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Abstract 

Skin cancer and especially melanoma, a type of skin cancer, is one of the most dangerous                

types of cancer. Globally, in 2012, it newly occurred in 232,000 people. In 2015 there were 3.1                 

million with active disease which resulted in 59,800 deaths. Although melanoma is a lethal              

disease, early detection can decrease its lethality percentage by a lot. Thus, a reliable automated               

detection application can prove invaluable in a diagnostic center in order to enhance the              

diagnostic ability of a dermatologist. Following the explosion of computational resources in            

recent years, various machine learning techniques have been developed in the computer vision             

field, techniques that can be used for medical image classification. 

In this master thesis, the recent development of computer vision machine learning            

algorithms will be examined and the performance of a subset of those will be studied on the skin                  

lesion image classification task. More specifically, the performance of deep learning algorithms            

on image classification will be presented and tested. A specific family of convolutional neural              

networks called EfficientNets will be trained on the ISIC challenge dataset of 2019, which              

contains 25,331 dermoscopy images of skin lesion images that belong to 8 classes. The              

performance of the resulting trained neural networks will be then examined on predicting the              

correct class of skin lesion dermoscopy images. 

Finally, an application based on the Flask python mini framework, a model view             

controller framework, will be developed as a proof of concept of a MVP (Minimum viable               

product) that can be used in a production environment of a diagnostic center. The application               

will use the best previously trained efficientNet model and diagnose the uploaded by the user               

images. 
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Chapter 1 

Introduction 

1.1. Rationale 

The ability to record massive amounts of data in the healthcare sector has allowed health               

practitioners to access enormous volumes of information about individual patients but the sheer             

size of the data forbids a human to make sense of it. As a response to that challenge, machine                   

learning techniques are being used to detect patterns, in all that raw data and produce insights                

[40]. The applications of machine learning algorithms are spread across most of the healthcare              

fields and while software recommendations and alerts have been around for some time the              

differences are critical. So far, the recommendation algorithm was hard coded into the software              

and had a rigid nature, the decision criteria most of the time were based on an external research                  

that could not be representative of the actual use cases as environment and populations could               

differ. On the other hand machine learning algorithms can be refined by the anonymised data of                

the health facility that uses the recommendation module, providing an increased accuracy on the              

produced diagnosis [41]. The tasks that machine learning is applied are numerous and versatile.              

Identifying potential drug combinations, assisting the health practitioners diagnosis using the           

available symptoms data or classifying medical images to the correct disease classes are some of               

the challenges machine learning is tasked to conquer. 

The development of information systems for the automated diagnosis of medical images            

constitutes a field of ever-growing scientific research in the last decade. Digital medical images              

are present in the majority of diagnostic labs, providing an easy way of manipulation through               

various information systems. The digital processing of medical images by multiple feature            

extraction techniques can lead to the accumulation of a number of features in a way that is                 

reliable and replicable. The analysis of biomedical images through the values of extracted             

features, is a process that can be carried out by machine learning algorithms (through the use of                 
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various classifiers) and ultimately augment the decision making of health practitioners by            

providing automated diagnosis. The information gain of such systems is huge, as it enhances the               

timely and reliable identification of important patient cases. Systems like that, can be             

incorporated in local information systems at diagnostic centers but can also be a part of a                

telehealth information system. 

One field of medicine that relies heavily on digital medical biomedical images in order to               

produce a diagnosis, is dermatology. In dermatology the correct classification of skin lesions             

through medical images can greatly affect the well being of the patient. For this reason, the                

performance of machine learning classifiers will be examined on the task of diagnosing             

dermatoscopic images and in particular the performance of a category of classifiers called neural              

networks. Targeted architectures of neural networks that handle image class prediction           

(Convolutional neural networks) will be presented and tested on the same problem in order to               

measure their performance. After the development of the deep learning convolutional neural            

networks, their results on a minimum viable product application will be examined as to see               

whether or not they are able to be incorporated in a diagnostic center even if its in a simulation                   

environment. 

1.2. Structure of the thesis 

To begin with, the problem that this thesis is focused at is presented in chapter two.                

Various details along with the importance of finding a solution are highlighted in order to               

motivate the reader. To continue with, because the analysis of medical images through machine              

learning techniques is a combination of multiple computer science fields, chapter three contains             

all the relevant background theory that is needed in order to understand the various algorithm               

approaches. In the beginning a brief introduction to the field of machine learning in general is                

presented and then a closer look on a particular set of algorithms called neural networks. Next,                

the field of computer vision is examined and the chapter ends with an introduction to               

convolutional neural networks, a subset of neural networks that are focused on computer vision. 

In chapter four, a more detailed presentation of the convolution network architectures that             

are going to be used is performed by studying a few predominant algorithms and their               
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applications. Chapter five contains the experimental setup and results of the selected approaches             

and in chapter six the conclusion to those results is presented. Lastly, the bibliography that was                

used during the authoring of this thesis is displayed. 

 

Chapter 2 

Skin Lesion Analysis Towards Melanoma Detection 

2.1. The Problem 

Skin lesions are a common disorder of the body’s biggest organ, the skin. The lesions               

most of the time are harmless just constituting a visual defect not requiring treatment but there                

are cases that, left untreated, can be fatal. The identification and classification so far is done by                 

dermatologists, where by evaluating a number of characteristics, diagnose the lesion. The            

diagnosis most of the time is a simple procedure for a dermatologist, considering the amount of                

cases he has diagnosed before. Nevertheless, there are patients who display skin lesions that are               

extremely hard to diagnose and need to undertake a biopsy. The correct diagnosis is of utmost                

importance as if a potentially fatal lesion is falsely diagnosed then precious time is wasted and                

the percent of successful treatment reduces dramatically. 

Among the different skin lesions types, skin cancer lesions are cases that require             

additional effort in order to diagnose and treat. Skin cancer is the most common occurring               

malignancy in the general population on a global scope and the majority of the skin cancer cases                 

are basal cell carcinoma (BCC), Squamous cell carcinoma (SCC) and Melanoma. More than 5.4              

million cases of nonmelanoma skin cancer were treated in over 3.3 million people in the U.S. in                 

2012 [1]. The most common form of skin cancer is BCC, an estimated 4.3 million cases                

diagnosed in the U.S. each year, while SCC appears in over one million cases in the U.S. each                  

year and results in 15,000 deaths. Melanoma on the other hand is a much rarer occurrence but far                  

more lethal than the other types of skin cancer. An estimated 192,310 cases of melanoma will be                 
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diagnosed in the U.S. in 2019, with 7,230 of those proving fatal. Of those, 4,740 will be men                  

and 2,490 will be women. Although the mortality is significant, when detected early, melanoma              

survival exceeds 95%. 

Melanoma occurrence is affected by the environment as well as the patient’s organism.             

Environmental factors include ultraviolet exposure which mainly originate from sunlight but can            

be produced by tanning beds also. The ultraviolet rays damage the DNA of the genes that                

regulate the skin cells growth and ultimately lead to the formation of skin cancer [2].               

Additionally, sunburns have been linked to melanoma development in the torso and more             

specifically, scientists have found a correlation between childhood sunburns and torso           

melanoma. Various aspects of the patient’s organism also play an important role in the              

development of melanoma. The existence of numerous moles and being fair skinned also             

increase the risk of forming melanoma as their UV tolerance is reduced compared to the darker                

pigmented skin. Additionally, being older and a male are also factors that increase the occurrence               

of melanoma. 

2.2. Skin Lesions 

There are over 35 types of skin lesions split into two main categories of primary and                

secondary skin lesions. Primary lesions are skin abnormalities that are present at birth or appear               

during the life of a person, while secondary lesions are the result of irritation or manipulation of                 

a primary lesion. In the confines of this particular thesis the number of skin lesions that are going                  

to be present on the experiments is eight (Figure 1). Some of the most important recognized by                 

the ISIC organization [30]  skin lesion categories are: 

1. Melanoma 

2. Melanocytic nevus 

3. Basal cell carcinoma 

4. Actinic keratosis / Bowen’s disease (intraepithelial carcinoma) 

5. Benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-like keratosis) 

6. Dermatofibroma 

7. Vascular lesion 
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8. Squamous cell carcinoma 

 

 
Figure 1. Various types of skin lesions 

The majority of these types of skin lesions are benign, a setting that corresponds to the                

real world conditions where the benign incidencies are far more than the malignant ones. 

