
“CLUSTERING ALGORITHM SELECTION

BY META-LEARNING”

Panagiotopoulos Georgios

Prof. Doulkeridis Christos

Submitted in partial fulfillment of the requirements for the Diploma degree of

“Information Systems & Services”

Postgraduate Program “Big Data and Analytics”

Department of Digital Systems

University of Piraeus

Athens, February 2020

“Clustering Algorithm Selection By Meta-Learning” i

Keywords

Data Characterization, Clustering, Meta-Learning, Algorithm Ranking, Algorithm

Selection, Meta-Knowledge

ii “Clustering Algorithm Selection By Meta-Learning”

Abstract

Data clustering attempts to classify a database into object groups based on the

similarities between the objects in question. The quest for a good-quality solution can

become a complex process because of its unsupervised existence. There is currently a

wide range of clustering algorithms, and it can be a slow and expensive process to

select the best one for a given problem. For every dataset that is related to clustering

problems, there is an exhaustive procedure that requests from a Data Scientist firstly

to test each clustering algorithm to find the most suitable one. A system that

recommends the clustering algorithm and guides the user for selecting the right one

would be a great tool that would provide significant benefits to the scientific

community. Rice formulated the Algorithm Selection Problem (ASP) in 1976, which

postulates that the output of the algorithm can be predicted based on the structural

features of the problem. Meta-learning has been used successfully for recommendation

tasks with algorithms. It uses machine learning to induce meta-models capable of

predicting the best algorithm of a new dataset. Experimental results show that the

recommendation improves with these meta-attributes. With a significant accuracy, it

is presented that a system could indeed recommend a clustering algorithm for an

“unknown” dataset only by examining its meta-attributes firstly. Also, this Master

Thesis discusses the relevance to the recommendation of each meta-feature.

“Clustering Algorithm Selection By Meta-Learning” iii

Περίληψη

Η συσταδοποιήση δεδομένων είναι μια προσπάθεια ομαδοποίσης μιας βάσης

δεδομένων σε ομάδες αντικειμένων βασισμένες στις ομοιότητες των εν λόγω

αντικειμένων. Η αναζήτηση μιας ποιοτικής λύσης μπορεί να γίνει μια περίπλοκη

διαδικασία λόγω απουσίας της επιτήρησης. Αυτή τη στιγμή υπάρχει ένα ευρύ φάσμα

αλγορίθμων ομαδοποίησης και μπορεί να είναι μια αργή και δαπανηρή διαδικασία για

την επιλογή του καλύτερου για ένα δεδομένο πρόβλημα. Για κάθε σύνολο δεδομένων

που σχετίζεται με προβλήματα ομαδοποίησης, υπάρχει μια εξαντλητική διαδικασία

που ζητά από έναν Data Scientist πρώτα να ελέγξει κάθε αλγόριθμο ομαδοποίησης για

να βρει το πιο κατάλληλο. Ένα σύστημα που συνιστά τον αλγόριθμο ομαδοποίησης

και καθοδηγεί τον χρήστη για την επιλογή του σωστού θα ήταν ένα εξαιρετικό

εργαλείο που θα προσέφερε σημαντικά οφέλη στην επιστημονική κοινότητα. Ο Ράις

διατύπωσε το πρόβλημα επιλογής αλγορίθμου (ASP) το 1976, το οποίο υποθέτει ότι

η παραγωγή του αλγορίθμου μπορεί να προβλεφθεί με βάση τα δομικά

χαρακτηριστικά του προβλήματος. Η μετα-μάθηση έχει χρησιμοποιηθεί με επιτυχία

για εργασίες συστάσεων με αλγόριθμους. Χρησιμοποιεί την εκμάθηση μηχανών για

να προκαλέσει μετα-μοντέλα ικανά να προβλέψουν τον καλύτερο αλγόριθμο ενός

νέου συνόλου δεδομένων. Τα πειραματικά αποτελέσματα δείχνουν ότι η σύσταση

βελτιώνεται με αυτά τα μετα-χαρακτηριστικά. Με σημαντική ακρίβεια,

παρουσιάζεται ότι ένα σύστημα θα μπορούσε πράγματι να συστήσει έναν αλγόριθμο

ομαδοποίησης για ένα "άγνωστο" σύνολο δεδομένων μόνο εξετάζοντας πρώτα τα

μετα-χαρακτηριστικά του. Επίσης, αυτή η Διπλωματική εξετάζει τη συνάφεια με τη

σύσταση κάθε μετα-χαρακτηριστικού.

iv “Clustering Algorithm Selection By Meta-Learning”

Table of Contents

Keywords .. i

Abstract .. ii

Περίληψη ... iii

Table of Contents .. iv

List of Figures ... vi

List of Tables .. vii

Acknowledgments ... viii

Chapter 1: Introduction .. 1

1.1 Meta - Learning .. 1

1.2 What this work is about ... 2

1.3 How it is done .. 3

1.4 Overall picture .. 3

1.5 Thesis Outline .. 3

Chapter 2: Background Knowledge ... 5

2.1 Machine Learning .. 5

2.2 Clustering Algorithms .. 7

2.3 Clustering Indices .. 13

Chapter 3: Problem Statement ... 19

3.1 Algorithm Selection: A meta-problem ... 19

3.2 Selecting and Recommending an Algorithm ... 20

3.3 Algorithm Recommendation with Meta-learning .. 21

3.4 Related Work ... 22

Chapter 4: Proposed Approach .. 23

4.1 Dataset Pre-Processing ... 23

4.2 Object’s Attribute Approach .. 24

4.3 Distance Measures Approach ... 31

Chapter 5: Implementation Details .. 39

5.1 Language of Choice and Reasoning ... 39

5.2 Operating System, Hardware Specifications and their impact 40

5.3 Code Structure .. 40

Chapter 6: Results .. 43

Chapter 7: Conclusions and Future Work .. 46

Bibliography ... 49

Appendices .. 53

“Clustering Algorithm Selection By Meta-Learning” v

Appendix A : List of Datasets used ..53

Appendix B : Extracted meta-features at object’s similarity approach55

Appendix C : Extracted meta-features at distance-based approach ..56

Appendix D : System’s important sections in python ...57

vi “Clustering Algorithm Selection By Meta-Learning”

List of Figures

Figure 1: Visualization of the DBSCAN approach. .. 8

Figure 2: The DBSCAN pseudo-algorithm ... 9

Figure 3: The K-Means pseudo-algorithm .. 11

Figure 4: The PSO pseudo-algorithm .. 13

Figure 5: Selection of ML algorithms: finding a reduced space and selecting

the best learning algorithm ... 20

Figure 6: Meta-learning to obtain meta-knowledge for algorithm selection 22

Figure 7: Plot example for DBSCAN .. 27

Figure 8: Plot example for Single – Linkage .. 28

Figure 9: Plot example for K-Means ... 29

Figure 10: Plot example for PSO .. 29

Figure 11: 9 Meta-attributes and winner algorithm stored to local DB 31

Figure 12: 2nd plot example for DBSCAN .. 35

Figure 13: 2nd plot example for Single-Linkage .. 35

Figure 14: 2nd plot example for K-Means .. 36

Figure 15: 2nd plot example for PSO .. 36

Figure 16: 19 Meta-attributes and winner algorithm stored to local DB 38

“Clustering Algorithm Selection By Meta-Learning” vii

List of Tables

Table 1: Datasets pre-processing ... 24

Table 2: Meta-attribute set based on the attributes .. 25

Table 3: The internal indices and their respective domains and search

objectives ... 28

Table 4: Example of stored clustering indices for all algorithms 29

Table 5: Example of point system for score and winner ranking 30

Table 6: Example of order after score ranking .. 30

Table 7: Example of order after winner ranking ... 30

Table 8: Example of stored table with results of clustering indices and the rank

of each algorithm ... 31

Table 9: Distance-based meta-features and their respective description. 33

Table 10: 2nd example of stored clustering indices for all algorithms. 36

Table 11: 2nd example fo point system for score and winner ranking 37

Table 12: 2nd example of order after score ranking.. 37

Table 13: 2nd Example of order after winner ranking .. 37

Table 14: 2nd example of stored table with results of clustering indices and the

final rank of each algorithm .. 37

Table 15: Prediction accuracy for the distance-based method 43

Table 16: Prediction accuracy for the attributes-based method (1st attempt) 44

Table 17: Prediction accuracy for the attributes-based method (2nd attempt) 44

viii “Clustering Algorithm Selection By Meta-Learning”

Acknowledgments

This work took nearly a whole year to complete, and during that time, a lot of

things happened in my life that made working on this thesis more difficult than I had

expected. I want to take some time here and thank the people who made this job

possible, given everything that happened.

It goes without saying that I am grateful to my supervisor, professor Doulkeridis,

for his tremendous help and patience to accomplish this work. He was always open

and compassionate for any question that I had. Ηis persistence pushed me to

accomplish what we had discussed from the beginning.

Since my father’s loss ten years now, there is one person in my life that has been

stood to me in every decision I made, right or wrong, and this person could not be

other than my mother. I want to thank her for her love to me and my brothers, and her

support to make all our choices possible.

Finally, I would like to thank all my co-workers at Angelicoussis Group who

firstly trust me and gave me the opportunity, five years now, to work with them in this

high-level company.

Chapter 1: Introduction 1

Chapter 1: Introduction

One of the main Machine Learning (ML) applications is data clustering [1]. With

the growing interest in understanding, processing, and summarizing data

automatically, clustering algorithms have been successfully applied to various

application domains, such as anomaly detection, gene expression analysis, community

detection, and object segmentation.

To obtain a model with a good predictive or descriptive efficiency, the selection

of an appropriate algorithm to address a given ML task is fundamental. Each algorithm

attempts to model and solve a problem by extracting information on those

characteristics, leading researchers to investigate a large number of algorithms. The

selection of the most suitable algorithms among this large number is typically based

on empirical observation or previous experiences of the user, which can be subjective

and have a high computational cost

Problem-solving is a central and well-defined concept of Computer Science in

general. After formulating a computational problem, an algorithm is used to solve the

problem. Algorithms are formal and methodical approaches to a certain problem that

returns a solution within finite (and reasonable) time and space. A problem may be

(and is often) approached by more than one algorithms. Much research has been

invested in analyzing the properties of algorithms and their efficiency in problem-

solving, to be able to understand the impact of choosing a particular algorithm.

Unfortunately, there is no single algorithm that achieves the best performance overall

instances of a problem class. Rice [2] formulated the Algorithm Selection Problem

(ASP), which proposes that there is a relation between the characteristics of a problem

and has been tackled in different research fields, well known as meta-attributes.

1.1 META - LEARNING

The meta-attributes compose the knowledge (meta-knowledge) to select the

most suitable algorithm for a new, unseen problem, and this can be achieved by a

system that aims to learn which problems characteristics contribute to a better

2 Chapter 1: Introduction

performance of one algorithm over the others. This is a meta-learning system that deals

with the ASP by learning about the behavior of the learning algorithms. The meta-

knowledge, also known as meta-data, consists of the meta-attributes and the meta-

target. The meta-attributes are features or characteristics derived from the problems.

The meta-target is the meta-learning device destination vector. A comprehensive

review of meta-learning and ASP can be found in Smith-Miles [3][4], in which the

author described how their application is applied to various fields of research, such as

time series prediction [5], sorting [6], and optimization [3][4], among others.

1.2 WHAT THIS WORK IS ABOUT

In this Master Thesis, it is proposed the direction of selecting dynamic

algorithms, using divergent algorithms on different sub-instances of the original

problem, in a way that ends up making use of the best aspects of each available

algorithm, by applying the most suitable algorithm to each sub-instance to yield the

minimum possible cost. In other words, during the problem-solving process, we leave

usable algorithms in between. Of course, how this dynamic selection works must be

general and not unique to a specific problem or set of algorithms. Otherwise, the

reusability benefit of this work would be limited if any

Work is focused on clustering Algorithms, where it is designed and implemented

a new framework in which each “unknown” dataset will be imported, and the most

suitable clustering algorithm will be recommended in order then to be run. With this

framework, it is reduced a significant time from configuring and running all suitable

clustering algorithms and then choose the most relevant one.

