capital Expenditures: The use of industry-standard services, in-
creased hardware utilization and adoption of open source software results in
reduced capital expenditures. Because NFV runs on virtual machines instead
of physical machines, fewer appliances are necessary and operational costs
are lower.

I Reduced Operational Expenditures: Automation and hardware standard-
ization can substantially slash operational expenditures.

15

I Improved Customers’ Satisfaction: The combination of service agility and
self service can result in greater customer satisfaction.

2.2.3 What is SDN?

Software-Defined Networking (SDN) is a network architecture approach that
allows the network to be intelligently and centrally controlled or programmed using
software applications. This helps operators manage the entire network consistently
and holistically, regardless of the underlying network technology.

Businesses, carriers and service providers are surrounded by a number of com-
peting forces. The monumental rise of multimedia content, the explosion of cloud
computing, the impact of rising mobile usage and ongoing business pressures to re-
duce costs, while revenues remain stable, all converge to destroy traditional business
models.

SDN enables the programming of network behavior in a centrally controlled
manner through software applications using open APIs. By opening up traditionally
closed network platforms and implementing a common SDN control layer, opera-
tors can manage the entire network and its devices consistently, regardless of the
complexity of the underlying network technology.

SDN represents a substantial step forward from traditional networking, in that
it enables the following:

I Increased control with greater speed and flexibility: Instead of manually
programming multiple hardware devices for specific vendors, developers can
control the flow of traffic over a network simply by programming an open
standard software-based controller. Network administrators also have more
flexibility in choosing networking equipment, as they can choose a single
protocol for communicating with any number of hardware devices through a
central controller.

I Customizable network infrastructure: With a software-defined network,
administrators can configure network services and allocate virtual resources
to change the network infrastructure in real time through a central location.
This allows network administrators to optimize network data flow and prior-
itize applications that require more availability.

I Robust security: A software-defined network provides visibility across the
network, providing a more holistic picture of security threats. With the pro-

16

liferation of smart devices connected to the Internet, SDN offers clear ad-
vantages over traditional networking. Operators can create separate zones for
devices that require different levels of security, or immediately quarantine
devices so that they can not infect the rest of the network.

Figure 2: A schematic overview of SDN implemented with OpenFlow

The main difference between SDN and traditional networking is infrastruc-
ture: SDN is software-based, while traditional networking is hardware-based. Be-
cause the control level is software-based, SDN ismuchmore flexible than traditional
networking. It allows administrators to control the network, change configuration
settings, power supplies, and increase network capacity, all from one central user
interface, without the need for more hardware.

There are also security differences between SDNand traditional network. Thanks
to greater visibility and the ability to define safe routes, SDN offers better security in
many ways. However, because software-defined networks use a central controller,
controller security is critical to maintaining a secure network.

17

2.2.4 NFV Architecture

Figure 3: ETSI NFV reference architecture

The main components of the NFV architectural framework are:

1. NFV Infrastructure (NFVI): is a type of cloud data center that contains the whole
hardware and software components that create the NFV environment in which NFV
services are developed, managed and implemented. NFVI includes:

I PhysicalHardware:This includes computer hardware (such as servers, RAM),
storage (such as disk storage, Network Attached Storage (NAS)) and network
hardware (such as switches and routers).

I Virtualisation Layer: removes hardware resources and decouples VNF soft-
ware from the underlying hardware, thus ensuring independent hardware life
cycle for VNFs. We can use many open source and proprietary options for the
virtualization layer (such as KVM, QEMU, VMware and Openstack or any
other custom environment).

I Virtual Infrastructure: this includes virtual compute (virtual machines or
containers), virtual storage, and virtual networks (overlay networks).

18

2. Virtualised Network Functions (VNFs): run on top of NFVI and repre-
sent virtual instances of different network functions. This framework is essential
for managing network and infrastructure functionality.

3. NFV Management and Orchestration (MANO): NFV MANO does not
work individually. It interacts with operational/business support systems (OSS/BSS)
of the operator for the management of operational and business aspects network.
MANO includes:

I Virtualized Infrastructure Manager (VIM): or cloud management soft-
ware, e.g. OpenStack or Kubernetes. It is responsible for the control and man-
agement of the computing, storage and network resources, as well as their
virtualization.

I VNFManager(s): it is responsible for VNF life cyclemanagement, including
VNF instantiation/ onboarding, update, query, scaling in/out, and termination.

I NFV Orchestrator: it is in charge of the orchestration and management of
NFV infrastructure and software resources, and realizing network services
on NFVI. It utilizes resource allocation and placement algorithms to ensure
optimal usage of both physical and software resources.

2.3 Integration of NFV with other technologies

In recent years, the integration of NFV with other technologies, such as SDN,
Cloud computing, and 5G [5] has attracted significant attention from both academic
/ university research community and industry. Integrating NFVwith SDN and Cloud
Computing is beneficial because of the complementary characteristics and discreet
approaches followed by each technology to provide solutions in current and future
networks [6], [7]. For instance, NFV provides function abstraction (i.e., virtualiza-
tion of network functions) supported by ETSI [8], SDN provides network abstrac-
tion supported by Open Networking Foundation (ONF) [9], and Cloud computing
provides computation abstraction (i.e., a shared pool of configurable computing re-
sources (e.g., networks„ storage, applications, and services)) supported by the Dis-
tributed Management Task Force (DMTF) [10]. Abstraction is one of the key fea-
tures of the cloud computer that allows the removal of the physical application to
hide the background (technical) details from users and developers. To summarize
the relationships between NFV, SDN, and Cloud computing, we use Figure 3.

19

Figure 4: ETSI NFV reference architecture

SDN, NFV and Cloud computing technologies are complementary but they are
independent and can be developed alone or together. Combining these technologies
together in a network architecture is more desirable [11]. In fact, the benefits concen-
trated for each of them are similar: agility, cost reduction, dynamism, automation,
escalation etc.

20

2.4 The scope of the analysis and targets of this studying

In this project, we formulate the VNFs service mesh co-ordination and place-
ment problem and then suggest different algorithms for solution. In particular, we
propose three algorithms that perform the co-ordination of service mesh of VNFs:

1. A Random Schedule algorithm which is a dummy/ random decison algo-
rithm.

2. A Load Balance algorithm which always returns equal distribution for all
nodes having capacities and SFs. Places all SFs on all nodes having some capacity.

3. A Shortest Path algorithm.

Finally, in order to evaluate the above algorithms results we create an NFV
simulated environment with a real network topology (Abilene topology).