2.3. Dermoscopy Images 

In order to diagnose the different skin lesion types a dermatologist is employed as his               

initial diagnosis is going to determine the further examinations and treatment at last. As a result,                

an expert visual inspection of the abnormality is due by the dermatologist, usually employing              

high resolution cameras and algorithms for image analysis. Many centers have begun their own              

research efforts on an automated image analysis but a centralized system across institutions has              

yet to be implemented. 

Dermoscopy is an imaging technique that adds a protocol on gathering the high             

resolution images of skin lesions. The various dermoscopy imaging devices operate on some             

values that are shared among them. The dermoscopy images that are captured from such a device                

are of high resolution comparable to a high end photography camera, are abundantly illuminated              

and most of the time there is a standard distance that the image is captured in order to assist the                    

image comparison. Dermoscopy uses surface microscopy, that is also referred to as            
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epiluminoscopy or epiluminescent microscopy, and allows the dermatologist to look into the            

layers, color patterns and changes deep within the mole, rather than just glancing at the surface                

[3]. The increased depth penetration is achieved by eliminating the surface reflection of the skin               

that ultimately leads to enhanced optical resolution of the skin lesion. Research has shown that               

dermoscopy, when used by expert dermatologists, provides improved diagnostic accuracy than           

standard photography. 

It is therefore critical to develop an accurate and reliable system for analyzing the              

dermoscopy images in order to aid the dermatologist process or even replace his services when               

needed. Towards that course, novel machine learning algorithms are employed and tested in             

order to analyze the images. A category of promising machine learning algorithms that perform              

well and show considerable accuracy results are neural networks. And it is this kind of               

algorithms that are going to be developed and used in this master thesis. 

 

Chapter 3 

Background Theory 

3.1. Machine Learning 

Artificial intelligence projects have been present for decades and one of the first             

approaches were hard coding logical inference rules using formal languages, an approach usually             

referred to as knowledge base. This kind of projects didn’t have any particular success mostly               

because of the rigid nature of the software and the increasing complexity of rules that need to be                  

coded in order to describe real world scenarios. The difficulties faced by systems relying on               

hard-coded knowledge suggest that AI systems need the ability to acquire their own knowledge,              

by extracting patterns from raw data. This capability is known as machine learning. 

The machine learning (ML) term was first used by Arthur Samuel in 1959 where he used                

that term to describe a chess program (Samuel Checkers-playing Program) that was one of the               
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first self-learning programs [4]. Later, Tom M. Mitchell provided the first formal definition for              

ML: "A computer program is said to learn from experience E with respect to some class of tasks                  

T and performance measure P if its performance at tasks in T, as measured by P, improves with                  

experience E" [5]. What that translates to is a program able to get better at its task just by trying                    

the same task over and over again.  

In a non ML program, its architecture consists of an input step, a logic step and an output                  

step. During the input step the programmer feeds the program with data and that data is fed in the                   

logic module. The logic module is hardcoded by the programmer and performs the various              

calculations needed in order to produce the correct data that are forwarded to the output step.  

So in traditional programming the logic that transforms the data is known beforehand so the               

programmer can provide the pipeline with the correct directions. In Machine learning the             

pipeline differs. There is also an input and an output step but the logic module does not have the                   

directions hardcoded, instead the logic that produces the output data evolves as more data are               

provided in the input step. 

There are four categories that machine learning applications can be split into: Supervised,             

Unsupervised , Semi-Supervised and Reinforcement learning. 

3.1.1. Supervised Learning 

In Supervised learning the dataset that is used as input consists of the independent              

variables of each example (features) and a dependent variable (target variable) or label for              

classification problems. The task of a supervised machine learning program is to produce the              

correct label from the features for each example. The main algorithm for these applications is to                

feed the data to the machine learning algorithm that predicts the label from the features for each                 

example. After the prediction, the program calculates through a cost function the error in              

predicting the correct label. The final step is to perform adjustments to the parameters of the                

machine learning algorithm in order to reduce the value of the error. That procedure is then                

repeated until a satisfactory error is presented.The two applications of supervised learning are             

classification problems and regression problems. 
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In classification problems the examples correspond to a specific class. The class needs to              

be discreet and needs to be present in every example. The task that the program needs to                 

complete is to predict the correct label or class for each example. The dataset can consist of                 

binary class examples or multiclass examples. Some widely used classification algorithms are            

Support vector machines (SVMs), Logistic Regression, Naive Bayes Classifier and Neural           

Networks. 

In regression tasks the target variable of each example is a continuous number that needs               

to be approximated as close as possible. In applications like that the output of the logic module                 

of the program is a number. The goal of these programs, as in classification problems, is to                 

minimize the error between the ground truth number (target value) and the predicted number.              

Some famous regression machine learning algorithms are Linear Regression, Support Vector           

Regressor (SVR) and Lasso Regression. 

3.1.2. Unsupervised Learning 

Unsupervised learning refers to those tasks that the target variable is not known             

beforehand and thus the program cannot be guided by the programmer (supervisor).            

Unsupervised machine learning is used to discover patterns in unlabelled data. Through those             

patterns the algorithms can cluster the data in groups that have similarities or even pinpoint data                

that work as outliers (anomaly detection). The main types of problems unsupervised machine             

learning is used are clustering, anomaly detection and association rule learning problems. 

Clustering refers to the ability to group data together based on a similarity score between               

them. The most famous clustering algorithm is the k-means algorithm which uses a squared              

Euclidean distance formula as a measure of similarity (there other formulas that can be used for                

distance measurement based on the problem at hand). The product of such an algorithm is a set                 

of k centroids that each one corresponds to the center of each cluster. The data are split into the                   

various clusters based on their distance from each centroid. There are also other clustering              

algorithms that can be categorized as centroid-based, density-based, distribution-based and          

hierarchical. 
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Unsupervised Anomaly Detection is based on two assumptions, the first is that most of              

the data is statistically similar and the second is that only a small percentage presents strong                

variations and is in fact anomalous. Based on these assumptions, the data is clustered and the                

examples that are outliers are considered anomalous. 

Association rule learning is the process of identifying the hidden relationships between            

the features of the dataset. The main concept of association rule learning is finding if/then               

relationships, where by the existence of certain features the system can predict the existence of               

others. Apriori algorithm is an association rule learning algorithm that finds the different             

associations in a dataset. 

3.1.3. Semi-Supervised Learning 

The third category of machine learning algorithms are semi supervised learning, a type of              

algorithms that use concepts from both supervised and unsupervised learning. The machine            

learning models in that category train on both labeled and unlabeled data with labeled data being                

a very small percentage of the dataset as a whole. Labeled data are used to help identify that                  

there are different groups or classes in the data and what those classes might be. The rest of the                   

data that are unlabeled are then used to find those different classes and even find additional. The                 

profit from such models is great as there is not always access to labeled data and even then the                   

size of them is minimal compared to unlabeled. The process of labeling data is time demanding                

and expensive so through semi supervised machine learning techniques the unlabeled data can             

produce insights [6]. 

3.1.4. Reinforcement Learning 

In reinforcement learning problems the model, called agent, needs to train itself on a              

sequence of actions that get rewarded or punished. As such there is not a correct target variable                 

that needs to be predicted but rather to come up with the optimal set of actions to maximise                  

reward. These kinds of algorithms are mainly used in AI for video games, robotics and industrial                

robotics as well as dialog agents for speech and text. All these applications highlight the key                
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deployment of reinforcement learning models which is self learning by experience and behaviour             

[7]. 

 

 

3.2. Neural Networks 

Neural networks or Artificial Neural Networks (ANN) are a set of machine learning             

algorithms that mostly fall into the supervised learning models category. They are used for both               

classification and regression problems but mostly for classification tasks. Neural networks are            

comprised of multiple neurons, a basic calculation unit that performs a single task and produces a                

number. That number can be zero or one, in case that the output of a neuron is one, the neuron is                     

considered to be activated. That functionality and representation of this basic calculation unit             

resembles the biological neuron cells and that is where neural networks got their name. 