The way that this “system” recommends a clustering algorithm comes from

extracting dataset’s meta-data and then compares its results with a pool of already

known clustering datasets. Then the system recommends the most suitable clustering

algorithm according to its similarity of their meta-data. The whole meta-data idea is

based on previous work by Daniel Gomes Ferrari and Leandro Nunes de Castro [7]. In

their work, are proposed two different ways to collect the meta-data. In the first way,

meta-attributes are based on the object’s attributes. The other way proposes meta-

attributes based on the distance between the objects of the clustering problem instead

of on the object attributes themselves.

Chapter 1: Introduction 3

A series of 50 datasets (Appendix A), four algorithms, and five internal indices

are used to validate the proposals, and the meta-knowledge is constructed with two

distinct sets of meta-attributes: the conventional approach, the modern unsupervised

distance-based method. In performance evaluation, three hybrid ranking approaches

are used: an existing system using the average rank level and two new methods focused

on score and competition. Next, this information is applied to a meta-learning system

to learn the relationship between the features of the problems and the output of the

algorithms, and a selection process tests the quality of meta-knowledge.

1.3 HOW IT IS DONE

The implementation uses 50 datasets that are collected from different sources,

extracts their meta-data, runs clustering algorithms, and after store their meta-attributes

and their performance in a dataset. A framework was built, in which each dataset where

imported, its meta-data were extracted, and then all four clustering algorithms were

run. Using the five internal indices, the most efficient one was selected and stored

along with the dataset’s meta-data. The dataset that contains the meta-data and the

most suitable clustering algorithm is used for training and test purposes, where a

classification algorithm K-NN [8] is run. K-NN is an instance-based algorithm that

classifies an object based on a search for its nearest neighbors.

1.4 OVERALL PICTURE

The algorithm recommendation systems are fascinating research topics, as also,

they can be precious to the research community. Overall, the results of the below work

were encouraging, and they prove that the meta-learning system can be an extremely

positive addition in the clustering algorithm recommendation.

1.5 THESIS OUTLINE

This Thesis is organized as follows: In Chapter 2 it will be provided the

necessary theoretical background, which includes clustering algorithms, internal

indices, and a basic introduction to the K-NN classification algorithm. In Chapter 3 it

4 Chapter 1: Introduction

will be provided a more detailed problem statement and an overview of the related

work in the area. In Chapter 4 it will be described the approach to extract the

appropriate meta-knowledge. In Chapter 5 it will be presented all the implementation

details of this approach. In Chapter 6 it will be provided the results of this work and

finally, in Chapter 7 it will be discussed the final results and the comparison between

the two meta-data approaches and will also be suggested future work.

Chapter 2: Background Knowledge 5

Chapter 2: Background Knowledge

This chapter provides the background information required for further

comprehension of the research discussed in this study. We explain the notion of

machine learning and its principal categories first; we then delve into the subarea of

Algorithm Selection, explaining tis goals and methodologies. Finally, we introduce the

evaluators of the clustering algorithms known also as clustering indices

2.1 MACHINE LEARNING

Machine learning [9][10] is an interdisciplinary research field which combines

ideas developed in the fields of computer science, mathematics, statistics, operational

research, cognitive science and engineering to provide machine intelligence. Machine

learning is a research field which is dedicated to automated system learning.

Automated learning systems range in complexity and application. They may be

defined by a very simple memorization-based learning system [11] such as the one

filtering unwanted emails (spams) based on memorized table of unwanted senders, to

those using inductive reasoning in dynamic environments to perform more complex

tasks [12]. Machine learning has recently become the tool of choice when it is

important to extract useful information from huge, complex datasets. In this section

we will shed some light on the field of machine learning with a focus on the various

approaches available.

There are many different ways to describe machine learning. It can be defined

by the learning process or the model (engine) that it uses to determine. Another way

of classifying a learning system is based on the principle of learning that occurs,

another is based on the level of interaction that a learning system employs with its

feedback. An interactive learner will engage with his / her environment (data) by

conducting an experiment, for example, to gain more input information, whereas a

passive learner will simply rely on observing the input information. Machine learning

research is generally divided into three distinct branches. Supervised [13],

Unsupervised [14] and Learning for Reinforcement [15]

6 Chapter 2: Background Knowledge

2.1.1 Supervised Learning

A desired set of outputs for given inputs (learning phase) are given to the

machine in supervised machine learning. It then asks the machine to produce an output

for the newly arriving input.

The optimal result could be either a class mark used for classification in machine

learning systems [16], or a real number in those used for regression [17]. The optimal

performance in regression problems is to predict or calculate a new value for a

dependent variable using values derived from data attributes based on learning from

previous training sets.

Nonetheless, the optimal output for classification problems is to classify the

input data into predefined labels or groups using a training set of previously classified

data.

2.1.2 Unsupervised Learning

Unlike supervised machine-learning systems, the machine is not provided with

the desired result during the training phase in unmonitored machine-learning systems.

It is the duty of the computer (model) to learn how to construct a function that clusters

the input data according to their statistical characteristics.

This clustering is not established by any supervisory mechanism during the

learning phase or by any user; rather, it is carried out on the basis of the discovered

relationship between the different features of the input and the modeled clusters.

Deciding how to organize inputs into clusters that share common properties is

an essential job of the unsupervised learning systems. Clustering is the process of

dividing the datasets into sub-sets which share common features. The K-means

clustering algorithm (will be explained in a later section) is a popular technique for

unsupervised learning. Other examples of unsupervised learning are those that are used

in our framework and will be presented more extensively at the following chapter

(chapter 2.2), like the particle swarm optimization (PSO) [24] and Density-based

spatial clustering of applications with noise (DBSCAN) [19] and Single linkage [20].

Chapter 2: Background Knowledge 7

2.2 CLUSTERING ALGORITHMS

As previously mentioned, this Master Thesis tries to figure out a mechanism in

which in an unknown dataset, a clustering algorithm will be recommended. However,

it is necessary to clarify what clustering is and where it can be implemented. According

to Zubin and Joseph [18], the goal of cluster analysis or clustering is to group a

collection of objects in such a way that objects in the same group (called a cluster) are

more similar to each other (in a sense) than objects in other groups (clusters).

Cluster analysis itself is not a particular algorithm but the overarching process

that needs to be resolved. Multiple algorithms that differ significantly in their

understanding of what constitutes a cluster and how to find them effectively can

achieve this. Popular cluster notions include groups with small distances between

members of the cluster, large areas of data space, intervals, or unique statistical

distributions. Consequently, clustering can be formulated as a problem of multi-

objective optimization. The required clustering algorithm and parameter settings

(including parameters such as the distance function to be used, a density threshold, or

the number of predicted clusters) depend on the individual data set and the planned

application of the results.

Cluster analysis as an action is not an automatic task but an iterative knowledge

discovery process or multi-objective interactive optimization involving trials and

failures. Sometimes, preprocessing data and modeling parameters need to be changed

until the output achieves the desired properties.

2.2.1 DBSCAN

DBSCAN stands for Density-based spatial clustering of applications with noise

and is a proposed data clustering algorithm by Hans-Peter Kriegel, Martin Ester, Jorg

Sander, and Xiaowei Xu in 1996 [19]. It is a non-parametric density-based clustering

algorithm: given a set of points in some space, it aggregates points that are tightly

packed together (points with many adjacent neighbors), labeling them as outliers lying

alone in low-density regions (whose closest neighbors are too far away).

The algorithm that runs for DBSCAN has one goal and this aims to define dense

regions that can be calculated by the number of the objects near a given point.

DBSCAN requires two important parameters: epsilon ("eps"), and minimum points

8 Chapter 2: Background Knowledge

("MinPts"). The eps parameter defines the neighborhood radius around a point x.

MinPts parameter is the minimum number of neighbors within the radius of “eps”.

Each point x in the dataset is marked as a core point, with a neighbor count greater

than or equal to MinPts. We say x is border point if the number of its neighbors is less

than MinPts, but it belongs to some core point z's epsilon-neighborhood. Ultimately,

if a point is neither a center nor a boundary point, then a noise point or an outlier is

named. The following figure shows the different types of points using MinPts= 4 (core,

boundary, and outlier points). Here x is a core point because (neighbors epsilon(x) =

4), y is a boundary point because (neighbors epsilon(y) < MinPts), thus belongs to the

core point x (epsilon) neighborhood. Z is a noise level, at last.

Figure 1: Visualization of the DBSCAN approach.

Chapter 2: Background Knowledge 9

The algorithm of density-based clustering works as below, where this begins

with an unvisited arbitrary point of departure. The epsilon-neighborhood of this point

is retrieved, and if it contains enough points, a cluster is started. The argument is

otherwise known as noise. Remember that this point may be found later in a

sufficiently sized epsilon-environment of a different point and thus become part of a

cluster. If a point is found to be a dense part of a cluster, it is also part of that cluster

in its epsilon-neighborhood. Therefore, all points which are located within the

neighborhood are included, as is their own neighborhood when they are dense as well.

This process continues until the cluster that is related to density is completely defined.

Then, a new unvisited point is retrieved and analyzed, resulting in a further cluster or

noise being detected.

Density-based spatial clustering

DBSCAN(dataset, eps, MinPts){

cluster index

C = 1

for each unvisited point p in dataset {

 mark p as visited

 # find neighbors

 Neighbors N = find the neighbor points of p

 if |N|>=MinPts:

 N = N U N'

 if p' is not member of any cluster:

 add p' to cluster C

}

Figure 2: The DBSCAN pseudo-algorithm

2.2.2 Single-Linkage

Single-linkage clustering [20] is one of several Hierarchical clustering methods

in statistics. It is based on grouping clusters in bottom-up fashion (agglomerative

clustering), combining two clusters at each step that contain the closest pair of

elements that are not yet part of the same cluster as one another. One downside of this

approach is that it tends to produce large, thin clusters in which neighboring elements

10 Chapter 2: Background Knowledge

of the same cluster have small distances, but elements at opposite ends of a cluster can

be much farther from each other than two elements of other clusters. This can lead to

difficulties in class definition that could usefully subdivide the data.

That participant is within a cluster of its own at the beginning of the

agglomerative clustering process. The clusters are then grouped sequentially into

larger clusters until all of the components end up in the same cluster. The two clusters

divided by the shortest distance are combined at each stage. The definition of' shortest

distance' is what distinguishes the different methods of agglomeration. In single-link

clustering, the distance between two clusters is determined by a single pair of elements,

namely those two elements which are closest to each other (one in each cluster). The

shortest of those connections that remain at any point causes the two clusters whose

elements are involved in fusing together. The process is also known as the closest

clustering of neighbors. The product of the clustering can be visualized as a

dendrogram showing the cluster fusion series and the distance at which each fusion

occurred.

Mathematically, the linkage function – the distance D(X,Y) between the clusters

X and Y – is described by the expression

𝐷(𝑋, 𝑌) = min
𝑥∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦)

where X and Y are any two sets of elements that are considered as clusters, and d(x,y)

denotes the distance between the elements x and y.

2.2.3 K-Means

K-means clustering, as defined by James MacQueen in 1967 [21], is a method

of vector quantization that is common for cluster analysis in data mining, originally

from signal processing. The goal of the clustering of k-means is to divide n

observations into k clusters. In that, each observation belongs to the cluster with the

nearest mean, serving as a cluster prototype. These results in data space partitioning

into Voronoi cells [22]. K-Means minimizes distances within the cluster (squared

Euclidean distances), but not regular Euclidean distances, which would be the most

challenging problem for Weber's problem: The mean optimizes square errors, while

the Euclidean distances are minimized only by the geometrical median. For example,

better Euclidean solutions can be found using k-medians and k-medoids.

Chapter 2: Background Knowledge 11

The problem is computationally complicated (NP-hard) however, efficient

heuristic algorithms easily converge to a local optimum. Typically these are close to

the expectation-maximization algorithm for Gaussian distribution mixtures through an

iterative optimization approach used by both k-means and Gaussian mixture modeling.

Both use cluster centers to model the data. However, clustering k-means tends to find

clusters of comparable spatial magnitude, while the method of expectation-

maximization enables clusters to have different forms.

The algorithm has a loose relationship with the k-nearest neighbor classifier, a

common classification machine learning technique that is often confused with k-means

by the name. Applying the1-nearest neighbor classifier to the k-means-obtained cluster

centers classifies new data into existing clusters. This is known as the Rocchio

algorithm [23] or the nearest centroid classifier.

