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Abstract 

 
    One of the most basic problems scientist need and want to solve using computers is, 
the process of solving mathematical problems. While addition, subtraction and 
multiplication seem fairly easy calculations to do, as one dives into mathematics and the 
calculations advance, the problems become more and more thought depleting. In this 
sense, having a system with the ability to solve mathematical problems varying in 
discipline and structure, would be nice to have. For example, in geometry in most cases 
calculations are part base and a combination of functional and logic programming for 
the implementation. The first step, from our perception, was to create a structure in 
which we could describe the Euclid's theorems. After that, we used this structure to 
generate the theorems' figure constructions. Then we generated all possible premises 
needed for a relevant conclusion, given the construction. 
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Chapter 1

Introduction

One of the most basic problems scientist need and want to solve using com-
puters is the process of solving mathematical problems. While addition, sub-
traction and multiplication seem fairly easy calculations to do, as one dives into
mathematics and the calculations advance, the problems become more and more
thought depleting. To aid this problem humans thought of the idea using a com-
puter to mimic the human brain and do these calculations. In our attempt to
mimic the human brain the Artificial Intelligence (AI) field was created.

Through out the years, computer scientists try to solve all the more complex
issues, that adequately require all the more mathematics. In this sense, having
a system with the ability to solve mathematical problems varying in discipline
and structure, would be nice to have. An attempt to creating such a solution is
Automated Deduction.

With this thesis we attempt to use parts of this subfield of AI to construct
and solve Theoretical Geometry’s theorems. The first thing to consider here is
creating the instructed figure using the basics shapes of a compass and ruler
approach, using a computer instead. Then one would infer conclusions based
on the shapes, their attributes and relations between one another, this we named
generating facts and made the computer infer them for us. Last but not least,
one would used these facts to deduct the proof of a theorem, we did so by using
logic and logic programming.

This is a proposed new solution to an existing old problem. Maybe it has
become such an old problem, that not many scientist seem to focus on anymore.
This in our opinion should change. Automated deduction is an old field with
still many perspectives and as new technologies and solving techniques emerge,
this old problem can find new solutions.
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While not as new as one would expect, is functional programming. We used
functional programming to create a proposition-function relationship that can
help address with ease the references between propositions of geometry. Thus,
potentially cut many branches of the possible evolution of a construction and
intrinsically come to the resulting shape and its inferred conclusions. However
first we need to step back and examine all the parameters needed to fill the gaps
in the definitions of all these.

1.1 Automated Proofs

To start with, a core computer science concept is automating procedures, while
a core mathematical concept are proofs. Thus, an core interdisciplinary concept
are automated proofs. As natural as that might have come as a conclusion, the
challenge of finding such an automated proving system is an extremely diffi-
cult task. There can be one or more ways to prove a theorem, however, there
might be none as well. Even if we had a suggested proof validating it also an
almost equally difficult challenge. However a challenge it might be, scientist
are still trying to find a suitable solution, since finding such a solution can help
many parts of each science evolve further and aid the better understanding of it
fundamentals.

1.2 Motivation

To study a fundamental part of any science we believe it is good practice to start
with an even more core part of it. Euclid, the Greek mathematician, is often
referred to as "the father of geometry", but we still lack to fully see his view of
mathematics. On the other hand, functional and logic programming have been
around from the start of computer science and are still a key part of it.

Many mathematicians and computer scientist have claimed that his work
requires editing in order to fit in the mathematical logic’s strict structure, which
is partially true. There is however, a part where we fail to interpret Euclid’s logic
to the computer.
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We considered this as an opportunity for experimentation. An approach that
programmatically implements Euclid’s thinking -from our perception and un-
derstanding. This study aims to implement a system to address the automated
deduction problem in the field mathematics, specifically theoretical geometry.
This is achieved using Euclid’s Elements for the mathematical part base and a
combination of functional and logic programming for the implementation. The
first step, from our perception, was to create a machine readable representa-
tion in which we could describe the Euclid’s theorems. After that, we used this
representation to generate the theorems’ constructions. Then we generated all
possible premises needed for a relevant conclusion, given the construction.

1.3 Structure of thesis

Chapter 2 provides the required background for Logic Programming, Eu-
clid’s work and others’ related approaches on the subject

Chapter 3 presents the proposed method by explaining the three parts of
the combinational solution. Specifically, figure construction, valid fact ex-
traction and reasoning with the generated facts.

Chapter 4 proves the validity of the method using the implementation and
provides information for expanding from the current state.

Chapter 5 presents a set of conclusions for this work, discussion on the
overall approach in relation to other approaches and future directions.
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Chapter 2

Background

The following sections give the basic needed knowledge from logic program-
ming, automated deduction and basics of theoretical geometry as seen in Eu-
clid’s Elements.

2.1 Automated Deduction

There are two main ways to solve or justify the solution of a problem, the first be-
ing through concrete evidence that lead to that solution and the second through
assumptions of validity issuing from unreliable sources. In the former, solution
is based on tangible evidence emerging from reliable verified sources and a mix-
ture of those sources to make a conclusion on a related topic. The latter is a
more common way that includes either unreliable sources or assumptions that
are based on one’s opinion instead of many’s logic. What automated reason-
ing aims to do is to address the problem using logic. Logical reasoning is used
in order to exploit the structure -instead of the content- to make an inference
[10]. Putting forward the importance of valid structure, rather than the content
meaning, creates a structured logic that is based on solid inference instead of
ambiguous assumptions.

Automated deduction, also known as automated theorem proving (ATP),
is based on automated reasoning and mathematical logic and serves to prove
and/or verify problems and their solutions. There are roughly three things used
for ATP. The first part needed are the axioms. Axioms are used to give a detailed
description of the current knowledge of the world in which the problem belongs.
The second part is the conjecture, which serves as the description of what needs
to be solved. While the third part, is automated reasoning that combines this
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knowledge to logically conclude, to accept or reject a proof and give counter-
examples. Thus, ATPs aim to determine if a conjecture is a logical consequence
of a set of axioms[20]. Propositional Logic and First-order Logic are two most
widely used for automated reasoning.

