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Abstract

Cellular networks are one of the most impactful technologies of today’s ICT industry.
They provide wireless access to internet and services with very high availability and
effectiveness. The evolution of this technology comes with the maturity of the 3GPP-
based network and their upcoming releases that promise to deliver even higher quality
of service, additional capabilities, and solutions to previous drawbacks. To achieve this,
vendors of these technologies must analyze the complexity of these networks and their
different deployment options and provide intelligent management software. Variations
of cellular networks can be found in literature as Heterogeneous Cellular Networks
(HetNets) or Ultra-Dense networks which are improved design flavors of the same
system with increased complexity and configurations. The added capabilities of these
networks must be used as a toolbox to improve various operational aspects of the
networks such as energy efficiency, network performance and system fault prevention.
The scope of this Doctorate Thesis is to analyze different approaches of optimizing
HetNets in order to suggest plausible suggestions for extensions that will optimize all
high-level objectives. Static management and configuration will be used in conjunction
with knowledge-building to improve the energy efficiency of key simulation scenarios
of 3GPP networks. Dynamic Resource allocation schemes will be used as a real time
management algorithm to improve quality of service in a micro-scale. Predictive
models based on acquired historical data will be used to predict network operational
KPIs, evaluate the probability of network congestion and identification of unknown
network element groups based on their behavior. These generated insights will help
the infrastructure providers to impose countermeasures to prevent quality
deterioration and enforce the technological standards. They will also lead to the
reduction of the OPEX and the energy footprint of the system making technology
investments sustainable and profitable for network operators. The framework for
developing and testing these algorithms is a custom-designed software platform for
HetNet simulations and algorithm experimentation. This system is designed according
to standards and specifications in order to provide realistic results that will establish
the suggested algorithms as strong candidates to be included in future 3GPP-based

wireless networks.
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NepiAnyn

Ta KUPeAwTA OIKTUG KIVNTWV EMIKOIVWVIWV €ival dia and TIG TEXVOAOYIEG HE TNV

HEYaAUTEPN €nidpacn oTnv onUEPIVR Blopnxavia TwV TEXVOAOYIMV EMNIKOIVWVIWV KAl
nAnpogopiknc. Mapéxouv acupuaTn npoopacn oto d1adikTuo aAAd kai pia nAnbwpa
AMwV unnpeoiov Pe napa noAU uywnArn diaBeoipodTNTA KAl AnoTeAeoPaTikoTnTd. H
€EENIEN auTnc TNC TexvoAloyiac EpXETal P TNV wpipavon Twv JIKTUWV nNpodiaypapuv
3GPP, n npoodoc¢ Twv onoiwv UndoXeETal va MNAapeXel akopa uywnAoTepn noidTnTa
UMNPEDIOV, NEPIOOOTEPEC duvATOTNTEC AANG Kkal AUOEIC 0 MPoBARUATa Twv
naAaidTepwv yevewv. Ma TNV niTeEUEN QUTWV TWV OTOXWV, Ol KATAOKEUAOTEG AUTNAC
TNG TeXVoAoyiac npenel va avaAloouv MPOCEKTIKA TNV MOAUNAOKOTNTA QUTWV TWV
OIKTUWV aAAG Kkal Twv OUVATOTATWY E€YKATACTAONG TOUG KAl VA MAPEXOUV EUPUEC
AOyIOMIKO Jlaxeipiong Touc. Alagopornoinoei o€ KUWeAwTA dikTua TUnou 3GPP onwg
Ta ETEPOYEVN KUWEAWTA JikTUA AAAA KaI Ta «Unep-NUkva» dikTua ival eEeAIEIC auTwv
Twv OIKTUWV ME au&nuevn noAunAokoTnTa kai duvaToTnTEG nou PpiokeTal oTn
BiBAloypagia. Méow auTwv Twv OUVATOTATWV HMNOPOUHE va PBEATIWOOUME TOUC
O1APOopPouUC AEITOUPYIKOUG OTOXOUC TNG UMOJOMNG ONWC EVEPYEIQKN aAnodoTIKOTNTA,
OIKTUAKEC €MOOOEIC Kal ano®uyr o@aApaTwy. AuTr n d1I0aKTopIKA dIaTPIPR EXEl WG
okorno va avaAloel SIaPOPETIKEC NPOTEYYIOEIC BEATIOTONOINONG ETEPOYEVWV DIKTUWV
KATaAnyovTag €701 0€ NPOTACEIG YIA €NEKTACT TOUG ennpealovTtac 600 To duvaTwv
NEPICOOTEPOUG OTOXOUG-KAEIDIA. ZTaTikn dlaxeipion kai pUBuIoN O ouvdUAoHO HE
ouAAoyn yvwong Ba xpnoiponoinBei yia Tnv BEATIWON EVEPYEIQKH €MIDOONG OEVAPIWV-
KASIOIOV yIa TNV 4n Yeviag KivnTnG TNAspwviag. AAyopiBuor duvapikoU diapolpacuou
nopwv 6a xpnoiponoinBouv cav pia pEBodog diaxeipiong NpaypaTikoUu XpoOvou HE
okond Tnv BeATiwon noldTNTAg UMNNPECIOV O MIKPO-KAiMaka. TENOG, HOVTEAG
MNXaviknG Hadnong a eknaideuTtouv o€ 1I0TOPIKA dedopéva Pe akond TNV NPoOBAsyn
TWV AEITOUPYIKWV OEIKTWV TOou OIKTUOU, €KTiMNon Tng meavotnTag OIKTUAKAG
UNEPPOPTWONG Kal avayvwpion AdyvwoTwv opadwv JIKTUAKWV OTOIXEIwV Baciopeva
OTNV OUMNEPIPOPA TOUC. AUTEC ol npoBAEweic Ba BonBrioouv Tnv diaxeipion TnG
UNoOJOMNG OTNV EVEPYOMOINGN AVTIUETPWY Yid TNV anoguyn Tng unoBaduiong Tng
noldTNTAC UNNPECIV AdAAG Kal TNV ENIKpATNON Twv Npodiaypapwv Tng TeXvoAoyiag.
AuTéc Ba odnynoouv eniong otnv eAdTTwon Tou OPEX aAAG kai Tou evepyeiakou
anoTuNWUAToC TOU OUCTNAHATOC 0dNywvTac £T01 O PBIWCIYEC KAl EMITUXNMEVEG
enevOUCEIC YIa TOuG Napoxouc. To nAaiolo avanTuéng yia auTtoUg Toug aAyopiBuoug

gival £&va autooxedio NPwTOTUMNO NMPOCOHOIWT ETEPOYEVWV JIKTUWV Kal NAATPOpHA
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EKTEAEONC NEIPAMUATIKOV AAyopiBuwv. AuTo To cUoTnua oxedidoTnke pe Baon TIG
npoOTUNEC MPOdIaypaPEC MPOCOMOIWONG TETOIWV CUCTNMATWV KAl TA PEAAIOTIKG
Oedoyéva nou Ba eEayxBouv and autd Ba Bonbricouv OTNV UMNEPACNION TNG
anoTeAEOUATIKOTNTAC TWV MPOTEIVOPEVWV AAYOpPIOUwV yia Tnv €vraén Toug oTnv

TEXVOAOYIa KUWEAWTWV enikovwviov 3GPP.

A€Eeic-KAeid1a: 3GPP , Evepoyeviy KuweAwTd AikTuQ, <«Unep-nukva» OikTuaq,
BeATioTOMOINGN, GUAAOYN YVWONG, uwnAoi oTOXOI-KAEIDIA, EVEPYEIakn anodoTIKOTNTA,
Meiwan HM pinwv, NoidTNTA UNNPECIWY, ano@uyr GRAAUATwyY, NPORAEWYN HETPIKWY,

opadonoinan dIKTUGKWV OTOIXEIWV
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Foreword

A PhD dissertation is the detailed diary of an academic’s journey through the vast and
overwhelming realm of scientific research. The completion of such a journey is a proof
that you are an evolved individual, rich with novel tools and knowledge that allow you

to move forward and make a difference in modern society.

In the beginning of this research, the goal was to fully understand the current
technological achievements of modern 3GPP-based cellular communications. There we
would identify problematic situations that would allow for novel approaches and
algorithms. After that it became necessary to develop an accurate simulation
environment that would be used to test our new approaches, compare them with
existing proposed solutions and validate that our contribution was a successful
improvement. The process of creating such an accurate software was long and
required help from colleagues, foreign institutions, and rich literature. All this labor
however was rewarded with a state-of-the-art engine for knowledge building and
algorithm development. The next steps were to provide one technical solution for each
of the three categories of network problems, energy efficiency, quality of service and
network stability. These three problems required three different altogether approaches
which proved that to move forward in the next generation of telecommunications, we

need to embrace as much as possible new, radical advanced techniques.

This journey would never be accomplished if it weren't for all the fellow academics of
University of Piraeus. First, I would like to personally thank my teacher and mentor
Prof. Panagiotis Demestixas as well as the Prof. Athanasios Kanatas and Prof. Angelos
Rouskas. Their contribution, guidance and support helped me chart an important
course in these scientific fields leading me to the completion of this dissertation. The
important members of the TNS lab Dr. Kwstas Tsagkaris, Dr. Andreas Georgakopoulos,
Dr. Yiouli Kritikou, Dr. Dimitris Karvounas, Dr. Dimitris Kelaidonis, Dr Aimilia Bantouna
played a key role in my research, providing constant input, wise suggestions and
continuous inspiration. My colleagues and fellow PhD students Ioannis Belikaidis and
Mixalis Mixaloliakos gave me the strength of a real fellowship as well as Dr Panagiotis
Vlaxeas and Dr Vassilis Foteinos. In addition, I would like to thank my colleague George
Poulios for being both a role model scientist, a dependable coworker, and a true rival.
Finally, I would like to thank my family and my closest friends who supported me in
pursuing this esteemed academic reward. Finishing this has allowed me to move one

step closer to the completion of my academic ambitions.
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MpoAoyog

Mia di1dakTopikr dIaTPIBr) UNOPEi va T GAvTaoTEl KAVEIG WG TO AEMTOPEPES NHEPOADYIO
€voc akadnpuaikoU Ta&idiol oTov axavr) Kal YERATo O£0G KOOMO TNG EMIGTNHOVIKNG
€peuvac. H oAokArpwon evog TeTolou Ta&idioU sival pia anodeiEn OTI EXEIC YETATPANEI
o€ €va eEeAlypévo aTtopo, NAoUaCIo JE VEOPUN EPYAAEIa Kal YVwaor NOU GOU EMITPENOUV
va KAveig éva Brida JnpooTa Kai va QEPEIC TNV aAAayn o€ Wia JovTEpva Kolvwvia.

2TIC anapx&C auTtng TnG €PEUvAC, 0 OTOXOC MAC ATAv N KATavonon TwvV ONUEPIVAV
TEXVOAOYIKOV EMNITEUYMATWV TWV HOVTEPVWV OUCTNHATWV KIVITAC TNAEPWVIAG TNG
3GPP. Méow auToU PNOpPECAKE VA EVTOMICOUUE NPOPANMATIKEC KATAGTACEIC Ol OMOIEC
Ba xpndouv VEEC NPOCEYYIOEIG kal aAyopiBUoUC yia TNV avTIMETWNION TOUuG. AUTO Hag
odnynoe 0TO CUMNEPAcTia OTI Eival anapaiTnTo va avanTuxBei éva katdAAnAo epyaleio
NPOCONOIWCNG TO oroio Ba XpnoiyonoloUTav yia va doKIKNAaoToUV Ol VEEC NPOCEYYITEIG
Kal va ouykpiBoUv HE TIC unapyouoec AUCeIG , emBeBaiwvovTag Tnv BeATiwon nou
Miopouv va enipepouv. H diadikacia TnG KATAOKEUNG auToUu Tou AoylopikoU nATav
Makpid kal OUOKOAN Kal anaiTnoE TNV GUVOAIKN OUVEIOPOPA OUVADEAQPWV, EEVWV
opyaviopwv / 10pupaTtwv aAAa kal PeEAETN Tng BIBAIoypagiac. ZTo TEAOG O KOMOG
anedwoe Kapnoug, kabwg pag edwae To KaTaANAO €pyaleio TEXVOAOYIKNAG AIXHAG TO
onoio Ba xpnoiponoloUTav w¢ n Baocn yia Tnv avantuén oAwv Twv aiyopibuwv. Ta
€nopeva Bripata nou akoAouBnoav ATav va NPoTeivOUE Hia SIaPopPETIKN TEXVIKN AUoN
yla kaBe evav and Toug KUpIoug GEoveg dlaxeipiong TETOIWV UNOJONWY , OVOUACTIKA
TNV €vepyelakn anodoTIKOTNTA, TNV NOIOTNTA UMNPECIWV Kal TNV oTaBepoTnTa TOU
dIkTUoU. Ta npoBAnuaTa nou nnyalouv anod TiG JIAPOPETIKEG AUTEG EVOTNTEG, XPNJouv
OlIaPOPETIKAG MPOCEYYIoNG €NIAUGNG TOUG KATI TO Onoio anodelkvuel OTI yia vd
0dnynBoUpe oTn véa TeXVOAOYIKN YeVIA Ba NpEnel va «aykaAldooupe» 600 To duvaTov

NEPIOCOTEPO PICOONACTIKEG KAl OUVOETEG TEXVOAOVYIEC.

AuTo TO Ta&idI e Ba pnopoloe MOTE va €XEl OAOKANPWOEI XwpiG TOUG OUVABEAPOUG
akadnuaikoug Tou Mavenmornuiou Melpaiwe. MpwTioTwg Ba nNBeAa va guxapioTHow
NpoownIka Tov kabnynTn kal pévropa Mou MavayliwTn AgpeoTixa, kabwe kai Ta
unoAoina PéEAN TnG TPIMEANG pou kabnynTég ABavaoio Kavarta kal Ayyelo Pouoka. H
OUVEIoPOPA, kabodrynon kal unooTnpIEn Toug ATav Wia onuavTikn Bonbeia oTnv
ohokAnpwan auTtng TG diaTpIBNnG. Ta JeAn Tou epyacTtnpiou TnAENIKOIVWVIWY, AIKTUWY
kal Ynnpeoiwv Ap. KwvoTavTtivog Toaykdpng, Avdpeac lMewpyakonouAog, ouAn
KpnTikou, Anuntpng KapBouvag, Anuntpng Kehandovng, AiiAia Mnavtouva enai§av

ONMAvTIKO pOAO OTNV EPEUVA HOU, NAPEXOVTAC HOU GUVEIOPOPA, EUPUEIC NAPANOMNES
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Kal ouvexn €unveuon. Or ouvadeAgol kai Ynowneiol 81dakTopeg Iwavvng Mnelikaidng
Kal MixdAng MixaAoANidkog pou napeixav Tn duvaun piag npaypaTikng akadnuaikng
ouvTPOPIac kabwc enionc kai o Ap. Mavayiwtng BAaxéag kair BaoiAng dwTeIvoc.
EmnAéov Ba r6gAa va euxapioTriow Tov ouvadeA®o Mwpyo MoUAIo o onoioc anoTéAeoe
yla €PEva NPOTuUno enioTrPovd, akadnuaikd avTi{nAo aAAa kai a&idnioTo ouvepyarn.
TéNoc , Ba beAa va euxapioTHOW TNV OIKOYEVEIQ OU KAl TOUG KOVTIVOTEPOUG (PIAOUC
MOU yIa TNV unoaTnpi€n Toug oTnv diekdiknon autoU Tou noAunoenTou pou oToxou. H
OAOKANPWGN TOU €ival I00dUvapn Ke €va akopa atabepd Brjua oTnv oAOKANPwWon TwV

aKadnuaikwv pou PIA0dOEIwV.
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Thesis Timeline

The initial planning for this research project was included in the doctorate proposal
and it included 4 yearly stages that would result in the final doctorate thesis document.
It is of key importance that research follows accurate scientific steps in order to
understand a problem statement, study the existing status of the scientific community,
implement the SOTA, design an improvement and implement it in order to extract
feedback on the benefits it can bring.

Year 1 Year 2 Year 3 Year 4

Research 4G/5G
technology and
scenarios

1

1

1

1

1 . .
| Design Quality of

] Service Optimization
! scheme
1

1

1

1

1

1

1

Design Element
Clustering Scheme

Benchmark
Design Congestion Prediction Telecommunication

Scheme KPI forecasting
techniques

Establish simulation
environment for testing

Figure 1 - Timeline of the doctorate thesis

In the 1% year we focused our research in the next generation of cellular networks,
analyzing the modern literature, 3GPP and 5GPPP standards and reference scenarios.
This included the technological features of cellular technologies and their key
differences with other wireless network communications such as the 802.11 standard.
We identified the design principles behind the modern deployment versions of such
networks from homogeneous placements of GSM network to HetNet and Ultra-Dense
networks. Our Participation in Green-Touch consortium, conferences and publications
allowed us to formulate the requirements for an accurate simulation environment that
would work as the testbed for all our future optimization attempts. We also studied
the S.0.T.A in other simulation environments such as Omnet++, NS2 , NS3 and OpNet
in order to finalize the design process of the software. 3GPP reports contained crucial
key scenarios of the LTE standard that we used as baseline to design our future
optimization / improvements. We also identified the KPIs for the various management
high level objectives to include them in the calculations.

The development of the simulation software was finalized in the 2™ year while
simultaneously we focused on our 1%t important optimization use case, energy

efficiency in LTE HetNets. In order to achieve a sustainable energy consumption status
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for the reference scenarios, we used cross-operator infrastructure sharing (leveraging
the stochastic nature of the traffic demand) and supplemented the quality of service
gap by introducing strategically planned Pico cells in traffic hotspots. The simulation
software was then used to validate the results and it resulted into the first journal
publication on IEEE vehicular technologies magazine. The way forward led into
research for application of other types of algorithms that are more data-driven and
more flexible than network redesign. Machine learning is a promising field for network
optimization and rich literature can be found on different directions. This literature was
split into 3 different subcategories, semi-supervised classification, clustering and
forecasting. The last 2 were pushed to be studied in the final (4) year of the thesis
while the 1%t was the next item to be included in the study.

In the 3™ year of this doctorate thesis, we moved further into additional HetNet
optimization scenarios for various important situations that are foreseen as
problematic. We studied the literature for the best approach on tackling the quality of
service optimization problem in dense urban deployments by the means of applying
intelligent dynamic resource allocation in the radio link control module of LTE.
Appropriate simulation scenarios were selected to showcase the importance of real
time management by the means of SON functions is crucial for the runtime of HetNet
infrastructure. Also, we visited different approaches such as class-based resource
allocation and policy enforcement. The simulation results showed promising benefits
in the selected scenarios, and this resulted in our 2™ journal publication is spring
wireless communication journal. We also studied a different use case in which network
was being congested due to a change in the underlying state of the active user
equipment terminal devices. Predictive modeling that used semi-supervised learning
and Self-Organizing maps was used to identify the congestion and appropriate counter
measures in the handover algorithm were activated in order to optimize the network
performance. The analysis of the outcome was split into two parts: a) a performance
analysis on the machine learning model fit, that would encourage us to include is as a
component for the optimization and b) the network KPI improvement due to the
application of the predictive countermeasures. The results of the ensemble scheme
were a dramatic prevention of the network congestion for various network load

conditions and situations.

