
University of Piraeus
Department of Digital Systems
Postgraduate Programme "Information Systems & Services"

Running Kafka clusters on Kubernetes
From a Proof-of-Concept to a Production-Grade Deployment

(Λειτουργία Kafka Cluster σε Kubernetes περιβάλλον)

Dimitris Ntosas
Author

Contents

1. Abstract 4

1. Abstract (GR) 5

2. Introduction 7
2.1 From Monoliths to Microservices 7
2.2 Kubernetes: Containerized Workload Orchestrator 17
2.3 Kafka: Distributed Pub/Sub System 24
2.4 The benefits of delivering Kafka in Kubernetes 27

3. Implementation 29
3.1 Identification of the problem we want to solve 29
3.2 Technologies we are going to use 31
3.3 High-Level Design 33

3.3.1 IaaS Layer 36
3.3.2 PaaS Layer 40
3.3.3 SaaS Layer 44

3.4 Specifications 47
3.4.1 Kubernetes Cluster 47
3.4.2 Kafka Namespace 51
3.4.3 Monitoring Namespace 54

4. Results 57
4.1 Unit Test 57
4.2 Load Test 60
4.3 Stress Test 64

5. Future Work 68

7. References 70

2

1. Abstract
Software design patterns have changed radically during the last decade.
The emerge of Cloud Computing capabilities accompanied by more
demanding business requirements, made the industry moves towards
new architectures that promised to bring efficiency to the next level.

As a consequence, functionalities like Message Queuing and
Containerized Workload Orchestration became common requirements in
modern software engineering. Kafka as Message Broker system and
Kubernetes as Container Orchestrator bring great features to serve the
above needs and they are already tested on mission-critical
environments.

Problems begin when it comes to maintain and use these systems.
Kafka and Kubernetes along with their powerful offerings, introduce
great complexity for both Administrators and End-Users that usually act
as a burden for their adoption in existing or new setups.

We want to challenge these problems by creating a Platform that
combines Kafka with Kubernetes and provides their functionalities as a
Service. An abstraction interface that brings simplicity and confidence in
the way applications and users interact with these technologies.

Our goal for Applications utilizing this platform is to rely on benefits
starting from Reliability and end-to-end Performance to enhanced Fault
Tolerance.
Our aim for users acting as Operators is to reduce the burden of manual
operations and bring a smoother experience to the administrative
process. For users acting as Software Engineers, we want to provide the
capability of an accountable reduction of complexity to their Deployment
Patterns and a minimalistic way of declaring Message Queuing
dependencies. Once configured, Kubernetes, Kafka, and other
applications deployed through our Platform will scale and self-heal
without any manual intervention.

3

1. Abstract (GR)
Οι προσεγγίσεις στο σχεδιασμό λογισμικού άλλαξαν ριζικά την
τελευταία δεκαετία. Η εμφάνιση των δυνατοτήτων του Cloud
Computing, συνοδευόμενη από πιο απαιτητικές επιχειρησιακές
απαιτήσεις, έκανε τη βιομηχανία να κινηθεί προς νέες αρχιτεκτονικές
που υποσχέθηκαν να φέρουν την απόδοση του λογισμικού στο επόμενο
επίπεδο.

Κατά συνέπεια, λειτουργίες όπως το Message Queuing και το
Containerized Workload Orchestration, έγιναν κοινές απαιτήσεις στη
σύγχρονη μηχανική λογισμικού. Το Kafka ως σύστημα Message Broker
και το Kubernetes ως Container Orchestrator φέρνουν εξαιρετικά
χαρακτηριστικά για να εξυπηρετούν τις παραπάνω ανάγκες και έχουν
ήδη δοκιμαστεί σε κρίσιμα επιχειρησιακά περιβάλλοντα.

Τα προβλήματα αρχίζουν να εμφανίζονται στη συντήρηση και τη χρήση
αυτών των συστημάτων. Τα Kafka και Kubernetes, μαζί με τις ισχυρές
λειτουργικότητες τους, εισάγουν μεγάλη πολυπλοκότητα τόσο για
τους διαχειριστές όσο και για τους τελικούς χρήστες που συνήθως
λειτουργούν ως ανάχωμα για την υιοθέτησή τους σε υφιστάμενες ή
νέες εγκαταστάσεις.

Θέλουμε να δώσουμε λύση αυτά τα προβλήματα δημιουργώντας μια
πλατφόρμα που συνδυάζει τα Kafka και Kubernetes και παρέχει τις
λειτουργίες τους ως Υπηρεσία. Μια διεπαφή αφαίρεσης που
προσφέρει απλότητα και την αυτοπεποίθηση στον τρόπο με τον οποίο
οι εφαρμογές και οι χρήστες αλληλεπιδρούν με αυτές τις
τεχνολογίες.

Ο στόχος μας για τις εφαρμογές που χρησιμοποιούν αυτή την
πλατφόρμα είναι να εκμεταλλεύονται οφέλη που ξεκινούν από την
αξιοπιστία και την απόδοση έως τη βελτιωμένη ανοχή σφαλμάτων.

4

Ο στόχος μας για χρήστες που ενεργούν ως Διαχειριστές είναι να
μειώσουμε το βάρος των χειρωνακτικών λειτουργιών και να
επιτύχουμε μια ομαλότερη εμπειρία στη διοικητική διαδικασία. Για
τους χρήστες που ενεργούν ως Μηχανικοί Λογισμικού, θέλουμε να
παρέχουμε τη δυνατότητα μιας σημαντικής μείωσης της
πολυπλοκότητας στα πρότυπα ανάπτυξης τους και έναν μινιμαλιστικό
τρόπο δήλωσης των εξαρτήσεων των εφαρμογών τους.

5

2. Introduction

2.1 From Monoliths to Microservices
During the last two decades, software was designed and deployed as
monoliths. In monolithic applications, single instances performed all the
business logic functions.

Most of this software were Enterprise applications, which in most cases
were utilized by a single company or organization. The development,
deployment, and maintenance was an internal responsibility, and its lying
infrastructure usually was on-premise. Common examples of such
applications were in-house billing or accounting. The constant
definitions or parameters such as business scope, size, and security
constraints could ensure high process adoption and performance. High
availability or downtime-less systems were not a firm requirement back
then [1, 2]

But, technological breakthroughs during the last two decades extended
the limits of what software applications are capable of offering.
Performance on complex tasks like Business Intelligence, Customer
Management, Traffic Analytics was boosted significantly, leveraging both
better hardware and more efficient software patterns and languages.

Operators and developers needed to find new ways of efficiently
managing this complexity as the codebase's size grew. At the same time,
we got an exponential bump in Internet usage. That was a catalyst and a
newborn dimension that eventually produced a new category of software
and pattern, which is widely known as web applications.

The fact that these pieces of software could be accessible from
everywhere in the world, from every device, with just using a browser,
arose a new requirement for development lifecycle: the need of having 0
downtimes. So, what we today call Resilience, started to be on an

6

engineers' everyday life that built systems meant to be served on the
web, with unexpected fluctuations of workload or network.

Monoliths had straight limitations that could not follow the new
development requirements that arose. The shared ownership of the
codebase made engineering teams grow big enough to introduce several
headaches in the process. To tackle this, teams started to split the
monoliths into smaller parts to handle one business function each time
and finally get closer to a Service Oriented Architecture [2, 6].

Going Cloud Native Era

At the same time that the world started to migrate to more fine-grained
architectures like SOA and EDA [50, 51]. A new hype was born that was
promising simplicity and efficiency on leveraging compute resources: the
Cloud!

The ever-increasing requirements of Web Application Development for
speed, flexible scaling, and around-the-clock availability created a
challenge in providing the required on-premise infrastructure in an
economically feasible way. This challenge led us to the rise of
on-demand cloud computing platforms.

Cloud computing platforms such as Amazon Web Services (AWS),
Microsoft Azure, and Google Cloud have created a global network of
data centers based on an economy of scale approach. Coupled with
central management and high-level engineering, the end-user can
practically lease highly available and reliable compute resources for as
long as required and at any level of scale [2, 4].

The two driving factors behind Cloud Computing adoption have been:
The Pay-per-use model, which frees companies from the initial capital
cost of building infrastructure as well as the abstraction of the physical

7

infrastructure to compute resources which answers the challenge of
keeping up with Moore's Law.

Open Issues

Handling the physical infrastructure through Cloud technologies is only
one of the problem's facets. There are numerous issues in an
application's development life-cycle that need to be considered, such as
development and deployment[6].

- Increasingly large build times: Monolithic applications increase
their codebase over time, resulting in ever-growing build times, this
hinders development speed and in some cases can also affect
reliability since quick changes (eg a rollback after a failed
deployment) in the software are not possible.

- Development Speed: A monolithic application encourages tight
coupling, thus even small changes to the code base can cause
radical and unwanted changes in the application, in an enterprise
context, a bug introduced by one team can negatively impact every
other team. This environment creates a culture of long
non-incremental deployment cycles contrary to what Agile
Software development proposes (evolutionary development, early
delivery, and continual improvement)

- Inflexibility to Failure: By construction, a monolithic application
will become unavailable if any of its functions fail, however, this
behavior can become extremely disruptive while the codebase
grows. An optimal solution should allow us to define precise error
boundaries (that allow propagation of errors only inside the
relevant subsystems) and allow our application to function at the
best of its capacity while some subsystems might be failing.