The K-means algorithm in data mining begins with the first group of randomly

selected centroids, which are used as the starting points for each cluster, and then

perform iterative (repetitive) calculations to optimize centroid positions. This prevents

the formation and optimization of clusters; if either the centroids stabilized— their

values are unchanged because the clustering was efficient or the number of iterations

specified was achieved.

K-Means

Initialize k means with random values

For a given number of iterations:

 Iterate through items:

 Find the mean closest to the item

 Assign item to mean

 Update mean

Figure 3: The K-Means pseudo-algorithm

2.2.4 Particle Swarm Optimization

In computational science, particle swarm optimization (PSO) is a computational

approach that optimizes a problem by attempting to iteratively develop a candidate

solution with respect to a given quality measure. It solves a problem by having a

population of candidate solutions, here dubbed particles, and moving these particles

12 Chapter 2: Background Knowledge

over the position and velocity of the particle in the search space based on simple

mathematical formulae. The movement of each particle is determined by its locally

best-known location but is also directed towards the best-known search-space

positions, which are modified as other particles find better positions. This should push

the swarm towards the best solutions.

Credited initially to Kennedy, Eberhart, and Shi [24], PSO was initially intended

to model social behavior as a stylized depiction of organism activity in a bird flock or

fish school. The algorithm was simplified, and optimization was observed. Kennedy

and Eberhart's book [25] discusses many facets of PSO and swarm intelligence in

philosophical terms. Poli carries out a detailed study of PSO applications. Recently,

Bonyadi and Michalewicz [26] have released a comprehensive review of theoretical

and experimental work on PSO.

PSO is a metaheuristic, as it makes few or no assumptions about optimizing the

problem and can search for vast spaces of candidate solutions. Metaheuristics like

PSO, however, do not guarantee that an optimal solution is ever found. PSO often does

not use the gradient of the problem being optimized, which means that PSO does not

require that the issue of optimization be distinguished as needed by traditional methods

of optimization such as gradient descent and quasi-newton methods.

A simple version of the PSO algorithm works by having a population of

candidate solutions (called a swarm) (called particles). According to a few simple

formulae, these particles are moved around in the search space. The motion of the

particles is guided by their own best-known position in the search space, as well as the

best-known position of the whole swarm. When improved positions are found, these

will then come to guide the swarm's movements. The process is repeated, and it is

expected that a satisfactory solution can eventually be seen but not guaranteed.

Chapter 2: Background Knowledge 13

Particle Swarm Optimization

For each particle
 Initialize particle
END

Do
 For each particle
 Calculate fitness value
 If fitness value is better than best fitness value
(pBest) in history
 set current value as new pBest
 End

 Choose the particle with best fitness value of all the
particles as the gBest
 For each particle
 Calculate particle velocity according equation (a)
 Update particle position according equation (b)
 End

While maximum iterations or min error criteria is not attained

Figure 4: The PSO pseudo-algorithm

2.3 CLUSTERING INDICES

The concept of validation steps for clustering results has, therefore been a

challenging issue that numerous methods have sought to overcome. A Clustering

Validation Index (CVI) can be used to measure the quality of the clustering

performance and multiple of them are described by M. Halkidi [27] [28]. A CVI's goal

is to estimate the most suitable K based on cluster compactness and separation. The

indices of validity may be divided into three categories [29]: internal, external, and

relative. The external validation index takes advantage of prior knowledge, the internal

index is based on data information only, and multiple clustering findings are compared

in a relative CVI. Alternative approaches for calculating the number of clusters also

exist, for example, by evaluating the stability of the clustering method [30].

Cluster validation takes into account the quality of the result of a clustering

algorithm, trying to find the partition which best fits the nature of the data. The number

of clusters given as a parameter for many clustering algorithms should be determined

14 Chapter 2: Background Knowledge

based on the data's natural structure. Like the best clustering solution, also the number

of clusters is not always straightforward, and there may be several' false' answers. The

number can also depend on the resolution, i.e., whether the separabilities within and

between the clusters are considered globally or locally.

During the implementation, the clustering validation was measured by 5

different cluster internal indices. These are the Davies-Bouldin index, Hubert-Levin

index (also known as C-Index), Dunn index, Calinski-Harabasz index, and Silhouette

index. The sections below will be given further information about these indices.

2.3.1 Davies-Bouldin index

The Davies-Bouldin index (DBI) was introduced by David L. Davies and Donald

W. Bouldin in 1979 [31] as a metric for evaluating clustering algorithms. This is an

internal assessment scheme where the analysis of how well the clustering was

performed is achieved using the inherent quantities and features of the dataset. This

has a downside that this approach recorded a good value that does not mean the best

retrieval of the information.

How does this index work? First, as δk is denoted the mean distance of the points

belonging to cluster Ck to their barycenter G{k}:

Also, it is indicated by

The distance between the barycenters G{k}and G{k’} of clusters Ck and Ck’. One

computes, for each cluster k, the maximum Mk of the quotients
δk + δk′

𝛥kk′
 for all indices

k’ ≠ k. The Davies-Bouldin index is the mean value, among all the clusters, of the

quantities Mk:

2.3.2 Hubert and Levin index

The Hubert and Levin index is an internal clustering index discovered by L.J

Hubert and J.R Levin in 1976 [32]. It is also known as C-Index. The C-Index is an

Chapter 2: Background Knowledge 15

evaluation measure expressed as: [dw - min(dw)] / [max(dw) - min(dw)], where dw is the

sum of all nd within-cluster distances, min(dw) is the sum of the nd smallest pairwise

distances in the data set, and max(dw) is the sum of the nd biggest pairwise distances.

All pairwise distances in the data set must be measured and stored in order to calculate

the C-Index. In this case of binary data, distance storage poses no issues because only

a few distances are feasible. Calculating all distances, however, will make the index

prohibitive for large data sets. The maximum value of the second difference is taken

as the proposed number of clusters.

2.3.3 Dunn index

The Dunn index was firstly introduced by J. C. Dunn in 1974 [33] as a metric for

evaluating clustering algorithms. This is part of a validity index category, including

the Davies-Bouldin index or Silhouette index, as it is an internal assessment scheme

where the outcome is focused on the clustered data itself.

Like all other such indices, the aim is to classify compact cluster sets with a small

variance between cluster members and well separated where the means of different

clusters are sufficiently far apart compared to the variance within the cluster. A higher

Dunn index would indicate better clustering for a given cluster assignment. One of the

drawbacks of using this is the computational cost as cluster numbers and data

dimensionality increase.

In order to compute the Dunn index, it has to be denoted by dmin the minimal

instance between points of different clusters and dmax the largest within-cluster

distance. The distance between clusters Ck and Ck’ is measured by the distance between

their closest points:

And dmin is the smallest of these distances dkk’:

For each cluster Ck, there is a Dk as the largest distance separating two distinct

points in the cluster (sometimes called the diameter of the cluster):

16 Chapter 2: Background Knowledge

Then dmax is the largest of these distances Dk:

dmax = max
1≤𝑘≤𝐾

𝐷𝑘

The Dunn Index is defined as the quotient of dmin and dmax:

𝐶 =
𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥

2.3.4 Calinski-Harabatz index

The Calinski-Harabatz index discovered by T. Calinski and J. Harabasz in 1974

[34] is an evaluation index for clustering algorithms and is defined as the ratio between

the inter-cluster dispersion and the intracluster dispersion.

(𝐵𝐶𝐷 ∗ (𝑁 − 𝑘)) / (𝑊𝐶𝐷 ∗ (𝑘 − 1))

where n is the number of data points, and k is the number of the clusters. The

minimum value of the second difference is taken as the proposed number of the

clusters.

2.3.5 Silhouette index

The Silhouette index is also an internal index responsible for the interpretation

and validation of consistency with clusters of data. The technique offers a brief

graphical depiction of how well each item was categorized. It was firstly introduced

by Peter J. Rousseeuw in 1987 [35].

The silhouette value is the measure of how close an entity is to its own (cohesion)

cluster relative to other (separation) clusters. The outline varies from −1 to + 1, where

a high value means that the object is well aligned with its own cluster and poorly

matched to neighboring clusters. If most objects have high value, then the

configuration for the clustering is correct. If many points have a low or negative value,

then there may be too many or too few clusters in the clustering configuration. The

outline can be measured with any distance metric like the distance from the Euclidean

or the distance from Manhattan.

The silhouette index is calculated as below. For each point, Mi, its mean distance

to each cluster. One defines the within-cluster mean distance a(i) as the mean distance

of point Mi to the other points of the cluster it belongs to: if Mi ∈ Ck, we thus have

Chapter 2: Background Knowledge 17

On the other hand, while evaluating the mean distance 𝜕(Mi, Ck’) of Mi to the

points of each of the other clusters Ck’:

Now, b(i) is denoted as the smallest of these mean distances:

The value k’, which realizes this minimum indicates the best choice for re-

affecting, if necessary, the point Mi to another cluster than the one it currently

belongs to.

For each point Mi, one then forms the quotient

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))

Which is called the silhouette width of the point. Its quantity takes values

between -1 and 1: a value near 1 indicates that the point Mi affects clusters to the

right whereas a value near -1 indicates that the point should be affected to another

cluster.The mean of the silhouette widths for a given cluster Ck is called the cluster

mean silhouette and is denoted as sk:

Finally, the global silhouette index is a calculation of the mean of the mean

silhouettes through all the clusters:

𝐶 =
1

𝐾
∑ 𝑠𝑘

𝐾

𝑘=1

Chapter 3: Problem Statement 19

Chapter 3: Problem Statement

3.1 ALGORITHM SELECTION: A META-PROBLEM

As stated in the introductory section, the critical issue that this work seeks to

address is that of selecting algorithms for clustering problems. Selecting the right

algorithm for a problem is a decision that depends on more than just the theoretical

assumptions of each algorithm regarding time and memory complexity. Hardware

information is significant, as is the expected distribution of input from a statistical

point of view.

Inner details of an algorithm, in combination with the above, are also relevant.

That makes the selection of algorithms a complex problem in itself, a kind of meta-

problem. As such, it requires the same amount of exploration and analysis as any

standard computational problem. Solutions should be formulated generically and

methodically so that they can be applied to each instance of this meta-problem with

minimal modification.

A per-instance solution for any problem from scratch is usually not cost-

effective, especially when solutions that apply to the general nature of that problem

have already been proposed. This is why there are generic algorithms that use to

general problem formulations, such as sorting algorithms, search algorithms,

algorithms for limit satisfaction, etc. Since we have developed the process of selecting

the appropriate algorithm as a problem, it would be reasonable to try to create solutions

for that problem that will apply in the general case rather than a method per instance,

where each instance is treated as a whole new problem.

This directly implies that for each instance, the solution will not be the same,

which is why we refer to this as a selection of dynamic algorithms. This means that a

decision will be made based on the instance's specifics but will be made based on a set

of general rules that will apply regulations that have been defined to make the best

decision based on the particulars.

20 Chapter 3: Problem Statement

3.2 SELECTING AND RECOMMENDING AN ALGORITHM

Consider selecting or recommending an appropriate subset of ML algorithms for

a given task. The problem can be interpreted as a search problem, where the search

space includes the individual ML algorithms, and the goal is to identify the best

performing learning algorithms package. Figure 5 demonstrates a general framework

for the collection of learning algorithms.

The process can be divided into two phases, according to this framework. In the

first phase, the objective is to identify an appropriate sub-set of learning algorithms

given a training dataset using available meta-knowledge. The performance of this step

is a ranked subset of ML algorithms, reflecting the new, reduced space for bias.

Instead, the second phase of the process involves searching through the reduced area.

To identify the best alternative, each learning algorithm is evaluated using different

performance parameters (e.g., consistency, accuracy, recall, etc..).

Figure 5: Selection of ML algorithms: finding a reduced space and selecting the best

learning algorithm

This varies from traditional approaches by using a foundation of meta-

knowledge. As described above, one important goal in meta-learning is to research

how meta-knowledge can be extracted and used to benefit from past experience.

Information contained in the base of metaknowledge may take various forms. It may

include, for example, a set of learning algorithms showing good (a priori) performance

on datasets similar to the one being analyzed; algorithms characterizing Machine

Chapter 3: Problem Statement 21

Learning algorithms and datasets and metrics available to measure similarity or task-

relatedness of the dataset. Meta-knowledge, therefore, includes not only useful

information for dynamic bias selection but also functions and algorithms that can be

invoked to generate new useful information.