21

3 Virtual Service and flow coordination

3.1 Concept - Problem statement

There is a growing demand for services consisting of multiple interconnected
elements, e.g. micro-services in one service Grid or Chained Virtual Network Func-
tions (VNFs) in Network Function Virtualization (NFV) [12]. These services can
scale flexibly by instantiating service components according to current demand.
Such instances can be executed independently on any compute node in the network
and process incoming flows requesting service. Service provisioning and coordina-
tion in networks with geographically and topologically distributed compute nodes
is a continuing challenge. In edge and fog computing, this challenge is exacerbated
by limited computational capabilities as well as connection delay between nodes.
Furthermore, service demand in terms of incoming flows is also distributed across
the network and varies over time. Services can consist of multiple interconnected
components, which process incoming flows.

The goal of service coordination and placement is to ensure that these flows are
processed successfully by traversing instances of all required service components. In
addition, flows must complete with a short end-to-end delay to ensure good quality
of service (QoS). For this purpose, the requested services need to be scaled and
their instances placed in the network, i.e., we have to decide how many service
components to instantiate where. Furthermore, incoming flows need to be routed
from their ingress nodes through these deployed instances and finally to their egress
nodes. In doing so, node and link capacities need to be respected and link delays
should be considered.

To address the issue three algorithms proposed were evaluated, a simulation
environment was deployed proposed as suggested at [12] . Algorithms used: Ran-
dom Schedule,Load Balance algorithm and Shortest Path algorithm (more details of
these algorithms will be discussed in the next section).

Real graph network topology was used as input in the simulated environment
with ”fake” flow traffic produced from the author, in order to test the algorithms in
this environment and view what co-ordination we achieved using these algorithms
and then compare them.

22

3.1.1 Problem Formulation

We address the problem of coordinating services online over discrete time steps
t ∈ T. The problem can be formalized as follows:

A. Problem Inputs

We consider a substrate network G = (V, L) of distributed nodes connected
by non-directed links. Each node u ∈ G has a compute capacity capu ∈ R (e.g
CPU). Each link = (u, u′) ∈ L connects two nodes u and u′ bidirectional with
certaind delay dt ∈ R and a maximum data rate capt ∈ R that is shared between
both directions. We will also need to declare the Service Functions (SF) in order
to apply the algorithms with deterministic processing delays. Finally we configure
the NFV simulator, in order to have the complete solution deploeyd for testing -
research.
In mathematical Formulation our goal is the below:

Figure 5: Mathematical formulation

Maximizing objective of means to process as many flows successfully (Fs) as
possible, avoiding dropped flows (Fd), thusmaximizing the percentage of successful
flows (eq. 1).

At the same time, the goal is to minimize the objective delay function, which is
the average end-to-end delay in all successful flows (eq. 2). The end-to-end delay of
a flow f consists of two parts. First, the sum of processing delays dc of components
c whose instance f traversed. And second, the sum of link delays dl that f experi-
enced during routing. In eq. 2, 1 yf , c, v(t) = v0 is an indicator variable that is 1
if f traversed link l = (v, v0) and 0 otherwise. Note that the two objectives of and
od may be conflicting. For example, distributing flows over more nodes and links
to balance the load helps with processing more flows successfully (improves of)
but also leads to longer paths and higher end-to-end delays (degrades Od). In our

23

algorithms, we approach this trade off by optimizing of and Od in lexicographical
order, i.e., prioritizing of but still trying to optimize Od as far as possible

3.1.2 Algorithms proposed

In this section we will have a high level look on the algorithms that we are
going to use.

Random Schedule:

I Places all VNFs on all nodes of the networks

I Creates random schedules for each source node, each SFC, each SF , each
destination node

I All the schedules for an SF sum-up to 1

Load Balance algorithm:

I Always returns equal distribution for all nodes having capacities and SFs.
Places all SFs on all nodes having some capacity.

Shortest path algorithm:

Based on network topology, SFC, and ingress nodes, calculates for each ingress
node:

I Puts 1st VNF on ingress, 2nd VNF on closest neighbor, 3rd VNF again on
closest neighbor of 2nd VNF and so on.

I Stores placement of VNFs and avoids placing 2 VNFs on the same node as
much as possible. If all nodes are full, continue to place a 2nd VNF on all
nodes, but avoid placing 3 VNFs and so on.

I Avoids nodes with no capacity (but ignores current utilization).

24

Figure 6: Shortest path Algorithm

25

3.2 Experimentation Platform

We evaluate our three proposed algorithms(RS, LB, SP), using extensive simu-
lations on the real-world Abilene network topology [13] with 11 nodes and 14 links.
We consider the Abilene network to be a representative example of a small scale net-
works in practice. The simulator is based on SimPy and is tested with Python 3.8.
We set randomly pick heterogeneous node capacities capv ∈ (0, 7, 14) .

Figure 7: Abilene topology graph

SimPy: SimPy is a process-based discrete-event simulation framework based
on standard Python.

Procedures in SimPy are defined by the functions of the Python generator and
can, for example, be used to model active components, such as clients, vehicles, or
agents. SimPy also provides various types of shared resources for modeling limited
capacity bottlenecks (such as servers, cash registers, and tunnels).

Simulations can be performed ”as fast as possible”, in real time (wall clock
time) or by manually stepping through the events.

This discrete-event flow-based simulator is a fast testbed for VNF coordination
algorithms. It is designed to simulate small to medium-sized networks with rela-
tively near-reality accuracy. It can interact with coordination algorithms through an

26

interface that can be customized by the algorithm developers.

Furthermore, we consider the SFCs (a, b, c) all with mean processing delay
processorDelayMean = 5 and standard deviation stdev = 0

Also, they incur a per-flow processing delay that is normally distributed with
N (5 ms, 0 ms), where values are cut off at 0 ms to prevent negative delays. Flows
arriving at the network’s ingress nodes request one of the three services chosen uni-
formly at random. For each ingress, flow inter-arrival times mean is set to 12 , flow
duration dfMmean = 1 , and flow data rate standard deviation is set to 0. The
duration per experiment is |T | = 1000 time steps.

3.2.1 Simulation

The simulations are based on a realistic network topology were run in a 1.60
GHz Quad Core machine with 16 GBytes of available RAM.

In order to run the test Ubuntu Operating system was install with WSL2 (
Ubuntu running on Windows Kernel), using python 3.8.

The file structure of the simulator is as follows[14]: - docs (Folder): Contains
the documentation files of the project. - params (Folder): Contains sample param-
eter files (network file and VNF file) for testing purposes. - src (Folder): Contains
the source code for the simulator and the interface. - coordsim (Folder): contains the
source code of the simulator - metrics (Folder): contains the metrics module. - net-
work (Folder): contains the network module. - reader (Folder): contains the params
file reader module. - simulation (Folder): main simulator module. - main (Python):
main executable for running the simulator fromCLI - siminterface (Folder): contains
the interface source code - tests (Folder): contains the unit tests for the simulator.

