
University of Piraeus
School of Information Technology and Communications

Department of Digital Systems

MSc in Information Systems and Services
Area of study: Big Data and Analytics

Hyperparameter Optimization on Supervised Learning Models

Georgia Lytra
AM: ME1815

Supervisor:
Dimosthenis Kyriazis
Associate Professor

1

Abstract

Machine learning has taken the technological world by storm in recent years. Every practitioner

needs to develop a model that meets the needs of the problem that is faced along with all the

available resources that come by. A lot of challenges come up along the way of this process; one of

these challenges is the selection of the most appropriate hyperparameters in the developing model.

This phase, called hyperparameter optimization, is crucial since on the one hand there are models

that have proven to be effective in both performance and execution time, while on the other hand

these same models can be rendered rather useless without the appropriate selection of

hyperparameters. In addition, hyperparameter tuning can really help a model to shine and exploit

its capabilities to the fullest.

Since every problem is unique and complex, domain knowledge is required to select the appropriate

hyperparameters in each case; but that is not always possible. A need is on the rise for tools that

automatically solve this issue and give information and guidance to the users on how to solve the

problem at hand.

This thesis follows an experimental procedure to extract information regarding the appropriate

hyperparameters on various supervised learning models. We use datasets with diverse features and

characteristics that could assist with the automation of machine learning processes. This is

approached through already existing optimization frameworks that have been proven to achieve

great results on hyperparameter tuning.

Keywords

hyperparameters, hyperparameter optimization, hyperparameter tuning, supervised learning,

hyperopt, scikit-learn, bayesian optimization, tree-structured parzen estimator, classification,

regression, machine learning

2

Table of Contents

Abstract 1
Keywords 1

1. Introduction 5
1.1. Motivation 5
1.2. Problem Statement 5
1.3. Thesis structure 6

2. Hyperparameter Optimization 7
2.1. Manual Search 7
2.2. Grid Search 8
2.3. Random Search 8
2.4. Bayesian Optimization 8

3. Datasets 10
3.1. Iris Flowers 11
3.2. Breast Cancer Winsconsin 11
3.3. Titanic 12
3.4. Wine Quality 12
3.5. Banknote Authentication 13
3.6. MNIST 13
3.7 Melanoma 14
3.8. Boston House Pricing 14
3.9. Abalone 15

4. Supervised Learning Models 16
4.1 Classifiers 16

4.1.1 Random Forest 16
4.1.2. Support Vector Machine 17
4.1.3. K Nearest Neighbor 18
4.1.4. Logistic Regression 19
4.1.5. Multinomial Naive Bayes 20

4.2. Regressors 21
4.2.1. Ridge 21
4.2.2. Lasso 22

5. Optimization Frameworks 23
5.1. Scikit Learn 23
5.2. Hyperopt 23

3

6. Experimental Results 25
6.1. Data Preprocessing 25
6.2. Metrics 27
6.3. Hyperopt’ s Performance 28
6.4. Hyperparameters 32
6.5. Trials 43
6.6. Setup 51

7. Conclusions and Next Steps 52

References 53

4

1. Introduction

1.1. Motivation

In a 2017 article of the Economist, data was compared with what oil was in the 18th century and

was characterized as the most valuable resource of the 21st century1. We are already going through

the fourth industrial revolution, a data-driven revolution where traditional processes are becoming

more and more automated to meet the needs of the times. Data is everywhere and they are here to

stay.

Indeed, we live in an era where data is produced in tremendous amounts every day; from social

media platforms to IoT sensors to apps that assist each of us in our everyday lives, all these play

their part in formulating this situation. These data need not only a place to be stored but also a

sufficient way to be analyzed to produce results that help answering difficult and complex

questions. This is where Artificial Intelligence comes along through the Machine Learning practices

to make an impact and change the way things work in various fields.

Machine Learning is involved in many applications where data are present. Most of the time, there is

an algorithm that fits well within the definition of a particular problem, its requirements and its

peculiarities. Even if a problem can be approached with more than one model, usually there is an

optimal solution to it, so the selection of the algorithm is a very important step in the machine

learning application process. Another key role is occupied by algorithms’ hyperparameters, which

also are affected by the different case scenarios and the data that accompany them, and they too

need a way to be optimized.

1.2. Problem Statement

In this thesis, we attempt to extract information from various experiments regarding the

hyperparameters of several machine learning models. To achieve that, we have dealt with

1 https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

5

classification along with regression models and produced several experiments to spot any

differences or similarities in the way that these hyperparameters work.

The procedure that we followed involves a very popular hyperparameter tuning framework,

HyperOpt. Hyperopt, which was developed by James Bergsta [3], uses bayesian reasoning to

construct an algorithm proposed by its creator. That algorithm is called Tree of Parzen Estimators

and has proven to be very effective on the tasks of hyperparameter optimization, especially

compared with other hyperparameter search algorithms [1].

The experiments that were conducted are a combination of widely used classification and

regression algorithms, along with a variety of popular datasets that each belong to a different sector.

This allowed us on the one hand to not get distracted by other issues that concern the process

before fitting a model and focus solemnly on hyperparameter optimization, and on the other hand

to extract results that concern a variety of diverse problems.

1.3. Thesis structure

Chapter 1 gives some information about the scope and goals of this thesis. Chapter 2 provides all the

necessary background on the most commonly used hyperparameter optimization methods and

some of the best practices on employing them. Chapter 3 includes all the datasets that are used in

this thesis along with a description of the respective features of its dataset. In chapter 4 we explore

all the basic information about the algorithms that are used in this work to have a better

understanding of the characteristics of each model. Chapter 5 includes all the relevant information

about the optimization frameworks that are found in this work, while chapter 6 includes a detailed

explanation of the experimental phase and its components. Finally, in chapter 7 we provide some

conclusion based on this work along with some potential next steps.

6

2. Hyperparameter Optimization

Hyperparameters are parameters that are not estimated from the model itself but instead are

determined before the training process takes place (e.g. C in Support Vector Machines or k in

K-Nearest Neighbors) and can have a significant impact on a model's results. In contrast, a

parameter is an internal characteristic of the model and its value can be estimated from the data

that is passed along in the model (e.g., beta coefficients in Linear Regression or Support vectors in

Support Vector Machines).

The process of selecting the values for these hyperparameters is called hyperparameter tuning or

hyperparameter optimization. This process results in the selection of the optimum

hyperparameters for a machine learning algorithm, given a set of data. Its practice is crucial before

any application of the machine learning model and can greatly affect the model's performance.

Many different methods can be deployed to determine the optimal parameters and return the best

fitted model. The following are the most commonly used ones.

2.1. Manual Search

Manual search is the act of hand-picking the models hyperparameters without using any search

method. This is commonly preferred when the practitioner is a domain expert and has extended

knowledge on the problem along with the data that is handled. The procedure involves manually

trying lots of different sets of parameters until the best one is found. An important factor is that the

problem under investigation should not be very complex for the manual selection of

hyperparameters to be feasible.

2.2. Grid Search

Grid search is an exhaustive search that is performed on specific parameter values of a model. In

this case, a grid is predefined with all the possible values of each hyperparameter that will be tuned.

After that, a model is built for all possible combinations of this grid, which is later evaluated until

7

the best set is selected. It is more effective than manual search since it covers more possibilities, but

it is computationally costly.