In the 4 and final year, we focused on the rest of the machine learning predictive

models to identify novel use cases for their application. Literature for unsupervised
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learning and dimensionality reduction techniques was studied in order to solve the
management complexity of Ultra-Dense networks. In detail, we used applied clustering
to identify network elements that belong to the same behavioral categories. Elements
that serve the same amount of traffic get grouped together and can then be effectively
managed. The same methodology was used in a different scenario in which different
classes of users were identified and grouped together, in order to apply different radio
resource allocation schemes. In both cases the various clustering algorithms showed
promising accuracy in the identification of the hidden groups. The second half of the
final year was dedicated to network KPI forecasting algorithms. The importance of KPI
forecasting lies in the value of the incident prevention. A timely prediction of
congestion or a high throughput spike can be used in conjunction with
countermeasures to provide network robustness and stability. A large set of forecasting
models were benchmarked on measured network KPIs produced by the simulator for
key scenarios to test the limitations of their forecasts. The results show us that
forecasting is a useful tool for short-to-mid-term predictions and can also be a robust
tool for the future of cellular networks.
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Chapter 1 — 3GPP Cellular Networks of 4t" and 5t

generation

1.1 Introduction

In this introductory chapter, we will analyze the characteristics that differentiate
cellular networks of the 4" / 5% generation from their predecessor (2G/3G) in terms
of architecture[1], technologies and management methodologies. In detail, we will
focus on a) the usage of heterogeneous network coverage elements that consist a
type of network sometimes referred to as HetNet, b) The density and geospatial
diversity of the placement for such network elements that lead to a new definition of
mobile networks, Ultra-Dense Networks, ¢) The usage of multiple simultaneous carrier
frequency groups in bands that are not traditionally used for mobile
telecommunications such as microwave and mm-wave bands in order to deliver higher
capacity and meet the user demand. Finally, we will analyze the necessity and difficulty
of intelligent management for these systems which will be the centerpiece of this
doctorate thesis

1.2 Heterogeneous Cellular Networks (HetNets)
Heterogeneous cellular networks[2][3][4] are up and coming network architectures
for the cellular network providers and have dominated the architectural models in the
last decade, beginning with the release 8 of the LTE (4G network). In contrast with
the homogeneous cellular networks (which consist of the repetitive placement of
homogeneous network elements with respect to the coverage area, capacity
specifications and capabilities), HetNet architecture is utilizing radio coverage elements
of different specifications and capabilities in terms of transmit power, antenna type
and functionalities (coverage capabilities, inter-communication with other elements,
backhauling capabilities etc.) creating a more capable and also a more complex access

network that is better suited for the present environments.
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Figure 2 - Example Heterogeneous Cellular Network (HetNet) [1]

The benefits of this architecture aim at the geospatial imbalance between different
urban areas (city areas, rural areas or industrial areas) in terms of traffics demands
and/or human density which is a paradigm shift in relation to the older planning
principles. It also benefits from the city layout and the impact that it has on the radio
transmission environment (reflections, delay diversity, absorption and shadowing). For
the design of such networks, detailed population density maps are utilized as the
majority of commercial cellular modems are currently handheld devices such as
smartphones, tablets and other 4G/5G devices. The antenna systems of a
heterogeneous cellular network are mainly categorized by the size of their radio
coverage (effective coverage as it results from the accompanying antenna it has). The
most commonly seen HetNet elements are: a) Macro Cell (eNodeB , coverage of 250
to 1500m), b) Micro cell (250 to 100 m), c) Pico cell (100 to 50 m) , Femto cell (<25m
mostly indoor elements), Wi-Fi Access Points ( <25m) and also Remote Radio Heads
(RRH) which vary in coverage and are mostly used as repeaters / relays for a long
range macro eNodeB transmission (i.e. it does not include its own Layer 2 and onwards
network stack so it is referred to as a passive network element)

1.3 Ultra-Dense Networks

The term “Ultra-Dense networks” is mentioned in modern literature as
telecommunication networks of the 4™ cellular generation which consist of multiple

overlapping layers of radio coverage technologies. These layers can consist of network
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elements with a) different radio specifications (e.g. transmit power, carrier frequency,
bandwidth), b) non-symmetrically placed radio elements, c) different element
categories (e.g. Macro / Pico / Femto cells) and d) multiple simultaneous generations
of radio technologies (e.g. combination of 2G, 3G ,4G along with Wi-Fi access points
controlled by operators). This architecture is also contradicting the traditional
symmetrical and homogeneous design of the previous generations which started with
GSM and was followed by the UMTS network.

By § e | T ha - )} R

: i } Different Frequencies Different Time Slots
BN u
p ) (@) -
by .
)

-
]]I i (t®)
Ll A Different Space

Figure 3 - Example of UltraDense Networks (UDN) [5][6]

Utilizing the methodology of multiple division of a coverage area to smaller and denser
network elements, the network designers can achieve higher spatial performance in
indices such as geospatial spectral density (Mbps / square meter) and average spatial
interference or SINR. However, ultra-dense deployments are shown that can lead to
various management problems and require advanced management algorithms and

methodologies for their smooth operation.

1.4 Higher Frequency Cellular Networks
Historically[7][8], cellular networks utilize the initial 2" and 3™ generation allocated
radio frequency bands (800Mhz, 900Mhz, 1800 Mhz, 2100 Ghz etc.) which are each
correlated to a different generation of networks. This results in a dedicated bandwidth
for the service of the specified quality of service level that each technology promises.
The increasing required capacity however that arrives with next generation of #GPP
technologies require expansion on additional bands that lie above the 2.4Ghz band
towards micro-wave and mm wave bands that were previously used for wireless
backhauling and satellite links. In addition, carrier aggregation techniques allow for
multiple carrier frequency combination that results in an even higher effective
bandwidth for the base-band unit and consequently for the data link layer. These new

frequencies (central frequencies of 6-13, 15-42, 80,100,150 Ghz) have their own
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shortcomings and challenges in order to be used as an access network frequency.
Pathloss factors increase with the increase of frequency which causes problems in the
propagation and refraction (which is an important principle for access networks as line
of sight is almost always unavailable). However, they provide a very large and
relatively “clean” bandwidth (in the order of Ghz) and the technological advancements
now allow us to utilize them as well provided intelligent radio link control schemes are
active. Ultimately this will lead to a tremendous increase in the networks capacity and
capabilities that will lay strong foundation for the future evolution.
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Latency
W & .
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- . - » Good resisiance to min % Reliability
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Coverage . e

Figure 4 - New Access Frequency Bands (MicroWave and mmWave+) [7]

1.5 High Level Objectives, KPIs and hierarchical Cellular
Network management

Management of complex intelligent network infrastructures[1][2][9] is a complex and
divisible optimization problem which can be approached with different ways such as a
top down approach (i.e. from a higher level of perspective, from network goals to
element goals) or a bottom up approach (i.e. focusing on micro-optimization in a local
level which in turn result into system-wide problem solving). In reality, mix of the two
strategies are utilized which results into a hybrid solution for the best results. In
following chapters, we analyze the term “infrastructure management” into its
respective subcomponents and the means to achieve it along with the types of results
it can derive. A complex telecommunication system can function in various operational

modes by focusing the management and configuration capabilities towards a specific
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central KPI “axis”. This axis is the central policy that will dictate the operation of the
system and can sometimes be referred to as High Level Objective (HLO). The axes can
have conflicting and reciprocated components therefore the optimization of their sub-
objectives can result into the deterioration of the other. In literature this is referred to
as a “tradeoff” (i.e. two different aspects of the system are trading their states from
effective to ineffective) and every management action must be analyzed for its
tradeoffs into different KPI axes. Our approach for the different HLOs of the
telecommunication infrastructure and HetNets is split into the following, conflicting
HLOs: A) Efficient Resource Utilization, B) Subscriber quality of service / quality of
experience, C) Energy Efficiency / Power consumption of infrastructure. The contextual
separation between these 3 HLOs is clear, however they cannot be satisfied

simultaneously due to their correlation.

Optimum usage of equipment Functional cost reduction and
capabilities(CAPEX) optimization (OPEX)
Maximum Joint optimization
Resource Energy Efficiency
Utilization

Joint optimizatio Joint optimization

Quality of
Services

Improvement of Quality of Service via Performance Optimization

Figure 5 - Network Management HLO correlation analysis

For application purposes in real telecommunication environments, the selection of the
proper high-level policy is a crucial and demanding decision that must take into
consideration various factors (financial, technological, geographical etc.). In addition,
the complexity of the correlations between the HLOs require a proper sub-objective
analysis and planning in order to achieve the wanted goals. The sub-objectives are
being generated following a tree-like dependency structure that follows the network
hierarchy from the system-wide KPIs to the element-wide KPIs. In addition, hierarchy
can be applied in the temporal scope of any management action which separates long-
term and short-term lifecycles to observe the impact of any action.
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Table 1 - Different Contextual hierarchies in system management

Generic Time Hierarchy Example in 3GPP cellular Example of translating the
technologies policy into a specific KPI
Management High level network Average monthly
Long-Term Platform management system |instantaneous network powe|
Level (NMS) consumption (Watt)
T Mid level element Average per elem.ent
Mid-Term Acent Level management system power consumption
g€ (EMS) (Watt/element)
) ) eNodeB Change T.ransm.it PO\{VEF or
Enforcing Entity (implementing the application of intelligent
Short-Term Level P g . algorithm for reduction of
Specific management actions) | ower consumption (Watt /h)

The tree-like architecture introduces additional complexity in the infrastructure
management algorithms (and schemes) but helps increase the precision and level of
detail for different management solutions. This information increases the effectiveness
of the operations and helps us predetermine the impact that it will have on the system.
Additional diagram analysis can also give us a general “picture” of how the optimization
/ management methodology affects a telecommunication system (and its respective
KPIs as a whole). Such algorithms can lead to relevant knowledge extraction from
various control loops which can then be added in existing management schemes to
fine-tune them with the new state of the system.

High Level
Objective
2. Request measurement
from the control elements

1.Search of the best actions for
achieving the wanted goals

4.Selection of
configuration
parameters related
with the KPland
activating control loops

status =
( Khowledge )

e

5.Change of configuration values have direct or
indirect affect on the KPI

Figure 6 - Knowledge-building during Intelligent Management

1.6

In this chapter we are enumerating in a short description all the general categories of

HetNet Management Schemes

infrastructure management schemes for HetNets. As in all dynamic information
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systems that operate in real time, HetNets can be influenced by a large variety of
problems in different operational stages. These stages begin from their initial setup /
design phase and can continue along the operational function up until the termination
phase. For every stage with different characteristics, different problem-solving
methodology can be selected that will be more tailored to the nature of the problem.

1.6.1 Static Management and HetNet Design
In this static management category of telecommunication infrastructures, we can
group all the actions that revolve around the placement / positioning and
parameterization of the various network elements in the designated area. This, as the
name of the scheme implies, occurs in a predetermined, manual or static’ way based
on calculations that have occurred and estimations of the operational environment.
Initial design of a system is always a very detailed and complex decision point for such
systems as it is further analyzed into multi-variable sub-problems that co-depend
simultaneously. A lot of mathematical and mechanical modeling can be found in the
literature for cellular network design based on optimization of various aspects
(coverage, energy consumption, quality of service etc.). The mathematical models that
are used in this stage vary from estimates to very detailed simulation models of the
real environment in order to provide the algorithm with the best possible inputs and
lead to the best results. In practice however, it is observed that these models are both
the strengths and the weaknesses of static management scheme. While the simulation
and calculation models provide a form of “concentrated knowledge” that is close to
accurately predict the parameters of the system’s environment, they suffer from the
vulnerabilities and error of all the statistical estimation methods. Applied statistics can
often miss out on “outlier” data points and lead to “average” estimations which, in
great number of observations are accurate, but fail to accommodate for micro-
management and more detailed phenomena. The impact that these statistical errors
have on the output of the static management scheme can be very high resulting in
serious KPI decline. Therefore, some problems are bound to have better suited solution
schemes. Designers of HetNet infrastructures frequently use these models to acquire
predictions results of new technologies based on trained models that used data from
previous generations. These models cannot always be used in this generalized manner
leading to mistakes in the calculations. Different technologies hide implicit differences
that are very hard to quantify and include them as parametrization in models,

especially when moving from one telecommunication generation to another. Design
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and static management cannot always accommodate for the geospatial evolution of
urban environments in civilian areas. Urban evolution and population evolution models
can be used but this will demand continuous re-parametrization of network elements
to respond to the demands of the increase or decrease in telecom traffic (e.g. caused
by the addition of a single train station in an area). Regardless of all the drawbacks
mentioned, static models and planning cannot in any case be called obsolete as it can
be used as a solid basis for optimized telecom infrastructures with some extensions
and adjustments.

1.6.2 Dynamic Management with control loops and SON Functions

Dynamic management of HetNet is a real time operation that uses the predefined
configuration points of the network as provided by the vendor of telecom equipment
and infrastructure. In many references (either in literature or commercial software
products) they can be referred to as SON functions, functions for the self-organization
of networks. These functions are management control loops that are the first step
towards Al-based models in commercial telecommunication networks. In principle
SON-enabled systems have platforms that allow software to be plugged, installed or
uninstalled and then activated when certain criteria are met to perform dynamic
management. Different states of the network elements lead to different operational
policies that ultimately impact the element KPIs. Many categories of such SON
algorithms are currently used commercially and operating on cellular networks
worldwide. In addition, the academic literature has numerous publications for SON
functions because of the important paradigm shift from the previous, static
management schemes. These management functions have many advantages versus
the volatility of the ever-changing context of the network. With proper programming
implementations, SON algorithms can solve a large variety of network problems in an
automated manner. This automation leads to important benefits and improvements
over the operator’s KPIs and, ultimately, the OPEX of the telecommunication system.
The negative drawbacks of SON functions are largely related with the additional
complexity that is being introduced to the infrastructure to be able to execute such
control loops. This can include increased signaling between network elements (i.e.
more resources used and worse QoS) and increased complexity on the network
operational environment that can result in reduced understanding of the causes
between various incidents or network behavior. This further results into a decline in
the prediction capability of future behavior of the system which can result into chaotic
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states. Another drawback of the SON functions that can be found in the public
literature is their scope of application (with respect to the entirety of the cellular
network). SON functions are sometimes designed to be applied locally or in a telecom
site that includes 3-8 cells (radio units) performing an algorithm (e.g. dynamic power
control) which uses as input information and measurements that are related only to
the selected subset of (3-8) elements. This can often lead to an environment of
competitive optimization which can lead to both successful (in cases of e.g. distributed
Load-balancing SON) or to failed (in cases of handover optimization) applications.
Centralized, global-scope SONs are shown to tackle this problem by taking in
consideration all the relevant elements of the network but are very complex and
require a very large amount of signaling between the managed nodes that leave a
significant footprint on the network operation. Centralized SON’s great workload can
sometimes lead to requirements of dedicated computation hardware that is required
for solving the management problem. The effectiveness of SON functions, regardless
of the drawbacks, is gaining more and more ground in HetNet environments for their
innovational perspective on the problems that rise.

1.6.3 Management with Knowledge-based predictive models

As mentioned in the previous chapter, static management schemes of HetNets can use
internal mathematical and/or computational models that are generated by statistical
studies on historical data and also natural electromagnetic transmission phenomena
during the operation of the network. Analyzing this approach led us into the conclusion
that these models need to be continuously re-calibrated or updated in order to adapt
to the rapid changes that can occur during the system operation. To meet this
requirement, we need to implement machine learning methodologies to improve the
complexity and accuracy of the models. Machine learning is a new methodology of
solving complex problems that derives from a “data-driven” philosophy. In simple
terms, machine learning is the parametrization of a mathematical model as an
optimization problem of the prediction error calculated on historical data. These models
aim on predicting and calculating the circumstances / future states that will come and
apply tailored methodologies to avoid unwanted events or exploit them to the system’s
benefit. The advantages of these methods are based on the advantages of both
management schemes (dynamic and static management) as they minimize the
negative aspects of each schemes while maintaining all the benefits. The negative

aspect of machine learning is the internal process of learning itself. This procedure is
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an internal optimization problem that comes in addition to the other problems that are
part of the system. The complexity of solving this problem and the accuracy of the
solution is mostly based on acquiring a large amount of historical data that are enough
to lead to the best parameters of the model. However, since data can be found in
abundance for various problems, academic literature is booming with references to
machine learning-based solutions of various systems including HetNets. This research
will ultimately lead to a stable, industrialized and accurate model-building machine

learning implementation for commercial environments.

1.7 Conclusion
Having enumerated the various methodologies for management of heterogeneous
cellular networks (i.e. static management and planning, dynamic management and
SON functions and also management by utilizing machine learning and knowledge
building), it is clear that not one single management scheme can be used to cover all
aspects of the system. This leads to the necessity of constructing an experiment
software platform that will perform simulations, apply tests and algorithm
methodologies and evaluate the KPI results for various management schemes. The
outputs of this system will lead to a high-level policy of which types of problems are
best solved with which algorithms and methodologies. The synthesis of all these
solutions will be the total output of this doctorate thesis and will lead to the best
possible operation of HetNet systems. Future systems will provide interfaces for such
intricate management schemes and it will be possible to apply them in real

environments and therefore benefit from the improvements that will be brought.
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Chapter 2 - Simulation and Algorithm Application
Platform

2.1 Introduction

For this doctorate thesis, it is necessary to develop appropriate simulation software
with the capabilities of performing the operation of an actual HetNet infrastructure,
applying various methods and policies for operating in an optimized manner and
gathering measurements to evaluate the results. In order to achieve the level of
calculation realism required, appropriate literature was studied and incorporated into
the design analysis and implementation of this software. A software simulator is a
large study item for various fields and this chapter will be dedicated to analyzing the
various modular aspects of the tool. The simulator developed is designed to perform
realistic network operation for HetNet radio and network components “serving” in
addition to the user equipment terminals that are the “clients” of the network. The
serving elements as mentioned in previous chapters are comprised of sub-components
of the various OSI layers, mapped to their corresponding implementation from the
3GPP standards. The types of nodes that are being used as components for simulations
are sector antenna multi-sized 3-node cells called eNodeB and also smallest range
components called Micro or Pico cells with various ranges of circular coverage. The
software implementation for these components includes the physical layer calculation
for link budget for each link, the data link layer namely the RRC (Radio Resource
Control) and RLC (Radio Link Control) units which involves dynamic modulation and
coding schemes and handover operations. The environment of a simulation plays a
key role into scenarios that provide useful insights for the various studies. For this
reason, the software includes a lot of radio environment aspects and geospatial or
mobility capabilities. The most important aspects that affect the operation of a HetNet

are:

e Topology, geography, and the position of the stationary elements of the
simulation.

¢ Mobility and the relative position of the user equipment devices that affect the
line of sight and shadowing of the link

e The telecommunication channel with its various properties (radio frequency,
bandwidth and all the positive and negative aspects of noise and interference)
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e The generated traffic model that emulates the user equipment device usage with
different traffic patterns for different services

The studied bibliography, standards and white paper were selected to provide the best
accuracy to all these aspects of the simulation software. In addition, new models were
designed and implemented to provide further extension to the existing public

literature.

2.2 Software Specifications

The simulation / validation software created is based on thorough state-of-the-art
research[1][2] of other network simulators that are used for publications and
standardization studies. The specifications for these simulators are aligned with large
standardization organisms for wireless technologies and cellular communications such
as the IETF, 3GPP[3] (4" generation cellular communications), ITU[4][5] (worldwide
radio channel regulation) and 5GPPP[6][7] (5% generation cellular communications).
The software is designed to provide a main operation mode which follows a strictly
linear flow diagram. This flow diagram includes the following steps: a) parameter
initialization for the simulation scenario, b) topology initialization for the user
equipment devices and network components, c) simulation execution runtime (with
rich graphical user interface that provides interaction capabilities and d) measurement
of various important KPIs and generation of reports for the results. Multithreaded
techniques are utilized to provide rich visualization of the operation of the network and
the underlying playground. In addition, real time analytics in the form of time series,
probability density function plots and rasterized colored heat-maps can be enabled to

measure different aspects of the system.

| Simulation N
| Simulation 2

i Simulation 1 Perform
Input Parameter i | Generation of simulation J | Aggregations
Initialization \ i ; topology Gathering of the l
"'\5/ Perform 5
\ . . > results to create -
S A Simulation Composition of
\ ; i\ ..... the report 8
'( Parameter File Lﬂ Loading existing simulation collective report

Recreation i"| topology -

Figure 7 - Flow diagram of the simulator
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2.3 Functional Modules of the Simulator

The HetNet system level simulator is a modular piece of software which is based on
connected software components that exchange synchronous message containing the
multi-layer information. The summary of all the modules combined form the realistic
simulation of the cellular network that provides accurate calculations of the
environment and entities. In this chapter we will analyze thoroughly all these modules
and provide description for their functionalities.

2.3.1 Topology and Mobility Module

The placement and location of mobile terminals in space, with respect to the positions
of the various network elements, is a key input parameter of a system level
simulation[3][4]. Large scale network scenarios such as large, dense urban, multi
kilometer coverage areas with a mixture of buildings and streets require the usage of
element placement models that are based on measurements from various European
capitals (e.g. Paris or Berlin). These models are sometimes mentioned as population

density maps and they play a key role in the generation of traffic volume through

space.
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Figure 8 - Example of a "realistic” telecommunication traffic demand map based on 3GPP models[5]
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Figure 9 - Example of Topology generated by the simulator

In these examples (Figure 8 , Figure 9) We see how a realistic 2D city map can be
mapped to a simulation scenario with mixed radio elements (blue are sector antenna
and orange are Pico cell radiuses)

2.3.2 Physical Layer Module — Channel Modeling

Figure 10 - Directional Gain of sector type antenna used for Macro eNodeB components
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The radio channel transmission model performs accurate link budget calculations
taking into consideration a fully capable 3-D antenna model. This includes a) Path-
Loss model using multiple log-distance values for various environments based on 3GPP
and other literature[5][6] (e.g. GreenTouch ), b) Probabilistic Shadowing model to
include the time-related occurrence of obstacles that remove the line of sight from the
transmission, c) inclusion of additive / reductive interference from the surrounding
radio transmission systems and multi-path reflections that result into the “fast-fading”
phenomenon, d) models for transforming the radio quality into effective symbol and
bit-rate at the data link layer, e) location-based absorption for various inddor
environments (e.g. solid metal / concrete buildings that can lead to 20dB+
transmission losses for 2100Mhz transmission frequency)

Element Type Pathloss Model
Macro eNodeB (Large range) 128.1 + 37.6log10(R), R km
Pico cell (Smaller range) 140.7 + 36.7 log10(R), R km

The simulator’s graphical model can render for each different point of the playground
(Figure 10, red to yellow colored interpolation of gain in dB) the result of the directional
gain of the 3D antenna model.