Propositional Logic is based on Boolean algebra. Boole in 1847 created an
algebra, namely Boolean logic, that would structure logic in a way that would
assist logic with ease of stating and understanding propositions and the cal-
culations between them, much like mathematical algebra does in mathematics.
Variables in this case are some truth-valued elements, meaning their values may
be true or false. Logic propositions are then constructed using these truth-value
variables and some predefined logical connectives, like “not”, “and” and “or”
[10]. Calculations between logical propositions were clearly defined. One can
use this algebra to form a problem in such a way that it’s easy to do calculations
and derive conclusions based on the truth values of the variables in the problem.

On the other hand, First-order Logic (FOL) or Predicate Logic, an extension
of propositional logic, is also often used for automated reasoning. In first-order
logic there are predicates and terms. Predicates are used to declare relations
between arguments. Arguments vary in number, starting from zero in which
case the predicate is considered a propositional variable. Every predicate having
more than one argument has the same arity as the count of the arguments.There
are different approaches to addressing the matter of ATP using first order logic.

While the most obvious application areas for ATPs evolve around mathemat-
ics and logic there have been a lot more fields that automated deduction has
been and even more that it can be applied [19]. In fact, there is not as much con-
tent in the applications of fully automated deduction in the area of mathematics
[5]. The reason for that lies in most cases in the fact of numbers are difficult to
interpret in most logic programming languages.

Logic programming

Logic programming (LP) is the programming of a computation using a restricted
form of resolution [4].LP’s aim is to solve goals by systematically searching for
a way to derive the answer from the program using resolution. Resolution al-
lows the inference of new propositions from other given propositions and is the
primary rule of inference in LP.
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There is a variety of LP languages, however, the most widely used is Prolog,
the name stands for Programming in Logic. Prolog uses the inductive logic
programming logical approach and is a programming language designed to
help with solving and/or verifying problems that can be described using first-
order logic. In general, inductive logic programming systems develop predicate
descriptions from examples and background knowledge. The examples, back-
ground knowledge and final descriptions are all described as logic programs[14,
7, 4]. In its essence a program in LP, consists of a set of axioms, which serve
to prove a fact, using rules of inference. The set of axioms is a collection of
universal truths or facts, expressed in the form of Horn clauses. Prolog, as well,
uses Horn clauses and implements resolution via a depth-first strategy and a
unification algorithm[18]. To better understand this we will explain some basic
semantics of logic. Since logic programming is based on an extension of FOL,
A key point to understanding Horn clauses, are propositions. Propositions can
be atomic or compound. An atomic proposition is a statement or assertion that
must be true or false. the atomic proposition is in its basic form is one word or
letter. However atomic propositions can consist of a functor and an ordered list
of parameters -the order matters- in which case it is called a compound term.

Atomic propositions : a
compound term : friend(pythagoras, crates)

functor : friend
ordered list of parameters : pythagoras, crates

Table 2.1: Examples of atomic propositions

A compound proposition on the other hand, is when two or more atomic propo-
sitions are connected be logical connectors or operators (Table 2.2) .

negation : ¬
conjuction : ∧

disjunction : ∨
equivalence : ⇔
implication : ⊂ or ⊃

Table 2.2: Logical connectors and operators

Then there is Clausal form, a standard form of propositions that consists of
exactly one implication. The left part of the implication is called consequent and
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is a compound propositions that has only atomic propositions connected with
disjunctions. The right part is called antecedent, and is a compound proposition
that is formed as well by atomic propositions connected only by conjuctions.
The clausal for expresses the fact that if all antecedents are true then at least one
of the propositions of consequent must be true. So, a Horn clause is a restricted
clausal form, that has zero or one atomic proposition in the consequent. Prolog
uses Horn cluases as logical formulas like the following:

P : −Q1, Q2, ..., Qn.

with P and the Qi being atomic propositions. The above would translate in a
Horn clause in the following way:

P ∨ ¬Q1 ∨ ¬Q2 ∨ ...∨ ¬Qn

2.2 Euclid’s Elements

Automated deduction can be applied to many fields of mathematics, this study
focuses on Geometry and more specifically on theoretical geometry, a huge part
of which are Euclid’s Elements [11]. The most widely known mathematician
in geometry is Euclid form Ancient Greece and Euclid’s most renowned work
are the Elements, which he wrote at about c. 300 BC. The Elements consist of
thirteen books, the first six being about geometry. In the first book Euclid starts
by stating the perquisites for the rest of his books by declaring twenty three
definitions, five postulates and nine axioms. After the axioms, the propositions
and their proofs begin.

A proposition by Euclid consist of some given statements, the construction
part and the proof. The given statements represent the base upon which he will
built the construction and then the proof, so as to conclude to the proposition.
A basic characteristic of Euclid’s Elements is that each proposition once it is
proven, it is considered as given knowledge and so it is used inside other later
propositions.

Although the Elements where considered flawless for many years, Euclid’s
work was not as clear concerning the purity of logic, instead there where many
times in which he would use non-logically proven assumptions [10]. Whether
that was because something came from observation or from assumption. This
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is where Hilbert[13] firstly stepped in and axiomatized Euclid’s geometry by
redefining the basis of Euclid’s definitions, replacing and removing some ax-
ioms concerning the plane. There are also other known axiomatizations of the
Elements such as Tarski’s [22] and Birkhoff’s [6].