2.3. Random Search

Random search uses the same logic as grid search, but instead of performing a detailed search on

the defined search space, it randomly chooses and evaluates sample points. A probability

distribution of values is specified and a number of samples are drawn from these distributions.

Then, the performance of the model is evaluated for each sample that was drawn.

Figure 1: Example of Grid and Random Search of nine exploration sets [31]

2.4. Bayesian Optimization

Bayesian Optimization, or as it is also known Sequential Model-Based Optimization (SMBO), uses

the results of the past evaluations to form a probabilistic model of the objective function and later

uses this model to choose the next set of hyperparameter values. The probabilistic model is called

the surrogate model and is represented by ; being the performance metric for the model𝑝(𝑥|𝑦) 𝑦

and being the hyperparameter values [18]. In hyperparameter optimization, the objective function𝑥

is a function that maps the hyperparameter values to the model's chosen performance metric, either

on a validation set or maybe by using cross validation.

8

Listing 1: pseudo-code of Sequential Model-Based Optimization [1]

9

3. Datasets

A variety of datasets exists and is easily accessible through public databases. In the Financial sector,

models are used for fraud detection or loan default prediction. In Pharma and Medicine, researchers

use many machine learning techniques for drug discovery, clinical trial research or epidemic

outbreak prediction, aiming to save thousands of lives each year. Other applications involve

computer vision or time series forecasting, which are utilized by many companies that offer their

services to the public.

One reasonable question is why were these specific datasets chosen for either the classification or

regression tasks. The goal was to have a variety of datasets from different sectors and fields to

examine different cases, but also to include datasets with diverse features. Each of them is quite

popular and therefore didn’t require extensive processing, which fitted along with this work as the

purpose of the study was not to emphasize in difficult preprocessing techniques but to focus on the

results that come after. A short description of each one that was utilized in this work follows.

Table 1, which is shown right below, summarizes the data sets used in this study. For each data set,

it includes the name, the number of attributes, the number of rows, the field that the dataset

belongs to and the type of task that the dataset was used for.

Number of
Columns

Number of
Rows

Number of
classes

Domain Task Type

Iris 5 150 3 Flora Classification

Breast Cancer
Wisconsin

11 569 2 Medicine Classification

Wine Quality
(Red)

12 1599 10 Food / Drinks Classification

Titanic 8 887 2 Marine Classification

Banknote
Authentication

5 1372 2 Banking Classification

MNIST 64 1797 10 Digits Classification

Melanoma 31 3632 3 Medicine Classification

10

Boston House
Pricing

14 506 - Real Estate Regression

Adalone 8 4177 - Life Regression

Table1: Summary of all datasets

3.1. Iris Flowers

The Iris Flowers Dataset involves predicting the flower species, given measurements of iris flowers.

The rows of the table represent an iris flower, including its species and dimensions of its botanical

parts, sepal and petal, in centimeters [8].

Variable information:

1. Sepal length in cm

2. Sepal width in cm

3. Petal length in cm

4. Petal width in cm

5. Class (Iris Setosa, Iris Versicolour, Iris Virginica)

3.2. Breast Cancer Winsconsin

This is a well-known dataset for breast cancer diagnosis systems. Features are computed from a

digitized image of a fine needle aspirate of a breast mass. They describe characteristics of the cell

nuclei present in the image [9].

Variable information:

1. ID number

2. Diagnosis (M = malignant, B = benign)

Ten real-valued features are computed for each cell nucleus:

a. radius (mean of distances from center to points on the perimeter)

b. texture (standard deviation of gray-scale values)

11

c. perimeter

d. area

e. smoothness (local variation in radius lengths)

f. compactness (perimeter^2 / area - 1.0)

g. concavity (severity of concave portions of the contour)

h. concave points (number of concave portions of the contour)

i. symmetry

j. fractal dimension ("coastline approximation" - 1)

3.3. Titanic

The dataset contains data for 887 of the real Titanic passengers. Each row represents one person. It

describes the survival status of individual passengers on the Titanic ship. The columns describe

different attributes about the person including whether they survived, their age, their

passenger-class, their sex and the fare they paid. It was created to be part of an entry level

competition on the kaggle platform [10].

3.4. Wine Quality

The Wine Quality Dataset involves predicting the quality of wines on a scale given chemical

measures of each wine [11].

Variable information:

1. Fixed acidity

2. Volatile acidity

3. Citric acid

4. Residual sugar

5. Chlorides

6. Free sulfur dioxide

7. Total sulfur dioxide

8. Density

12

9. pH

10. Sulphates

11. Alcohol

12. Quality (score between 0 and 10)

3.5. Banknote Authentication

The Banknote Dataset involves predicting whether a given banknote is authentic given a number of

measures taken from a photograph. Data were extracted from images that were taken from genuine

and forged banknote-like specimens. For digitization, an industrial camera usually used for print

inspection was used. The final images have a size of 400x400 pixels. Due to the object lens and the

distance to the investigated object, gray-scale pictures with a resolution of about 660 dpi were

gained. Wavelet Transform tools were used to extract features from images [12].

Variable information:

1. Variance of Wavelet Transformed image

2. Skewness of Wavelet Transformed image

3. Kurtosis of Wavelet Transformed image

4. Entropy of image

5. Class (0 for authentic, 1 for inauthentic)

3.6. MNIST

The MNIST database (Modified National Institute of Standards and Technology database) of

handwritten digits consists of a training set of 60,000 examples, and a test set of 10,000 examples.

The task is to classify a given image of a handwritten digit into one of 10 classes representing

integer values from 0 to 9, inclusively. Its format though is a little chaotic to use and therefore a

simpler csv file was created for classification problems.

The new csv format consists of a label in the beginning, which is the actual digit that the

handwritten digit is supposed to represent, and the subsequent values are the pixel values of the

handwritten digit [13].

13

3.7 Melanoma

This dataset is a highly unbalanced dataset containing information about features regarding

melanoma detection. The goal is to predict whether the instance is a melanoma or a kind of nevus. It

contains 31 features and it consists of 3631 instances. The classes to choose from to predict are the

following:

● Class 1: Melanoma

● Class 2: Dysplastic Nevus

● Class 3: Non Dysplastic Nevus

3.8. Boston House Pricing

This dataset contains information collected by the U.S Census Service concerning housing in the

area of Boston Mass. It was obtained from the StatLib archive, and has been used extensively

throughout the literature to benchmark algorithms [14].

The attributes are:

1. CRIM: Per capita crime rate by town

2. ZN: Proportion of residential land zoned for lots over 25,000 sq. ft

3. INDUS: Proportion of non-retail business acres per town

4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

5. NOX: Nitric oxide concentration (parts per 10 million)

6. RM: Average number of rooms per dwelling

7. AGE: Proportion of owner-occupied units built prior to 1940

8. DIS: Weighted distances to five Boston employment centers

9. RAD: Index of accessibility to radial highways

10. TAX: Full-value property tax rate per $10,000

11. PTRATIO: Pupil-teacher ratio by town

12. B: 1000(Bk — 0.63)², where Bk is the proportion of [people of African American descent] by

town

13. LSTAT: Percentage of lower status of the population

14. MEDV: Median value of owner-occupied homes in $1000s

14

3.9. Abalone

The dataset’s objective is predicting the age of the abalone from physical measurements. The age of

abalone is decided by cutting the shell through the cone, staining it, and counting the number of

rings through a microscope. Other measurements are also used in this dataset to predict the age and

a slight modification was applied in it regarding the missing values and scaling of data [15].