It is noted that metaknowledge usually does not remove the need for search

entirely but rather offers a more efficient way of searching through alternative spaces.

The success of the search process depends on the quality of the metaknowledge

available.

3.3 ALGORITHM RECOMMENDATION WITH META-LEARNING

A recommendation algorithm system can be defined as a tool that supports the

user in the data mining process selection algorithm step. It indicates which algorithm

to use to achieve the best possible results given a dataset. If there are sufficient

computational resources available to try multiple algorithms, it should also indicate

which ones to execute and in which order. In practice, such a system can be said to

guide the experimental process in a data mining application.

To achieve this goal, predicting the true performance of the algorithms

accurately is not as important to an algorithm recommendation method as predicting

their relative performance is. Therefore the algorithm recommendation task can be

defined as the algorithm ranking according to their predicted performance.

It is important to use data describing the performance of algorithms and the

characteristics of problems, which we will refer to as metadata to address this problem

using a machine learning approach. The figure below illustrates how meta-learning

with the ranking recommendation by Average Ranking works (Figure 6)

22 Chapter 3: Problem Statement

Figure 6: Meta-learning to obtain meta-knowledge for algorithm selection

 The performance data is used for determining algorithm rankings. The primary

function of this learning assignment is these scores, called target rankings. The

criteria used to describe the problems are characteristics that are independent of the

specific task.

3.4 RELATED WORK

Treating algorithm selection as a problem is not a whole new idea in itself. It

was officially stated first by J.R. Rice as a computational problem in 1976 [36]. The

Portfolio of Algorithms was introduced as a framework to treat algorithm collection

as a formal computational problem [37].

Because algorithm selection was identified as a computational problem, a few

methods have been developed as to how it should be solved. These include studying

the instance to be solved and selecting a suitable algorithm for it [38], running multiple

algorithms from the portfolio in parallel, and ending as soon as one solution is obtained

by the fastest algorithm [39] and switching algorithms to runtime [40].

The work of Daniel Gomes Ferrari and Leandro Nunes de Castro [7] is the one

closest to this Master Thesis, since the extraction of meta-features and the ranking

method are based on their work. Also, the use of the specific clustering algorithms, as

well as the clustering indices, are referred to this work.

Chapter 4: Proposed Approach 23

Chapter 4: Proposed Approach

To provide solution for the issues of selecting the proper clustering algorithm

mentioned in the previous sections, the proposed method uses two sets of meta-

features. One that is related to the object’s attributes and based on statistical measures

such as the percentage of missing values in a dataset and the other based on the

Euclidean distance between each dataset’s instance.

The general idea is the creation of a system that will import any dataset and

preprocess its data according to some “pre-processing rules”. Then it will extract its

meta-features (object/distance-based) and store it to a local database. After that, it will

try to find similarities in these meta-features with an already stored collection of meta-

features, and finally, it will propose a clustering algorithm according to the similarities.

To achieve the above, we created a local database that contains a collection of

50 extracted meta-features along with their preferable clustering algorithm that were

obtained by 50 datasets from different domains. Below it is described our steps in

creating such a system and how efficient that system is.

4.1 DATASET PRE-PROCESSING

In this approach, the experiments used datasets collected from the different

locations in the world wide web such as Kaggle, University of Eastern Finland, etc.

These datasets cover various domains, including engineering, biology, medicine,

physics, and robotics. Thus, unlike the datasets used in the previous studies, the

datasets used here cover a wider variety of application domains.

However, before starting experimenting in each one of them, some actions

needed to be taken first, known as pre-processing steps. In all datasets, it was necessary

to remove all information about labels or classes. Also, all nominal values were

converted into numbers following the alphabetical order of the unique values. With

the above two actions, the datasets contained now only numerical values. Then, if any

attribute had the same value for all its objects, this attribute was removed.

The same action (attribute removal) was also applied to any attribute that had a

different value for each its object. Any object that had a missing value was replaced

24 Chapter 4: Proposed Approach

by zero (0), and if any attribute had more than 40% missing values, this was removed

as well. As a last necessary action, after completing all the above steps, was to

normalize the remaining data over the interval [0,1].

To summarize, all preprocessing steps can also be found below.

Table 1: Datasets pre-processing

Pre-Processing Datasets

(1) Information about labels or classes were removed

(2) Nominal values were converted into numbers

(3) Removal of attributes with same value at all their objects

(4) Removal of attributes with different value at all objects

(5) Removal of attributes of having more than 40% missing values

(6) Replaced any object with missing value with 0

(7) Data Normalization [0,1]

4.2 OBJECT’S ATTRIBUTE APPROACH

The object’s attribute approach was proposed by D.G. Ferrari and L.N. de

Castro, as already mentioned before. At their approach, data similarity can be observed

by extracting nine meta-attributes based on the object’s attributes of a dataset (Table

2).

Chapter 4: Proposed Approach 25

Table 2: Meta-attribute set based on the attributes

Meta-attribute

MA1

MA2

MA3

MA4

MA5

MA6

MA7

MA8

MA9

Description

Log2 of the number of objects

Log2 of the number of attributes

Percentage of discrete attributes

Percentage of outliers

Mean entropy of discrete attributes

Mean concentration between discrete attributes

Mean absolute correlation between continuous attributes

Mean skewness of continuous attributes

Mean kurtosis of continuous attributes

The first four meta-attributes (MA1 – MA4) extract global information about the

problem. They are universal values that can be easily obtained. At the 5th meta-

attributes and after the attributes are separated to discrete and continuous. To

automatically distinguish whether an attribute is discrete or not so are defined the

following rules. First, if the attribute has real numbers as objects, then the attributes

are considered as continuous. Secondly, if the number of unique values is less than

30% then these attributes are regarded as discrete. Lastly, if the above is not occurring,

then the attributes are regarded as continuous.

In order to identify the outliers of the datasets, the Interquartile Range (IQR) [41]

rule is used. This method is based on the boxplot, as V. Hoge [42] suggested in 2004.

Data suggests the beliefs are grouped around a certain core value. The IQR says how

the "mean" values are distributed out; it can also be used to determine when some of

the other values are "too far" from the central value. These "too distant" points are

called "outliers" because they "lie outside" the range we expect them to be within. The

IQR is the length of the box in your box-and-whisker plot. An outlier is any value that

is more than 1⁄2 times the length of the box at either end of the box. The Lower Limit

is calculated as the subtraction of the first quartile (Q1) to the IQR that is multiplied

first by 1,5 as follows

 Lower Limit = Q1 – (1,5 * IQR)

26 Chapter 4: Proposed Approach

The Upper Limit is calculated as the addition of the third quartile (Q3) to the

IQR multiplied by 1,5 as follows

 Upper Limit = Q3 + (1,5 * IQR)

To summarize, an object is considered an outlier if at least one of its attributes

has a value outside its respective upper or lower limits.

4.2.1 Extracting meta-features

In this method, each dataset is imported to our system, and then all the data

cleaning rules (mentioned on 4.1) are applied. As a second step, the framework checks

each dataset’s column if it contains a discrete object or continuous and for it breaks

the dataset to two smaller. One that contains the discrete values and the other contains

the columns with continuous values.

For each column that contains discrete values (according to the rules on 4.2), the

entropy and the concentration are calculated. Then, the mean value of each of these

calculations is stored into two registers (MA5 and MA6). After that, is counted the size

of the total objects of the dataset and then the length of the columns-attributes which

that dataset contains. Then, we produce and store the values for the first two meta-

attributes (MA1 and MA2). While using the IQR method, we are dividing the dataset

into two quantiles (0.25 and 0.75), and then we are calculating the outliers according

to the rules. In order to find the percentage of the outliers in each dataset, we divide

the outliers from the number of total objectives (which we calculated before), and this

value is stored in a separate register (MA4). Knowing which attributes have discrete

values and which have not, it is easy to calculate the percentage of discrete columns

of the dataset (MA3).

On the other hand, for each column with continuous attributes, it is calculated

and stored (MA7, MA8, MA9) the correlation, the skewness, and the kurtosis of these

columns. To calculate the correlation, it is used the Pearson method [43], which is the

covariance of the two variables separated by the sum of their standard deviations. The

description type includes a "product moment" that is, the mean (first moment about

the origin) of the sum of mean-adjusted random variables. The framework continues,

with the creation of two tables where they will be stored the score of each clustering

algorithm according to the clustering indices and the ranking between all the clustering

algorithms.

Chapter 4: Proposed Approach 27

For each dataset, we will execute the four clustering algorithms (DBSCAN, SL,

PSO, K-Means), and they will be evaluated by the five clustering indices (DB, CH,

SIL, DU, HL). The first two clustering algorithms (DBSCAN and SL) require as a

configuration only the threshold. We compare the results for the number of clusters

for each of them, and we are using this number of clusters as an input to the next

algorithms (PSO, K-Means), which request this number as an input.

Starting with the DBSCAN, we are running this algorithm by changing its

threshold in order to have the best result according to the clustering indices. After we

end up in the ideal number of clusters according to the DBSCAN algorithm, we are

storing this number to a register, and also we are saving the score of all clustering

indices for DBSCAN.

Figure 7: Plot example for DBSCAN

Then, we continue with the Single – Linkage algorithm. Following the same

procedure, we are running multiple times the Single – Linkage algorithm by changing

the threshold until the most efficient number of clusters is found, always according to

clustering indices.

28 Chapter 4: Proposed Approach

Figure 8: Plot example for Single – Linkage

We store again this number as well as the score of all five indices for this

algorithm, and we compare the stored indices score between the Single – Linkage and

the DBSCAN algorithm. For the above example (Figures 7, 8), according to the

clustering indices, the adequate number of clusters were DBSCAN clusters, which

were seven. At the below table, it can be observed the objective for each internal index

we are using.

Table 3: The internal indices and their respective domains and search objectives

Internal Index

Davies-Bouldin [20]

Calinski-Harabasz [23]

Silhouette [24]

Dunn [22]

Hubert-Levin [21]

Interval

[0;+∞)

[0;+∞)

[-1;+1)

[0;+∞)

[0;+1]

Objective

Min

Max

Max

Max

Min

After comparing the indices, we take the number of clusters from the winner,

and we use it as an input to the next clustering algorithm (K-Means). There, we again

run a clustering algorithm, and we are storing the scores of the internal indices.

Chapter 4: Proposed Approach 29

Figure 9: Plot example for K-Means

The same procedure is followed back for the next and last one clustering

algorithm (PSO). We store its indices values again.

Figure 10: Plot example for PSO

Completing the execution of all four clustering algorithms for each dataset we have

stored their clustering indices values.

Table 4: Example of stored clustering indices for all algorithms

30 Chapter 4: Proposed Approach

There, somehow, we should consider one of them as a winning clustering

algorithm. In order to find this winning algorithm, we are following the methods of

score ranking and winner ranking.

Table 5: Example of point system for score and winner ranking

The method of score ranking is based on race tournaments, in which at the end

of each race the pilots get points. At the end of the tournament, the winner is declared

the pilot (algorithm), with more points. In this methodology, in each index ranking

each algorithm receives a number of points, based on its location. These points are

summed, and the final rankings are constructed in downward order.

Table 6: Example of order after score ranking

On the other hand, the method of winner ranking is based on the number of

victories in a pairwise competition between the algorithms, taking all internal indices

into account. The algorithm with the largest number of wins occupies the first place,

and the algorithm with the smallest number of wins holds the last position. The number

of victories can be calculated as follows:

Vi = ∑ |𝑟|𝑚
𝑗=1 - pij

Where Vi is the number of the victories of the i-th algorithm, m is the number of the

internal indices, |r| is the number of the algorithms in the ranking, and finally, pij is the

rank position for the i-th algorithm in the j-th internal index.

Table 7: Example of order after winner ranking

Finally, the winner algorithm is found by calculating and finding the mean

value of its position for all algorithms. Then it is stored and printed in the application

as below:

Chapter 4: Proposed Approach 31

Table 8: Example of stored table with results of clustering indices and the rank of each

algorithm

Last but not least, we create a database instance locally, were we store the nine

meta-attributes and the winner algorithm. The above procedure is followed for all 50

datasets (Appedix A), so at the end we have 50 entries stored in this local database

which we will use later for our prediction tests.