2.3 Automated Deduction for Geometry Theorems

In the notion of theoretical geometry more often than not the proof to a propo-
sition needs more than what can be calculated. This is because in most cases,
the diagram plays a vital role to the solution. To add on top of that, the diagram
is usually constructed given the initial assumptions, and then after the diagram
itself provides the additional information needed to create the proof. However,
it would be easier to use automated deduction and logic programming on ge-
ometry if the theory of geometry was transformed into axioms and then fed to
a logic program and the proving fact transformed into an query, as described
in Section 2.1. One step in that direction is creating a formal system of the
Elements.

As observed the Elements use a form of logic in order to form the proofs, nat-
urally many attempts have been made to create a formal system for them, one
of these attempts was by Avigad et al.[1]. They made a formal system to model
Books I to IV from Euclid’s Elements. In order to address the matter of facts that
Euclid takes as observations from the diagram, they set a list of axioms to replace
the conclusions derived from the diagram Euclid constructs. These axioms are
in their core rules that depict the diagram’s purpose and part in the proof. They
state that in some cases where Euclid reads geometric relations directly from the
diagram, in their system this has to be met with one of the system’s rules. These
axioms are divided into categories according to the impact they depict from
the diagram. First are "construction rules" these are the base of their rule system
and are described as the "built-in theorems that are available from the start". The
construction rules include rules about points, lines, circles and intersections of
the above. Then they define the "diagrammatic inference" axioms, which replace
the diagram’s purpose. Then are the rules about "transfer inferences" on the
diagrams, their intention is to depict how the changes on a diagram, as Euclid
describes them, apply on their facts. The last rules they define are about "super-
position inferences”, these rules are about how one diagram relates to another
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and the rules that apply to the former apply to the latter as well. They conclude
this section by explaining the "direct consequence" notion, that they based their
approach on. However, while Euclid takes some parts of the construction as
granted, in their system they claim that more specificity is needed in order to
make use of their rules. In one of the examples they give is with Proposition I.9.,
where Euclid generates a triangle d f e (as seen in Figure 2.1), they claim that the

Figure 2.1: Two cases for Proposition I.9 considered by Avigad et
al. [1].

f point needs more clarification for its placing in the diagram because it may
fall out of the dae angle, which is not true. If one follows Euclid’s direction for
the construction the f point does cut the angle in half and it’s impossible to be
placed in the position they claim. Euclid’s directions state that to place the f
point one must construct an equilateral triangle using his proposition I.1 with de
as a base. Creating an equilateral triangle would place point f exactly in a posi-
tions precisely cutting the dae angle in half when one connects f and a. Another
example the use is the one of proposition I.35 (as seen in Figure 2.2), in this case
there is a lot more to be discussed. While all three cases that they present as fig-
ures can be generated solely from the proposition’s statement, the construction
steps of the proposition eliminate the second where there is one point less. How-

Figure 2.2: Three cases for Proposition I.35 considered by Avigad
et al. [1].

ever, Euclid’s aim is to prove the proposition, and while the proof might not be
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exactly the same for all the cases considered in Figure 2.2, the proposition is true
for all which is of most importance. Euclid is vague enough where he should
be, since his intend is to reuse the propositions through out his work, should he
have been more precise other proofs that use this one might not be provable. It
appears that Euclid is making use of the open world assumption, which makes
his work all the more attractive to potential representation. Last but not least,
I will refer to their statement of Euclid not stating enough information in his
constructions. They take as an example proposition I.2, claiming that point a is
may not be inside circle β and a clarification of da < dg should be made. This
is again misinterpreted since if one follows Euclid’s steps to the construction,
even if a fell out of circle the entire proof still stands true. To prove this, one can
consider the case where ab > bc for which constructed Figure 2.3b. In this case
the circle with center B or circle α, would intersect with line segment Bd2 (or db
in Figure 2.3a) in two points. When one takes the point that is between d2 and
B to name h2 and forms circle with center d2 and radius of d2h2 or β. Then line
segment Ad2 intersects with circle β at point l2 and Euclid’s proof stands exactly
the same, even in this case, since again the proposition’s aim was to create a line
segment from A equal to BC and that is achieved.

(a) Proposition I.2 as formed
by Avigad et al. [1].

(b) Another case for Proposi-
tion I.2

Figure 2.3: Different representations of Proposition I.2

The latest approach on Euclid seems to be the on of Beeson et al. [3] where
they approach the matter of "Proof-checking Euclid". In their approach they used
a custom designed representation of Euclid’s Elements. In this representation
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they merged every axiom, definition, postulate, lemma and proposition into
respective letters or combination of such. The most natural thing in doing so,
following Euclid, is to name variables with one character. Then, they used two-
character names for the relations since they exceed 24, and used AN, OR and
NO for conjuctions, disjunctions and negations respectively. In their approach
they do not follow Euclid’s ways of proving and also do not follow the same
order as his. They seem to approach superposition as equality between figures,
and as they mention in section Checking the proofs in Coq, they had to adapt
to the tool and reused theorems as implicit assumptions for each lemma. They
claim that their approach is more complete and adds to Euclid’s work and that
they are the first to do a non-paper-and-pencil formalization that proves correct
and valid Book I of Euclid and their "corrected proofs of those propositions,
close to Euclid’s ideas". However, they too do not interpret superposition in the
way Euclid does and try to find other ways around this in the construction of
propositions and their proofs. For example, when they say that proposition I.9
cannot be proved using I.1 and they try to work around this.

2.4 Diagrammatic Inference

On the other hand, there are systems that act on diagrams like the one of Miller
[16]. In his approach Miller creates a collection of rules that are divided into
categories according to the implication of the rule on the diagram, similar to the
ones of Avigad et al.. First are the construction rules, inference rules follow and
then transformation rules. He treats superposition as "lemma incorporation", for
which he defines and proves a theorem. Miller’s Lemma Incorporation Theorem
is used in his system to identify the forms that a diagram may take supposing an
ancestor diagram. This becomes useful in the sense of using this lemma to get
the superposition effect by isolating the diagram requiring superposition from
the parent diagram, applying is to a smaller "environment" and using the result
in the parent diagram. Miller concludes this section with the presentation of
the system CDEG that makes use of all the above. CDEG diagrams are not as
conservative and not easy to read, an example diagram is the one of Figure 2.4
which is the result of CDEG on proposition I.1 of Euclid. The main issue with
this approach is that it does not fully take advantage of what Euclid essentially
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(a) General representation of
diagram from proposition I.1

(b) Resulting image of
Proposition I.1 from Miller

[16].