The simulator works as follows: The user (coordination algorithm or cli) pro-
vides two main inputs for the simulator: - Network file: GraphML file using the Zoo
format. This file contains network nodes and edges. - VNF file: YAML file contain-
ing the list The SFCs and the list of SFs under each SFC in order. The file may also
include a defined placement that can be used as the default placement. SFs must in-
clude one average processing delay and standard deviation values so that processing
is delayed is calculated for each flow passing through this SF.

Once the parameters are provided, the flow of data through the simulator is as
follows:

27

I The input network and VNF files are parsed to create a NetworkX object that
contains the list of nodes and edges and the shortest network paths (using
Floyd-Warshall). The parsing also produces dictionaries containing the list
of SFCs and the list of SFs and their respective values. Additionally, the list
of ingress nodes (nodes at which flows arrive) are also calculated from the
GraphML file. These parameters are then passed to a SimulatorParams object,
which has all the parameters of the simulator, the simulator is then started
using the FlowSimulator object’s start() function.

I At each ingress node, the function generateFlow() is called as a SimPy pro-
cess, this function creates Flow objects with exponentially distributed ran-
dom inter arrival times. Flow data rate and size are generated using normally
distributed random variables. All of the inter arrival time, data rate, and flow
size parameters are user configurable. The flow is also assigned a random
SFC chosen from the list of available SFC given in the VNF file.

I Once the flow is generated, initFlow() is called as a SimPy process which
initializes the handling of the flow within the simulator. The function then
calls passFlow(), which then handles the scheduling of the flow according
to the defined load balancing rules (flow schedule). Once the next node has
been determined, the forwarding of the flow is simulated by halting the flow
for the path delay duration using the forwardFlow() function. Once that is
done, the processing of the flow is simulated by calling processFlow() as a
SimPy process. If the requested SF was not found at the next node, the flow
is then dropped.

I In processFlow(), the processing delay for that particular SF is generated us-
ing given mean and standard deviation values using a normal distribution.
The simulator checks the node’s remaining processing capacity to check if
the node can handle the data rate requested by the SF, if there is not enough
capacity, then the flow is dropped. For the duration that the flow is being pro-
cessed by the SF, the flow’s data rate is deducted from the node’s capacity,
and returned after the flow finished processing completely.

I Once the flow was processed completely at each SF, departFlow() is called
to register the flow’s departure from the network. If the flow still has other
SFs to be processed at in the network, processFlow() calls passFlow() again
in a mutually recursive manner. This allows the flow to stay in the SF for
processing, while the parts of the flow that were processed already to be sent
to the next SF.

Input Parameters: The available input parameters that can be configured by
the user are: - d: The duration of the simulation (simulates milliseconds). - s: The

28

seed to use for the random number generator. - n: The GraphML network file that
specifies the nodes and edges of the network. - sf: VNF file which contains the
SFCs and their corresponding SFs and their properties. - iam: Inter arrival mean
of the flows’ arrival at ingress nodes. - fdm: The mean value for the generation of
data rate values for each flow. - fds: The standard deviation value for the generation
of data rate values for each flow. - fss: The shape of the Pareto distribution for the
generation of the flow size values.

The simulation environment has the following features:

I Simulate any given network topology with arbitrary node and link capabilities
and link delays

I Simulate any given network service consisting of linearly chained SFs/ VNFs

I VNFs can define arbitrary resource consumption as a function of their load
using Python modules. Also, the VNF delay can be determined separately and
can be normally distributed.

I Simulate network traffic in the form of flow arrivals at various ingress nodes
with different arrival rate, flow length, volume, etc. according to the stochastic
distributions

I Simple interface to run algorithms for scaling, placement, and scheduling/load
balancing of these incoming flows across the nodes in the network.

I Collection of measurements such as successful/dropped flows, end-to-end de-
lay, resource consumption, etc over time. Easily extensible.

I Discrete event simulation for evaluation of coordination over timewith SimPy

I Graceful adjustment of placements: When VNFs are removed from a place-
ment by an algorithm.

In our case we used the following as input:

In figure 7 we see the graphml file of Abilene graph topology that was used for
this thesis as viewed in Gephi application.

29

Figure 8: Abilene graphml as viewed in Gephi

In figure 8,9 we see the graphml data of Abilene graph topology that was used
for this thesis as viewed as well in Gephi application.

Figure 9: Abilene network topology data(1)

30

Figure 10: Abilene network topology data(2)

In figure 10 we see the yaml file of the simulator configuration that was used.

Figure 11: Simulation configuration (yaml file)

In figure 11 we see the yaml file of the SFC configuration that was used for the
experiments.

31

Figure 12: SFCs simulation configuration(abc.yaml)

3.2.2 Running the simulator

The simulator application is called rs for random schedule, lb for load balance
and sp for shortest path. To run the simulator, the following command may be exe-
cuted:

Figure 13: commands usage(example for rs)

In our case we ran the following commands:

Figure 14: commands used in CLI

32

And this is the output of the commands running in the terminal (mobaXterm
application was used as terminal) in the simulated environment. (LOG level set
to INFO in order no to use less memory, we can set it to Warning, Error, Info and
Debug).

Figure 15: commands running

33

3.3 Results

The results and the inputs of the simulation are saved results under /usr/local/lib/python3.8/dist-
packages/results/ in CSV format in order for the user to visualize and experiment
with them. nodemetrics.csv has all the results concatenated in one file.

Figure 16: Results files

Next we will have a look of what was the output after running the simulator
with the given algorithms.

34

3.3.1 Random Schedule Results

Results After running the Random schedule algorithm:

Figure 17: Metrics after running rs script

35

Figure 18: Node Metrics after running rs script

36

Figure 19: SF placements after running rs script

37

Figure 20: Run Flows after running rs script

38

3.3.2 Load Balance Results

Results After running the Load Balance algorithm:

Figure 21: Metrics after running lb script

39

Figure 22: Node Metrics after running lb script

40

Figure 23: SF placements after running lb script

41

Figure 24: Run Flows after running lb script

42

3.3.3 Shortest Path Results

Results After running the Shortest Path algorithm:

Figure 25: Metrics after running sp script

43

Figure 26: Node Metrics after running sp script

44

Figure 27: SF placements after running sp script

45

Figure 28: Run Flows after running sp script

46

3.3.4 Service Coordination Quality

First, we compare the achieved solution quality of our proposed algorithms
, Random Schedule, Load Balance and Shortest Path. As metrics to evaluate the
service coordination quality, we consider the percentage of successfully processed
flows and their average end-to-end delayOd at the end of each experiment as defined
in Section 3.1.1 (Mathematical Formulation).