The first neuron was called Perceptron and was conceived in the 1950s and 1960s by the                

scientist Frank Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts.             

Perceptron takes several binary inputs x1, x2, …, xn and produces a single binary output as shown                 

in figure 2 [8].  

 
Figure 2. The first neural network neuron, the Perceptron 

These inputs x are multiplied by coefficients called weights, which are real numbers that              

correspond to the importance of each input value, and are summed when used as an input for a                  

perceptron neuron. The output of the neuron is then calculated to be either zero or one if the sum                   

is greater or lower than a threshold value (Figure 3).  
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Figure 3. Activation check of the perceptron neuron that calculates the output of the node 

Those basic calculations are enough to construct a perceptron and are sufficient for a              

single decision problem. For example if that perceptron was tasked to decide whether a meal was                

satisfactory or not, where one represents that it was and zero that it wasn't, then the inputs could                  

be if the meal was adequate, if the meal was tasty and maybe the appearance of the meal itself.                   

The next step would be to decide the importance weights for each input and the threshold value                 

that tunes the ending result. Finally, if the output of the perceptron was wrong, by adjusting the                 

values of the weights and threshold, the perceptron would be trained on that task and perform as                 

it is supposed to. 

The graphic representation of the activation function that corresponds to the conditional            

check of being greater than the threshold is called a step function and can be seen below in figure                   

4. 

 
Figure 4. The curve of a step function 

By moving the threshold variable to the first part of the inequality and by assigning a new                 

variable called bias that equals with the negative of the threshold ( b ≡ -threshold ), the functions                  

are transformed and the step function is centered around the y axis (Figure 5). 
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Figure 5. The activation function with the bias variable 

The meaning of the bias is to control how difficult a neuron can be activated, so a high                  

bias value can make sure the neuron will be almost always activated and a negative value can                 

hinder the activation of a neuron. 

Perceptron has some disadvantages that originate from the way its activation function            

works. For example, a small change in the values of weights and biases can alter the output value                  

from 0 to 1 and thus change the meaning of the task at hand. To combat that behaviour, the                   

sigmoid neuron was developed. A sigmoid neuron has a sigmoid function as an activation              

function that can handle continuous number inputs and produce a continuous number output(             

Figure 6). 

  
Figure 6. A sigmoid activation function 

There are many activation functions but most of them present the same sigmoid graphical              

representation. The figure for the logistic function is shown in figure 7. 
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Figure 7. The curve that describes a logistic function 

By combining neurons split into layers a neural network can be constructed based on the               

preferred architecture. A neural network has an input layer, where the input neurons reside and               

are handling the initial data inputs. After that layer there can be multiple layers of neurons or a                  

single one, that layers are called hidden layers. Finally, an output layer is always present that                

produces the output values of the network. 

 
Figure 8. The architecture of a fully connected neural network 
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In figure 8 there is presented a fully connected feed-forward neural network. The term              

fully connected refers to the fact that the output of each neuron is used as an input all the neurons                    

of the layer that follows and the term feed-forward shows the data flow in which case the flow is                   

from left to right. In order to train the network there needs to be a measure of how well the                    

network is performing on the task. That functionality provides the cost function for each              

network. The cost function measures how much is the deviation of the produced output than the                

correct output (ground truth). There are many cost functions that perform well on different              

architectures but one of the first and still popular is the quadratic cost function (Figure 9) [8]. 

 

 
Figure 9. The quadratic cost function 

Where b and w are the vectors of all weights and biases of the network, n is the total                   

number of training inputs x, a is the output of the network and y(x) are the ground truth values.                   

With the introduction of cost functions there is now a measure of the network performance.               

When the value of the cost function is small then the output is not far off the ground truth and                    

when the value is great then the network underperforms. In order to maximize the accuracy of                

such a network, the cost function needs to produce the minimum values possible. One of the                

most popular techniques to find all the weights and biases that minimize the cost function is with                 

gradient descent. 

Gradient descent is a technique used in calculus to determine the local and global              

minimums in multi variable problems by using partial derivatives. The idea is to calculate the               

slope in each point and then take a step towards the opposite direction in order to descend to the                   

local or global minimum. For example the surface that can represent a problem for two variables                

can be seen in figure 10. The goal of the technique is to find those values of the two variables                    

that correspond to the lowest point (minimum) of the surface by taking small steps towards that                

point [9]. 

23 



 

 
Figure 10. The error surface that describes a two variable problem 

In order to calculate the contribution of each weight and bias on the cost function and                

finally measure the amount of the adjustment needed to reduce the value of the cost function an                 

algorithm called backpropagation is used. The backpropagation algorithm was originally          

introduced in the 1970s, but its importance wasn't fully appreciated until a famous 1986 paper by                

David Rumelhart, Geoffrey Hinton, and Ronald Williams. Backpropagation aims to minimize           

the cost function by adjusting network’s weights and biases [10]. The level of adjustment is               

determined by the gradient of the cost function with respect to those parameters. The              

backpropagation algorithm gets triggered after each forward pass through the network and            

performs a backward pass adjusting the values of weights and biases. The amount of adjustment               

is the difference between the old value minus the derivative multiplied with the learning rate               

parameter (Figure 11). 

 
Figure 11. The weight and bias update on each pass 

Where the learning rate parameter tunes how much the weights and biases need to be “punished”                

in order for the network to perform better. Usually a small learning rate is desired so that the                  

steps towards convergence are smooth and steady. 
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3.3. Computer Vision 

Computer vision is a multi-disciple field that focuses on replicating the capabilities of the              

human vision system in order to enable computers to identify and process objects in digital               

images and videos. Its task is to extract meaningful information from images or video frames in                

order to accurately infer the contents of those images. Computer vision (or CV) is different than                

image processing in a way that image processing involves the manipulation of pixel data and not                

the content inference but it is in many cases an important initial step before running various                

computer vision algorithms. The main problems that computer vision is tasked to solve are [11]: 

● Object Classification: Which category of objects are shown in the image 

● Object Identification: What type of object is shown 

● Object Verification: Does the object exists 

● Object Detection: Where are the objects 

● Object Landmark Detection: Where are the key points of the object 

● Object Segmentation: Which pixels belong to each object class 

● Object Instance Segmentation: Which pixels belong to each object 

● Object Recognition: What objects are contained and where are they 

 

The principles of computer vision are similar to machine learning tasks, the first step is to                

find a suitable representation of the content of a digital image so that features can be extracted                 

and then used as an input for the algorithm. The next step is to train the algorithm on those                   

features and finally produce a prediction on the content. Traditionally, there have been multiple              

techniques for feature extraction such as eigenfaces, which was a novel way of identifying faces               

through images by projecting the images to a set of eigenvectors [12]. The eigenvectors were               

extracted through principal component analysis which computes a new set of axes(eigenvectors)            

that each corresponds to facial features. By calculating the eigenvalues of images projected on              

those axes the algorithm can perform face recognition (Figure 12).  

 

25 



 

 
Figure 12. The features that were produced through the eigenfaces technique 

Another popular technique that is used in the field of computer vision is histogram of               

oriented gradients. The histogram of oriented gradients (HOG) feature descriptor is the process             

of mapping every change on the value of each pixel in concern with the adjusting ones [13]. So                  

in a grayscale image where every pixel value ranges from 0 (black) to 255 (white) the vertical                 

and horizontal gradients for each pixel are calculated using the grad operator (partial             

derivatives). Βy dividing the image into small (usually 8x8 pixels) cells and blocks of 4x4 cells.                

Each cell has a fixed number of gradient orientation bins. Each pixel in the cell votes for a                  

gradient orientation bin with a vote proportional to the gradient magnitude at that pixel (Figure               

13). 

 
Figure 13. The final gradient orientation voting for a selected cell 
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By calculating the gradients through a HOG algorithm the produced feature vector can be              

considered as a collection of information about the structure of the image (Figure 14). 