Figure 2.4: Different representations of Proposition I.1

aims at, which is also the major issue that most publications have difficulty
interpreting.

Euclid does indeed have some more vague points, on the contrary to what
these publications suggest, work best through his work, since the vague points
are not important to the application of a proposition, rather opportunities to
apply them even more times. The vague point need no more clarification, if
ones does specify in more detail the context of each proposition might become
more logically complete, but it will lose the point of versatility.

One approach acts directly on diagrams [16] the other solely with logic [1, 3]
to tackle the problem. However, Euclid relies both on diagrams and logic in his
proofs. To encode so much information may be challenging, which means that,
isolating one or the other requires even more effort in designing and applying
such a method.

2.5 Functional Programming

The notion of Functional Programming (FP) one would say is to transform a
problem into a set of steps one should execute, with the intent to focus on the
computation of the problem. Thus, instead of creating multiple paths for exe-
cution at a time, functional programming focuses on one main goal and each
function is a step towards this goal.
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We aim that in this process, every step is a function, which itself is a part of
the solution to a greater goal. A function in FP takes a number of arguments,
that it will use to compute the respective output.

2.5.1 Clojure

One of the first FP languages was Lisp[27], which was then used as the base of
Clojure[12, 8]. Lisp is the second oldest high-level programming language [21].
That makes Clojure, even as a fairly new language, a very interesting one as
well. Offering many different available approaches to a subject.

One of these ways that was also considered for this work, is metaprogram-
ming. In metaprogramming the program is written with the intent to generate
code, to create an other program. One way to take advantage of this method for
this work, was to create a function that would use this automatic generation of
code, is to let the program generate a figure based on custom queries for con-
structions and that would also be a very quick way to do so. It was one of the
reasons this a Lisp family language was selected, its transform and adapt abil-
ities. However since this approach was intuitively considered too user related
and very time consuming to implement, while the aim of this project is more
demonstrative and computational.

Lisp and Clojure as a consequence, have a very distinctive syntax. To begin
with, everything is enclosed within parenthesis "()" and everything is function
call at it core.
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Chapter 3

Method Description

The method is split in three parts; the figure construction based on the descrip-
tion of Euclid, the extraction of facts based on the construction and the reasoning
part. Each part assists the process in a different way and its equally important
for the achieving the goal of the prover. In a brief description, the first part
of figure construction sets the base for determining what we need, a figure; to
visually understand and check the process and the crucial part of seeing as a
human. The second part of valid fact extraction, is extracting the above knowl-
edge to computer readable and interpretable. The last part the one of reasoning,
is using all the built knowledge from the previous steps and a combination of
Euclid’s instructions, reason upon them and conclude to facts that can be stated
in relation to the above. The facts may include, but are not limited to, the proof.
In this section we describe each part and its role in the process.

3.1 Figure Construction

This part aims to create the construction according to Euclid’s construction steps
and generate a figure representing the figure. The first step to consider in this
part, are the "Definitions" of Euclid, specifically the ones that are also used to
create and describe the rest. These are points, line segments and circles.

Through out the figure construction we used the two-dimensional coordinate
system to guide the computer in creating the figures. An example figure is Fig-
ure 3.1 for proposition 2 from Book I. Points are defined using x,y coordinates,
and a name to later be used in the next parts (see Section 3.2). Line segments or
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lines 1, are defined using two points. Circles are defined using their center and
the line whose size was used as radius.

Figure 3.1: A proposed figure for Proposition I.2 using our ap-
proach

After defining the shapes, the next step would normally be to start imple-
menting the Propositions, but this is not the case here. Starting off implement-
ing propositions was attempted at this point, but, then we stumbled upon the
"intersections".

Intersections between circles and lines are fundamental when it comes to
implementing Euclid’s construction steps. Euclid through out his work, takes
intersections as given since his approach is paper-and-pencil. In our approach,
this does not come as naturally, since the code needs some help seeing the inter-
sections. To aid this need, we used analytical geometry restrictively to make the
application see. By restrictively, we mean that the use of analytical geometry was
not used for anything else other than make the computer see what the human
eye would in a paper-and-pencil approach. This means the following methods:

• methods to seek points on shapes:

– fetching a random point from upon a shape and

– checking that a point is on a shape.

• methods to determine intersections between shapes:

– line to line intersection
1We use only line segments through out the constructions, thus we call them lines for ease.
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– line to circle intersection

– circle to circle intersection

The initial coordinate numbers are random for the points needed and said to
be given from the proposition. This randomness leads to different images every
time a propositions figure is constructed. An example of this are Figures 3.3
and 3.4. They are the same proposition and still generate vastly different figures
in every step. After creating a construction, the next part is to extract valid facts
from it.

Figure 3.2: A generated figure for Proposition I.3 using our ap-
proach

A key part of this method is the ability to reuse any previously defined
proposition inside a later one. That should be done by giving the same pa-
rameters as one would give to solely create the former proposition. This means
that each proposition should be independent from its descendants, but can and
should depend on its ancestors in cases of avoiding repeatability and achieving
reusability. What is more, this solutions aims at ease of expandability. In this no-
tion, each step of the construction should be clearly defined and only depend on
previous steps. To keep this balance, the order in which each step is conducted
is very important.

