

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Π.Μ.Σ. ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ & ΥΠΗΡΕΣΙΕΣ

ΜΕΓΑΛΑ ΔΕΔΟΜΕΝΑ ΚΑΙ ΑΝΑΛΥΤΙΚΗ

RANKING RECOMMENDATIONS

VIA

ONLINE LEARNING
(ΔΙΑΤΕΤΑΓΜΕΝΕΣ ΣΥΣΤΑΣΕΙΣ ΜΕΣΩ ΑΜΕΣΗΣ ΜΑΘΗΣΗΣ)

ΕΥΣΤΑΘΙΟΣ ΣΟΥΦΛΑΣ (ΜΕ 1944)

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ

ΟΡΕΣΤΗΣ ΤΕΛΕΛΗΣ

ΦΕΒΡΟΥΑΡΙΟΣ 2021

2

TABLE OF CONTENTS

Acknowledgement .. 4

Abstract ... 5

Περίληψη ... 5

1 Introduction .. 6

1.1 Online Learning ... 6

1.2 Online Learning Problem Models .. 7

1.3 Overview .. 8

2 The Multi-armed Bandit Problem ... 9

2.1 The UCB1 Algorithm ... 11

2.2 The e-Greedy Algorithm ... 14

2.3 The Exp3 Algorithm... 15

3 Ranked Recommendations.. 20

3.1 REC and RBA .. 21

3.2 IBA .. 23

3.3 dcmKL-UCB ... 25

4 Contextual Bandits.. 27

4.1 LSBGreedy .. 28

4.2 LinUCB ... 29

5 Experiments in Ranked Recommendations ... 31

5.1 Methodology .. 31

5.2 Experiment Analysis ... 33

5.3 First phase of experiments ... 33

5.4 Second phase of experiments.. 35

5.5 Conclusion ... 41

6 References .. 43

Appendix ... 46

3

INDEX OF FIGURES

Figure 2.1: Representation of average regret .. 11

Figure 2.2: The stochastic bandit problem ... 12

Figure 2.3: Gaussian distribution of mean reward R(a) .. 13

Figure 2.4: Pseudocode for UCB1 .. 14

Figure 2.5: Pseudocode for e-Greedy .. 15

Figure 2.6: The adversarial bandit problem ... 16

Figure 2.7: Pseudocode for Exp3 ... 17

Figure 3.1: Pseudocode for REC .. 21

Figure 3.2: Pseudocode for RBA .. 22

Figure 3.3: Pseudocode for IBA .. 24

Figure 3.4: Pseudocode for dcmKL-UCB ... 26

Figure 5.1: Cumulative reward of the e-Greedy algorithm .. 34

Figure 5.2: Cumulative reward of the Exp3 algorithm ... 34

Figure 5.3: Frequency of chosen documents in the first instance of UCB1 35

Figure 5.4: Frequency of chosen documents in the second instance of UCB1 36

Figure 5.5: Frequency of chosen documents in the third instance of UCB1 36

Figure 5.6: Total annual income of different algorithms .. 37

Figure 5.7: Differences between RBA and the greedy algorithm 38

Figure 5.8: Average regret of each version of RBA ... 39

Figure 5.9: Total income of different algorithms for 5 years ... 39

Figure 5.10: Average regret of each version of RBA .. 40

Figure 5.11: Relative difference of income of each version of RBA for 1 year 40

Figure 5.12: Relative difference of income of each version of RBA for 5 years 41

4

ACKNOWLEDGEMENT

I would like to warmly thank my supervising professor, Mr Orestis Telelis, for

his valuable guidance, patience, and personal support in my academic endeavors.

I would also like to express my heartfelt gratitude to my supportive wife, Maria,

for all her encouragement during this challenging period of my life. She stood by me

all the time and filled me with confidence to reach my goal. Last but not least, I would

like to thank my miracle, my little princess, Katerina, who was born in the middle of this

demanding period and filled me with enthusiasm. I would like to dedicate this

dissertation to both of them.

Efstathios Souflas

5

ABSTRACT

 These days, that can be characterized by high rates of information transmission

and the increasingly usage of world wide web, there are plenty of applications and

websites that handle recommendations systems, in order to provide their users with

the best possible suggestions. The solution to such systems is given by Online

Learning, which demand low computational resources and yield optimum results. In

this work, we examine Online Learning and especially the Multi-armed Bandit problem,

which is one of its aspects. In later sections, we will present some of the most known

online learning algorithms that refer to that problem.

Specifically, we are interested in rankings of recommendations and the usage

of the meta-algorithm Ranked Bandits Algorithm (RBA) in our experiments, which

manipulates instances of other online algorithms. We study the convergence of RBA

through “sponsored recommendations”, in which each document is related to an

income, while each user is a subset of the documents he is interested in and derives

randomly from a set of different populations.

ΠΕΡΙΛΗΨΗ

 Στη σημερινή εποχή, που χαρακτηρίζεται από υψηλούς ρυθμούς μετάδοσης

της πληροφορίας και της ολοένα αυξανόμενης χρήσης του παγκόσμιου ιστού,

υπάρχουν πολλές εφαρμογές και ιστοσελίδες που χειρίζονται συστήματα συστάσεων,

προκειμένου να παρέχουν στους χρήστες τους τις καλύτερες δυνατές προτάσεις. Η

λύση για τέτοιου είδους συστήματα δίνεται από την «Άμεση Μάθηση», η οποία απαιτεί

χαμηλούς υπολογιστικούς πόρους και προσφέρει βέλτιστα αποτελέσματα. Στην

παρούσα διπλωματική εργασία, εξετάζουμε την «Άμεση Μάθηση» και ειδικά το

πρόβλημα των «Πολλαπλών Κουλοχέρηδων», που αποτελεί μία από τις διαστάσεις

της. Σε επόμενα τμήματα, θα παρουσιάσουμε ορισμένους από τους πιο γνωστούς

αλγόριθμους άμεσης μάθησης, που αναφέρονται στο προαναφερθέν πρόβλημα.

Συγκεκριμένα, μας ενδιαφέρουν οι «διατεταγμένες συστάσεις» και η χρήση του

μετα-αλγορίθμου «Αλγόριθμος Διατεταγμένων Κουλοχέρηδων» (RBA) στα πειράματά

μας, ο οποίος χειρίζεται εκδοχές άλλων αλγορίθμων άμεσης μάθησης. Μελετάμε τη

σύγκλιση του RBA μέσω των «επιχορηγούμενων συστάσεων», στις οποίες κάθε

άρθρο είναι συσχετισμένο με ένα έσοδο, ενώ κάθε χρήστης είναι ένα υποσύνολο των

άρθρων που τον ενδιαφέρουν και προέρχεται τυχαία από ένα σύνολο διαφορετικών

πληθυσμών.

6

1 INTRODUCTION

One of the goals of this work is to introduce even the most inexperienced

readers to an area in learning, known as Online Learning, which provides crucial

solutions to many applications in today’s world. Online Learning deals with two

fundamental problem models: the “Prediction with Expert Advice” problem and the

“Multi-armed Bandit” problem. We examine each model and analyze some of the most

popular algorithms derived from the latter model, which refer to the online contextual

learning and the recommendations in rankings. Last but not least, we make several

experiments on the ranked recommendations using an algorithm that we found the

most interesting, we examine its performance and acquire useful conclusions.

1.1 Online Learning

This chapter provides an introduction in Online Learning, a prominent area with

rich literature and deep connection to game theory and optimization that is more and

more affecting machine learning, statistics, and artificial intelligence in the theoretical

and algorithmic advances.

Concretely, online learning takes place in a sequence of consecutive rounds

and there is an agent (or learner, gambler, player, etc.) who interacts with the

environment (or nature); in each round (time step), the agent selects an action through

the available ones and the environment returns a reward. The objective is to maximize

the received reward and thus to determine the best sequence of actions to achieve

that objective. However, the reward might be a negative feedback as the only

information he has is just the immediate reward from the last chosen action.

In other words, the agent has to make a sequence of predictions and decisions

(called strategy or policy) and on each round to be in the position of answering a given

question. As an example, imagine a learner receiving an encoding of an email

message and being questioned whether the message is spam or not. So, the learner

comes up with a prediction mechanism in order to answer the question. In the end, as

long as he predicts an answer, he gets the correct one for that question.

Another characteristic of online learning is that in its algorithms there is no

training and test phase in contrast to the supervised learning; these two phases

converge to one. In each round, these algorithms receive an instance, they make a

prediction and then they receive the true label and get a loss as feedback for this

prediction.

The performance of such algorithms is measured by a loss function. So, the

ultimate goal of an algorithm is to optimize its loss function and as a result to minimize

the notion of regret, which compares the cumulative loss of the used strategy and the

best strategy. The regret is the expected loss, as a strategy does not play the best

machine all the time. This is termed ’regret’ since it considers how ’sorry’ the learner

is, in retrospect, not to have followed the predictions of the optimal strategy. In the

example above, in order to achieve this goal, the learner might update his strategy

after each round, so as to be more precise in the next rounds.