 

  
Figure 14. The produced feature map of the image through the HOG algorithm 

 

After obtaining the feature vector then by using a classifier like Support vector machines              

(SVMs) for example the classifier can be trained on those structures and predict the class of an                 

image or perform object detection by checking the existence or absence of them. 

 

3.4. Convolutional Neural Networks 

Convolutional neural networks are a deep ANN variant that aims to reduce the             

computational strain that accompanies deep learning in computer vision tasks. The first version             

of a CNN was first presented in 1980 by Dr. Kunihiko Fukushima who proposed a neural net                 

architecture called Neocognitron [14]. That multilayered ANN in each layer had to perform             

feature extraction on a limited region of the input image much like the receptive field that CNNs                 

use. That way Neocognitron was able to recognise edges and structures and perform robust              

visual pattern recognition. Later, in 1989 Yann LeCun proposed a pioneering version of the              

Convolutional Neural Network that was based on a Neocognitron-like architecture and used the             
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backpropagation training algorithm [15]. From then on, CNNs have been used on almost all              

computer vision problems as their performance in many tasks is comparable to that of a human. 

The basic ideas that govern all CNN architectures are three: local receptive fields, shared              

weights and biases, and pooling. In the next sections a brief description on how these basic                

concepts work is presented [8]. 

3.4.1. Local Receptive Fields 

For a Fully Connected Neural Network (FCN) that is used for image recognition the input               

layer would consist of neurons that correspond to the pixels of the image. Each neuron in the                 

input layer will then connect to each neuron in the first hidden layer and so on. In CNNs, again                   

the input layer consists of the same number of neurons that are the pixel values of the image but                   

the connections to the first hidden layer differ. A small window of pixels is used to connect to                  

each hidden layer neuron that is called local receptive field (Figure 15). The idea is for each                 

hidden neuron to learn to analyze its local receptive field. 

 
Figure 15. The connections of a single local receptive field 

The size of the local receptive field is tunable and is one of the hyper parameters that can                  

be adjusted in any CNN architecture. After the first connection the receptive field is moved to                

scan all the input pixels by a fixed value called stride length. In the end all the hidden neurons                   

will correspond to a connection to a local receptive field of the input layer. The concept of local                  
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receptive field is to extract local features by analyzing a small region and then by combining                

these simple structures to produce complex patterns. 

3.4.2. Shared Weights and Biases 

Each hidden neuron has a single connection to a local receptive field with as many               

weights as the pixels the local receptive field contains. These weights are the same or shared for                 

every scan of the image with that particular local receptive field. The neurons that connect to the                 

first scan are called a feature map. The concept is to scan the image with a receptive field that by                    

using constant weights, detects a set feature for example an edge. The weights for that feature                

map are called shared weights and the bias that activates the neuron is called shared bias and                 

they define a kernel or a filter as it is mentioned in relevant literature.  

 

 
Figure 16. The three feature maps produced through the local receptive field scanning 

In figure 16, there are 3 feature maps shown. Each feature map is defined by a set of 5×5                   

shared weights, and a single shared bias. The result is that the network can detect 3 different                 

kinds of features, with each feature being detectable across the entire image. In recent CNN               

architectures the number of feature maps is great, resulting in advanced feature detection for the               

input image. In an early CNN architecture called LeNet-5 the number of feature maps that was                

used was six each associated with a 5x5 local receptive field [16]. The task that the CNN was                  

used was the digit classification of the Modified National Institute of Standards and Technology              
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(MNIST) handwritten digit dataset [38]. Some feature maps (or kernels or filters) that were              

produced by the CNN are shown below. 

 
Figure 17. The structures that are detected by the feature maps 

These 20 images, shown in figure 17, correspond to 20 different filters that detect specific               

structures. The whiter pixels show smaller weight values that respond less to the input pixel               

values and darker pixels means that the weight values are bigger and thus are sensitive to the                 

input pixel values. An advantage of using convolutional layers that comprise of feature maps is               

that the parameters that are needed to be calculated are much fewer that using a fully connected                 

layer. For each map the only parameters that make it up are the shared weights and a single                  

shared bias. 

3.4.3. Pooling Layers 

The last basic concept of convolutional neural networks are pooling layers. Pooling            

layers follow in the architecture the convolutional layers. Their purpose is to simplify the output               

information of the convolutional layers. Pooling layers are made up with condense feature maps              

that are produced by scanning the feature maps of the convolutional layers. Each unit of the                

pooling layer examines a small region of the feature map, for example 2x2, and applies a                

function that sums up the information contained in that region. So for example, a max pooling                

layer will keep the maximum value of that region and discard the others (Figure 18). An L2                 
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pooling layer will calculate the square root of the sum of the squares of the activations in that                  

region [8]. 

 
Figure 18. The connections of a max pooling layer that preserved the highest value only 

The above procedure is applied on all feature maps and a pooling map is produced for                

each one of them. The resulting pooling maps contain the information of where a feature is                

relative to the other features and discards redundant information. The information discarded            

corresponds to parameters that are not important for the task and so the neural network shrinks in                 

computational load.  

These basic concepts form convolutional neural networks and by tuning the           

hyperparameters or inserting more layers various architectures can be produced. Usually for            

classification purposes, as an output layer, one or more fully connected layers are used that               

consume the outputs of the last pooling layer and produce the classification results (Figure 19). 
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Figure 19. A convolutional neural network architecture that is uses the last fully connected layer and the softmax 

layer to perform classification on a 10 class task 

3.5. Hyperparameters of CNNs 

While trying to achieve optimal accuracy and performance of a neural network model,             

the machine learning engineer has the option to tune various parameters that determine how the               

network will train or even its architecture. These parameters are called hyperparameters and are              

extremely important in the overall performance of every ANN. There are some rules on deciding               

what is the optimal value of some of the hyperparameters but the process of hyperparameter               

tuning has a significantly experimental aspect. 

3.5.1 Learning rate 

One of the most important hyperparameters in ANNs and consequently in convolutional            

neural networks is the learning rate of the architecture optimizer. The learning rate             

hyperparameter refers to the amount of adjustment that is going to be applied to the weights of                 

the network after each backpropagation pass (Figure 20). 
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Figure 20. The weight update that gets applied in each pass 

A small learning rate value in a gradient descent algorithm will require many iterations to               

find the global minimum as the step towards the optimal will be minimal. Even then, the                

minimum might not be a global minimum but a local one and by taking small steps in a specific                   

direction might prove ineffective to emerge from the local minimum [17]. Furthermore, a high              

learning value will require much fewer iterations but the problem is that it might pass the                

minimum and never really converge or even diverge (Figure 21). 

 
Figure 21. The effects of a badly tuned learning rate on convergence 

3.5.2 Mini batch size 

When training an ANN the engineer has the option to use a single example from the                

dataset in each pass or a set of examples. A common optimizer technique that can be used with                  

all the variations on the number of examples is Stochastic Gradient Descent (SGD), that uses a                
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predefined number of examples for training in each pass. SGD replaces the gradient descent              

technique that uses the entire dataset (batch training) and reduces by a lot the computational cost                

of training in turn of a smaller convergence rate. When used with a single example or a set of                   

examples (mini batch), SGD randomly chooses a subset of the dataset and trains the network on                

the isolated data. The main benefit of using a mini batch technique is the ability of the optimizer                  

to produce noisy process updates and ultimately avoid local minimums and actually converge             

[18].  

 

3.5.3 Dropout 

Dropout is a generalization technique used in neural networks during the training phase             

in order to help avoid the over fitting of the model to the dataset. The main concept of dropout is                    

to ignore a random subset of the neurons during training and not apply weight adjustment to                

them. By avoiding neurons the units become less dependent on their connecting neighbors and              

value the existence of more robust features that are not interdependent. Consequently, the model              

can be thought of as a juncture of slightly different architecture models that all are tasked with                 

the same problem by producing a robust set of features (Figure 22) [19]. Dropout is applied by                 

specifying the dropout hyperparameter value that ranges between zero and one. That value             

corresponds to the probability to drop a random set of neurons and is not applied at all after the                   

training has finished, for example when using the trained model for prediction. 
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Figure 22. a) The architecture of a fully connected neural network during training without dropout, b) The 

architecture of the network that undergoes training when applying dropout. 