The proposed method uses a proposition-function approach. Using a func-
tion to describe each proposition, gives the advantage of reusing a proposition
simply by referring to it by its name as Euclid does. To aid the ease of writing
new propositions, all the functions should follow the same naming protocol to
be easily discoverable, a template will be used that should only need the con-
struction steps to be filled. The printing part should have the option of choosing
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what one wants to put in the generated image, while keeping it simple enough
to follow.

3.2 Valid Fact Extraction

The key step in the valid fact extraction is actually to extract the relations be-
tween the shapes created in the construction. For this step we reused the pre-
vious Section’s proposition-function method by appending to the function tem-
plate a part were the we choose what will be considered for te fact generation.

Facts are essentially properties of the construction, that are translated into
Prolog predicates. To achieve this, we gathered the created points from each
construction and wrote files that contained for each proposition every possible
shape. By every possible shape, we mean that after following the steps for each
construction, we end up with a collection of shapes, included in the figure of the
proposition. These shapes have connecting points from the way they have been
constructed, depending one to the other. For example, a point A and another
point B, are used for constructing the line AB, by connecting A to B. A full
example of generated facts on Proposition I.3 can be seen in Figure ?? Another
example, is when a rectilinear is created using lines with points in common.
Connections as such had to be translated to facts as well, since they are a key
point to creating a proof.

We consider a connection as a fact, when a shape interacts with another
inside the propositions construction and only them. Interactions that appear
but have no defined relation to the constructions are not considered at all. For
example, Figure 3.2 is a figure generated for Proposition I.3, one can see that the
line c intersects with line connecting a3 to e3. It is not a wrong construction, the
numbers used were random and these accidents or coincidences can happen.
On the other hand, if we let these coincidences define the turn out of the proof
the proof would be meaningless. Thus, there is no reference to this types of
coincidences in the facts.

Extracting a proposition’s facts is essential, but itself would not be enough.
Euclid makes his propositions use one another for a reason that should not be
overlooked. Skipping this connection and the property inheritance they provide,
leads to making a problem harder to solve or even unsolvable.
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(a) Proposition I.1 generated for assist-
ing Proposition I.3

(b) Proposition I.2 generated for assisting Propo-
sition I.3

(c) Proposition I.3 with a line-circle intersection
coincidence.

Figure 3.3: A full example of the steps to construct I.3
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(a) Proposition I.1 generated
for assisting Proposition I.3

(b) Proposition I.2 generated
for assisting Proposition I.3

(c) Proposition I.3 with a
line-circle intersection coin-

cidence.

Figure 3.4: Another full example of the steps to construct I.3

To better understand this, consider Figure 3.4, displaying the process of con-
structing proposition I.3. Figure 3.4c is the final figure and outcome of I.3. The
point of this proposition is to subtract from line a3-b3 a line equal to line c03-c3
(line c). To create this according to Euclid, first one needs to use point a3, to cre-
ate an equal line to line c, using Proposition I.2. This caused Figure 3.3b a step
before completing I.3 to be generated. However to construct I.2 Euclid makes
use of I.1 (Figure 3.4a) to construct the needed equilateral triangle. Every one
of those figures’ constructions is translated into Prolog facts. Since they contain
key information on the shapes and their connections, there is no way to get the
equalities of the goal proposition without them.

3.3 Reasoning on Generated Facts

This part contains the needed logic for proving and making logic conclusions on
the theorem. The prover itself is a set of clauses that include the definitions, pos-
tulates and common notions that Euclid made in his first book. The definitions,
postulates and common notions are translated into definite clauses, along with
the notion of subtraction of lines.
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circle(a3, line(a3, c03)).

circle(a3, line(a3, l2)).

circle(c03, line(a3, c03)).

circle(c03, line(c03, c3)).

circle(c1, line(c1, h2)).

line(a3, b3).

line(a3, c03).

line(a3, e3).

line(a3, l2).

line(b3, e3).

line(c03, c3).

line(c1, a3).

line(c1, c03).

line(c1, h2).

line(h2, c03).

on(circle(a3, line(a3, c03)), point(c03)).

on(circle(a3, line(a3, c03)), point(c1)).

on(circle(a3, line(a3, l2)), point(e3)).

on(circle(a3, line(a3, l2)), point(l2)).

on(circle(c03, line(a3, c03)), point(a3)).

on(circle(c03, line(a3, c03)), point(c1)).

on(circle(c03, line(c03, c3)), point(c3)).

on(circle(c03, line(c03, c3)), point(h2)).

on(circle(c1, line(c1, h2)), point(h2)).

on(circle(c1, line(c1, h2)), point(l2)).

on(line(a3, b3), point(a3)).

on(line(a3, b3), point(b3)).

on(line(a3, b3), point(e3)).

on(line(a3, c03), point(a3)).

on(line(a3, c03), point(c03)).

on(line(a3, e3), point(a3)).

on(line(a3, e3), point(e3)).

on(line(a3, l2), point(a3)).

on(line(a3, l2), point(l2)).

on(line(c03, c3), point(c03)).

on(line(c03, c3), point(c3)).

on(line(c1, a3), point(a3)).

on(line(c1, a3), point(c1)).

on(line(c1, c03), point(c03)).

on(line(c1, c03), point(c1)).

on(line(c1, h2), point(c03)).

on(line(c1, h2), point(c1)).

on(line(c1, h2), point(h2)).

on(triangle(line(a3, c03), line(c1, a3), line(c1, c03)), point(a3)).

on(triangle(line(a3, c03), line(c1, a3), line(c1, c03)), point(c03)).

on(triangle(line(a3, c03), line(c1, a3), line(c1, c03)), point(c1)).

triangle(line(a3, c03), line(c1, a3), line(c1, c03)).

Figure 3.5: Generated facts for Proposition I.3

For this part to work one has to consult both the prover file that contains
Euclid’s statements and the file generated from the proposition described in
Section 3.2 In this way, this part can assist in deriving more than just the theorem,
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but also other valid statements about the construction.
Consider the example of proving the equality of two lines based on them

both being radii of the same circle. For the purpose of this example we will
use proposition’s I.3 figure (Figure 3.3c). Inside this proof one has to prove
that line(a3,e3) and line(a3,l2) are equal. We will first translate Euclid’s
Definition 15 into a Horn Clause (Figure 3.6).