7

 In the next sections and chapters, we are going to provide a brief presentation

of two essential online problem models and some popular online learning algorithms,

respectively.

1.2 Online Learning Problem Models

There are two fundamental problem models in Online Learning Area; the

“Prediction with Expert Advice” and “the Multi-armed Bandit”, which both have been

studied extensively in numerous articles and books through the recent years, as they

draw much attention in different scientific fields.

As far as the first problem model is concerned, in order to give further

information, we should first cite the following scenario: “Suppose that someone wants

to know if it is going to rain or not through the day. So, he consults different forecasting

websites, so as to make his own prediction. Inevitably, after all at the end of the day,

he knows if it rained or not and he is in the position to evaluate each website’s

prediction and make it clear which websites he should use next time”.

This scenario is known as Prediction with Expert Advice problem, which is

essentially an online classification problem and includes the forecaster who predicts a

sequence of events (the rain) and the experts (the forecasting websites) by whom he

takes advice about the future outcome of the sequence. Based on them, he makes his

prediction and takes back the true label, which is useful for future predictions as he

can exclude the experts provided false advice. It is important to underline that each

prediction is made in each time step and is irrevocable. In other words, the forecaster

cannot predict the sequence of events from the beginning and he cannot change a

decision he has already taken in a round. What is more, he is in the position to know

every expert’s loss in each round.

There are many algorithms in the literature that try to solve this problem; the

most well-known are the Halving algorithm by Littlestone [26], the Weighted Majority

Average by Littlestone and Warmuth [28], the Randomized Weighted Majority

algorithm and the Exponential Weighted Average algorithm [27]. We also refer the

reader to the textbook of Mohri, Rostamizadeh and Talwalkar [28], for a brief reference

in these algorithms. We should underline that Chapter 8 of [28] is the source of the

problem described previously.

As for the second problem model, we should examine another scenario:

“Suppose that someone wants to play in a casino’s slot machines but he does not

know which of them is the best to play for receiving the largest payoffs in the long run.

He just chooses a slot machine to play and pulls the lever. In the end, he receives a

reward, which is the payoff of winning the jackpot”.

The goal here is to maximize the sum of the received rewards by finding the

best slot machine’s levers as early as possible and then keep playing using that best

lever.

8

This scenario is known as the Multi-armed Bandit (MAB) problem, in which the

gambler chooses an action per round and he gets a reward for that specific action. It

is impossible to know the reward of the other arms in each round.

Such problems arise frequently in practice, for example in the context of on-

line advertising [37] or clinical trials [38]. The MAB problem offers a simple theoretical

formulation for investigating trade-offs between exploration and exploitation, which is

going to be analyzed in the next chapter.

There are also many algorithms in the literature that attempt to solve the MAB

problem, such as the UCB1 algorithm proposed by Auer, Cesa-Bianchi and Fischer in

[5], the Exp3 algorithm presented by Auer et al. in [6] and the e-Greedy algorithm as

shown by Sutton and Barto in [36].

1.3 Overview

 Our work is organized as follows:

 Chapter 2 analyzes the Multi-armed Bandit problem and its popular online

algorithms that belong to the stochastic and the adversarial setting.

 Chapter 3 studies the Ranked Recommendations area and its online

algorithms that either provide diverse rankings or are based on multiple

clicks.

 Chapter 4 presents the online algorithms that are based on side information

and are known as Contextual Bandits.

 Chapter 5 provides some experiments in the ranked recommendations

setting and compare the performance of an algorithm of it with the greedy

algorithm for the max-k-cover problem.

9

2 THE MULTI-ARMED BANDIT PROBLEM

In chapter 1, there was a brief introduction into the Multi-armed Bandit problem

(MAB), where the example of a gambler and a casino’s slot machines was given. This

problem owes its name to the number of levers that are used; so, in the case of k slot

machines or arms, the problem can also be called as the “k-armed bandit” or “multi-

armed bandit” problem. It is noteworthy to underline that a slot machine was often

called a “one-armed bandit”.

The MAB problem has been originally introduced by Robbins in 1952 [32] and

since then, it has been used extensively to model the trade-offs that are confronted by

an automated agent, which aims at acquiring new knowledge by exploring the

environment and to exploit its current knowledge. In this model, the gambler’s purpose

is to maximize the reward after a sequence of pulls, while each arm is supposed to

deliver rewards from an unknown distribution.

In this regard, the agent does not know whether to explore unknown actions to

find out more profitable data about the environment or to exploit the received data to

maximize the reward. On the one hand, if the gambler chooses to play on a specific

slot machine which he believes is the best (exploitation), he may fail to find out the one

that actually returns a higher expected payoff. On the other hand, if he plays

continuously in all the slot machines and gathers statistics (exploration), he may fail to

play the best one often enough to get a high payoff. It is about two different situations

that cannot happen at the same time in a single action selection; he has to choose

exploitation or exploration or even balance between them. The more one explores, the

less one exploits and vice versa. This dilemma is called trade-off between exploration

and exploitation.

 There are plenty of applications nowadays that use bandit algorithms in order

to achieve better performance. Some popular examples are the below:

 Online Advertising: the goal of an advertising company is to maximize its

income by displaying advertisements. The advertiser makes a profit every time

a web user clicks on an advertisement. As happens to MAB problems, the

objective is to collect information for the performance of each advertisement by

using click-through rates and finally choose the one that has performed

profitably.

 Recommendation System: a system that tries to catch up with the preferences

of a user in order to provide him with the possibly best recommendations. This

operation is accomplished by using bandit algorithms in several platforms

dealing with news, books, or search queries.

 High-Frequency Trading: it is an algorithmic financial trading that is

characterized by high turnover rates and high-speed progress. Its applications

must be able to accommodate new input variables that are revealed

sequentially. So, they are provided with a set of online algorithms that are

responsible for making a decision over each new input, such as to submit a

trade or not.

10

Before diving into the analyzation of some important algorithms of various

categories, let us introduce ourselves to some basic definitions and notions based on

[5, 6] that refer to all algorithms.

Definition 2.1 [5] A strategy, or policy, A is an algorithm that selects the next

arm to play, based on a sequence of past plays and obtained rewards and its sequence

of action choices is noted as:

(𝑖1 , 𝑖2, … , 𝑖𝑇)

 Definition 2.2 [6] At each time step t ∈ (1, …, T), a player, who follows a

strategy A, knows only the rewards 𝑥𝑖1(1), … , 𝑥𝑖𝑡(𝑡) of the previous actions (𝑖1 , 𝑖2, … , 𝑖𝑡)

and he receives the cumulative reward equal to:

𝐺𝐴 =∑𝑥𝑖𝑡

𝑇

𝑡=1

(𝑡)

 Definition 2.3 [5] Let 𝑇𝑖(𝑛) be the number of times arm 𝑖 has been played by

strategy A during the first 𝑛 plays and 𝐸|∙| denotes expectation. Then the regret of A

after 𝑛 plays is defined by:

𝑅𝑇 = 𝜇
∗𝑛 − 𝜇𝑗∑𝐸|𝑇𝑗(𝑛)| 𝑤ℎ𝑒𝑟𝑒 𝜇

∗ ≝ max
1≤𝑖≤𝐾

𝜇𝑖

𝐾

𝑗=1

Definition 2.4 [6] Given any time horizon 𝑇 > 0 and a player who follows a

strategy A, instead of choosing a strategy B, a gain or loss is occurred and is measured

by the worst-case regret, which is the difference:

𝐺𝐴(𝑇) − 𝐺𝐵(𝑇)

Definition 2.5 [6] In case of a player, who follows the best strategy A between

strategies A and B, a gain or loss is occurred that is measured by the weak regret,

which is the difference:

𝐺𝑚𝑎𝑥(𝑇) − 𝐺𝐵(𝑇)

11

If we consider a bandit problem, for which we are informed about the best

action to select and we keep selecting it continually, we will get the maximum expected

reward. However, in a real-life problem, we are obligated to make several trials on the

available actions, until we find out the best one that returns the maximum reward. So,

the aim in such problems is to maximize the reward or even to minimize the regret (or

loss we suffer). Figure 2.1 depicts the average regret of selecting several actions

during such a problem.

Figure 2.1: Representation of average regret

In the case of a strategy that on purpose stops exploring further and at the

same time ends exploiting a suboptimal machine, we observe that, although there is

low regret at the beginning, we are not close to the maximum reward for the given

problem.

Finally, it should be mentioned that online learning algorithms handle one

sample at a time with an update per round. There is no need for past data, but in view

of the returned feedback, they appraise the strategy for the next rounds.

2.1 The UCB1 Algorithm

Lai and Robbins were the first to study the upper confidence index in [23], which

is a quantity that is related to the sequence of the expected rewards of a bandit. So,

they introduced an algorithm that computes upper confidence bounds for all the

machines by optimizing the expected reward. That algorithm follows a principle known

as “optimism in the face of uncertainty”.

12

They also proved that the expected regret must follow logarithmic behavior in

the number of actions and that it is asymptotically minimum possible up to a

sublogarithmic factor for a considered set of distributions. However, the computation

of index was too slow in contrast to the equivalent index of Agrawal’s family of policies

he presented in [3], which depend only on the total rewards of each machine.