 

Chapter 4 

Neural Network Architectures 

4.1. Related Work 

The experiments that are going to be presented are focused on an annual recurring              

challenge called the ISIC (International Skin Imaging Collaboration) challenge. The purpose of            

that challenge is to develop novel automatic techniques of correctly classifying a number of skin               

lesions in order to improve the diagnosis capabilities of the medical staff. The ISIC Archive is                

the largest repository of quality controlled and publicly available digital images of skin lesions              

and the collection is ever growing. The images are screened to ensure satisfactory quality and are                

then examined by melanoma experts in order to verify the credibility of the metadata that               

accompany each image. The metadata contain mainly demographic information and diagnosis           
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details. A more thorough examination of the subset of the ISIC dataset that is going to be used is                   

presented in chapter 5.1. 

Through the ISIC challenge initiative and the nature of the problem itself, there has been               

great interest in tackling the skin lesion classification task. The promising gain from an              

automated technology that addresses that problem is huge in both resources as well as diagnostic               

speed and accuracy. A field of machine learning that has shown a great deal of potential is that of                   

deep learning especially in recent years. In the paper ‘Deep learning outperformed 136 of 157               

dermatologists in a head-to-head dermoscopic melanoma image classification task’ that was           

published in April of 2019 [20], that potential is clearly portrayed. During their experiments the               

research team trained a convolutional neural network called ResNet50 on skin lesion image data              

and compared the results of the network with the results of domain expert diagnostic doctors.  

The ResNet50 is a deep residual convolutional neural net that is comprised of 50 layers               

and 25.6 million parameters in total. The ResNet family networks were the winners of the               

Imagenet challenge of 2015 and are considered one of the breakthroughs of deep learning in               

computer vision [21]. Their main innovation was the introduction of a technique that addresses              

the vanishing gradients as well as the exploding ones in very deep neural networks. That               

technique is called skip connection (residuals) which connects the output of one layer with the               

input of the previous one. Skip connections allow the network to learn deviations from the               

identity layer, hence the term residual, residual here referring to difference from the identity              

(Figure 23). 
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Figure 23. A residual learning building block 

 

Through the usage of these residual building blocks the team was able to construct very deep                

networks that avoided the degradation problem of the gradients by ensuring that the next layers               

would not perform worse than the previous ones. The resulting network architectures (Figure 24)              

performed excellent on the ImageNet challenge and won the 2015 contest with a top-1 error of                

19.38% and a top-5 error of 4.49%. 

 

 
Figure 24. The architecture and building blocks of the ResNet 152 

 

With the ResNet-50 architecture pretrained on the ImageNet dataset the research team            

trained the network on the ISIC challenge 2018 dataset which contained a total of 2,169               

melanomas and 18,566 atypical nevi. The testing dataset that was reserved, was presented to 157               

dermatologists from 12 German university hospitals of all levels of training including a small              

subsample of resident physicians for prediction. The algorithm had a sensitivity of 76% and a               

specificity of 81.7%, on average. Compared with the results of the resident physicians, who              

achieved a mean sensitivity of 67.7% and a mean specificity of 65.8% on the test set, the mean                  
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specificity of the CNN was better by 15.9 percentage points at approximately the same              

sensitivity. 

Another approach that was presented in the paper of April 2017 called ‘Skin lesion              

classification from dermoscopic images using deep learning techniques’, was the use of a deep              

neural network, by the standards of 2014, called VGG [22]. 

VGG was developed by the Visual Geometry Group of Oxford University and is             

comprised of either 16 or 19 layers. That particular CNN, while only containing 16 or 19 layers,                 

is a resource draining network because of the fully connected layers it contains. The resulting               

number of parameters that need to be trained is ~134-144 million a fact that deters its usage in                  

many cases. The architecture of a VGG neural network can be seen in figure 25. 

 
Figure 25. The architecture of a VGG neural network 

 

For their experiments on the performance of VGG on dermoscopic images the research             

team decided to use three methods (M1) training the CNN from scratch, (M2) using the transfer                

learning paradigm to leverage features from a VGGNet pre-trained on the ImageNet dataset and              

(M3) keeping the transfer learning paradigm and fine-tuning the CNNs architecture. Again the             

dataset that was used, was provided by the ISIC challenge and was composed of 346 training                

images and 150 testing images. The classes that those images belonged to were again two, that of                 

malignant and benign skin lesions. For the training purposes, because of the small number of               
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example images for training a deep convolutional network, data augmentation was used in order              

to increase their number through rotation, horizontal flipping, zooming and scaling. The results             

on the testing set for all three methods that were explored are presented in figure 26. 

 

 
Figure 26. The results of the VGG network on the testing set of the ISIC dataset 

 

Deep learning can be also used along with other machine learning techniques in order to               

utilize the strengths of multiple algorithms. In the paper ‘Skin Lesion Classification Using             

Hybrid Deep Neural Networks’ that was published in February of 2017 such a workflow is               

presented [23]. The main concept of that research was the use of multiple deep learning networks                

along with support vector machines (SVMs) in order to tackle the problem of skin lesion               

classification. Three convolutional neural networks were used namely AlexNet, VGG16 and           

ResNet-18 for feature extraction on the ISIC dataset. By using those three networks pre trained               

on the ImageNet dataset, the research team extracted the captures features of each network and               

attached a support vector machine classifier on the output of each network. As a final step these                 

three architectures were used as an ensemble of networks (Figure 27) and by voting the resulting                

predictions were able to generalize better.  

 

 
Figure 27. The flowchart of the hybrid ensemble of networks 
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The ISIC 2017 dataset that was used, was composed of three classes (malignant             

melanoma, seborrheic keratosis and benign nevi) and 2,037 images across all classes in total.              

The requested results from the 2017 challenge dictated that the performance was measured on              

two cases malignant melanoma vs. all and seborrheic keratosis vs. all classifications. The results              

of the hybrid ensemble of networks can be seen in figure 28. 

 
Figure 28. ROC curve of the best performing approach 

 

 

4.2. EfficientNet 

4.2.1. Compound Scaling 

The artificial neural network that is going to be used in this master’s thesis is based on                 

the EfficientNet architecture and its main principles. EfficientNet was first presented in the paper              

“EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks” by Mingxing Tan           

and Quoc V. Le in 2019 [24]. The goal of the paper was to address the problem of scaling the                    

neural network architectures in order to increase accuracy.  

Convolutional neural networks can be scaled up or down by tweaking three architecture             

parameters: the depth, the width and resolution. Depth refers to the number of hidden layers and                
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can be adjusted to fit the problem at hand. For example the ResNet-18 can be scaled up to                  

ResNet-200 by increasing the number of hidden layers [21]. The number of the hidden layers can                

be thought of as its capacity to construct complex structures from simple ones. Width refers to                

the number of channels(nodes) that comprise the layers of a convolutional network and can be               

thought of as the number of structures that the network looks for while scanning the images. The                 

last architecture parameter that can be scaled up or down is the resolution of the input images                 

where by feeding the network with increased number of pixels you provide to the CNN increased                

information. The network architect can increase one, two or even all three of these parameters in                

order to manually tune the performance of the CNN but that process is tedious work and prone to                  

errors. The work presented in the efficientNet paper proposes a way that uniformly scales all               

dimensions of depth/width/resolution using a simple yet highly effective compound coefficient           

(Figure 29, 30). The main reason that the dimensions of the network need to be exactly what the                  

problem needs to be solved is the computational cost that accompanies an increase in a               

dimension. 

 
Figure 29. a)The baseline network, b)The network after increasing its width, c)The network after increasing its 

depth, d)The network that accepts higher resolution images, e)The baseline network that is expanded through 

compound scaling 
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The proposed compound scaling method is a set of rules to scale the three dimensions               

using a compound coefficient φ (Figure 30). Through that coefficient the dimensions are scaled              

in a uniform way. The user specified coefficient φ represents how many more resources are               

available for model scaling while α, β , γ denote how to assign these extra resources to the                  

dimensions of the network. The constants α, β ,γ can be determined by a small grid search, where                  

by trying combinations of them and evaluating the network an optimal one is chosen. 