1) Successful Flows: shows the percentage of successful flows achieved by the
different algorithms. The percentage of successful flows decreases with increasing
load as the network becomes more congested and some flows cannot be processed
or forwarded.

2) End-to-end Delay: shows the avg. end-to-end delay of successfully pro-
cessed flows.

47

3.3.5 Graph Visualization and algorithms comparisons

In this section we will visualize the CSV files into graphs (using pandas and
matplotlib), so we can compare and evaluate the proposed algorithms.

Figure 29: RS successful flows over dropped flows

48

Figure 30: LB successful flows over dropped flows

49

Figure 31: SP successful flows over dropped flows

1. Figures 28,29,30 show the successful flows over dropped flows achieved by
three different algorithms. As expected Random Schedule algorithm has the worst
results .We can see that the dropped flows are more than the successful ones, which
shows that randomness is not a good solution for the thesis subject. With the other
two algorithms the results are closer. From the successful over the dropped flows
we cannot deduce much, as there is a big gap between them. So let’s see only the
dropped flows for these two.

50

Figure 32: LB dropped flows over time

51

Figure 33: SP dropped flows over time

2. Figures 31, 32 provide a better look on which of these two is more effi-
cient. With the Load Balance algorithm we can see that the total dropped flows over
time reached to over 1000, whereas with the Shortest Path the dropped flows do
not exceed 100. So we see deduce that regarding the dropped flows , Shortest path
algorithm achieves the better results for the simulated environment with the given
inputs.

Now let’s have a look to the End-to-End delay of the successfully processed
flows.

52

Figure 34: RS successful flows over dropped flows

53

Figure 35: LB successful flows over dropped flows

54

Figure 36: SP successful flows over dropped flows

3. From Figures, 33,34, 35 we see the avg. end-to-end delay of successfully
process flows.While Random schedule drops an increasing percentage of flowswith
increasing load, it ensures lower and constant end-to-end delay for the remaining
successful flows comparing to the Load Balance algorithm. For the Shortest path
algorithm, avg. end-to-end is optimal comparing to the other two algorithms once
more.

Below we will have we see a table that contains the algorithms results along
with the time execution:

55

Figure 37: Algorithms results summary

So all in all, Shortest path algorithm achieves far better results for this simulated
environment than the other 2, with the suggested configuration.

56

4 Conclusions

We show how an algorithmic approach can be used to automatically solve the
coordination of chained VNFs under realistic conditions. The proposed scheme was
to develop algorithms on a simulated environment.We used aReal network topology
(Abilene) that is representative of a small-scale network with 11 nodes and 14 links
as input. The simulated environment was implemented in Python 3.8 with SimPy
framework running on a Linux system (Ubuntu distribution) , in order to produce
we produced a discrete-event flow-based simulator which a fast testbed for VNF
coordination algorithms. At the same time, we saw that this setup require less or
no global network information, and can be massively run algorithms in parallel, is
robust to failures. We compared three algorithms (Random Schedule, Shortest Path
and Load Balance) that were applied in the simulated for the solution of the thesis
problem and we concluded that the Shortest Path achieves the best results out of the
three with the Load Balance algorithm coming second. The experimental results,
which have been carried out through , demonstrate how the proposed method can
have an impact in a more automated SF coordination without manual actions. We
believe that an algorithmic approach can significantly improve service coordination
and resulting QoS in practice.

57

5 Future directions

In future work, we can investigate more algorithms to implement in this en-
vironment and even an AI/ ML-oriented (Artificial Intelligence) decision making
approach. As well, we can look in hybrid approaches, where some coordination de-
cisions are made centrally and others in a distributed manner.

But one thing is for sure , automation can help us find solutions to the VNF
related problems , so that in the future the QoS that Operators need to achieve, to be
optimized and the costs to be minimized.

58

References

[1] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip
De Turck, and Raouf Boutaba. Network function virtualization: State-of-the-
art and research challenges. volume 18, pages 236–262, 2016.

[2] Etsi, network functions virtualisation - introductory white paper. in sdn and
openflow world congress. pages 1–16, 2012. https://portal.etsi.org/
NFV/NFV_White_Paper.pdf.

[3] Bo Yi, Xingwei Wang, Keqin Li, Sajal k. Das, and Min Huang. A comprehen-
sive survey of network function virtualization. Computer Networks, 133:212–
262, 2018.

[4] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network
function virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine, 53(2):90–97, 2015.

[5] Sherif Abdelwahab, Bechir Hamdaoui, Mohsen Guizani, and Taieb Znati.
Network function virtualization in 5g. IEEE Communications Magazine,
54(4):84–91, 2016.

[6] Kelvin Lopes Dias Michel S. Bonfim and Stenio F. L. Fernandes. Integrated
nfv/sdn architectures: A systematic literature review. 2018.

[7] Van-GiangNguyen, Anna Brunstrom, Karl-JohanGrinnemo, and Javid Taheri.
Sdn/nfv-based mobile packet core network architectures: A survey. IEEE
Communications Surveys Tutorials, 19(3):1567–1602, 2017.

[8] Etsi. network functions virtualisation (nfv).

[9] Onf. software defined standards. https://www.opennetworking.org/
software-defined-standards/overview/.

[10] Dmtf. standards and technology. https://www.dmtf.org/.

[11] Yong Li and Min Chen. Software-defined network function virtualization: A
survey. IEEE Access, 3:2542–2553, 2015.

[12] Stefan Schneider, Lars Dietrich Klenner, and Karl Holger. Every node for
itself: Fully distributed service coordination. In International Conference on
Network and Service Management (CNSM). IFIP/IEEE, 2020.

[13] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. The internet topology zoo. IEEE Journal on Selected
Areas in Communications, 29(9):1765–1775, 2011.

59

https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.opennetworking.org/software-defined-standards/overview/
https://www.opennetworking.org/software-defined-standards/overview/
https://www.dmtf.org/

[14] Realvnf coordination simulation. https://coordination-simulation.
readthedocs.io/en/latest/.

Αʹ Manual on how to install the environment and ex-
ecute the algorithms

In order to execute the subject’s experiment we used the following GitHub di-
rectories:
https://github.com/RealVNF/coord-sim
https://github.com/RealVNF/common-utils
https://github.com/kopsa95/baseline-algorithms

coord-sim: We need this in order to Simulate flow-level, inter-node network
coordination including scaling and placement of services and scheduling/balancing
traffic between them

common-utils: This is the Interface definition between the algorithms and en-
vironments.

Baseline-Algorithms: Includes baseline algorithms for coordination of service
mesh consisting of multiple microservices. Includes Non-RL algorithms (Random
Schedule, Shortest Path and Load Balance).