In their study, Lai and Robbins also worked on multi-armed bandit problems

with parametric uncertainties and entered into the stochastic multi-armed bandit

problem. According to the stochastic setting, they assumed that each of the K

machines’ rewards have initially unknown expectations and originate from unknown

probability distributions (P1, …, PK) with means (μ1, …, μK) respectively, and they are

independent from the others’ rewards. So, whenever an agent selects an arm, the

environment draws an independent and identically distributed reward, as Garivier and

Cappe characteristically mention in [15].

Figure 2.2: The stochastic bandit problem

The stochastic bandit problem was primarily introduced by Robbins [32], who

formalized the problem of decision-making under uncertainty, and captured the

fundamental tradeoff that occurs between exploration and exploitation.

Later, there was a follow-up study from Auer, Cesa-Bianchi and Fischer [5],

who came up with the case where the payoffs come from a bounded support (the

payoff distributions are unconstrained otherwise) and introduced some policies that

reach logarithmic regret uniformly over time. These policies have many variants, and

they are known as Upper Confidence Bound (UCB) action selection. The most widely

used in the literature is UCB1 (usually called simply UCB in latter works), which is an

algorithm for the stochastic multi-armed bandit problem and its expected cumulative

regret is 𝑂(√𝐾𝑇𝑙𝑛𝑇). In Theorem 1 of that study, the authors proved that UCB1

achieves logarithmic regret uniformly over time.

13

As it is already mentioned, UCB1 is based on the principle of “optimism in the

face of uncertainty”. The more uncertain one is about an action, the more exploration

it needs to be done on that action. For example, suppose having the Gaussian

distribution of the mean reward R(a) for three different actions a1, a2 and a3 after a

couple of trials, as shown in Figure 2.3.

Figure 2.3: Gaussian distribution of mean reward R(a)

 As it is obvious, the distribution for a3 has the highest variance and, hence, the

maximum uncertainty. UCB1 chooses the action a3 and receives a reward. If there is

still uncertainty about a3, the algorithm chooses it again for the next trials, until the

uncertainty is decreased under a threshold.

The index of each machine in UCB1 is the sum of two parts and the algorithm

tries to maximize it:

 the current average reward R(a) and

 the one-sided confidence interval for the average reward √
2 ln 𝑡

𝑁(𝑎)
,

where t is the current time step in the algorithm, R(a) is the mean observed reward of

action a so far prior to time t and N(a) is the number of times action a was played so

far.

So, UCB1 firstly plays each of the available K actions once and gives initial

values for the mean rewards. Then, for each round t, it computes the upper confidence

bound for each action a:

(𝑅(𝑎) + √
2 𝑙𝑛𝑡

𝑁(𝑎)
),

14

it chooses to play the action that maximizes the above total sum, it receives a reward,

and it updates the mean reward for the chosen action.

In order to understand the above expression that corresponds to the selected

arm, it is noteworthy to mention that:

 In the one hand, the uncertainty might decrease, as the number of times an

action was chosen increases (N(a) is in the denominator of the square root).

 On the other hand, the uncertainty might increase, as t increases, but N(a)

remains stable, when the algorithm selects another action apart from a.

All the above steps will ultimately lead to the optimal action being selected

repeatedly in the end. Furthermore, we should underline that UCB1 uses K machines

that have arbitrary distributions P1, P2, …, PK, with support in [0, 1]. Figure 2.4 concisely

illustrates the pseudocode for those steps, based on [5].

Figure 2.4: Pseudocode for UCB1

2.2 The e-Greedy Algorithm

In [36], Sutton and Barto introduced another algorithm for the stochastic multi-

armed bandit problem, called e-Greedy, which can balance the trade-off between

exploration and exploitation by using a fixed ratio of exploration e ∈ [0,1]. This

algorithm, at each time step t ∈ {1, …, T}, greedily plays with probability 1−e the arm

15

a ∈ {1, …, K} with the highest empirical mean reward ra (exploitation) and with

probability e a randomly chosen arm a (exploration).

If e is constant throughout the algorithm's execution, just a linear bound on the

expected regret can be reached. Cesa-Bianchi and Fisher in [8] showed poly-

logarithmic bounds for the algorithm’s variants, where e decreases over time. The

pseudocode of the e-Greedy algorithm is shown in Figure 2.5.

Figure 2.5: Pseudocode for e-Greedy

2.3 The Exp3 Algorithm

The adversarial or non-stochastic multi-armed bandit problem is a variant of

the bandit problem, where there are no statistical assumptions for the generation of

the rewards.

According to this problem model, each machine is assigned from the beginning

an arbitrary sequence of rewards, from which the gambler receives the corresponding

reward, after he pulls one out of the K machines. Essentially, he plays against an

adversary (or opponent), who decides the reward for each machine for each time step

t ∈ {1, …, T}. So, when the adversary receives the chosen machine m ∈ {1, …, K}, he

returns to the gambler a reward for that action for round t.

Unfortunately, in the real world, the reward structures are more complex than

a coin flip and for the gambler’s point of view it is arguably naïve to adopt some kind

of “optimism”, as happens in the stochastic problem. The adversary, before deciding

the attribution of the rewards per each machine, he invents a strategy depending on

the gambler’s past choices and draws the rewards to be unpleasant for the gambler.

So, whenever the latter finds out and plays the optimal machine, the adversary could

make worse the rewards for that machine and even turn into a non-optimal machine

any longer.

16

Figure 2.6: The adversarial bandit problem

A characteristic example of the adversarial model is the stock trading. An

investor buys shares that currently listed at a low price, even if their payoff is not

profitable at that time. If he buys a high volume of them, he will cause their price to

surge. However, he cannot predict how much their price would become, as at the same

time there would be many investors who buy or sell shares.

The pioneers of the adversarial bandit problem were Auer et al. [6], who proved

that the nature of the reward generating process of each machine depends on time

step t. An adversary with unbounded computational power determines the reward at

each time step for every machine. Since then, there are several extensions of that

type, such as the bandit online linear optimization [2], or the online shortest path

problem [19], which belongs to the family of the combinatorial bandits.

There was a different approach for the non-stochastic bandit problem reported

by Gittins [17] and Ishikida and Varaiya [20]: according to their approach, they

assumed that the gambler computes in advance the exact rewards he is going to

receive from each machine and consequently it results to become an optimization

problem and not one of exploration and exploitation.

Auer et al. [6] proposed an efficient and randomized algorithm that performs

well in the worst case against an adversary; they introduced the Exponential-weight

algorithm for Exploration and Exploitation (Exp3), whose expected weak regret is

𝑂(√𝐾𝑇𝑙𝑛𝐾).

This algorithm is based on the Hedge algorithm proposed by Freund and

Shapire in [13, 14], which in turn is a variant of the weighted majority algorithm [27]

and the aggregating strategies of Vovk [39]. Τhe setting studied by Freund and Shapire

applies a full information game: not only the gambler scores in each round t the payoff

of the chosen machine, but also he gains access to all of the machines’ payoff and not

just that of the chosen machine. In the meantime, the adversary decides the loss of

each machine and the gambler suffers only the loss of the picked machine.

The Exp3 algorithm creates an empirical distribution based on the actions’

feedback. Moreover, as shown by Seldin et al. in [34], the algorithm picks an action

according to a Gibbs distribution depended on the empirical importance-weighted

rewards of the arms. This distribution is a curved combination with a parameter gamma

17

(γ) in which, for each action, a probability exponential mass is added to the estimated

reward for that action. And that happens because it is desirable to try out all actions

and get an optimal estimate of the rewards for all of them. Differently, there is a

possibility for the algorithm not to take into account a profitable action because in the

beginning there were low rewards and as a result, the greater rewards might appear

afterwards are not observed, as the action was not selected.

There are many advantages using the importance-weighted sampling in

complicated problems, such as in the stochastic multi-armed bandits with side

information, as mentioned by Seldin et al. in [33]. It was also used by Bubeck and

Slivkins [7] in a strategy that combines stochastic and adversarial settings.

Generally, in an adversarial setting, the algorithm deals with no such fixed

reward distributions of the arms, as the next decision one makes might result in the

worst possible payoff. Regarding to [6], there are by proof regret bounds that apply to

any worst-case sequence of rewards.

The algorithm proceeds in rounds t ∈ {1, 2, …, T}. For each t, a decision is

made based on a selected probability distribution pi(t). The result of the decision is a

reward that is used to update the labels according to the last step of the pseudocode.

In the next round, these labels are used to recompute the distribution according to the

first step of the loop.

Figure 2.7: Pseudocode for Exp3

18

The pseudocode for the Exp3 algorithm appears in Figure 2.7, which is based

on its presentation in [6].

It is noteworthy to report that the probability pi(t) for each arm i ∈ {1, …, K}

depends not only on the weights wi, but also on a uniformly random component

determined by the parameter γ. This parameter controls the tradeoff between

exploration and exploitation. When γ tends to be equal to 1, the algorithm only explores

in order to find the optimal action and exploit it, whereas when γ tends to be equal to

0, the algorithm only exploits the optimal arms found so far.