Attribute Information:

1. Sex: M, F, and I (infant)

2. Length: Longest shell measurement

3. Diameter: perpendicular to length

4. Height: with meat in shell

5. Whole weight: whole abalone

6. Shucked weight: weight of meat

7. Viscera weight: gut weight (after bleeding)

8. Shell weight: after being dried

9. Rings: +1.5 gives the age in years

15

4. Supervised Learning Models

Supervised Learning consists of methods and techniques that rely on prior information regarding

the output values, rather than attempting to conduct the analysis without any extra knowledge or

intervention. It includes algorithms for performing either classification or regression analyses and

predictions. Some examples involve Linear Regression for regression problems, Random forest for

classification and regression problems, or Support vector machines for both classification and

regression problems.

This chapter is a brief description of all the models that were used in this work to better understand

how each of them works and therefore how each of them is affected by hyperparameter tuning.

4.1 Classifiers

4.1.1 Random Forest

Random Forest (RF) is an ensemble classifier. It represents a set of many classifiers, in this case

many binary decision trees, to combine the decision of each classifier with the scope to classify new

examples.

According to [25], assuming a training set drawn randomly for the distribution of the random vector

, and given an ensemble of classifiers , , … , , the margin function, i.e, the function𝑌 𝑋 ℎ
1
(𝑥) ℎ

2
(𝑥) ℎ

𝐾
(𝑥)

that measures the extent to which the average number of votes at , for the right class exceeds𝑌 𝑋

the average vote for any other class, is defined as:

𝑚𝑔 (𝑋, 𝑌) = 𝑎 𝑢
𝑘
 𝐼 (ℎ

𝑘
(𝑋) = 𝑌) − 𝑚𝑎𝑥

𝑖≠𝑌
𝑎 υ

𝑘
 𝐼(ℎ

𝑘
(𝑥) = 𝑗)

Where where is the indicator function. The margin measures the extent to which the average𝐼(·)

number of votes at , , for the right class exceeds the average vote for any other class. The lesser𝑌 𝑋

the margin the less confidence in the classification. In the same source ([25]) we may also find the

definition for the generalization error:

16

𝑃𝐸* = 𝑃
𝑋, 𝑌

(𝑚𝑔(𝑋, 𝑌) < 0)

where the subscripts , indicate that the probability is over the , space.𝑌 𝑋 𝑌 𝑋

The pseudo code for the Random Forest model are presented in the following figure:

Listing 2: Pseudo code for Random Forest model [21]

4.1.2. Support Vector Machine

Support Vector Μachine (SVM) finds a hyperdimensional plane that separates distinct classes. SVM

finds the hyperplane such that the margin is maximum.

SVM algorithms are based on the concept of mapping data points from low-dimensional into

high-dimensional space to make them linearly separable; a hyperplane is then generated as the

classification boundary to partition data points. Assuming there are data points, the objective𝑛

function of SVM is [23]:

17

,𝑎𝑟𝑔 𝑚𝑖𝑛
𝑤

1
𝑛

𝑖=1

𝑛

∑ 𝑚𝑎𝑥 0, 1 − 𝑦
𝑖
 𝑓(𝑥

𝑖
) { } + 𝐶𝑤𝑇𝑤

⎰
⎱

⎱
⎰

where is a normalization vector; is the penalty parameter of the error term, which is an𝑤 𝐶

important hyper-parameter of all SVM models.

The pseudocode for the SVM model is presented below:

Listing 3: Pseudocode of SVM model [23]

4.1.3. K Nearest Neighbor

K Nearest Neighbor (KNN) finds the K samples, which is the number of nearest points, in the closest

proximity to the point that is to be predicted.

18

Given a training set {(,), (,), … , (,)}, where is the feature vector of an instance𝑇 = 𝑥
1

𝑦
1

𝑥
2

𝑦
2

𝑥
𝑛

𝑦
𝑛

𝑥
𝑖

and { , , … , } is the class of the instance, , for a test instance , its class can𝑦
𝑖

∈ 𝑐
1

𝑐
2

𝑐
𝑚

𝑖 = (1, 2,..., 𝑛) 𝑥 𝑦

be denoted by:

,𝑦 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐

𝑗

𝑥

𝑖
 ∈ 𝑁

𝑘
(𝑥)

∑ 𝐼 (𝑦
𝑖
 = 𝑐

𝑖
), 𝑖 = 1, 2, ... , 𝑚

where is an indicator function, when = , otherwise ; the field involving𝐼(𝑥) 𝐼 = 1 𝑦
𝑖

𝑐
𝑖

𝐼 = 0 𝑁
𝑘
(𝑥)

the k-nearest neighbors of [7].𝑥

The step required to implement the KNN algorithm is outlined in the pseudocode below:

Listing 4: Pseudo Code of KNN classification [20]

4.1.4. Logistic Regression

Logistic Regression (LR) is a kind of regression employed to predict the probability of a binary

output from an input dataset.𝑋

Consider a collection of independent variables denoted by the vector . Let the𝑝 𝑥' = (𝑥
1
, 𝑥

2
, ... , 𝑥

𝑝
)

conditional probability that the outcome is present be denoted by . The logit of𝑃(𝑌 = 1| 𝑥) = π(𝑥)

the multiple logistic regression model is given by the equation [19]:

,𝑔(𝑥) = β
0

+ β
1
𝑥

1
+... + β

𝑝
𝑥

𝑝

in which case the logistic regression model is:

19

.π(𝑥) = 𝑒𝑔(𝑥)

1+𝑒𝑔(𝑥)

For classification one against all, the training algorithm is constructed from several binary

classifiers, which use the logistic regression model shown above. The algorithm in pseudocode

for one vs all is presented in:

Listing 5: One vs all algorithm Pseudocode [24]

4.1.5. Multinomial Naive Bayes

Multinomial Naive Bayes (MNB) is designed for multinomially distributed data based on the naive

Bayes algorithm.

As explained in [7], assuming there are n features, and is the distribution of each value of theθ
𝑦𝑖

target variable y, which equals the conditional probability P (| y) when a feature value i is involved𝑥
𝑖

in a data point belonging to the class y; based on the concept of relative frequency counting, canθ
𝑦

be estimated by a smoothed version of :θ
𝑦𝑖

,θ
𝑦𝑖

 =
𝑁

𝑦𝑖
 + 𝑎

𝑁
𝑦
 + 𝑎𝑛

20

where is the sum of all and is the number of times that feature is in a𝑁
𝑦

𝑁
𝑦𝑖

 (𝑖 = 0, 1, 2,..., 𝑛) 𝑁
𝑦𝑖

𝑖

data point belonging to class . The smoothing priors are used for features that are not in the𝑦 𝑎 ≥ 0

learning samples. When , it is called Laplace smoothing; when , it is called Lidstone𝑎 = 1 𝑎 ≺ 1

smoothing [32].

The pseudo code of the model is shown below:

Listing 6: Pseudo code for Naive Bayes Estimator [22]

4.2. Regressors

4.2.1. Ridge

Ridge regression develops a model that minimizes the sum of the squared prediction error in the

training data and an L2-norm regularization, i.e., the sum of the squares of regression coefficients.