 

 
Figure 30. The formula that calculates how much the dimensions must change 

 

4.2.2. EfficientNet B0 

The EfficientNet paper also introduces a new baseline artificial neural network           

architecture called EfficientNet B0. The EfficientNet B0 is the ancestor of a family of neural               

networks that are produced through compound scaling and are named EfficientNet B1 to B7              

[24]. The baseline network uses as a building block the mobile inverted bottleneck MBConv              

(Figure 31) and presents a similarity with the network MnasNet but is a bit bigger due to the                  

larger FLOPS target (400M). EfficientNet B0 was chosen to be based on the mobile neural               

network architectures due to the fact it would be then scaled up to form the whole EfficientNet                 

family. The MnasNet that provided the MBConv building block is a mobile neural network that               

was constructed through the neural architecture search (NAS) auto machine learning technique            

[25].  

Neural architecture search is an auto machine learning technique with increased           

popularity lately, that is tasked with finding the optimal neural network architecture for a              
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selected problem. The purpose of NAS can be best described by Google CEO Sundar Pichai,               

who wrote that, “designing neural nets is extremely time intensive, and requires an expertise that               

limits its use to a smaller community of scientists and engineers. That’s why we’ve created an                

approach called AutoML, showing that it’s possible for neural nets to design neural nets.” 

Neural architecture search has three main dimensions [26]: 

● The search space defines the type(s) of ANN that can be designed and optimized. 

● The search strategy defines the approach used to explore the search space. 

● The performance estimation strategy evaluates the performance of a possible ANN from            

its design (without constructing and training it). 

For the construction of MnasNet the search space of the NAS technique was tuned to a                

factorized hierarchical search space that could construct different architecture building cells in            

order to present diversity and find the optimal combination. Along with the tuning of the search                

space of the NAS, search strategy and performance estimation are tweaked in order to minimize               

the latency of the resulting network and not FLOPS since the latter is not a clear indication on                  

the speed of the network in mobile devices.  

From the MnasNet architecture, the building block used in EfficientNet was MBConv6            

that denotes mobile inverted bottleneck convolution and DWConv denotes depthwise          

convolution while k3x3/k5x5 denotes kernel size (Figure 31). 
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Figure 31. a)The MnasNet architecture that uses as building blocks the b,c and d cells 

Depthwise convolutions were introduced in MobileNetV1 and are a type of factorized            

convolutions that reduce the computational cost as compared to standard convolutions [27].            

Suppose an input volume of Dᵤ x Dᵤ x M is transformed to an output volume of Dᵥ x Dᵥ x N. The                       

first set of filters are comprised of M single-channel filters, mapping the input volume to Dᵥ x Dᵥ                  

x M on a per-channel basis. This stage known as depth-wise convolutions, resembles the              

intermediate tensor and achieves the spatial filtering component. In order to construct new             

features from those already captured by the input volume, we require a linear combination. To do                

so, 1x1 kernels are used along the depth of the intermediate tensor(point-wise convolution). N              

such 1x1 filters are used, resulting in the desired output volume of Dᵥ x Dᵥ x N (Figure 32) [28]. 
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Figure 32. Depthwise convolution process 

 

 

 

The building block of MBConv6 follows the inverted residual block architecture by            

swapping the classic wide -> narrow -> wide steps to narrow -> wide -> narrow. The first step is                   

a 1x1 convolution that increases the depth while reducing the width of the network followed by a                 

depthwise convolution and the last step is again a 1x1 convolution that squeezes the network               

again in order to match the initial channel number. In order to construct deeper architectures and                

avoid the problem of vanishing gradients a skip connection is used between the input and the                

output of the building block (Figure 33). 

 

 
Figure 33. The MBConv6 process that is used in its building block 
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The Relu6 is an activation function that is based on the rectified linear unit function that                

has gained popularity due to the fact that addresses the vanishing gradients problem. The              

vanishing gradients refer to the fact that while backpropagating the gradient error in deep              

networks the error gets smaller and smaller and ultimately does not affect the initial layers. A                

Relu activation function can decrease that effect but also presents a flaw of having a range of [0,                  

infinity). The solution to that attribute comes in the form of Relu6 that caps the range on the                  

value 6 (Figure 34)  [29]. 

 
Figure 34. The curve that describes the Relu6 activation function 

Ultimately the resulting architecture of the baseline EfficientNet B0 that is used to             

produce the EfficientNet family is comprised of the layers shown in figure 35. 
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Figure 35. The architecture of the baseline neural network EfficientNet B0 

4.2.3. EfficientNet Family 

Through the compound scaling technique a new set of neural networks are constructed             

that make up the EfficientNet family. These artificial neural networks because they use as a               

baseline network the EfficientNet B0, that is a network with architecture building blocks of              

mobile networks, and because they use the compound scaling method to expand their dimensions              

present great accuracy with much smaller number of parameters. When compared to the top              

neural architectures the efficientNet family produces similarly accurate results while keeping the            

computational cost at a minimum. In figure 36 a comparison with some popular architectures and               

their performance on the imagenet dataset can be seen. From the figure, one can notice the                

exceptional accuracy results that the efficientNet family produces and also notice at the bottom              

right corner the much smaller number of the parameters that directly translate to decreased              

computational cost. 
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Figure 36. Accuracy results of the EfficientNet family networks on the imagenet dataset compared to some popular 

neural network architectures 

 

Chapter 5 

Configuring the ANN and running the Experiments 

5.1. The Dataset 

ISIC Challenge provides a dataset to train the machine learning algorithms that are going              

to be competing and finally test their accuracy. The dataset consists of 25,331 dermoscopic              
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images of varying resolutions and the images belong to 8 distinct classes [30]. The classes of the                 

dataset are: 

1. Melanoma 

2. Melanocytic nevus 

3. Basal cell carcinoma 

4. Actinic keratosis 

5. Benign keratosis 

6. Dermatofibroma 

7. Vascular lesion 

8. Squamous cell carcinoma 

 

Among those classes, the number of the images that belong to each one is not constant.                

Consequently, the dataset is highly imbalanced and this is something that affects the produced              

accuracy of the machine learning models. Specifically, the number of images for each class are               

the following: 

 

The images are all contained in a folder with each one of them having a unique id                 

filename. Along with the image folder, a csv is provided that contains the class of each id. As a                   

first step the images are split into different folders that each of them corresponds to one class.                 

The procedure is carried out by scanning the images and then finding by the filename the actual                 

class and copying that file to the correct folder (Figure 37). 
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Figure 37. The code that is responsible for splitting the images into class folders based on their class that is marked 

in the ground truth csv (Split_Data.py) 
The resulting structure is a set of 8 folders with the images from that class in each folder.                  

This task is needed in order to use the flow_from_directory method of the image generator class                

that exists in the Keras framework [31].  

5.2. Transfer Learning 

Due to the fact that the convolutional neural networks demand a lot of resources to train,                

a common technique to save time and resources is to use transfer learning. Transfer learning               

denotes using a pre trained neural model on a dataset other than the problem at hand. The                 

benefits are that the initial weights of the network are not random but actually refer to a structure                  

simple or complex. After importing such a network, the training can be isolated to the last few                 

layers or on all of them by adjusting them to the current task. The performance of pretrained                 

networks is phenomenal and is a common practice among machine learning engineers when the              

data are limited or when the resources needed to train the network are great.  
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5.3. Training the network 

The training of a convolutional network can be done on a medium range pc if the task is                  

not that demanding or the network is not that complex. In most cases a high end pc is needed in                    

order to meet the computational costs of training the CNN. Additionally, there is also the option                

of using the CPU, for the calculations during the training, or the GPU. The CPU in most cases is                   

slower than the GPU because the calculations are not complex but great in number. For that                

reason, a processing unit that is built for speed like the GPU outperforms the CPU. Recently, a                 

new processing unit that is targeted towards neural network training has been developed by              

Google and is called TPU. That unit is built specifically for machine learning purposes and               

outperforms both the CPU and the GPU. 