More specifically:

{

 𝑝𝑖 (𝑡)

𝛾→1
→

1

𝛫

𝑝𝑖 (𝑡)
𝛾→0
→

𝑤𝑖(𝑡)

∑ 𝑤𝑗(𝑡)
𝐾
𝑗=1

, 𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝐾}

 An important issue regarding to the γ parameter is its preferred value, as it

defines the randomness of the algorithm. As stated in [6], the optimal choice of γ is

when, for any time horizon T > 0 and an upper bound g ≥ Gmax, Exp3 runs with input

parameter:

𝛾 = min{1,√
𝐾 𝑙𝑛𝐾

(𝑒 − 1)𝑔
} .

If T is known and the payoff of an action is always lower than 1 in total trials

number, we assume that g = T. So, the expected weak regret of Exp3 is bounded as

follows:

𝐺𝑚𝑎𝑥 − 𝐸|𝐺𝐸𝑥𝑝3| ≤ 2.63 √𝑔 𝐾 𝑙𝑛𝐾,

or

𝐺𝑚𝑎𝑥 − 𝐸|𝐺𝐸𝑥𝑝3| ≤ 2.63 √𝑇 𝐾 𝑙𝑛𝐾

Moreover, for the selected action, the algorithm sets the estimated reward 𝑟�̂�(𝑡)

to:

𝑟�̂�(𝑡) = 𝑟𝑗(𝑡) / 𝑝𝑗(𝑡),

which improves the rewards of actions with low probability, namely those that they are

more unlikely to be drawn. So, such actions get an unexpectedly great reward and

have now the chance to be chosen in a future round and, hence, it becomes easier for

19

the algorithm to discover the optimal action, as exploration is strengthened. In the final

step of Exp3, according to the estimated reward, the exponential weight is computed:

𝑤𝑗(𝑡 + 1) = 𝑤𝑗(𝑡)𝑒
𝛾 𝑟�̂�(𝑡)

𝐾

20

3 RANKED RECOMMENDATIONS

The traditional recommendation engines have the ability to work properly when

they make computations and evaluations in an offline manner. However, nowadays,

where data are produced in rapid rates, services like news aggregators need to

repeatedly adjust their recommendations using fast online procedures. For instance,

articles about the World Braille Day might be popular on January 4th, but they might

not be of interest on the morning of the 5th. As a result, online algorithms and especially

multi-armed bandits provide appealing solutions in the area of the ranked

recommendations, in order to optimize recommendations and, hence, constantly fulfill

users’ taste.

 The satisfaction of a user can be measured by abandonment. This means that

the user found no potential interest in any item displayed in the recommended list and

so, he did not click on any item. In the terminology of information retrieval

abandonment is also known as %no. Consequently, ranked recommendation issues

aim to minimize abandonment.

In a ranked recommendations problem, there are k machines, where m ∈ {1,

..., k} is one of the k machines to be played, and rm ∈ [0, 1] is the reward for machine

m. The problem is a game played in rounds: on each round t ∈ {1, …, 𝑇}, a list of

ranked recommendations of dimension D is created, and then the reward rm for the

chosen by the player machine is returned to him. The position of each item in the list

is indexed by d ∈ {1, …, D}.

 If we examine the users’ taste further, we could observe a diversified behavior

from the side of users. For example, when one uses the word “novel” in his query to a

search engine, we do not know whether he refers to the noun, which is a long-written

story, normally dealing with imaginary people and events, or the adjective, which

means new and different from what has been known before. Thus, in the case of a

document addressing a fictional book, it is impossible to be of interest to all the users.

As a result, the recommendation systems are obligated to make ranked

recommendations in a diversified manner in order to take into consideration the

intensions of the users.

 There have been developed many approaches that aim at producing diverse

rankings. A diverse ranking is a recommendation list of items, such as articles, or

advertisements, that, on the one hand, is relevant and connected to the submitted

query and, on the other hand, its items are diversified between them. In that way, it is

more possible for each user to find what he seeks and so we have a set of satisfied

users in the end.

21

3.1 REC and RBA

Radlinski, Kleinberg and Joachims were the first to examine in [31] the problem

of presenting diverse rankings. They proposed an online learning approach that

directly learns a diverse ranking of documents from usage data with the tendency of

maximizing the total number of closer-to-the-users’-preferences rankings displayed

over all time and thus the clicks of the users.

Hence, they presented two algorithms that take advantage of the clicking

behavior of users and return a diverse ranking of documents. In other words, they tried

to eliminate abandonment, which, as it is already mentioned, is a measure of user

satisfaction and means that there is no essential interest in the provided results.

Furthermore, they wanted to maximize the probability to find a relevant document in

the top positions of the ranking by examining the relevance among different

documents.

The first algorithm is Ranked Explore and Commit (REC). It is a simple greedy

policy that takes for granted that both user’s interest and documents are held stationary

over time. At the beginning, for each rank, it explores every document a fixed number

of times and records the number of clicks it receives through the exploration. In the

end, the algorithm cedes to the current rank the document with the best score. The

proved regret bound of REC is in 𝑂(𝐾3𝑃/𝑒2ln (𝐾/𝛿)).

Based on [31], the algorithm’s pseudocode is given in Figure 3.1.

Figure 3.1: Pseudocode for REC

22

The second algorithm is Ranked Bandits Algorithm (RBA). It differs from REC’s

assumption that user tastes or documents cannot change over time. Furthermore, RBA

takes place in two phases:

 firstly, the algorithm runs an instance of a multi-armed bandit algorithm

for each rank in order to recommend documents, until all ranks have been filled with

documents. In the case of a document that has already been selected at the highest

rank, the next one is selected arbitrarily instead. As soon as the procedure is done, the

selected items are displayed to the user.

 secondly, whenever a user clicks on a document or not, the instances

of the multi-armed bandit algorithm must be updated, as well as the received rewards

which take the value of 1 or 0, respectively.

RBA has an upper bound for the expected regret in 𝑂(𝑘√𝐾𝑇𝑙𝑜𝑔𝐾), where k is

the number of instances of Exp3. Its computation is based on instances of the Exp3

multi-armed bandit algorithm, as it achieves the optimal bound. Through their

experiments, however, the authors used instances of the UCB algorithm and found

that the performance of RBA was better, under the condition that the user interests

remain static; but that condition violates their initial assumptions. To wit, that variant of

RBA has improved performance with the cost of a weaker theoretical guarantee.

Figure 3.2 presents the pseudocode of RBA, based on [31].

Figure 3.2: Pseudocode for RBA

23

 Both REC and RBA depend on the parameter k, which is stable and defines

the number of documents to be displayed in the recommended list provided to a user.

It is a parameter that cannot be chosen from the algorithms themselves. They just

receive it as input and try to find out which k documents are the optimal to display. On

the one hand, REC takes that parameter for granted during the phase of initializing

and declaring the variables, while, on the other hand, RBA implements in the same

phase a multi-armed bandits instance for each rank and each of the k instances

maintain an index for each document.

 The selection of the k parameter for the algorithms analyzed above, refers us

to the max-k-cover problem. In this problem, we consider each website visitor as a

subset of documents (those which are of his interest) and we aim to focus on the k

documents that could impel as many visitors as possible in order to choose at least

one of that provided k documents. Selecting such number of documents is a maximum

coverage (or max cover) problem. As Chierichetti, Kumar and Tomkins [10] reported

in their study, these problems arise whenever we search for the optimal collection of

items (documents); however, the items may partially overlap in the provided value, and

should not be counted more than once.

 The canonical problem of that type, max-k-cover, selects k sets from a family

of subsets of a universe, in order their union to be as large as possible. The problem

is NP-hard, which means that every known algorithm that solves it optimally demands

exponential time.

 In polynomial time, this maximization problem can be approximated by a simple

greedy algorithm to within a factor of (1−1/e) of the best possible, which means that it

iteratively selects the document that has relevance to most of the users, for whom no

relevant document has been selected so far. That factor is known as “approximation

ratio” of the greedy algorithm to the optimum.

3.2 IBA

An extension of the ranked recommendations discussed in the previous section

is a family of algorithms that support multiple clicks. The recommendation systems that

use such algorithms take advantage of the behavior of a user, specifically when he

clicks on more than one item from a recommended list. In this case, there is more

information about the returned rewards, which can allow a faster learning rate and

therefore lead to beneficial results in recommendation.

Under such circumstances, Kohli, Salek and Stoddard [22] introduced an online

algorithm, called Independent Bandit Algorithm (IBA), that both quickly optimizes

recommendation and minimizes abandonment based on users’ clicks, called tastes. It

has an upper bound for the expected regret in 𝑂(√𝑛𝐾𝑙𝑜𝑔𝑇), where n is the number of

instances of UCB1, when it is used as the bandit algorithm for IBA.

 This algorithm depends on the Probability Ranking Principle (PRP); according

to PRP, all the articles have to be ranked in descending order of relevance probability.