8

- Resource Overprovisioning: In the event of suddenly increased
workload for a particular business function, our only option to
handle the load through a monolithic application is to multiply the
full instances and load balance between them. As a consequence,
we get a non-optimized utilization of compute resources and in the
context of Cloud Computing suboptimal consumption leads to
increased costs. One would prefer a scenario where we can flexibly
scale only the parts of the application that are under great load.

Microservices

Industry realized that a coordinated engineering contribution should take
place in order to avoid the problems with the monolithic architectural
style discussed above, resulted in the development of a new
architectural style: Microservices [1, 2, 6].

High-Level Architecture style comparison

Following this style, the monolith is decomposed into an ecosystem of
loosely coupled services (smaller applications).

Every and each for these new modules of software is now responsible
for a specific well-defined problem area. When implementing business

9

requirements we do so by creating services that can communicate and
aggregate data between them.

Decomposing software into smaller modules makes it easier to build,
understand, and test. Problems mentioned above for monoliths are
addressed by design.

Comparing to the Monolithic approach, a microservices strategy has the
following advantages:

a) Well-defined microservices have a considerably smaller and less
complex problem space (compared to an all-encompassing
monolith) thus making it easier to argue, design and implement
them.

b) When a change needs to be introduced only the affected
microservice needs to be rebuilt. Reduced deployment time is one
of the main goals when trying to achieve continuous delivery and
deployment.

c) On a well-designed system failure of a separate microservice
should only cause downtime on that service and not to the entirety
of the system. However, this introduces development cost since
each service should be designed to work in a network under the
requirement that other services might become unavailable.

d) Fluctuation in Compute requirements can be optimally managed:
When a system is decomposed to microservices we can scale only
the affected services and not the entirety of the system.

10

Challenges that Microservices introduced

Microservices pattern was like a blast that solved by-default and
by-design several problems that Monoliths had but they also introduce
fresh new challenges:

- How to achieve optimum utilization of Cloud Resources? As also
mentioned before, in Microservices, workloads are dynamically
scaled to the required number of replicas so it’s essential to think
of a way of optimizing the utilization of cloud resources. In simple
words, fine-grained control over how cloud resources are being
utilized. Microservices architecture is certain to have too many
moving parts. Manual control is not applicable when it comes to
the usage of all the cloud resources. Designing and implementing
automation that takes care of these controls, becomes a new
challenge that we can’t avoid but tackling it.

- How do we manage dozens of Deployment Operations? Going
Microservices, a single application is split into multiple smaller
parts. Attention must be taken to ensure that communication
between the workloads is still reliable and efficient. At the same
time, the operating system layer of the host machines must
comply with the newly introduced required dependencies.

- Complexity can now follow exponentially the growth of services
number, and we can assume that for the majority of early adopters,
regular operations -as we knew them- can easily become a
nightmare. A robust approach with a solution-suite that enables
operators to efficiently handle the complexity of the introduced
operation has become indispensable.

- How do we guarantee a reliable Communication Bus? The
Microservices approach often brings a large number of services
that need to communicate and at the same time to be loosely
coupled and autonomous. As a result, software development tends

11

to adopt the Observer pattern, and the need for robust
publish-subscribe messaging systems arises.

The solutions to these new challenges mainly required two key
innovative technologies.

Containers to enable the efficient packaging and deployment of
distributed applications and a Container Orchestrator System that could
handle the management of multiple Containers relationships.

Containers

The container is virtualization at the OS layer where the kernel enables
and manages the presence of multiple instances at user-space [7, 8].

In simple words, imagine a container as a fully functional virtual
machine, running inside another host machine (host). Every jail like this
(container) is now fully isolated from another jail lying on the host, and of
course from the host.

Containers have their own namespaces and they have isolation from the
file system to process and compute resource usage. Docker, Containerd,
and rkt are some of the most in-use container runtime daemons.

12

Monolithic/Legacy vs Containerized deployment of software

Containerization mainly introduces two main features:
- Application and Infrastructure decoupling. Life without containers

has as a common practice to deploy software applications directly
on host machines. That means operators had to include the logic
of operating applications inside machine configuration, libraries,
system services, and lifecycle. A trivial puzzle between application
and host which eventually concluded on the host machine to be
transformed into an application itself. With Containerization in
place, applications are delivered as packages into the host
machine to run. These “packages” include by default all
dependencies into self-isolated containers that the host machine
just needs to run. The application and the host OS are now
completely decoupled, enabling users to deploy the application to
any host without worrying about configuring underlying
constraints. [9].

13

- Resources Isolation. Decoupling applications from underlying
hosts removed a lot of friction on deployment operations. In
addition, another major advantage of Containerization is the
capability to isolate compute resources between different
containers. Think about a faulty container that returns errors. Now,
it is totally isolated and can not affect other containers running on
the same host. In addition, each container can be guaranteed a
certain amount of CPU and Memory [9].

The industry has already understood the value this method of packaging
and deployment brings, and we can say it is now a widely adopted
pattern.

Container Orchestration System

As the industry highly adopted the usage of containers the need for a
system that could cope with the management of multiple container
relationships arose. The name of this piece of technology was Container
Orchestration System.

On a high level, container orchestrators should have all the needed
capabilities of handling containers’ lifecycle. Talking about the more
specific scope and steps on how this layer would fit on the whole
platform, how to split responsibility, etc, it's totally up to the team that
owns and designs such a system. The good thing is that the flexibility
and extensibility that such a system offers, allow operators to build
based on various approaches [10].

In simple words, such a system won’t be only present to control the start
or stoping of a container, but should be able to provide more abstracted
functions to address the following outliers [10, 11]:

- Applications must be highly available and deployed in a manner
that eliminates downtime risk, regardless of the complexity of their
functions.

14

- Applications must be resilient to sudden load spikes, regardless of
the amount of fluctuation introduced.

- The system must be able to optimally use the cloud compute
resources available.

- Deployment operations like rolling upgrades or rollbacks should
take place in a smooth manner.

The majority of engineering teams in the industry have faced the above
problems, implementing different solutions or combinations of them.
That gave the community the lead to think of a project that can be
utilized to solve the above.

As requirements were almost the same for everyone, designing an
orchestrator that addresses all of them together seemed like an efficient
approach that could benefit the industry long-term.

Over the past decade, Google already started to work on many projects
that wanted to solve deployment problems. The outcome of this work
was the so-called Kubernetes that they donated to the community.
Kubernetes promised to offer a bundled solution for teams operating on
containerized environments [17], backed by the whole experience that an
organization in the scale of Google can provide [16].

15

2.2 Kubernetes: Containerized Workload Orchestrator

What is Kubernetes?

Quoting from official Documentation [12]. Kubernetes is a portable,
extensible, open-source platform for managing containerized workloads
and services, that facilitates both declarative configuration and
automation. It has a large, rapidly growing ecosystem. Kubernetes
services, support, and tools are widely available.

The name Kubernetes originates from Greek, meaning helmsman or pilot.
K8s as an abbreviation results from counting the eight letters between the
"K" and the "s". Google open-sourced the Kubernetes project in 2014.
Kubernetes combines over 15 years of Google's experience running
production workloads at scale with best-of-breed ideas and practices
from the community.

It is designed to effectively solve many of the issues we outlined earlier.

i) Kubernetes can run containerized applications of any scale without any
downtime.
ii) Kubernetes can self-heal containerized applications, making them
resilient to unexpected failures.
iii) Kubernetes can auto-scale containerized applications as per the
workload, and ensure optimal utilization of cloud resources.
iv) Kubernetes greatly simplifies the process of deployment operations.

16

Kubernetes Logo

In summary, Kubernetes is a system capable of performing reliably
complex deployment/management operations with a bunch of
commands or a few lines of code.

As a project, was originated by Google and now is donated and
maintained by Cloud Native Computing Foundation (CNCF) which is a
foundation with core scope to ensure that cloud-native patterns would
be universally accessible.

17

What problems is Kubernetes designed to solve?

Kubernetes can orchestrate and hold the desired state on compute,
network, and storage given a set of constraints from a user. It eliminates
the dependency of manual intervention and automates the process of
keeping an application highly available while utilizing allocated compute
resources in the most optimized way [12, 13].

- Dynamic Service Discovery. Your environments may consist of
dozens of workloads, while you add or remove them on demand.
Kubernetes is taking care to provide this discovery natively and
reliably for the whole cluster.

- Load Balancing. Each of the workloads gets a unique LB targeting
all backend pods, providing a simple interface to distribute traffic
among all targets, enabling the virtually infinite horizontal scaling.

- Autoscaling. Handle the compute load surge of workloads in a
horizontal manner. Scaling out replicas when traffic is increased
while gracefully scaling when the surge is finished to avoid
unessential costs. Kubernetes handles all these operations
automatically for users.

- Self Healing. Kubernetes watches all backend endpoints for
knowing its state through multiple ways and if a service goes
broken, it automatically applies recovery actions.

- Smooth Rollout and Rollback. Kubernetes can deploy any kind of
application as a rolling operation either by one-by-one or by
replacing multiple instances at a time with just a command or a
bunch of configuration lines of code. At the same time, these
operations also respect all the other features like self-healing
during the rolling.

- Environment, Configuration and Secret Management. Kubernetes
implements two kinds of resources that are meant to store both
sensitive or non-sensitive data. ConfigMap is a flexible volume that
can be read in multiple ways, ideal for storing configuration data.
Secret is a protected volume bounded with core k8s security
controls that is ideal for storing encrypted data like passwords etc

18

where we want to minimize the risk of exposing them by mistake.
At the same time, a Pod is capable of holding a different
environment per Container so users can inject their variables of
choice and provide an easy interface to comply with 12FA app
requirements.