2.3.3 Physical Layer Module — Probabilistic Shadowing

The shadowing module of the simulation engine[5][6] can greatly affect the outcome
of the quality of service measurements for a simulation as it provides significant
variability in the acquired throughput. A statistical model [6]is based on references
that follows the log-normal distribution for shadowing coefficients that are combined
with the geolocation of the user using the spatial correlation method. To achieve this
the playground of the simulation is split into 50meter (adjustable) tiles that contain a
random but unchanging shadowing value for any user equipment terminal inside. The
terminals share the spatial shadowing value and therefore their radio environment
becomes correlated (spatially). The lognormal distribution used for sampling the tile
grid can take various parameter values based on the area type (i.e. DU, UR, SU, RU)
and can range from 10 to 4 dB standard deviation and -5 to +5 dB mean value. The
2" component of the shadowing model is linked to every single pair of UE — Network

device and will be referred to as the “pair-wise” shadowing component. To produce
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higher shadowing diversity, each terminal has its own shadowing sampled value for
each network element providing uniqueness in its radio environment and better
formation of the statistical value of the empirical model. For the final shadowing value,
a combination of the spatial and the pairwise component is used (divided by square
root of 2). This value is then used for every new calculation of the radio quality and
provides a solid basis for the shadowing component of the total link budget. The
reduction of those dB’s is a sum of the direct, refracted and reflected waves that can
occur in this kind of radio environments. The pre-computed shadowing values are a
very time-efficient technique that sacrifices very little accuracy in large scale system

level simulations.

Figure 11 - Geospatial placement of the tile shadowing areas leads to accurate shadowing calculations
that reproduces the real distributions

Simulator-generated visualization (Figure 11) can show in a greyscale projection the
value of the shadowing that is computed for each tile of the playground.
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2.3.4 Physical Layer Module — Channel Spectral Efficiency and Net
Throughput

For the physical layer module that is responsible for converting the channel quality
(i.e. RSSP, RSRP and INR/SIR/SINR ratios) we are utilizing a pre-computed mapping
curve model[5][6]. This model included all the symbol level error and distortion effects
as a function of the achieved SINR on the receiver and can also be parametrized by
different MIMO or SISO configurations (including 1x1, 2x2, 4x2 and 8x2 stream
configurations). The accurate interference and noise power calculations along with the
link budget are being calculated into a total net throughput that includes coding losses,
timing losses for signaling frames and losses based on fast fading. The spectral
efficiency curve can also be visible in the following (Figure 12 — green for 2x2, blue for
4x2 and red for 8x2 mimo configurations)
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Figure 12 - Simulator's mapping curve spectral efficiency model showing the spectral efficiency as a
function of SINR

2.3.5 Physical Layer Module — Channel Interference Model

Channel interference [11]is one of the most important negative aspects of the cellular
telecommunication channel. The continuous reuse of the same frequency (and time)
resource results in different radio elements interfering with each other which
contributes to the degradation of the link quality and can result in error, lower achieved
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throughput and /or outage. In the simulation software, we are approaching the
interference phenomenon with two different models. First, we implemented an
interference model that was based on a statistical estimation based on the neighboring
cells load (usage). This resulted in accurate estimations on a macro scale (total amount
of interference) but failed to capture the impact of interference in a link-to-link level
of detail. Since this tool was designed to implement and test the impact of algorithms
that can occur in the lowest granularity, such as radio resource allocation algorithms
on the scheduler level of RRC, we redesigned the interference module in a different
approach. The second implementation takes into consideration tree additional new
parameters: time frames measured in air frames (0.5 — 1 ms), resource blocks
measured in subcarriers per band and space (propagation of the interfering
transmission). In this way we are continuously calculating with high accuracy (and
complexity) the instantaneous interference that occurs in every user equipment
terminal of the simulator that is actively operating. This captures a realistic value for
the effective (achieved) SINR of the terminal that can be fed into the data link layer
net throughput mapping curve mechanism described previously. Additional
optimizations to the implementation were also included in the simulator in order to
improve reduce the complexity of the interference calculation. The interference
calculation frequency is adjustable, but the default value is set to be 100 ms (which is
the interval of operation for every network device) and inside this interval we are
assuming that the active load for each element is the average previous load. We are
also using a bitwise transmit mask for every scheduled resource block (time and

frequency entry) that can be orthogonal or overlapping.

2.3.6 Energy Module — Calculation of power consumption

The scope of this PhD dissertation is to measure important operational KPIs for various
scenarios in order to optimize them. Such a KPI is the total power consumption of the
substrate network which directly maps to the OPEX of the infrastructure and
consequently to the EMF footprint of the hardware. The origins of the power
consumption can be split into two different categories: a) power consumption that
results from the cellular network’s physical layer — data link layer (antennas and
transmission components) and b) power consumptions from the back-end
infrastructure including the processing servers and the supporting links (copper wire,
microwave links or optical fiber). Studies performed[8][9][10] on these systems have
shown that the back-end power consumption tends to remain stable and linearly linked
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to the number of elements included. On the other hand, the radio transmission related
parts of power consumption can show very high variance based on multiple parameters
of the air medium. Simulation models of the literature, real data acquired from existing
infrastructure and theoretical energy models can lead to very accurate calculation
models to be incorporated into the software platform. The power consumption model
is a linear model with a fixed offset and limit. The dependent variable of the model is
the element’s load (i.e. the amount of air frames within a specific time window that
were used for transmission). In 4™ generation LTE, this load is often measured in
Resource Blocks (temporal and frequency pairs). The final form of the calculation
formula is Minimum Energy Consumption + 100% * Power Consumption Margin.
Quantitively the minimum to maximum consumption ratio have a factor of between 2
and 5 in difference. This drastically impacts the active power consumption of LTE
simulations based on the radio transmission state. Impacting the radio transmission
circumstances (e.g. improving any aspect that un-loads the cell whilst maintaining the
same effective bandwidth results in high benefits for energy consumption). Another
aspect that influences the power consumption of simulations is the usage of multiple
antennas (input and output) to utilize MIMO configurations. Finally, some power
consumption models use reference hardware that have different shutdown policies
when they are being inactive or move to a sleep state. All these can be seen in the

considered power values below.
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Table 2 - Linear Power Consumption Model Coefficients [7][8]

BS configuration Sleep4  Sleep3 Sleep2 'Sleepl’ ‘NoLoad' 'FullLoad’

and radiated power per Standby radioframe subframe microsleep <1% of 100% of

site [dBm] 1sec 10msec 1msec 71.4msec subcarriers  subcarriers

2010 2x2 10 MHz
with 2008 components
3x46dBm radiated
2010 2x2 10 MHz
3x46dBm radiated
2020 2x2 20MHz
3x49dBm radiated
Single User MIMO
2020 4x2 20MHz
3x49dBm radiated
Single User MIMO
2020 8x2 20M Hz
3x49dBm radiated
Single User MIMO
2020 8x2 20 MHz
3x49dBm radiated
Multi User MIMO
2020 Pico 20 MHz
1x1W radiated
2020 LSAS 20MHz *
200 x 18dBm = 41dBm

2.3.7 RRC Layer Module — Handover Models

An important feature of cellular networks is the capability to provide wireless access
in moving (mobile) users in the served area. This is achieved by the involvement of
signaling procedures[11] that perform the service migration of one eNodeB to another,
also named as the “handover” procedure. Because of the importance of this procedure
and also because of the high impact it has to the HetNet systems, a handover-specific
module has been developed that will be active in all simulations. The basic operational
principle behind the handover algorithm is the provisioning of measurements from the
LTE cell and the UE device in order to identify the best targets as handover candidates.
This function is repeated for as long as the user is active (i.e. in the RRC Connected
state). The active handover algorithm will trigger a handover operation that will change
the user’s active cell to the best candidate based on the received signal strength
indicator (RSSI). This procedure is implemented in the system using two different
approaches (as found in the literature[11]). The first handover algorithm
implementation is called the “Threshold-based handover”. In this implementation, a
handover threshold value is used as a “trigger” for the best cell selection. If the active
cell's RSSI is below the designated value, the user will then change cell to the best
possible. This methodology can generally control the effective range in which each cell

will operate and absorb traffic, however it requires different parametrization for
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different area types since other ISDs will result into different value ranges for the
received signal strength (especially in the cases of SU and RU area types. For this
purpose, we have also implemented the second case of handover algorithm, namely

the “Hysteresis-based handover”.

Figure 13 - Hysteresis additional RSSI margin

Hysteresis-based handover compares all the available handover target’s RSSI with the
current (serving) cells value. If their difference (hence “hysteresis”) is greater than the
hysteresis configuration value, then a handover event is being triggered. This approach
is self-tuned since the difference of the values is being used. An additional part of the
handover module is the inclusion of the cell bias or CIO configuration parameter. This
scalar configuration is used as a virtual RSSI gain for a specific cell or cell-UE pair.
Adding an imaginary value into the RSSI measurement feedback, the network’s
handover algorithm is being “manipulated” in order to achieve manually triggered
handovers and manage the network in a more controlled way. The simulator has a
special visualization module (Figure 13) to display the active hysteresis values for each

cell.
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2.3.8 RRC Layer Module — Radio Resource Allocation & Scheduler
Models

LTE networks have a built-in notion of quality of service for each of their active
(serving) users. The reason behind this is that this technology has been developed as
a commercial technology that will be used in a paid access manner. For this reason,
the scheduling and radio resource allocation layer needs to be a fully controlled and
extensible environment in which different policies can be applied. In other networks,
this layer can sometimes operate in either best effort or take decisions based solely
on the physical layer’s restrictions (e.g. Wi-Fi). The radio resource allocation module
in LTE networks is governed by the RRC layer which dictates how the lower level
protocols (i.e. RLC) will handle the pending traffic. The quality of service is provided
by classification of the generated traffic into several classes, example classes are
“default”, “high-priority”, “low-latency” etc. based on the specific quality of service
characteristics they have. The scheduler module is a submodule of this system which
handles the placement of the requests to transmit into the time queue. Users can
either receive their transmissions simultaneously (split into different resource blocks)
or they can have a round-robin access into the downlink / uplink channel. For the
various classes mentioned previously, different policies need to be followed in order to

ensure successful transmission.

2.3.9 Application Layer Module — Traffic Demand Model

For the telecommunication traffic demand module, we have implemented a
programmable downlink / uplink traffic generation scheme which we can create
various different traffic profiles that correspond to different inter-packet arrival times,
packet size variations (constant vs distribution based vs specific sequences for
protocols such as TCP / RTSP) and also different expectation and/or timeout values
for the application layer (which results into delivery failures). Reference
scenarios[12][13][14] set an average per Km or per user equipment device rate and
we can easily translate this specification to values of such a model. In the lifecycle of
a simulation, every user equipment device generates a transmission job of the selected
model by sampling a Poisson generation function. The requests are sent into the buffer
of the system and translate to data being transmitted through the air interface. In the
standardization literature, we see a simplified version of FTP transfer model being used
thoroughly for various simulations. This traffic model is using two different types of
packets generated with different probabilities:96% of the packets generated
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correspond to signaling of web site micro-transactions (ajax requests, REST , JSON,
XML payloads of http messages) of an average size 10KB and the rest 4% of packets
correspond to the initial load of the web site resulting in an average ~2MB size packets.
This is based on statistical study on a very large number of websites and mobile
applications used currently and accessed through mobile internet. We can refer to this
traffic model as “2020 WWW-FTP model”[7][8] which will be used in the following
chapters as a reference simulation traffic model. As a quality of service parameter, the
expected delays for each of the two types of packets are 4000ms (for the initial, large
packet) and 20 ms (for the smaller signaling packets) respectively. In the diagram
below we can see a time diagram of packet arrivals and their transport delay as a

function of time.

FTP traffic model

Per cell traffic
‘ user1 user2 user3 userd
°|

I » Time

Figure 14 - Traffic Model Implementation in the Simulation Software[6]

2.3.10 Application Layer Module — Hourly Traffic Demand Profiles

The usage of a 4™ generation mobile terminal device is influenced by various aspects
of the user’s everyday life cycle. This daily / weekly cycle changes the way they use
their devices and the amount of traffic they generate. This can act as its own separate
research topic, however for the scope of this study we will focus only on a set of
aspects that can be easily incorporated and integrated into the simulation tool. A time-
related study[6] of daily profiles for different area types (DU, UR, SU, RU) show (Figure
15 — one line per case that shows the multiplication weight per hour) that there is a
coherent daily traffic profile that acts as a “weight” for the usage of mobile internet.
We have included an extension in the traffic model of the simulation software that will
translate the current (active) simulation time into such a weight based on the
simulation area, therefore enforcing the demand curve of the external reference

measurements.
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Figure 15 - Daily Traffic Demand Profile for a 3GPP-based cellular network[6]

2.3.11 Network Management Module — Application of optimization
actions

Apart from the regular operation of the cellular network, various network management
interfaces must be utilized in order to optimize / tune or deteriorate the simulation’s
performance KPIs. The developed libraries of the simulator allow for a rich
parametrization the UE devices and all the types of the heterogeneous network
elements with either a provided configuration file in .JSON format or by utilizing the
GUI (developed in Java Swing) in order to edit settings of the various elements. In
order to develop algorithms that will be activated in the runtime and act as
management agents, appropriate programming styles have been used based on other
simulation software (e.g. NS2 / NS3 / OpNet). In the specifications of a simulation
scenario, a user can activate a management action or schedule it to occur after an
event or after a specific point in time. In this way, the various proposed algorithms will
produce usable and reproducible measurements that will not require the user’s

interaction from the GUIL.

2.4 Graphical User Interface

The design of the System level simulator for this study includes a graphical user
interface to give the user the capability to adjust a simulation and monitor its runtime
(before performing the simulations in an exhaustive and automated manner). The
programming language used for this GUI is the Java Programming Language (Simple
Edition version 8). The design of the UI is maximizing the user’s visible information

and the controls that can affect the simulation.
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Figure 16 - Indicative View of the tool's graphical user interface

2.4.1 Network Element Resource Allocation Visualization

A specialized visualization module was designed to allow the user to monitor each
substrate element’s active radio resource allocation. Different allocation
schemes[17][18] are assigned a different background color to be used as a
replacement color for the network element’s radius. The function for the generation of
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the colors is a hashing algorithm applied on the available frequencies and the resulting
hash value is then used to perform an HSB color conversion (Hue-Saturation-

Brightness color model).

Figure 17 - Visualization of radio resource allocation using colored radius

During the simulation’s runtime, the initial allocation is immediately switched to the
designated active allocation according to the radio resource management
implementation and continuous to change if necessary (e.g. if dynamic resource

allocation SON is activated).

An additional visualization capability for the active allocation is a customized matrix
view which shows the per element resource block allocation using the same color
coding as the playground background colors. The horizontal axis of the visualization is
the element id and the vertical axis is occupied if the resource block is allocated to the

specific element at the present (simulated) time.

62



Resource Group#1 (26 elements) [ '[cmo 0 '
Resource Group#2 (1 elements) [ '[0e|4_1 '
Resource Group#3 (1 elements) [ '[cua 2 '
Resource Group #4 (1 elements) [ '[CEI2_2.Ficn6 '
Resource Group#5 (1 elements) [ '[cu 13_0Pico 37 '
Resource Group #5 (1 elements) [ v cante2 b

Figure 18 - GUI for resource allocation
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Figure 19 - Radio Resource Group visualization (reuse factor 3)
These capabilities are a key aspect of the simulation tool in a sense that they allow
the safe development (with rich graphical environment that allows for easy debugging)
of radio resource allocation algorithms. The best performing radio resource allocation
algorithms can effectively extend the 4G standard’s capabilities and improve this

technology.

2.5 Validation of the Simulation Software

In this section we will provide the methodology that was followed to validate the
accuracy of the simulation software along with a set of KPIs / measurements that will
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be used to compare with other referenced 3GPP-based simulators for the predefined
reference scenarios of the various technical reports / specifications of IETF/3GPP

2.5.1 Validation Methodology

The most important part of developing a simulation software that will replicate real
environment conditions is the simulation result validation. In order to ensure that the
tool reproduces trustworthy results we first must isolate some key scenarios that will
be used to perform the calibration measurements. Thankfully, 3GPP has defined a set
of standardized reference scenarios to be used for both mature (reference to year
2010) and future (projections to year 2020) with enough geographical diversity (all
different designated area types namely dense urban, urban, sub-urban, rural). The
next step is to select the proper network KPIs that will be used to perform the value
comparison. According to methodology defined[4][5][6] in the GreenTouch
Consortium and other 3GPP partners, the metrics will be converted into probability
density function and their integral — the cumulative distribution function. The different
CDFs will then be passed through a statistical significance calculation function that will
show the statistical likelihood between the results generated from this software and
other existing simulation software from other organizations (e.g. ALUD, Orange,
POLIMI).

2.5.2 Simulation Calibration KPIs

The KPIs that will be measured in the various simulations are basically three and are
split into different categories (different underlying modules of the simulator). Firstly,
the Coupling Loss CDF is the distribution of all the propagation losses for each UE
device in the simulation. This targets the mobility and geometry module of the
simulation as it is responsible for the 3D- distance calculations, the propagation loss,
and the motion of the UE devices. It also checks the shadowing and absorption
modules (mentioned in previous chapters) to ensure that the simulation tool has
identified correctly the users with “"good” and the users with “bad” radio environments.
Second KPI is the SINR CDF, it is based on the coupling CDF but it also incorporates
the noise calculation module (based on the reference technology of the receiver) and
the interference calculation module (which in itself uses its own coupling
measurements). Another key aspect of the SINR calculation is the addition of the
generated traffic to the users. In order to achieve high accuracy in interference we
need to replicate the same amount of traffic that will result into neighboring

interference conditions. SINR is a key measurement for the physical layer of the
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software as it reflects the end quality of propagation that the link will have to translate
into effective throughput. The last calibration KPI is the normalized achieved
throughput CDF. This statistical measurement is the final QoS measurement of the
total simulation scenario and it provides accuracy in the link level (layer 2) of the
system. Based on the SINR-to-Throughput mapping curve and the implementation of
the radio scheduler of the system, the achieved net throughput is used to serve the
underlying telecommunication traffic and therefore provides a safe basis to build more
calculations (of application layer and other higher-level protocols).

2.5.3 Simulation Scenario Parameters

The simulation parameters that are used for the calibration process are split into two
categories: network layout and number of elements such as inter-site-distance an and
traffic model parameters such as packet arrival rate, avg packet size and. These both
contribute in different aspects to the generated results of the simulation as they

change the operation of various functional modules from propagation to network

operation.
Network Layout for each operator DU U SuU RU 800MHz
2GHz 2GHz 2GHz
Per person Busy Hour Macro Cell DL Data demand [kbps] 0,40 0,40 0,40 0,40
(share of each operator, inc. 2 times overprovisioning)
required Macro Cells Capacity [Mbps/km?] 4,0 0,4 0,1 0,012
required Macro Base Station density [sites/km?] 0,078 0,0078 0,0023 0,0002
required ISD for capacity [m] 3855 12191 22258 70387
ISD of available sites [m] 500 1000 1732 6000
maximum ISD for >95% data coverage [m] 1732 1732 1732 4330
Selected ISD [m] 500 1000 1732 4330
Selected BS density [1/km?] 4,62 1,15 0,38 0,06
Area per macro site (3 sectors) [km?] 0,22 0,87 2,60 16,24
Number of macro persons camping per sector [1/sector] 180,4 72,2 64,9 40,6
DL Traffic load [Mbps]/maccro sector (w/o overprovisioning) 0,143 0,057 0,051 0,032
Arrival Rate per macro sector (@2MB) [1/sec] 0,00894 0,00357 0,00322 0,00201

Figure 20 - Network Layout parameters for each different area type
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Simulator settings for busy hour DU U SsuU RU 800MHz
for full simulation playground 2GHz 2GHz 2GHz

Traffic factor over average time of day 1,4 1,4 1,4 1,4
Number of macro sectors 21 21 21 21
Number of small cells 0 0 0 0
Represented area [km?] 1,52 6,06 18,19 113,66
Macro cell arrival rate in playground area [1/sec] 0,19 0,08 0,07 0,04
Small cell arrival rate in playground area ]1/sec] 0,00 0,00 0,00 0,00
Total arrival rate 0,19 0,08 0,07 0,04
Offered traffic [Mbps] 3,00 1,20 1,08 0,68

Figure 21 - Simulator settings for full simulation (busy hour) per area type

2.5.4 Dense Urban Scenario Results

For the evaluation of the Dense Urban scenario featuring hexacombs of 500m inter-
site distance and all DU-related propagation parameters (absorption, shadowing,
population density and traffic model) it is evident from the coupling loss that the
differences between each tool are small close to +-0.5db. In the case of the
distribution of SINR for the playground, the tool products a curve that has slight
difference with the rest of the tools at the [-3,1]db range and also close to the [19,...]
where all tools seem to deviate with different behaviors. The mean normalized

downlink throughput deviates for at least 3% at the ranges 0-0.3 and 1-1.5.