Definition 15. A circle is a plane figure contained by a single line -which is
called a circumference-, (such that) all of the straight-lines radiating towards
-the circumference- from one point amongst those lying inside the figure are
equal to one another.

A circle. circle(A,R)

Two points on it’s circum-
ference.

on(circle(A,R), point(C))

on(circle(A,R), point(B))

The two lines from those
points to the center are
equal.

equal(line(A,B), line(C,A))

equal(line(A,B), line(C,A)) ∨
¬ circle(A,R)) ∨

¬ on(circle(A,R), point(C)) ∨
¬ on(circle(A,R), point(B))

Figure 3.6: Translating Definition 15 to a Horn Clause

Then we will translate that line(a3,e3) and line(a3,l2) are equal (Fig-
ure 3.7) and take the needed background knowledge from the generated facts
for Proposition I.3

Based on the Horn clause of Figure 3.6 the suggested way to resolve 3.7
would be as seen in Figure 3.9.
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line(a3,e3) and line(a3,l2) are equal.

equal(line(a3,e3), line(l2,a3))

Figure 3.7: Observation to be explained

circle(a3, line(a3, l2))

on(circle(a3, line(a3, l2)), point(l2))

on(circle(a3, line(a3, l2)), point(e3))

Figure 3.8: Background knowledge (taken from Proposition I.3)
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equal(line(A,B), line(C,A))

¬ circle(A,line(X0,X1))

¬ on(circle(A,line(X0,X1)), point(C))

¬ on(circle(A,line(X0,X1)), point(B))

C1

circle(a3, line(a3, l2))C2

equal(line(a3,B), line(C,a3))

¬on(circle(a3, line(a3, l2)), point(C))

¬on(circle(a3, line(a3, l2)), point(B))
R1

on(circle(a3, line(a3, l2)), point(l2))C3

equal(line(a3,B), line(l2,a3))

¬on(circle(a3, line(a3, l2)), point(B))
R2

on(circle(a3, line(a3, l2)), point(e3))C4

equal(line(a3,e3), line(l2,a3))

Figure 3.9: Horn Resolution for line equality based on them both
being radii of the same circle
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Chapter 4

Implementation

This section describes the tools used for implementing the method of Chapter 3.

4.1 Implementation Part: Figure Construction

Figure Construction was implemented using Clojure [8] programming language
and specifically the Quil [17] library. It produces images based on the logic
described in Section 3.1.

4.1.1 Infrastructure

The decision on Clojure was made upon the facts that it had to be able to gener-
ate images, remain simple to add new propositions and combine various propo-
sitions again in a fairly easy way. An approach was also made to create the
figures using Prolog, but it proved to be a complicated procedure to add new
ones, even more to combine them.

4.1.2 Structure of Code

The parts to consider in the implementation of this part are the following:

1. Declaration of the basic shapes, as in Euclid’s definitions. This is done in
the base.clj file.

2. Implementation for what an eye can see, but the computer can not. That
is limited to the intersections between basic shapes. To do this we used
Analytical Geometry. Implemented in the core.clj.
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Fact Example
Point point(c1).

Line line(c1, h2).

Circle circle(c1, line(c1, h2)).

Triangle triangle(line(a3, c03), line(c1, a3), line(c1, c03)).

Attribute on(line(c1, h2), point(c03)).

on(circle(c1, line(c1, h2)), point(l2)).

Table 4.1: Examples of generated facts.

3. Propositions from Euclid’s Book I. The implemented propositions are in-
cluded in the propositions.clj.

Each proposition is a function in this system. This means that it can be used
again, especially inside other propositions, only by giving the needed parame-
ters.

4.1.3 Completeness

On the part of Figure Construction and valid fact generation six propositions
where implemented. Example generated images for each are displayed in Fig-
ure 4.1.

4.2 Implementation Part: Valid Fact Extraction

When each proposition is constructed, every shape created is appended as a Pro-
log fact to a .pl file [23]. The attributes currently generated are basic shapes and
their relations. Basic shapes include points, lines, circles, triangles and angles,
while relations are mostly of intersection type denoted as on attributes.

4.2.1 Structure of Code

For this part I added more functionality in the code described in Section 4.1.2.
That is the combinations part as well as the printing of the facts to a .pl file 1.
Examples of the facts can be seen in Table 4.1.

1https://www.swi-prolog.org/pldoc/man?section=projectfiles

https://www.swi-prolog.org/pldoc/man?section=projectfiles
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(a) Proposition I.1

(b) Proposition I.2

(c) Proposition I.3

Figure 4.1: Figures of propositions as generated from the program
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(d) Proposition I.9 (e) Proposition I.10

(f) Proposition I.11

Figure 4.1: Figures of propositions as generated from the program
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4.3 Implementation Part: Reasoning

For the reasoning part I used Prolog and specifically SWI-Prolog [25]. In this
part, I wrote a set of facts as Euclid describes them to create the solving envi-
ronment. An example is given in Code 4.3.

Listing 4.1: Euclid’s Definition 15.

equal(line(A,B), line(C,B)):- circle(B,X),

on(circle(B,X), point(C)),

on(circle(B,X), point(A)).

This is a translation that all lines from the center of a circle to points of the
circumference are equal, which corresponds to Euclid’s Definition 15 (as seen in
[9]):

15. A circle is a plane figure contained by a single line [which is called
a circumference], (such that) all of the straight-lines radiating towards
[the circumference] from one point amongst those lying inside the
figure are equal to one another

4.3.1 Completeness

For the Reasoning part the basis was set for most of these and more. At this
state of the implementation, valid statements may be equality between the lines
and type of a triangle. Though these may seem limited functionalities, they are
key to solving most theorems. It requires more work to be fully complete for
all propositions though. The example described in Section 3.3, this time using
Prolog.