- Storage Management. Kubernetes implements an interface (CSI)
for effectively managing the state of workloads. It provides richful
attribution and isolation between storage claim, attaches or
allocation. Firstly, this was well integrated only with famous public
Cloud providers but now Kubernetes extended this compatibility
with almost all kinds of known storage solutions. It also allows
operators to define storage constraints per scope via
StorageClasses.

Kubernetes Terminology

Kubernetes defines a large number of abstract objects. Here, we will only
discuss those Kubernetes objects that are essential for understanding
our implementation [14]. Quoting from source [15]:

- Pod: We know that through Kubernetes, we could run containerized
applications. Instead of abstracting a single container as a
Kubernetes object, Kubernetes defines pod, which is a group of one
or more containers. There is an advantage arising by making this
choice. For simpler cases, each pod in the system could represent a
single container. But, whenever there is a need to deploy additional
capabilities that are not directly related to the core business
functionality of the container — like support for logging, caching, etc
— we have an option to package these additional capabilities into
separate containers and place them in a single pod. This ensures
they always stay logically together. Pods are the smallest
deployable units of computing that can be created and managed in
Kubernetes. It is the place where the actual application code
implemented by the end-user runs. Each pod has its own IP address
and is completely decoupled from the host. [15]

19

- Service: In Kubernetes, pods are volatile. To ensure high availability
and optimum use of computing resources, Kubernetes could
dynamically kill and create pods. Because of this, the IP address of
a pod is not a reliable way to access the business functionality
offered by the pod. Instead, Kubernetes recommends using a
service to access the business functionality. Kubernetes service is
an abstraction that defines a logical set of pods and a policy to
access them. Every Kubernetes service has an IP address, but unlike
the IP address of a pod, it is stable. A Kubernetes service
continuously keeps track of all the pods in the system and identifies
the pods it is expected to target. Whenever a request to access a
particular business functionality reaches the service, it will redirect
the request to the IP address of one of the pods that are active in
the system at that point in time. Ideally, to access the pods from
outside the cluster, one must use Ingress. As of now, however, the
Kubernetes Ingress feature is still in beta. Thus, in this example, we
will use a service to expose the traffic externally as well. [15]

- PersistentVolume and PersistentVolumeClaim: Managing storage
is a distinct problem from managing to compute power. Kubernetes
defines two key abstractions to handle this problem, i.e. persistent
volume and persistent volume Claim. In Kubernetes, a persistent
volume is a piece of storage in the cluster that has been provisioned
to be used by the cluster for its storage requirements. A
persistent-volume claim is a request by an application to consume
the abstract storage resources declared through persistent volume.
To make persistent storage available to the applications running
inside Kubernetes, one should first declare persistent volume and
then configure the application to make a claim to use that volume.
[15]

- ConfigMap: Configmap is a Kubernetes abstraction meant to
decouple environment-dependent and application-configuration

20

data from containerized applications, allowing them to remain
portable across environments. [15]

- Secrets: A secret is an object that contains a small amount of
sensitive data such as a password, a token, or a key. Putting such
sensitive information in a secret allows for more control over how it
is used and reduces the risk of accidental exposure. [15]

- Deployment: Deployment is an abstraction meant to represent the
desired state of an actual deployment on Kubernetes. A deployment
object typically contains all the information required — the location
to obtain and build containerized applications, the configuration of
pods expected to package and run these containers, the number of
replicas of each pod that should be maintained, the location of
application configuration in terms of config-maps and secrets
meant to be used by the containers, the configuration of data
storage (if the application needs persistent data storage). All of
these could be declared inside deployment. Although it is possible
to create individual pods and services in Kubernetes, it is
recommended that one uses deployment to manage deployments.
By using the deployment object, typical operations like roll-out,
roll-back, and monitoring are greatly simplified. [15]

- CRD: In the Kubernetes API, a resource is an endpoint that stores a
collection of API objects of a certain kind. For example, the built-in
pods’ resource contains a collection of Pod objects. The standard
Kubernetes distribution ships with many inbuilt API
objects/resources. CRD comes into the picture when we want to
introduce our own object into the Kubernetes cluster to full fill our
requirements. Once we create a CRD in Kubernetes we can use it
like any other native Kubernetes object thus leveraging all the
features of Kubernetes like its CLI, security, API services, RBAC, etc.
The custom resource created is also stored in the etcd cluster with
proper replication and lifecycle management. CRD allows us to use
all the functionalities provided by a Kubernetes cluster for our

21

custom objects and saves us the overhead of implementing them
on our own. [58]

What Kubernetes is not designed to do

Kubernetes is a fully-featured suite for managing containers. However,
there are many things that operators are tempted to believe are part of
its core functionality but the truth is that the following are expected to be
integrated with tools/processes outside of the orchestrator itself [18]:

x) Kubernetes does not provide a network. It just has an interface (CNI)
that configures an already implemented network layer so as to provide
transparent communication between Pods and Nodes without NAT.

x) Kubernetes is not a CI/CD system. Building, testing, and delivering a
codebase are not features of any orchestration system. What
Kubernetes does well in those cases is to provide a simple interface for
automation systems like Jenkins to easily integrate with.

x) Kubernetes does not provide application dependencies. Databases,
caches, event buses, or storage systems are not built-in components of
k8s. These dependencies can use Kubernetes as runtime but they need
to be deployed separately from the orchestrator itself.

x) Kubernetes does not provide monitoring constraints like Metrics,
Alerting, or Logging. There are built-in mechanisms that help users
easily ingest logs and such kinds of information but these are only
proof-of-concept functionalities and their purpose is to just provide an
interface for external tools to consume and handle. Prometheus and
Fluentd are some popular projects that aim to contribute to such
functions.

Kubernetes brought great value to its end-users, giving them a robust
platform with interoperability with 3rd tooling by default and by design so

22

it’s important to utilize its innovation instead of exploiting it as a
one-for-everything solution.

23

2.3 Kafka: Distributed Pub/Sub System
What is Kafka?

Apache Kafka is a message bus system that allows high throughput of
messages to be streamed and be published or subscribed on-demand.
Its distributed nature enables users to process efficiently and reliably
huge amounts of data volumes. [19]

Kafka guarantees the prevention of data loss by persisting its data on
the disk and also replicating it to different physical or logical locations. It
is built with a dependency on ZooKeeper which is a known stable and
performant service for state sync.

The core principles that the project wants to comply with, are to be a
scalable low latency platform for processing in real-time big amounts of
data streams, aiming to the needs of both simple implementations and
demanding enterprise ones [20].

Kafka Logo

24

Kafka Features

Kafka as a messaging platform in addition to other platforms also
provides [19, 21]:

Scalability: Kafka is able to reliably and performantly scale in multiple
dimensions: On the producer/consumer side, on event processing, and
event connectors. In other words, Kafka scales easily without downtime
even with huge volumes of data.

Fault Tolerance: Kafka is able to efficiently handle failures both on the
control and data plane.

Reliability: Kafka offers Durability and Replication as it uses Distributed
commit logs, which means messages persist on disk as fast as possible
across several nodes. This kind of distribution and partitioning
guarantee its reliability constraints.

Performance: Kafka can support high throughputs both for publishing or
subscribing to message streams. Even for many Tbps of traffic, Kafka
implementation and resource utilization allow it to maintain the same
performance stability.

Extensibility: Kafka offers a very pluggable interface to develop
additional features. At the same time, Kafka offers a simple and richful
way to write your own connectors for it.

Data Transformations: Kafka can provision transformed data streams
given a specific input from producers.

25

Kafka Terminology

Kafka defines a large number of abstract objects [21]. Here, we will only
elaborate on those Kafka objects that are absolutely essential for
understanding our implementation.

- Broker: In real life, a broker is an individual who takes care about
transactions between two or more parties and takes a commission
upon transaction execution, a facilitator between the two sides. In
Kafka’s terms, actual nodes called brokers as their prime
responsibility is to receive messages from producers and let
consumers fetch them.

- Cluster: A set of Brokers acting as a highly available distributed
system.

- Topic: A log of streamed records. Every message that arrives in a
Broker is written as a sequel in a topic.

- Partition: Kafka facilitates the data sharding technique to spread
the load for a specific Topic. Partition is a subset of a given topic.
[53]

- Replica: Kafka is able to produce Replicas per Partition spread on
multiple Brokers to ensure fault tolerance on the cluster. Every
Partition has a Leader that is responsible for taking write requests
and read requests to keep consistency and if Leader fails, a
Replica will take its role to continue the operations.

- Producer: Any external application that delivers messages to a
specific Partition of Topic.

- Consumer: Any external application that fetches messages from a
specific Partition of Topic.

26

2.4 The benefits of delivering Kafka in Kubernetes
Kafka is designed to offer by default High Availability, Fault Tolerance,
and Horizontal Scalability. By deploying Kafka into Kubernetes we can
take advantage of Kubernetes design principles to create a fine-grained
Platform for modern software environments [22].