Calibration: Dense Urban, ISD = 500m
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Figure 22 — DU Calibration Results of the simulation software for coupling loss
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Figure 23 — DU Calibration results of the simulation software for SINR
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Figure 24 — DU Calibration results of the simulation software for average normalized throughput

2.5.5 Urban Scenario Results
In the urban case featuring hexacombs with 1000m inter-site distance we also see a

very close distribution for all the simulation software at the coupling loss kpi. The
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distribution of noise and interference is showing an increased range of ~1.5 db with
highest values found at the Orange simulation software and the lowest values for the
PoliMI and UPRC simulator. Finally, for the Mean normalized user throughput we see
for the same ranges as the DU case (0-0.3 and 1-1.5) an identical deviation of ~3%.

Calibration: Urban, ISD = 1000m
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Figure 25 — UR Calibration results of the simulation software for coupling loss
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Figure 26 — UR Calibration results of the simulation software for SINR
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Figure 27 - UR Calibration results of the simulation software for average normalized throughput

2.5.6 Sub-Urban Scenario Results

In the sub-urban case featuring hexacombs with 1732m inter-site distance we see a
slight deviation on the coupling loss curve at the 120db losses from the PoLIMI
simulator. For the interference distribution measurements, we see that the margin of
decline increased to ~2dB and we see distribution variations from the Orance, CEET
and UPRC tools on various db sections. Finally, for the normalized throughput curve
we see the same pattern that applies for the DU and UR case.

Calibration: SubUrban, ISD = 1732m
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Figure 28 - SU Calibration results of the simulation software for coupling loss
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Calibration: SubUrban, ISD = 1732m
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Figure 29 - SU Calibration results of the simulation software for SINR
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Figure 30 - SU Calibration results of the simulation software for average normalized throughput
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2.5.7 Rural Scenario Results

The final area type that is used for the calibration is the largest when it comes to
coverage area. Rural has an inter-site distance of 4.33 km covering a playground of
over 15x15km hexacomb. Slight variations again in the coupling loss of low significance
for all tools provides solid verification for the propagation model. In the zone with high
interference, (low SINR) we see that the UPRC tool deviates for approximately 8%
until the -3 db point. This can be due to the low number of samples generated
(because of the low population density of the rural area type). In addition, the
normalized throughput curve deviates for 2-3% in a number of different points without

causing any concerns for simulation result faults.
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Figure 31 - RU Calibration results of the simulation software for coupling loss
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Calibration: Rural, ISD = 4430m
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Figure 32 - RU Calibration results of the simulation software for SINR
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2.6 Conclusion
In this chapter, it was shown that a valid simulation and knowledge-building software

was necessary to move further with research on the optimization in cellular networks.
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Such software was developed according to the specifications of other similar simulation
environments with consideration for the upcoming chapter’s requirements in
configuration and information building capabilities. After the completion of the
software development, a thorough calibration / validation process was followed as to
ensure that the software is a simulator of the real-world conditions. The successful
calibration process is key to allow for new, beyond-state-of-the-art simulation
scenarios that will allow us to prove that extensions in the technology are required to
further advance the quality, efficiency and success of the 4G+ era. After performing
many simulations in all the designated scenarios and comparing them with the
respective results of the rest of the simulators, the simulation tool was found as a
successful environment for 4G simulations. This means that new scenarios with
different parametrization of the various aspects can be tested, and the results can be
reliable enough to support new algorithmic schemes as optimization and improvement

of existing technology.
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Chapter 3 — Maximization of Energy Efficiency with

static management and network redesign

3.1. Introduction

Energy efficiency as a management policy for HetNets involves the collection of metrics
that are related (or contribute) to the power consumption footprint of the
telecommunication infrastructure. All cellular communication systems require energy
in order to provide the radio data transfer services they offer (either through the air
or the backhaul interfaces). A large amount of energy is used by this network through
devices such as controllers, servers and routers, various elementary network
elements[1][2] that are necessary for the promised quality level of communication.
The main metric that will be the source of analysis (and from each other metrics derive)
is instantaneous and cumulative power consumption, measured in Watt (or KWatt) by
all network components. The cumulative power consumption is the total energy
required for the operation of the system and is measured in Joule. Other very
important energy-related metrics are created by transformations (ratios and other
formulas) namely the average power consumption, variance and standard deviation of
power consumption, different time units for total power such as Kw/h (for 1-hour
duration measurements). Energy costs alone are not enough to perform successful
optimization actions. In order to make sure that our actions do not affect the quality
of the network we need to include QoS KPIs in our evaluation. One very important KPI
that is used in quality of service calculations is the achieved instantaneous throughput
of each user equipment device. KPIs that use the energy consumption in combination
with network link quality (in the form of instantaneous throughput) are two ratios:
network intensity (measured in Kbit / J) , a measure that shows how efficiently every
used Joule is converted and the inverted ratio , energy efficiency (measured in J/Kbit)
translating into how much energy is required to achieve curtain levels of QoS service.
Finally, one important KPI for measuring the impact of configuration and algorithms
on quality of service is the packet drop rate (or call drop rate for GSM calls) and the
average per packet delay. To summarize the metrics that must be monitored for
energy efficiency optimization, we split them into three categories: a) Energy related
that are expected to be reduced (i.e. Power consumption and total energy, b) QoS
related that are expected to remain unchanged within expected ranges (i.e. Average
throughput, packet or call drop rate, and c¢) Composite KPI that mix A and B type KPIs
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and they are expected to either increase(intensity) or decrease(efficiency). The total
result of the analysis will be the overall effectiveness of the algorithms.

3.1.1 Energy Efficiency in HetNets

Energy efficiency in the complex environment of HetNets is one of the key KPIs of the
reduction of cost and increase of element health. From a network management
perspective, it is one of the three core categories of optimization problems for the 4"
generation LTE. This type of telecommunication networks can have a very high
variance in their power consumption profiles based on the demand in network access
and the number of users that occupy the underlying area. These systems also have
very strict specifications on the network transmission quality KPIs (mentioned in
previous chapter[3][4]). Failure to comply with these specifications is not acceptable
as it is immediately visible to the users of the network resulting into considerate loss
of income for the telecommunication operators. To accommodate for this (even if done
so in an inefficient way), operators perform actions of resource overprovisioning which
results in high energy consumption, imbalanced usage of spectrum and added
complexity in infrastructure management. Overprovisioning also results in low spectral
efficiency, due to the fact that the extra spectrum is only utilized in extreme demand
situations. The root cause of the high-power consumption in HetNets is overloaded
network elements. Network load also leads to interference generation, which amplifies
the problem. Since the air frame buffers need to forward the information to the user
terminals, they need the best possible radio environment in order to achieve the
highest transmission qualities. In the same time, constantly transmitting cells increase
the overall interference which lowers the quality. This phenomenon is continuously
deteriorating and leads to very high packet loss and consequently outage. Initial design
of a cellular network tries to overcome congestion based on the current specifications.
Unfortunately, since the installation of the infrastructure and the initial design process,
the network demands evolve, especially after the introduction of smart devices
(smartphones) with increased capabilities and embedded extensibility. In order to
tackle this situation intelligently, we need to analyze the daily “load” KPI of reference
areas for specific population densities and apply optimization according to these
historical data. Empirical models and forecasting models can often be a part of the
design process, providing with future projections of the incoming traffic demand but
their accuracy diminishes as new parameters/aspects are being brought and
technology evolves. For HetNet infrastructures, we can select from several intelligent
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configuration options that benefit from this knowledge-building. One large category of
solutions revolves around the manipulation of the several element’s load (load-
balancing, load transfer, etc.). Since element load has such a large contribution to the
power consumption KPI, we can apply load-balancing techniques like placing new
types of network coverage elements that will absorb traffic partitions from the eNodeB
elements. In order to ensure their co-existence in the HetNet environment, proper
parametrization must be performed in the handover algorithm parameters to ensure
the amount of offloading that they can absorb is adequate and worth the investment
and extra complexity. In addition, the exact location of the new coverage elements
must be selected strategically in order to align with the various traffic centers (hot-
spots).

3.1.2 Simulation Scenario Topology

The simulation scenario (Figure 33) that will be used for this chapter is based on
reference scenarios mentioned in 3GPP specifications[3][4][5][6][7]. One of the key
characteristics of the input parameters is the inhomogeneous distribution of the
population density. Dense Urban environments tend to present with such load
geometries due to the different urban facilities (like transportation, markets etc.). This
specific scenario has detailed instructions for the placement of the UE terminals and
their generated traffic. In order to follow them, classes of UE devices must be declared

with different position characteristics.

e Ambient Users that will correspond to the 40% of the total population. They
will be uniformly placed in the playground with a density of 1 ue / m?

e Hot-Zone Users that will correspond to the 40% of the total population. They
will be focused in hot-zones spread throughout the playground with a density
of 1 hot-zone / km?2. Each hot-zone will enforce a population density value of 2
ue / m?

e Hot-Spot Users that will correspond to the 20% of the total population. Hot-
Spots will be generated inside the hot zones with a density of 2 hot-spot / km2.
Within a small radius from the center of the hot spots, ue devices will be
generated with a density of 4 ue / m?

The scenario also specifies the placement of the eNodeB 3-sector antenna elements
for the 4G coverage. A 1500x1500 meter playground closely fits a full 6 eNodeB
hexacomb of cells (18 elements in total) if we use the standardized inter-site-distance
between the sites of 500m (Dense Urban). In order to maintain the uneven distribution
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of users, we will not apply any mobility model to the UE terminals as it would be very

complex to design motion patterns that will obey the constraints.

Figure 33 - Population density heat-map for the specific simulation scenario

3.1.3 Simulation Traffic Model

For this simulation scenario, we will be using a traffic model that derives from the
initial specifications of the simulation software. The selected traffic model in the WWW-
FTP projection for 2020 traffic, which is composed from two different packet sizes,
small packets (~10KB) with high frequency (96%) of arrival for signaling, updates and
AJAJ response and large packets(~2MB) with low frequency (4%) and large payload
for the initial mobile application / web page load. The average traffic demand
(throughput / m?) generated from this model will be 10Mbps/m?. The arrival probability
distribution for each UE device is a separate stochastic Poisson generation process.
This will ultimately result in the desired inhomogeneous distribution of the traffic
(according to the specified user population density) with lower traffic demand on the
ambient user area (most area of the playground) increased traffic in the hot zones and
most of the traffic in the hot spots. In addition, for the quality of service requirements
of the user traffic, we will be enforcing the 2020 expected delay thresholds that are
specified in the literature [6]which specify 100ms maximum delay for the signaling
small packets and 500 ms for the large packets. This delay will be the network
transport delay as propagation and processing delay is not included in the system level
simulator software. Any packet serving delay higher than the expected results into
application-level rejection (packet drop) and subsequently, RRC session failure.
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3.1.4 Simulation Network Element Characteristics

The available network elements that will be used for this simulation (both for the initial
scenario and for the optimization phase) will be reference hardware in the predefined
simulator assets. The sector antenna[6] of the eNodeB will use a) maximum transmit
power of 49dBm (for 2x2, 4x2 and 8x2 MIMO with diversity gain) b) 3D sector antenna
model with max gain 14 dBi c)15-degree vertical tilt (Dense Urban inter-site distance)
d) half-beam width 70 degree. For omni-directional antennas that will be used for Pico
elements the simulator will be configured to maximum transmit power of 30 dBm and
5 dB omnidirectional gain (at the surface level). For the power consumption model of
the network elements, the eNodeB will use the standard load-based model with
minimum power consumption of 473.3 watt and maximum 880.3watt. The pico cell
will use an order of magnitude less energy with parameters of 33.9 and 53.7 watt
respectively. For the transmit bandwidth, we are assuming 20Mhz bandwidth slices for
each of the Pico and eNodeB elements. For the initial handover parametrization, we

are setting the Pico bias value to 10 dB (virtual gain)

Table 3 - Macro cell and Pico cell simulation characteristics

Power Consumption (W) Excluding Baddhau
Maximum Micre No Full

15D {m) MIMO Mode  Bandwidth TX Power Standby  Sleep Load Load
Thres-Sactor 500 4.6/&m” 2x2 20 MHz 32 x — - 473.3 BB0.3
Macro-85 2 GHz 456 dBm
One-Sector 14-N2km* (1-8 232 20 MHz, 2x 27 dBm — - 330 £3.7

Pico-BS 2 GHz small'sactor] 10-dB biss

3.1.5 Simulation Optimization KPIs

The selected performance metrics that will be used to evaluate the effectiveness of
the optimization schemes will be based on the analysis of the previous chapters. More
specifically they are separated in contextual categories: a) Energy characteristics that
are linked to the OPEX of the cellular network such as Power consumption, total energy
of the equipment, b) Telecommunication link quality characteristics such as average
per UE downlink throughput and average packet transmission delay. Another
important quality of service parameter is the cell edge throughput, namely the
achieved throughput from the lowest 5% (percentile) of the throughput'’s distribution.
Finally, the packet download success ratio (%) is another important indicator of
quality. ¢) Mixed characteristics that combine OPEX and quality characteristics (a+b)

such as energy efficiency and energy intensity
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3.2 Problem Solution

We are exploring various approaches to improve the energy efficiency of the setup in
such a HetNet environment. These approaches can be a) Multi-Operator infrastructure
sharing[9][10][11][12][13], b) Uniform Placement of Pico cell elements in the
playground to offload the cells[14][15][16], c) Intelligent Placement of Pico cell
elements to target the traffic in the high-density zones, d) other methods of QoS
improvements such as increase in effective bandwidth of cell elements. For the next
chapters we will apply these principles to reduce the EMF footprint and power
consumption while maintaining the QoS of the simulation in adequate levels

3.2.1 Power Improvements - Operator Infrastructure Sharing

Modern HetNets operate simultaneously in most civilian zones using different slices of
the 4G spectrum. These networks are operated by different network providers and are
isolated orthogonal networks that, due to the stochastic nature of the traffic
distribution, are in different load states. Usually 2 to 6 network operators (depending
on the country) coexist in the various domestic zones. All these operators are
overprovisioning their network equipment with radio resources (equal spectrum) and
network elements (close or same in humber) in order to be able to serve opportunistic
traffic spikes. In addition, the geographical nature of the serving zone restricts the
providers from reducing the number of network elements they use for coverage and
signal penetration constraints (i.e. locations of the cellular coverage map must always
have a minimum service capability). However, traffic analysis on historical data and
projection models show us that the same substrate network area can be served by
one network operator with the sacrifice of partial quality of service degradation.
Deactivating or switching the infrastructure to sleep modes while 1 (out of 4) providers
would serve the traffic could lead to important power consumption benefits (as seen
by the min-max values of power consumption of the elements). Since the 4G standard
requires a fixed quality of service level, we need to explore additional QoS

improvements.

3.2.2 QoS Improvements - Pico cell placement and bandwidth
increase

Infrastructure sharing imposes a radical change in the active available resources to be
used for the radio transmission. This greatly affects the provided quality of service and
rises the need for technological countermeasures. Pico cell elements have been shown

in rich literature as a method of energy efficient high-quality coverage technology.
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Based on the reference Pico cells technology (shown previously) a new network design
that would include them in the coverage area would have minimum energy efficiency
and power consumption impact whilst keeping the quality of service in the same (ever
higher) levels. Various schemes can be followed as for the placement of the Pico cells
in the playground depending on the knowledge that we assume we can utilize. In a
simplistic case, Pico cells can be placed in an evenly distributed manner (much like the
hexacombs of the cellular network). This however will not be the optimum placement
as the pico cell elements work most effectively when placed in a location with high
population density. The second and more advanced placement scheme is to utilize the
known user distribution (as created by the simulation software) to target the
overloaded zones (denoted as hot-zones or hot-spots) with Pico cells. That way the
small coverage of the Pico cells wil be sufficient to offload the eNodeBs and therefore
reduce the power consumption of the infrastructure. Another important aspect of this
optimization is configuration on the handover algorithm of the network. Since pico cells
wil be placed in a densely covered area by nearby sector antenna eNodeBs, we need
to make sure that users will handover their service effectively. The Pico Bias parameter
works as a virtual power gain, masquerading the closest Pico cell’s transmit power as

the strongest received without the need of manual handover.

3.2.3 QoS Improvements — Available Bandwidth increase

Another method to maintain high levels of quality of service after performing
infrastructure sharing and element turn-off is bandwidth transfer. As analyzed in
previous chapters, multiple operators own different slices of the available 4G
bandwidth. By shutting down these elements (via power control or infrastructure
sharing) this bandwidth becomes unused and therefore underutilized. This bandwidth
can then be transferred dynamically in the other cells increasing the capability in which
they serve the area. Although the increase in bandwidth will reduce the service time
(and subsequently the load of the cells) It is important to note that it will also increase
the power consumption of each cell. Large part of the power consumption comes from
the linear amplifiers of the digital transmission and higher energy requirements will be
needed for double or triple the bandwidth. The conclusion is that, although spectrum
transfer is an option for extreme cases of QoS degradation, it needs to be performed
selectively in isolated zones in order to not reverse the energy efficiency effects of the

optimization.
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3.3 Application of the Proposed Scheme — 2-Phase Optimization
Having analyzed the hypothetical outcome of the various solutions to the energy
efficiency problem, we propose the following optimization methodology(Figure 34).
Initial simulations will be run for the network’s performance before optimization: this
state will be now on referred to as “reference scenario”. The next step will be to apply
infrastructure sharing in the same simulation scenario. This means merging all the
users from different network operators into a single operator and shutting down the
operation of the elements from the rest. The removal of all the eNodeB elements will
consequently lead to great reduction in power consumption of the network but the
increased traffic transferred to the single operator will lead the infrastructure to very
high load and likely high outage. This scenario will then be used to test the various
offloading techniques that we mentioned in the previous scenarios in order to maintain
the energy benefits and improve the quality of service into an adequate stage. Uniform
placement of Pico cells will be used in addition with the increase of the effective
bandwidth of the eNodeB elements. Finally, the intelligent placement of the Pico cells
inside the hot zones is expected to provide the best solution to the problem. Variations
of the Pico cell placement configurations will be tested and compared in order to find
the instance in which the quality standards (predefined by reference scenario) will be
met (or surpassed). In addition, increase on the available bandwidth will also be tested
as a candidate to absorb the QoS deterioration caused by the infrastructure sharing.
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Figure 34 - The proposed scheme performance evaluation
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3.4 Performance Evaluation

In this chapter we will analyze the results from the various executions of the simulator
software in order to identify the problems generated in the reference scenario and
validate that the proposed scheme is showing evidence of improvement in the

operation of the cellular network.

3.4.1 Evaluation Methodology

The complexity of simulating such a large reference scenario (including multiple radio
access network elements and user equipment devices) is forcing us to perform small
simulation samples of various states in which the network can be set. According to
methodologies from other simulations, we can split the daily traffic profile of a
network’s profile into small sub-simulations of different traffic demand amplitude
(weight). After gathering all these measurements, we then complete the profiling of
the total simulation by performing a weighted average summation of the results. These
“load weights” take the values of 20%, 40%, 100%, 120%, and 140% (peak rate). In
addition, simulations for various other environments (such as Urban, Sub-Urban or
Rural) could also be included but will not be for the scope of this study. The selection
of the focused KPIs will be based on the analysis performed in previous chapters.
Energy efficiency, intensity, power consumption and total energy will be converted in
a per km? density value for extrapolation purposes. For the quality of service
measurements, average packet download time will be used as well as the packet failure
rate (which will be a direct result of packets exceeding their delivery expectation rate).
Finally, as an additional QoS KPI we will be using the cell edge throughput (equivalent
to the fifth percentile of the throughput CDF). The gathering of the datasets is part of
the implementation of the simulation and knowledge-gathering tool developed for the
scopes of this dissertation. This includes the generation of the reports and graphs of

the following chapters.

3.4.2 Result Analysis — Reference scenario

The first results that we will be analyzing are from the “reference scenario”. This
scenario included 4 simultaneous network operators serving a Dense Urban area of
1500 square meters of the specified user density and traffic model. In addition, each
operator has 20 MHz of bandwidth at his disposal and serving with a separate 6-site
(18 cell) hexacomb. All load levels were evaluated for all the selection of the KPIs and
created the reference measurement for all the improvements. The results followed the

expectations of the preliminary study: Quality of service is in the expected (adequate)
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levels whilst the resource usage and power consumption are in a high state. It is
important to note that the 4 operator system benefits also from the different radio
frequencies that result into zero to little inter-channel interference.

