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Abstract 

 

Graph clustering is a fundamental technique that partitions similar nodes into clusters. It is of                             

great importance in large-scale networks and is widely adopted in a variety of scientific areas                             

where it is crucial to identify patterns or structures quickly, such as Social Network Analysis,                             

Statistical Data Analysis, Data Mining, Machine Learning, Biology and others. 

 

In this thesis, we focus on signed directed graphs and examine a community detection                           

algorithm that groups together nodes with similar characteristics. The single most significant                       

factor for efficient graph clustering is the computation of the similarity score among nodes.                           

Our main challenge is to establish a similarity relationship among nodes based on the                           

connectivity patterns they follow, i.e., combine the concepts positive and negative co-citation                       

and co-reference. 

 

First, we partition the original graph into its positive and negative subgraphs and work in                             

parallel on both subgraphs. For each subgraph, we apply citation analysis and binding theory                           

to calculate the co-citation and co-reference matrices, respectively. The former contains the                       

number of nodes that two nodes both point to, while the latter gives the number of nodes that                                   

commonly point to two nodes. We use normalized mathematical models to smoothen data,                         

factoring in the degree of each node. Further, to remove outliers, we tested taking into                             

consideration the balance among positive and negative incoming and outgoing links among                       

nodes. That is, the number of common links between two nodes counts less when these nodes                               

share significantly less positive than negative out-links, and vice versa. 

 

In this work, we also provide a complete implementation of the proposed algorithm in Python,                             

as well as the datasets that we used to experimentally evaluate its correctness and accuracy.                             

With this, we prove that the proposed algorithm returns the expected results for randomly                           

generated signed directed graphs and scales up to thousands of nodes, depending on the                           

density of the original graph. 

 

Keywords 

 

Statistical Data Analysis, Social Network Analysis, Graph Clustering, Community Detection,                   

Similarity Score, Co-Citation, Co-Reference, Balance, Affinity Propagation, k-means, Python,                 

NetworkX, numpy 
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Περίληψη 
 
Η συσταδοποίηση σε γράφους είναι μια θεμελιώδης τεχνική που κατηγοριοποιεί παρόμοιους                     
κόμβους ενός γράφου σε ομάδες (συστάδες). Είναι πολύ σημαντική για δίκτυα μεγάλης                       
κλίμακας και χρησιμοποιείται ευρέως σε επιστημονικά πεδία όπου είναι απαραίτητη η                     
ταυτοποίηση μοτίβων ή δομών, όπως η ανάλυση κοινωνικών δικτύων, η στατιστική Ανάλυση                       
Δεδομένων, η Εξόρυξη Δεδομένων, η Μηχανική Μάθηση, η Βιολογία και άλλα. 
 
Στη παρούσα διπλωματική επικεντρωνόμαστε σε κατευθυνόμενους γράφους και εξετάζουμε                 
ένα αλγόριθμο ανίχνευσης κοινοτήτων, ο οποίος ομαδοποιεί κόμβους με παρεμφερή                   
χαρακτηριστικά. Ο πιο σημαντικός παράγοντας για αποδοτική συσταδοποίηση είναι ο                   
υπολογισμός του μέτρου ομοιότητας μεταξύ κόμβων. Η πιο σημαντική πρόκληση είναι ο                       
καθορισμός της σχέσης ομοιότητας μεταξύ κόμβων, με βάση τα μοτίβα συνδεσιμότητας που                       
ακολουθούν οι κόμβοι, δηλαδή ο συνδυασμός των εννοιών co-reference  και co-citation. 
 
Αρχικά, χωρίζουμε τον γράφο στο θετικό και αρνητικό υπο-γράφο του και δουλεύουμε                       
παράλληλα και στους δύο υπο-γράφους. Για κάθε υπο-γράφο αναλύουμε τις αναφορές και τις                         
συνδέσεις μεταξύ των κόμβων προκειμένου να υπολογίσουμε τους πίνακες co-citation και                     
co-reference, αντίστοιχα. Ο πρώτος περιέχει τον αριθμό κόμβων στους οποίους αναφέρονται                     
δύο κόμβοι, και ο δεύτερος δίνει τον αριθμό κόμβων που δείχνουν δύο κόμβοι.                         
Χρησιμοποιούμε κανονικοποιημένα μαθηματικά μοντέλα για να εξομαλύνουμε τα δεδομένα,                 
συν-υπολογίζοντας τον βαθμό κάθε κόμβου. Προκειμένου να απομακρυνθούν τα ακραία                   
στοιχεία, επιχειρήσαμε να λάβουμε υπόψη την ισορροπία θετικών και αρνητικών                   
εισερχόμενων και εξερχόμενων ακμών μεταξύ των κόμβων, ούτως ώστε ο αριθμός κοινών                       
ακμών μεταξύ δύο κόμβων να μετράει λιγότερο όταν αυτοί οι κόμβοι μοιράζονται σημαντικά                         
λιγότερες θετικές από αρνητικές ακμές και αντίστροφα. 
 
Συνεχίζοντας, κάνουμε μια πλήρη υλοποίηση του αλγορίθμου σε python προκειμένου να                     
ελέγξουμε πειραματικά την ορθότητα και την ακρίβεια του αλγορίθμου. Τέλος,                   
παρουσιάζουμε τα πειραματικά αποτελέσματα του αλγορίθμου ο οποίος υλοποιείται σε                   
signed, directed γράφους χιλιάδων κόμβων, ανάλογα με την πυκνότητα του γράφου. 
 

Λέξεις-Κλειδιά 
 

Στατιστική Ανάλυση Δεδομένων, Ανάλυση Κοινωνικών Δικτύων, Συσταδοποίηση Γράφων,               
Ανίχνευση Κοινοτήτων, Μέτρο Ομοιότητας, Ισορροπία, Affinity Propagation, k-means, Python,                 
NetworkX, numpy 
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1 Introduction 

1.1 Problem Statement 
Discovering communities in a network is a fundamental problem in network science                       

that gains increasing attention in the scientific community. In the era of big data, community                             

identification and detection has proven to be an invaluable tool to manipulate and understand                           

large-scale network data as it enables the study of mesoscopic structures that are often                           

associated with behavioral and functional characteristics of the underlying networks.  

The problem that community detection attempts to solve is the identification of vertices                         

that share similar properties or characteristics. Detecting and analyzing how individual                     

communities are structured leads to deeper understanding of the underlying phenomena that                       

occur in these subsystems, and progressively, in the original system as a whole. 

In this context, a major challenge when partitioning a large graph into smaller clusters                           

is the definition of the similarity score among its nodes. Traditionally, clustering algorithms use                           

a standard distance metric, such as Euclidean, Minkowski, Manhattan etc., to compare nodes                         

and iteratively group them into clusters. However, to outline domain-specific semantics into                       

the comparison one has to define a custom similarity measure among nodes, i.e., calculate a                             

custom similarity matrix for the graph under study. For signed, directed networks this allows us                             

to weigh in characteristics and attributes of nodes, i.e., introduce and combine the concepts of                             

positive and negative co-citation and co-reference. 
In general we can state that a network has a community structure if it is possible to                                 

group effectively the nodes of the network in such a way that every set of nodes is connected                                   

internally in a dense way. More specifically, in the special case of non-overlapping community                           

identification, this means that nodes are divided in groups that are characterised internally                         

with dense connections and the connections between groups are sparse. Overlapping                     

communities can sometimes take place. In principle the definition of community clustering                       

relates to the idea that pairs of nodes have a higher chance of being connected when they                                 

belong to the same group, and a lower chance of being connected if they belong to different                                 

groups. A problem that shares a lot of similar characteristics to the above mentioned one is                               

community search, in which the main aim is to identify a group that a certain node belongs to. 

In the study of networks, such as computer and information networks, social networks                         

and biological networks, a number of different characteristics have been found to occur                         

commonly, including the small-world property, heavy-tailed degree distributions, and                 

clustering, among others. Another common characteristic is community structure. In the                     

context of networks, community structure refers to the occurrence of groups of nodes in a                             

network that are more densely connected internally than with the rest of the network, as                             

shown in the example image to the right. This inhomogeneity of connections suggests that the                             

network has certain natural divisions within it. 
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Defining communities effectively involves the division in a set of vertices in a way that                             

every vertex belongs to one and only one community. Despite this simplification, which is                           

widely used, a more complete representation could involve cases where vertices belong to                         

more than one community. This is possible in social networks. In such cases every node depicts                               

a person, while groups of people are presented as communities. Different types of                         

communities could represent family, colleagues, friends from the same hobbies etc. Using                       

community detection to study different groups of social relationships is quite common, and is                           

an example of overlapping communities in the real world.  

It is possible for certain networks to lack community structure. Actually in some basic                           

network models, such as the Barabasi-Albert model, a community structure does not appear. In                           

real networks on the other hand, community structure appears quite often.  

1.2 Real-world use cases 

The prevalence of digital technology and wide adoption of the Internet in most aspects                           

of human lives has led to an exponential growth of data, which have already reached the order                                 

of zettabytes. A multitude of major research areas like sociology, biology and computer science                           

gradually establish on graphs as the defacto standard to represent models and systems in a                             

concise and cost-efficient manner. Over the years, this has elevated the importance of                         

detecting communities in graphs which greatly affects decision making in both the scientific                         

and business worlds. 

Originally, the concept of communities was associated with individual networks of                     

human actors that exhibited certain characteristic structural properties. However, in more                     

complex, digital systems, the scope of communities broadens and does not necessarily involve                         

human actors. 

 

 

Figure 1: A sketch of a small network displaying community structure, with three groups of nodes with 

dense internal connections and sparser connections between groups. 

 

Finding a community structure in a network is of crucial importance for several reasons.                           

Communities allow us to create a large scale map of a network since individual communities                             

act like meta-nodes in the network which makes its study easier.
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Given that communities commonly are related to operational components of a system,                       

identifying communities can illuminate the operation of the system as a whole. Concerning                         

metabolic networks, these communities are related to different cycles and concerning protein                       

interaction networks, communities are related to proteins that function closely inside                     

biological cells. If biology is modular then clusters, or communities, of proteins derived using                           

only protein interaction network structure should define protein modules with similar                     

biological roles.  