The function is as below [26][29]:

𝑚𝑖𝑛
𝑏

𝑖=1

𝑁

∑ (𝑓(𝑥
𝑖

− 𝑦
𝑖
))2 + λ

𝑗=1

𝑃

∑ 𝑏
𝑗| || |2

21

This procedure can shrink the regression coefficients, resulting in better generalizability for

predicting unseen samples. In this algorithm, a regularization parameter is used to controlλ

the trade-off of penalties between the bias and variance. A large corresponds to more penalties onλ

variance, and a small corresponds to more penalties on bias [27].λ

4.2.2. Lasso

Least Absolute Shrinkage and Selection Operator (LASSO) is another regularized version of Linear

Regression. LASSO regression applies L1-norm regularization to the Ordinary Least Squares loss

function, aiming to minimize the sum of the absolute value of the regression coefficients [28][29].

The objective function takes the form as below:

𝑚𝑖𝑛
𝑏

𝑖=1

𝑁

∑ (𝑓(𝑥
𝑖

− 𝑦
𝑖
))2 + λ

𝑗=1

𝑃

∑ 𝑏
𝑗| |2

This L1-norm regularization typically sets most coefficients to zero and retains one random feature

among the correlated ones. Thus, LASSO regression results in a very sparse predictive model, which

facilitates optimization of the predictors and reduces the model complexity [30].

22

5. Optimization Frameworks

5.1. Scikit Learn

Scikit Learn, or sklearn as it is widely known, is a Python library for machine learning and statistical

modeling including classification, regression and clustering. This package focuses on making easier

the use of machine learning to non-specialists using a general-purpose high-level language.

Emphasis is put on ease of use, performance, documentation, and API consistency. For its creation

sklearn utilizes other libraries such as Numpy, Scikit or Libsvm for the implementation of SVM

among others [5].

5.2. Hyperopt

HyperOpt is an open-source Python library for hyperparameter search developed by James

Bergstra. One of its core characteristics is that it uses a form of Sequential Model Based

Optimization: the Tree of Parzen Estimators (TPE) [2].

The SMBO sequentially narrows down the search space of values using information from previous

results. The TPE algorithm aims to achieve this by optimizing the criterion of Expected

Improvement (EI). Expected improvement is the expectation under some model of that𝑀 𝑓: 𝑋 → ℜ𝑁

will exceed (negatively) some threshold [1]:𝑓(𝑥) 𝑦

𝐸𝐼
𝑦*(𝑥) : =

−∞

∞

∫ 𝑚𝑎𝑥 (𝑦* − 𝑦, 0)𝑝
𝑀

(𝑦|𝑥)𝑑𝑦

The basic idea of TPE is that, unlike what a Gausian-process approach would do, instead of

modeling directly the (i.e., the surrogate model in the case of hyperparameter optimization),𝑝(𝑦|𝑥)

the strategy changes to model and separately, being the performance metric for the𝑝(𝑥|𝑦) 𝑝(𝑦) 𝑦

model and being the hyperparameter values. The TPE defines using two densities [1]:𝑥 𝑝(𝑥|𝑦)

23

𝑝(𝑥|𝑦) = {
𝑔(𝑥) 𝑖𝑓 𝑦 ≥ 𝑦*
𝑙(𝑥) 𝑖𝑓 𝑦 ≺ 𝑦*

where is the density formed by using the observations such that corresponding loss𝑙(𝑥) 𝑥(𝑖){ }
was less than , and is the density formed by using the remaining observations.𝑓(𝑥(𝑖)) 𝑦* 𝑔(𝑥)

There are four parts that we need to focus on when using hyperopt [3]:

1. Define an objective function which takes an input and returns a loss to minimize (i.e. cross

validation).

2. Specify a configuration space, which is the range of input values to evaluate. A number of

options are available in hyperopt for describing the distribution of these values such as:

a. hp.choice(label, options): This is usually used for categorical parameters, it returns

one of the options, which should be a list or tuple.

b. hp.randint(label, upper): This returns a random integer in the range of label and

upper.

c. hp.uniform(label, low, high): It returns a uniform value between low and high.

d. hp.normal(label, mu, sigma): This returns a real value that’s normally distributed

with mean mu and standard deviation sigma.

3. Define a search algorithm: the method used to construct the surrogate function and choose

the next values to evaluate. Hyperopt currently supports:

a. Random Search

b. Tree Parzen Estimator

c. Adaptive Tree Parzen Estimator

4. Create a “trials object” to store the results of the process.

How Hyperopt works can be summarized in the next five steps [3]:

1. Build a surrogate probability model of the objective function.

2. Locate the hyperparameters that best perform on the surrogate model .

3. Fit said hyperparameters to the objective function.

4. Update the surrogate model and include the new results.

5. Repeat steps 2 to 4 until max iterations are reached.

24

6. Experimental Results

The process of the experimental phase that we followed in this work is rather straightforward. As a

first step, the data preprocessing took place right before the separation of each dataset into train

and test sets. Following, every model that is mentioned in section 4 was applied in the data that are

explained in section 3, thus covering all possible combinations. At this stage, we applied the default

values for the parameters that sklearn assigns in every model. Since the goal is to compare the

hyperparameters on both frameworks, we move on to evaluate the performance of the model on

these values with the respective metrics. Then, hyperparameter optimization takes place using

hyperopt. Afterwards, the proposed hyperparameters are fitted in the same model that was fitted

previously and the evaluation step takes place so we have the results to compare the two

frameworks.

Figure 2: Process of experimental procedure

6.1. Data Preprocessing

Data preparation is a critical step before training any machine learning model and therefore the

techniques used have to be chosen carefully. It can seriously impact both the performance of the

models and the effectiveness of the attempts to avoid the so very dreadful overfitting. All datasets

used in this work have undergone the same preparation techniques to ensure as much of a unified

result as possible, with only a few necessary exceptions. This preparation includes only basic yet

inevitable alterations in the datasets, since the goal is to examine the characteristics of each of them

25

and make assumptions. Therefore, techniques such as feature selection have been avoided in order

to make room for further information to look at that might affect the results.

On the datasets used for classification, a big issue was the balance of the classes. Unbalanced classes

can very easily lead to overfitting of the model. The solution to this is either to upsample the cases

of the lesser class, or to undersample the cases of the majority class. We chose to implement the

former, to produce more data and use them on the training and test phases rather than reducing the

dataset’s cases, since some of the sets already contained very few data as it is.

The next step was to split our data into two subsets: the training dataset and the testing dataset.

The ratio of the split is 70/30. The rationale behind this is that we want to fit our model on the

training data, but we also want to have a different portion of the original dataset to make

predictions on and to evaluate the performance of our model with the appropriate metrics that fit

the classification and regression tasks respectively. The only unique occurrence in this step was in

the Iris dataset in combination with the KNN algorithm. Here, we split the data in a 15/85 ratio

between training and testing set, respectively, because when the model was fitted, the number of

neighbors was greater than the number of samples in the data for some of the runs of Hyperopt.

This resulted in an error; thus, to avoid this, instead of the analogy that was used in the rest of the

cases, we applied the aforementioned.