3.4.3 Result Analysis — Phase I - Infrastructure Sharing

Activating the “infrastructure sharing mode” from the simulation configuration, leads
us to the results of phase 1. A total of 20Mhz allocated at operator 1 is used to serve
the same number of users for the selected area. The disabled network elements of the
simulation have dramatically decreased the power consumption(Figure 35), but the
network is now at a state of increased load. Quality of service begins to radically
deteriorate especially for the case of the peak hour (140% load), (Figure 37,Figure
38). However, at this stage we have the least amount of network elements and the

smallest required bandwidth.

3.4.5 Result Analysis — Phase II — Intelligent Pico placement

Phase 2 is split into all the different configurations of location and number of Pico cell
placement. The idea is to use the simulation software in order to identify the optimum
number of Pico cell elements for the performance “repair”. After reaching the boundary
of 7 Pico cells per hot spot (with hot spot placement) we see that we have successfully
recovered (and even improved in cases of edge throughput) the performance KPIs

with a benefit of 55% in power consumption (Figure 35, Figure 36) of the network.
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Figure 35 - Power consumption for each simulation scenario
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3.3.3 Results from bandwidth increase

As expected from our initial analysis, the increase of the eNodeB’s effective bandwidth
resulted in an increased power consumption for all different load levels. This result
however is still valuable because the network quality of service increased dramatically
surpassing the “reference scenario” initial values. This means that scenarios like this
could be a considerable input for future network configurations with increased

available bandwidth and smaller number of operating network elements.
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Figure 39 - Power consumption for various bandwidth allocations

3.4 Conclusion
Energy efficiency is a very important goal in the cellular network design and operation
lifecycle. In this chapter we have shown that initial network design can lead to
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important losses in power and energy efficiency which would normally be handled in
an inefficient way. Intelligent redesign of the cellular network, knowledge building from
historical data of traffic usage and advanced radio coverage elements such as Pico
cells can be a combined methodology to dramatically reduce the power consumption
of this system without sacrificing quality of service or efficiency. Simulations in
reference scenarios confirm that these solutions are effective even in the most densely
populated areas, producing large amounts of stochastic traffic. These findings greatly
solidify the importance of Knowledge-building in the design and configuration of

cellular networks.
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Chapter 4 — Quality of Service Optimization
utilizing dynamic radio resource allocation

mechanisms

4.1 Introduction

Optimum radio resource allocation in 3GPP cellular networks (especially
HetNets)[1][2][3] is a multi-factor problem that is widely studied in the available
academic literature. It is also an important study item of the standardization technical
teams of 3GPP for specifications that will impact the performance of the technology’s
future releases. From a digital communications perspective, 4G networks use a
physical layer of OFDM multiplexing (OFDMA for multi-user environment) which is
essentially an evolution of the GSM (2 gen.) FDMA / TDMA 2-dimensional
implementation. In principle, time and frequency resources are split into two
dimensions that can be split in a discrete manner. Time is split into the minimum
transmission window which generally results in higher frames of 0.5 or 1 milliseconds.
The frequency dimension is split into the minimum possible bandwidth (180-200 Khz
subcarriers) that can contain the information symbols. The difference between 2G and
4G is in the wave form. 4G is using the OFDM pulse also known as subcarrier that is
an improvement from various perspectives. The 2D pair entries group together in what
is referred to as “resource-block” which is the minimum allocation that an active user
terminal can acquire from the system for transmission. Algorithms that select which
resource block will be allocated to which user (and for which application) are generally
called radio resource allocation policies and are implemented in the scheduler of the

LTE layer 2 system.

4.1.1 Dynamic Resource Allocation in HetNets

In HetNets, multiple high-level objectives can determine the drive for dynamic radio
resource allocation policies[4][5]. As a general rule, the default policy in which
networks provide access to the shared is through the means of equal resource
allocation, sometimes referred to as “even” or “round-robin” allocation. This allocation
scheme however does not include any intelligence since it will provide equal quality of
service to users with the same radio environment conditions. Round robin allocation
can either be a full buffer per user allocation, in which every time frame of transmission
a single user is utilizing the channel or it can be a sequential radio resource distribution

for simultaneous users. If we include additional information to the radio resource
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allocation algorithms, we then have a number of “intelligent” radio resource allocation
policies. Firstly, we have the spectral efficiency objective which translates to achieving
the highest possible throughput / service per km? / per Hz sometimes referred to as
“greedy”. This translates to a good conversion rate of the raw resource (purchased
frequency band) into network throughput. However, the reality of this goal is that it
will benefit only user equipment devices that experience the best radio environment.
The spatial diversity of cellular networks in cities and all geographical area types does
not allow for direct line of sight telecommunication links. The cellular technology is
designed to penetrate various zones such as buildings, alleys, industrial zones and
transportation facilities at the cost of signal strength and network errors. Distributing
resources to the small part of the coverage distribution that receives the best radio
quality will lead to outage for many users and will cause the technology to fail in one
of its most important goals: coverage rate. In the opposite hand of this approach we
have the opposite policy of overprovisioning users with bad radio quality. This is
sometimes referred to as the “fairness” policy. By doing so we are reducing the quality
of service diversity between users at the cost of radio resources. Users with good radio
quality receive low resources and these resources are then transferred to the users
with bad radio conditions. Ultimately the users can then experience equal services.
One key element of efficient radio resource allocation is the physical layer monitoring
function. Through the means of measurements and LTE signaling, the network must
be aware of the transmission link quality of each user and its corresponding access
device. Utilizing this information for decisions that involve the scheduling of packets
and radio resource allocation is sometimes referred to as cross layer optimization or
cross layer information exchange. For the radio resource allocation problem, simple
localized measurements performed between the UE and the eNodeB do not suffice.
The most important factor of quality deterioration if LTE networks is inter-channel
interference as it results from the densification of the element deployment. Since the
information of every single transmission and occupied resource block is not included
in the backbone signaling, it is believed that a centralized approach to efficient radio
resource allocation is better. Centralized SON functions can provide a general overview
of the network area’s instantaneous (and future) interference profile based on the
knowledge of the network element’s load and current resource allocation. The
signaling of the UE terminal with the eNodeB also provides geospatial information for
total knowledge of the geography of the problem. That can lead to estimations of the
INR, SNR and SINR ratios for each UE device accurate enough and fast enough that
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can be applied in real time dynamic radio resource allocation. For the next chapters,
we have selected a specific simulation scenario in order to test and contradict the
various dynamic resource allocation algorithms of the literature. We have also a
proposed algorithm that we believe will greatly improve the quality of service and the
fairness of the HetNet infrastructure and positively contribute to the technology’s

evolution.

4.1.2 Simulation Scenario

The selected network simulation (Figure 40)is a Dense Urban area type large scale
simulation playground including 19 eNodeB sites (3 sectors each). We are using a
HetNet infrastructure, with homogeneous placement of 9 Pico cells inside every sector
eNodeB resulting in a total of 228 radio access elements (out of which 171 are small
cells). The radio configuration of these elements is 4 full LTE bands resulting in 20
MHz (or 100 resource blocks) for each cell. The selected network topology is generated
by the hexacomb network layout generator which resulted in a central 6-cell hexacomb
with 13 additional eNodeB sites on the circumference. The operational band for the
Pico cells is the LTE 3.5GHz band (different resource slice than the eNodeB which
operated in the 1800 MHz LTE band) so that they can greatly penetrate the users in
spite of the dense placement in the center of the antenna sector of the macro base

station.

Table 4 - Network Element characteristics of the simulation

MIMO

BS ‘ Bandwidth
mode
Macro 2x2 20Mhz
Small QT 20Mhz
antenna
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Figure 40 - The simulation scenario topology

4.1.3 Simulation Traffic Model Variations

For the next experiments that will determine the optimum dynamic radio resource
allocation scheme, a set of different test cases have been designed in order to
thoroughly cover all possible load levels. By parametrization of the “average per user
daily requests” of the simulators FTP Application layer emulation, we end up with 5
different scenario variations to be evaluated varying from 2280 to 14400 packets per
day per user. The number of UE devices used for this simulation is 5000 uniformly
distributed in the playground. For the packet size requested for transmission, we will
be using a fixed 2MB (large packet) in order to achieve the wanted 4 to 20 MB / minute

per user load level.
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Table 5 - Simulation test cases

Test cases Users Sessions/Day/User Packet size
1 5000 14400 2Mbytes
2 5000 11520 2Mbytes
3 5000 8640 2Mbytes
4 5000 5670 2Mbytes
5 5000 2280 2MBytes

4.1.4 Simulation Service Classes

In addition to the simulation traffic model, we will be splitting the packet transmission
entries into different categories of packet priority in order to include this also into our
benchmarking. In a sense we want to be able to parametrize the radio resource
allocation to also include a quality of service class in the level of service. Quality of
service classes can be found in various literature references such as the US three tiered
authorization framework[6][7]. An example of different QoS classes can be a) general
access users (GAA) which is the default access to the medium and will have no
throughput guarantee (as well as no delay thresholds). The GAA class will be the most
likely class to activate and will result in the majority of the packets generated in the
system. The second class (b) can be referred to as the priority access layer users (PAL)
which have higher priority than the GAA users. Finally, we have the (c) class Incumbent
Access or IA users which have mission critical transmissions and demand the highest
priority. These classes will be adopted in the much simpler descriptions of low, medium
and high priority. For the simulation we will randomly distribute various generated
packets as to emulate real world conditions where users request premium and/or non-

premium services simultaneously by using their phones.

Figure 41 - Service class example hierarchy
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4.2 Problem Solution

For the solution of the optimum radio resource allocation problem from an average
quality of service perspective, we will enumerate the literature’s most referenced
[8][9][10][11][12]implementations and analyze their operation separately. We will
then analyze more advanced techniques and our suggested cross-layer optimization
approach. Afterwards, we will select 2 cases from the SOTA and perform simulations
in order to compare its performance with our suggested solution for the various priority
levels and load levels defined previously.

4.2.1 Radio Resource Allocation Algorithms
As mentioned in previous chapters, there are several approaches
[13][14][15][16][17][18][19][20]to the radio resource allocation problem depending

on what is your ultimate optimization goal.

4.2.2 Full buffer radio resource allocation

The most simplistic radio resource allocation approach is the full buffer or full allocation
approach. Allow all elements to use all resources simultaneously. This simplistic
approach is only effective if inter-site interference is very low and the traffic demand
is also within normal ranges. Maximum load will result in disastrous interference levels

and this allocation can only benefit users with the best radio quality conditions

(greedy).

4.2.3. Orthogonal frequency reuse with reuse factor

Orthogonal radio resource allocation with reuse factor (e.g. 3) is a traditional method
of radio resource allocation to reduce inter-channel interference. Neighboring cells are
allocated with different slices of the total bandwidth, resulting in no overlapping
frequencies and no interference (for the neighboring cells). This greatly benefits the
users with the worst radio conditions which will receive service levels of the best
possible quality (assuming already bad signal strength from serving cell. The combined
solution of these two algorithms is the prioritized orthogonal full allocation scheme.
Each cell has all the total resources available, however it prioritizes an orthogonal set
over the total amount. In low load situations, this will result in fair and high-quality
communications. While the conditions change and demand increases, the quality of

transmission will deteriorate and reach the 100% load limit like first case.
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4.2.4 Random resource allocation

Random resource allocation is a simple methodology that requires very little to low
planning and knowledge of the existing system. Regardless of that, it can perform as
good as the orthogonal reuse algorithm of the literature due to the combination of
randomness and the stochastic nature of cellular traffic. The conflict probability,
however, increases according to the average load of the surrounding cells (like cases
1 and 3) and its theoretical limits are the same. From the SOTA algorithms, the random
algorithm will be implemented as the best possible solution for both high performance

and fairness.

4.2.4 Advanced algorithms for radio resource allocation
Other dynamic channel allocation schemes are found in the literature; however they
are more intrusive for the HetNet systems in a way that much customization is required

for their success.
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Figure 42 - An overview of LTE radio resource allocation algorithms

The first algorithm is the load balancing resource exchange algorithm. It starts at an
initial stage like algorithm the orthogonal reuse partitioning — even partitioning and
starts a control loop that aims at balancing the load of all the network elements. The
key operation is the resource block exchange between the various cell elements. If an
eNodeB’s load increases, the algorithm will require resources from a neighboring cell
in order to balance them out. The extra resource will be used for as long as the traffic
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demands it and then it will be traded back to maintain equilibrium. This algorithm is
very effective in principle; however, it has curtain drawbacks that are tightly coupled
with the cellular technologies in general. This algorithm falls under the category of
distributed SON functions. Each eNodeB will act as a local agent to solve a local
problem. To do so it needs a communication protocol for interfacing with its
neighboring cells. Via this signaling route, the cell will then communicate the demand
for additional resources and standardized methods must be able to implement such an
exchange. This requires a lot of extensions for the standard cell-to-cell communication
cell (X2 interface). Another problem with this algorithm is the extreme case. No amount
of resource exchange can solve the traffic demand overload problem. It will however
even the problem out as good as possible and can be used in conjunction with
handover optimization and traffic steering schemes.

4.2.5 The proposed resource allocation scheme

The suggested algorithm that will be used for the basic comparison with all the other
literature is the cross-layer-interference-aware DCA algorithm. By the means of
measurement collection in a centralized SON instance, the network is able to deduce
the SINR (INR or IR) of each different eNodeB — UE pair in the playground. It will then
rank the available resources with a weight that will mark either “clean” or “dirty”
frequency block. If we exclude the computational complexity from the equation, we
are expecting this algorithm to outperform the random allocation algorithm of the
literature. The reason is that whatever the load case is (low or high) we will always
have a notion of the best and worst resource to provide. This will be as accurate as
the interference calculation models can be based on the radio feedback of the UE
terminal and propagation models. It will also be based on the current transmit load of
the neighboring cells therefore it will collect multi-source information from the
network. In general, these algorithms have a “core” flow diagram that they follow that
can be seen in the following flow diagrams. We see that extensions can be performed

in the channel assignment step of the diagrams.
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Figure 43 - General Radio Resource Allocation Flow Diagram[12]

4.2.2 SOTA algorithm: Random Resource Allocation

The random resource allocation algorithm is a simple but effective DCA scheme. It
provides all eNodeB elements with full radio resource capabilities and tries to achieve
lower SINR values by using a random resource allocation. Randomness is an effective
and cheap way to allocate resource in an orthogonal manner, especially for low load
values of the network elements. As the load of each element increases however, the
radio transmit conflicts are rising leading into the same situation as the full buffer serial
allocation. The key to this algorithm is which scenario it will be applied and what actual
level of element load will be achieved. Below we can see a flow diagram of the
algorithms implementation as it is included in the various radio resource algorithm

implementations of the simulation software.
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Figure 44 - Flow diagram for the random DCA algorithm[12]

4.2.3 Proposed Algorithm: Interference-Aware Resource allocation

Interference-aware resource allocation is our suggested DCA scheme for the solution
of the fair allocation problem. It is an algorithm for evaluating locally every different
resource block according to an estimation of the SINR that the transmission will
produce. This is done by information exchange from a centralized SON function on the
network controller of the HetNet. If the complexity of such an algorithm is not
restrictive for real time usage, it can prove to be the best in terms of fairness and
relative quality of service per user. It will also allow for quality of service class
enforcement for the various use cases we have analyzed in the previous chapters. The
flow diagram of this algorithm is an extension of the simple resource allocation diagram
in which all the resources are rated with a different SINR coefficient. In cases of
extreme load, all the resources will be used and then the full buffer mode will arise.
However, the notion of resource ranking and the “best” or “worse” resources might

produce better results in the high vs low priority service requirements.
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Figure 45 - Flow diagram form the interference-aware DCA algorithm[12]

4.3 Performance Evaluation

In this section we will analyze the performance KPIs of each of the following three
DCA algorithms: The basic algorithm (hereby named SOTA or A for short) which will

include full spectrum allocation for reference purposes.
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Figure 46 - Average air-interface latency for each test case and algorithms A, B, C
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The SOTA random algorithm denoted as B which will be compared to our proposed
algorithm and the algorithm with QoS priority named the “interference-aware
algorithm” or C. The selected KPIs that will be compared are average (per user)
measurements of QoS in order to achieve both high performance and fairness for all
the UE terminals. The KPIs that will be displayed are the average packet latency (for
the specific simulation traffic model) and the normalized per user throughput. These
results will also be split into different histograms for different packet classes (as
described in the simulation test cases chapter).
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Figure 47 - Average air-interface latency per priority level

The first set of results to analyze is the average air interface latency. On average, it is
shown that our proposed algorithm outperforms the other two algorithms (up to 50%)
especially in high and medium priority services by giving them a performance boost.
On the contrary, low priority services seem that they do not benefit as much as the
other two. In the next figure, the results are sorted by priority levels, and the large
benefit of our algorithm is more visible for high priority which is not the case for low
priority services.
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Figure 49 - Normalized Throughput for each priority level

The next result set illustrates the normalized throughput for each of the test cases and
compared among each algorithm. It is evident that our algorithm performs better in
almost every test case and especially in cases with higher loads (compared to less-
loaded simulations). Switching the analysis perspective, we see that the next figure
illustrates the normalized throughput as of service priority levels and here (as shown
in latency charts), our solution seems to perform better especially in higher and

medium priority services compared to low priority services.
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The test cases used for this study where designed in order to investigate the
performance difference between the state-of-the-art and our proposed solution. Our
proposed solution was able to dynamically choose the optimum channel based on
interference of the current position and thus allow each user to connect with higher
speed and receive the file faster with less air interface latency. On the contrary, the
algorithms that used for comparison on average were making the less optimal selection
of the channels (without giving priority based on QoS requirements),hence the users
were not able to download at full speed and with higher loss packet ratio, creating a
continuously loop of poor selection of channels without being able to overcome this
situation. Furthermore, there are some differences between random allocation of
channels and SOTA algorithm when increased load is provided in the system. The
random allocation has worst performance in high and medium priority services. The
state-of-the-art algorithm performs better, and our proposed algorithm has the best
performance especially in high and medium priority services.

4.4 Conclusion

Dynamic Channel allocation and radio resource management is part of the complexity
that the large configuration space of HetNets introduces to network operators. Analysis
of the knowledge provided by real world data, analytical models and simulations can
be used as important tools to understand which DCA scheme is most effective under
various circumstances. In this chapter we have seen that basic radio resource
algorithms fail to handle situation of overloaded areas in large scale HetNets. Random
DCA helps with the problem but fails to handle situations of critical load. Random DCA
also has no notion of embedded quality of service classes, something that can prove
useful if the network wants to prioritize different classes of service instead of treating
all traffic as equal. A proposed, multi-context DCA algorithm that utilizes both radio
quality and network load aspects to provide projections for the quality of each resource
block is shown to outperform the SOTA and the random algorithm in both selected
QoS and fairness indices. By including the interference into the computation for the
resource allocation, we reduce the required resources, and this ultimately results into
more energy efficient networks. These findings may push the design of the 4" and 5%
Generation standards to include this additional information in their message exchange
protocols and allow for further advances and achievements in terms of technological

features.
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Chapter 5 — Congestion Prediction and Prevention

using Machine Learning models

5.1. Introduction

Cellular network congestion is one of the most important problems in the
infrastructure’s lifecycle. Network congestion is the high usage rate of the network’s
resources which will result in a high interference low efficiency state. Planning
techniques (used during the design of these networks) use estimates on the network’s
usage to provide resources and they fail to overcome the opportunistic, random and
unexpected nature of the user’s traffic. In addition, reactive SON-based approaches
rely too much on control loops that have a very slow convergence rate (e.g. LB-SON).
Key to the prevention of congestion is the existence of adequate management options
that will be able to eliminate the congestion (by either resource increase or intelligent
offloading) and the ability to have a constant probability of congestion or the means
to predict incoming congestion events beforehand, therefore avoiding the problem

from ever happening.

5.1.1 Simulation Scenario

For this chapter, we have designed a simulation scenario of a small isolated, 2-cell
area that has constant user equipment motion. This can sometimes be part of a dense-
urban city centre or an area near a city square / event area. Mobility and high user
density in dense-urban environments is one of the key factors of congestion in many

simulations.
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Figure 50 - Congestion Simulation Scenario

The users of the simulation are split into two categories: The ambient users, moving
in @ random manner around the playground of the simulation (marked as green circles
in the graphics) and the concentrated users (marked as pink dots in the graphics)
which move as groups would move in various social and other events (e.g. users
coming out of transportation vehicles). For the traffic model of each of the two groups,
we have selected the reference 2020 FTP traffic model used in the previous
simulations. An addition is that the concentrated users traffic model is parametrized to
have 100x increased small packet arrival rate. This is since these users have a lot more
cell phone usage. Multiple scenario executions will be conducted in order to account
for all different global traffic levels (20%, 40%, 100%, 120%, 140% etc.)