Figure 11: 9 Meta-attributes and winner algorithm stored to local DB

4.3 DISTANCE MEASURES APPROACH

The distance measures approach assumes that data similarity can be noticed by

extracting nineteen meta-attributes based on the object’s attributes of a dataset. To

better understanding how this works, we can consider the following definitions. Let

assume that an Ω exists where Ω = {1,….,k,….,n} be a set of n instances indexed by

k. Each instance k is represented by a vector of quantitative attributes xk = (xk,1,….,

xk,j,…., xk,p) described by p attributes indexed by j where xk,j ∈ ℜ.

The distance measures approach has a time complexity O(n2), as it calculates for

each row its distance to all the other rows. On the contrary in object’s similarity

approach this complexity is simply O(n) as it only computes statistical values like the

percentage of the outliers. This difference in complexity, it has a great impact in

performance for Big Data problems as it could be easily understand that for big

32 Chapter 4: Proposed Approach

datasets size of 3 million rows, the operations would be around to 3.000.0002 for this

O(n2) algorithm, which is actually a lot.

Firstly, the Euclidean distance between the instances in a dataset must be

determined. The distance measured between instances xk and xl is given by the

equation below:

𝑑(𝑥𝑘, 𝑥𝑙) = 𝑑𝑘,𝑙 = √∑(

𝑝

𝑗=1

 𝑥𝑘,𝑙 − 𝑥𝑙,𝑗)2

Based on this measure, a vector d, containing the dissimilarity among all

instances, is built as follows:

d = [d1,2, d1,3,.…, dk,l,…., dn-2, n-1, dn-1, n]

Next, in the interval [0, 1], vector d is normalized, creating a new vector w’.

Given a value indexed by u (w[u]) from vector w, the corresponding normalized value

for index u (w’[u]) in vector w’ is given by:

w’[𝑢] =
𝑤[𝑢]− min (𝑤)

max(𝑤)−min (𝑤)

The 19 meta-features are extracted from each dataset after obtaining the vector

w’. These meta-features (MD1 to MD19) are described in table 4.

According to A. Kalousis (2002) [44], histograms could provide more details

about the characterizing data. In particular, from vector w’, MD1 to MD5 extract pure

statistical data (measures, variance, standard deviation, skewness, and kurtosis). Meta-

functions MD6 to MD15 capture vector w’ dependent histogram information. This

histogram occurs in the interval [0, 1], as the values from the vector w’ are normalized.

The meta-functions from MD16 to MD19 are extracted from the absolute Z-score

histogram.

Chapter 4: Proposed Approach 33

Table 9: Distance-based meta-features and their respective description.

Meta-attributes

MD1

MD2

MD3

MD4

MD5

MD6

MD7

MD8

MD9

MD10

MD11

MD12

MD13

MD14

MD15

MD16

MD17

MD18

MD19

Description

Mean of w’

Variance of w’

Standard deviation of w’

Skewness of w’

Kurtosis of w’

% of values in the interval [0,0.1]

% of values in the interval (0.1,0.2]

% of values in the interval (0.2,0.3]

% of values in the interval (0.3,0.4]

% of values in the interval (0.4,0.5]

% of values in the interval (0.5,0.6]

% of values in the interval (0.6,0.7]

% of values in the interval (0.7,0.8]

% of values in the interval (0.8,0.9]

% of values in the interval (0.9,1.0]

% of values with absolute Z-score in the interval [0,1)

% of values with absolute Z-score in the interval [1,2)

% of values with absolute Z-score in the interval [2,3)

% of values with absolute Z-score in the interval [3,∞)

The Z-score [45] shows how many standard deviations an item is from the mean

value of the distribution, and is measured as:

𝑧 =
𝑥 − 𝜇

𝜎

Where x is the element value, μ is its mean value, and σ is its standard deviation.

The absolute Z-score value is discretized into four bins, between the intervals [0,1),

[1,2), [2,3) and [3,∞).

34 Chapter 4: Proposed Approach

4.3.1 Extracting meta-features

One more as at the previous method, each dataset is imported to our system, and

then all the data cleaning rules (mentioned on 4.1) are applied. As a second step, the

dataset is normalized to the interval [0,1], and then we create an array that contains the

Euclidean distance values between each row.

From this array, we can easily calculate the mean, the variation, the standard

deviation, the skewness, and the kurtosis values and store these values to registers

(MD1 to MD5). The next step is to calculate the histogram of this array with Euclidean

distances and calculate / store requested meta-attributes MD6 to MD15. For the four

last meta-attributes, we use the scipy library in order to calculate the Z-score first, then

we calculate its absolute values and store them to registers MD16-MD19. The

framework continues, with the creation of two tables where they will be stored the

score of each clustering algorithm according to the clustering indices and the ranking

between all the clustering algorithms.

Working identical to the fist method (4.2.1), after calculating and storing all the

necessary meta-attributes, we proceed with running the clustering algorithms and

clustering indices. For each dataset, we will execute the four clustering algorithms

(DBSCAN, SL, PSO, K-Means), and they will be evaluated by the five clustering

indices (DB, CH, SIL, DU, HL). The first two clustering algorithms (DBSCAN and

SL) require as a configuration only the threshold. We compare the results for the

number of clusters for each of them, and we are using this number of clusters as an

input to the next algorithms (PSO, K-Means), which request this number as an input.

Identically to 4.2.1, we start by configuring and running the DBSCAN

algorithm;

Chapter 4: Proposed Approach 35

Figure 12: 2nd plot example for DBSCAN

After configuring the threshold (Appendix B), in above example DBSCAN

suggests that the adequate number of clusters for this dataset is number 2. Then, we

continue with the Single-Linkage algorithm. Also, at this specific dataset example,

Single linkage suggests 4 clusters (Figure 13). We store and compare their scores

according to the clustering indices (table 3), and we conclude to the ideal number of

clusters, which in our example case was 2 number of clusters.

Figure 13: 2nd plot example for Single-Linkage

 Later, this number of clusters is used as an input to the K-Means and PSO

algorithm to store also their scores.

36 Chapter 4: Proposed Approach

Figure 14: 2nd plot example for K-Means

We are completing the execution of all four clustering algorithms for each

dataset we have stored their clustering indices values.

Figure 15: 2nd plot example for PSO

As we can see at the below example, all stored values of clustering indices can

be easily compared in order to produce the socre and winner rank.

Table 10: 2nd example of stored clustering indices for all algorithms.

Chapter 4: Proposed Approach 37

There, again, we should consider one of them as a winning clustering algorithm

according to the combination of score and winner ranking as below.

Table 11: 2nd example fo point system for score and winner ranking

To calculate the score ranking, we sum the scores of each algorithm, and we

put it in descending order. So in our example, K-Means achieves a 38 score.

Table 12: 2nd example of order after score ranking

Following now the calculations to produce the winner ranking, according to

point system, K-Means acquired 14 points.

Table 13: 2nd Example of order after winner ranking

We again calculate the mean of score and winner ranking position and store it.

In both ranks, winner and score, K-Means managed to be the leader so it is obvious

that this algorithm will be also the winner algorithm for this example dataset.

Table 14: 2nd example of stored table with results of clustering indices and the final

rank of each algorithm

Finally, we create a second database instance locally, where we store the

nineteen meta-attributes and the winner algorithm. The above procedure is followed

for all 50 datasets, so in the end, we have 50 entries stored in this local database, which

we will use later for our prediction tests.

38 Chapter 4: Proposed Approach

Figure 16: 19 Meta-attributes and winner algorithm stored to local DB

Chapter 5: Implementation Details 39

Chapter 5: Implementation Details

5.1 LANGUAGE OF CHOICE AND REASONING

As the problem of recommending a clustering algorithm belongs to the Machine

Learning category, the use of Python as a programming language was the first choice.

Python can be described as a programming language with a lower barrier to entry,

flexible, has a cross-platform compatibility, and good visualization options.

The main reason, however, for this choice was that Python offers a vast library

ecosystem. A library is a module or collection of modules that are released by different

sources, such as PyPi, including a pre-written piece of code that enables users to access

certain functionality or perform various actions. Python libraries have base-level

objects, so developers don't always have to code them from the very start.

Machine Learning requires ongoing data processing, and the Python libraries

allow you to access, manage, and transform data. Below are some of the libraries that

were used in the framework:

• Scikit-learn for handling the Machine Learning algorithms of clustering.

• Pandas in order to create high-level data structures and analysis. Pandas

library was responsible for importing data for their original format (*.txt or

*.csv), data configuration, and exporting the results into a SQL schema.

• Matplotlib assisted in plotting the data into 2D plots, and as a result, this

visualization helped in understanding the clusters better.

• SciPy offered some of the internal clustering indices as well as some of the

clustering algorithms as well

• And last but not least, the NumPy library. Numpy handed the mathematical

functions for the arrays, and it assisted in extracting and creating all the meta-

attributes that were necessary for the implementation.

40 Chapter 5: Implementation Details

5.2 OPERATING SYSTEM, HARDWARE SPECIFICATIONS AND THEIR

IMPACT

The entire framework was implemented in a Windows 10 environment as we

took advantage of python’s cross-platform compatibility. There, after installing the

scientific Python distribution Anaconda, which is bundled in Spyder IDE, we could

use Anacoda’s Jupyter utility.

Jupyter Notebook is an Open-Source software that offered the opportunity to

write “live” code with simultaneously executing and debugging every line of code.

Also, it provided “live” charts and results.

The system on which the application was benchmarked was a 64-bit system,

which may be needed when calculating the rational numbers to allow for larger

integers and longs. On both cores, the processor is dual-core with a core frequency of

2GHz with 8 GB RAM.

5.3 CODE STRUCTURE

Following the typical approach, all functions were stored on a different notebook

and were called at the declaration section at the main file. The code was arranged in

such a way that the developer only needs to execute the main file line by line in order

to observe the results of each command.

At the end of the execution file, a command responsible for inserting the

extracted data into a SQL database was applied. Then after creating these three

databases, one for each implementation, the final step was to execute the K-NN file

that contains the K-NN algorithm and produces all the relevant results.

Each python command has notes and commends easy to read and understand. It

is worth noticing that the entire process of adding extra algorithms (if needed) it can

be easily performed. The developer can extend the experiment by simply calling any

other cluster algorithm or clustering index he wants.

The most important parts of the implementation code can be found on Appendix

D

Chapter 5: Implementation Details 41

Chapter 6: Results 43

Chapter 6: Results

After evaluating each clustering algorithm for all the existing datasets and

storing their meta-attributes to a local database, what comes next is the evaluating of

these two methods. On the one hand, there are the meta-attributes based on the

dataset’s attributes, and on the other hand, there are the meta-attributes based on the

distance between the dataset’s objects.

To evaluate each method, we treated this problem as a classification problem,

and we performed the K-NN classification algorithm for the two datasets. For each of

these datasets, we trained the system according to 75 percent of there total values.

Then, with the remaining 25 percent, we tried to predict the winner algorithm for these

values. Even if the datasets contained only 50 rows, the results were extremely

positive.

We tried first to run the K-NN algorithm for the dataset that contained the meta-

attributes based on the distance between its objects. Having the 75/25 ratio between

the training and the test data, we managed to have a 77% accuracy in predicting the

winner algorithm as it is depicted in the table below:

Table 15: Prediction accuracy for the distance-based method

The results reveal that there is an excellent correlation between the distance of each

object and the clustering algorithm that provides the most accurate clusters.

On the other side, when the K-NN algorithm was executed for the dataset that

included the meta-attributes based on the attributes, with the analogy between training

data and test data to be 75/25, we had only 46% accuracy in predicting the winner

algorithm.

44 Chapter 6: Results

Table 16: Prediction accuracy for the attributes-based method (1st attempt)

Trying to improve this rating, we increased the number of training data to 80%. Then

with the remaining 20%, we tried the next prediction.

Table 17: Prediction accuracy for the attributes-based method (2nd attempt)

The accuracy of this prediction increased significantly to 70%. The above shows us

that this method that contains the nine meta-attributes requests a dataset that includes

more values from the existing one, which will adequately train the system, and as a

result, the prediction later will become more accurate.