Similarly, in social network analysis, community detection is a basic step to understand                         

the structure and function of networks.  

Accordingly, citation networks form communities by research topic. The ability to detect                       

sub-structures inside these graphs could possibly help explain how network operation and                       

topology affect each other. The usefulness of such a procedure is very important since it could                               

potentially improve algorithms on graphs.
 

One of the principal reasons why community detection is useful, is that these                         

communities are commonly characterised by a different set of attributes and roles, when                         

compared to the average attributes and roles of the networks. As such, ignoring communities                           

is definitely going to lead to the omission of essential features of these networks. 
 

Existence of communities also generally affects various processes like rumour                   

spreading or epidemic spreading happening on a network. Hence to properly understand such                         

processes, it is important to detect communities and also to study how they affect the                             

spreading processes in various settings. 

Finally, an important application that community detection has found in network                     

science is the link prediction concerning cases where certain links are lacking, and the                           

detection of links that could potentially be deemed false or abnormal in the network. It is                               

possible, and actually quite common, that certain links may get omitted and it is equally                             

common that abnormal links may get imported into the dataset, since errors can be potentially                             

common during measurement. Cluster identification algorithms can handle both of these cases                       

especially well since the assignment of probability of existence of an edge is allowed. 

 

1.2.1 Bibliographic Citation 

Bibliographic networks is a one of the most widely known categories where graph                         

clustering algorithms apply. Analysing bibliographic networks is important for understanding                   

the process of scientific publications. For example, there are various algorithms that operate                         

on bibliographic graphs in order to achieve semantic topic learning and qualified community                         

detection using both path-related features and node embeddings. 

Other than the above, there is ongoing research on community detection in                       

multi-relational bibliographic networks which incorporate the different types of objects and                     

relationships. That is, various bibliographic networks are often modeled as Heterogeneous                     

Information Networks (HINs). Mining HIN has become a hot research topic which attracts a lot                             
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of attention due to its capability of capturing meta structures with various rich semantic                           

meanings wide applications in real-world scenarios including recommender systems,                 

clustering, and outlier detections. 

Namely, authors can be connected by paper with term and venue information. The                         

proximities between authors can be measured through mining if they coauthor a paper, publish                           

a paper in the same venue, or publish paper with citations between them each of which may                                 

form a meta-path that refers to a different semantic state. (Zhou et al.)  [1]
 

1.2.2 World Wide Web 

The World-Wide Web has spawned a sharing and dissemination of information on an                         

unprecedented scale. Hundreds of millions of individuals are creating, annotating, and                     

exploiting hyperlinked content in a distributed fashion. These individuals come from a variety                         

of backgrounds and have a variety of motives for creating the content. The hyperlinks of the                               

Web give it additional structure; the network of these links is a rich source of latent                               

information. (Kleinberg et al.)  [2]
 

1.2.3 Social Networks 

Proper social research starts from the premise that people are connected and not just                           

atomized individuals. Nowadays, social networks like Facebook, YouTube and Twitter have                     

reached huge sizes counting billions of nodes. A social network is usually represented by a                             

graph consisting of a set of nodes and edges connecting these nodes. The nodes represent the                               

individuals/entities, and the edges correspond to the interactions among them.  

In social networks analysis communities are defined in a quite different way, i.e., by                           

looking at how people are connected to each other, and clustering them into groups. The                             

tendency of people with similar tastes, choices, and preferences to get associated in a social                             

network leads to the formation of virtual clusters or communities. Thus, communities in social                           

networks are a statistical measure of connectivity.  

Understanding communities in social media networks is vital in controlling the way                       

information spreads across different audiences. Different groups may well benefit from                     

different messaging specifically targeted to their needs and interests. 

The dynamic nature of social networks is a key factor that must be taken into account                               

when examining social networks and their communities. As social networks evolve,                     

self-organization, tendencies and connections usually change over time leading to different                     

community structure. This adds another dimension in the analysis needed to observe behaviors                         

of groups in social networks and make predictions or assumptions. (Nettleton et al.)  [3]
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1.2.4 Biology 

Network analysis and modeling is a rapidly growing area which is moving forward our                           

understanding of biological processes. In the past few decades there has been a vast increase                             

in the amount of biological data that is available to the scientific community. As such, a whole                                 

new perspective has emerged in studying complex networks that are embedded in biological                         

systems. For example, there are studies that focus on the evolution of networks at the gene                               

and protein level and to the dynamics and stability of communities. One of the current                             

challenges is to recognize the commonalities in evolutionary and ecological applications of                       

network thinking to create a predictive science of biological networks.  (Proulx et al.)  [4]
 

Nodes in a biological network usually represent biological components of interest such                       

as chromosomes, proteins and can even represent species. Edges indicate interaction between                       

nodes such as regulatory interaction, gene flow, social interactions, or infectious contacts.                       

Typically, real biological populations are characterized by properties such as degree                     

heterogeneity, assortative mixing, non-trivial clustering coefficients, and community structure.                 

The presence of large groups of nodes that are highly interconnected among themselves, but                           

loosely connected with other node groups is an intriguing pattern that is also known as                             

assortative community structure. 

In empirical networks, these groups, also called modules or communities, often                     

correspond well with experimentally-known functional clusters within the overall system. Thus,                     

community detection, by examining the patterns of interactions among the parts of a                         

biological system, can help identify functional groups automatically, without prior knowledge                     

of the system’s processes.  (Pratha Sah et al.)  [5]
 

1.3 Objectives 

The main challenge of this work is to determine an algorithm for detecting communities                           

in signed, directed graphs. Community detection results can be then interpreted and exploited                         

in the context of intelligent web applications and services. 

At the theoretical level, inspired by the algorithm proposed by Venu Satuluri and                         

Sirinivasan Parthasarathy, we propose a variation that targets signed, directed graphs and                       

introduces a similarity score that is based on the concepts of positive and negative co-citation                             

and co-reference. 

At the technical level, we provide a full implementation of the proposed algorithm as                           

well as a multitude of randomly generated signed directed graphs on which we verify the                             

correctness and accuracy of our method. 

 

 

 

 

 

12 



 
Community Detection in Signed Directed Graphs

 
 

2 Networks - Graphs 

2.1 Theoretical Background 
Graph theory effectively concerns itself with the study of relationships. Since graphs                       

can emulate a multitude of real world systems, from layouts of cities, to complicated datasets,                             

graph theory amounts to an incredibly useful tool that can define, measure and simplify the                             

constantly changing variables of a dynamic system. The study of graphs can offer solutions to                             

many problems, in various frameworks, concerning different types, matches and utilising                     

different networks and optimization techniques. Graphs can model complex systems by                     

representing procedures and relationships between objects in a wide variety of fields,                       

delivering a lot of valuable applications. 

2.1.1 Graphs 
A graph G is an ordered triple (V(G),E(G),ψ) consisting of a nonempty set V(G) of                             

vertices, a set E(G), disjoint from V(G), of edges and an incidence function ψ that associates                               

with each edge of G an unordered pair of (not necessarily distinct) vertices of G. If e is an edge                                       

and u and v are vertices such that ψ(e)=uv, then e is said to join u and v; the vertices u and v                                             

are called the ends of e . Often, graphs are represented diagrammatically as sets of vertices           [6]
                   

and edges, where vertices are presented as dots and edges are presented as lines connecting                             

the vertices. Graphs are studied extensively in the field  of discrete mathematics. 

Graphs are so named because they can be represented graphically,and it is this                         

graphical representation that helps us understand many of their properties. Each vertex is                         

indicated by a point and each edge by a line joining the points which represent its ends. There                                   

is no unique way of drawing a graph; the relative positions of points representing vertices and                               

lines representing edges have no significance. A diagram of a graph merely depicts the                           

incidence relation holding between its vertices and edges. We shall however often draw a                           

diagram of a graph and refer to it as the graph itself; in the same spirit, we shall call its points                                         

vertices and its lines edges. We should note that two edges in a diagram of a graph may                                   

intersect at a point that is not a vertex. Those graphs that have a diagram whose edges                                 

intersect only at their ends are called planar, since such graphs can be represented in the plane                                 

in a simple manner. 

The edges of a graph may be directed or undirected and such graphs can be divided                               

into directed graphs and undirected graphs. The word "graph" was first used in this sense by                               

James Joseph Sylvester in 1878 . [7]
 

2.1.2 Vertices and Edges 

A vertex or node is the fundamental component of graphs. Graphs are essentially                         

created by vertices. It is important to note that most of the definitions and concepts in graph                                 
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theory are suggested by the graphical representation. The ends of an edge are said to be                               

incident with the edge, and vice versa. The two vertices forming an edge are said to be the                                   

endpoints of this edge, and the edge is said to be incident to the vertices. Two vertices that are                                     

incident with a common edge are adjacent as are two edges which are incident with a common                                 

vertex. An edge with identical ends is called a loop and an edge with distinct ends is called a                                     

link. With the term endpoints we refer to two vertices that create an edge and in these cases                                   

the edge is said to be incident to the vertices.  

Undirected graphs consist of unordered groups of vertices and groups of edges, while                         

directed graphs consist of ordered groups of vertices and groups of arcs (directed edges).                           

When graphs are represented in diagrammatic form, vertices appear as circles with labels,                         

while edges appear as lines or arrows, that connect one vertex to another. Vertices are unable                               

to be divided into sub-vertices and are deemed to have no specific features. Occasionally,                           

depending on each particular application, it is possible for vertices to have some type of                             

structure. 

If two edges of a graph have a common vertex, then these two edges are considered                               

adjacent. With the term consecutive we refer to edges of a directed graph in the cases where                                 

the head of the first one is the tail of the second one. Similarly, we are calling two vertices                                     

adjacent if they have a common edge and consecutive if the first one is the head and the                                   

second one the tail of an edge. 

2.1.3 Properties of graphs 

A graph is considered finite if both its vertex and set and edge set are finite. In this                                   

book we study only finite graphs and so the term graph always means finite graph. A graph                                 

with just one vertex is called trivial and all other graphs non-trivial. 

The graph with only one vertex and no edges is called the trivial graph. A graph with                                 

only vertices and no edges is known as an edgeless graph. The graph with no vertices and no                                   

edges is sometimes called the null graph or empty graph, but the terminology is not consistent                               

and not all mathematicians allow this object. 