The outcome of this configuration is that the location in which the group of users
selects to move results in congestion for the cells that are serving it as part of its
coverage area. We can see this clearly in the measurement module of the simulator
and the load indication on the screen. The congestion moves from one cell sector to
another as a result of the high demand concentration.
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Figure 51 - Cell load congestion on the simulation scenario

For the other simulation scenario parameters, we are using the reference scenario for
Dense Urban 2020 standard simulations[1][2] (including power models, antenna
parameterization, spectral efficiency, MIMO mode, available LTE resources and Pico
Cell technology).

5.1.2. Congestion Control mechanisms in HetNets

The mechanisms that can be included by management policies[3] in order to avoid
network congestion are offloading mechanisms that are based on the mobility
management subsystem. The idea is that a traffic spike can be handled by surrounding
cell elements if proper parametrization of CIO and element bias values are changed
(in real-time). These elements can either be eNodeB cells or Pico cells depending on
the simulation scenario and the assumed area type. Parametrization of this sort will
lead to active users being moved to less loaded cells and resolve the overload issue.
This procedure can occur either in the inactive user terminal (using the relocation
procedure) or in the RRC connected state (using the RRC reconfiguration procedure)
also known as a handover. These mechanisms are traditionally activated by either
manual configuration, in order to fix a specific mobility issue such as high traffic
highways, or by activating a specific network KPI rule. These rules are simplistic
threshold-based approaches that use either the current value, the change in the value
or combination in order to trigger a change in the handover parameters. Whichever

the case is, the problem is that the users experience a short but significant amount of
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negative radio quality because the algorithm is simply “reacting” to the problem. In
order to prevent this, we need to apply a sense of predictive KPI modelling that will

be used as a trigger for the same congestion control countermeasures.

5.2 Problem Solution

We have formulated an ensemble of machine learning models and network
configuration as a means to intelligently prevent large amount of the congestion
caused by the user equipment concentration. For this solution, we have studied
thoroughly the existing SOTA literature for congestion predictive models (supervised
and unsupervised), we have selected the best algorithm (namely the SOM , semi-
supervised model) which is then trained in a collection of data from the selected
simulation during both congestion and normal operation, and we have used the
predictive model as an input trigger for the activation of congestion prevention

counter-measures as described in previous chapter.

5.2.1 Unsupervised Machine Learning Models

Unsupervised machine learning models[5][6][7][8] is a sub-category of machine
learning models that specialize in the discovery of hidden features and information in
seemingly uncorrelated raw datasets. It usually involves a training process in which
the model tunes its hyper-parameters based on a training dataset and an underlying
optimization problem. Known unsupervised algorithms can be split into additional sub-
categories such as distance-based clustering methods (K-means, X-means etc.),
density-based clustering (DBSCAN, Optics etc.) and vector quantization algorithms
such as Self-Organizing Maps and Growing Neural Gas. In the subsequent chapters we
will focus more on the application of the vector quantization algorithms SOM and
growing neural gas (GNG) which will allow us to build a robust, intelligent predictive

engine for cellular simulated networks.

5.2.2 Growing Neural Gas (GNG)

In the literature of unsupervised learning techniques, vector quantization and
clustering can also be achieved by using the growing neural gas algorithm[9]. Gas
molecules tend to move to areas of lower pressure from zones of higher, and they
tend to form links in cases of low distance between them. On the contrary high
temperatures cause these links to break and their speed to increase. An artificial gas
simulation also known as growing neural gas simulation can use this analog to move

gas molecules into the most crucial spots of the shape of a data point cloud. The
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algorithm is transforming a number of random initial molecule points into a connected
graph of vertices and edges that is capturing the “shape” of the underlying data (like
it would capture the shape of the low-pressure container in the case of gas). This
technique is very robust especially in higher dimensions that regular clustering
techniques mostly due to the connections between molecules playing a role of
gateways to different areas. The connections are also exhibiting gravitational forces
and therefore achieving median values and even distribution of molecules. Various
code implementation of the growing neural gas algorithm can be used to show that
this algorithm can effectively reduce the size of a dataset into multiple orders of
magnitude lower without losing information for decision making on the quantized data.
In order to use this algorithm effectively as a clustering method, we need to identify
the topological objects of our data. Various shapes that are distinguishable from one
another or groups of objects that are linked can form cluster labels. Therefore, we can
also extract information about what family of data points is the most fitting for the

measurement of a new network element.

We have conducted experiments for the growing neural gas to see its strengths and
weaknesses against various pathogenic n-dimensional datasets. For the data point
generation, we are using N-dimensional shape distributions of particles and also the
orthogonal interlocking rings dataset.

Figure 52 - 3D representation of the interlocking rings dataset/9]

This dataset consists of two groups of data points (2 rings or donut-shaped objects)
that are linked, and they intersect from every direction of analysis. Distance-based
clustering algorithms fail in this dataset because they do not perform a local search or
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agglomerative approach. The growing neural gas algorithm overcomes this by forming
the rings itself using the gas molecule edges. These two rings are not in any contact
in the 3-dimensional space and they are perfectly isolated in their own embedded
surface.
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Figure 54 - a) GNG quantized data points b) GNG during execution

Measurements on actual HetNets may contain a lot of hidden information by the shape
of their point clouds and the GNG algorithm can assist on identifying them effectively
and using the result as an input for various management actions that will optimize the
operation of the infrastructure. For a real-case application, the algorithm has a good
efficiency and it is designed to work on real-time data with streams of new
measurements constantly updating the topology of the underlying structure. This adds
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to its robustness and can accommodate for changes in the architecture and evolution
of the HetNet which is a serious drawback for other unsupervised learning algorithms.

5.2.3 Self-Organized Maps

Self-Organized Maps is an unsupervised machine learning
model[10][11][12][13][14][15][16][17][18] that specializes in the revelation of
hidden structure behind collected data that can lead in the identification of meaningful
data groups of hidden variables. This information can be crucial to understanding the
underlying cause of a problem and its characteristics or it can even allow us to optimize
curtain situations by using it as a predictive indication. SOMs are essentially the
projection of a dataset in a 2-dimensional discrete grid of fixed dimension, with each
different grid containing a vector value that is learned to be characteristic of the
dataset. In order to find these vectors, a “hidden” simple neural network is optimizing
the Euclidean distance KPI which results into the discovery of these key vectors. SOM
projections also allow for easy optical detection of clustered data. A preprocessing
pipeline is necessary on the data in order to acquire the maximum potential knowledge
from the SOM algorithm, this preprocessing includes feature scaling and dimensionality
control. The execution of the SOM algorithm begins with the random initialization of
the discrete matrix. The collected data points from the real dataset are then “thrown”
into the grid in a position that is closest to their Euclidean distance. This results in a
“spreading” effect altering the values of the neighboring vectors. The locality of the
SOM algorithm is creating a geography of the data while acting also as a noise-
removing filter that focuses only on the essential part of the collected data. After
enough iterations of the SOM algorithm, the structure of the data begins to take form

and it can even be visual by 2D projection and coloring functions.
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Figure 55 - a) SOM hidden neural network b) Color SOM map (example)[11]

5.2.4 Semi-Supervised Classification

In the existing literature[19][20][21][22], we have found that classification problems
can be approached with a large variety of algorithms, each with its own benefits and
drawbacks. Most of these algorithms is shown to have high sensitivity on the input
dataset and particularly to the diversity of the input KPIs. Fixed feature length and
sample count is causing a lot of models to require large customization in order to be
used in this study. Dimensionality reduction techniques are shown to be selected as
preprocessing steps, as much as vector quantization methods which reduce the input
dataset to a smaller, more focused subset. Dimensionality reduction can vary from
various mathematical operations (such as summation, averaging, various statistical
properties) and also output of clustering techniques such as centroids, medoids and
gas molecules. Semi-supervised models utilize benefits from both categories of ML
models. It uses the existing structure and knowledge acquired from the unsupervised
techniques to establish a geometry of the problem (i.e. a geometric expression of
various hidden states of the system, some of which could be the problematic states)
and then it uses a small samples of supervised data to label the sections into the
prediction results. New data points are then placed inside the embedded geometry of
the models, and their distance from the various supervised data points is used to

determine the output of the classification algorithm
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5.2.5 Cell Congestion Prediction using Semi-Supervised SOMs

In order to utilize the predictive capability of the semi-supervised SOM model, we need
to plot a total workflow / lifecycle of the solution. As we see in the diagram (Figure
56), historical simulation data is being processed and fed into the predictive engine,
there it is being filtered according to its correlations. The training of the SOM model
occurs and then the Semi-Supervised model is formed based on the congestion
samples acquired from the simulation. After that the model is ready for real time

classification of values acquired from the live simulation.

4 2l T Model Preparation )
Data collection from _| Per cell load congestion Data preparation
simulation - analysis (quantization)
Average Load Area High Load Area
Cell cluster analysis |« SOM model training
Low Load Area

o %
4 Model Usage h

Start simulation Prediction of Element . . .

N A . Activate offloading policy

activating model Congestion

(N J

Figure 56 - SOM usage methodology, from training to usage

5.3 Performance Evaluation

Results are split into three categories: A) SOM quantization and clustering plots during
the training and after the finished training results. These will show us insights between
the various simulated network KPIs and the congestion of the network. B) Predictive
modelling results that is an isolated study for the accuracy of the semi-supervised
classification subproblem of congestion prediction. C) Network KPI (simulation) results
after applying the prediction as input for the trigger. There we will see the
improvement or decline of the congestion rate KPI as a function of the reference and
proposed algorithm.
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5.3.1 SOM Predictive model metric correlation

After running an adequate amount of simulations in order to generate data, we then
feed them to the SOM engine in order to generate the SOM maps. We see (Figure 57)
that many implementations allow for probing on the training process to debug its
effectiveness. After the first initial data points, small clustering of data occurs that

quickly changes into more complex and intricate “valleys” and “mountains”.

Figure 57 - Training Progress of the SOM map model[11]

We can swap the colouring (Figure 58) in order to show the shape that different

metrics take.

Figure 58 - Metric Correlation of congestion with other KPIs[11]

In order to understand the predictive model’s insights, we need to visualize the U
matrix of the target KPI (namely the “congestion”) and highlight the areas with the
highest value in order to see what corresponding values the other KPIs have. We see
that congestion triggers with high edge user throughput, moderate average
throughput, high number of users, high downlink traffic volume, very high

instantaneous load and moderate number of associated users.
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5.3.2 SOM Predictive model prediction accuracy

In order to evaluate the robustness of the SOM predictive model we need to use it to
generate predictions for various traffic levels of the reference simulation scenario. In
each case we count the time that the congestion label is predicted and then after a
short period of time, congestion occurs. As we see from the overall collection of the
evaluation results (Figure 59), it is evident that the predictive model accuracy
diminishes on the validation set as the traffic increases. This can happen because of
many reasons but the most apparent is that the high volatility and instability that the
high traffic demand introduces to the system changes the statistical mechanics of the

congestion.
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Figure 59 - SOM predictive model accuracy per load level

5.3.3 Network KPI results on simulation

The final set of results is the effectiveness of the end-to-end solution (Figure 60).
Predicted congestion labels trigger activation of the offloading mechanism which in
turn reduces the congestion rate of the simulation. This is being compared to the
reference, threshold-based algorithm in order to see if there are any benefits in the
proposed solution. We can see that in every case of load level, the predictive
congestion avoidance solution outperforms the reference algorithm by a factor that
varies from 5 to 2 (from low to high load levels respectively). This is a significant
improvement of the system’s stability as it means that congestion is avoided even in

this extreme case of sudden traffic spikes.
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Figure 60 - Network congestion KPI measured for different load levels

5.4 Conclusion

In this chapter we have studied the advanced network optimization methodology of
applied predictive modelling for network congestion prevention. This involved the
detailed process of composing, implementing and training such predictive models in
real measurements of a simulated 3GPP-based cellular network. We have also
formulated a mechanism to incorporate the predictive output of such a model into a
SON control loop that utilizes the future indication of a congestion as a trigger for
network load reduction actions. We prove that the early indication of incoming
congestion is a key aspect in improving the network stability aspect of the system
which reduces the overall need for resource overprovisioning and therefore makes
network elements cheaper and energy efficient. We also have shown that faulty
assumptions and incomplete training is a pitfall that can lead into false prediction
results and low effectiveness of the process. Having evaluated thoroughly the overall
outcome of the predictive modelling we conclude that they can be an important

addition in the future cellular communication technologies management plane.
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Chapter 6 — Identifying groups of Network Elements
and User Types by the means of clustering

techniques

6.1 Introduction

Effective management of HetNet infrastructure can sometimes means successful
grouping and simultaneous configuration of connected or similar network entities. As
the size of a network rises, and multiple devices are being placed in various location
of the serving area, it becomes harder and harder to precompute which network
elements will behave in the same manner and exhibit the same type of performance
incidents. In order to improve this, we need to introduce a methodology that will allow
for a data-driven (measurement-driven) grouping of network elements that will
correspond to same area types and same requirements for resources and/or
management. These techniques (namely unsupervised learning or simply ‘clustering’)
will be applied into two different perspectives of a telco infrastructure dataset. In the
first case it will be used to identify groups of serving network elements (like mentioned
before), and in the second case it will be used to identify different groups of users that

have different requirements for data access.

6.1.1 Simulation Scenario 1 — Cell groups

For the first case we have developed a simulation scenario of a number of cell coverage
elements that are serving the same amount of user equipment devices — generating a
uniform amount of downlink traffic. This can be the case for random locations of the
urban / dense urban area as different population densities can be identified in various
zones. This is not always possible to include in the planning phase of these networks

due to the constant evolution of the substrate area.
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Figure 61 - Cells with similar network load KPI

6.1.2 Simulation Scenario 2 — User equipment device groups

For the second simulation scenario, we are focusing on the automated identification
of users with different traffic demand profiles. Leveraging on the capabilities of the
variable traffic model of the network simulator, we are separating the users into
different categories of broadband access. Global management of the hole will not be
as effective as a customized strategy on the ways to handle the resource allocation on
different classes of users. Here we will be applying the clustering algorithm in order to
identify

unit
804
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204

Figure 62 - Different groups of user equipment devices
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6.2 Problem Solution

Rich literature exists[1][2][3] in the vast field of data clustering and unsupervised
learning as seen in multiple publications and applied implementations. The generated
dataset from the proposed simulation scenarios follows a generic structure that makes
it possible to apply different approaches from different fields of the machine learning
community. The first category of algorithms that we will discuss are Euclidean-distance
based clustering techniques (e.g. K-means and X-means) that will characterize a set

of measurements from a network element based on their geometric Euclidean distance

6.2.1 Data clustering using distance-based algorithms (K-means, X-
means)

The baseline clustering algorithms of the literature are the K-means and its variation
X-means distance-based algorithm[4][5][6][7][8][9]. It is an algorithm for identifying
geometric centres of clustered data points for n-dimensional datasets that will then be
used to characterize them. These centres, namely centroids, are the main
characteristics of all the members of the cluster. The k-means algorithms require a
prior selection of the number of clusters that it will generate. This is described to be a
weakness as it is not always apparent from the use case that the data will have a
known number of point clusters. Extensions of the k-means algorithms such as the X-
means algorithm is using an internal optimization process to automatically determine

the optimum number of clusters in a dataset.

Figure 63 - distance based clustering[4]

In general — distance-based clustering algorithms suffer from the same types of
drawbacks all revolving around non-linearly separable groups. Since the centroid is a
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point that is used to group the particles together, the separation hyperplanes are
required to be part of the linear sub-space. This means that non-linear groups cannot
be separated in an effective manner. Specific datasets[8][9] exist in the literature and

illustrate such drawbacks.

6.2.2 Data clustering using density-based algorithms (Optics, DBScan

and Gaussian Mixture Models)

In this category of clustering algorithms, the authors[10][11] are trying to identify the
clusters of data points by a degree of reachability between various location of the
dataset. This is solving the linear hyperplane problem introduced by the distance-based
clustering family and can help with identifying more complex clusters. Sensitivity
hyperparameters will dictate whether two nearby data points are connected and
therefore belong to the same cluster. Another important aspect of these clustering
algorithms is that they have an additional feature - the outlier cluster. Data points that
get isolated and are found outside of the range of other clusters are marked as noise

and being designated to the noise cluster.
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Figure 64 - Clustering using DBScan and OPTICS[10]

Gaussian mixture model clustering is based on gaussian distribution identification in
the underlying data. It is implying that each subgroup of data points belong to different
distributions (with other median and standard deviation) and therefore it can be

separated and distinguished.
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6.2.3 Clustering and dimensionality reduction techniques

Clustering of data points is a process that is very sensitive to the high dimensionality
of the dataset. In the cases of cellular network datasets, the large amount of
measurements performed in various layers of the network such as traffic volume,
packets, types of packets, alerts and alarms, procedure counters, indicators and other
KPIs leads to data points of high dimension. Dimensionality reduction techniques can
be used in two different ways with this type of dataset. The first case is at the input
dataset pre-processing stage, were by applying the dimensionality reduction operation
in order to acquire a more robust and accurate clustering result mostly due to the
cleansing effect towards noise and correlated dimensions. In the second case, we are

using the dimensionality reduction as a tool to debug or to make sense of the output
of the clustering algorithm

) Input Dataset Projection to lower
(k features) (2..3 features)
.| Input Dataset Reduce to lower
(k features) (2..3 features)

Figure 66 - Methodologies of dimensionality reduction in clustering

6.2.3.1. PCA / ICA projection

Principal component analysis [12][13]is a method for projecting multi-dimensional

Methodology —

datasets into smaller dimension (usually 2 or 3) capturing the maximum possible
information in the form of colour distinction and separability. For this purpose, both
PCA and ICA are trying to produce composite dimensions that satisfy different
statistical measures of non-likelihood between the multi-dimensional samples. In PCA,

various implementation revolving the co-variance matrix of the dataset such as SVD
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(singular value decomposition) result in dimensions that are separated based on the
maximum variability of the vector values. In ICA, the notion of independence (meaning
statistical independence) is used in the form of mutual information gain and entropy
loss. The process aims at finding the appropriate transformation to provide the most
accurate projection on an independent space or plane.

12

Figure 67 - Projection of multi-dimensional data into a 2-dimensional plane using PCA[13]

6.2.3.2 t-SNE projection

More advanced techniques of dimensionality reduction[14] for identification of data
clusters have been developed that take advantage of statistical properties of that
dataset in embedding space. Namely the Student’s T distribution stochastic
neighbourhood embeddings algorithm is such an implementation that is transforming
a multi-dimensional dataset into a low dimension projection (the output dimension can
sometimes be 2 or 3) by minimizing the Kullback-Leibler divergence distance between
conditional probability distribution of the data points.
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Figure 68 - Illustration of the 2D projection capabilities of t-SNE [14]

Applications of the tSNE algorithm have shown linearly separable clusters of data
points in famous, complex dataset such as the MNIST dataset (consisting of a large

number of hand-written digits).

6.2.4 Time Series Pattern clustering

Time series pattern clustering is a special family of clustering techniques that rely on
different pre-processing for the execution of the clustering operation. In particular the
idea is that data points should not group together based on their value but on their
time evolution and shape of their evolution. In HetNets this is especially useful because
of the various heterogeneous elements that they are being used. Small cells and
eNodeBs operate in different network metric scales due to their different capabilities.
However, in various use cases, they all exhibit temporal and periodic phenomena that
are wanted to be identified and grouped together. Pattern clustering is using entity-
wise scaling for the data points (using the min and max of the observed values for
each element) and therefore it brings the data point vectors into a comparable scale.
It can then work with any of the aforementioned clustering algorithms to produce
different results than the original, total max min scaling that is being performed.

6.3 Performance Evaluation

The selected algorithms will be compared in their respective accuracy on grouping
together the network elements and user equipment devices that have originated from
the same group in the simulation environment. In case 1 — network element clustering

— we are expecting the clustering algorithms to provide three different clusters for
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each different user equipment density zones generated in the simulation environment.

In case 2 — user equipment devices clustering — we are expecting the clustering

algorithms to provide us with user equipment devices clusters that correspond to four

different classes of application usages. For the experiment we will be evaluating the

number of cells assigned to their correct cluster. This will form the MAPE KPI (mean

absolute percent error). We will average this KPI over all classes in order to create a
weighted total MAPE

6.3.1 Network Element Clustering Performance Results

For the case of network element clustering, the simulation consists of 42 network

elements split into three different clusters of different areas (low, medium, and high

network usage).