Setup: First ,via git we exported the directory with the algorithms we proposed:
git clone https://github.com/kopsa95/baseline-algorithms

Figure 38: baseline algorithms directory structure

60

https://coordination-simulation.readthedocs.io/en/latest/
https://coordination-simulation.readthedocs.io/en/latest/
https://github.com/RealVNF/coord-sim
https://github.com/RealVNF/common-utils
https://github.com/kopsa95/baseline-algorithms
https://github.com/kopsa95/baseline-algorithms

Under /res directory we have the inputs that we will use in order to simulate
the experiments (the network graph, and the configuration of the simulation). Under
/src we have the algorithms that we used.

Then in order to install the above package we used Python 3.8 as the project
was implemented in Python.

We install the requirements.txt file via:
python3 -m pip install -r requirements.txt

Figure 39: txt file that shows the requirements

Thiswill add the other 2GitHub directories under: C:/Users/<user>/<GithubPath>/baseline-
algorithms/src

Figure 40: 2 new directories added under /src

Thenwewill go these directories via cd (change directory command) and install
the setup.py file of each folder.

The Setup.py for coord-sim installs the following pacakges:

61

Figure 41: setup.py of coord-sim package

The Setup.py for common-utils installs the following pacakges:

62

Figure 42: setup.py of common-utils package

And then we install the baseline-algorithms setup.py:

63

Figure 43: setup.py of load-balance package

Command used for the installation of the above:
python3 setup.py install (in each path)

Packages and short description:

I networkx:NetworkX is a Python package for the creation, manipulation, and
study of the structure, dynamics, and functions of complex networks.

I PyYAML:YAML is a data serialization format designed for human readabil-
ity and interaction with scripting languages. PyYAML is a YAML parser and
emitter for Python. PyYAML features a complete YAML 1.1 parser, Unicode
support, pickle support, capable extension API, and sensible error messages.
PyYAML supports standard YAML tags and provides Python-specific tags
that allow to represent an arbitrary Python object. PyYAML is applicable for

64

a broad range of tasks from complex configuration files to object serialization
and persistence.

I NumPy:NumPy is the fundamental package for scientific computing in Python.
It is a Python library that provides a multidimensional array object, various
derived objects (such as masked arrays and matrices), and an assortment of
routines for fast operations on arrays, including mathematical, logical, shape
manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear
algebra, basic statistical operations, random simulation and much more.

I Tqdm: Instantly make your loops show a smart progress meter - just wrap
any iterable with tqdm(iterable), and you’re done!

I SimPy: SimPy is a process-based discrete-event simulation framework based
on standard Python.

I Geopy: geopy is a Python client for several popular geocoding web services.
geopy makes it easy for Python developers to locate the coordinates of ad-
dresses, cities, countries, and landmarks across the globe using third-party
geocoders and other data sources.

I Cython: Cython is an optimising static compiler for both the Python pro-
gramming language and the extended Cython programming language (based
on Pyrex). It makes writing C extensions for Python as easy as Python itself.

I Scikit-learn (not used for this project): Scikit-learn is probably the most
useful library for machine learning in Python. The sklearn library contains a
lot of efficient tools for machine learning and statistical modeling including
classification, regression, clustering and dimensionality reduction.

I Tensorflow(not used for this project): TensorFlow is an end-to-end open
source platform formachine learning. It has a comprehensive, flexible ecosys-
tem of tools, libraries, and community resources that lets researchers push the
state-of-the-art in ML and developers easily build and deploy ML-powered
applications.

I Keras (not used in this project): Keras is an API designed for human be-
ings, not machines. Keras follows best practices for reducing cognitive load:
it offers consistent and simple APIs, it minimizes the number of user actions
required for common use cases, and it provides clear and actionable error
messages. It also has extensive documentation and developer guides.

I Matplotlib: Matplotlib is a comprehensive library for creating static, ani-
mated, and interactive visualizations in Python.

65

When the setup is ready we are ready to apply our algorithms.

Algorithms used for running the proposed scripts: can be found at https://
github.com/kopsa95/baseline-algorithms/tree/master/src/algorithms

RandomSchedule.py

import argparse
import logging
import os
import random
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from random import uniform

from common.common_functionalities import
normalize_scheduling_probabilities , \
get_ingress_nodes_and_cap , copy_input_files , create_input_file

for use with the flow−level simulator https :// github .com/RealVNF/
coordination−simulation (after installation)

from siminterface . simulator import Simulator
from spinterface import SimulatorAction
from tqdm import tqdm

log = logging .getLogger(__name__)
DATETIME = datetime.now().strftime(”%Y−%m−%d_%H−%M−%S”)
PROJECT_ROOT = str(Path(__file__).parent.parent. parent)

def get_placement(nodes_list , sf_list) :
””” places each sf in each node of the network
Parameters :

nodes_list
sf_list

Returns :
a Dictionary with:

key = nodes of the network
value = list of all the SFs in the network

”””
placement = defaultdict (list)
for node in nodes_list :

placement[node] = sf_list

66

https://github.com/kopsa95/baseline-algorithms/tree/master/src/algorithms
https://github.com/kopsa95/baseline-algorithms/tree/master/src/algorithms

return placement

def get_schedule (nodes_list , sf_list , sfc_list) :
””” return a dict of schedule for each node of the network
for each node in the network, we generate floating point random

numbers in the range 0 to 1
’’’
Schedule is of the following form:

schedule : dict
{

’node id ’ : dict
{

’SFC id’ : dict
{

’SF id’ : dict
{

’node id ’ : float (Inclusive of zero
values)

}
}

}
}

’’’
Parameters :

nodes_list
sf_list
sfc_list

Returns :
schedule of the form shown above

”””
schedule = defaultdict (lambda: defaultdict (lambda: defaultdict (

lambda: defaultdict (float))))
for outer_node in nodes_list :

for sfc in sfc_list :
for sf in sf_list :

this list may not sum to 1
random_prob_list = [uniform(0, 1) for _ in range(len(

nodes_list))]
Because of floating point precision (.59 + .33 + .08)

can be equal to .99999999
So we correct the sum only if the absolute diff . is

67

more than a tolerance (0.000000014901161193847656)
random_prob_list = normalize_scheduling_probabilities (

random_prob_list)
for inner_node in nodes_list :

if len(random_prob_list) != 0:
schedule[outer_node][sfc][sf][inner_node] =

random_prob_list .pop()
else :

schedule[outer_node][sfc][sf][inner_node] = 0
return schedule

def parse_args () :
parser = argparse .ArgumentParser(description =”Dummy Coordinator”)
parser .add_argument(’−i’ , ’−− iterations ’ , required=False , default =10,

dest=” iterations ” , type=int)
parser .add_argument(’−s’ , ’−−seed’, required=False , default =9999,

dest=”seed”, type=int)
parser .add_argument(’−n’, ’−−network’, required=True, dest=’network’)
parser .add_argument(’−sf’ , ’−− service_functions ’ , required=True, dest