In general, the vertices of a graph can possibly be distinguished from each other since                             

they are elements of a set. In this case that specific graph is said to be vertex-labelled. Despite                                   

that it is considered best practice to consider vertices as indistinguishable. This also applies to                             

edges. As a result of this graphs with labeled edges are considered edge-labelled. Graphs                           

whose vertices or edges have been assigned with labels are called labelled graphs. On the                             

other hand the graphs that are considered unlabelled consist of vertices that cannot be                           

distinguished and edges that also cannot be distinguished. 

14 



 
Community Detection in Signed Directed Graphs

 
 

2.2 Useful Concepts  

In this section we will introduce various useful concepts and terms that we will later use to                                 

demonstrate the analytical method for detecting communities in signed directed graphs based                       

on the connectivity patterns among nodes. 

 

Node 

A synonym for vertex. 

 

Edge 

An edge is along with vertices one of the two basic units out of which graphs are constructed.                                   

Each edge has two vertices to which it is attached. These vertices are called endpoints. Edges                               

may be directed or undirected; undirected edges are also called lines and directed edges are                             

also called arcs or arrows. In an undirected simple graph, an edge may be represented as the                                 

set of its vertices, and in a directed simple graph it may be represented as an ordered pair of                                     

its vertices. An edge that connects vertices x and y is sometimes written xy. 

 

Network 

A graph in which attributes (e.g. names,colours etc.) are associated with the nodes and/or                           

edges. 

 

Connectivity 

The term connectivity describes the extent to which a graph is connected. It is a concept that is                                   

related to the possibility that an edge exists between two random nodes. Connectivity is                           

considered a fundamental notion of graph theory. The connectivity of a graph is an important                             

measure of its resilience as a network. 

 

Degree 

The degree d(v) of a vertex v in a graph G, is the number edges of G that are incident to the                                           

vertex v, each loop counting as two edges. The degree of a graph G is the maximum of the                                     

degrees of its vertices. The degree of a graph G is denoted asΔ(G) while the minimum degree                                   

of graph G (which is the minimum of its vertex degrees) is denoted as δ(G).  

The degree of v in G may be denoted dG(v), d(G), or deg(v). The total degree is the sum of the                                         

degrees of all vertices; In any graph the number of vertices of odd degree is even 
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Loop 

An edge with identical ends is called a loop and an edge with distinct ends is called a link. A                                       

loop or self-loop is an edge both of whose endpoints are the same vertex. It forms a cycle and                                     

as such loops are not allowed in simple graphs. 

 

 

Adjacency Matrix 

The adjacency matrix of a graph is a matrix whose rows and columns are both indexed by                                 

vertices of the graph, with a one in the cell for row i and column j when vertices i and j are                                           

adjacent, and a zero otherwise. 

 

Multigraph 

A multigraph is a graph in which multiple adjacencies and self loops are possible . Any graph                                 

that is not necessarily simple can be a multigraph. 

 

Similarity  

Similarity is a measure that determines whether two nodes are similar.Two nodes are                         

considered similar if they share many of the same neighbors. Usually node similarity                         

algorithms compare a set of nodes based on the nodes they are connected to.  

Similarity in network analysis occurs when two nodes fall in the same equivalence class. 

 

Subgraph 

A subgraph of a graph G is another graph formed from a subset of the vertices and edges of G.                                       

The vertex subset must include all endpoints of the edge subset, but may also include                             

additional vertices. A spanning subgraph is one that includes all vertices of the graph; an                             

induced subgraph is one that includes all the edges whose endpoints belong to the vertex                             

subset. 
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Weight 

The term weight describes a numerical value, attached to a vertex or an edge of a class. Weight                                   

functions as a label. 

 

Weighted graph 

If weights have been attached to the vertices or the edges of a graph, this graph is called a                                     

weighted graph.  

2.3 Directed Graphs 
A directed graph is a graph that consists of vertices and edges.The edges of a directed                               

graph have a particular direction attached to them. All graphs whose edges have a direction                             

are directed graphs. A directed graph D is an ordered triple (V(D), A(D), ψ) consisting of a                                 

nonempty set V(D), of arcs, and an incidence function ψ that associates with each arc of D an                                   

unordered pair of (not necessarily distinct) vertices of D. If a is an arc and u and v are vertices                                       

such that ψ(a)=(u,v),then a is said to join u to v; u is the tail of a and u is its head. For                                             

convenience, directed graphs are often abbreviated as digraphs. A digraph D’ is a subdigraph                           

of D if , andψ is the restriction ofψ to A(D’). The terminology and      (D ) (D)V ′ ⊆ V (D ) (D)A ′ ⊆ A                          

notation for subdigraphs is similar to that used for subgraphs. 

With each digraph D we can associate a graph G on the same vertex set; corresponding                               

to each arc of D there is an edge of G with the same ends. This graph is the underlying graph of                                           

D. Conversely, given any graph G we can obtain a digraph from G by specifying, for each link                                   

an order on its ends. Such a digraph is called orientation of G. 

Just as with graphs, digraphs have a simple pictorial representation. A digraph is                         

represented by a diagram of its underlying graph together with arrows on its edges, each                             

arrow pointing towards the head of the corresponding arc. 

Every concept that applies to graphs by default applies to digraphs too. Despite that,                           

the opposite is not necessarily true since there are many different concepts that involve the                             

notion of orientation and they apply only to digraphs.  [8]
 

If we consider an arrow (x,y) , with y being the head and x the tail of the arrow, y is                                         

considered a direct successor of x and x is considered a direct predecessor of y is reachable                                 

from x. If we subsequently consider an arrow (y,x), that arrows is named the inverted arrow of                                 

(x,y) 
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2.3.1 In- and Out-Degree 

The indegree of a vertex is a concept that describes the number of head ends that are                                 

adjacent to a vertex. Similarly the outdegree of a vertex describes the number of tail ends                               

adjacent to a vertex. The indegree of a vertex v is denoted and its outdegree is                        (v)degin          

denoted .(v)degout  

Concerning a vertex v, if it has it is called a source, since it functions as the              (v)degin = 0                      

origin of every outcoming vertex. Similarly, if a vertex has , it is called a target,                    (v)degout = 0            

since it is the end of every incoming vertex. The degree sum formula states that, for a                 [9]
               

directed graph eg (v)  (v) ∑
 

v∈V
d = ∑

 

v∈V
deg+ =  A| |  

2.3.2 Connectivity 

A directed graph is weakly connected (or just connected) if the undirected underlying                         

graph obtained by replacing all directed edges of the graph with undirected edges is a                             

connected graph while a directed graph is strongly connected or strong if it contains a directed                               

path from x to y and a directed path from y to x for every pair of vertices {x, y}. The strong                                           

components are the maximal strongly connected subgraphs  [10]
 

2.4 Signed Graphs 

In a weighted graph, an edge with a positive weight denotes similarity or proximity of                             

its endpoints. For many reasons, it is desirable to allow edges labeled with negative weights,                             

the intuition being that a negative weight indicates dissimilarity or distance. Weighted graphs                         

for which the weight matrix is a symmetric matrix in which negative and positive entries are                               

called signed graphs. A signed graph is essentially a graph in which each edge has a positive                                  

or negative sign. 

  One of the three characteristics of signed graphs that should be studied is whether a                             

signed graph is balanced or not. Signed graphs are considered balanced when the product of                             

edge signs in every cycle is positive. The other two characteristics concern the largest size of a                                 

balanced edge set in the graph and what is the smallest number of vertices that should be                                 

removed in order for the graph to become balanced. 

Signed graphs (with weights (-1, 0, +1)) were introduced as early as 1953 by Frank                             

Harary to model social relations involving disliking, indifference, and liking. At the Center [13]
                         

for Group Dynamics at the University of Michigan, Dorwin Cartwright and Harary generalized                         

Fritz Heider's psychological theory of balance in triangles of sentiments to a psychological                         

theory of balance in signed graphs. 

Signed graphs where every edge has a direction,in such a way that in positive edges the                               

ends are both directed from one endpoint to the other, and in negative edges either both ends                                 

are directed outward to their own vertices or both are directed inward away from the vertices                               
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are deemed to be oriented. An oriented graph is the same as a bidirected graph, and finally, a                                   

signed digraph is a directed graph with signed arcs. 

 

Applications 

Signed graphs have found extensive applications in social psychology, where social                     

situations are being modelled as signed graphs. People are represented as nodes while                         

positive edges represent friendships and negative edges represent enmities. Signed                 [13]
   

graphs have also been used in models that study balance theory and even changing                           

international alliances between countries. In natural sciences, and more particularly in physics,                       

signed graphs are used in the general, non-ferromagnetic Ising model, which in turn is used in                               

the study of spin glasses.  [14]
 

Also, using an analytic method initially developed in population biology and ecology,                       

but now used in many scientific disciplines, signed digraphs have found application in                         

reasoning about the behavior of complex causal systems. Such analyses answer questions               [15]
         

about feedback at given levels of the system, and about the direction of variable responses                             

given a perturbation to a system at one or more points, variable correlations given such                             

perturbations, the distribution of variance across the system, and the sensitivity or insensitivity                         

of particular variables to system perturbations. 

Finally and more importantly, correlation clustering looks for natural clustering of data                       

by similarity. The data points are represented as the vertices of a graph, with a positive edge                                 

joining similar items and a negative edge joining dissimilar items.  [16]
 

 

2.5 Adjacency Matrix 

An adjacency matrix is defined as follows:  

Let G be a graph with "n" vertices that are assumed to be ordered from v
1
to v

n. The n x n matrix                                             

A, in which a
ij= 1 if there exists a path from v

i to v
j

and a
ij = 0 otherwise, is called an adjacency                     

 
 

 
   

 
             

matrix. 

The adjacency matrix of a signed graph G on n vertices is an n × n matrix A(G), and each row                                         

and each column correspond to a vertex. In row a and column b , the value in the cell is                                      cab  

equal to the number of positive edges minus the number of negative edges. 