Let’s break down principles that mainly describe the value of this
Platform:

Portable: Kubernetes offers a universal way of creating a compute
platform as it can be deployed anywhere (cloud, on-prem, etc). It
provides a consistent runtime, from major public cloud providers to your
personal computer. Software packages that are deployed on k8s have
the same behavior and can be ported as-is to a different underlying
environment without any certain restriction for the type of application.
While the primary focus was to tackle the complexity that microservices
brought to the game, even monoliths can be deployed on k8s and take
advantage of all capabilities that the orchestrator offers. Kafka will be
our candidate here.

Flexible: Kubernetes has no restrictions on how many moving and
custom parts operators can combine to build their platform. In simple
words, k8s offers the essential flexibility to build the features needed
alongside existing infrastructure layers like monitoring, network, etc.
Users can use Kubernetes for running their applications while using a
3rd party service for logging and the list goes on. Provisioning a
functionality on a platform built on k8s is just a manifest away!

Extensible: Kubernetes exposes an interface for each feature available
to use or extend. This allows users to implement new functionalities on
top of existing ones and is also a reason that there are dozens of
add-ons already developed for Kubernetes from the community.

27

Each of these principles adds great value to the end-user who wants an
environment with Kafka to work on. Portability enables users to test or
run applications on different environments, preventing vendor lock-ins.
Flexibility and Extensibility enable the easy customization of functions
that are not present by default but are essential for system scope.

In simple terms, developers gain the freedom to choose the exact
development tools and frameworks that are essential to comply with
business requirements without the friction of putting effort into
infrastructure and deployment.

28

3. Implementation

3.1 Identification of the problem we want to solve
The problem here is that Kubernetes and Kafka combined, introduce
great complexity in both the Administrators and Stakeholders. If we
include in here, essential components like monitoring, etc, a whole
expertise team may be a dependency to handle this end-to-end.

To deal with that, we want to create an abstraction interface that
leverages Kafka as well as Kubernetes capabilities to provide them as a
Service. This interface will feature Kafka resources as well as the
application’s dependencies, to be declared as Kubernetes Manifests. In
addition, the end-to-end pipeline definitions as a code will introduce
great complexity reduction.

Our aim is to reduce the burden of manual operations. Once configured,
Kafka and other applications deployed through our Platform will scale
and self-heal without any manual intervention. Kubernetes could be
integrated with a Continuous Integration (CI) pipeline, allowing a code
change committed by a developer to be deployed onto the test
environment automatically.

This kind of automatability will ensure that manual work necessary for
the maintenance of a large-scale application is kept at a minimum. This
will allow a relatively small team to successfully maintain a large-scale,
distributed application deployed on the cloud.

29

In order to better understand the solution proposed [22], we first need to
understand which will be the system’s (1) Offerings (2) Actors and (3)
some of the Use Cases:

Offerings

1. Event Bus Interface: Kafka that provides an abstraction for the
usability and configuration of itself.

2. Observability Interface: Prometheus and Elasticsearch that
provide an abstraction for scraping and monitor deployed
applications in the Platform.

Actors

1. Applications deployed in the Platform: Asks guarantees for the
offerings.

2. Platform Operators as Owners: Responsible for reliability and
configuration.

3. Software Engineers as End-Users: Stakeholders of the offerings.

Workflows / Use Cases

1. Platform Operator declares a Kafka Cluster as Kubernetes
Manifest.

2. Platform Operator does rolling upgrade operations at Kafka
Cluster through Kubernetes control plane.

3. Platform Operator does scaling operations at Kafka Cluster
through Kubernetes control plane.

4. Software Engineer develops an application and asks for Kafka
dependencies and Prometheus scraping for metrics exposure.

5. Application acts as Producer declare its Kafka dependencies as
part of Helm Chart as Kubernetes Manifest.

6. Application acts as Consumer declare its Kafka dependencies as
Deployment’s environmental variables.

30

3.2 Technologies we are going to use

Infrastructure

- We are gonna leverage a public Cloud Provider (AWS) to obtain the
Compute Resources needed [23].

- For CPU and Memory, we are gonna use pure EC2 which is the
cloud provider’s definition for a virtual machine running on Xen
Hypervisor.

- For underlay Networking (Routing Tables, Subnet Management,
etc), we are gonna use plain VPC which is the cloud provider’s
definition for a virtualized namespace of network functions.

- No managed Platform or Software services will be used.
- Although it needs to be clear, the above-chosen Infrastructure

specifications are not hard dependencies for the actual
Implementation. We are free to switch between any system that
supports x86 or ARM architectures, from Cloud to Bare Metal
instances. The final deployment will provide the same functionality
with the same configuration applied, across any platform. [48, 49]

Platform

- You are going to use Debian as Operating System. Debian offers
great flexibility in optimizing and configuring Linux Kernel variables
to meet the needs of a heavy Network/CPU workload [24].

- Kubernetes as Container Orchestrator and Kafka as Event Bus
which we have already thoroughly explained [12, 19].

- Prometheus to scrape and store Metrics which is a robust
time-series database with an even more powerful query language
[25].

- Elasticsearch to collect and store Logs which is a highly-available
NoSQL database, nice fit to store our document structured data
[26].

31

Tooling

- Git as Version Control [27]
- Docker as Container Daemon [28]
- Terraform as Infrastructure as a Code [29]
- Kops and Helm for Kubernetes Provisioning [30, 31]
- Jenkins as CI/CD [32]
- Grafana to visualize Metrics [33]
- Kibana to visualize Logs [34]
- Several benchmarking tools (Vegeta / Netperf etc)

The above technologies will be fed from their corresponding
repositories, stable channels. Versions will be point pointed to the latest
stable releases but not always to LTS ones. In addition, they all are Open
Source, and their source code repo links can be found in the References
section.

Technologies Overview

32

3.3 High-Level Design

In order to better describe and design our Implementation, we will slice it
into three main layers:

- Infrastructure as a Service (IaaS)
- Platform as a Service (PaaS)
- Software as a Service (SaaS)

These definitions were introduced during the last decade by the
engineering community so as to have a more descriptive common
language in the new environments the cloud computing era brings. [35]
When we refer to a resource and define in which of these layers the
resource exists, we have already described (1) the entity which is
responsible for managing this resource, (2) the possible dependencies
from other layers, and (3) the offerings that would be provided.

On-Premise vs IaaS vs PaaS vs SaaS Comparison

33

In the above image, you can see a summarized view of how these layers
are sliced into.

By adopting this model we can create ownership/administration
isolation and declared guarantees of abstracted functionality. When a
declared guarantee is violated, we can easily identify in which layer the
violation takes place and address the issue without the need to track
down all the components of such complex architectures as the modern
ones [35].

Let's assume an example to better explain the above statements:
Resources defined at the IaaS layer means that they are managed at the
Infrastructure level and that they offer functionalities as a service to the
next layer which is the Platform. A virtual machine or a network router is
fully managed at the Infrastructure level and if a resource from the
Platform wants to leverage them, it just gets pure CPU, Memory, and
Network. The way these offerings are administered or configured is
totally agnostic to the resource that belongs to the Platform. The
platform only knows that can reserve and use resources from
Infrastructure as is. The same chain of usability applies and from
Platform to Software Layer etc.

Our implementation’s IaaS layer will include all the core components
needed to start building on a higher abstraction level. These
components involve virtual machines to provide compute resources,
virtual routers and switches to provide networking, connectivity, and
routing, and finally persistent storage.

At the PaaS layer, we will include the core components that have as the
main dependency the offerings of the IaaS layer and that provide the
functionalities needed from the SaaS layer to offer final solutions to
end-users. Components included at this level are the Kubernetes Cluster
as well as the Kafka and Monitoring Cluster.

34

Finally, at the SaaS layer, we meet our actual offerings which are (a)
Event Bus as a Service which is backed by the Kafka Cluster in the
Platform layer, and (b) the Metrics and Logs as a Service which are
backed by our Monitoring Cluster in the Platform layer as well.

You can see an overview of all the three layers combination plus
separation in the following diagram.

IaaS / PaaS / SaaS High Level Overview

35

Each Layer will be thoroughly described in detail in the following
sections.

36

3.3.1 IaaS Layer

This layer acts as our foundations; in simple terms, our Infrastructure.
Even if we actually get these resources as virtualized components from
a public cloud provider, we will design our system without that in mind.

We will focus on leveraging these resources to create an architecture
that can offer the required Reliability, Resilience that can tolerate
multiple physical locations failure. Remember, even if we consider all
these as totally virtualized resources, in the end, it’s an abstraction of a
bare-metal computer hosted in a real Data Center.

Our implementation’s design goal was to be applicable across different
providers, from Cloud to Bare Metal ones.

IaaS Layer Overview

37

We will create a VPC to host all our compute and network resources.
Reminder at this point, a VPC stands for Virtual Private Cloud and it is an
abstraction that delivers an isolated and virtualized namespace for
specific compute and network resources.

VPC will handle resources that will be spread across three different
Availability Zones. Availability Zone acts as a separated physical
location, in simple words a Data Center. Leveraging three different
physical locations will ensure our need for a highly available distributed
system that can tolerate failures even on a regional level.

The reason behind choosing three instead of two Availability Zones
stands to the fact that the technologies we have chosen are - in their
majority - using Raft Consensus Algorithm to reach Quorum [36] for
taking decisions and elect leadership between their master nodes. As a
result and as the Raft RFC suggests, we need at least three different
nodes to avoid split brains and Platform inconsistencies [36].