For the needs of this thesis, the training of the neural network was realized on the Google                 

colaboratory platform. Colab (short for colaboratory) is a cloud platform that gives you access to               

a python kernel, either in version three or two, for you to run your code [32]. The layout is                   

similar to the jupyter notebook framework for python that splits runnable cells and cells using               

the markup language. The main benefit of using Colab for the neural network training is the                

access it gives you to a GPU and a TPU if you choose to. The GPU you can use is a Tesla K80                       

and also 12Gb of RAM, the only restriction is that the maximum duration of using the GPU is                  

capped at 12 hours of continuous load.  

The first step is to import the efficientNet B0 model from the efficientnet.keras repository              

using the pretrained model on the imagenet dataset [33]. The model comprises of the pretrained               

weights and all its layers except the top ones. After importing the efficientNet B0 a               

GlobalMaxPooling2D layer is added in order to convert the 4D tensor to 2D that results in much                 

fewer parameters and after that layer a fully convolutional layer with 8 nodes is added that will                 

output the class probabilities. The activation function on the fully connected layer is a softmax               

function that is a function that takes as input a vector of K real numbers, and normalizes it into a                    

probability distribution consisting of K probabilities proportional to the exponentials of the input             

numbers. The final output is a set of normalized probabilities one for each class. The final neural                 

network architecture can be seen in figure 38. 
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Figure 38. The total parameters of the network to be trained along with the number of trainable and non trainable 

parameters 

5.3.1 Training the last two layers 

After constructing the model architecture, we set the layers of the base model to be               

untrainable so the training can take place on the last layers that were added. This technique is                 

quite common where the pretrained base model is left untouched and the last layers are               

optimized for the specific task. The neural network is trained with the execution of the compile                

method of the model class from the keras framework that sets the optimizer and the fit_generator                

method that loads the data to start the training. In order to use the EfficientNet B0 model the                  

images need to be resized so they can be used as an input for the neural network. That task is                    

carried out by executing the center_crop_resize function that is provided in the utilities section of               

the efficientnet module (Figure 39).  
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Figure 39. The code that is responsible for resizing the images to the correct efficientNet input dimensions 

(Resize_Data.py) 

 

The hyperparameters that were tuned in order to reach optimal accuracy, were dropout,             

batch size, epochs, optimizer and learning rate (Figure 40).  

 
Figure 40. The resulted accuracy and loss for different set of hyperparameter values 

 

The most accurate model for the task was trained with hyperparameter values of: 

● Dropout: 0.2 

● Batch size: 32 

● Epochs: 20 

● Optimizer: Adam optimizer with a learning rate of 0.001 

 

The model class of the keras framework also exposes a history method that holds              

information of the training process of the model and grants access to various metrics and               

information. The accuracy and loss of the model during training is shown in figure 41. 
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Figure 41. The accuracy and loss changes during training of the best performing EfficientNet B0 model 

 

The validation accuracy suggests that the training is not optimal and there is not a               

satisfactory convergence. In an attempt to improve the accuracy of the model, the initial dataset               

was modified so it can be balanced. Data augmentation can help increase the number of the                

images in classes that are restricted in number. Data augmentation refers to those transformations              

that are applied to an image and produce a family of images that are different for the purposes of                   

training a machine learning algorithm. Some transformations affect the color scheme of the             

image like hue, saturation, brightness, contrast. While others, affect the geometrical attributes of             

the image like rotation, zoom, crop, perspective [34]. For this experiment, geometrical data             

augmentations were prefered. From the training class folders the class with the lower number of               
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images was Dermatofibroma (DF) with 161 images. The transformations that were applied were             

rotation on 90,180,270 degrees angle and horizontal flipping on each rotation (Figure 42). 

 
Figure 42. The code that is responsible for the data augmentation on the dataset 

 

 The result was 1,528 images. After applying those transformations on all classes that             

needed augmentation the dataset was balanced with a constant number of 1,528 images across              

each class. Note that the validation data must not be produced from augmented data but rather                

comprise of entirely different images so that the validation results are reliable. The results of               

training again the efficientNet B0 model on the balanced dataset can be seen in figure 43. 

 

 
Figure 43. The resulted accuracy and loss for different set of hyperparameter values on the balanced dataset 
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The accuracy and loss for the 50 epochs model can be seen in figure 44. 

 
Figure 44. The accuracy and loss changes during training of the 50 epochs EfficientNet B0 model 

 

For the next experiment, the neural network that is going to be trained is the EfficientNet                

B5 network of the same family. The purpose of this experiment is to see if the higher resolution                  

images will help improve the accuracy of the model. The EfficientNet B5 model uses as an input                 

456x456 resolution images and is wider and deeper than the B0 by the magnitudes that are                

presented in figure 45. 
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Figure 45. The scaling of the width, depth and resolution of each network of the EfficientNet family 

 

Again after importing the pretrained EfficientNet B5 model without its last layers, a             

GlobalMaxPooling2D and a fully connected layer that predicts 8 classes are added. The final              

architecture of the B5 model can be seen in figure 46. 

 
Figure 46. The architecture of the EfficientNet B5 model to be trained 

 

After setting the base model to be untrainable and the last 2 layers to trainable, the                

training of the network is performed by running the functions that were used for the EfficientNet                

B0 model training. The top performing EfficientNet B5 models can be seen in figure 47. 
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Figure 47. The top performing EfficientNet B5 models 

The accuracy and loss graphs for both training and validation for the last model can be 

seen in figure 48. 

 
Figure 48. The accuracy and loss graphs for the top EfficientNet B5 model 

 

5.3.2 Training the whole network 

In this section the performance of the EfficientNet Β0 will be studied when the whole               

network is available for weight adjustment during training. The process is exactly the same              

except for the step that sets the base model to untrainable (conv_base.trainable = False). By               
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setting the whole network available for training the number of trainable parameters increases             

from 10,248 to 4,017,796 (Figure 49) 

 
Figure 49. The architecture and number of parameters of the EfficientNet B0 model that will be trained in its 

entirety 

Additionally, because of the increase in the number of parameters, the neural network is              

harder to train and as a result takes longer to do so. To keep the progress that was made during                    

training and not lose it in case of a hardware failure, model checkpoint is introduced. Model                

checkpoint refers to the periodically saving of a model during training. That task is performed               

through a callback function that is passed as an argument in the fit_generator() function. First,               

the behaviour of the model checkpoint is configured by setting the save path, the metric to                

monitor in order to overwrite the model if that metric is improved and lastly the period of saving(                  

number of epochs). By saving the model periodically, the training of a model can be resumed                

even if the training takes hours, days or even weeks. 

The results for the EfficientNet B0 network that was fully trained on the balanced data               

are shown in figure 50 and 51. 

 

 
Figure 50. The resulted accuracy and loss for the fully trained EfficientNet B0 model 
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Figure 51. The resulted accuracy and loss curves for the fully trained EfficientNet B0 model 

 

The produced graphs show increased accuracy on the training set but steady accuracy on              

the validation set with an increasing trend on the validation loss. These facts point to an                

overfitting behaviour additionally, the validation set is not balanced but rather imbalanced with             

the initial imbalanced training set distribution. The next experiment will check if the imbalanced              

validation set affects the scores of the model. To do so, the validation dataset will be converted                 

to a balanced dataset with the number of images of the smallest class which is 48 images per                  

class. 
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Figure 52. The resulted accuracy and loss curves for the fully trained EfficientNet B0 model with a balanced 

validation set 
The resulting graphs (Figure 52) show that the network can again learn the training              

images by overfitting to them but the accuracy and loss on the validation set is not satisfactory                 

(Figure 53).  

 
Figure 53. The resulted accuracy and loss for the fully trained EfficientNet B0 model 

 

The small size of the validation set (48 images per class), while being balanced, is something that                 

presents a harder test on the network as the efficientNet has only 48 chances to be correct. That                  
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fact suggests that the validation set needs to be a set percentage of the training set of the                  

magnitude of ~ 0.15-0.25% to produce some viable results. 

The next experiment will be with the initial imbalanced training dataset and an imbalanced              

validation dataset. The validation set is constructed by the ImageDatagenerator method of the             

Keras framework with a percentage of 0.2 and a stratified sampling. The resulting graphs are               

shown in figure 54. 