In directed graphs, the adjacency matrix shows an edge from j to i. Given this, the                               

in-degree of a vertex is given by the corresponding row sum and the out-degree is given by the                                   

corresponding column sum. The adjacency matrix of a simple labeled graph is the matrix A                             

with A[[i,j]] or 0 according to whether the vertex vj, is adjacent to the vertex vj or not. For                                     

simple graphs without self-loops, the adjacency matrix has 0s on the diagonal. For undirected                           

graphs, the adjacency matrix is symmetric.  [11]
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Figure 2: A graph consisting of three nodes and three edges 

 

The adjacency matrix of the shown directed graph is the following: 
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3 Clustering Algorithms 

3.1 Background 

Clustering algorithms are widely used in order to solve problems where the main task is                             

to group a set of objects in such a way that objects in the same group (called cluster) are more                                       

similar to each other than to those in other groups. Clustering is a building block and a main                                   

objective of exploratory data mining, statistical data analysis, pattern recognition, image                     

analysis, machine learning and bioinformatics. 

Clustering involves specific algorithms that are used for each specific problem to be                         

solved. The algorithms used can be very dissimilar in their definition of a cluster and the                               

procedures used and even the problems that the algorithms seek to solve can differ even                             

more as to the definition of similarity in order to classify the objects of a graph.  

The concept of a cluster does not have a universal accurate definition and this is the                               

cause of the existence of various algorithms that are so dissimilar with each other. Different                             

problems demand the use of different algorithms, clustering methods , procedures and                       

models and even sometimes different definitions of concepts, according to each research                       

problem. 

Certain concepts as to what is a cluster are more widely used than others. Some of                               

them include classes of vertices whose distance with each other is very small compared to                             

vertices outside the class, while others involve specific statistical distributions. Each specific                       

data set will require a suitable treatment, which can be very dissimilar to the treatment of                               

other datasets, according to the intended result in each case. As a result of this, clustering                               

involves a broad number of techniques, and it is not an automatic function, but rather a                               

procedure that involves understanding and interactive multi-objective optimization that                 

involves trial and error. 

Well known and widely used clustering algorithms include K-means, DBScan, Spectral                     

clustering, Hierarchical clustering, principal component analysis and Affinity Propagation. All                   

these algorithms use completely different approaches to clustering. 

 

3.2 Affinity Propagation Clustering 

Affinity Propagation is an unsupervised machine learning algorithm that is particularly                     

well suited for problems where we don’t know the optimal number of clusters. Clustering data                             

by identifying a subset of representative examples is important for processing signals and                         

detecting patterns in data. Such exemplars can be found by randomly choosing an initial                           

subset of data points and then iteratively refining it, but this works well only if that initial                                 

choice is close to a good solution. Affinity propagation takes as input measures of similarity                             
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between pairs of data points and real valued messages are changed between data points until                             

a high quality set of exemplars and corresponding clusters gradually emerges.  

A lot of clustering algorithms demand the number of clusters to be determined as input                             

before clustering takes place. This is not a good fit for this project and as such an algorithm                                   

that does not require the number of clusters would be preferable. Similar to other clustering                             

algorithms affinity propagation finds exemplars. By exemplars we mean members of the                       

dataset that are representative of clusters. Affinity propagation is based on passing messages                         

between data points. . [17]
  

We used affinity propagation to employ clustering in our datasets and identify                       

representatives of clusters. In general affinity propagation finds clusters with much lower error                         

than other methods and does so in less time. 

The similarity between two points is quantified by a function called S, which is used as                               

input.Once the function is passed, the algorithm uses two different matrices which are updated                           

in every iteration. These matrices are the responsibility matrix and the availability matrix. The                           

former contains values which are used in order to determine how fit a data point is to function                                   

as the exemplar of a cluster, while the values of the latter concern how suitable it would be for                                     

a data point to pick another as an exemplar. 

Affinity Propagation was first published in 2007 by Brendan Frey and Delbert Dueck in                           

Science . In layman’s terms, in Affinity Propagation, each data point sends messages to all [18]
                           

other points informing its targets of each target’s relative attractiveness to the sender. Each                           

target then responds to all senders with a reply informing each sender of its availability to                               

associate with the sender, given the attractiveness of the messages that it has received from all                               

other senders. Senders reply to the targets with messages informing each target of the target’s                             

revised relative attractiveness to the sender, given the availability messages it has received                         

from all targets. The message-passing procedure proceeds until a consensus is reached. Once                         

the sender is associated with one of its targets, that target becomes the point’s exemplar. All                               

points with the same exemplar are placed in the same cluster . [19]
 

Supposing a dataset with N nodes, then each node is represented as a data point in a                                 

N-dimensional space. Every cell in the similarity matrix is calculated from the differences                         

between nodes, so that the diagonal of the similarity matrix only has zeroes. The algorithm will                               

converge around a small number of clusters if a smaller value is chosen for the diagonal, and                                 

vice versa. The algorithm starts off by constructing an availability matrix with all elements set                             

to zero. Then it calculates every cell in the responsibility matrix using the following formula: 

 

 (i, ) s(i, ) max{a(i, ) (i, )}  r k =  k −  k′ + s k′  

 

where ,  refers to the row and  refers to the column of the associated matrix.=  k′ / k  i  k  
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The algorithm uses a separate equation for updating the elements on the diagonal of                           

the availability matrix than it does the elements off the diagonal of the availability matrix. The                               

proceeding formula is used to fill in the elements on the diagonal: 

 

(k, ) ax{0, (i , )}a k =  ∑
 

i=k′ /

m r ′ k  

 

where  refers to the row and  the column of the associated matrix. i  k   

This equation sums up all positive values along the column except for the row whose                             

value is equal to the column in question. Once all calculations are completed we end up with                                 

the availability matrix. 

With regard to the criterion matrix, each cell is simply the sum of the availability matrix                               

and responsibility matrix at that location: 

 

(i, ) r(i, ) a(i, )  c k =  k +  k  

 

The highest criterion value of each row is designated as the exemplar. Rows that share                             

the same exemplar are in the same cluster. It’s worth noting that in this example the values of                                   

all 3 matrices range over the same scale. Still, if there are sets of values in different scales they                                     

must be normalized prior to training. 

3.3 Fine-tuning AP parameters  

In the context of this thesis we leveraged the Affinity Propagation implementation of                         

the scikit-learn Python ML framework. This implementation performs data clustering given                     

certain parameters that can be tuned for maximum performance . Here are some                 [20]
       

parameters that we studied and tuned: 

 

● damping: extent to which the current value is maintained relative to incoming values                         

(weighted 1 - damping). This is needed to avoid numerical oscillations when updating                         

these values.  

● max_iter: the maximum number of iterations. Once the number is reached iterations                       

stop. Default value is set to 200.  

● convergence_iter: the number of iterations with no change in the number of estimated                         

clusters that stops the convergence. 

● affinity: determines whether euclidean or precomputed distance is used and as such                       

affinity was set to precomputed, since our main objective in using the algorithm was to                             

take the similarity matrix of the graph as an input. 

● random_state: is a pseudo-random number generator to control the starting state. An                       

integer can be used for reproducible results across function calls. We set this parameter                           
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to 0 (which is the default number in latest versions of the library) to avoid unnecessary                               

warnings.  

● verbosity: controls whether the output is verbose or not. We set this parameter for                           

more detailed output and errors. 

3.4 K-means Clustering 

K-means is a clustering algorithm that was first introduced in signal processing, and                         

whose aim is to divide a number of observations or data points into a number of clusters. The                                   

number of observations or data points is often called n, and the number of clusters is called k.                                   

The clustering should take place in such a way that every observation is sorted into the cluster                                 

with the nearest mean. The mean of every cluster functions as a cluster center and is                               

representative of a cluster. The use of k-means clustering lowers to a minimum the variances                             

of objects that can be found within each cluster, but it does not lower to a minimum the regular                                     

euclidean distances. K-means is related to the k-nearest neighbor algorithm, which is a   [21]
                       

widely used method of machine learning and functions as a classifier.  

The term "k-means" was first used by James MacQueen in 1967 , although the idea                       [22]
       

goes back to Hugo Steinhaus in 1956. The algorithm was not published as a journal article             [23]
                 

until 1982 and in 1965, Edward W. Forgy published essentially the same method, which is   [24]
                         

why it is sometimes referred to as the Lloyd–Forgy algorithm . [25]
 

 

K-means’ goal is to divide a n number of observations into k groups,                    x1, x2, ..., xn)  (         

having , while seeking to lower to a minimum the within-clusterS {S1, S2, ..., Sk}   =          (≤ n)  k                    

variance (sum of squares) by finding whereμ
i
is            rgmin rg min ara ∑

k

i=1
∑
 

x∈S
x||
|
| − μi 

|
|
|
|
2

= a ∑
k

i=1
S|| i

|
|V · Si        

the mean of data points in cluster S
i. This is equivalent to minimizing the pairwise squared                               

deviations of points in the same cluster: . The equivalence can be              rg min a ∑
k

i=1

1
2 S| i| ∑

 

x,y∈ S
x|| − y||2          

deduced from identity . Since the total variance remains        (x )(μ )∑
 

x∈ S
x||
|
| − μi

|
|
|
|
2

= ∑
 

x∈ S
− μi i − y            

stable, this is identical to maximising the sum of squared deviations between data points in                             

separate clusters. . [26]
 

Two widely accepted algorithms are Lloyd’s algorithm and Elkan’s algorithm. The                     

average complexity is given by O(k n T), where n is the number of samples and T is the number                                       

of iterations.  [27]
  

The algorithm which is referred to as Lloyd’s algorithm, which is mentioned above, is an                             

algorithm whose aim is to find evenly spaced sets of data points in subgroups of Euclidean                               

space, and divides these subset into equally sized cells . Similar to the k-means clustering                 [28]
           

algorithm it targets the centroid of every set and then re-divides the data set, with regard to                                 

which group’s centroid is the closest.  
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The algorithm is usually applied directly to the Euclidean plane, but similar algorithms                         

can be applied to n-dimensional spaces, with n reaching higher values, or to spaces with                             

non-Euclidean metrics.  [29]
 

To gain a deeper insight into the k-means internals of the algorithm we studied and                             

tested the K-Means implementation provided by the scikit-learn Python ML framework. In                       

practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available),                           

but it falls in local minima. That’s why it can be useful to restart it several times. If the algorithm                                       

stops before fully converging (because of tol or max_iter), labels_ and cluster_centers_ will not                           

be consistent, i.e. the cluster_centers_ will not be the means of the points in each cluster. Also,                                 

the estimator will reassign labels_ after the last iteration to make labels_ consistent with the                             

predicted labels on the training set. 