Listing 4.2: Example described in Section 3.3 using Prolog

?- equal(line(a3, e3),L).

L = line(a3, b3)-line(b3, e3);

L = line(l2, a3);
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4.4 Adding more propositions

A key characteristic of this structure is the ability to add more propositions with
ease, even completely custom ones. This requires appending a function inside
the propositions.clj file, as explained in the following paragraphs.

To create a specific proposition one has to know the steps of its construction.
These steps can then be translated to code, using a combination of predefined
operations and shapes.

4.4.1 Predefined Shapes and Operations

By predefined we mean that are already implemented and available to use in the
way described for each one below.

Predefined Shapes Each shape has a set of attributes that are needed for its
creation.

Point. Every point has the following attributes, that should be passed in the
order indicated:

1. name - the name of a point should be begin with a lower case character. It
will be used both for the generated images and the fact extraction.

2. x - the coordinate x of this point, though we used a coordinate system for
the design of the generated images, the coordinates cannot and are not
used anywhere else.

3. y - the coordinate y of this point, though we used a coordinate system for
the design of the generated images, the coordinates cannot and are not
used anywhere else.

Line. For the purpose of this approach lines are in their core line segments,
thus, they consists of two points. It does’t matter which is in the left or right
point of the line.

1. p1 - the first point of this line. Should be of type Point..

2. p2 - the second point of this line. Should be of type Point..
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Circle.

1. center - the center of the circle. Should be of type Point..

2. radius - the radius in this approach is defined with the line that was used
as a guideline for the circle. This is essentially a line connecting the center
and a point in the perimeter of the circle. Should be of type Line.

Triangle. Three lines connecting three points. In this case one should be
aware of the linking between the line points, since it very likely that they will be
used in later stage.

1. l1 - Should be of type Line..

2. l2 - Should be of type Line..

3. l3 - Should be of type Line..

Additional shapes where defined in the code that were not used for the im-
plemented propositions and for this reason they are not described.

Predefined Operations

• point-distance - returns the distance between two points.

• point-on - can either take 1 or two parameters. When given one parameter
it returns a point on this shape. When used with two parameters it the first
can again be any shape, but the second parameter should be a point and
this returns whether the point is on the former shape.

• intersection-points - takes two parameters that can be of type circle or
line and returns any intersecting points.

• extend-line-segment-to - taks two parameters, the line to extend and the
point of this line towards which we want to extend.
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4.4.2 Breaking Down a Proposition-Function

Before we are able to add a proposition it is important to undesrtand the struc-
ture of a propositions function. Such an example is the following. Each con-
struction step is formed by two parts. The left part is a reference name of the
result of the right part. The right part is a combination of predefined operations
and shapes defined earlier.

For example, in Figure 4.2 we see the code of Euclid’s Proposition I.2. The
faded parts are Clojure code that is the same in every proposition-function and
for this reason we will not explain them. The first thing of interest in Figure 4.2 is
the Function name, that is the name we wish to give to this function and it should
indicate the proposition it is for, since this name is the way we can call this
proposition for late usage. Then can write a few words about this proposition in
the Function description, this is optional, but helpful for future users. In square
brackets we give the Given parameters for this proposition, in proposition I.2 those
are point A (pA) and a line BC (lBC). These are the base of the proposition, upon
these we will build the rest of the proposition.

The main part of the proposition-function is the part where we construct the
figure and that is done through the Construction Steps. We will go through some
steps of Figure 4.2 to better explain the usage of Section 4.4.1. The first two lines
of the construction steps are pB (:p1 lBC) and pC (:p2 lBC), this code says that
from line BC I will take p2 and assign it to point C (pC). These are done to define
more clearly all the points we will use, it is optional for ease. Then we define a
new line AB, for this we define a new Line. with the parameters as explained
in Section 4.4.1, which we write as lAB (Line. pA pB). This defines line AB
(lAB), a line from point A to point B. After that, we use proposition I.1 to create
an equilateral triangle as required for this construction. Proposition I.1 takes as
given parameters two points. After the definition of the first circle, whose center
is point B (pB), and has a radius equal to the size of line BC (lBC), there is a more
peculiar point definition p4 (first (intersection-points cBC lDBf)). This
makes use of the predefined operation intersection-points. However, since
the intersection of a line and a circle may return up to two points, we give the
keyword first to get the first and in some cases only point of intersection.

After the construction steps, Figure 4.2 shows a Result of construction steps to
include to the generated image. This part we simply need to write all the reference
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names of the shapes we want to include in the generated image. Nothing is
mandatory, however the outcome might seem odd if key parts are missing.

Another important part of Figure 4.2, is the last indicated part namely Func-
tion’s result. This is the reference name of the shape we wanted to take from
this proposition, usually the last shape created in the construction steps. As
we explained earlier in this section each proposition can be reused inside other
propositions, that is done so that when we need to construct something that can
be constructed via another proposition we do not need to re-write all the lines.
This means though, that we want to take the construction result, that is why we
use the Function’s result part.

Figure 4.2: The code for Proposition I.2. The faded parts of the
figure are generic and the same in all functions/propositions.
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4.4.3 Adding a New Proposition

To add a new proposition we need to replace all the parts analyzed in the previ-
ous Section, these are pointed out in Figure 4.3. The entire proposition’s function
is then appended inside the propositions.clj file.

Figure 4.3: The code for Proposition I.2. The faded parts of the
figure indicate that they need to be replaced to generate a new

proposition.
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Chapter 5

Conclusions

This thesis focused on the automated deduction problem over the field of theo-
retical geometry. Using Euclid’s Elements as the base for our data, we tried to
technically approach the problem from a different perspective than previous at-
tempts. As discussed in Sections 2.3 and 2.4, these attempts’ methodologies vary
from using entirely mathematical logic to using only diagrammatic inference.
However, they were all based on Euclid’s work and evolved around making it
logically complete.