In each Availability Zone, we will provision a Node Group, so-called from
cloud provider as an Autoscaling Group. Each one of this Node Group
will host the virtual machines needed to provide compute power for the
software we will deploy at the next phase, in the PaaS Layer. This Node
Group will also deliver an auto-scaling feature with a policy that triggers
based on CPU or Memory Load. For example, if a Node Group that hosts
a number of virtual machines has a specific CPU load for a specific time
interval that operators had decided, a new virtual machine will be spawn
to join this Node Group and deliver the extra compute power required.

Regarding networking needs for the above architecture, we need to
ensure connectivity and transparency between our Nodes in different
physical locations in the OSI Layer 3 and 4[ref]. With the word
transparency we mean at all of our Nodes in the VPC will be under the
same supernetted network, they will be assigned a unique IP to advertise
themselves to communicate with other Nodes. In addition, Nodes inside

38

the VPC would have the ability to communicate with other Nodes
without NAT.

That given, each Availability Zone will host a separate and unique in a
manner of CIDR subnet that will be a subset of our VPC root subnet, that
all the virtual machines will be assigned IP address from.

The connectivity between Availability Zones and the routing between
different subnets will be handled by a virtual network function provided
by a cloud provider that acts as a Virtual Router. This Virtual Router
includes all the functionalities needed so our resources will be provided
with a transparent underlay network to work on.

Virtual Router will also be also responsible for the policies regarding
network traffic. The summary of the rules for our traffic in four points: (1)
communication inside our private network is allowed from all to all by
default (2) ingress traffic from external networks to our internal network
is denied by default (3) ingress traffic from external networks from
authorized users is allowed only through dedicated VPN Gateway (4)
egress traffic to external networks is allowed from all to all by default.

As mentioned before, we want our internal resources to be totally
isolated from public internet ingress access. Operators and End-Users
who need to access internal resources will be able to do so by using a
VPN Gateway that we will create. This VPN Gateway would be provided
by a dedicated virtual machine inside our VPC that will be configured
with a VPN server service and that will be the only node in our network
that will be assigned with a public IP from our cloud provider besides the
private one from our Virtual Router.

Internal resources that need egress to access public internet, will be able
to do so by a NAT Gateway that will be associated with Virtual Router.

39

We want all our implementation aspects to be declared as Code so we
will use Terraform [ref] to achieve that scope for the IaaS layer.
Terraform is a tool for building, changing, and versioning Infrastructure
as a Code [29].

Terraform VPC Declaration Example

Actors of IaaS Layer

Platform Operators to configure and administer declared resources.

Summary of IaaS Layer Design Principles

A. Multiple Availability Zones to ensure High Availability
B. At least Two Physical Locations Fault Tolerance
C. Transparent Underlay Network
D. Nodes inside the VPC can communicate with without NAT
E. Users can communicate with VPC only through VPN Gateway
F. VPC can communicate with the outside world through NAT

Gateway

40

3.3.2 PaaS Layer

This layer acts as the place where the promised offerings of our
implementation are introduced. We will reserve infrastructure resources
directly from the IaaS layer to deploy and configure our core runtime
which is the main dependency to our SaaS layer.

PaaS Layer Overview

We will combine features of various great open source technologies
mentioned in section 3.2, to produce a Platform that resolves all the
dependencies needed from the SaaS layer to offer end users a fully
managed containerized environment to deploy their apps with a

41

fully-managed Event Bus for communication and the essential
Monitoring.

A Kubernetes Cluster will be created so as the rest components to be
directly deployed in an environment that offers state declaration.

The Control plane of the Kubernetes cluster will be held by three Master
Nodes. These nodes will be split among all Availability Zones -each
physical location will host a master node- to ensure high availability for
the whole cluster orchestration.

Kubernetes master nodes will hold the essentials services needed for
cluster orchestration: (1) API server which is responsible for storing and
validating cluster objects state (2) Controller which is responsible for
keeping cluster and objects’ state at the defined one (3) Scheduler which
is responsible for leveraging Infrastructure resources in such a way to
keep cluster state healthy (4) Etcd which is responsible to provide a
reliable key-value store to API server [12]

Kubernetes Worker Nodes will also split among all Availability Zones,
with the actual number of nodes to be decided from autoscaling group
policies after measuring the compute resources requirements.

In each Kubernetes worker node, essential components for managing
the node will be deployed: (1) Kubelet which is responsible for managing
container processes (2) KubeProxy which is responsible for looping in
iptables rules to ensure proper routing for Kubernetes overlay network
and (3) Weave CNI which is responsible to provide container processes
with virtual network interfaces so as to gain the ability to join Kubernetes
overlay network. [12]

All above components will be held under Kubernetes Namespace with
the name “Kube-System” and the scope of this namespace is to group all
the services needed for proper Kubernetes cluster-based functionalities.

42

Two more Kubernetes Namespaces will be created: Kafka and
Monitoring.

In the Kafka Namespace, we will deploy a Kafka and a Zookeeper cluster
that will be managed from a CRD. Here, we will deploy all the resources
needed - Pods, Persistent Volumes, etc - to provide the functionality of
our Platform’s Event Bus. A more detailed description of this namespace
will follow in section 3.4.2.

In the Monitoring Namespace, we will deploy Prometheus, Grafana,
Elasticsearch, and Kibana. Here we will deploy all the resources needed -
Pods, Persistent Volumes, etc - to provide the functionality of our
Platform’s Monitoring System. A more detailed description of this
namespace will follow in section 3.4.3.

All the above deployments are served with Guaranteed QoS which
means that they will get priority and guaranteed to compute resources
reservation from the IaaS layer.

At the same time, these deployments will be offered an Autoscaling
Policy -where applicable- to ensure that if there is a need for more
compute resources to get them.

We apply these policies as we consider components of the PaaS layer is
critical ones for our implementation.

43

Actors of PaaS Layer

Platform Operators to configure and administer declared resources.

Summary of PaaS Layer Design Principles

A. Kafka will provide through its dedicated operator, a robust
self-healed cluster

B. Elasticsearch will provide through its dedicated operator, a robust
self-healed cluster

C. Kubernetes System deployments will be served with Guaranteed
QoS

D. Kafka deployments will be served with Guaranteed QoS
E. Monitoring deployments will be served with Guaranteed QoS
F. Deployments will declare Horizontal Pod Autoscaling Policy to

ensure High Availability
G. Host network traffic will be shaped with kubeProxy
H. Pods in the host network can communicate with all Pods without

NAT

44

3.3.3 SaaS Layer

In this layer, we finally introduce our offerings to Software Engineers as
end-users and to the Applications deployed in our Platform.

What we guarantee in this layer -by leveraging PaaS layer offerings- is
that end-user(s) can develop and deploy Application(s) that (1)
Kubernetes will manage their desired state (2) Event Bus will be present
for communication between Applications and (3) Metrics and Logging
will be provided upon request.

SaaS Layer Overview

45

All above functionalities can be enabled directly from the application’s
deployment manifest that Kubernetes handles.

For a producer Application, Kafka dependencies can be declared by
involving the following manifest in their deployment:

Kafka Topic Declaration at Application Manifests

For a consumer Application, Kafka dependencies can be declared using
environmental variables:

Kafka Topic Declaration at Application Manifests through ENV variable

46

For an Application that wants Prometheus to collect its metrics, the
following annotations would enable the scraping:

Prometheus Scraping Declaration at Application Manifests

Actors of SaaS Layer

- Applications deployed in the Platform that asks guarantees for the
offerings

- Software Engineers as end-users and Stakeholders of the
offerings

Summary of SaaS Layer Design Principles

A. Kubernetes will handle the desired state of Deployments in the
layer of runtime, autoscaling, and self-healing

B. Kafka will provide through its dedicated operator, a robust
self-healed cluster

C. Prometheus is able to scrape every Deployment is requested to
D. Producer Applications can declare their Kafka dependencies inside

their Manifests
E. Consumer Application can declare their Kafka dependencies inside

their Manifests
F. Fluentd will deliver all stdout/err of the Platform at Elasticsearch

47

3.4 Specifications

3.4.1 Kubernetes Cluster
As we mentioned before, Kubernetes will be deployed in virtual
machines across all three Availability Zones to ensure high availability
and quorum requirements.

Replicas Multi-AZ CPU req Memory req

Master Nodes ASG 3 Yes 8 vCores 16 GB

Worker Nodes ASG 3 .. n Yes 8 vCores 16 GB

Kubernetes Cluster underlying Infrastructure Specifications

All Kubernetes Nodes will be delivered with Debian as an operating
system as it offers great flexibility in tuning Kernel and Network-specific
configurations that are essential for an optimized host node.

Components that will be deployed along with Kubernetes Cluster and
that will be responsible for core functionalities are the following:

- Traefik: An Ingress controller that is responsible for delivering
network traffic from outside the cluster to internal resources. [37,
38]

- CoreDNS: A DNS service provider for Kubernetes Clusters [39]
- MetricsServer: Get cluster-wide metrics directly from kubelet and

Kernel cadvisor module to provide Kubernetes objects monitoring
[40]

- Autoscaler: A component that leverages metrics exposed from
MetricsServer and communicates with IaaS API to manage the
underlying virtual machines group scaling operations. Autoscaler
guides IaaS to spawn or absorb worker nodes. [41]

48

- FluentD: Daemon that scrapes all the cluster’s Pods stdout and
stderr to deliver these streams to an Elasticsearch cluster for
monitoring purposes [43]

- Weave: CNI that attaches to all the cluster’s Pods a virtual network
interface so they can join and communicate through the
Kubernetes overlay network [44]

Function Type Repli
cas

CPU
req

Memory
req

Traefik Ingress Deployment 3 .. 6 300m 128 Mi

CoreDNS DNS Service Deployment 3 .. 6 300m 256 Mi

Autoscaler Cluster Nodes
AutoScaling

Deployment 2 .. 3 100m 128 Mi

MetricsServer Cluster
Monitoring

Deployment 2 .. 3 200m 128 Mi

Kube2IAM IAM Roles
Attach

DaemonSet n 100m 128 Mi

FluentD Logs
Forwarding

DaemonSet n 200m 128 Mi

Weave CNI DaemonSet n 200m 128 Mi

Core Components Overview Specifications

We want every aspect of our Platform to be defined as a Code in order to
be maintainable, idempotent across different infrastructure
environments, avoid or restrict manual operations and reduce complexity
for Operators.