Once a set of k means m
1 ,m2 ,.... ,m

k
, is given to the algorithm, it moves forward by           

   
                       

using consecutively two different procedures: the assignment procedure, and the update                     

procedure. In the assignment procedure the algorithm attaches every data point to the cluster                           

that has the nearest mean, which means that it divides the data points according to the voronoi                                 

diagram generated by the means. The update step which takes place next, involves computing                           

the new means of every cluster. The algorithm then proceeds to the assignment procedure                           

again, and the new update procedure after that. In order for the algorithm to converge to a                                 

partitioning, the assignment procedure should no longer change in every new step. Often the                           

algorithm attaches the vertices to the most suitable cluster by distance, usually the euclidean                           

distance, but this is not mandatory. Modifications to the k-means clustering have been                         

suggested in order to use distance metrics other than the euclidean distance. The procedure of                             

assignment is often called “expectation” step and the update procedure “maximization” step. 

In the present thesis, since the algorithm needs a specific number of clusters in order to                               

function, we use the number of clusters that is specified by the affinity propagation algorithm                             

used above. 

In order to initialize the algorithm, the Forgy or the Random Partition methods are often                             

used. The former picks k data points and uses them as starting cluster means , while the latter                                   

uses a random method to attach every data point to a cluster and then starts the update                                 

procedure. The Forgy method tends to spread the initial means out, while Random Partition                           

places all of them close to the center of the data set. Different authors and different studies                                 

can have completely opposing views as to which method initializes the algorithm in an optimal                             

way. Some suggest that the Random Partition method is better suited for algorithms such as                             

the k-harmonic means but for standard k-means algorithms on the other hand, the Forgy                           

method is better suited. Some studies even suggest that widely used initialization techniques                         

are marked by poor performance  [30]
 

It is interesting to note that the algorithm is not assured to converge and that the                               

results possibly depend on external conditions. 
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In most cases where the datasets have an underlying clustering arrangement, Lloyd’s                       

algorithm’s number of iterations is small until it reaches convergence. The algorithm is                         

regarded to be of “linear” complexity . [31]  [32]
 

The result of k-means can be seen as the Voronoi cells of the cluster means. Since data                                 

is split halfway between cluster means, this can lead to suboptimal splits as can be seen in the                                   

"mouse" example. The Gaussian models used by the expectation-maximization algorithm                   

(arguably a generalization of k-means) are more flexible by having both variances and                         

covariances. 

It is also important to note how K-means performs, when compared to the similar                           

expectation-maximization algorithm (EM). The EM algorithm is in general regarded as better                       

able to handle clusters whose sizes are subject to change better than k-means. On the other                               

hand EM demands that a lot more parameters are optimized first. Also EM’s methodology can                             

create problems especially when the problem concerns clusters that disappear or covariance                       

matrices that are not properly conditioned. Finally K-means bears similarities and is associated                         

with nonparametric Bayesian modeling  [33]
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4 A similarity measure for signed, directed graphs 

4.1 Adjacency Matrices 

With the term adjacency matrix we refer to a squared matrix whose function is to                             

represent a finite graph. The notion of adjacency matrix is rooted in graph theory. Each cell of                                 

the adjacency matrix shows whether pairs of vertices are adjacent or not. This is possible with                               

the value of 1 if there is an edge between the two vertices and a 0 if the vertices are not                                         

connected. In cases of signed graphs where certain edges have negative value, this is often                             

indicated with the value of -1. The adjacency matrix of a graph, since it is a square matrix, has a                                       

size of nxn , where n is the size of the graph. 

In general the adjacency matrix of a graph G, is the NxN matrix , in which                        (G) a ]  A = [ ij        aij
is the number of edges joining  and , where   and denote the vertices of the graph.ui uj ui uj  

Concerning o a finite simple graph, its adjacency matrix shall be a square NxN matrix                             

where N denotes the graph size (number of vertices) and the values involve zeroes on the                               

diagonal and the value 1 when vertices are connected with edges. The values of the cells in the                                   

diagonal of the adjacency matrix of a simple graph are all zero, given that loops (edges from a                                   

vertex that end in itself) are not present. The relationship between a graph and the eigenvalues                               

and eigenvectors of its adjacency matrix is studied in spectral graph theory. 

Each edge adds 1 to the appropriate cell in the matrix for undirected graphs , and each                                 

loop adds 2. The sum of the values in either the respective row or column in the adjacency                                   

matrix allows the degree of the vertex to be observed easily. . [35]
 

 

 

It is of crucial importance that we differentiate between the adjacency matrix of a graph                             

and the incidence matrix of a graph. To any graph G there corresponds a vxε matrix called                                 

the incidence matrix of G, which is the matrix , where is the number of times (0,1                (G) m ]  M = [ ij      mij            

or 2) that and are incident. The incidence matrix of a graph is another different way of      ui   εj                          

specifying the graph. . The adjacency matrix A(G) and the incidence matrix M(G) of a graph     [34]
                         

are presented below: 
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Once we have clearly defined the adjacency matrix, and distinguished this important                       

concept from the incidence matrix , we can move on into defining the matrices A+ and A-,                                 

concerning the positive and negative sub-graphs respectively. 

A- and A+ matrices are matrices that contain the same elements with the original                           

adjacency matrix of the graph with one key difference: in A- all the positive elements are                               

replaced with zeroes and in A+ all the negative elements are replaced with zeroes. As a result                                 

of this procedure A- contains the negative elements of the original adjacency matrix whereas                           

A+ contains just the positive ones. 

4.2 Co-citation and Co-reference Matrices 

Co-occurrence matrices, such as co-citation, co-word, and co-link matrices, have been                     

used widely in the information sciences. However, confusion and controversy have hindered                       

the proper statistical analysis of this data . Co-occurrence matrices, such as co-citation,             [39]
           

co-word, and co-link matrices, provide us with useful data for mapping and understanding the                           

structures in the underlying document sets. Various types of analysis have been carried out on                             

this data and a significant body of literature has been built up, making it an important area of                                   

information science (e.g., White & McCain, 1998).  

If we assume a directed signed graph , our goal is to cluster nodes in G so              V , )  G = ( E                      

that nodes in the same cluster share more common positive and negative in- and out- links                               

than nodes in different clusters. We have defined the adjacency matrix A of said directed graph                               

G and we have also defined the matrices and as the adjacency matrices of subgraphs                A+ A− 
             

with positive and negative links respectively. 

The co-reference matrix B (also referred to as bibliographic coupling matrix) was                       

introduced by Kessler in the field of bibliometrics for the sake of counting the number of     [40]
                         

papers that are commonly cited by two scientific documents, and B[i,j] gives the number of                             

nodes that the nodes i and k both point to in the original directed graph. The co-citation matrix                                   

C was introduced by Small , again in the field of bibliometrics and C[i,j] gives the number of         [41]
                         

nodes that commonly point to both i and j in the original directed graph . [42]
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The next step of the process is to define the matrix that refers to the                      B+ = A (A )+ + T   
       

number of nodes that are commonly cited with positive sign by two nodes, and the matrix                               

that denotes the matrix that contains the number of nodes that are commonlyB− = A (A )− − T  
                         

cited with negative sign by two nodes. As such gives the number of nodes that the                  [i, ]  B+ j                

nodes i and j both point to with positive sign in the original directed graph and gives the                                [i, ]  B− j    

number of nodes that the nodes i and j both point to with negative sign in the original directed                                     

graph. 

Then we define the co-citation matrices for positive and negative subgraphs of G,                         

respectively. They are given by and and gives the number of         C+ = (A ) A+ T +  
 C− = (A ) A− T − 

[i, ]  C+ j          

nodes that commonly point to both i and j with positive sign in the original directed graph.                                 

Similarly gives the number of nodes that commonly point to both i and j with negative[i, ]  C− j                                

sign in the original graph. 

The similarity between a pair of nodes in a signed directed graph is related to the                               

number of common in- and out- links of nodes. However co-citations are directly related to the                               

in- degrees of the nodes involved and co-references are directly related to the out- degrees of                               

the nodes involved. Given the above, co-reference matrices and refer to out-degrees                 B+
     B+

       

and co-citation matrices and refer to in-degrees with positive and negative signs,       C+
     C−

                 

respectively. 

It is notable, however, that none of the above mentioned matrices is normalized. When                           

it comes to the actual computation of the similarity matrix to be used as input to the clustering                                   

step of our pipeline this could potentially cause problems. Therefore, a normalization factor is                           

absolutely necessary to avoid data anomalies and increase its accuracy. Normalization of the                         

above mentioned matrices was originally thought of as very important, yet we discovered that                           

normalization at the similarity level would be a better fit for our project, since this method                               

produced better results at the validation stage regarding the values of the similarity matrix.                           

Eventually, we decided to normalize similarity scores which means that we calculated the                         

co-reference and co-citation matrices using their non-normalized definitions : [43]
 

 

   B A ·    
+ =   + (A )+ T

 

A ·   B 
− = − (A )− T

 

  (A )   C  
+ = + T · A+ 

 

   (A )  C  
− =   − T · A− 

 

 

Once we calculate the above matrices, we can proceed with the calculation of the                           

incoming and outgoing similarity matrices. To define these similarity matrices we use both                         

positive and negative co-reference and co-citation matrices, using carefully calculated                   

normalization factors.   
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4.3 Link Balance 

In order to determine the similarity between two nodes it would be advisable that we                             

take into account the factor of the balance between positive and negative links. We should                             

avoid the case where two nodes whose sum of links is very large are deemed similar even                                 

though they could be sharing just positive or just negative links. Therefore, we should take into                               

account the definition of the link balance between nodes. 

Throughout the process we discovered that balancing similarity scores did not yield                       

better results as we originally thought and was eventually ignored in the final stages of the                               

procedure. Yet, since it is one of the possible ways through which this thesis can be extended                                 

in the future, we decided to document how we defined and tested link balance since it will be                                   

useful for next iterations. 