5.1 Discussion

Our method and implementation aims to create a solution that does not follow
this pattern. The first step in creating this solutions was to follow the exact
steps of Euclid. Many of the approaches discussed in Section 2 claimed that to
implement Euclid’s Elements one had to give a considerable amount of effort
into overcoming logic obstacles that Euclid did not consider. The most criti-
cal of which, straying away from Euclid’s logic, not reusing previously defined
propositions for construction of later ones.

In our implementation we did not step into those obstacles, because of the
solution’s design of proposition-function (Section 3.1). The way this works is
that each proposition is defined as a function its implementation depends only
on previously defined propositions, as Euclid did throughout his work. In
many other attempts to implement Euclid’s work, re-defining and inserting more
propositions and definitions was declared a necessity. Our approach is more of
a digital alternative of Euclid, we do not claim to have fixed anything from his
work. Instead of re-writing his method, we used the method he suggested. That
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(a) Generated figure for
proposition I.9 from our ap-

proach

(b) Possible error displayed
in Proposition I.9 displayed

by Avigad et al.

Figure 5.1: Comparison between our approach on Proposition I.9
and the possible error displayed from Avigad et al.[1]

being said, we did create workarounds, not for the methodology of Euclid, but
for the gap between a human eye and a computer "vision", as pointed out in
Section 3.1.

One example where the above design helps is during the construction of
Proposition I.9.Avigad et al. [1] suggested that a figure like Figure 5.1b could be
conducted by following Euclid’s directions. Using our construction that does not
stand true, because the de line, according to Euclids directions, is used as the base
of an equilateral triangle (Proposition I.1). This means that point f will naturally
fall between points d and e. As seen in the construction from our implementation
(Figure 5.1a), where f is seen as c1, d is d9, e is e9 and a is a9. While Avigad et
al. did not fully go according to Euclid, they did achieve the formalization of
his work. The most core difference from this approach is the simplicity in ours.
We tried to keep the thought process strictly in the modeling of the solution and
not in the knowledge transfer from Euclid to the implementation.

What is more, the images generated are actually human readable and com-
plete representation of the construction. Fully designed by the same function
that extracted the generated facts for reasoning and yet easily understandable
by a human in contrast to Miller [16], as demonstrated in Figure 5.2. Which also
makes the diagrams a helpful tool to validate the outcome of reasoning.

Another key part of this approach, is the ability to add more propositions
with ease as explained in Section 4.4. This includes but is not limited to Euclid’s
propositions of Book I. Since the design of the code is such that allows the
creation of custom propositions as well.
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(a) Generated figure for proposition I.1
from our approach

(b) Resulting image of Proposition I.1
from Miller.

Figure 5.2: Comparison between our approach on Proposition I.1
and one from Miller [16]

Last but not least, an important note is a comparison between our approach
and systems like Coq[2] or Theorema[26]. The latter are based on, proof check-
ing and automated theorem proving respectively. As seen in a boarder compari-
son of theorem provers done by Wiedijk[24], Coq is mostly a proof checking tool
to which we have a part that is related, since we need the construction of the fig-
ure to reason upon. However, we then leave the prover to make the conclusions,
which is more relatable to Theorema - being an automated theorem prover. As
with Theorema, our approach uses a mixture of input and predefined logic to be
able to derive conclusions, in contrast with Coq that uses user input solely. At
a higher level of abstraction, our approach aims to create a system that follows
the concept of a human while solving a problem, meaning we take an input de-
scribing the data available, and derives conclusions based on these. The process
of creating a complete input is not a concern of the user though, since the user’s
job is to provide his construction and it the system’s job to generate all the facts
that can be derived from this construction. This apart from saving time, is also
a much needed logic since there is no room for missing trivial or not facts.
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5.2 Future Work

In the scope of this work, we have developed limited operations like line equality
and determining the type of a triangle. There is more content already included
but is not yet in use and has not been tested. This includes definition and type
determination of angles, surfaces, quadrilaterals and polygons. Undoubtedly
we would like to add more propositions at least from the first books of Euclid’s
Elements and even test or prove custom theorems.

One idea of expansion is to not have to give the goal statement to the prover
instead we would only need to provide the construction. Then, the prover would
automatically generate all the possible facts that are considered valid for this
construction. While this would ease the process of the proof, it would also be a
good way to see any other possible fact trivial or not to the proof. Which would
also give important information about the entire theorem.

Another interesting angle to consider would be the generation of coincidental
facts in separate file. As explained in Section 3.2, since the figures are created
using as initial points random coordinates, there might occur several different
shapes and figures, all describing the same proposition (Figures 5.3). Extracting
facts that would not be included by default since they are not clearly made by
the steps of the construction, that are simply a coincidence, are the ones here
called coincidental. Considering the coincidental facts could lead the proof in
different paths, for example to a completely new theorem. The main idea behind
this is to create a separate file that would contain all the coincidental facts. We
would use a separate file because we want to clearly state the difference from
the original generated facts and still keep the consistency and structure of the
facts untouched. Since we are using a separate file we would have to also insert
and load this one also to the reasoning part. Making use of the previous idea as
well, generating facts without the need to explicitly state the goal, could lead to
the generation of an entirely new theorem.

What is more, an interesting application would be in Computer-Aided De-
sign (CAD). As explained by Martin [15], in CAD it is of interest to be able to
observe geometric properties that are implications of the geometric constraints
used on a design.
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(a) First case Proposition I.2 (b) Second case Proposition I.2

Figure 5.3: Examples of possible cases for Proposition I.2
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Appendix A

Referenced Euclid Propositions

In this Appendix we display the propositions implemented as seen in [9].
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