Comparing those two methods, we realize that both approaches are efficient with

high recommendation quality. Both results showed the feasibility of meta-learning

systems for an unlabeled approach to the selection problem of the clustering

algorithms.

Characterization based on meta-attributes that do not depend on the object labels

and evaluation of the algorithm by using internal indices that avoid known solutions

allow the methodology proposed to be applied to any clustering problem. However, as

the results reveal, the meta-attributes based on the distance between the objects are

more efficient than the meta-attributes based on datasets attributes. With a slight

Chapter 6: Results 45

difference (77% from 70%), the second method produced better results in predicting

the most suitable cluster algorithm.

Lastly, it is worth to be mentioned, that for Big Data problems, the first approach

has a lot more value on that as it overcomes the algorithm complexity of the distance-

based approach.

46 Chapter 7: Conclusions and Future Work

Chapter 7: Conclusions and Future Work

This Master Thesis investigated the automatic recommendation of Clustering

Algorithms. Data characterization is an essential part of meta-learning-based

recommender systems. To improve the proposal, two methods were experimentally

examined in a set of 50 datasets.

The suggested collection of meta-functions incorporates the tests of correlation

and dissimilarity. Using this new set of meta-functions, experiments were performed

to test the predictive efficiency of a clustering algorithm recommender program. The

framework recommends the most acceptable ranking of clustering algorithms for a

new dataset.

The assessment occurred on two occasions. The first was by obtaining some

meta-attributes according to dataset’s statistic values, and the second was by obtaining

these meta-attributes by the distanced base model. After extracting their meta-data,

each dataset examined in order to find the most suitable clustering algorithm according

to metrics from clustering internal indices. These two pieces of information, meta-data,

and the clustering algorithm, were stored in local databases and then tries for prediction

occurred.

According to the K-NN algorithm, both methods were extraordinarily efficient

and accurate. However, a comparison between them depicts that the method based on

the distance between the dataset’s objects was more accurate, with also a smaller

training set of data. It presented better results than the classic approach along with a

higher recommendation quality. Finally, a selection technique of the attributes could

be used for the meta-features collected by these two methods.

As future work, new meta-features could be introduced and experimentally

tested, removing other elements from the datasets. Using more datasets could make

the meta-learners more accurate. Also, the recommender method might also use

different classification algorithms.

It is interesting to consider how the metalearing approach could be adapted or

extended also to problems in other domains, such as operations research and of course

how metalearning could be possible have an entity in Big Data problems.

Chapter 7: Conclusions and Future Work 47

Bibliography 49

Bibliography

[1] Gan, G., Ma, C., Wu, J., 2007. Data clustering: theory, algorithms, and

applications. SIAM.

[2] J.R. Rice, The algorithm selection problem, Adv. Comp. 15 (1976) 65–118.

[3] K.A. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm

selection, ACM Comput. Surv. 41 (1) (2009) 1–25,

http://dx.doi.org/10.1145/1456650.1456656.

[4] K.A. Smith-Miles, Towards insightful algorithm selection for optimisation using

meta-learning concepts, in: IEEE International Joint Conference on Neural

Networks, 2008, IJCNN 2008 (IEEE World Congress on Computational

Intelligence), 2008, pp. 4118–4124.

[5] B. Arinze, S.-L. Kim, M. Anandarajan, Combining and selecting forecasting

models using rule based induction, Comput. Oper. Res. 24 (1997) 423–433.

[6] H. Guo, Algorithm Selection for Sorting and Probabilistic Inference: A Machine

Learning-Based Approach, Kansas State University, 2003 (256).

[7] Daniel Gomes Ferrari, Leandro Nunes de Castro, Clustering Algorithm Selection

By Meta-Learning Systems: A new distance-based problem characterization and

ranking combination methods, Information Sciences [2015]

[8] Wikipedia, K-Nearest neigbors Algorithm

[9] C. M. Bishop, “Pattern recognition,” Machine Learning, vol. 128, 2006.

[10] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning: An

artificial intelligence approach. Springer Science & Business Media, 2013

[11] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

Networks, vol. 61, pp. 85–117, 2015

[12] M. T. Banday and T. R. Jan, “Effectiveness and limitations of statistical spam

filters,” arXiv, 2009.

[13] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine

learning perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383, 2000

[14] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A

review of classification techniques,” 2007

[15] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised learning,” in The

elements of statistical learning. Springer, 2009, pp. 485–585

[16] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996

[17] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley & Sons, 2012,

vol. 936

https://www.sciencedirect.com/science/article/pii/S0065245808605203
http://dx.doi.org/10.1145/1456650.1456656.
https://www.sciencedirect.com/science/article/abs/pii/S0305054896000627
https://www.sciencedirect.com/science/article/abs/pii/S0305054896000627
https://www.sciencedirect.com/science/article/pii/S0020025514011967?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0020025514011967?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0020025514011967?via%3Dihub
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

50 Bibliography

[18] Zubin, Joseph (1938). "A technique for measuring like-mindedness". The

Journal of Abnormal and Social Psychology. 33 (4): 508–516.

doi:10.1037/h0055441. ISSN 0096-851X.

[19] Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei (1996).

Simoudis, Evangelos; Han, Jiawei; Fayyad, Usama M. (eds.). A density-based

algorithm for discovering clusters in large spatial databases with noise.

Proceedings of the Second International Conference on Knowledge Discovery

and Data Mining (KDD-96). AAAI Press. pp. 226–231. CiteSeerX

10.1.1.121.9220.

[20] Everitt B (2011). Cluster analysis. Chichester, West Sussex, U.K: Wiley. ISBN

9780470749913.

[21] MacQueen, J. B. (1967). Some Methods for classification and Analysis of

Multivariate Observations. Proceedings of 5th Berkeley Symposium on

Mathematical Statistics and Probability. 1. University of California Press. pp.

281–297. MR 0214227. Zbl 0214.46201. Retrieved 2009-04-07

[22] Principles of Geographical Information Systems, By Peter A. Burrough, Rachael

McDonnell, Rachael A. McDonnell, Christopher D. Lloyd

[23] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze: An

Introduction to Information Retrieval, page 163-167. Cambridge University

Press, 2009.

[24] Kennedy, J.; Eberhart, R. (1995). "Particle Swarm Optimization". Proceedings

of IEEE International Conference on Neural Networks. IV. pp. 1942–1948.

doi:10.1109/ICNN.1995.488968.

[25] Kennedy, J.; Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kaufmann.

[26] Bonyadi, M. R.; Michalewicz, Z. (2017). "Particle swarm optimization for

single objective continuous space problems: a review". Evolutionary

Computation. 25 (1): 1–54 doi:10.1162/EVCO_r_00180

[27] Halkidi, M., Batistakis, Y., Vazirgiannis, M., 2002. Clustering Validity Methods

Part 1. ACM SIGMOD Record 31(2).

[28] Halkidi, M., Batistakis, Y., Vazirgiannis, M., 2002. Clustering Validity Methods

Part 2. ACM SIGMOD Record 31(3).

[29] Rendón, E.; Abundez, I.; Arizmendi, A.; Quiroz, E.M. Internal versus external

cluster validation indexes. Int. J. Comput. Commun. 2011, 5, 27–34.

[30] Kuncheva, L.I.; Vetrov, D.P. Evaluation of stability of k-means cluster

ensembles with respect to random initialization. IEEE Trans. Pattern Anal.

Mach. Intell. 2006, 28, 1798–1808

[31] Davies, David L.; Bouldin, Donald W. (1979). "A Cluster Separation Measure".

IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-1 (2):

224–227. doi:10.1109/TPAMI.1979.4766909.

[32] Hubert, L.J., & Levin, J.R. (1976). A general statistical framework for assessing

categorical clustering in free recall.Phycological Bulletin, 83, 1072–1080.

https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0055441
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9220
https://ieeexplore.ieee.org/document/488968
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1162%2FEVCO_r_00180
https://ieeexplore.ieee.org/document/4766909

Bibliography 51

[33] Dunn, J. C. (1973-09-17). "A Fuzzy Relative of the ISODATA Process and Its

Use in Detecting Compact Well-Separated Clusters". Journal of Cybernetics. 3

(3): 32–57. doi:10.1080/01969727308546046

[34] Calinski, T., and Harabasz, J. (1974) A Dendrite Method for Cluster Analysis,

Communications in Statistics, 3, 1-27.

[35] Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation

and Validation of Cluster Analysis". Computational and Applied Mathematics.

20: 53–65. doi:10.1016/0377-0427(87)90125-7.

[36] J. R. Rice, “The algorithm selection problem" Advances in Computers, vol. 15,

pp. 65-118, 1976.

[37] B. A. Huberman, R.M. Lukose and T. Hogg, “An economic approach to hard

computational problems” Science, vol. 275, pp. 51-54, 1996.

[38] L. Xu, F. Hutter, H. H. Hoos and K. Leyton-Brown, “SATzilla-07: The Design

and Analysis of an Algorithm Portfolio for SAT” in Proceedings of the 13th

International Conference on Principles and Practice of Constraint Programming

(CP-07), pp. 712-727, 2007.

[39] Carla P. Gomes, Bart Selman, Nuno Crato and Henry Kautz, “Heavy-tailed

phenomena in satisfiability and constraint satisfaction problems” J. Autom.

Reason., vol. 24(1-2), pp. 67-100, 2000.

[40] C. P. Gomes and B. Selman, “Algorithm portfolios” Artificial Intelligence, vol.

126(1-2), pp. 43-62, 2001.

[41] Ronald Deep, “Probability and Statistics: With Integrated Software Routines”,

Academic Press, 2006

[42] V. Hodge, J. Austin, A survey of outlier detection methodologies, Artif. Intell.

Rev. 22 (2004) 85–126.

[43] "SPSS Tutorials: Pearson Correlation". Retrieved 14 May 2017

[44] Kalousis, A., 2002. Algorithm selection via meta-learning. University of

Geneva, Genebra.

[45] Z-score definition, Adam Hayes,

https://www.investopedia.com/terms/z/zscore.asp

https://www.tandfonline.com/doi/abs/10.1080/01969727308546046
https://www.sciencedirect.com/science/article/pii/0377042787901257?via%3Dihub
https://link.springer.com/article/10.1007%2Fs10462-004-4304-y
https://libguides.library.kent.edu/SPSS/PearsonCorr
https://www.investopedia.com/terms/z/zscore.asp