Taking into account the link balance between any two nodes of the original graph is                             

very important but at the same time it is equally important to not allow the balance between                                 

negative and positive links to play a big role when determining the similarity between two                             

nodes. In order to take into account the link balance but not allowing it to determine the value                                   

of similarity between two nodes we sum both the denominator and the numerator of the                             

fraction with the value of 1. As a result the value of the fraction is close to 1. Finally, since we                                         

can choose either negative links to positive links or the opposite, it would be preferable to                               

choose the value that is the smallest. Given the criteria mentioned above, we define positive                             

and negative link balance as: 

 

(i, ) min  balancein j =  ,{ 1+B [i,j]n
−

1+B [i,j]n
+

1+B [i,j]n
+

1+B [i,j]n
− }  

 

(i, ) min  balanceout j =  ,{ 1+C [i,j]n
−

1+C [i,j]n
+

1+C [i,j]n
+

1+C [i,j]n
− }  

 

Balance of in-links is related to the , co-reference matrices since they describe the               B+  B−
           

in-degrees and balance of out-links is related to the co-citation matrices since they                   C+  C−
         

describe the out-degrees. Once the balance-in and balance-out matrices are computed they                       

can be used as regulatory factors in the calculation of the overall similarity score between any                               

two nodes of the original graph. 

4.4 Similarity Score 

The term similarity score or similarity measure, refers to a function that evaluates the                           

similarity between two objects. Despite the inexistence of a single, comprehensive,                     

all-encompassing definition, the measures of similarity usually involve, in some sense, the                       

inverse of distance measures: their values are large for similar objects and small for dissimilar                             

ones. 
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Similarity or distance measures are core components used by distance-based clustering                     

algorithms to cluster similar data points into the same clusters, while dissimilar or distant data                             

points are placed into different clusters. The performance of similarity measures is mostly                         

addressed in two or three-dimensional spaces, beyond which, to the best of our knowledge,                           

there is no empirical study that has revealed the behavior of similarity measures when dealing                             

with high-dimensional datasets. 

Concerning spectral clustering the similarity measure is used in order to cluster dataset                         

points, and often to simplify complexities that have to do with the shape of the distribution of                                 

data  . In the next section we discuss the calculation of similarity matrices. [44]  [45]  

4.4.1 Similarity Matrices Calculation 
Regarding the semantics and calculation of the proposed Similarity Matrix, we shall                       

define two different similarity matrices. One is related to the in-links and shall be called                             

in-similarity , while the other is related to the out-links and shall be called out-similarity. Both                               

of these matrices are essentially a sum and multiplication of matrices that have already been                             

calculated. 

Incoming similarity is the sum of , co-reference matrices that involve the             B+  B−
         

in-degrees of nodes. Similarly, outgoing similarity is the sum of , co-citation matrices that                     C+  C−
     

involve the out-degrees of nodes. 

As discussed above, and after careful consideration regarding the correctness of our                       

algorithm, we decided to normalize the overall similarity matrix before we pass it as input to                               

the clustering algorithm. That is, in-similarity and out-similarity are frequency matrices: the                       

former describes the number of common edges between nodes i and j concerning incoming                           

links, while the latter describes the number of common edges between nodes i and j                             

concerning outgoing links. The two similarity matrices are defined as: 

 

(i, ) (B [i, ] [i, ])  Sin j =   
+ j + B 

− j  

 (i, ) C [i, ] [i, ])  Sout j = (  
+ j + C  

− j  

 

Finally, we define the overall similarity matrix as the normalized sum of in- and                           

out-similarity matrices. For each pair of nodes i, j we define the normalization factor as the                               

inverse maximum of the node degrees, i.e., D(i) and D(j) which denote the total sum of edges                                 

for nodes i and j respectively. 

 

Similarity[i, ] j =  S (i,j) + S (i,j)in out

max(D (i) , D (j)) 
 

 
 

 
 

Since , similarity-in and similarity-out denote the number of common edges between nodes i 

and j concerning in-coming and out-going links respectively, their sum is the total number of 
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common edges the two nodes share. If the nodes share all their edges, that number is equal to 

the degree D(i) and the degree D(j), and similarity reaches its maximum value which is 1. This 

value indicates that the two nodes have 100% similarity. 

4.4.2 Calculation of Communities 
The problem of detecting communities in graphs is a projection of data clustering where                       

the network's topological properties are only considered for measuring similarities among                     

nodes. Among the existing community detection approaches, the affinity propagation                   

(AP)-based method has been showing promising results and does not require any predefined                         

information such as the number of clusters (communities).  

Using the similarity matrix as input to a clustering algorithm, like Affinity Propagation,                         

we are able to divide the original graphs into groups of nodes that follow similar connectivity                               

patterns, i.e., point to and are pointed from similar sets of nodes. Since scikit-learn provides a                               

multitude of well-implemented clustering algorithms we decided to test and use scikit-learn’s                       

implementation of the Affinity Propagation algorithm, which is widely adopted and considered                       

efficient and reliable. Our approach is to use the overall similarity matrix discussed in the                             

previous section as precomputed affinity instead of the default euclidean. In turn, Affinity                         

Propagation will return communities of nodes that follow similar connectivity patterns in the                         

original graph. 
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5 Experimental Evaluation 

5.1 Development Environment 
In this section we shortly describe the environment and set of tools that we used to                               

implement the proposed algorithm for detecting communities in signed directed graphs. In a                         

nutshell, we chose Python 3.8 for the implementation and more specifically numpy for the                           

calculations between matrices, sklearn for the clustering algorithms and networkx to model                       

graphs. 

 

NetworkX 

NetworkX is a Python library for the creation, manipulation and study of the structure,                           

dynamics and functions of complex networks. It provides a multitude of useful features, such                           

as: data structures for graphs, digraphs and multigraphs, standard graph algorithms, models                       

for representing networks, analysis tools and generators for classic, random, and synthetic                       

graphs. Edges can hold arbitrary data while nodes can be either text, images or XML records                               

and it is well tested with over 90% code average. 

In general, it is appropriate for use on large graphs that are suitable for real world uses.                                 

Graphs whose size is more than 10.000.000 nodes and 100.000.000 edges can be manipulated                           

using networkx. . [46]
 

 

Matplotlib 

Matplotlib is a python library designed specifically for creating two-dimensional plots                     

of arrays in Python. Its origins are in imitating MATLAB graphics, but it is independent of                               

MATLAB and it is possible to be used in object oriented programming since it provides an                               

object oriented API for embedding plots into applications using general purpose GUI toolkits.                         

Matplotlib is written in Python and uses its numerical and mathematics extension, Numpy,                         

extensively, in order to offer great performance for big arrays. 

Matplotlib was created with the mindset that one should be able to make plots with                             

very few commands. As a result, Matplotlib is used extensively for data analysis and data                             

visualization since it can easily create plots. It also provides a procedural pulab interface,                           

created in order to imitate that of MATLAB. Matplotlib was originally written by John D. Hunter,                               

and since then it has an active development community.  

The pictures below depict how Matplotlib visualizes some of the randomly generated                       

signed directed graphs for our experiments. The red edges denote negative connections, while                         

the green ones denote positive connections . [46]
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Figure 3: 10 nodes, 30% connected             Figure 4: 15 nodes, 50% connected 

Figure 5: 20 nodes, 30% connected            Figure 6: 20 nodes, 50% connected 

 

Figure 3 depicts a graph with 10 nodes and 30% connectivity while figure 4 on the right depicts 

a graph with 15 nodes and 50% connectivity. Figure 5 and 6 depict  a graph with 20 nodes and 

30% connectivity and a graph with 20 nodes and 50% connectivity respectively. 

 

Numpy 

NumPy stands for Numerical Python. Numpy is a Python library, whose aims include                         

numerical computations, high level mathematical functions and manipulation of large                   

multi-dimensional arrays and matrices. NumPy is mainly used for working with arrays. Its                         

functions can be very useful for linear algebra, fourier transform, and matrices. NumPy was                           

created in 2005 by Travis Oliphant. The ancestor of NumPy, Numeric, was originally created by                             

Jim Hugunin with contributions from several other developers. In general, Python lists serve                           

the purpose of arrays, but they are slow to process. NumPy aims to provide an array object that                                   

is up to 50x faster than traditional Python lists.  

The array object in NumPy is called ndarray. Arrays are very frequently used in data                             

science, where speed and resources are very important. NumPy arrays are stored at one                           

continuous place in memory unlike lists, so processes can access and manipulate them very                           

efficiently. This is the main reason why NumPy is faster than lists. Widely used computer vision                               

library OpenCV makes use of Numpy arrays and given that images with multiple channels can                             
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be presented as 3D arrays, indexing, slicing and masking with other arrays are useful methods                             

to manipulate specific pixels of an image 

NumPy offers multidimensional arrays, functions and operators that operate efficiently                   

on arrays, requiring rewriting some code, mostly inner loops. . [49]
 

 

Scikit-learn 

Scikit-learn is a widely used machine learning Python library. Its features include                       

classification ,regression and clustering algorithms, as well as tools for dimensionality                     

reduction, model selection and preprocessing. Algorithms include support vector machines,                   

random forests , gradient boosting and others. The first public release was published in 2010. 

The library is focused on modeling data. It is not focused on loading, manipulating and                             

summarizing data. Some popular groups of models provided by scikit-learn include: 

● Clustering: for grouping unlabeled data such as KMeans. 

● Cross Validation: for estimating the performance of supervised models on unseen 

data. 

● Datasets: for test datasets and for generating datasets with specific properties for 

investigating model behavior. 

● Dimensionality Reduction: for reducing the number of attributes in data for 

summarization, visualization and feature selection such as Principal component 

analysis. 

● Ensemble methods: for combining the predictions of multiple supervised models. 

● Feature extraction: for defining attributes in image and text data. 

● Feature selection: for identifying meaningful attributes from which to create 

supervised models. 

● Parameter Tuning: for getting the most out of supervised models. 

● Manifold Learning: For summarizing and depicting complex multi-dimensional data. 

● Supervised Models: a vast array not limited to generalized linear models, discriminate 

analysis, naive bayes, lazy methods, neural networks, support vector machines and 

decision trees. 