To meet the above requirements, Kubernetes Cluster will be provisioned
and configured by Kops and its core components will be deployed with
Helm.

49

Kops is a utility that takes as input a Kubernetes Cluster declaration as
manifest and produces as output an idempotent deployment of it. By
communicating with IaaS layer API, Kops asks for needed resources and
when they are ready, it applies the Kubernetes configuration supplied.
[30]

Kops Cluster Manifest Example

50

Helm is an application package manager for Kubernetes. With Helm, you
can define even the most complex manifest leveraging GoLang
templates. In addition, Helm keeps versioning of each deployments’
revision manifests. [31]

Helm Deployment Template Example

51

3.4.2 Kafka Namespace
Kafka Namespace is the place where we will group our Kubernetes
objects required for Kafka Cluster deployment (Pods, Services,
Persistent Volumes, etc).

Strimzi Operator is an open-source project that gives the ability to
provision and configures Kafka Clusters as a Code and as Kubernetes
manifest. [46]

We will leverage Strimzi Operator [46] features as it can handle Kafka
operations in a more reliable way than a straight Kubernetes
deployment. The reason for such a diverse between Strimzi and plain
Deployment is that Strimzi as a custom resource definition is developed
to understand and intervene in Kafka’s application logic rather than
manipulating Kubernetes process-based attributes. The operator will be
deployed as CRD. [45]

Kafka Cluster and Zookeeper Cluster (which acts as a key-value store
and is a hard dependency for a Kafka) will be deployed as StatefulSets
and will be managed by Strimzi Operator.

Function Type Repli
cas

CPU
req

Memory
req

Strimzi Operator CRD 1 300m 128 Mi

Kafka Broker StatefulSet 3 .. n 1000m 256 Mi

Zookeeper KV Store StatefulSet 3 200m 128 Mi

Kafka Namespace underlying Kubernetes Specifications

52

As we mentioned before, we want to deliver all aspects of our
implementation as a code and Strimzi offers a variety of nice features
for this.

With Strimzi, we can declare a Kafka Cluster as Kubernetes manifest or
we can even declare a Kafka Topic as Kubernetes manifest with
reference to an existing Kafka Cluster. Let’s see some examples of the
above cases described.

Kafka Cluster as Kubernetes Manifest Example

As you can observe, with Strimzi we can define both system-level
specifications like the size of the block device that will be mounted for
Kafka to hold its data and Kafka’s application-level specifications like
rack awareness topology and broker configuration, etc.

53

Our implementation’s Kafka Cluster will be provisioned with at least
three nodes to ensure High Availability and brokers will be enforced
through their rack awareness policy, to be deployed across all Availability
Zones, one at a time in a round-robin way.

Furthermore, we can declare a Kafka Topic as Kubernetes Manifest
providing both reference to an existing Kafka Cluster and
application-level topic configuration.

Kafka Topic as Kubernetes Manifest Example

Topics will be enforced to hold at least three Replicas and at least one
in-sync Replica to leverage the previously mentioned policy.

54

3.4.3 Monitoring Namespace
Monitoring Namespace is the place where we will group all our
Kubernetes objects required for Elasticsearch, Prometheus, Grafana,
Kibana, and Node Exporter deployments (Pods, Services, Persistent
Volumes, etc).

ECK Operator is an open-source project that gives the ability to provision
and configures Elasticsearch and Kibana Clusters as a Code and as
Kubernetes manifests [47].
.
We will leverage ECK Operator features as it can handle Elastic Stack
operations in a more reliable way than a straight Kubernetes
deployment. The reason for such a diverse between ECK and plain
Deployment is that ECK as a custom resource definition is developed to
understand and intervene in Elastic Stack application logic rather than
manipulating Kubernetes process-based attributes. The operator will be
deployed as CRD. [45]

Elasticsearch and Kibana Cluster will be deployed as StatefulSet and will
be managed by their corresponding Operator which will be deployed as
CRD

Prometheus and Grafana will be deployed as StatefulSet and
Deployment accordingly.

Node Exporter, which acts as a monitoring agent at the IaaS layer, will be
deployed as DaemonSet so to ensure its presence on each one of the
virtual machines which act as Kubernetes worker nodes.

55

Function Type Repli
cas

CPU
req

Memory
req

Elasticsearch Log Store StatefulSet 3 300m 128 Mi

Kibana Log Visualize StatefulSet 1 500m 256 Mi

Prometheus Metric Store StatefulSet 1 200m 128 Mi

Grafana Metric Visualize Deployment 1

Node
Exporter

System
Monitoring

DaemonSet n

Monitoring Namespace underlying Kubernetes Specifications

As we mentioned before, we want to deliver all aspects of our
implementation as a code, and ECK besides Helm will provide this for
Monitoring Namespace.

With ECK, we can declare an Elasticsearch Cluster as Kubernetes
manifest.

We can define both system-level specifications like the size of the block
device that will be mounted for Elasticsearch to hold its data and Elastic
Stack application level specifications like node role and xpack security
configuration etc.

Our implementation’s Elasticsearch Cluster will be provisioned with at
least three nodes to ensure High Availability and nodes will be enforced
through their rack awareness policy, to be deployed across all Availability
Zones, one at a time in a round-robin way.

56

Let’s see an example of the Elastic Stack declaration.

Elasticsearch Cluster as Kubernetes Manifest Example

Prometheus and Grafana will be provisioned as simple Kubernetes
StatefulSet as their single-node architecture introduces limitations in the
functionality extensibility that a Custom Resource Definition could
enhance them with.

57

4. Results

4.1 Unit Test
Scope

In this section, we want to validate that the functionalities of the
offerings on our Platform are working end-to-end. The results of this test
could provide us with useful insights, on a first iteration basis, to validate
our Functionality Claims that users should expect from our Platform.

Scenarios and Acceptance

We will simulate all the Use Cases mentioned in previous sections, to
make certain verifications that the defined offerings delivered proper
functionality. Scenarios will be held under normal Load conditions for
the whole Platform. By normal, we mean about ~65-70% resource
utilization.

Acceptance comes when functionality for each scenario meets our
actual expectations.

Topology

We will deploy various dummy applications that will produce and
consume messages from multiple topics to ensure our Kafka as a
Service offering. At the same time we will be monitoring these
applications and our Platform as well through the Monitoring system we
have already deployed.
Applications that act as Producers will publish to specific topics and
applications which act as Consumers that subscribe to specific topics.

58

Output

All Unit test Scenarios passed successfully.

- Scenario: Prometheus Scraping

The platform successfully scraped metrics, for every deployment
annotated its request to utilize Prometheus.

- Scenario: Elasticsearch Logging

The platform successfully pushed logs to no-SQL documentDB, for every
deployment that was exposing its logs to stdout and stderr.

- Scenario: Kafka Dependencies Declaration

The platform successfully created the dependencies needed from both
publisher and subscriber applications. Kafka Topic creation,
modification, and deletion were tested multiple times and for different
kinds of deployments and the results always validated proper
functionality.

- Scenario: Kafka Scaling Operations

The platform successfully provisioned scaling operations on the Kafka
cluster upon modifications on the corresponding manifest resource. One
thing to consider is that the Kafka cluster scaled in a manner of a
number of broker nodes, but added or removed nodes were not fully
utilized from Kafka as the rebalancing phase was not triggered at that
point automatically.
We have tracked this as a feature that should be considered as future
work and that could be implemented by adding Cruise Control
functionality in our Platform, see more in section 5.

59

Scenario Result Notes

1 Prometheus Scraping Pass

2 Elasticsearch Logging Pass

2 Producer Applications can
declare their Kafka

dependencies inside their
Manifests

Pass

3 Consumer Application can
declare their Kafka

dependencies inside their
Manifests as environmental

variables

Pass

4 Scale-Out Kafka Cluster Pass Manual cluster rebalance
was needed for new

brokers to be fully
utilized.

5 Scale In Kafka Cluster Pass Manual cluster rebalance
was needed for old
brokers to not be

included in cluster state

Unit Test Scenarios Output Overview

60

4.2 Load Test
Scope

In this section, we want to calculate the performance level our Platform
will deliver per CPU core. The results of this test could provide us with
useful insights as a first iteration basis to declare Performance Claims
that users should expect from our Platform’s Kafka Cluster.

Scenario and Acceptance

We will create the appropriate conditions to measure end-to-end latency
of how many messages could a Kafka pipeline deliver under an
acceptable time threshold and utilizing CPU resources near to one vCore
per broker.