 
Figure 54. The resulted accuracy and loss curves for the fully trained EfficientNet B0 model 

In this experiment the validation loss decreases as the epochs pass and the accuracy              

increases slightly until the model starts to overfit again. The final results of the accuracy and loss                 

for the model are shown in figure 55. 
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Figure 55. The resulted accuracy and loss for the fully trained EfficientNet B0 model 

The next experiment will use the same initial imbalanced dataset with a 0.2 validation set,               

additionally the weights of the classes are used in the fit_generator method so that the model                

learns to pay attention to the smaller classes. The weights are produced through the class_weight               

method of the sklearn.utils module. After calculating the weights array, the array is converted to               

a dictionary so it can be inserted as an argument to the fit_generator method. The resulting                

graphs for the accuracy and loss of the training process are shown in figure 56. 

 
Figure 56. The resulted accuracy and loss curves for the fully trained EfficientNet B0 model 
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As expected the training accuracy and loss on the training set are worse than the previous                

experiments as the less represented classes are hurting the results of the model. The final results                

on the accuracy and loss of the model are shown in figure 57. 

 
Figure 57. The resulted accuracy and loss for the fully trained EfficientNet B0 model 

5.4. Skin lesion classification application (Mole Shaman) 

In order to test the resulting model on a production environment and confirm its viability               

as an assistive diagnostic tool, a web app was         

developed that consumed the produced model and       

exposes a REST  API endpoint to the user. 

The framework that was used to develop the        

web app was the flask mini framework. Flask is a          

python framework following the Model View      

Controller (MVC) architecture that creates a model for        

the data entities, a controller that handles the API endpoint creation and a view that produces                

frontend functionalities for the user [35]. 

When the app loads a tensorflow graph is constructed in order to save it in a variable and                  

reuse the same graph for each iteration of the model. That procedure is necessary so that the app                  

knows which model to use. The main python file that starts the app is the server.py file, through                  

that file the flask application is loaded and then the model gets loaded in the graph through the                  

functions that are in the efficientnetB0_model.py. Specifically, the function         

load_EfficientnetB0() is executed when the application first loads so that the pre trained             

efficientNet B0 model, which is in a h5 format, gets initiated for prediction. The model is loaded                 

with the use of the load_model() method of the keras framework. 

The initial template the user is served is the home page html with the help of a GET                  

HTTP method in the server.py file (Figure 58). 
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Figure 58. The homepage of the application(Mole Shaman) that prompts the user to choose an image file from the 

local filesystem and submit it for classifying 

After rendering the home page the user has the option of uploading from the local               

filesystem an image of the skin lesion he wishes to diagnose (Figure 59). The application checks                

for nonexistent files and also for file extensions that do not correspond to actual image files. If                 

the checks fail then an error page is presented to the user so he can try again. If the checks pass                     

the application uses a POST HTTP method and executes the predict() function of the server.py               

file. 

 
Figure 59. The image selection screen when the user presses the choose button in order to upload an image 

 

The predict() function in turn calls the predict_class() function of the           

efficientnetB0_model.py file, which through the use of keras preprocessing method, resizes the            
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uploaded image to the dimensions that the model uses so it can be used as an input from the                   

efficientNet model. Pixel values are then turned into floating points and are converted into a               

numpy array. After using that array as an input to the efficientNet model, the resulting               

probabilities for each class are produced and returned to the main python file (server.py). A               

template for displaying the results is constructed to render the results in a readable way (Figure                

60). 

 
Figure 60. The multi-class predictions of the neural network model for the uploaded image 

 

Chapter 6 

Conclusion 

6.1. Results 

The top resulting trained EfficientNet B0 networks present a validation accuracy of            

0.5851 - 0.5951 (Figure 61) which is significantly higher by the random classifier that has an                

accuracy of 1/k = 0.125, where k is the number of classes, but still the accuracy is not high                   

enough to be used in a diagnosis production environment. 
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Figure 61. The top performing trained EfficientNet B0 models 

 

Both models are trained on the initial imbalanced training dataset and are validated on the               

imbalanced validation dataset that was constructed with stratified sampling from the           

ImageDataGenerator class of the Keras framework. The first model is trained for the full 49               

epochs which results into the model overfitting to the training data, that is why its accuracy is                 

96.6%, but not being able to generalise in a satisfactory manner on the validation dataset. The                

second model is produced through early stopping on the same experiment with the model not yet                

being overfitted. The validation accuracy of that model is lower than the fully trained model but                

the validation loss is considerably lower which means that the model is more confident in its                

predictions. 

The resulting accuracy and loss of the transfer learning experiments that were executed             

show that the EfficientNet B0 model presents increased performance, on this particular task,             

when all the weights are fine tuned and not just the last layers of the network. This behaviour is                   

to be expected, because of the differences of the ImageNet dataset that the model was trained on                 

initially and the ISIC dataset. The structures that a convolutional neural network captures             

through the ImageNet dataset relate to an object classification problem while in skin lesion              

classification the structures ultimately need to approach the seven-point system (Figure 62) that             

the dermatologists use to classify a skin lesion.  

The scoring seven-point system was adopted by the Cancer Research campaign in            

Scotland in the 1980s to help dermatologists diagnose early stage melanoma [39]. Early on, each               

feature of the seven-point system was scored with 1 thus making the resulting sum total to 7. The                  

Scotish group recommended that lesions that had a total of 3 needed to be screened by a                 

specialists and lesions that had a total of 4 or more were melanomas with a 90% accuracy. Later                  

on in 1989, the seven-point system was modified to include features of major importance and               

minor ones with a weighted score to help the diagnosis. Again, a lesion of a total score of 3 or                    

more needed an expert opinion in order to correctly classify the skin lesion. 
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Figure 62. The seven point scale dermatologists use in order to classify a skin lesion as a melanoma lesion 

 

Dataset balancing, that was performed in various experiments, was proven to be            

ineffective in increasing the performance of the EfficientNet B0 model. That fact can be              

attributed to the relative small size of the dataset for this particular problem as the classes of the                  

image prediction are great (8) and the differences between them are minimal. Consequently,             

when trying to balance the classes the two options were subsampling the majority classes or               

augment the minority ones which led to very few examples in the first case and almost duplicate                 

examples in the second case. 

Lastly, the experiment with using transfer learning on the EfficientNet B5 model did not              

present increased performance which probably can be attributed to the fact that the training was               

done on the last layers only and not the network in its entirety.  

6.2. Future Work 

The next steps towards increasing the accuracy of the classifier would be the training of               

bigger neural networks in the EfficientNet family as the increased image resolution of the input               

images could help expose the microstructures that the network needs to capture. So far the               
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experiment on the EfficientNet B5 model showed that the network needs to be fine tuned as a                 

whole in order to test its accuracy which is a resource consuming task but it might yield better                  

results. 

Additionally, another technique used for increasing the accuracy of the classification is            

the forming of an ensemble of neural networks, either only efficientNets or an ensemble of               

various architectures that all together vote for the most accurate prediction. By examining the              

leaderboard of the ISIC challenge, this option seems to be an effective one as the top scorers use                  

an ensemble of networks. An ensemble of weak classifiers can provide the final verdict the               

correct structure predictions that are needed for a correct classification, structures that are             

detected by different networks.  

Lastly, various improvements on the dataset can increase the classification accuracy.           

Improvements like increased dataset size by collecting additional high resolution dermoscopic           

images from diagnostic centers and hospitals or by combining patient metadata with the images.              

Apart from increased size, the dataset needs to be comprised of images that follow a capture                

protocol in order to simplify the problem. A standardized process of capturing the images by               

setting the same brightness conditions and distance needs to be applied on all training data as                

well as testing data. Lastly, some data preprocessing can also be performed on the dataset in                

order to remove structures that are not needed for classification like hair or skin that does not                 

belong to the skin lesion. The removal of skin that does not belong to the skin lesion could be                   

performed by training a network that predicts the boundaries of the lesion (e.g. Mask-RCNN              

[37]) and subtracting the excess pixels from the original input image. 
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