 

Scikit-learn is largely written in Python, and uses numpy extensively for high-performance 

linear algebra and array operations   Scikit-learn is suitable for use with other Python [48]
 

libraries such as matplotlib, numpy, pandas and more. 
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5.2 Dataset Generator 

In order to test our algorithm the first step was to try a real world dataset from                                 

Stanford Large Network Dataset Collection. The chosen file was Wiki-RfA, a directed signed                         

graph, which describes wikipedia requests for adminship. For a Wikipedia editor to become an                           

administrator, a request for adminship (RfA) must be submitted, either by the candidate or by                             

another community member. Subsequently, any Wikipedia member may cast a supporting,                     

neutral, or opposing vote. 

All votes were parsed since the adoption of the RfA process in 2003 through May 2013. 

The dataset contains 11,381 users (voters and candidates) forming 189,004 distinct voter/votee                       

pairs, for a total of 198,275 votes (this is larger than the number of distinct voter/votee pairs                                 

because, if the same user ran for election several times, the same voter/votee pair may                             

contribute several votes). 

This induces a directed, signed network in which nodes represent Wikipedia members                       

and edges represent votes. In this sense, the present dataset is a more recent version of the                                 

Wikipedia administratorship election data. Votes can be either positive, negative or neutral.                       

The dataset contains around 10.000 nodes representing the users and 150.000 edges that                         

represent the votes. 

When running the algorithm on the dataset, it converged up to a certain number of                             

nodes (around 200) and if the whole file was used the algorithm could not determine a specific                                 

number of clusters. 

It was hypothesized that since node degrees are used in the calculations of the matrices ,                               

graphs with a limited number of edges per node could potentially fill the matrices with zeros                               

and null values, thus rendering the convergence of the algorithm impossible.  

As such, a networkx generator that produces random, directed, signed graphs proved                       

to be a useful tool, especially since it is possible to control the number of edges per node,                                   

through connectivity, a graph attribute that describes the possibility that an edge exists                         

between two random nodes. The gnp_random_graph() function returns a random graph,                     

also known as Erdos-Renyi model graph or binomial graph, with the option of directed edges                             

and positive/negative weights. The model chooses each of the possible edges with a                         

pre-determined probability (referring to the connectivity attribute of the graph) and weights                       

were chosen randomly with positive weight representing a positive sign (visualized as a green                           

line) while negative weight representing a negative sign (visualized as a red line).  

The random graph generator produces modular random graphs using only a small                       

number of intuitive and interpretable parameters such as the size of the graph and connectivity                             

of the graph given as a percentage. It produces different graphs for different degree                           

distributions and so it is extremely useful for the interpretation of results by allowing us to                               

study the relationships between convergence , number of nodes , number of edges ,                           

connectivity and whether the algorithm converges or not. 
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Erdos-Renyi model 

The Erdos-Renyi G(n, p) model was described by Edgar Gilbert for the first time in a                               

1959 paper that concerned the connectivity threshold of graphs. The term Erdos-Renyi model                           

refers to two models that bear a great deal of resemblance to each other, and are widely used                                   

in the generation of random graphs or the study of how a random network evolves. The name                                 

Erdos-Renyi comes from the mathematicians Paul Erdos and Alfred Renyi, who presented the                         

models in 1959. Edgar Gilbert subsequently presented the other model independently of Erdos                         

and Renyi . [50]  [51]
  

All graphs that consist of a standard set of vertices and a standard number of edges are                                 

equivalently possible in the model of Erdos and Renyi. Conversely, in the model created by                             

Gilbert every edge adheres to a standard probability of presence or absence, that is                           

independent of the rest of edges. It is possible for probabilistic methods to prove the existence                               

of graphs that meet different sets of properties , or to offer defining characteristics of the                               

meaning of each property for every graph.. The two variants of the Erdos-Renyi random graph                             

model that are also very similar to each other, are presented here: 

 

First Variant: Erdos-Renyi 

The G(n, M) model , presented by Erdos and Renyi, a random choice of a graph takes place.                                   

The graph is picked from a group of graphs that have a number of vertices n and a number of                                       

edges M. 

 

Second Variant: Gilbert 

In the G(n, p) model, presented by Gilbert, and which is used in the present thesis, the                                 

construction of a graph takes place and the connection of nodes happens randomly. Every                           

edge gets incorporated in the graph with a probability p, which is completely unconstrained                           

from the rest of the edges. As such, the rest of graphs with a number of nodes n , and a number                                           

of edges M, have equal probability of .(1 )pM − p −M2
n

  

In the model presented by Gilbert, the parameter p acts as a function of weight and every                                 

increase from 0 to 1, the chance that the model will encompass graphs with a greater number                                 

of edges a rises, and the chance that the model will encompass graphs with a smaller number                                 

of edges lowers.  

A graph in G(n, p) has on average edges. An interesting observation is that the              p2
n                

distribution of the degree of any particular vertex is binomial  It should also be note that: [52]
 

, where is the total number of vertices in the graph and(deg(v) ) ( )p (1 )P = k =  k
n−1 k − p (n−1)/k  

    n                      

since: the distribution follows the Poisson(deg(v) ) ( )  as n  and np onstantP = k →  k!
(np) ek −np

→ ∞ = c          

distribution for large n and np = const. 
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5.3 Results 

In order to verify the correctness of the implementation and to check the way the                             

algorithm works at large scale datasets, different combinations of graph sizes and different                         

values of node connectivity for each graph were tested.  

The metrics that were deemed most important were the number of clusters , whether                           

the scaling algorithm converged or not and total elapsed time. Connectivity is closely                         

connected to the number of edges and the number of nodes and is presented at the tables                                 

below along with other metrics. Results are presented in each table for different combinations                           

of number of nodes and connectivity/number of edges. Convergence is described with a yes or                             

no, depending on whether the algorithm converged or not, and in cases where the algorithm                             

converged, but with arbitrary number of clusters, it is denoted at the no. of clusters                             

column.This happens when all samples have mutually equal similarity scores. As stated above                         

at the dataset generator section, the number of edges and corresponding connections                       

between nodes are determined randomly, and as such all nodes have equal similarity scores.                           

This is a special case in which the affinity propagation algorithm reaches its limits, similarity                             

scores between nodes are identical, and the algorithm groups the nodes of the graph in an                               

arbitrary number of clusters. Finally, different connectivity percentages were chosen                   

indicatively for each graph size, in order to determine the relationship between connectivity                         

and the detection of communities in the original graph. 

We present the results grouped by the size of the network for different numbers of                             

edges and connections. 

 
 
 

 
Table 1: This table shows the results for a graph of 5 nodes and connectivity scaling from 1.00% up to 75.0%  
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No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

5  5.0%  4  5  arbitrary  0.015 

5  10.0%  5  2  yes  0.008 

5  25.0%  6  2  yes  0.009 

5  50.0%  13  3  yes  0.004 

5  75.0%  13  2  yes  0.004 
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Table 2: This table shows the results for a graph of 10 nodes and connectivity scaling from 1.00% up to 75.0%  
 
 

 
Table 3: This table shows the results for a graph of 25 nodes and connectivity scaling from 1.00% up to 75.0%  
 
 

 
Table 4: This table shows the results for a graph of 50 nodes and connectivity scaling from 1.00% up to 75.0%  
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No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

10  5.0%  13  3  yes  0.010 

10  10.0%  12  4  yes  0.009 

10  25.0%  20  3  yes  0.008 

10  50.0%  45  0  no  0.025 

10  75.0%  60  2  yes  0.004 

No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

25  5.0%  30  0  no  0.025 

25  10.0%  66  6  yes  0.007 

25  25.0%  145  0  no  0.028 

25  50.0%  304  7  no  0.010 

25  75.0%  444  0  no  0.028 

No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

50  5.0%  112  12  yes  0.014 

50  10.0%  225  10  yes  0.027 

50  25.0%  587  10  yes  0.020 

50  50.0%  1242  11  yes  0.026 

50  75.0%  1828  0  no  0.056 
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Table 5: This table shows the results for a graph of 100 nodes and connectivity scaling from 1.00% up to 75.0%  
 
 

 
Table 6: This table shows the results for a graph of 250 nodes and connectivity scaling from 1.00% up to 75.0%  
 
 

 
Table 7: This table shows the results for a graph of 500 nodes and connectivity scaling from 1.00% up to 75.0%  
 
 

40 

No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

100  5.0%  485  20  yes  0.069 

100  10.0%  983  19  yes  0.081 

100  25.0%  2440  18  yes  0.125 

100  50.0%  4957  16  yes  0.176 

100  75.0%  7470  17  yes  0.234 

No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

250  5.0%  3126  39  yes  0.435 

250  10.0%  6282  40  yes  0.668 

250  25.0%  15570  34  yes  0.210 

250  50.0%  31211  36  yes  2.620 

250  75.0%  46680  34  yes  3.447 

No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

500  5.0%  12366  73  yes  3.109 

500  10.0%  24811  74  yes  4.096 

500  25.0%  62130  62  yes  10.507 

500  50.0%  124814  59  yes  24.326 

500  75.0%  187096  63  yes  22.468 
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Table 8: This table shows the results for a graph of 1000 nodes and connectivity scaling from 1.00% up to 75.0%  
 
 

 
Table 9: This table shows the results for a graph of 2500 nodes and connectivity scaling from 1.00% up to 75.0%  
 
 

 
Table 10: This table shows the results for a graph of 5000 nodes and connectivity scaling from 1.00% up to 75.0%  
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No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

1000  5.0%  50034  135  yes  17.423 

1000  10.0%  99996  123  yes  30.996 

1000  25.0%  250741  113  yes  73.885 

1000  50.0%  498861  106  yes  152.308 

1000  75.0%  749974  109  yes  181.101 

No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

2500  5.0%  311768  0  no  198.125 

2500  10.0%  623571  0  no  409.011 

2500  25.0%  1561236  0  no  978.840 

2500  50.0%  3124396  242  yes  1835.197 

2500  75.0%  4686305  234            yes  2766.257 

No. of nodes  Connectivity  No. of edges  No. of clusters  Convergence  Elapsed Time 

5000  5.0%  1249425  511  yes  2576.002 

5000  10.0%  2497599  0  no  5017.518 

5000  25.0%  6247370  453  no  11623.403 

5000  50.0%  9999284  0  no  22951.815 

5000  75.0%  18745660  0  no  56009.510 
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6 Discussion 

6.1 Similarity and Clustering Validation 
To verify the correctness of the proposed algorithm we had to check the extent to which                               

the similarity scores for individual pairs of nodes indeed reflected patterns in the original                           

graph. In this respect, we have defined similarity as a percentage and we use the definition of                                 

similarity measure described above, dividing the values of the sum of in-similarity and                         

out-similarity (which indicates the number of common edges) with the value of total possible                           

common edges. This division is a type of normalization and it means that the values of our final                                   

matrix consists of percentages. Every value in the original similarity matrix is divided by the                             

number of possible edges that two nodes can have in common, and is the maximum between                               

the number of edges of node i and the number of edges of node j. Since normalization takes                                   

place later in the process, this time we ignore balance and the normalization factors at the                               

level of matrices B and C, since we normalize the matrix at the end 

We demonstrate a relatively small cluster of 7 nodes with the aim to examine the                             

values of the similarity matrix. The relationships between nodes were such that the clusters we                             

expected were obvious. 