With the aim to avoid data leakage, scaling of the data was implemented after the split strategy. The

data were scaled on a range of 0 to 1 and this proved to be useful, not only for dodging the

overfitting, but also to improve overall accuracy of the models in both frameworks. Another

important result that was affected by scaling is the execution time of the hyperparameter tuning

using the Hyperopt framework. In many cases, it made the process run much faster, whereas before

it would be executed in a significant amount of time.

Since these data sets were chosen for their popularity and characteristics, they did not need much

tidying up before we started using them. As a result, we were lucky enough to not run into any NaN

values and therefore no technique was used to deal with this issue. This helped with the end result

quite much, since the goal of this study would not have been affected by their existence.

26

We now move on to the hyperopt implementation. The first step of the hyperparameter tuning was

to define the configuration space upon which the framework would choose the best value for each

case. The search space was defined for each hyperparameter of every algorithm that we used

separately, although the same search space was used for every experiment. The objective function

was the cross validation score for both the classification and regression task, and the search

algorithm we chose was the TPE algorithm option, to utilize hyperopt’s capabilities to the fullest.

6.2. Metrics

Regarding the metric functions, three of the most commonly used were put into use: the accuracy

score, the cross validation score and the RMSE (Root Mean Square Error) score.

The accuracy, which is the fraction of number of correct predictions that came from our model

against the total number of observations, was used to compare the classification model’s

performance, first we measured the accuracy with the default values that sklearn assigned on each

parameter and then we measured it with the values that came from the tuning of those parameters

with hyperopt.

For the regression tasks we calculated the RMSE score. It is defined as the square root of the

differences between the predicted variables of the model and the corresponding observed values. It

was implemented to compare the results from the model that was fitted using the default

parameters of sklearn against the one that was fitted with the parameters that were tuned via

hyperopt.

The cross validation splits the data into groups. In our case, we choose it to be k=5 groups, which is

the default value of sklearn [17]. It then proceeds to hold out a set at a time and train the model on

the remaining set. In the end, it combines the results of each iteration to produce the final result.

This method was used as a metric of evaluation during the hyperparameter tuning phase to find out

which of the trials was the best.

27

6.3. Hyperopt’ s Performance

The resulting accuracy for all classification and regression models under both the sklearn and

hyperopt frameworks, as well as the elapsed execution time for the case of the latter, have been

compiled into Table 2. Note that the execution time for the cases where sklearn was employed is not

presented in this table. The reason for this is that in all these cases we used sklearn’s default values

for the hyperparameters. On the contrary, hyperopt effectively calculates optimized values for the

hyperparameters, hence possibly incurring a non-negligible time overhead, which is, after all, of

great interest within the scope of this work.

Dataset Sklearn Hyperopt Execution Time(HPO)

Classification (Metric: Accuracy)

1. Iris

RF 0.978 0.956 48min 57s

KNN 0.957 0.957 7min 55s

SVM 0.978 0.978 1min 49s

NB 0.933 0.8 29.5 s

LR 0.911 0.967 5min 8s

2. Breast Cancer

RF 0.965 0.947 48min 26s

KNN 0.965 0.959 12min 9s

SVM 0.982 0.982 1min 59s

NB 0.83 0.836 42.8 s

LR 0.977 0.988 5min 6s

3. Titanic

RF 0.768 0.622 47min 42s

KNN 0.76 0.76 16min 1s

SVM 0.768 0.794 2min 18s

28

NB 0.798 0.798 55.8 s

LR 0.764 0.764 5min 33s

4. Wine Quality

RF 0.652 0.575 46min 38s

KNN 0.565 0.648 15min 11s

SVM 0.583 0.617 10min 21s

NB 0.49 0.49 57 s

LR 0.554 0.571 5min 3s

5. Banknote Authentication

RF 0.996 0.985 44min 1s

KNN 0.996 0.998 8min 13s

SVM 0.993 0.978 2min 20s

NB 0.679 0.679 31 s

LR 0.976 0.991 5min

6. MNIST (csv)

RF 0.972 0.946 49min 28s

KNN 0.987 0.9833 16min 32

SVM 0.987 0.989 17min 38s

NB 0.893 0.893 50.9 s

LR 0.967 0.972 6min 21s

7. Melanoma

RF 0.803 0.737 2h 5min 17s

KNN 0.7599 0.8162 1h 40min 1s

SVM 0.749 0.805 2h 53min 13s

NB 0.555 0.691 13min 10s

LR 0.682 0.704 1h 55min 28s

29

Regression (Metric: RMSE)

1. Boston House Pricing

Linear 4.64 4.64 1min 5s

Lasso 5.15 4.64 7min 11s

Ridge 4.64 4.71 8min 43s

2. Adalone

Linear 2.57 2.57 58.7 s

Lasso 2.57 2.57 31min 51s

Ridge 2.57 2.57 32min 42s

Table 2: Accuracy of each experiment in both classification and regression models

From the above table we conclude to the following:

In Random forest, the execution time appears to have been significantly affected when the number

of estimators in the search space was increased. More specifically, by increasing the number of

searched estimators from 100 to 150, each process required around ~20 minutes more to be

completed.

Another factor that appears to be affecting the execution time is the process of scaling the datasets.

Between the StandardScaler and the MinMaxscaler, which were tested in this work, the latter was

chosen. Apart from its performance benefits, it enables the scaling of the data into values between 0

and 1, thus allowing for frictionless compatibility with the Naive Bayes algorithm, which cannot be

employed at all when negative values exist among the data. Furthermore, models that use distance

metrics are sensitive to the distribution of input data. Scaling resolves this issue, hence enabling all

the data to have the same influence over the distance metrics.

Moreover, by examining the number of parameters in combination with the execution time elapsed,

we observe that, in the cases of the classification tasks, those two appear to be independent to each

other, since the models that have the most parameters are Random Forest, SVM, and KNN. On the

other hand, the number of parameters seems to be playing a crucial role in execution time for the

regression tasks, since the hyperparameter optimization for Linear Regression is executed relatively

30

fast compared to the other two regression models, which both have a significantly bigger amount of

parameters.

On the Wine Quality dataset we observe that the accuracy is generally low. This could be explained

by the fact that the dataset’s dependent variable contains many classes which is a factor that may be

tampering with the results, as well as the information available; it is after all a dataset that could be

used for regression tasks too.

Two of the most performant hyperparameter optimization procedures are observed in the cases of

the Wine Quality and the Titanic datasets. Both of them contain many features (12 and 8,

respectively), and this could lead to the assumption that datasets with many independent variables

could benefit from hyperparameter optimization.

We validate the above observation through the case of the Melanoma dataset. The dataset

incorporates 31 distinct features, and is in fact the dataset with the greatest number of features

among all the examined ones. Indeed, we can verify that it performed better than the rest of the

datasets in all cases, with the exception of the Random Forest algorithm. In addition, we should note

that the Melanoma dataset also exhibits the highest execution time in general. However, even

though for the rest of the datasets the Random Forest algorithm used to be the slowest case, we

observe that SVM turned out to be the slowest in this case.

31

6.4. Hyperparameters

Table 3 contains the results of the values of the experimental phase for every hyperparameter. The first column with values is the default

values that sklearn assigns in each model in the case that none of them is specified. What follows is the values that Hyperopt assigned in

each hyperparameter after the optimization process in each dataset. The last column contains the search space for every hyperparameter

which consists of the set of all possible values that the parameter could take, along with the type of the parameter. We then proceed to

explain our experimental results.