There is also another principle followed by IBA, which is based on diversity and

handles the user intents. For example, when a user clicks the word “jaguar” in a search

24

engine, we do not know if he seeks for the animal, the car, or the American football

team. Another algorithm that uses this diversity principle is the Ranked Bandit

Algorithm (RBA), which was mentioned in the previous section and introduced in [31].

Similarly to RBA, IBA uses an instance of a multi-armed bandit algorithm for

each rank of the recommendation list. These instances act independently to find the

most suitable items to recommend. However, they are independent between each

other, as IBA uses the stochastic optimization concept (or correlation gap) [22], in

contrast to the diversity principle.

The authors compared IBA with RBA through their experiments using MAB

instances of the e-Greedy and the UCB1 algorithms and proved that the first has near-

optimal regret and in most cases outperforms RBA. Furthermore, when a user clicks

on an article, IBA provides 1 as reward, while RBA provides 1 as reward only to the

first clicked article; so, feedback is the main difference between them.

The algorithm’s steps are shown in Figure 3.3, as presented in [22].

Figure 3.3: Pseudocode for IBA

25

3.3 dcmKL-UCB

The click logs of a search engine provide a wide source of information, which

is actually biased. A primary source of bias is the order of presentation of documents

in a list; the probability of clicking on a document depends on the document’s position

in the provided list. That is what exactly studied Craswell et al. in [12], who tried to

model that probability. They proposed four different models for user clicks, the most

important from which is the cascade model, which is a popular model of the behavior

of a user in web search that is based on two basic hypotheses.

Specifically, a user examines the search result page from top to bottom (linear

traversal hypothesis) and decides whether click on a document or not, after he

examines it (examination hypothesis). According to that model, a web user examines

the documents one-by-one in order until the first click; after that click, the user leaves

the result page and never comes back. In other words, all documents being under the

clicked document are skipped.

Furthermore, Guo, Liu and Wang proposed in [18] a generalization of the

cascade model to multiple clicks, known as the dependent click model (DCM). Their

model includes a couple of position-dependent parameters, so as to model the

probabilities that an average web user returns to the search result page, who continues

the examination of the page after a click.

A few years later, Katariya et al. examined the DCM bandits in [21], which are

a variant of the DCM [24] that in its turn is a variant of the cascade model [12] with the

difference of not exactly following it to multiple clicks. And that is because they were

interested in multiple clicks and not just one in a list of choices; hence, DCM bandits

remain a generalization of the cascade model.

What is more, the DCM is parameterized by item-dependent attraction

probabilities and position-dependent termination probabilities. DCM bandits describe

the user’s behavior when he watches a list of web pages, as a result of his search, and

clicks on what he feels is near to the item he is looking for (he is attracted by an item).

After clicking one item, the user terminates the search and the system considers that

he is satisfied or the user continues examining the list’s items under the one he

selected and the system considers that he is not yet satisfied. A learning agent is

responsible for observing this process and receives 1 as a reward when the user clicks

on at least one item, otherwise the agent receives 0. The agent uses attraction weights

and termination weights for each item and keeps them up to date, based on the user’s

clicks. So, the goal is to maximize the user’s satisfaction through the possible

recommendations and minimize the cumulative regret.

However, the agent in DCM bandits does not know if the user is really satisfied;

the only thing he knows is about the clicks. That problem is solved with dcmKL-UCB

algorithm, which is an extension of Garivier and Cappe’s KL-UCB (Kullback-Leibler

UCB) in [15] and belongs to the family of the UCB algorithms. The regret of dcmKL-

UCB is 𝑂(𝐿 − 𝐾), while its regret in ranked bandits is 𝑂(𝐾𝐿), where L is the number of

items and K is the number of recommended items.

In that point, it is important to mention a few facts regarding to KL-UCB

algorithm. It is an online, horizon-independent index approach for the stochastic MAB

problems and owes its name to the Kullback-Leibler divergence, which is used to

26

compute the upper confidence bounds of the arm rewards. In statistics, the Kullback-

Leibler divergence or the relative entropy is a measure which calculates the difference

between a probability distribution and a second reference probability distribution.

According to [15], KL-UCB is efficient and always performs better than UCB and its

variants. Specifically, for arbitrary bounded rewards, KL-UCB satisfies the best regret

bound and for the case of Bernoulli rewards, the algorithm reaches the Lai and

Robbins’s lower bound for binary rewards. Hence, KL-UCB is both a general-purpose

algorithm for bounded rewards, and an optimal solution for the binary instance.

The dcmKL-UCB algorithm firstly calculates the upper confidence bounds

(UCBs) on the attraction probabilities at each round and for all items and then

recommends those with the highest UCBs in the form of a list, after selecting them.

Finally, depending on what the user is attracted to or not, it provides a feedback and

updates the kept weights by the agent.

Even though the algorithm performs well on several problems, some of the

assumptions the authors have made are violated. For example, the learning agent

does not observe the feedback or generally, the multiple click character of this model

is simplified to a single click one. Hence, it is doubtful whether it can be applied in real-

life problems under the primary assumptions.

The pseudocode of dcmKL-UCB is displayed in Figure 3.4, as presented in

[21].

Figure 3.4: Pseudocode for dcmKL-UCB

27

4 CONTEXTUAL BANDITS

 A recently popular extension of the multi-armed bandits problem is the

contextual bandits problem. The philosophy of the contextual bandits setting is relevant

to that of the standard multi-armed bandits apart from a modification, according to

which, the learner also observes context and, hence, it can be used to determine which

action to select. In that case, the payoff depends on both the context and the chosen

action. As context or side information we define all the available information of a learner

(or a decision maker) in the form of some attributes (or features). For example, one

would observe the gender, age, location, and other attributes that refer to the topic of

a query, whenever a user issues one.

 The problem of bandits with context has been closely studied through the

recent decades and we refer the reader to the reports of Pandey et al. [29], Wang et

al. [41] and Strehl et al. [35]. The name “contextual bandit” is borrowed from Langford

and Zhang [24], but this problem is also known by other names such as “bandits with

side information”, “bandit problems with covariates”, “associative reinforcement

learning”, and “multi-armed bandits with expert advice”, among others.

In order to understand that setting, let us use a characteristic example of a

recommendation system [24], which tries to match advertisements (machines) to

webpage contents (context information) by recording clicks. Every user (learner), who

visits a page, has a random draw of context from an unknown to the user distribution.

In that case, the user’s online profile (such as the location, the gender or even the age)

can be used as context. Whenever the user clicks on an advertisement, a revenue is

generated. The aim of the recommendation system is to maximize the expected

revenue by setting the most relevant advertisement on each webpage and, by

extension, mapping the context information to the advertisements.

 What is more, the adversarial multi-armed bandits problem with expert advice

was initially analyzed by Auer et al. [6] and remains one of the most fundamental

models in online learning. It mixes prediction with expert advice [27, 39] with the

framework of multi-armed bandits’ limited feedback [6]. In this model, there is a

repeated game played in T rounds between a learner and an adversary; the learner is

provided by N experts with advice about which documents to choose in each round t

∈ {1, …, T}, where the experts essentially represent randomized algorithms for action

selection. In other words, the agent does not decide alone which document to select,

but instead there is an expert to consult in each round t, so as to select an action, and

simultaneously the adversary assigns a loss to each action, which remains unknown

to the learner, except for that of the chosen action. As a result, he follows a strategy in

order to succeed the mapping of context to the documents.

 There are two aspects about the experts; the randomized experts and the

deterministic experts, who form a special case of the randomized ones. Specifically,

the first would choose an action at random from a probability distribution made for each

action and the latter would recommend just a specific action to select.

 In many web-based scenarios, there are several problems to defeat, such as

the chance of a significant number of users to be entirely new and the recommendation

system not having historical records of their clicking behavior. This situation is called

“cold start”.

28

Furthermore, in the contextual setting, there are two models that have been

deeply analyzed: the non-stochastic and the stochastic one. In the non-stochastic

case, the matching, for example, between advertisements and webpages remains

unknown through the procedure. As for the stochastic setting, there is a vector of

coefficients theta derived from an unknown distribution, which multiplies with the users’

features, in order to produce the rewards. So, the expert attempts to learn about an

accurate evaluation of the vector of coefficients theta. Essentially, it is a linear model,

in which each expert is equivalent to theta.

Two of the most known works on contextual online learning are described in

the following paragraphs.

4.1 LSBGreedy

In order to produce diverse rankings, Yue and Guestin [42] had the lateral

thinking of combining the ranked recommendations with the contextual bandits. They

examined the problem of the linear submodular bandits, which aims to train and

optimize a class of feature-based submodular utility models. So, they presented the

LSBGreedy algorithm, as a solution to that problem, which basically adds a document

to an already existing set of documents as a linear model with regard to the

preferences of a user. This algorithm has a regret bound in 𝑂(𝑑√𝐿𝑇), where d is the

desired number of topics (or concepts) to cover, and L is the number of articles

(ignoring log factors).

Specifically, this algorithm respects the preferences of a user, as it is based on

features, and in each round recommends some document rankings picked among

thousands of articles per day and results in optimally diversified and personalized

recommendation for that round. LSBGreedy is a flexible algorithm which can

generalize to new predictions.