=” service_functions ”)
parser .add_argument(’−c’, ’−−config’ , required=True, dest=”config”)
return parser . parse_args ()

def main() :
Parse arguments
args = parse_args ()
if not args . seed:

args . seed = random.randint (1, 9999)
logging . basicConfig (level =logging.INFO)
logging .getLogger(”coordsim”). setLevel (logging .WARNING)

Creating the results directory variable where the simulator result
files will be written

network_stem = os. path . splitext (os . path .basename(args.network)) [0]
service_function_stem = os. path . splitext (os . path .basename(args.

service_functions)) [0]
simulator_config_stem = os. path . splitext (os . path .basename(args. config

)) [0]

results_dir = f”{PROJECT_ROOT}/results/{network_stem}/{

68

service_function_stem}/{simulator_config_stem}” \
f”/{DATETIME}_seed{args.seed}”

creating the simulator
simulator = Simulator (os . path . abspath(args .network),

os . path . abspath(args . service_functions) ,
os . path . abspath(args . config) , test_mode=True,

test_dir = results_dir)
init_state = simulator . init (args . seed)
log . info (”Network Stats after init () : %s”, init_state . network_stats)
nodes_list = [node[’ id ’] for node in init_state .network.get (’nodes’)]
sf_list = list (init_state . service_functions .keys())
sfc_list = list (init_state . sfcs .keys())
ingress_nodes = get_ingress_nodes_and_cap(simulator .network)
we place every sf in each node of the network, so placement is

calculated only once
placement = get_placement(nodes_list , sf_list)
iterations define the number of time we wanna call apply ()
log . info (f”Running for {args . iterations } iterations ... ”)
for i in tqdm(range(args. iterations)) :

schedule = get_schedule (nodes_list , sf_list , sfc_list)
action = SimulatorAction(placement, schedule)
_ = simulator .apply(action)

We copy the input files (network, simulator config) to the
results directory

copy_input_files (results_dir , os . path . abspath(args .network), os . path .
abspath(args . service_functions) ,

os . path . abspath(args . config))
Creating the input file in the results directory containing the

num_ingress and the Algo used attributes
create_input_file (results_dir , len(ingress_nodes) , ”Rand”)
log . info (f”Saved results in { results_dir }”)

if __name__ == ’__main__’:
main()

69

loadBalance.py

import argparse
import logging
import os
import random
from collections import defaultdict
from datetime import datetime
from pathlib import Path

from common.common_functionalities import
normalize_scheduling_probabilities , create_input_file ,
copy_input_files , \
get_ingress_nodes_and_cap

from siminterface . simulator import Simulator
from spinterface import SimulatorAction
from tqdm import tqdm

log = logging .getLogger(__name__)
DATETIME = datetime.now().strftime(”%Y−%m−%d_%H−%M−%S”)
PROJECT_ROOT = str(Path(__file__).parent.parent. parent)

def get_placement(nodes_list , sf_list) :
””” places each sf on each node of the network with some capacity
Parameters :

nodes_list
sf_list

Returns :
a Dictionary with:

key = nodes of the network
value = list of all the SFs on the node

”””
placement = defaultdict (list)
for node in nodes_list :

placement[node] = sf_list
return placement

def get_schedule (nodes_list , nodes_with_cap, sf_list , sfc_list) :
””” return a dict of schedule for each node of the network

’’’
Schedule is of the following form:

70

schedule : dict
{

’node id ’ : dict
{

’SFC id’ : dict
{

’SF id’ : dict
{

’node id ’ : float (Inclusive of zero
values)

}
}

}
}

’’’
Parameters :

nodes_list
sf_list
sfc_list

Returns :
schedule of the form shown above

”””
schedule = defaultdict (lambda: defaultdict (lambda: defaultdict (

lambda: defaultdict (float))))
for outer_node in nodes_list :

for sfc in sfc_list :
for sf in sf_list :

all 0’s list
uniform_prob_list = [0 for _ in range(len(nodes_with_cap)

)]
Uniformly distributing the schedules between all nodes
uniform_prob_list = normalize_scheduling_probabilities (

uniform_prob_list)
for inner_node in nodes_list :

if inner_node in nodes_with_cap:
schedule[outer_node][sfc][sf][inner_node] =

uniform_prob_list .pop()
else :

schedule[outer_node][sfc][sf][inner_node] = 0
return schedule

71

def parse_args () :
parser = argparse .ArgumentParser(description =”Load Balance Algorithm”

)
parser .add_argument(’−i’ , ’−− iterations ’ , required=False , default =10,

dest=” iterations ” , type=int)
parser .add_argument(’−s’ , ’−−seed’, required=False , dest=”seed”, type

=int)
parser .add_argument(’−n’, ’−−network’, required=True, dest=’network’)
parser .add_argument(’−sf’ , ’−− service_functions ’ , required=True, dest

=” service_functions ”)
parser .add_argument(’−c’, ’−−config’ , required=True, dest=”config”)
return parser . parse_args ()

def main() :
Parse arguments
args = parse_args ()
if not args . seed:

args . seed = random.randint (1, 9999)
logging . basicConfig (level =logging.WARNING)
logging .getLogger(”coordsim”). setLevel (logging .WARNING)

Creating the results directory variable where the simulator result
files will be written

network_stem = os. path . splitext (os . path .basename(args.network)) [0]
service_function_stem = os. path . splitext (os . path .basename(args.

service_functions)) [0]
simulator_config_stem = os. path . splitext (os . path .basename(args. config

)) [0]

results_dir = f”{PROJECT_ROOT}/results/{network_stem}/{
service_function_stem}/{simulator_config_stem}” \

f”/{DATETIME}_seed{args.seed}”

creating the simulator
simulator = Simulator (os . path . abspath(args .network),

os . path . abspath(args . service_functions) ,
os . path . abspath(args . config) , test_mode=True,

test_dir = results_dir)
init_state = simulator . init (args . seed)
log . info (”Network Stats after init () : %s”, init_state . network_stats)
nodes_list = [node[’ id ’] for node in init_state .network.get (’nodes’)]