Classification

Parameters Sklearn
(default)

[17]

HPO Iris HPO Breast
Cancer

HPO Titanic HPO Wine
Quality

HPO
Banknote

HPO MNIST HPO
Melanoma

Search Space

Random Forest (Number of parameters = 19)

n_estimators 100 32 116 23 144 34 143 77 discreet: [1,
150]

criterion gini gini entropy gini entropy entropy entropy entropy categorical:
[gini,

entropy]

max_depth None 76 40 51 39 81 44 24 discreet:
[1, 100]

min_samples
_split

2 7 4 5 5 7 3 2 discreet:
[2, 10]

min_samples
_leaf

1 5 15 12 6 3 4 16 discreet:
[1, 50]

32

min_weight_
fraction_leaf

0.0 0.2016 0.2864 0.2238 0.0107 0.009 0.0008 0.0001 continuous:
[0.0, 0.5]

max_feature
s

auto auto None sqrt None log2 sqrt None categorical:
[None, auto,
sqrt, log2]

max_leaf_no
des

None 21 61 37 26 21 28 55 discreet:
[2,65]

min_impurit
y_decrease

0.0 0.1992 0.6012 0.0478 0.0003 0.0009 0.0165 0.0006 continuous:
[0.0, 0.9]

min_impurit
y_split

None - - - - - - - -

bootstrap True True True True True True True TRue boolean:
True

oob_score False True False False True False False True boolean:
[True, False]

n_jobs None -1 -1 -1 -1 -1 -1 -1 discreet: -1

random_stat
e

None 42 42 42 42 42 42 42 discreet: 42

verbose 0 0 0 0 0 0 0 0 discreet: 0

warm_start False False True False False False False True boolean:
[True, False]

class_weight None balanced None None None balanced_su
bsample

balanced_su
bsample

balanced categorical:
[None,

balanced,bal
anced_subsa

mple]

ccp_alpha 0.0 0.0285 0.4754 0.0714 0.0017 0.0007 0.0175 0.000 continuous:

33

[0.0, 1.0]

max_sample
s

None 0.2561 0.3471 0.4696 0.5957 0.5784 0.4729 0.5235 continuous:
[0.0, 1.0]

K Nearest Neighbors (Number of parameters = 8)

n_neighbors 5 9 16 19 90 18 3 1 discreet:
[1,100]

weights uniform uniform distance uniform distance distance distance distance categorical:
[uniform,
distance]

algorithm auto brute brute brute brute kd_tree kd_tree brute categorical:
[auto,

ball_tree,
kd_tre,
brute]

leaf_size 30 48 37 19 48 40 46 16 discreet:
[1, 50]

p 2 11 2 4 12 4 3 1 discreet: [1,
15]

metric minkowski euclidean minkowski chebyshev euclidean euclidean minkowski euclidean categorical:
[euclidean,
manhattan,
chebyshev,

minkowski]

metric_para
ms

None - - - - - - - -

n_jobs None -1 -1 -1 -1 -1 -1 -1 discreet: -1

Support Vector Machines (Number of parameters = 16)

34

C 1.0 6.1926 6.8039 15.3549 19.389 14.3604 16.7241 7.0052 continuous:
[0.0, 20.0]

kernel rbf rbf rbf rbf rbf rbf rbf rbf categorical:
[linear, poly,
rbf, sigmoid]

precompute
d

- - - - - - - - -

degree 3 16 18 17 5 4 23 24 discreet:
[1,30]

gamma scale scale auto scale scale scale scale scale categorical:
[scale, auto]

coef0 0.0 29.3523 26.9973 21.55 15.951 17.8193 23.9593 25.4899 continuous:
[15.0, 30.0]

shrinking True False True False False False True False boolean:
[True, False]

probability False False False False False False True False boolean:
[True, False]

tol 0.001 0.7173 1.527 1.176 1.5451 1.3344 0.2997 0.5149 continuous:
[0.0, 3.0]

cache_size 200 2000 2000 2000 2000 2000 2000 2000 discreet:
2000

class_weight None balanced None None None None None None categorical:
[None,

'balanced']

verbose False False False False False False False False boolean:
[True, False]

max_iter -1 -1 -1 -1 -1 -1 -1 -1 discreet: -1

35

decision_fun
ction_shape

ovr ovo ovo ovr ovr ovr ovr ovo categorical:
[ovo, ovr]

break_ties False - - - - - - - -

random_stat
e

None 42 42 42 42 42 42 42 discreet: 42

Multinomial Naive Bayes (Number of parameters = 3)

alpha 1.0 1.4837 0.2123 0.2225 0.5744 0.9016 1.0476 0.2225 continuous:
[0.5, 1.5]

fit_prior None - - - - - - - -

class_prior True False True True True True True True boolean:
[True, False]

Logistic Regression (Number of parameters = 15)

C 1.0 43.863 6.0898 15.5532 49.6688 18.4761 58.55 55.9101 continuous:
[0.01, 100]

class_weight None balanced balanced balanced balanced balanced balanced balanced category:
balanced

dual False False False False True True False False boolean:
[True, False]

fit_intercept True True True True True True True False boolean:
[True, False]

intercept_sca
ling

1 1 1 1 1 1 1 1 discreet: 1

l1_ratio None None None 1 None 1 None None continuous:
[0, 1]

max_iter 100 743 1017 1235 1043 1399 169 646 discreet:

36

[100, 2000]

multi_class auto auto auto auto auto auto auto auto categorical:
[auto, ovr,

multinomial]

n_jobs None -1 -1 -1 -1 -1 -1 -1 discreet: -1

penalty l2 none l2 l1 l2 l2 l1 l2 categorical:
[l1, l2,

elasticnet,
none]

random_stat
e

None 42 42 42 42 42 42
discreet: 42

solver lbfgs newton-cg newton-cg liblinear liblinear liblinear saga newton-cg categorical:
[newton-cg,

lbfgs,
liblinear, sag,

saga]

tol 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 continuous:
[0.00001,
0.0001]

verbose 0 0 0 0 0 0 0 0 discreet: 0

warm_start False False True True False True True True boolean:
[True, False]

Table 3: Parameters summary from both frameworks on classification task

37

As far as Table 3 is concerned we note the following:

● n_jobs was set to -1 to use all processors

● random_state was et to a random number (42) to not shuffle data and get different results

each time

● verbose was set to 1 to show limited wordy information for the model

● class_prior was not specified so prior probabilities of classes would be adjusted according to

the data

● min_impurity_split would be removed in newer version so it was not included at all

● break_ties: was not included since if it is set to true the decision_function_shape is equal to

ovr and the number of classes is 2 and since we had a univariate result we excluded this

● class_weight was set to balanced since uses the values of y to automatically adjust weights

inversely proportional to class frequencies in the input data as n_samples / (n_classes *

np.bincount(y)) [17]

● multi_class was set to multinomial since in this case the multinomial loss is minimized even

when data is binary

● intercept_scaling was set to the default value since it is useful only in certain cases

● bootstrap was set to True to use all of the training data to fit the model and not have a

random variation between trees at each example

In the cases of Support Vector Machines, we observe that Wine, Banknote and Mnist, which have the

greatest number of observations compared to the other datasets, all have similar c values, all of

them range between 14 and 16. An exception to this is the Melanoma dataset. Also, the rbf kernel

has been chosen to all the examples on the kernel parameter and gamma value is equal to scale in 6

out of 7 datasets so we can assume that they are not very affected by the cases that we examine.