Key Value

Broker Count 6

CPU Req Target ~ 1000m

Client Count 1 .. 50

Message Count 10k .. 1m per client

Message Rate (rps) 100 .. 250 per client

Message Size (bytes) 512 / 1024 / 4096

Replication Factor 3

Min InSync Replicas 1

ACK Config -1

Retention Policy 7d or 5GiB

Consumer Lag Target < 10000 ms

Load Test Environment Specifications

61

In order to measure our ConsumerLag target indicator, we will use a
utility called Kafka Lag Exporter [55] that bind to a cluster and calculates
the latency for a topic per consumer group, by processing the following
formula:

Consumer Lag Calculation Formula

62

Acceptance come to the point where our pipeline reaches ~1 vCore and
simultaneously ConsumerLag is under 10000 ms.

We are choosing to specify a threshold for end-to-end latency to keep an
acceptable time interval for generic pipelines to respect. If we measure
one core utilization with enormous lag times, the load test would not
provide us with results that are useful for production environments.

Topology

X number of clients will act as Producers that will publish to a specific
Topic and Y number of clients will act as Consumers that subscribe to a
specific Topic.

Kafka brokers replicas count will be set to six and replication factor for
topics will set to three. Active partitions will be set to ten.

The producer’s ACK configuration will be set to -1 to ensure the delivery
of a message is acknowledged to be replicated to the desired copies so
our cluster can handle node failures.

Load Test Topology

63

Output

After many iterations of testing with different values for environment
configuration, we reach our target to utilize one vCore with 80 clients as
Producers and 10 clients acting as Consumers.
The amount of the producing size was adjusted accordingly to bring the
essential traffic to reach the targeted compute load. Consuming side
was static at ten clients, to meet the actual number of partitions as if we
had a greater number of consumers, coordination lag may introduce at
our group.
Our Platform, without any kind of optimization on specific pipeline
needs, can deliver a throughput of ~14600 req/s per CPU core.

Load Test Target Reached Iteration: CPU Usage and Throughput Graph

Load Test Target Reached Iteration: Consumer Lag Graph

64

4.3 Stress Test
Scope

In this section, we want to validate that our Platform continues to
operate normally under specific disaster scenarios. We will involve
testing beyond normal operational capacity, often to a breaking point, to
observe its behavior.

The results of this kind of test could provide us with useful insights, on a
first iteration basis, to validate our Reliability Claims that users should
expect from our Platform’s Kafka Cluster.

Scenarios, Target Indicator and Acceptance

We will simulate specific disaster scenarios, to measure the cluster and
pipeline disturbance introduced at the functionality of the defined
offering during the time of each incident.

We will test (a) Heavy Traffic Spikes (b) Broker Failure © Kubernetes
Node failure and (d) Rolling Upgrade of Kafka Cluster

Scenarios will be triggered during a stabilized state of the Platform
running under normal Load conditions. By normal, we mean about
~65-70% resource utilization.

The disturbance will be measured by monitoring the possible increase
rate of the Consumer Lag metric. The formula for measuring Consumer
Lag has described in section 4.2 where we implement the Load Test

Acceptance criteria deliver success when the disturbance is < 10000 ms.

65

Topology

Several dummy applications will act as Producers that will publish to
specific topics and several dummy applications will act as Consumers
that subscribe to specific topics when stress scenarios will be held.

Output

All Stress Test Scenarios passed Successfully.

- Scenario: Broker Failure

The platform delivered exciting results in case of a Kafka Broker failure.
Disturbance to applications could not even be observable in our pipeline
end-to-end latency formula with a granularity of 30 seconds between
scraping.

Examining applications side to find a way to measure the impact of
broker failure, we came up that disturbance was equal to the time
needed for the consumer group to trigger and finish its rebalance phase
which is actually under ~100 milliseconds and the time needed for
Broker recovery was about ~30 seconds which is actually the time
needed for a new Pod for Kafka StatefulSet to be scheduled.

- Scenario: Node Failure

The platform delivered the same results as in the above scenario of
Kafka Broker failure as for Kafka, a corrupted Kubernetes Nodes is
translated as the Pods that Node was holding and were acting as Kafka
Brokers that turned into a fail state.

The time needed for Node recovery was about ~120 seconds. During the
time with a corrupted Kubernetes node, Disturbance for applications
utilizing Kafka Cluster was under ~100 milliseconds in total.

66

- Scenario: Rolling Upgrade

Modification on Kafka Brokers and then rolling apply the new
configuration was a smooth and non-blocking operation that held and
tested several times. Nothing more to report here except that
disturbance for applications was under ~100 milliseconds after each
Broker restart.

- Scenario: Heavy Traffic Spike

In this scenario, we simulate a load spike by throttling a huge amount of
traffic to the cluster. What we observed is an increase in consumer lag by
~50% and that Kafka chose to give priority to produce throughput rather
than the consumer side.

We also got some flapping in the status of Kafka Controller between
healthy and not healthy state but cluster continued to deliver proper
functionality. The indicator with the highest increase was the time spent
during the memory garbage collection stage, something normal as Kafka
had to cope with a huge number of requests to handle.

The scenario was successful as the disturbance did not violate our
acceptance threshold.

Stress Test Load Spike Disturbance

67

Another observation to consider is that during the simulation of the
heavy traffic spike scenario we indirectly validated our results during
Load Test that was held in section 4.2.

Putting so much pressure on the cluster which was translated as
throughput increase, we came out to verify that cluster was robust
enough not to stop working but at the same time cluster could not cope
to deliver throughput greater than 15000 msg/s per core. That number is
in sync with the results for the pipeline threshold we also got during load
testing Kafka to measure its performance per core.

Scenario Result Disturbance

1 Kafka Broker Failure Pass < 100 ms

2 Kubernetes Node Failure Pass < 100 ms

3 Kafka Cluster Rolling Upgrade Pass < 80 ms

4 Trigger a heavy Traffic Spike Pass < 3000 ms

Stress Test Scenarios Output Overview

68

5. Future Work
In this section, we describe possible extra Features that can be enabled
on our Platform

Service Level Operator

Service level operator abstracts and automates the service level of
Kubernetes applications by generation SLI & SLOs to be consumed easily
by dashboards and alerts and allow that the SLI/SLO's live with the
application flow.

This operator interacts with Kubernetes using the CRDs as a way to define
application service levels and generate output service level metrics.

Although this operator is thought to interact with different backends and
generate different output backends, at this moment only uses Prometheus
as input and output backend.
Repo: https://github.com/spotahome/service-level-operator

Cruise Control

Cruise Control is a general-purpose system that continually monitors
Kafka clusters and automatically adjusts the resources allocated to them
to meet predefined performance goals. In essence, users specify goals,
Cruise Control monitors for violations of these goals, analyzes the existing
workload on the cluster, and automatically executes administrative
operations to satisfy those goals.
Repo: https://github.com/linkedin/cruise-control

Cloud Events Specification

Events are everywhere. However, event producers tend to describe events
differently.

69

https://github.com/spotahome/service-level-operator
https://github.com/linkedin/cruise-control

The lack of a common way of describing events means developers must
constantly re-learn how to consume events. This also limits the potential
for libraries, tooling, and infrastructure to aid the delivery of event data
across environments, like SDKs, event routers, or tracing systems. The
portability and productivity we can achieve from event data are hindered
overall.

CloudEvents is a specification for describing event data in common
formats to provide interoperability across services, platforms, and
systems.
Repo: https://github.com/cloudevents/spec

Schema Registry

Schema Registry provides a serving layer for your metadata. It provides a
RESTful interface for storing and retrieving Avro schemas. It stores a
versioned history of all schemas, provides multiple compatibility settings,
and allows the evolution of schemas according to the configured
compatibility setting. It provides serializers that plug into Kafka clients
that handle schema storage and retrieval for Kafka messages that are
sent in the Avro format.
Repo: https://github.com/confluentinc/schema-registry

70

https://github.com/cloudevents/spec
https://github.com/confluentinc/schema-registry

7. References
[1] Martin Kleppmann. Designing Data-Intensive Applications. O’Reilly Media, 2017
[2] Sam Newman. Building Microservices. O’Reilly Media, 2015
[3] Alessandra Levcovitz, Ricardo Terra, Marco Tulio Valente. Towards a Technique
for Extracting Microservices from Monolithic Enterprise Systems.
https://arxiv.org/pdf/1605.03175.pdf, 2016
[4] David Byrne, Carol Corrado, Daniel Sichel. The Rise of Cloud Computing.
https://www.imf.org/~/media/Files/Conferences/2017-stats-forum/session-6-byrne.
ashx, 2017
[5] Kim-Kwang Raymond Choo. Cloud computing: Challenges and future directions.
https://aic.gov.au/file/6229/download?token=mY1RSeBw, 2010
[6] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara
Fabrizio Montesi, Ruslan Mustafin, Larisa Safina. Microservices: yesterday, today,
and tomorrow. https://arxiv.org/pdf/1606.04036.pdf, 2017
[7] Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio. An Updated
Performance Comparison of Virtual Machines and Linux Containers.
http://www.archive.ece.cmu.edu/~ece845/docs/containers.pdf, 2014
[8] Cisco, Redhat. Linux Containers: Why They’re in Your Future and What Has to
Happen First.
https://pdfs.semanticscholar.org/8ad5/000af66f60772645bec3e7e9eaf14acde7e5.
pdf, 2014
[9] Aaron Grattafiori. Understanding and Hardening Linux Containers.
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/n
cc_group_understanding_hardening_linux_containers-1-1.pdf, 2016
[10] Maria Rodriguez, Rajkumar Buyya. Container-based cluster orchestration
systems: A taxonomy and future directions.
http://www.buyya.com/papers/CloudContainerOrchSPE.pdf, 2018
[11] Rajkumar Buyya, Maria Rodriguez, Adel Nadjaran, Jaeman Park. Cost-Efficient
Orchestration of Containers in Clouds: A Vision, Architectural Elements, and Future
Directions. https://arxiv.org/pdf/1807.03578.pdf, 2018
[12] Kubernetes Documentation.
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
[13] Leila Abdollahi, Mohamed Aymen Saied, Maria Toeroe, Ferhat Khendek.
Kubernetes as an Availability Manager for Microservice Applications.
https://arxiv.org/pdf/1901.04946.pdf, 2019
[14] Kubernetes Standardized Glossary.
https://kubernetes.io/docs/reference/glossary/?fundamental=true
[15] Kubernetes Terminology.
https://betterprogramming.pub/kubernetes-a-detailed-example-of-deployment-of-a-s
tateful-application-de3de33c8632