The class of submodular functions is a natural class of utility functions that has

been studied extensively in the literature through the years. A function f is submodular

if, for any 2 sets of articles A ⊆ B, the marginal contribution of an article x, is bigger

when added to A than when added to B (diminishing returns), i.e.,

𝑓(𝐴 ∪ 𝑥) − 𝑓(𝐴) ≥ 𝑓(𝐵 ∪ 𝑥) − 𝑓(𝐵)

As far as the optimizing class of utility functions in this setting is concerned,

utility encompasses the interesting information included in a set of recommendation

articles, as we examine the case of personalized news recommendation. In their study,

the authors used extensively the key properties of monotony and submodularity of

utility functions. Essentially, considering a set of recommended documents, the notion

of utility measures the amount of interesting information covered by that set and,

hence, the payoffs.

The extension that was given in comparison to the contextual bandits setting

reported in [25] is the optimization of the algorithm in the feature-based exploration-

exploitation trade-off. LSBGreedy deals with the issue of how to model the interests of

29

a user based on the available features. It also goals to make a recommendation of

diversified sets of articles and not just single articles. So, the algorithm succeeded in

facing diversification and feature-based exploration, which both belong to the wide

range of challenges when designing information retrieval systems, and improve the

performance of a system even in a limited number of rounds.

Through their experiments in a live user study, they compare their algorithm to

Multiplicative Weighting (MW), RankLinUCB (a combination of LinUCB and RBA) and

e-Greedy. The results show that LSBGreedy and RankLinUCB perform much better

than the other two algorithms. Moreover, LSBGreedy outperforms the other algorithms

and converges to a near-optimal model.

4.2 LinUCB

Li et al. in [25] proposed LinUCB, which is an online algorithm that models

personalized web-based services as a contextual bandit problem for linear payoff

functions, and they tested it on a real-world application, the news article

recommendation. The LinUCB algorithm is motivated by the UCB algorithm of Auer et

al. [6] and the KWIK (Knows What It Knows) framework of Walsh et al. [40].

In the contextual bandit setting with linear payoffs, the learner competes with

all the linear predictors on the feature vectors. An example application for this

contextual bandit setting is the problem of choosing internet banner advertisements,

as reported by Abe et al. [1]. In that type of problem, the advertisements, the webpage

features and the users’ attributes like age or sex are used to construct a linear function

in order to predict the probability of clicking on a given advertisement.

Similar to the LSBGreedy algorithm, LinUCB recommends articles based on

context and aims to maximize the number of user clicks. Supposing that the payoff

function is linear, the algorithm chooses the bandit with the highest upper confidence

bound (like all UCB methods) and so the authors call it Linear Upper Confidence Bound

(LinUCB). Its formulation is very close to its ancestor algorithm called Linear

Reinforcement Learning (LinREL) of Auer [4], which operates in a similar framework.

The main concept of both algorithms is to calculate the expected reward of

each machine by constructing a linear combination of the previous rewards of the

machine. To accomplish this, LinUCB disintegrates the current round’s feature vector

into a linear combination of feature vectors observed on the previous rounds and uses

the computed coefficients and received rewards of the previous rounds to compute the

current round’s expected reward. However, LinREL is a more complex algorithm.

There are some practical advantages of LinUCB over LinREL: firstly, it is plain

in its implementation and secondly, it is computationally efficient as it applies ridge

regression, which is simpler to solve with standard software packages and less

susceptible to numerical instability issues compared to the eigenvalue decomposition

used by LinREL, as mentioned by Chu et al. [11].

The LinUCB algorithm is presented in two forms: one for the disjoint linear

models and the other for the hybrid models. There is difference between them in the

30

type of features. In particular, there are some features that are not shared among

bandits or they are related to a specific bandit and others that are common among the

bandits. The former instance regards the disjoint LinUCB algorithm and the latter the

hybrid LinUCB algorithm.

Although there is no theoretical analysis, based on the authors’ experiments,

LinUCB has many advantages when data are not dense, and it outperforms from other

equivalent methods related to the contextual bandit problem. It also has been tested

by Pavlidis et al. [30], but no theoretical analysis has been carried out, too. Due to that

lack of analysis, Chu et al. [11] decomposed LinUCB into two algorithms and offered

their aspect of analysis for both: the BaseLinUCB and the SupLinUCB, which uses

BaseLinUCB as a subroutine and has an expected regret of 𝑂(√𝑇𝑑𝑙𝑛3(𝐾𝑇𝑙𝑛(𝑇)/𝑑)).

31

5 EXPERIMENTS IN RANKED RECOMMENDATIONS

So far, in the previous chapters we have discussed plenty of algorithms

belonging to different categories of online learning algorithms. However, the one that

we are interested in is the RBA meta-algorithm, which uses instances of k multi-armed

bandits algorithms in order to provide a user with ranked recommendations. As RBA

recommends more appropriate rankings concerning the preferences of users, then a

user would click at least on one document of the list provided and, hence, we could

achieve a greater amount of income. Especially, we will make experiments on UCB1,

e-Greedy and Exp3 instances into RBA, which are the most studied bandits algorithms

in the literature.

According to the scenario of our experiments, we consider a website that

provides users with a list of recommended documents and the users in turn can click

on one or more documents, or none. Each document has a specific cost for a user,

presupposing that it is chosen by that user. We aim to examine the “sponsored

recommendations” through a diversified set of users, who derive from different

populations.

For this scenario we assume that each user arrives in order. That is to say, they

visit the website one by one and they never coincide. The more the users visiting the

website, the more documents are to be clicked and, as a result, the more earnings the

website receives daily. The goal is to select the most appropriate list of documents,

which would be the real motor for attracting a lot more users.

In this setting, we are going to calculate the earnings of a website during a

whole year and compare the results to the standard greedy algorithm for the maximum

coverage problem, which chooses the optimum set of n documents. Basically, we will

examine the convergence of RBA to that greedy algorithm. There will be three different

such comparisons, as the choices of the recommendation list are to be made by RBA-

UCB1, RBA-Exp3, and RBA- e-Greedy. In addition, we underline that RBA allows just

one click from a user.

The setting described above and the experiments on it can be generalized and

adopted by other similar scenarios related to the clicking behavior of a set of users and

the acquired profit. For example, an advertising agency that provides customers with

a list of recommended advertisements and hopes that it would be profitable.

5.1 Methodology

For the implementation of the greedy algorithm for the max-k-cover problem,

we firstly suppose that each document of the list is associated with a weight (the

income for the website or even the cost for a user). So, we choose that value of each

document from the uniform distribution U (0, 1). Moreover, each user is formed by a

subset of the documents he is interested in. For the given values in each case, we

refer the reader to the Appendix.

32

Under such circumstances, we consider that each user scans a list of k

recommended documents from slot 1 to slot k and he clicks on the first document he

is interested in. The generalization of the greedy algorithm selects:

 for slot 1, the document that maximizes total income from customers who

are interested in that document,

 for slot 2, the document that maximizes total income from customers who

are interested in that document, but not in the document of slot 1,

 for slot 3, the document that maximizes total income from customers who

are interested in that document, but not in the documents of slot 1 and slot

2, etc.

So, the outcome is a set of k slots that constitutes the final recommended list

of a website and optimizes its total income in accordance consistently with the

preferences of users.

As far as the implementation of the RBA algorithm is concerned, we used k

instances of the three mentioned online algorithms. For each one, we uphold an

instance per slot. If a user clicks on a slot, the instance of the online algorithm for that

slot must update its weights. Essentially, the algorithm converges to the k most popular

documents, i.e.:

 to the first popular document for slot 1,

 to the second popular document among users who are not interested in

the document of slot 1,

 to the third popular document among users who are not interested in

the documents of slot 1 and slot 2, and so on and so forth.

As a result, we create a set of k slots, which yields a total income, as each slot

has its own cost.

In addition, we begin the experiments considering a set of d random users, who

derive from p different populations. Afterwards, we assume that at each time step

(each day) there is an addition of a new user to the initial set, so that at time step d we

have exactly d customers. This new user is also chosen randomly from one of the

available populations.

The total time steps that both algorithms run are 365 – d + 1, as we want to

examine the total annual income of the website through the usage of different online

algorithms as instances in RBA and then compare the difference of that income to the

outcome of the greedy algorithm using the average regret. Specifically, we want to

calculate the expression:

|𝐺𝑟𝑒𝑒𝑑𝑦𝑡 − 𝑅𝐵𝐴𝑡|

𝑡
 [1]

where:

 𝐺𝑟𝑒𝑒𝑑𝑦𝑡 is the total annual income of the greedy algorithm,

 𝑅𝐵𝐴𝑡 is the total annual income of the RBA algorithm using instances of UCB1,

Exp3 or e-Greedy,

 𝑡 is the total number of time steps.