Algorithm Low Medium  High Cluster  Total Noise Low Mid High Total
Cluster  Cluster MAPE MAPE MAPE MAPE
Simulation 24 12 6 42 0
K-means 15 24 3 42 0 -37,50 100,00 -50,00 154,17
X-means 21 18 3 42 0 -12,50 50,00 -50,00 79,17
Dbscan 25 11 5 41 1 4,17 -8,33 -16,67 18,06
Optics 24 10 6 40 2 0,00 -16,67 0,00 16,67
GMM 11 25 2 38 4 -54,17 108,33 -66,67 184,72
Table 6 - Network Element Clustering Benchmark
Clustering Results
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Figure 69 - Evaluation of clustering per algorithm used
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Figure 70 - MAPE per class per clustering method
For the case of network element clustering, the results of the evaluation indicate that
the density-based methodologies, such as DBSCAN and OPTICS provide the best
results for identifying hidden groups or subgroups of network elements. This is
indicated in both the clustering per class and also the average MAPE of each class.

6.3.2 User Equipment Clustering Performance Result
For the user equipment device clustering approach, we are analyzing the result of
identifying 4 different classes / levels of network usage.

Algorithm Low Medium  High Very  Total Noise Low Mid High Very Average
Cluster  Cluster Cluster  High MAPE  MAPE  MAPE  High MAPE
MAPE

Simulation 250 150 50 20 470

K-means 215 161 59 35 470 0 14 -7,33 -18 -75 28,58
X-means 225 171 53 21 470 0 10 -14 -6,00 -5,00 8,75
Dbscan 195 180 45 19 439 31 22 -20 10,00 5,00 14,25
Optics 194 133 52 19 398 72 22,4 11,33 -4,00 5,00 10,68
GMM 201 174 71 14 460 10 19,6 -16 -36 30,00 25,53
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Figure 72 - Clustering MAPE per algorithm

In this case, we see that the overall performance of most algorithms is good, even for
the cases of the Euclidean-distance-based algorithms (k-means, x-means). However,
the best algorithm for identifying the user equipment device groups is shown to be the
X-means algorithm yielding results very close to the ones of the optics.

6.4 Conclusion

Automated identification of network elements with the same behavior with reliable
accuracy is a crucial asset to extend the capabilities of cellular networks. In this study

we have selected two different cases of network elements clustering: serving element
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clustering (namely cells and Pico cells) and user devices clustering (split into different
broadband access demand categories). For each case, we have exhausted the
hyperparameter tuning and multiple implementations and found that both density-
based and hyperplane-based approaches work for different problems. The solution for
applying these methodologies with accurate results is to take into consideration all
algorithms when coming up with a decision to group together elements and apply

management actions.
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Chapter 7 — Forecasting of HetNet network KPIs

7.1 Introduction

In various aspects of design, operation and management for HetNets, an accurate
forecast of the key network metrics is crucial for many operational decisions. Network
forecasts can be used for fault prediction, congestion avoidance, future planning or
adaptation / deprecation of new /old technologies in the complex stack of HetNet and
Ultra-Dense deployments. Forecasting algorithms of different families and
specifications exist in the literature of engineering, financial analysis and networking
and each has its own benefits and also limitations as to its usage. It is the purpose of
this chapter to study how these algorithms can fit into cellular hourly and daily KPI
evolution prediction in order to further strengthen optimization algorithms that take
such KPIs as input. This will result in “predictive” flavour of Planning and SON functions
that will provide better results than reactive approaches.

7.1.1 Time granularity

HetNet KPI measurements are generally conducted in a continuous automated manner
therefore resulting into very large amounts of data stored in the system. These
measurements are then aggregated in higher granularities in order to maintain a
meaningful history. The aggregation of these KPIs is conducted by gathering
measurements of a specific time window (which can sometimes be 5,15,30 minute or
1,3,6,12,24 hour) depending on the system. It is in the nature of HetNets and cellular
networks in general that different phenomena and patterns will be visible in different
time granularities. Before conducting any forecasting operation, we need to make sure
that our input data has the wanted “resolution” in order to identify re-occurrences of
curtain patterns and outcomes. In general, cellular network traffic exhibits a number
of expected behavioural patterns in relation to the time. Daily profiles are daily patterns
that show us how the network load changes in the different “zones” of the day. It
usually has one pattern for working days (Monday to Friday) and a different pattern
for the weekend (Saturday-Sunday). Weekly profiles change only during holidays
seasons (e.g. Christmas and Easter). Monthly and seasonal profiles are also highly
correlated with the holidays season and especially in areas with high summer tourism
(e.g. Greece, Italy) where a very large number of visitors are gathered in various zones
such as recreational areas, parks, beaches etc. All these different perspectives of

135



looking at network data provide us with different network KPI waveforms due to the

aggregation (either averaging or summing, depending on the KPI).

7.1.2 Entity granularity

Another important aspect of input data selection for forecasting is the entity or
element-wise granularity of measurements. In HetNets and general in large scale
network infrastructures, we have a rich hierarchical ladder of interconnected
components. A measurement of the various network KPIs is generated in the lowest
of granularities but due to the large frequency of measurements and the need to keep
large history, it is then being aggregated to a point higher in the network hierarchy.
For 4G/LTE components this hierarchy follows this flow of information: Radio unit
(namely the antenna that is serving an area), LTE Cell (consisting of various radio
units , especially in MIMO or CoMP deployments) , LTE Site (consisting of a number of
LTE cells that can either correspond 1-1 with a radio unit or include more), LTE location
Area Code consisting of a number of LTE sites, LTE prefecture which consists of a
number of area codes and finally total area (e.g. Athens, Chania, Argolida) consisting
of a number of area codes and their respective sub-components. Other entity
aggregation capabilities consist of grouping cell elements together with their vendor,
their technology attributes such as M|IMO configuration, or their respective area types
such as Dense Urban, SU, RU.

7.1.3 Aggregated Prediction

In order to predict KPIs for the aggregation of a set of elements, two approaches can
be made each with their respective pros and cons. The agglomerative approach means
that we are performing a forecast for the lowest of granularities for each element, and
then we are performing aggregations in either time or entity in order to scale the
prediction up. Performing forecasting in the lowest granularity requires more intricate
and sensitive models in order to capture the high variability and changes in the values
of the actual measurements. After the aggregation however, some of this
microphenomena get smoothed out leaving only the bigger picture of the group of
elements (or total network) that we wish to analyse. In the second approach, we are
performing the aggregation on the wanted network KPIs first, and then the final
aggregated dataset is fed into more generic and simple prediction models in order to
provide a better sense of the “trend” and potential evolution of the smoothed out KPI.
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7.1.4 Network Data Measurement Issues

The generation of cellular network data measurements is being performed by the
control plane network of the LTE backhaul. This is being performed by the means of
period measurement requests that get executed in a distributed manner and then
aggregated in higher elements such as the EMS (entity management system) and then
aggregated and forwarded to the top level element NMS (network management
system). This procedure cannot be always reliable as multiple changes occur in the
duration of the network uptime. This results into datasets with a lot of different missing
sections of KPIs, entities, and various discrepancies that can damage the outcome of
a predictive model in detrimental ways. Each forecasting model has certain sensitivity
to noise and irregularities and special handling of these cases in a per-model basic
must be performed. The summary of these methodologies are found in the literature
as imputation methods, and they vary from simple data generation techniques to
intricate models that perform learning on the original data in order to complete the

missing sections.

7.2 Problem Solution

In order to perform effective forecasting of network KPIs in either the lowest or the
highest granularities, we need to enumerate the processing capabilities that the
literature and also the open source libraries and projects can provide[1][2][3][4][5].
In general, the forecasting problem begins with an exploration process of the different
time series samples that are provided in the dataset. The series can be investigated
by using visualization tools (e.g. MS Excel, MATLAB) or using integrated data science
environments such as Jupyter notebooks (python), Tableau software platform etc.
Additional statistical tests can be performed in the time series that will analyse the

series as a random variable.

Important indices such as autocorrelation and heteroscedasticity can either generate
the optimum values for predictive model hyperparameters or hint as to which model

is the most suitable for the specific dataset.

7.2.1 Forecast using Linear, Polynomial and Harmonic decomposition
Time series of network KPIS have different shapes and time evolution patterns for
different technologies and cases of system operation[1][2]. These shapes are
generally complex but can be summarized into simpler higher-level functions if

prediction detail is not as important as a general understanding of the “Trend” they
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enclose. The computation of a series trend is usually the output of a univariable linear
regression procedure that leads into different curve shapes being fitted. Most
commonly functions used for trendlines are linear, Nth order polynomials (Figure
61)and sinusoid (Figure 74)functions. These can be computed and then used for any
time value wanted to generate a prediction. The accuracy of this prediction is as
accurate as the likeness of the original series to the decomposed series.
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Figure 73 - Polynomial detrending, original (green), trend (black), detrended (blue)

Basic function decomposition is most commonly used in the pre-processing phase of a
forecasting ensemble technique. Calculation of the trend is followed by divisive or
subtractive detrending, resulting into a new (residual) time series that no longer
contains a trend component. This allows for predictive models that specialize into other
series to perform better, focusing on the evolution of the detrended data points. In
the case of harmonic decomposition, repetitive application of harmonic fits and
detrending can degenerate into a simplistic FFT decomposition due to the
orthogonality of each different sinusoid function being subtracted from the original

series.
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Figure 74 - Harmonic detrending, original (green), trend (black), detrended (blue)

7.2.2 Forecast using Holt-Winters Method

The holt winters method[4] (Figure 75)is an autoregression prediction model that is

widely used in time series forecasting of financial and retail data. It is based on the

basic principle of digital signal decomposition. Analysing the history results into

different components that act independently and they are being predicted

independently. In the end the final predictions result from their combination. The

algorithm has two core implementations, the additive and multiplicative which

differentiates in the methodology that is being used for the composition ensemble.

Additive Holt—Winters Method
The additive Holi-Winters method s
presented in the following equations.

Yr =B+ Bt+sn +&;

Estimate of the level at time T

[ :ab'r —SHp_, )"'(I _ﬂ)“r—l +b ]
Estimate of the growth rate (or trend) at time T
b =y(l, -1 )+(1-y)b_. 0@, y<I
Estimate of the seasonal factor at time T

snp =8y, =1 )+(1-8)sn,_, where,0<5<1
p- Step ahead forecast made at time T

Vrop(T) =1y + pby + 50, , where, p=12,...
Where,
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. = 1 <5 o
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Multiplicative Holt—Winters Method

The multiplicative Holt-Winters method i1s
presented in the following equations.
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Estimate of the level at tume T
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Estimate of the seasonal factor at fime T
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p- Step ahead forecast made at time T
Vrp(T)=(Iy +pby) =sny, . p=12....
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faral

L =No.of seasonsina year
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Figure 75 - The additive and multiplicative holt winters implementation pseudo-code

Holt winters method also has three (3) hyperparameters, one for each individual

smoothing phase, that are mostly found using a heuristic hyperparameter search



scheme such as grid search. Because they are continuous real parameters from [0,1],
a sampling interpolation methodology must be followed in order to avoid long
execution times for the algorithm. The best fit (Figure 76) of the model on an adequate
validation period will result in the optimum hyperparameters for the total model.

Holt-Winters Filtering
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Figure 76 - Holt-Winters filtering prediction example
The output of the prediction result from the holt-winters model is generated by
combining (additive or multiplicative) of the various subcomponents it
generates(Figure 77). The components generated are a) seasonal, b) trend, c) level

and d) xhat as seen in the example chart.
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Figure 77 - decomposed time series components of the holt-winters model
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7.2.3 Forecast using ARIMA / SARIMA / SARIMAX models

The ARIMA model family [5][6]is another autoregressive method for generating
predictions based on computations performed in the historical data. It stands for Auto-
regression (the first term that contributes to the computation), Integration (the second
term of the computation) and Moving-Average (the 3™ term). Variations of the ARIMA
model are the SARIMA which introduces also a seasonal component in order to repeat
the feed-forward process and the SARIMAX which adds the “X’ for Exogenic. Exogenic
series extended the algorithm from autoregression to MISO regression (multiple-input-
single-output). This means that for the calculation of the wanted KPI, we will be using
an additional time series along with its history. In some cases of network forecasting,
a hexogenic mask of network events (which are greatly correlated with the selected
KPI) can lead to a dramatic increase in the accuracy of the SARIMAX model. Hexogenic
series will also be studied further in the time regression models that will be investigated
in this study. ARIMA is using 3 hyperparameters to tune its calculation layer, namely
P,D,Q which are positive integer parameters. They are low in complexity, so they are

usually included in a grid search hyper parameter heuristics scheme (Figure 78).
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Figure 78 - Example of forecasting using the ARIMA model
ARIMA is a widely used forecasting model for the capabilities that its variations provide.
It has the potential to match many different series with different evolution profiles and

it also can capture linear and approximations of polynomial trendlines.

7.2.4 Forecast using Empirical distributions
Empirical Distribution prediction is a statistical forecasting model that specializes in
periodic or pattern-line time series forecasting. It splits the data into different sub-

series based on a generated time characteristic such as day of week, week of year,
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month etc. These different series are then treated as statistical distributions. In order
to perform a forward forecast, we generate a new timestamp and are selecting the
distribution (or set of distributions) that are associated with the specific time instance.
We then perform random sampling on the distribution (Figure 79), generating a sample
from the history of the series and combining it with the other samples. In the end we
have created the forecast from existing data points of the past of the entity. The
simplicity and effectiveness of this algorithm lies in various statistical properties that
are being maintained during this procedure. However, this algorithm fails to capture
other function forms such as linear or polynomial trendlines. It is also sensitive to
random noise which can greatly reduce the predictions accuracy.
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Figure 79 - Forecasting using empirical distribution sampling

'

7.2.5 Forecast using Regression Trees (Random Forests/ Gradient-
Boosted Trees)

Tree models[7][8][9] is a big family of machine learning models that are using the
tree data structure as a method of taking a decision in either classification or regression
problems. The tree is being fitted into the input data with different optimization goals
(e.g. stability, balance, lowest number of children nodes) and each leaf represents one
of the possible decisions of the prediction problem (Figure 80). The effectiveness of
tree models has led to their evolution by adding more and more individual trees into
an ensemble array. Random forests and gradient boosted trees (with XGB as one of
their most well documented implemented) are tree ensemble methods that use a large
number of pre-fit trees to come into a prediction conclusion. They are one of the best
non-neural network predictors and can be used in correlation with time and other

exogenic factors in order to generate forecasting outputs.
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Figure 80 - example of a tree regression model[8]

One of the drawbacks of tree regression models is their ineffective modeling of the
various trendlines (e.g. polynomial and linear). This becomes due to the fact that
trendlines generate data points outside of the value domain of the input dataset
whereas in tree models the predicted variable comes strictly from inside the input
dataset. In a sense tree models are an organized redistribution of the initial data points
(with their interpolated values). In conjunction with trend learning and detrending,

tree models can be one of the most effective models to achieve fine detail forecasts.

7.2.6 Forecast using Neural Network Regression

Neural networks[10][11][12][13][14][15] are universal function approximator models.
They consist of multiple computation network nodes that are connected via a feed
forward mechanism. Their architecture (Figure 81) is inspired from the biological
neurons that exist in every neural biological system. While connections in a neural
network depict summation of values, circles represent transfer functions that transform
the input data into different continuous functions. Neural networks have a notion of
architecture which consists of several hyperparameters: a) number of neurons, b)
number of layers, c) type of layers, d) type of activation functions. Different
instantiations of these groups of hyperparameters can lead to different functional
approximations of regression or classification problems. Neural networks also have a
very large number of hyperparameters that are named weights. Weights are being
multiplied at the output of each node to the generated value and they change
depending on the input data via the learning process. Neural networks come with their
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own custom-built hyperparameter tuning methodology that is inspired from the neural
networks itself. It uses gradient descent, a computation method to use the prediction
error as a correction factor for the weight hyperparameters. The error is being
transmitted backwards from the end nodes of the feed-forward graph towards the
start, where the input features are placed. The procedure of correcting the weights of
a neural network by back-wards traversal is referred to the literature as the back-
propagation algorithm and is the cornerstone of the success of neural networks as a
model. The complexity that neural networks capture is one of the highest that exists
in the present literature and a lot of research on their evolution, deep neural networks,
is used to model highly accurate complex phenomena
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Figure 81 - Neural Network example architectures[13]

7.2.7 Fitting and hyperparameter tuning of the models

Machine Learning models mentioned in the previous chapters each possess a number
of hyperparameters that can change the behaviour or output of the model. These
hyperparameters can be categorical (e.g. additive or multiplicative detrending),
numerical categorical (e.g. Arima P values from the set 1,5,12) or continuous integers
and doubles which can be described as values ranges (e.g. Holt Winters A parameter
with offset 0, limit 0 and step 0.05).

Table 7 - Forecasting models hyper-parameter space

Model Parameter Type Values

ARIMA P Integer, Range 1,2,3, ...,15
D Integer, Range 1,2,3,...,15
Q Integer, Range 1,2,3,...,15
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Trend Fit Order Integer, Range 1,2,3,...15
Mode Categorical Harmonic,
Polynomial
Edit Mode Categorical Additive,
Multiplicative
Holt-Winters A Double, Range 0,1 step 0.01
B Double, Range 0,1 step 0.01
C Double, Range 0,1 step 0.01
Seasonality Integer, 12 (monthly), 4
Categorical (seasonally), 24
(hourly), 365
(yearly)
Mode Categorical Additive,
Multiplicative
Distribution Fit Mode Categorical Daily, Weekly,
Monthly,
Seasonally, Yearly,
Total Distribution
Aggregation Mode | Categorical Sample, Min, Max,
Mean
Regression Number of Trees Integer, Range 1,5, ..., 1000

Trees (RF / GB)

Fit criterion Categorical Gini, Entropy

Max tree length Integer, Range 5,10, ...,100
Artificial Neural | Architecture Style | Categorical Triangular,
Networks Symmetrical

Activation Function | Categorical Relu, Identity,

Sigmoid, tanh

Number of Layers

Integer, range

0,5, ...,50

Regularization /| Categorical L1, L2 norm,

overfitting control dropout, drop
connect

Solver Categorical Batch gradient

descent,
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Stochastic gradient
descent, minibatch
Minibatch Size Integer, range | 5, 50, ..., 500
(optional)
Error metric Categorical MSE, XENT,
Negative Log
Likelihood

The product of all the possible models, hyperparameters and their values can
sometimes be found in literature as the configuration or scenario space (Table 7) of
the optimization process. In order to select the best model instance from the available,
we need first to select the wanted prediction error KPI, one that will most accurately
depict the wanted output from the prediction model. The application of the error
function can only be applied in a section of the existing time series (i.e. part of the
history). This subset of the original time series history is commonly referred to as the
validation set, or validation period (for time series). The process (Figure 82) of iterating
through the available model instances and searching for the optimum configuration is
commonly implemented by the means of a grid-search algorithm. In grid search each
possible configuration is being assessed and therefore all available instances are being
trained. In cases where the scenario space is very large or consisting of too many
numerical range variables, other approaches can be followed in order to reduce the
number of models evaluated. Random search, random walks, Greedy search,
simulated annealing, genetic algorithms, taboo search, ant colony, bee colony, particle

beam search, gradient descent, gaussian optimization are

ML model hyperparameter tuning
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Figure 82 - Selecting the optimum model instance from various m/ implementations

suboptimal optimizers that can help tackle the large scenario space of models. In

addition, the search for the optimum configuration is a fully parallelizable problem
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which can utilize a number of big data technologies methodologies and libraries such
as Apache Spark, Apache Hadoop MapReduce and multi-processor parallelization on
GPUs. During the hyperparameter search we can closely monitor the progress of each
different current best model’s result. By visualizing the progression and improvements
(Figure 83) in the accuracy of the model, we can then decide to forcefully interrupt
the hyperparameter tuning background procedure manually.
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Figure 83 - Progress of the hyperparameter tuning function

7.2.8 Data Imputation schemes

As we mentioned in the problem statement, the dataset that is used in the input of a
forecasting model can sometimes have missing values in various isolated or
consecutive timestamps. This is generally referred to as the imputation problem and
many methods exist in the literature[1] for solving this issue.