72

nodes_with_capacity = []
for node in simulator .network.nodes(data=True):

if node[1][’cap’] > 0:
nodes_with_capacity .append(node[0])

sf_list = list (init_state . service_functions .keys())
sfc_list = list (init_state . sfcs .keys())
ingress_nodes = get_ingress_nodes_and_cap(simulator .network)
we place every sf on each node of the network with some capacity ,

so placement is calculated only once
placement = get_placement(nodes_with_capacity , sf_list)
Uniformly distributing the schedule for all Nodes with some

capacity
schedule = get_schedule (nodes_list , nodes_with_capacity , sf_list ,

sfc_list)
Since the placement and the schedule are fixed , the action would

also be the same throughout
action = SimulatorAction(placement, schedule)
iterations define the number of time we wanna call apply ()
log . info (f”Running for {args . iterations } iterations ... ”)
for i in tqdm(range(args. iterations)) :

_ = simulator .apply(action)
We copy the input files (network, simulator config) to the

results directory
copy_input_files (results_dir , os . path . abspath(args .network), os . path .

abspath(args . service_functions) ,
os . path . abspath(args . config))

Creating the input file in the results directory containing the
num_ingress and the Algo used attributes

create_input_file (results_dir , len(ingress_nodes) , ”LB”)
log . info (f”Saved results in { results_dir }”)

if __name__ == ’__main__’:
main()

73

shortestPath.py

import argparse
import logging
import os
import random
from collections import defaultdict
from datetime import datetime
from pathlib import Path

from common.common_functionalities import
normalize_scheduling_probabilities , create_input_file , \
copy_input_files , get_ingress_nodes_and_cap

from siminterface . simulator import Simulator
from spinterface import SimulatorAction
from tqdm import tqdm

log = logging .getLogger(__name__)
DATETIME = datetime.now().strftime(”%Y−%m−%d_%H−%M−%S”)
PROJECT_ROOT = str(Path(__file__).parent.parent. parent)

def get_closest_neighbours (network, nodes_list) :
”””
Finding the closest neighbours to each node in the network. For each

node of the network we maintain a list of
neighbours sorted in increasing order of distance to it .
params:

network: A networkX graph
nodes_list : a list of nodes in the Network

Returns :
closest_neighbour : A dict containing lists of closest neighbour

to each node in the network sorted in
increasing order to distance .

”””

all_pair_shortest_paths = network.graph[’ shortest_paths ’]
closest_neighbours = defaultdict (list)
for source in nodes_list :

neighbours = defaultdict (int)
for dest in nodes_list :

if source != dest :

74

delay = all_pair_shortest_paths [(source , dest)][1]
neighbours[dest] = delay

sorted_neighbours = [k for k, v in sorted(neighbours . items () , key
=lambda item: item[1])]

closest_neighbours [source] = sorted_neighbours
return closest_neighbours

def next_neighbour(index , num_vnfs_filled , node, placement,
closest_neighbours , sf_list , nodes_cap):
”””
Finds the next available neighbour to the index node
Args:

index: closest neighbours of ’node’ is a list , index tells which
closest neighbour to start looking from

num_vnfs_filled : Tells the number of VNFs present on all nodes e .
g: every node in the network has atleast 1 VNF,

some might have more than that . This tells us
the minimum every node has

node: The node whose closest neighbour is to be found
placement: placeement of VNFs in the entire network
closest_neighbours : neighbours of each node in the network in the

increasing order of distance
sf_list : The VNFs in the network
nodes_cap: Capacity of each node in the network

Returns :
The next closest neighbour of the requested node that :
− has some capacity
− while some of the nodes in the network have 0 VNFs it

returns the closest neighbour that has 0 VNFs,
If some nodes in the network has just 1 VNF, it returns the

closest neighbour with just 1 VNF and so on
”””
while len(placement[closest_neighbours [node][index]]) >

num_vnfs_filled [0] or \
nodes_cap[closest_neighbours [node][index]] == 0:

index += 1
if index == len(closest_neighbours [node]) :

num_vnfs_filled [0] += 1
index = 0

if num_vnfs_filled [0] > len(sf_list) :
index = 0

75

break
return index

def get_placement_schedule(network, nodes_list , sf_list , sfc_list ,
ingress_nodes , nodes_cap):
”””

’’’
Schedule is of the following form:

schedule : dict
{

’node id ’ : dict
{

’SFC id’ : dict
{

’SF id’ : dict
{

’node id ’ : float (Inclusive of zero
values)

}
}

}
}

’’’
Parameters :

network: A NetworkX object
nodes_list : all the nodes in the network
sf_list : all the sf ’s in the network
sfc_list : all the SFCs in the network, right now assuming to be

just 1
ingress_nodes : all the ingress nodes in the network
nodes_cap: Capacity of each node in the network

Returns :
− a placement Dictionary with:

key = nodes of the network
value = list of all the SFs in the network

− schedule of the form shown above
”””
placement = defaultdict (list)
schedule = defaultdict (lambda: defaultdict (lambda: defaultdict (

lambda: defaultdict (float))))
Initializing the schedule for all nodes, for all SFs to 0

76

for src in nodes_list :
for sfc in sfc_list :

for sf in sf_list :
for dstn in nodes_list :

schedule[src][sfc][sf][dstn] = 0
Getting the closest neighbours to each node in the network
closest_neighbours = get_closest_neighbours (network, nodes_list)

− For each Ingress node of the network we start by placing the
first VNF of the SFC on it and then place the

2nd VNF of the SFC on the closest neighbour of the Ingress , then
the 3rd VNF on the closest neighbour of the node

where we placed the 2nd VNF and so on.
− The closest neighbour is chosen based on the following criteria :
− while some nodes in the network has 0 VNFs , the closest

neighbour cannot be an Ingress node
− The closest neighbour must have some capacity
− while some of the nodes in the network have 0 VNFs it chooses

the closest neighbour that has 0 VNFs,
If some nodes in the network has just 1 VNF, it returns the

closest neighbour with just 1 VNF and so on
for ingress in ingress_nodes :

node = ingress
We choose a list with just one element because a list is

mutable in python and we want ’next_neighbour’
function to change the value of this variable
num_vnfs_filled = [0]
Placing the 1st VNF of the SFC on the ingress nodes if the

ingress node has some capacity
Otherwise we find the closest neighbour of the Ingress that has

some capacity and place the 1st VNF on it
if nodes_cap[ingress] > 0:

if sf_list [0] not in placement[node]:
placement[node].append(sf_list [0])

schedule[node][sfc_list [0]][sf_list [0]][node] += 1
else :

Finding the next neighbour which is not an ingress node and
has some capacity

index = next_neighbour (0, num_vnfs_filled , ingress , placement
, closest_neighbours , sf_list , nodes_cap)

while num_vnfs_filled [0] == 0 and closest_neighbours [ingress
][index] in ingress_nodes :