In randomly generated, large, dense graphs, it is quite common that relationships                       

between nodes are very complex. This makes it really hard to verify whether the clustering of                               

the nodes is meaningful since connectivity patterns are not always easy to detect and                           

quantize. Given the aforementioned theoretical background, we expect the clustering                   

algorithm to put the nodes that are commonly cited by another node, or two other nodes, in                                 

the same cluster, and the nodes that commonly point to another node, or a set of nodes, in the                                     

same cluster respectively. 

In order to define the new measure of similarity as percentage we will use the                             

equations that are listed below, and have been explained in depth in previous sections. 

 

 B A ·  
+ =   + (A )+ T

 

A ·B 
− = − (A )− T

 

 (A )C  
+ = + T · A+ 

 

  (A ) C  
− =   − T · A− 

 

 

As mentioned above, gives the number of nodes that the nodes i and j both      [i, ]  B+ j                          

point to with positive sign in the original directed graph and gives the number of nodes                      [i, ]  B− j          

that the nodes i and j both point to with negative sign in the original directed graph. 
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On the other hand, gives the number of nodes that commonly point to both i        [i, ]  C+ j                        

and j with positive sign in the original directed graph. Similarly gives the number of                    [i, ]  C− j          

nodes that commonly point to both i and j with negative sign in the original graph. 

Concerning similarity measures, we will first define the matrices Sin and Sout. Here                         

Sin(i,j) and Sout(i,j) matrices denote the number of common edges that the pair of nodes i and j                                   

share, with Sin referring to incoming edges and Sout referring to outcoming ones. Dividing the                             

sum of Sin and Sout with the maximum number of edges we have a percentage that denotes                                 

similarity. 

(i, ) (B [i, ] [i, ])  Sin j =   
+ j + B 

− j  

  (i, ) C [i, ] [i, ])  Sout j = (  
+ j + C  

− j  

 

Similarity[i, ] j =  S (i,j) + S (i,j)in out

max(D (i) , D (j)) 
 

 
 

 
 

 

We expect this measure of similarity to have the value of 1 in the diagonal, and the                                 

same value in pairs of nodes that share the same edges. Accordingly, pairs of nodes that do                                 

not share common edges would have the value of zero. 

In order to test the results we conducted an experiment using graphs with a small                             

number of nodes. The 7-node graph that is depicted below is simple enough to be understood                               

at a glance. The clusters that we expect should also be obvious. 

 

   Figure7 : A seven node graph created with 2 communities       Figure 8: Commands for  graph in figure 7 
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Since nodes 0, 1, 2, 3 and 4 refer to node 5 with positive sign and are cited by node 6 with                                             

negative sign, we expect the nodes 0, 1, 2, 3 and 4 to be in the same cluster, while node 5                                         

comprises a cluster of its own, as does node 6. The similarity matrix is depicted below: 

                                                            Figure 9: Similarity Matrix for graph in figure 6 

 

The similarity matrix for the graph in figure 7, along with the clustering that resulted                             

from the algorithm shown in figure 9. The values in the similarity matrix were as expected,                               

since the nodes 0-4 share the same edges and are thus 100% similar, while node 5 shares                                 

100% similarity with itself and 0% with the other nodes, and the same applies to node 6. As                                   

such the expected values involved the value of 1 in every cell except for lines 5 and 6 and                                     

columns 5 and 6 which should have zeroes. Also the cells (5,5) and (6,6) should also have the                                   

value of 1 since nodes 5 and 6 share absolute similarity with themselves. The clusters that were                                 

returned by the algorithm differed from the clusters that we expected. Instead of clustering                           

nodes 0, 1, 2, 3 and 4 together in the same cluster, the algorithm put node 2 a cluster of its                                         

own, and node 3 on its own as well. On the other hand, nodes 5 and 6 were clustered                                     

correctly. 

 

We also created a second, larger graph in order to test the results further, this time with 14                                   

nodes, which is depicted below. The clusters that we expect should also be obvious. 

Since nodes 0, 1, 2, 3 and 4 refer to node 5 with positive sign and are cited by node 6                                         

with negative sign, we expect the nodes 0, 1, 2, 3 and 4 to be in the same cluster, while node 5                                           

comprises a cluster of its own, as does node 6. The similarity matrix is depicted below: 
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Figure 9: A fourteen  node graph, created to validate algorithm results        Figure 10: The edges of the second graph 

 

Given the edges of the second graph, we expected the nodes 0,1,2,3 and 4 grouped                             

together since they are positively cited by node 5 and negatively by node 6. Node 5 and 6                                   

should each belong to a single cluster on their own, since they do not share any common                                 

edges with any other node. Nodes 9, 10, 11, 12 and 13 should belong to the same cluster since                                     

they are positively by node 8 and positively by node 7. Node 7 should belong to a single                                   

cluster on its own. The same applies for node 8. Results are shown below:  

 

 

Figure 11: Similarity matrix for graph in fiureg 19. Note that values in the diagonal are equal to 1. 

 

It is interesting to note that the values in the diagonal of the similarity are equal to 1.                                   

The values in the diagonal denote how similar a node is with itself. As such the value of 1                                     

denotes 100% or full similarity. 
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6.2 Conclusion 

The most important verification step of our process was to check for the values in the                               

diagonal of the similarity matrix. Since the value of 1 appears in all our tests, it is obvious that                                     

every node shares 100% similarity with itself. Also, the validation process proved that the                           

algorithm can find clusters correctly in a small graph of 15 nodes. It is important to note that                                   

the algorithm works in graphs of up to 5.000 nodes and produces tangible results. 

Judging from the above, it is very important that the normalisation takes place at the                             

similarity level, since this important part makes sure that zeroes do not appear at the value of                                 

any denominator. This also makes sure that the values in the diagonal of the similarity matrix                               

are equal to 1, since the denominator contains the sum total of all the edges the two nodes                                   

could have in common, and the numerator contains the number of common edges that the two                               

nodes share. In the diagonal of the similarity matrix these two values are equal. 

The balance factor, though eventually abandoned, could potentially be in the future, in                         

special cases of graphs where the appearance of pairs of nodes with many common positive                             

edges but no negative common ones, makes clustering difficult. 

At this point we should also note that arbitrary clustering took place extensively at the                             

first step of the process, where normalization took place in matrices B and C, and not at the                                   

similarity level. This issue was fixed once normalisation happened at the level of similarity,                           

meaning that similarity in and similarity out matrices were computed using just the B and C                               

matrices, directly calculated from their respective definitions. Then, the total similarity score                       

was calculated by adding incoming and outgoing similarity matrices and dividing by the                         

number of possible common edges the two nodes could share (max(D(i), D(j)). 

Viewing similarity as a percentage was crucial to the process. Incoming and outgoing                         

similarity were used as measures of incoming and outgoing common edges respectively, and                         

were essential in the final calculation of the similarity matrix. The arbitrary clustering that                           

occured after these steps was due to the graph having an especially low number of edges (in                                 

cases where low connectivity (<5%) was combined with a very low number of nodes (e.g. 5)).                               

Of course we should always take into account the fact that the data was synthetic and that the                                   

graphs created using the custom-made dataset generator were random, meaning that clusters                       

were not always present, especially in these special cases of small graphs with low                           

connectivity. 

In general, the algorithm is capable of calculating adequately the similarity matrices it                         

was intended to. These matrices can effectively be used to cluster datasets and results are                             

promising for the next attempts. 

6.3 Future Research 

Given the fact that the single most important measure for clustering is the diagonal of                             

the similarity matrix, the similarity measure that is proposed here functions adequately. The                         

value of the cells in the diagonal of the similarity matrix, showed exceptional consistency in                             
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taking the value of 1, just as it should. This means that every node in the graph shares a 100%                                       

similarity with itself.  

Also, it is important to note that clustering showed quite promising results. One of the                             

main goals for any future research project could be to run our algorithm and implementation                             

on large scale datasets of signed, directed graphs for which communities are pre-determined.                         

This would make large-scale validation plausible and, in turn, help one define the accuracy of                             

the proposed clustering algorithm in the real-world. 

In this context, the algorithm could be improved by integrating the regulatory factor                         

called balance, the use of which has been outlined above. In cases where imbalances between                             

positive and negative edges between two nodes of a graph exist, the notion of balance could                               

be of crucial importance in determining the clusters that the two nodes belong to. In future                               

attempts, the integration of the balance factor could be very important. 

On a different note, more research is needed in order to verify the performance of the                               

Affinity Propagation algorithm. An interesting idea would be to compare the results of the                           

Affinity Propagation algorithm with those of a different clustering algorithm, such as k-means                         

or k-medoids. Alternatively, we could use two different clustering algorithms in the same                         

pipeline: the first clustering algorithm could calculate a rough number of clusters for the given                             

graph, while the second one could use the output of the first one as input to reach more precise                                     

results. This would allow us to combine different approaches, approximate the number of                         

clusters before knowing the communities and evaluate our algorithm and implementation                     

from a different angle. 
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7 Source Code 

 

The implementation of the proposed algorithm is open-source and available at the following                         

GitHub repository: 

 

https://github.com/manosandroulidakis/msc 
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