33

Apart from the computation of the average regret of RBA, we are also going to

calculate the relative difference of income for RBA, which also measures the

convergence of RBA. For this purpose, we will use the expression:

|𝐺𝑟𝑒𝑒𝑑𝑦𝑡 − 𝑅𝐵𝐴𝑡|

𝐺𝑟𝑒𝑒𝑑𝑦𝑡
 [2]

5.2 Experiment Analysis

 In this section, we present the specifics of the implementation of the

experimental phases, for which we used Python, as programming language. Through

the experimental analysis we are in the position of observing the way each used policy

by RBA performs under specific circumstances, such as the selection of the value of a

parameter (e for e-Greedy and γ for Exp3), and manage to find out which one achieves

better results as instances for RBA, after the comparison to the greedy algorithm.

Specifically, we ran a first phase of experiments to observe how the UCB1,

Exp3, and e-Greedy policies perform and find out good values for the parameters of

the e-Greedy and Exp3 algorithms in a simulation of 50 arms (documents) during 1,000

plays averaged with a horizon of 500 trials. The second phase of experiments deals

with the comparison among RBA and the greedy algorithm in a simulation of n=50

documents during a year (T=365-20+1=346 time steps), using k=5 slots. The initial

number of users is d=20. (We used the same values for n, k, and d as in [32]).

5.3 First phase of experiments

 In this section we are going to decide which is the best option of the parameters

used in e-Greedy and Exp3. We want to manage the best performance of the

algorithms, that are going to be used in the next phase.

To begin with e-Greedy and its parameter e, we observe that as e increases,

the exploration is also increased and, hence, the chance of selecting arms randomly,

instead of choosing the best one. So, the cumulative reward in Figure 5.1 decreases

as the result of not choosing the best option.

34

Figure 5.1: Cumulative reward of the e-Greedy algorithm

Moreover, as it is obvious from Figure 5.1, the algorithm with e=0.1 outperforms

the rest; however, cumulative rewards metric shows that it takes that algorithm quite

long time to outperform the algorithm with e=0.2.

So, we conclude that we should choose 0.1 as the value of e, because in this

setting e-Greedy should get more aggressive strategy and be more competitive to the

other algorithms.

Figure 5.2: Cumulative reward of the Exp3 algorithm

35

The second algorithm’s parameter we want to examine is γ of Exp3. This

parameter handles the tradeoff between exploration and exploitation. As it increases,

the algorithm explores more; otherwise, the algorithm exploits more.

From Figure 5.2 we observe that all versions firstly tend to be equal, but

afterwards, 0.5 value performs the best. So, we choose γ=0.5 as the best option for

the second phase of experiments.

5.4 Second phase of experiments

 In this section we are going to deal with the implementation of the variants of

RBA (RBA_UCB1, RBA_Exp3 and RBA_e-Greedy) and the greedy algorithm. Through

the provided plots, we are going to analyze the algorithms and compare their

performance.

 First of all, we should implement for RBA the 5 instances of UCB1, Exp3 and

e-Greedy. All the exported plots are included in Appendix and depict the frequency of

the chosen documents per instance of each algorithm and as well as the average

regret of each instance per algorithm.

 However, in this section, we use just the plots of the three first instances of the

UCB1 algorithm, in order to mention a basic operation of RBA: in the case of an

instance that determines a document to be shown in a slot that already exists in a

higher one, the algorithm selects another document for that slot arbitrarily. This is what

exactly happened with the third instance, where document No24 was selected, but it

was already chosen by the first instance. So, RBA is responsible for its replacement.

Figure 5.3: Frequency of chosen documents in the first instance of UCB1

36

Figure 5.4: Frequency of chosen documents in the second instance of UCB1

Figure 5.5: Frequency of chosen documents in the third instance of UCB1

 Consequently, we implement the next phase of RBA. The algorithm provides

the 5 documents as a recommended list to the set of users, who click to one or none

of them, and updates the rewards of the clicked documents of the specific multi-armed

bandit algorithm instance that determined those documents. At the same time, we

implement the greedy algorithm and we receive the results, as shown in Figure 5.6.

37

Figure 5.6: Total annual income of different algorithms

Figure 5.6 illustrates the curves for the total income during a year for the greedy

algorithm and the meta-algorithm RBA using instances from the UCB1, Exp3 and e-

Greedy online algorithms.

As it is expected, the greedy algorithm outperforms RBA in all its permutations,

as it is an algorithm that returns the optimal solution. The distance between RBA’s

curves increases in a stable way as the days go by. Moreover, if we exclusively

observe the behavior of RBA, we can distinguish that RBA-UCB1 returns a lot more

earnings than RBA- e-Greedy and RBA-Exp3. As a result, we expect that the absolute

difference between greedy and both RBA-Exp3 and RBA- e-Greedy would be greater

than that of RBA-UCB1.

In that point, we should mention that the interests of users remain static through

the year, as we use the same users per day, with an addition of a new user, one on

each day. Considering also that the performance of RBA that used instances of UCB1

was better than that which used Exp3 as instances, we come to an agreement with the

authors of [32], who concluded in an equivalent result.

In addition, we unfortunately observe that RBA-UCB1 (which is better than the

other versions of RBA) abstains quite a lot from converging to greedy. The optimal

scenario would be if those two curves coincide. Although till 50th day all curves of RBA

are quite close to greedy’s, we can see that after that point their difference more and

more increases exponentially.

 Figure 5.7 depicts the difference between the optimal cumulative income of the

greedy algorithm and the cumulative income of RBA. RBA-UCB1 is unsurprising to

have the lower difference, as it has the best performance.

38

Figure 5.7: Differences between RBA and the greedy algorithm

Finally, we calculated the average regret of RBA using the expression [1], as

shown in Figure 5.8. Generally, the greater the tendency, the less efficient RBA is. As

mentioned, RBA-UCB1 has the smallest difference from greedy, so we expect that its

rate to be below the other rates.

We observe that all these rates are almost always linear through time steps.

The rate of RBA- e-Greedy remains quite stable through the year, while RBA-Exp3

and RBA-UCB1 follow a similar path until time step 150. As for the rate of RBA-UCB1,

if we look through the diagram, we observe that it firstly follows by a small difference

the rates of the other two, but, from time step 150 and then, it diverges from them and

accomplishes better performance and greater income.

To conclude, RBA-UCB1 is the most suitable version of RBA in our

experiments, as it achieves the best convergence compared to the greedy algorithm.

39

Figure 5.8: Average regret of each version of RBA

However, we expected the average regret of RBA to tend towards elimination

at some time. So, we repeated the experiments for much more time steps (specifically

for 5 years), in order to observe whether the average regret of RBA tends to become

zero or not. The results are shown in Figure 5.9 and Figure 5.10.

Figure 5.9: Total income of different algorithms for 5 years

40

Figure 5.10: Average regret of each version of RBA

 As we observe, the results are not what we exactly expected, as the rates are

getting more and more greater over time steps. So, we tried to observe the

performance of RBA through the relative difference of income, using the expression

[2]. Figure 5.11 and Figure 5.12 depict those rates during one and five years,

respectively.

Figure 5.11: Relative difference of income of each version of RBA for 1 year

41

Figure 5.12: Relative difference of income of each version of RBA for 5 years

 Through Figure 5.11 and Figure 5.12, it is obvious that RBA-UCB1 tends to

zero over time steps, which means that not only has the best performance compared

to the other versions of RBA, but also it converges to greedy.

5.5 Conclusion

 Throughout this report we tried to present the Online Learning area, providing

its theoretical foundations and the needs that provoked its research, and we focused

on its applications in the ranked recommendations. We introduced the reader to the

two fundamental problem models of online learning, the Prediction with Expert Advice

problem, and the Multi-armed Bandit problem. We analyzed the latter one and some

of the algorithms that cover the problem. As it is natural, we illustrated only a small

number of Multi-armed Bandit policies that we considered to be the most

representative of their category. Among others, we studied the problem of rankings of

“sponsored recommendations” and we used the Ranked Bandits Algorithm with UCB1,

Exp3 and e-Greedy instances in several experiments, trying to observe its rate of

convergence based on the greedy algorithm for the max-k-cover problem.

 In addition, in order to achieve diversity in our results, we simulated all the

experiments on a diversified set of users, and, hence, we created different populations

in which there are a lot more users with different interests and clicking behavior. We

compared the performance of the three permutations of RBA and our results showed

that RBA-UCB1 outperforms the others. Finally, it was clear that the average regret of

42

RBA-UCB1 is the lowest, but its convergence is quite far from the optimal strategy.

However, through the relative difference, we observed that RBA-UCB1 indeed

converges to greedy over time steps.

 Since the way that we define our model for computing the average regret of

RBA can only be limited in our creativity, we are bound to implement many more

scenarios in “sponsored recommendations” in the future. For instance, one could

consider more populations of users, or even more documents to begin with the

experiments. What is more, one could use the meta-algorithm IBA with UCB1, Exp3

and e-Greedy instances and compare its performance to RBA with the respective

multi-armed bandit instances.

43

6 REFERENCES

[1] N. Abe, A. W. Biermann, P. M. Long, Reinforcement Learning with Immediate

Rewards and Linear Hypotheses. Algorithmica 37(4): 263-293 (2003).

[2] J. Abernethy, E. Hazan, A. Rakhlin. Competing in the dark: An efficient

algorithm for bandit linear optimization. In Proceedings of the 21st Annual

Conference on Learning Theory (COLT) 2008.