Figure 84 - Imputation with single value replacement, a) zero, b) average (black)

However, since all these new data points are not part of the original dataset, there can
be no guarantees that they will not negatively impact the results of the machine
learning models. Data imputation schemes are split into three core categories,
statistical, smoothing and deterministic. In the statistical data imputation schemes, we
have, average value imputation (replacing missing values with the average - Figure
84), distribution learning and sampling, distribution learning and average-sub-
distribution (Figure 85). In the cases of imputation by smoothing, the exponential
moving average (EMA) and the sliding window moving average are one of the most
common methodologies (Figure 86).
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Figure 85 — Imputation using distribution sampling (black)

The generated values are the result of the smoothing operation applied multiple times
until it reaches the number of missing points. In the deterministic imputation methods,
we have single value replacement (most common value, zero value, max, min value),
linear imputation (replacing all missing data points with linear interpolation of the latest
two values), Bezier curve and other polynomial interpolation which are commonly used
in various plotting / charting libraries and open source implementations as well.
Imputation also needs to determine the time frame in which it will perform the

imputation.
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Figure 86 - Imputation using linear and EMA model (black)

In a dataset consisting of multiple elements, the start, end and interval of each element
can be determined either individually or globally. In the global case, the minimum and
maximum timestamp of all elements is used for each individual element’s imputation
range. In the local, we are simply using the interval of the dataset to fill the missing
data from internally of the series. The latest method generates the least problems in
the machine learning models that are sensitive to noise but is worse in models that

require time alignment between the various elements.
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7.2.9 Proposed Forecasting pipeline

For the evaluation of each algorithm, we are proposing a framework in which multiple
computational sections will be performed sequentially until the final prediction is being
generated. These computational sections consist of the previously mentioned
techniques, namely the filtering, aggregation, data imputation and forecasting
categories and their respective children algorithms. Each operation will either add,
subtract or edit one of the series of the inference instance. Operations may also
append meta-data in the inference instance (e.g. the linear coefficient of the trendline)
in @ way that it can algorithmically and programmatically be accessed by future
operations. This pipeline will take in considerations all mentioned model weakness and
strengths and try to maximize their effectiveness while having the ultimate goal of

achieving the highest accuracy on the forecast for each network element KPI.

Detrend » Model Fit (Distro, NN, RF, XGB) [ ] Apply Trend
', Monthly Aggregation * Model Fit (ARIMA, HW)

Common pipeline Micro pipeline  Macro pipeline

Figure 87 - The proposed Forecasting pipeline

For the micro-forecasting case, where high detail of daily and weekly phenomena is
required, we will be using a preprocessing pipeline which will include two different
machine learning models used simultaneously. Trend analysis will be performed in the
input data using polynomial or harmonic detrend (order 0, 1, 2, ...). Then the trend
will be removed and passed on to the pattern fit models (distribution, neural network,
random forests or gradient boosting trees). After the pattern models are trained, we
perform the prediction phase on the new timestamps (forecasting range). Then we
apply the trend (calculated in the previous phase) and shift the prediction on the
trendline. Afterwards there is a cleaning stage in which we can automatically control
some extreme values of the dataset. These cleaning rules will then be followed by
another imputation method, replacing all the removed values by their linear
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interpolation. This is found to provide the best forecasting result as it can handle
multiple anomalies that exist in such network KPI datasets.

7.3 Performance Evaluation

For the performance evaluation of the listed algorithms, we will select two different
cases of forecasting problems. Forecasting on the microscale of network phenomena
in the lowest time and entity granularity and forecasting on long-term aggregated
network data for strategic planning and future predictions of aggregate values. In the
cases of cellular networks, HetNet and other network infrastructures, both cases are
needed in different scopes. Micro-prediction with high accuracy for short-term data
can be used as input for real time optimization loops, fault prediction and anomaly
detection whilst macro-prediction on network aggregate KPIs can be used for strategic

planning, spectrum purchase and network rollout decisions.

7.3.1. Regression performance KPIs

For the evaluation of the accuracy of each predicting model, the literature
[8][10][12]consists of multiple error indices (Figure 88) between the predicted values
and the validation values. It is usual for forecasting problems to select the latest 'n’
values of a dataset as its validation set. For this study we will be focusing on the MAPE
error KPI which gives us an estimation of how much the prediction error is in relation
to the actual value of the KPI. This allows us to estimate more qualitatively the
performance of our model and how easily it can be used, regardless of its error, to

assist in decision-making processes.
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Figure 88 - Calculation of various error KPIs for the forecasting models[1]

7.3.2 Performance Evaluation results for micro-scale forecasting

Micro-scale forecasting is performed mostly on bounded KPIs (with known maximum
and minimum values) with a lot of time-related correlation, periodicity, random noise
and other phenomena. In HetNets these KPIs can be, Instantaneous Uplink / Downlink
throughput, Cell Load, Cell power consumption (watts). The most sensitive models of
the literature are used in order to capture as much complexity as possible from the
train data and replay it in the forecast. The autoregressive models lack the
computational depth to emulate and learn the different phenomena, that’'s why they

sometimes can provide very bad results in this case.

Table 8 Average MAPE for the Micro-scale forecasting per model (Downlink Tput)

Model Avg MAPE (%)

Neural Network 5
Gradient Boosting Tree 11
Random Forest 12
Distribution 42
Holt-Winters 69
ARIMA 75
Trend Fit 80
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Figure 89 - Micro-forecasting indicative results

7.3.3 Performance Evaluation results for macro-scale forecasting

Macro scale forecasting is performed in network KPIs that are aggregate network
gauges. These can be Downlink / Uplink total bytes (or TB), Uplink / Downlink packets,
or total energy consumption. The entity aggregation for these KPIs are usually Site,
Prefecture, cluster or region. The time granularity aggregation also is using sum and
monthly time signatures. By applying this on the KPIs, the variations and fluctuations
of the KPIs diminish. Also, the fact that these KPIs are increasing summations means
that the trend component will play very huge part on the predictive accuracy. Auto-
regressive methods have embedded trend-computation features. This is the reason
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why ARIMA and Holt-Winters provide the best predictions and therefore are the most

effective as it can be seen in the average results.

Table 9 - Average MAPE for the Macro-scale forecasting per model (TB usage)

Model Avg MAPE (%)
Holt-Winters 15
ARIMA 17
Random Forest 19
Neural Network 19
Gradient Boosting Tree 25
Trend Fit 62
Distribution 89
Avg MAPE (%)
l' 17
® Holt-Winters = ARIMA = Random Forest = Neural Network

= Gradient Boosting Tree = Trend Fit

m Distribution

Figure 90 - Indicative Model Results for Macro-scale forecasting (TB-Usage)
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7.3.4 Evaluation of training and execution times

In real case scenarios, it is required that all these aforementioned machine learning
models are being constantly fed with new data and perform accurate predictions.
Friction with implementation and usage for the scope of this chapter has led us into
the conclusion that an additional study must be shown, one that depicts the complexity
and therefore the time delay for each model on their training and prediction phase.
For every model type, we will be calculating the average train (fit) time, and also the
order of complexity for hyperparameter tuning and their multiplied KPI namely, the
grid search delay order (i.e. the average delay that it would take for a grid search to

find the optimum model over all possible hyperparameter scenario)

Table 10 - Performance Evaluation of Forecasting algorithms

Model Delay Hyper Parameter Grid Search Delay Order
(ms) Order
Distribution 50 10 500
Trend Fit 100 10 1000
Holt-Winters 183 1000 183000
ARIMA 210 1000 210000
Random Forest 1211 10000 12110000
Gradient Boosting Tree 2251 10000 22510000
Neural Network 5041 100000 504100000

From the general results, we see that the complexity of each model has a direct impact
on the average delay(Figure 91). As we mentioned in the previous chapter, the
distribution and trend fit are the lightest methods, followed by the ARIMA/Holt-Winters
pair of autoregressive analysis. The tree models and the neural network model consist
of complex internal optimization loops and this causes additional delay. Their delays
also have a lot of variability that can occur from either the input dataset (train set) or

the selection of hypermeters.
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Figure 91 - Average delay per forecasting model

For a general dimensioning study, we need to see the order of hyperparameters of
each model (Figure 92) and multiply it with the average delay per training (Figure 93).
This makes the neural network a dominator model overall. However, the complexity
of neural network architecture is not necessary a target for hyperparameter tuning.
Reference architectures and duplicate architectures can sometimes reduce the

scenario space into simpler, easier to traverse subspaces.
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Figure 93 - Order of scenarfo complexity and average grid search delay

7.4 Conclusion

For this chapter, we have thoroughly evaluated a large literature of forecasting models
and methodologies in order to provide insights as to which forecasting process is the
most optimum for forecasting of micro-scale network KPIs and also for macro-scale
aggregate KPIs. Each case has different characteristics and therefore requires different
handling by predictive modelling. In our benchmarks, neural networks have been
shown to be the most accurate predictors for micro-scale forecasting. This
accompanied with polynomial detrending is performing in the best possible way for
live network KPIs such as Uplink/ Downlink Throughput, Uplink / Downlink packet rate
and Power consumption. For macro-scale forecasting, consisting of ever-increasing
network gauges such as total Uplink /Downlink bytes, Uplink/Downlink packets and
Energy consumption (total joules) we have found that simple models such as the holt-
winters exponential smoothing model and ARIMA perform better or equal with these
intricate models. This happens because the aggregation nature of the preprocessing
pipeline is eradicating the random noise and micro-phenomena that better showcase
the complex models. Another important conclusion is the time restriction that is being
imposed in the case of the most complex models used. Neural networks and the
various tree ensembles that we have tested have a relatively increased training time.
This combined with their very vast number of hyperparameters, tells us that the extra
points of MAPE increase require a lot of resource and time, something that will be
available depending on the use case of the forecasting. If the forecasting is used in a
real time cycle and requires constant retraining, then the accuracy can be sacrificed in

order to provide with timely results to an existing optimization algorithm.
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8 - Thesis Conclusions

8.1. Overview

The way forward for the next generation of cellular communications are complex large-
scale infrastructures, HetNets, UltraDense networks and high-performance services.
These systems are being analysed in chapter 1 of this thesis and after thorough
analysis of the various technological aspects, we came into conclusion that this study
requires an accurate simulation engine to design the use cases and measure the
results. In this study we have also isolated several issues that rise in these reference

architectures and researched the modern literature for solutions to problems and other

improvements.
s N
What-if analysis ann | : P - )
————————————7—_———[ Simulation Engine } Planning tool | extension
i  Network Congestion Preciction
; S
Energy [ s TR Shere ] [ Network EIerrTent Clustering ]
Efficiency

[ Network KPI Forecasting ]
————————— -[ Pico Hot-Spot Placement ]— 1 -

1
[j Year 1 C] Year 2
[ Interference-aware RRM ] @ veor 3 D Vear 4

b J/

Figure 94 - Overview of this doctorate thesis outputs per year

Due to the complexity of this technology, it was identified that all different
management and optimization approaches has benefits and should be used
simultaneously in order to achieve the maximum performance and effectiveness.
Firstly, cellular network simulation platform was shown to be critical to the execution
of each different study that was performed. The accuracy of the data generation
system allowed for the designed algorithmic solutions to perform according to the
estimations and also revealed hidden issues that could not be foreseen by the
theoretical analysis. Network design and infrastructure sharing between network
operators played a huge part in the energy efficiency of future cellular operation
scenarios as proven in chapter 3. Dynamic micromanagement of resource allocations
by implementing an interference-aware SON proved to assist the LTE cell in providing
the best possible quality of service to user equipment devices of various traffic
demands. By extending the LTE network with predictive capabilities, we opened the

possibilities for even further advancements in various management schemes.
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Forecasting algorithms can enhance the operation of SON functions and planning
operations for future evolution of various KPIs. Unsupervised grouping of network
elements finds hidden behavioral patterns and structure in cells and user terminal
devices allowing for targeted management. Finally, congestion prediction by the
means of semi-supervised classifiers showed important increase in the network

robustness of the HetNet scenarios executed.

8.2 Conclusions regarding Simulation engines for HetNets

In Chapter 2 of this thesis, we analyse the simulation engine that was designed
specifically for this study. Based on the technological inputs from chapter 1, we tailored
a custom Java-based large scale HetNet simulation tool that greatly exceeded the
functionalities of existing simulation engines. The key aspects of the new software
designed are: Scenario building flexibility including various technologies such as LTE
Cells of different Antenna patterns, smaller cells of Pico cell technology, Multi-provider
support, Wifi Access point emulation, full radio environment simulation including EIRP
/ SINR calculation and user equipment device simulation application usage using
stochastic processes. This combined with multiple network KPI measurements and
reporting capabilities (including charting, visual graphics on map playground and excel
reports) gave us a research toolbox adequate to perform this study.

8.3 Conclusions regarding HetNet planning and Energy
Efficiency

High energy consumption is a direct consequence of the expected traffic demand from
the cellular networks. In chapter 3 we have analysed the possible improvements that
can be derived from a series of redesign operations in a reference HetNet scenario.
We have shown that cross-network-provider infrastructure sharing can be used to
greatly reduce the total energy consumption of the network in the small cost of
coordination between operators and also some performance losses. In the second
stage of re-design we have analysed the underlying demand topology of the dense
urban area and strategically placed Pico cells in the vicinities of various urban hot
spots. Then we measured the same performance KPIs and saw that we have recovered
and in some cased improved the network throughput and cell edge throughput (which
had greatly deteriorated from the infrastructure sharing operation). We have also
shown that an alternate solution (namely the increase of the cell spectrum) will not
have the wanted results due to the increase in the demand for power in the cells high

power amplifier unit.
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8.4 Conclusions regarding SON functions and Quality of Service

improvements

Het-Net quality of service is one of the most important aspects of their effectiveness
as network infrastructures. Achieved throughput for user terminal devices in all the
possible variations of radio conditions in conjunction with the diverse smartphone
application environment means that LTE networks must be able to optimize the radio
resource allocation and scheduling schemes in the fastest possible way. Existing radio
resource allocation found in literature and the 3GPPP standards show that there is
room for an improved RRA scheme that will take into consideration the SINR ratio in
order to generate decisions for the per-user equipment real time resource allocation.
Implementation of the state of the art algorithms and the proposed scheme in key
simulation scenarios of the 4G network show that the proposed algorithm greatly
increases the achieved throughput of the wireless network due to its better
understanding of the overall network’s degradation caused by the interference in each
user terminal device. Considerations were also made for incorporating an a-priori user

class tag that will further enhance this algorithm to greater user throughput gains.

8.5 Conclusions regarding Load balancing using Congestion
prediction

In chapter 5 of this doctorate, we have analysed the literature for robust and efficient
predictive methodologies in order to achieve reduction or elimination of network load
congestion in specific 4G/5G network transmission scenarios. We have shown that
unsupervised vector quantization algorithms such as the self-organizing map used in
a semi-supervised prediction model can provide accurate congestion prediction
indication. This indication can be used in a control loop that constantly affects the load
of network elements by performing traffic steering via exploitation of the LTE handover
mechanism. Integration of the predictive model in the SON algorithm has shown a
dramatic decrease in the network load and the highest achievable values (congestion).
Machine learning-augmented real time optimizations functions consist of various
moving parts that require constant monitoring and finetuning. Also, the complexity of
the learning process may impose hard limitations in the hardware that is performing
these tasks in order to provide timely results. However, we have shown that the
benefits from adapting this technology as part of a standard optimization procedure

far outweigh the drawbacks.
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8.6 Conclusions regarding Network Element / Device Clustering
In chapter 6 of this doctorate thesis, we have focused on the problem of identifying
element groups with the same behaviour that can be clustered together to improve
management and operations on a HetNet system. We have studied the literature of
various approaches and focused mostly on unsupervised machine learning techniques
because of their robustness and capability to understand hidden structures and
patterns on various (telco and non-telco) datasets. We split the problem into two sub-
problems and studied the algorithms under two hypotheses. The problem of identifying
groups of LTE cells based on the density of their underlying user equipment devices
and their network performance KPIs and the case of grouping together different user
equipment devices that belong to different classes of broadband access usage. The
results showed us that for the first case (per cell clustering), density-based clustering
algorithms show the most promising results and are more accurate to their predictions.
In the second case however, the case of the user equipment devices, we see that
using Euclidean distance algorithms like X-means and K-means we can correctly
identify the groups of users that belong to their corresponding network traffic demand
model. This shows us that there is no single global algorithm that perform better for
clustering of network KPIs and all different families should be checked and

benchmarked to acquire the optimum grouping results.

8.7 Conclusions regarding Network KPI Forecasting

In chapter 7 of this doctorate thesis, we have identified the need for a predictive layer
for various operational network KPIs in order to assist on real time management or
large-scale network planning operations. We have studied the literature for the state
of the art in forecasting models for time series data of different industries and forms.
The problem of network forecasting was split into two subproblems, a) the forecasting
for micro-management with sensitivity in every day fluctuations in the data and b) the
forecasting for macro-management which relies on trendlines and long-term time
evolution and can assist in planning tools that estimate traffic demand and load for
large element aggregations. In order to better utilize the selected machine learning
models, a data pipeline was devised for each of the two cases mentioned. The data
pipeline consists of various time series processing components such as data imputation
schemes, input filtering, output filtering, smoothing functions, evaluation functions for
error metrics, and model hyperparameter tuning. In the end two different pipelines

were isolated as the best, one for each scenario. Long-term predictions are found to
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be better approximated by using trend-sensitive models such as polynomial fit, ARIMA
and Holt-Winters. In the cases of micro-prediction models, we have found that the
pattern matching capabilities of distribution learning, tree models and neural networks
is far more superior in terms of complexity than the autoregressive models. Finally, a
performance benchmarking analysis has been performed in order to identify the fastest
and slowest performing model. Neural networks sacrifice a lot of speed in order to
obtain their complexity and accuracy whereas polynomial trend fit was found to be the
fastest model to fit for all datasets. In general, speed of a machine learning will only
be an impacting factor if these prediction models are being trained in real time during
the operation of the network with constant retraining. Such rare cases can occur in

embedding predictions as an input for a SON function or other optimization algorithm.

8.8 Consolidation and way forward

This doctorate thesis is approaching various different technological aspects of the
current and future heterogeneous cellular network deployments. The complexity that
these infrastructures impose result into various conflicting optimization goals and
require advanced methodologies in order to provide robust and important
improvements. For this study, we began analysing the current solutions on some of
the key issues that occupy the literature, namely efficient 3GPP networks and
intelligent radio resource allocation / scheduling. However, the way forward has led us
into the new territory of Artificial Intelligence and machine learning. These
methodologies were then used to either support or solve issues from various other
aspects of the network such as congestion avoidance by predictive algorithms,
identification of network element clusters and user equipment devices clusters and
also forecasting of network KPIs on different granularities. Machine learning is proving
to be a stable and robust tool to assist in the solution of various ICT technologies,
expanding from systems and networks to financial systems, engineering, medical and
commercial applications. Machine learning and Al improves sustainability of cellular
infrastructure by reducing their resource usage, improving their operation and
therefore resulting in less energy consumption and EMF reduction. In the future, it is
expected to be incorporated in various forms as a component for industrial solutions

and products.
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APPENDIX A — ACRONYMS

Acronym Explanation
A
Al Artificial Intelligence
AJA] Asynchronous JavaScript and JSON
AJAX Asynchronous JavaScript and XML
APE Absolute Percent Error
ARIMA Auto-Regression, Integration, Moving-Average
B
Bps Bits per Second (throughput)
C
CAPEX Capital Expenses
CDF Cumulative Distribution Function
CIO Cell Individual Offset
COMP Coordinated Multi-Point (LTE-A)
D
DBSCAN Density-based Spatial Clustering of Applications with Noise
DCA Dynamic Channel Allocation
DU Dense Urban (Area Type)
E
EMS Entity Management System
EMF Electro-Magnetic Force emissions
F
FDMA Frequency-Division Multiple Access
FTP File Transfer Protocol
G
GAA General Access Application (Class)
GBT Gradient Boosting Trees
GSM Global System for Mobile Communications
H
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HetNet Heterogeneous Cellular Network
HLO High Level Objective

HSDPA High Speed Downlink Packet Access
HTTP Hyper-Text Transfer Protocol

HTTPS Secure Hyper-Text Transfer Protocol
I

IA Incumbent Access (Class)

ICA Independent Component Analysis
INR Interference-to-Noise-Ratio

ISD Inter-Site Distance

J

JSON JavaScript Object Notation

K

KPI Key Performance Indicator

L

LTE Long-Term Evolution of the 3GPP standard
LTE-A LTE-Advanced

M

MAPE Mean Absolute Percent Error

ML Machine-Learning

MIMO Multiple Input Multiple Output (antenna)
MSE Mean Square Error

N

NME Network Management System

(o)

OFDM (A) | Orthogonal Frequency Division Multiplexing (Multiple Access)
OPEX Operational Expenses

P

PAL Priority Access Layer (User Class)
PCA Principal Component Analysis

PDF Probability Density Function
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QoE Quality of Experience

QoS Quality of Service

R

RB Resource Block

RLC Radio Link Control

RRC Radio Resource Control

RRH Remote Radio Head

RRM Radio Resource Management

RSSI Received Signal Strength Indicator
RTSP Real Time Streaming Protocol

RU Rural (Area Type)

S

SNR Signal-to-Noise-Ratio

SINR Signal-to-Interference-and-Noise-Ratio
SON Self-Organized Network (Functions)
SOM Self-Organized Map (Model)

SOTA State of the Art

SuU Sub-Urban (Area Type)

T

TCP Transmission Control Protocol

TDMA Time-Division Multiple Access

t-SNE T-distributed stochastic neighborhood embedding
U

UMTS Universal Mobile Telecommunications System
UR Urban (Area Type)

w

Wi-Fi Wireless Fidelity Alliance

WWW World-Wide Web

X

XGB (e)Xtreme Gradient Boosted Trees
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