52 Bibliography

Appendices 53

Appendices

Appendix A: List of Datasets used

Dataset rows attributes
DBSCAN
(eps/min) SL

3d_spatial_network 3750 4 0.11, 15 ward, 10

absenteeism_at_work 740 21 1.1, 4 compl, 2.1

ae_train 1250 12 0.3, 4 ward, 11

c1r4r_02 180 10 0.44, 4 ward, 4

c1r5r_01 162 10 0.49, 4 ward, 4

c1r5r_02 168 10 0.46, 4 ward, 4

c1r6r_02 147 10 0.4, 4 ward, 4

c1r7r_02 120 10 0.5, 4 ward, 3.5

Frogs_MFCCs 700 12 0.35, 4 ward, 7

gesture_phase_b3_raw 750 12 0.32, 4 compl, 1.5

HTRU_2 1700 9 0.41, 4 ward, 5

l1n_01 136 10 0.33, 4 average, 0.9

l1n_05 131 10 0.4, 4 average, 0.9

l1r_02 134 10 0.4, 5 average, 0.9

l1r_03 135 10 0.4, 5 average, 0.9

l1r_04 138 10 0.37, 5 average, 0.9

l1r_05 124 10 0.38, 4 average, 0.9

LG_G-Watch_1 2100 6 0.107, 6 average, 0.9

movement_libras_1 45 91 2, 4 ward, 5

movement_libras_5 90 91 2.5, 4 ward, 10

movement_libras_10 165 12 0.45, 4 ward, 3

mturk_cluster_data 85 180 3, 3 ward, 13

mturk_data_feature 30 500 7, 7 average, 8.9

perfume_dataset 20 29 0.3, 2 ward, 2

Samsung-Galaxy-Gear-2 2100 6 0.107, 6 average, 0.9

SCADI 70 143 5, 6 ward, 12

seeds_dataset 210 8 0.5, 4 ward, 2.5

turkiye-student-evaluation 455 33 1, 4 ward, 15

Wholesale_customers_data 440 8 1, 4 ward, 7

zAggregation 788 3 0.1, 5 ward, 3.5

zCollege 777 17 0.3, 4 ward, 6

zD 3100 3 0.1, 4 ward, 9

zflu 240 3 0.1, 4 ward, 3

zGENERAL 8950 17 0.3, 4 ward, 30

zMall_Customers 200 4 0.15, 4 ward, 3

zs3 5000 2 0.02, 4 ward, 7

ztoys 373 3 0.2, 4 single, 0.5

zunb 6500 2 0.07, 4 ward, 8

54 Appendices

zcars 261 7 0.23, 4 ward, 5

buddymove_holidayiq 249 7 0.27, 4 ward, 4

c1r4r_01 175 10 0.4, 4 ward, 5

c1r6r_01 146 10 0.5, 4 ward, 3.5

c1r7r_01 117 10 0.5, 4 ward, 3.5

gesture_phase_a2_raw 750 12 0.32, 4 ward, 6

gesture_phase_c3_raw 750 12 0.33, 4 ward, 6

l1n_02 138 10 0.38, 4 ward, 6

l1n_04 131 10 0.5, 4 ward, 3

l1r_01 139 10 0.38, 4 ward, 3

movement_libras_8 135 91 2, 4 ward, 4

Sales_Transactions_Dataset 141 12 0.6, 4 ward, 3

Appendices 55

Appendix B: Extracted meta-features at object’s similarity approach

id ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8 ma9 walgo

1 13.873 2.000 0.000 0.040 0.000 0.000 0.366 0.070 -0.074 KM

2 13.924 4.392 28.571 0.206 0.000 0.619 0.184 0.596 2.803 PSC

3 13.873 3.585 0.000 0.147 0.000 0.000 0.285 -0.072 -0.277 KM

4 10.814 3.322 0.000 0.722 0.000 0.000 0.300 0.127 -0.586 KM

5 10.662 3.322 0.000 0.864 0.000 0.000 0.334 0.254 -0.248 DBS

6 10.714 3.322 0.000 0.833 0.000 0.000 0.321 0.216 -0.295 DBS

7 10.522 3.322 0.000 0.884 0.000 0.000 0.392 0.127 -0.753 KM

8 10.229 3.322 0.000 0.917 0.000 0.000 0.320 0.385 -0.820 DBS

9 13.036 3.585 0.000 0.250 0.000 0.000 0.281 -0.089 -0.240 KM

10 13.136 3.585 0.000 0.233 0.000 0.000 0.287 -0.084 -0.231 PSC

11 13.901 3.170 11.111 0.118 0.000 0.858 0.485 2.240 12.571 PSC

12 10.409 3.322 0.000 1.176 0.000 0.000 0.247 0.094 19.338 SL

13 10.355 3.322 0.000 1.221 0.000 0.000 0.269 0.782 15.244 SL

14 10.388 3.322 0.000 1.269 0.000 0.000 0.306 -0.061 9.468 DBS

15 10.399 3.322 0.000 1.259 0.000 0.000 0.268 -0.368 14.567 DBS

16 10.430 3.322 0.000 1.232 0.000 0.000 0.303 -0.394 8.663 SL

17 10.276 3.322 0.000 1.371 0.000 0.000 0.308 0.162 9.207 SL

18 13.621 2.585 0.000 0.071 0.000 0.000 0.392 0.026 -0.581 KM

19 12.000 6.508 0.000 2.637 0.000 0.000 0.333 -0.221 -0.428 DBS

20 13.000 6.508 0.000 1.319 0.000 0.000 0.322 -0.458 -0.589 SL

21 10.951 3.585 0.000 0.909 0.000 0.000 0.296 -0.048 -0.371 SL

22 13.901 7.492 100.000 2.281 0.000 0.784 0.000 0.000 0.000 PSC

23 13.873 8.966 100.000 5.980 0.000 0.388 0.000 0.000 0.000 PSC

24 9.180 4.858 0.000 9.828 0.000 0.000 0.941 -0.272 1.174 SL

25 13.621 2.585 0.000 0.071 0.000 0.000 0.641 -0.112 -0.692 KM

26 13.289 7.160 99.301 2.428 0.000 0.721 1.000 0.379 -0.452 PSC

27 10.714 3.000 12.500 0.595 0.000 0.333 0.667 0.267 -0.732 PSC

28 13.874 5.044 33.333 0.233 0.000 0.292 0.682 -0.198 -1.000 KM

29 11.781 3.000 25.000 0.398 0.000 0.560 0.416 5.149 50.252 SL

30 11.207 1.585 33.333 0.127 0.000 0.218 0.508 0.227 -1.358 DBS

31 13.689 4.087 0.000 0.250 0.000 0.000 0.343 1.709 10.330 KM

32 13.183 1.585 0.000 0.032 0.000 0.000 0.426 -0.030 -1.220 DBS

33 9.492 1.585 33.333 0.417 0.000 0.538 0.508 0.067 -0.750 PSC

34 17.215 4.087 58.824 0.021 0.000 0.342 0.389 5.210 71.740 DBS

35 9.644 2.000 0.000 0.625 0.000 0.000 0.421 0.190 -0.699 KM

36 13.288 1.000 0.000 0.020 0.000 0.000 0.669 0.132 -1.075 PSC

37 10.128 1.585 33.333 0.268 0.000 0.615 0.721 0.230 -0.756 PSC

38 13.666 1.000 0.000 0.031 0.000 0.000 0.568 1.265 4.727 PSC

39 10.835 2.807 14.286 0.438 0.000 0.359 0.677 0.487 -0.387 KM

40 10.767 2.807 0.000 0.574 0.000 0.000 0.594 0.485 -0.376 KM

41 10.773 3.322 0.000 0.800 0.000 0.000 0.284 0.352 0.051 SL

42 10.512 3.322 0.000 0.959 0.000 0.000 0.336 0.167 -0.491 DBS

43 10.192 3.322 0.000 1.111 0.000 0.000 0.333 0.265 -0.555 DBS

44 13.136 3.585 0.000 0.211 0.000 0.000 0.276 -0.076 -0.320 SL

45 13.136 3.585 0.000 0.233 0.000 0.000 0.288 -0.085 -0.322 KM

46 10.430 3.322 0.000 1.087 0.000 0.000 0.268 0.581 14.925 KM

47 10.355 3.322 0.000 1.221 0.000 0.000 0.258 0.761 15.146 SL

48 10.441 3.322 0.000 1.295 0.000 0.000 0.268 -0.535 14.729 KM

49 13.585 6.508 0.000 0.920 0.000 0.000 0.298 -0.395 -0.528 DBS

50 10.725 3.585 0.000 1.123 0.000 0.000 0.296 -0.071 -0.227 KM

56 Appendices

Appendix C: Extracted meta-features at distance-based approach

id md1 md2 md3 md4 md5 md6 md7 md8 md9 md10 md11 md12 md13 md14 md15 md16 md17 md18 md19 walgo

1 0.570 0.050 0.224 0.212 -0.399 1.912 10.508 20.607 25.393 20.801 13.700 5.591 1.341 0.141 0.004 65.746 30.638 3.529 0.087 KM

2 1.708 0.146 0.382 -0.613 0.790 0.207 0.806 2.074 6.894 16.203 30.044 30.712 11.191 1.774 0.094 71.019 24.286 3.834 0.861 PSC

3 0.815 0.045 0.212 -0.048 -0.209 0.130 1.594 7.166 18.569 27.843 25.670 14.367 4.118 0.516 0.026 67.317 28.352 4.199 0.132 KM

4 1.140 0.171 0.414 -0.272 -1.173 0.521 4.221 10.093 15.059 11.657 8.132 14.606 22.266 12.297 1.148 59.417 39.398 1.186 0.000 KM

5 1.129 0.170 0.412 -0.174 -0.951 1.196 7.737 13.810 15.467 11.625 21.601 18.511 8.358 1.610 0.084 63.101 35.342 1.557 0.000 DBS

6 1.139 0.187 0.433 -0.193 -1.094 1.219 6.401 10.800 13.708 11.627 10.115 15.676 17.679 10.686 2.089 61.513 37.546 0.941 0.000 DBS

7 1.166 0.227 0.477 -0.231 -1.459 0.308 3.439 11.304 16.056 11.844 5.004 5.955 14.435 28.143 3.513 56.779 42.857 0.363 0.000 KM

8 1.190 0.175 0.418 -0.174 -0.965 0.980 4.314 8.992 13.165 13.389 15.168 11.933 16.821 12.731 2.507 59.664 38.782 1.555 0.000 DBS

9 0.866 0.049 0.221 -0.094 -0.175 0.116 1.449 6.422 16.392 26.620 26.913 16.220 5.073 0.740 0.056 67.595 28.020 4.233 0.152 KM

10 0.851 0.050 0.224 0.035 -0.159 0.121 1.548 7.612 19.854 28.551 24.975 12.929 3.802 0.569 0.039 67.618 27.998 4.202 0.182 PSC

11 0.484 0.171 0.414 1.392 0.911 37.292 33.875 6.914 4.854 8.469 5.242 2.666 0.559 0.127 0.002 80.093 13.224 5.996 0.687 PSC

12 0.804 0.069 0.263 0.866 3.048 1.307 9.292 22.876 31.100 25.370 7.930 0.654 0.000 0.752 0.719 72.190 24.924 1.416 1.471 SL

13 0.821 0.080 0.284 0.590 1.629 2.079 10.711 20.435 28.597 24.674 10.100 1.856 0.164 0.881 0.505 70.851 26.142 1.515 1.491 SL

14 0.873 0.094 0.307 1.183 3.520 1.234 8.619 22.007 36.012 22.904 5.084 1.190 0.943 1.212 0.797 76.961 18.887 1.784 2.368 DBS

15 0.849 0.067 0.259 0.594 2.370 1.061 6.877 18.032 32.968 28.358 10.404 0.818 0.243 0.818 0.420 72.029 24.356 2.134 1.481 DBS

16 0.852 0.094 0.307 1.005 2.440 1.619 9.923 24.236 27.124 24.289 8.590 1.312 0.360 1.492 1.058 74.537 21.908 1.058 2.497 SL

17 0.868 0.104 0.322 1.261 3.372 1.665 12.720 28.101 34.566 14.175 5.180 0.970 1.298 0.682 0.643 74.889 20.968 1.941 2.203 SL

18 0.704 0.129 0.359 0.675 -0.304 2.988 19.830 24.796 18.280 13.231 9.574 6.512 3.791 0.988 0.010 66.699 28.793 4.478 0.029 KM

19 3.333 1.034 1.017 -0.155 -0.066 1.212 3.131 6.061 13.737 18.586 20.909 19.394 10.000 5.253 1.717 68.889 26.162 4.949 0.000 DBS

20 3.298 0.982 0.991 -0.445 0.066 1.174 3.171 5.293 7.166 16.579 23.895 20.949 12.809 7.765 1.199 69.588 25.418 4.894 0.100 SL

21 0.989 0.064 0.253 -0.104 -0.273 0.177 1.382 6.548 15.085 23.112 25.358 19.135 7.354 1.715 0.133 67.214 28.655 4.050 0.081 SL

22 5.996 3.307 1.818 0.454 0.217 0.028 1.148 4.034 18.992 20.924 27.535 15.014 5.770 4.398 2.157 70.336 24.286 5.322 0.056 PSC

23 8.672 0.734 0.857 0.472 0.051 2.069 5.287 13.563 24.828 21.609 14.713 6.897 7.126 2.529 1.379 69.425 25.747 4.598 0.230 PSC

24 1.452 0.976 0.988 1.137 1.271 15.263 27.895 21.053 13.158 9.474 5.789 5.263 0.526 0.526 1.053 73.158 22.105 3.158 1.579 SL

25 0.710 0.162 0.402 0.683 -0.348 6.230 22.352 20.907 15.839 12.231 9.351 6.567 4.337 1.982 0.205 66.055 29.459 4.464 0.021 KM

26 6.185 1.423 1.193 -1.144 0.636 0.373 0.621 1.615 3.520 6.004 9.027 8.240 13.458 32.878 24.265 72.671 21.781 4.720 0.828 PSC

27 0.988 0.209 0.458 -0.145 -0.997 5.140 13.579 11.032 8.827 11.251 22.005 15.147 8.904 3.377 0.738 61.294 37.781 0.925 0.000 PSC