[3] R. Agrawal. Sample Mean Based Index Policies with O (log n) Regret for the

Multi-Armed Bandit Problem. Advances in Applied Probability 27(4): 1054-1078

(1995).

[4] P. Auer. Using Confidence Bounds for Exploitation-Exploration Trade-offs.

Journal of Machine Learning Research 3: 397-422 (2002).

[5] P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time Analysis of the Multi-armed

Bandit Problem. Machine Learning Journal 47(2-3): 235-256 (2002).

[6] P. Auer, N. Cesa-Bianchi, Y. Freund, R. E. Schapire. The Nonstochastic

Multiarmed Bandit Problem. SIAM J. Comput. 32(1): 48-77 (2002).

[7] S. Bubeck, A. Slivkins. The best of both worlds: stochastic and adversarial

bandits. Journal of Machine Learning Research 23: 42.1-42.23 (2012).

[8] N. Cesa-Bianchi, P. Fischer. Finite-time Regret Bounds for the Multiarmed

Bandit Problem. In Proceedings of the 15th International Conference on

Machine Learning (ICML) 1998: 100–108.

[9] N. Cesa-Bianchi, G. Lugosi. Combinatorial bandits. In Proceedings of the 22nd

Annual Conference on Learning Theory (COLT) 2009.

[10] F. Chierichetti, R. Kumar, A. Tomkins. Max-cover in map-reduce. In Proceeding

of the 19th International Conference on World Wide Web (WWW) 2010: 231–

240.

[11] W. Chu, L. Li, L. Reyzin, R. E. Schapire. Contextual Bandits with Linear Payoff

Functions. Journal of Machine Learning Research 15: 208-214 (2011).

[12] N. Craswell, O. Zoeter, M. Taylor, B. Ramsey. An experimental comparison of

click position bias models. In Proceedings of the 1st ACM International

Conference on Web Search and Data Mining (WSDM) 2008: 87-94.

[13] Y. Freund, R. E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. J. Comput. System Sci. 55: 119–139

(1997).

[14] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative

weights. Games Econom. Behav. 29: 79–103 (1999).

44

[15] A. Garivier, O. Cappe. The KL-UCB algorithm for bounded stochastic bandits

and beyond. In Proceeding of the 24th Annual Conference on Learning Theory

(COLT) 2011: 359–376.

[16] J. C. Gittins. Bandit Process and Dynamic. Journal of the Royal Statistical

Society 41(2): 148-177 (1979).

[17] J. C. Gittins. Multi-armed Bandit Allocation Indices. John Wiley & Sons, 1989.

[18] F. Guo, C. Liu, Y. M. Wang. Efficient Multiple-Click Models in Web Search. In

Proceedings of the 2nd ACM International Conference on Web Search and

Data Mining (WSDM) 2009: 124–131.

[19] A. Gyorgy, T. Linder, G. Lugosi, G. Ottucsak. The on-line shortest path problem

under partial monitoring. Journal of Machine Learning Research 8: 2369-2403

(2007).

[20] T. Ishikida, P. Varaiya. Multi-armed bandit problem revisited. Journal of

Optimization Theory and Applications 83(1): 113-154 (1994).

[21] S. Katariya, B. Kveton, C. Szepesvari, Z. Wen. DCM Bandits: Learning to Rank

with Multiple Clicks. In Proceedings of the 33rd International Conference on

Machine Learning (ICML) 2016: 1215-1224.

[22] P. Kohli, M. Salek, G. Stoddard, A Fast Bandit Algorithm for Recommendation

to Users with Heterogenous Tastes. In Proceedings of the 27th Association for

the Advancement of Artificial Intelligence (AAAI) 2013: 1135-1141.

[23] T. Lai, H. Robbins. Asymptotically Efficient Adaptive Allocation Rules.

Advances in Applied Mathematics 6: 4-22 (1985).

[24] J. Langford, T. Zhang. The Epoch-Greedy Algorithm for Multi-armed Bandits

with Side Information. In Proceedings of the Neural Information Processing

Systems (NIPS) 2007: 817-824.

[25] L. Li, W. Chu, J. Langford, R. E. Shapire. A Contextual-Bandit Approach to

Personalized News Article Recommendation. In Proceeding of the International

World Wide Web Conference (WWW) 2010: 661-670.

[26] N. Littlestone, Learning Quickly When Irrelevant Attributes Abound: A New

Linear-threshold Algorithm. Machine Learning 2: 285-318 (1988).

[27] N. Littlestone, M. Warmuth, The Weighted Majority Algorithm. Inform. and

Comput. 108: 212-261 (1994).

[28] M. Mohri, A. Rostamizadeh, A. Talwalkar. Foundations of Machine Learning.

MIT Press, 2018.

[29] S. Pandey, D. Agarwal, D. Chakrabarti, V. Josifovski. Bandits for Taxonomies:

A Model-based Approach. In Proceedings of the 8th SIAM International

Conference on Data Mining (SDM) 2007.

45

[30] N. G. Pavlidis, D. K. Tasoulis, D. J. Hand. Simulation studies of multi-armed

bandits with covariates. In Proceeding of the 10th International Conference on

Computer Modeling, Simulation and Algorithm (CMSA) 2008: 493-498.

[31] F. Radlinski, R. Kleinberg, T. Joachims, Learning diverse rankings with multi-

armed bandits. International Conference on Machine Learning (ICML) 2008:

784-791.

[32] H. Robbins, Some Aspects of the Sequential Design of Experiments. Bulletin

of the American Mathematical Society 58(5): 527-535 (1952).

[33] Y. Seldin, N. Cesa-Bianchi, P. Auer, F. Laviolette, J. ShaweTaylor. PAC-

Bayes-Bernstein inequality for martingales and its application to multiarmed

bandits. Journal of Machine Learning Research 26: 98-111 (2012).

[34] Y. Seldin, C. Szepesvari, P. Auer, Y. Abbasi-Yadkori. Evaluation and Analysis

of the Performance of the EXP3 Algorithm in Stochastic Environments. Journal

of Machine Learning Research 24: 103-116 (2012).

[35] A. L. Strehl, C. Mesterharm, M. L. Littman, H. Hirsh. Experience-efficient

learning in associative bandit problems. In Proceedings of the 23rd

International Conference on Machine Learning (ICML) 2006.

[36] R. Sutton, A. Barto. Reinforcement Learning: An Introduction, MIT Press.

second edition, 2017.

[37] E. Schwartz, E. Bradlow, P. Fader. Customer Acquisition via Display

Advertising Using Multi-Armed Bandit Experiments. Marketing Science 36(4):

500 - 522 (2017).

[38] S. S. Villar, J. Bowden, J. Wason. Multi-armed Bandit Models for the Optimal

Design of Clinical Trials: Benefits and Challenges. Statistical Science 30(2):

199–215 (2015).

[39] V. G. Vovk. Aggregating strategies. In Proceedings of the 3rd Annual Workshop

on Computational Learning Theory (COLT) 1990: 371–386.

[40] T. J. Walsh, I. Szita, C. Diuk, M. L. Littman. Exploring compact reinforcement-

learning representations with linear regression. In Proceeding of the 25th

Conference on Uncertainty in Artificial Intelligence (UAI) 2009: 591-598.

[41] C. C. Wang, S. R. Kulkarni, H. V. Poor, Bandit problems With Side

Observations. IEEE Transactions on Automatic Control 50(3): 338-355 (2005).

[42] Y. Yue, C. Guestrin, Linear Submodular Bandits and their Application to

Diversified Retrieval. In Proceeding of the Neural Information Processing

Systems (NIPS) 2011: 2483-2491.

46

APPENDIX

 The weights of the documents used in the Greedy algorithm were random

samples from a uniform distribution U (0, 1).

 Each user is a subset of his preferences over 50 documents, while the initial

20 users given as input to each algorithm were randomly derived from 3 different

populations of 1000 users each.

47

The average regret of each instance of the three different online algorithms

used by RBA is illustrated in the next figures.

48

49

 The next figures depict the frequency of the chosen document by the instance

of each online algorithm used by RBA.

50

51

	ACKNOWLEDGEMENT
	ABSTRACT
	ΠΕΡΙΛΗΨΗ
	1 INTRODUCTION
	1.1 Online Learning
	1.2 Online Learning Problem Models
	1.3 Overview

	2 THE MULTI-ARMED BANDIT PROBLEM
	2.1 The UCB1 Algorithm
	2.2 The e-Greedy Algorithm
	2.3 The Exp3 Algorithm

	3 RANKED RECOMMENDATIONS
	3.1 REC and RBA
	3.2 IBA
	3.3 dcmKL-UCB

	4 CONTEXTUAL BANDITS
	4.1 LSBGreedy
	4.2 LinUCB

	5 EXPERIMENTS IN RANKED RECOMMENDATIONS
	5.1 Methodology
	5.2 Experiment Analysis
	5.3 First phase of experiments
	5.4 Second phase of experiments
	5.5 Conclusion

	6 REFERENCES
	APPENDIX