71

https://arxiv.org/pdf/1605.03175.pdf
https://www.imf.org/~/media/Files/Conferences/2017-stats-forum/session-6-byrne.ashx
https://www.imf.org/~/media/Files/Conferences/2017-stats-forum/session-6-byrne.ashx
https://aic.gov.au/file/6229/download?token=mY1RSeBw
https://arxiv.org/pdf/1606.04036.pdf
http://www.archive.ece.cmu.edu/~ece845/docs/containers.pdf
https://pdfs.semanticscholar.org/8ad5/000af66f60772645bec3e7e9eaf14acde7e5.pdf
https://pdfs.semanticscholar.org/8ad5/000af66f60772645bec3e7e9eaf14acde7e5.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf
http://www.buyya.com/papers/CloudContainerOrchSPE.pdf
https://arxiv.org/pdf/1807.03578.pdf
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://arxiv.org/pdf/1901.04946.pdf
https://kubernetes.io/docs/reference/glossary/?fundamental=true
https://betterprogramming.pub/kubernetes-a-detailed-example-of-deployment-of-a-stateful-application-de3de33c8632
https://betterprogramming.pub/kubernetes-a-detailed-example-of-deployment-of-a-stateful-application-de3de33c8632

[16] Brendan Burns, Brian Grant, David Oppermeiher, Eric Brewer, John Wilkes. Borg,
Omega, and Kubernetes.
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive
/44843.pdf, 2016
[17] David Oppenheimer, Eric Tune, John Wilkes. Large-scale cluster management at
Google with Borg.
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf,
2015
[18] Using Kubernetes: Lessons after a year in Production.
https://techbeacon.com/devops/one-year-using-kubernetes-production-lessons-lear
ned
[19] Kafka Official Documentation. https://kafka.apache.org/documentation/
[20] Jay Kreps, Neha Narkhede, Jun Rao. Kafka: a Distributed Messaging System for
Log Processing. http://notes.stephenholiday.com/Kafka.pdf, 2014
[21] Martin Kleppmann, Jay Kreps. Kafka, Samza and the Unix Philosophy of
Distributed Data. https://martin.kleppmann.com/papers/kafka-debull15.pdf, 2015
[22] Butler Lampson. Hints and Principles for Computer System
Design.https://www.microsoft.com/en-us/research/uploads/prod/2019/09/Hints-13
7-short.pdf, 2019
[23] AWS Official Documentation. https://docs.aws.amazon.com/
[24] Linux Debian Documentation. https://www.debian.org/doc/
[25] Prometheus Overview. https://prometheus.io/docs/introduction/overview/
[26] Elasticsearch Overview.
https://towardsdatascience.com/an-overview-on-elasticsearch-and-its-usage-e26df1
d1d24a
[27] Jatin Varlyani. What is Git and how to use it.
https://levelup.gitconnected.com/what-is-git-how-to-use-it-why-to-use-it-explained-in-
depth-76a5066abaaa, 2019
[28] Docker Official Documentation. https://docs.docker.com/
[29] Terraform Official Documentation. https://www.terraform.io/docs/index.html
[30] Kops Official Git Repo. https://github.com/kubernetes/kops/tree/master/docs
[31] Helm Official Git Repo. https://github.com/helm/helm
[32] Jenkins Official Git Repo. https://github.com/jenkinsci/jenkins
[33] Using Grafana with Prometheus.
https://grafana.com/docs/grafana/latest/features/datasources/prometheus/
[34] Kibana Official Documentation.
https://www.elastic.co/guide/en/kibana/current/introduction.html
[35] Eugene Gorelik. Cloud Computing Models.
http://web.mit.edu/smadnick/www/wp/2013-01.pdf, 2013
[36] Heidi Howard. Analysis of Raft Consensus.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-857.pdf, 2014

72

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf
https://techbeacon.com/devops/one-year-using-kubernetes-production-lessons-learned
https://techbeacon.com/devops/one-year-using-kubernetes-production-lessons-learned
https://kafka.apache.org/documentation/
http://notes.stephenholiday.com/Kafka.pdf
https://martin.kleppmann.com/papers/kafka-debull15.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/09/Hints-137-short.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/09/Hints-137-short.pdf
https://docs.aws.amazon.com/
https://www.debian.org/doc/
https://prometheus.io/docs/introduction/overview/
https://towardsdatascience.com/an-overview-on-elasticsearch-and-its-usage-e26df1d1d24a
https://towardsdatascience.com/an-overview-on-elasticsearch-and-its-usage-e26df1d1d24a
https://levelup.gitconnected.com/what-is-git-how-to-use-it-why-to-use-it-explained-in-depth-76a5066abaaa
https://levelup.gitconnected.com/what-is-git-how-to-use-it-why-to-use-it-explained-in-depth-76a5066abaaa
https://docs.docker.com/
https://www.terraform.io/docs/index.html
https://github.com/kubernetes/kops/tree/master/docs
https://github.com/helm/helm
https://github.com/jenkinsci/jenkins
https://grafana.com/docs/grafana/latest/features/datasources/prometheus/
https://www.elastic.co/guide/en/kibana/current/introduction.html
http://web.mit.edu/smadnick/www/wp/2013-01.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-857.pdf

[37] What is Kubernetes Ingress?
https://kubernetes.io/docs/concepts/services-networking/ingress/
[38] Traefik Ingress Official Documentation. https://docs.traefik.io/
[39] CoreDNS Official Git Repo. https://github.com/coredns/coredns
[40] Metrics Server Official Git Repo.
https://github.com/kubernetes-sigs/metrics-server
[41] Cluster Autoscaler Official Git Repo. https://github.com/kubernetes/autoscaler
[42] Kube2IAM Official Git Repo. https://github.com/jtblin/kube2iam
[43] FluentD Architecture. https://www.fluentd.org/architecture
[44] CNI for Docker Containers, with Weave & Calico.
https://www.weave.works/blog/cni-for-docker-containers/
[45] Extend the Kubernetes API with CustomResourceDefinitions.
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-
resource-definitions/
[46] Strimzi Operator Overview. https://strimzi.io/
[47] ECK Operator Official Git Repo. https://github.com/elastic/cloud-on-k8s
[48] Comparison of instruction set architectures.
https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures
[49] Instruction Set Architectures Overview.
https://en.wikipedia.org/wiki/Instruction_set_architecture
[50] Event-driven architecture.
https://en.wikipedia.org/wiki/Event-driven_architecture
[51] Observer pattern. https://en.wikipedia.org/wiki/Observer_pattern
[52] Event-Driven Architecture Implementation.
https://medium.com/hackernoon/event-driven-architecture-implementation-140c518
20845
[53] Database Shard Overview.
https://en.wikipedia.org/wiki/Shard_(database_architecture)
[54] Optimizing Kafka.
https://www.confluent.io/wp-content/uploads/Optimizing-Your-Apache-Kafka-Deploy
ment-1.pdf
[55] Kafka Lag Exporter Official Git Repo.
https://github.com/lightbend/kafka-lag-exporter#estimate-consumer-group-time-lag
[56] Varghese B, Buyya R. Next-generation cloud computing: New trends and
research directions.
https://pureadmin.qub.ac.uk/ws/portalfiles/portal/134629726/paper_v2.pdf, 2017
[58] Extending Kubernetes API with CRDs
https://medium.com/velotio-perspectives/extending-kubernetes-apis-with-custom-re
source-definitions-crds-139c99ed3477

73

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.traefik.io/
https://github.com/coredns/coredns
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/autoscaler
https://github.com/jtblin/kube2iam
https://www.fluentd.org/architecture
https://www.weave.works/blog/cni-for-docker-containers/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://strimzi.io/
https://github.com/elastic/cloud-on-k8s
https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Observer_pattern
https://medium.com/hackernoon/event-driven-architecture-implementation-140c51820845
https://medium.com/hackernoon/event-driven-architecture-implementation-140c51820845
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://www.confluent.io/wp-content/uploads/Optimizing-Your-Apache-Kafka-Deployment-1.pdf
https://www.confluent.io/wp-content/uploads/Optimizing-Your-Apache-Kafka-Deployment-1.pdf
https://github.com/lightbend/kafka-lag-exporter#estimate-consumer-group-time-lag
https://pureadmin.qub.ac.uk/ws/portalfiles/portal/134629726/paper_v2.pdf