77

if index + 1 >= len(closest_neighbours [ingress]) :
break

index = next_neighbour(index + 1, num_vnfs_filled ,
ingress , placement, closest_neighbours ,

sf_list , nodes_cap)
node = closest_neighbours [ingress][index]
if sf_list [0] not in placement[node]:

placement[node].append(sf_list [0])
schedule[ingress][sfc_list [0]][sf_list [0]][node] += 1

For the remaining VNFs in the SFC we look for the closest
neighbour and place the VNFs on them

for j in range(len(sf_list) − 1) :
index = next_neighbour (0, num_vnfs_filled , node, placement,

closest_neighbours , sf_list , nodes_cap)
while num_vnfs_filled [0] == 0 and closest_neighbours [node][

index] in ingress_nodes :
if index + 1 >= len(closest_neighbours [node]) :

break
index = next_neighbour(index + 1, num_vnfs_filled , node,

placement, closest_neighbours ,
sf_list , nodes_cap)

new_node = closest_neighbours [node][index]
if sf_list [j + 1] not in placement[new_node]:

placement[new_node].append(sf_list [j + 1])
schedule[node][sfc_list [0]][sf_list [j + 1]][new_node] += 1
node = new_node

Since the sum of schedule probabilities for each SF of each node
may not be 1 , we make it 1 using the

’ normalize_scheduling_probabilities ’ function .
for src in nodes_list :

for sfc in sfc_list :
for sf in sf_list :

unnormalized_probs_list = list (schedule[src][sfc][sf].
values ())

normalized_probs = normalize_scheduling_probabilities (
unnormalized_probs_list)

for i in range(len(nodes_list)) :
schedule[src][sfc][sf][nodes_list [i]] =

normalized_probs[i]
return placement, schedule

78

def parse_args () :
parser = argparse .ArgumentParser(description =”Load Balance Algorithm”

)
parser .add_argument(’−i’ , ’−− iterations ’ , required=False , default =10,

dest=” iterations ” , type=int)
parser .add_argument(’−s’ , ’−−seed’, required=False , dest=”seed”, type

=int)
parser .add_argument(’−n’, ’−−network’, required=True, dest=’network’)
parser .add_argument(’−sf’ , ’−− service_functions ’ , required=True, dest

=” service_functions ”)
parser .add_argument(’−c’, ’−−config’ , required=True, dest=”config”)
return parser . parse_args ()

def main() :
Parse arguments
args = parse_args ()
if not args . seed:

args . seed = random.randint (1, 9999)
logging . basicConfig (level =logging.WARNING)
logging .getLogger(”coordsim”). setLevel (logging .WARNING)

Creating the results directory variable where the simulator result
files will be written

network_stem = os. path . splitext (os . path .basename(args.network)) [0]
service_function_stem = os. path . splitext (os . path .basename(args.

service_functions)) [0]
simulator_config_stem = os. path . splitext (os . path .basename(args. config

)) [0]

results_dir = f”{PROJECT_ROOT}/results/{network_stem}/{
service_function_stem}/{simulator_config_stem}” \

f”/{DATETIME}_seed{args.seed}”

creating the simulator
simulator = Simulator (os . path . abspath(args .network),

os . path . abspath(args . service_functions) ,
os . path . abspath(args . config) , test_mode=True,

test_dir = results_dir)
init_state = simulator . init (args . seed)

79

log . info (”Network Stats after init () : %s”, init_state . network_stats)
nodes_list = [node[’ id ’] for node in init_state .network.get (’nodes’)]
sf_list = list (init_state . service_functions .keys())
sfc_list = list (init_state . sfcs .keys())
ingress_nodes , nodes_cap = get_ingress_nodes_and_cap(simulator .

network, cap=True)
getting the placement and schedule
placement, schedule = get_placement_schedule(simulator .network,

nodes_list , sf_list , sfc_list , ingress_nodes ,
nodes_cap)

Since the placement and the schedule are fixed , the action would
also be the same throughout

action = SimulatorAction(placement, schedule)
iterations define the number of time we wanna call apply () ; use

tqdm for progress bar
log . info (f”Running for {args . iterations } iterations ... ”)
for i in tqdm(range(args. iterations)) :

_ = simulator .apply(action)
We copy the input files (network, simulator config) to the

results directory
copy_input_files (results_dir , os . path . abspath(args .network), os . path .

abspath(args . service_functions) ,
os . path . abspath(args . config))

Creating the input file in the results directory containing the
num_ingress and the Algo used attributes

create_input_file (results_dir , len(ingress_nodes) , ”SP”)
log . info (f”Saved results in { results_dir }”)

if __name__ == ’__main__’:
main()

Usage of the commands:

80

Figure 44: How to call each algorithm in CLI

When the algorithm-scripts are ran , this should be shown in the console:

Figure 45: simulation running in the console in INFO level

We can change the level information to Warning, Error, Info or Debug by
changing the following parameter on the scripts (example when set in Warning):
logging.basicConfig(level=logging.WARNING)

The experiments were ran on Ubuntu Distribution on Windows Kernel , using
WSL2 (Windows Subsystem Linux) in order the author to use the machine’s CPU,
as the CPU and Kernel mapping from the host to a Virtual environment wouldn’t
work.

81

The results after running the above scripts are saved at
/usr/local/lib/python3.8/distpackages/results/ in CSV format.

For the visualization of the results, Jupyter Lab was used, in order to have a
more direct view: Example for Shortest Path algorithm visualization from the CSV
file:

Figure 46: visualization using pandas python library

82

Βʹ Author Resume

ChristosKopsacheilis,MscDigital Communications andNetworks,
University of Piraeus

I Personal information
Birth date: 1995 | Birth Place: Larissa, Greece

I Studies
2013 , Lyceum Diploma ,1st High school of Giannouli Larissas
2014-2019: Bachelor of Science (BSc), Mathematics, NKUA
2019–present: Master of Science (MSc), Digital Communications and Net-
works, University of Piraeus

I Work Experience
2018- 2020: Cloud Application Support Engineer, Atos
2020-present: IMS Integration Engineer, Ericsson

83

	List of Figures
	Introduction
	Thesis organization

	State of the Art
	Introduction
	Network Function Virtualization (NFV)
	Network Services before NVF
	What is NVF?
	What is SDN?
	NFV Architecture

	Integration of NFV with other technologies
	The scope of the analysis and targets of this studying

	Virtual Service and flow coordination
	Concept - Problem statement
	Problem Formulation
	Algorithms proposed

	 Experimentation Platform
	Simulation
	Running the simulator

	Results
	Random Schedule Results
	Load Balance Results
	Shortest Path Results
	Service Coordination Quality
	Graph Visualization and algorithms comparisons

	Conclusions
	Future directions
	References
	Manual on how to install the environment and execute the algorithms
	Author Resume