On the experimentation with K Nearest Neighbors, one would expect the number of neighbors (i.e.,

the most important parameter of the KNN algorithm) suggested by the hyperparameter tuning to

match the number of instances that each dataset contained. However, in the examples that were

examined in this work, this definitely was not the case: the dataset with the most observations was

assigned the lowest value of neighbors (1), whereas the number of most neighbors was assigned on

the Titanic dataset, which, having 887 observations, would be probably considered medium-sized

with respect to the size of the rest of the datasets that were included in this study. Another

38

noteworthy observation is that the number of features in a dataset affects the selection of a distance

metric: datasets with fewer features tend to be assigned with the option of the euclidean distance,

whereas datasets with a greater number of features features are assigned with the Chebyshev or

Minkowski distance (i.e., sklearn’s default distance metric) (again though, with the exception of the

Melanoma dataset).

On the Naive Bayes we also did not notice a big difference in the model’s performance. Apparently, it

either remained unaffected by the hyperparameter optimization, or was degraded with respect to

its performance score. The number of parameters that were tuned were two out of a total of three

that the model depends on. The difference was, again, insignificant, with many of the alpha values

being around 1, which happens to be sklearn’s default value, or close to 0, and the class_prior value

being True almost in every case.

In Random Forest, one of the most important hyperparameters is the number of estimators, which

is actually the number of trees in the forest. This appears to be highly correlated with the number of

independent variables in the dataset which is something that we anticipated. Breast cancer, Wine

Quality, and MNIST, all have a great number of features compared to the rest of the datasets. The

value of the estimator parameter for each of them ranges between 100 and 144, while 150 is the

max value of the search space for this particular hyperparameter. An exception to this is the

Melanoma dataset. Max features is another parameter that is related to the number of features and

the number of estimators, but in our cases there seems to be no pattern in this one.

In the example of Logistic Regression for the Titanic and Banknote datasets, liblinear is a good

choice of a solver, but for the Wine Quality dataset it is not as good of a choice, since it is a

multiclass classification problem and liblinear solver does not support multinomial loss. On the

other hand, HyperOpt picked an optimal value for the solver parameter in the case of the MNIST

dataset, since the saga algorithm works faster for large datasets.

39

Regression

Parameters of
algorithm

Sklearn (default)
[17]

HPO
Boston House

Pricing

HPO
Adalone

Search Space

Linear (Number of parameters = 4)

copy_X True True True boolean :
[True, False]

fit_intercept True True True boolean :
[True, False]

n_jobs None -1 -1 discrete : -1

normalize False False True boolean :
[True, False]

Lasso (Number of parameters = 11)

alpha 1.0 0.0000 0.002 continuous:
[0.0, 1.5]

copy_X True True True boolean:
[True, False]

fit_intercept True True True boolean:
[True, False]

max_iter 1000 123 2646 discrete:
[100, 2000]

normalize False False False boolean:
[True, False]

positive False False False boolean:
[True, False]

precompute False False True boolean:
[True, False]

random_state None 42 42 discrete : 42

selection cyclic cyclic cyclic categorical:
[cyclic, random]

tol 0.0001 0.0001 0.0025 continuous:
[0.00001, 0.001]

warm_start False True False boolean:
[True, False]

40

Ridge (Number of parameters = 8)

alpha 1.0 0.0766 0.000 continuous:
[0.0, 1.5]

copy_X True False True boolean:
[True, False]

fit_intercept True True True boolean:
[True, False]

max_iter None 1803 113 discrete:
[100, 2000]

normalize False True False boolean:
[True, False]

random_state None 42 42 discrete : 42

solver auto lsqr lsqr categorical:
[auto, svd,

cholesky, lsqr,
sparse_cg, sag,

saga]

tol 0.001 0.000 0.0009 continuous :
[0.00001, 0.0001]

Table 4: Parameters summary from both frameworks on regression tasks

In the cases of the regression tasks, it is obvious that hyperparameter optimization did not improve

significantly the performance of the models. The linear regression case has only four

hyperparameters to tune. The rest of them, which incidentally also are the ones that contribute the

heaviest in the final result of the model, are determined during the training process and not

beforehand. Therefore, the small effect on the performance could have been foreseen. The set of

parameters that was proposed by Hyperopt ended up being rather similar to the default values that

sklearn uses, while the RMSE score was not affected at all. The same holds for the Abalone dataset,

which had an RMSE of 2.57 in all three algorithms and two frameworks that was tested on. Since

this dataset is quite large compared to the others, we could draw the conclusion that size does not

affect the overall accuracy of the model. Another notable observation concerning the values of the

parameters is that, in almost all cases, the alpha parameter is set to a value close to zero - if was

equal to zero it would be equivalent to ordinary least squares method which is solved by Linear

Regression on sklearn.

41

All these experiments constitute merely a subset of all the possible combinations of values that

could be applied on the algorithms’ hyperparameters. It is likely that a different set could produce

the same result on a specific dataset combined with an algorithm. This is made rather obvious even

by a quick look in the above table, where the groups of parameters of this study are displayed: we

can observe that in many cases both frameworks produce results with the exact same accuracy

score. The random_state variable was used in situations where a random sample was chosen in the

process, with the purpose of reproducibility and also to have a more stable and unified result.

6.5. Trials

Hyperopt provides its own visualization module. Through this module it is easy to inspect the

results of Hyperopt’s trials object. In the figures below (where each figure corresponds to a

different case examined), each plotted point represents the best score achieved during the

particular iteration.

K Nearest Neighbors:

Iris Breast Cancer

42

Titanic Wine Quality

Banknote Authentication MNIST

Melanoma

43

Support Vector Machines:

Iris Breast Cancer

Titanic Wine Quality

Banknote Authentication MNIST

44

Melanoma

Random Forest:

Iris Breast Cancer

Titanic Wine Quality

45

Banknote Authentication MNIST

Melanoma

Naive Bayes:

Iris Breast Cancer

46

Titanic Wine Quality

Banknote Authentication MNIST

Melanoma

47

Logistic Regression:

Iris Breast Cancer

Titanic Wine Quality

Banknote Authentication MNIST

48

Melanoma

Lasso:

Boston House Adalone

Ridge:

Boston House Adalone

49

6.6. Setup

All experiments were conducted using Python 3.5 on a machine with a quad-core Intel i7-8550U

CPU and 16 GiB of memory. The Machine Learning and Hyperparameter Optimization methods are

implemented and evaluated using open-source Python libraries and frameworks including

scikit-learn (version 0.23.2), hyperopt (version 0.2.5) and also pandas (version 1.1.3) and numpy

(version 1.19.2) for some basic preprocessing before the models were applied.

50

7. Conclusions and Next Steps

In this thesis we explored how hyperparameter optimization works on supervised learning models;

more specifically on regression and classification algorithms.

The conclusions that can be drawn from the evaluation results in our study lead to doubts on

hyperparameter optimization as a practice that should occur in any and all cases of development of

Machine Learning models.There are some factors that appear to affect the whole process. The same

set of factors is what should help us decide whether performing hyperparameter optimization

worths its trade-offs or not.

An important factor is the performance of the model. In the cases where there was a significant

increase in the accuracy of the model, hyperparameter optimization is definitely something worth

trying. However, in cases where the accuracy remained the same, or even decreased, it would

probably be best to apply the model with the default parameter values.

Another factor that plays a key role in the whole process is the execution time. A noteworthy

example is the Random Forest classifier experiment and its number of estimators hyperparameter.

In this case, time was affected significantly every time the search space for this parameter was

widened, albeit the corresponding accuracy did not show any satisfying results. Apart from this

case, Support Vector Machines and Logistic Regression showed positive results with respect to the

performance, with a relatively small amount of execution time, thereby indicating that

hyperparameter optimization would worth to be applied in such cases. Furthermore, we should

dedicate a moment to comment on the results of the experiments related to the Melanoma dataset:

they all performed quite well in comparison with the rest of the datasets, thus contributing to the

conclusion that a large number of independent variables is worth the time it takes for the

hyperparameter tuning.

There is a lot of room for work to be conducted following this study. A first step would be the

inclusion of more learning models (e.g., clustering, time series, reinforcement learning, etc.) along

with their respective algorithms and their associated hyperparameters (i.e., XGBoost, Neural

Networks, etc.) into the exploration space. Another direction for future work would be the inclusion

of a greater number of additional datasets in the study. New datasets, with either similar or diverse

51

features, could, not only validate the results of this study, but also lead to more robust evaluation

results, broader conclusions and expanded sets of use cases where hyperparameter optimization

can indeed make a difference.

52

References

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. (2011) ‘Algorithms for hyper-parameter

optimization’, NIPS, 24:2546–2554.

[2] J. Bergstra, D. Yamins, and D. D. Cox. (2013) ‘Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures’, In Proc. ICML.

[3] J. Bergstra, D. Yamins, and D. D. Cox. (2013) ‘Hyperopt: A Python library for optimizing the

hyperparameters of machine learning algorithms’, SciPy’13.

[4] B. Komer, J. Bergstra, and C. Eliasmith. (2014) ‘Hyperopt-sklearn: automatic hyperparameter

configuration for scikit-learn’, ICML AutoML Workshop.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay. (2011) ‘Scikit-learn: Machine Learning in Python’, Journal of Machine Learning

Research, 12:2825–2830.

[6] Komer B., Bergstra J., Eliasmith C. (2019) ‘Automated Machine Learning. The Springer Series on

Challenges in Machine Learning’. Springer

[7] L. Yang and A. Shami (2020), ‘On hyperparameter optimization of machine learning algorithms:

Theory and practice’, Neurocomputing, vol. 415, pp. 295–316.

[8] Fisher R. A. (1936). UCI Machine Learning Repository

[https://archive.ics.uci.edu/ml/datasets/iris].

[9] Dr. William H. Wolberg, W. Nick Street and Olvi L. Mangasarian (1995). UCI Machine Learning

Repository [https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)]. WI:

University of Wisconsin, General Surgery Dept. and Computer Sciences Dept..

53

[10] Frank E. Harrell Jr., Thomas Cason. (2017). Titanic - Machine Learning from Disaster. Retrieved

in 2020 from https://www.kaggle.com/c/titanic .

[11] P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. (2009) ‘Modeling wine preferences by

data mining from physicochemical properties’. In Decision Support Systems, Elsevier,

47(4):547-553.

[12] Lohweg V. and Doerksen H. (2012). UCI Machine Learning Repository

[https://archive.ics.uci.edu/ml/datasets/banknote+authentication]. University of Applied Sciences,

Ostwestfalen-Lippe.

[13] LeCun, Y and Cortes, C (2010) ‘MNIST handwritten digit database’. Available at

http://yann.lecun.com/exdb/mnist/ .

[14] Harrison, D. and Rubinfeld, D.L. (1978) `Hedonic prices and the demand for clean air', J.

Environ. Economics & Management, vol.5, 81-102.

[15] Warwick J Nash, Tracy L Sellers, Simon R Talbot, Andrew J Cawthorn and Wes B Ford (1994)

‘The Population Biology of Abalone (_Haliotis_ species) in Tasmania. I. Blacklip Abalone (_H. rubra_)

from the North Coast and Islands of Bass Strait’, Sea Fisheries Division, Technical Report No. 48

(ISSN 1034-3288).

[16] Agrawal T. (2021) ‘Hyperparameter Optimization in Machine Learning’. Apress, Berkeley.

[17] https://scikit-learn.org/

[18] Tanay Agrawal (2020) ‘Hyperparameter Optimization in Machine Learning: Make Your

Machine Learning and Deep Learning Models More Efficient’

[19] D.W. Hosmer Jr, S. Lemeshow (2013) ‘Applied logistic regression’, Technomet- rics

https://www.kaggle.com/c/titanic
http://yann.lecun.com/exdb/mnist/
https://scikit-learn.org/

54

[20] Bunheang Tay, Jung Keun Hyun, and Sejong Oh (2013) ‘A Machine Learning Approach for

Specification of Spinal Cord Injuries Using Fractional Anisotropy Values Obtained from Diffusion

Tensor Images’, Department of Nanobiomedical Science, Dankook University

[21] Naphaporn Sirikulviriya, Sukree Sinthupinyo (2011) Integration of Rules from a Random

Forest’, Department of Computer Engineering, Chulalongkorn University, Bangkok, Thailand

[22] D. Lowd, P. Domingos (2005) ‘Naïve Bayes Models for Probability Estimation’

[23] Chungsoo Lim,, Seong-Ro Lee, Joon-Hyuk Chang (2013) ‘Efficient Implementation of an

SVM-Based Speech/Music Classifier by Enhancing Temporal Locality in Support Vector References’

[24] Angel, Luis & Viola, Jairo & Vega, Mauro & Restrepo, R.. (2016). ‘Sterilization process stages

estimation for an autoclave using logistic regression models’.

[25] Breiman, L. (2001) ‘Random Forests’. Machine Learning 45, 5–32

[26] Arthur E. Hoerl, Robert W. Kennard (1970) ‘Ridge Regression: Biased Estimation for

Nonorthogonal Problems’, American Statistical Association and American Society for Quality.

[27] Zou, H., & Hastie, T. (2005). ‘Regularization and Variable Selection via the Elastic Net’. Journal of

the Royal Statistical Society.

[28] Tibshirani, R. (1996) ‘Regression Shrinkage and Selection via the Lasso’. Journal of the Royal

Statistical Society.

[29] Cui, Zaixu; Gong, Gaolang (2018) ‘The effect of machine learning regression algorithms and

sample size on individualized behavioral prediction with functional connectivity features’

[30] Hui Zou, Trevor Hastie (2005) ‘Regularization and variable selection via the elastic net’

[31] James Bergstra, Yoshua Bengio (2012) ‘Random Search for Hyper-Parameter Optimization’

55

[32] A.M. Kibriya, E. Frank, B. Pfahringer, G. Holmes (2004) ‘Multinomial naive bayes for text

categorization revisited’, Lect. Notes Artif. Intell. (Sub-series Lect. Notes Comput. Sci. 3339 (2004)

488499.