28 2.429 1.109 1.053 0.812 0.397 0.793 5.737 22.347 23.245 19.197 12.086 6.873 5.587 1.241 2.893 71.625 23.919 4.396 0.060 KM

29 0.796 0.217 0.466 -0.258 -1.201 20.597 7.992 10.684 0.702 29.627 17.443 9.023 3.375 0.466 0.090 60.494 38.999 0.507 0.000 SL

30 0.637 0.091 0.301 -0.397 -0.947 7.387 9.908 7.500 7.527 12.616 16.476 17.863 15.132 5.102 0.489 61.626 37.740 0.634 0.000 DBS

31 0.822 0.098 0.313 0.785 0.451 1.877 18.058 30.097 24.679 13.541 6.792 3.541 1.204 0.192 0.019 69.627 25.632 4.074 0.667 KM

32 0.631 0.064 0.253 -0.020 -0.129 3.527 4.923 11.298 20.504 21.189 17.968 12.391 5.548 2.018 0.635 67.490 26.737 5.773 0.000 DBS

33 0.724 0.178 0.422 -0.152 -1.618 11.789 15.143 10.875 7.354 5.418 2.699 4.732 31.688 9.568 0.736 55.220 44.780 0.000 0.000 PSC

34 1.065 0.192 0.438 -0.094 -0.689 4.399 12.900 19.512 22.524 24.317 13.376 2.721 0.217 0.031 0.002 64.538 32.797 2.625 0.040 DBS

35 0.681 0.082 0.286 0.147 -0.280 4.261 10.658 15.397 22.271 22.271 14.538 6.814 2.834 0.864 0.090 67.201 28.920 3.784 0.095 KM

36 0.396 0.040 0.199 0.335 -0.389 7.599 17.125 21.949 20.356 16.986 9.994 4.337 1.395 0.249 0.011 65.569 31.427 2.859 0.145 PSC

37 0.662 0.207 0.455 0.266 -1.519 13.757 15.000 14.529 15.225 2.900 0.000 2.335 16.132 15.202 4.919 52.754 47.246 0.000 0.000 PSC

38 0.217 0.058 0.241 1.808 2.204 28.518 51.172 5.823 0.080 0.068 2.930 3.620 4.749 2.448 0.592 85.602 4.288 8.452 1.657 PSC

39 0.865 0.170 0.412 0.372 -0.619 4.889 13.879 20.973 19.994 13.212 12.841 9.231 3.855 1.014 0.112 63.882 33.369 2.703 0.047 KM

40 0.796 0.126 0.355 0.432 -0.503 2.044 11.643 21.253 19.718 16.948 12.165 9.389 5.085 1.561 0.194 65.073 31.578 3.300 0.049 KM

41 1.081 0.167 0.409 -0.333 -1.169 1.071 6.883 12.512 11.987 9.741 10.818 16.841 24.335 5.471 0.342 57.511 41.406 1.084 0.000 SL

42 1.138 0.186 0.431 -0.260 -1.172 0.529 4.695 12.083 15.239 12.508 10.345 18.526 22.617 3.174 0.283 60.274 38.479 1.247 0.000 DBS

43 1.121 0.183 0.428 -0.015 -1.135 0.324 3.581 10.669 17.006 15.178 13.454 10.772 17.846 10.492 0.678 57.928 41.424 0.648 0.000 DBS

44 0.884 0.050 0.224 -0.135 -0.172 0.161 1.572 6.202 15.775 26.059 26.440 17.349 5.523 0.872 0.048 67.610 28.005 4.240 0.146 SL

45 0.865 0.049 0.222 -0.083 -0.157 0.133 1.646 6.963 17.767 27.771 26.390 14.649 4.105 0.539 0.038 67.725 27.842 4.279 0.154 KM

46 0.907 0.086 0.293 0.504 0.742 0.582 5.988 16.249 24.162 26.764 17.709 5.162 1.269 1.576 0.540 70.168 25.643 3.142 1.047 KM

47 0.877 0.075 0.275 0.456 1.140 0.540 5.931 14.985 25.015 28.268 17.945 5.285 0.575 0.411 1.045 70.065 26.330 2.278 1.327 SL

48 0.843 0.071 0.266 0.809 3.017 1.522 9.342 22.406 32.239 25.107 7.371 0.542 0.219 0.657 0.594 72.391 24.502 1.668 1.439 KM

49 3.089 0.840 0.916 -0.251 -0.064 0.951 3.814 7.518 14.748 25.340 24.245 15.202 6.766 1.338 0.077 68.701 26.412 4.743 0.144 DBS

50 1.002 0.068 0.261 -0.071 -0.289 0.162 1.510 6.869 15.684 23.799 25.258 17.903 7.173 1.510 0.132 67.082 28.825 3.972 0.122 KM

Appendices 57

Appendix D: System’s important sections in python

Data Preparation

Data import

dataP = pd.read_csv("datasets/training/3d_spatial_network.txt", sep = " ", header = None)

Cleaning data from columns with same values or totally different
and Discover the discrete attributes from the dataset
discrete = 0
entr = []
concetr = []
dataContinuous = dataP

for i in range(0,dataP.shape[1]):
 perc = dataP[i].value_counts(normalize=True)*100

 if perc.values[0] == 100:
 dataP = dataP.drop([i],axis = 1)
 dataContinuous = dataContinuous.drop([i],axis = 1)
 print('found same')
 elif perc.values[0] == (1/dataP.shape[0]):
 dataP = dataP.drop([i],axis = 1)
 dataContinuous = dataContinuous.drop([i],axis = 1)
 print('found totally different')

 if 30 <= perc.values[0] <100:
 print('Column ', i, 'has discrete objects')
 discrete += 1
 # calculate the entropy
 entr.append(pandas_entropy(i))
 # calculate the concetration
 concetr.append(concentration(dataP, i))
 # separates the dataset to Continuous and Discrete
 dataContinuous = dataContinuous.drop([i],axis = 1)

Meta Attributes (9)

total_obj = dataP.size
ma1 = math.log(total_obj, 2.0)

total_attr = len(dataP.columns)
ma2 = math.log(total_attr, 2.0)

Calculating Outliers based on IQR method
Q1 = dataP.quantile(0.25)
Q3 = dataP.quantile(0.75)
IQR = Q3 - Q1
dataOutliers = (dataP < (Q1 - 1.5 * IQR)) |(dataP > (Q3 + 1.5 * IQR))
d = dataOutliers.nunique()

outliers = sum(d)

ma4 = (outliers / total_obj)*100

ma3 = (discrete / total_attr)*100

if discrete == 0:
 ma5 = 0
 ma6 = 0
else:
 ma5 = np.mean(entr)
 ma6 = np.mean(concetr)

correlation = np.absolute(dataContinuous.corr(method = 'pearson'))
if correlation.empty :
 correlation = 0

58 Appendices

correl = np.mean(correlation)

ma7 = np.mean(correl)

skewness = dataContinuous.skew(axis = 0, skipna = True)
if skewness.empty :
 skewness = 0

ma8 = np.mean(skewness)

kurt = dataContinuous.kurtosis()
if kurt.empty :
 kurt = 0

ma9 = np.mean(kurt)

rankingsTable = pd.DataFrame.from_items([('DB',[0, 0, 0, 0, 0, 0, 0]),
 ('HL', [0, 0, 0, 0, 0, 0, 0]), ('DU', [0, 0, 0, 0, 0, 0
, 0]),
 ('CH', [0, 0, 0, 0, 0, 0, 0]), ('SIL', [0, 0, 0, 0, 0,
0, 0]),('Final Rank', [0, 0, 0, 0, 0, 0, 0]),],
 orient = 'index', columns = ['KM', 'SL', 'PSC', 'DBS'])

scoresTable = pd.DataFrame.from_items([('DB',[0, 0, 0, 0, 0, 0, 0]),
 ('HL', [0, 0, 0, 0, 0, 0, 0]), ('DU', [0, 0, 0, 0, 0, 0
, 0]),
 ('CH', [0, 0, 0, 0, 0, 0, 0]), ('SIL', [0, 0, 0, 0, 0,
0, 0]),('Final Rank', [0, 0, 0, 0, 0, 0, 0])],
 orient = 'index', columns = ['KM', 'SL', 'PSC', 'DBS'])

Meta Attributes (19)

d = scipy.spatial.distance.pdist(dataNP, metric='euclidean')

d_len = len(d)

md1 = np.mean(d)
md2 = np.var(d)
md3 = np.std(d)
md4 = scipy.stats.skew(d)
md5 = scipy.stats.kurtosis(d)

d_hist = np.histogram(d)

x = d_hist[0]

md6 = (x[0]/sum(x))*100
md7 = (x[1]/sum(x))*100
md8 = (x[2]/sum(x))*100
md9 = (x[3]/sum(x))*100
md10 = (x[4]/sum(x))*100
md11 = (x[5]/sum(x))*100
md12 = (x[6]/sum(x))*100
md13 = (x[7]/sum(x))*100
md14 = (x[8]/sum(x))*100
md15 = (x[9]/sum(x))*100

#Z-Score = (d[0]-md1) / md3
z = scipy.stats.zscore(d)

y1 = sum(0 <= x < 1 for x in np.absolute(z))
y2 = sum(1 <= x < 2 for x in np.absolute(z))
y3 = sum(2 <= x < 3 for x in np.absolute(z))
y4 = sum(3 <= x for x in np.absolute(z))
y = y1 + y2 + y3 + y4

md16 = (y1/y)*100
md17 = (y2/y)*100
md18 = (y3/y)*100
md19 = (y4/y)*100

rankingsTable = pd.DataFrame.from_items([('DB',[0, 0, 0, 0, 0, 0, 0]),
 ('HL', [0, 0, 0, 0, 0, 0, 0]), ('DU', [0, 0, 0, 0, 0, 0
, 0]),

Appendices 59

 ('CH', [0, 0, 0, 0, 0, 0, 0]), ('SIL', [0, 0, 0, 0, 0,
0, 0]),('Final Rank', [0, 0, 0, 0, 0, 0, 0]),],
 orient = 'index', columns = ['KM', 'SL', 'PSC', 'DBS'])

scoresTable = pd.DataFrame.from_items([('DB',[0, 0, 0, 0, 0, 0, 0]),
 ('HL', [0, 0, 0, 0, 0, 0, 0]), ('DU', [0, 0, 0, 0, 0, 0
, 0]),
 ('CH', [0, 0, 0, 0, 0, 0, 0]), ('SIL', [0, 0, 0, 0, 0,
0, 0]),('Final Rank', [0, 0, 0, 0, 0, 0, 0])],
 orient = 'index', columns = ['KM', 'SL', 'PSC', 'DBS'])

Ranking Combination Methods

Score Ranking
ranks = {}
points = [10, 8, 6, 4, 3, 2, 1]
algs = list(scoresTable.axes[1])

for i,method in enumerate(eval_methods):
 scores = sorted(list(zip(scoresTable.values[i:i+1, :].flatten().tolist(), algs)), key=lam
bda score: score[0], reverse=method[1])
 ranks[method[0]] = dict([(a[1], points[i]) for i,a in enumerate(scores)])

ranks

def sum_scores(alg):
 sum = 0
 for method in eval_methods:
 sum = sum + ranks[method[0]][alg]
 return (alg, sum)

scoreList = list(map(sum_scores, algs))
scoreList.sort(key=lambda tup: tup[1], reverse = True)

Winner Ranking
def sum_wscores(alg):
 sum = 0
 for method in eval_methods:
 sum = sum + len(algs) -points.index(ranks[method[0]][alg])
 return (alg, sum)

winnerList = list(map(sum_wscores, algs))
winnerList.sort(key=lambda tup: tup[1], reverse = True)

sresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'KM']
wresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'KM']
sresult = sresult[0] +1
wresult = wresult[0] +1
fKM = (wresult + sresult) /2

sresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'SL']
wresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'SL']
sresult = sresult[0] +1
wresult = wresult[0] +1
fSL = (wresult + sresult) /2

sresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'PSC']
wresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'PSC']
sresult = sresult[0] +1
wresult = wresult[0] +1
fPSC = (wresult + sresult) /2

sresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'DBS']
wresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'DBS']
sresult = sresult[0] +1
wresult = wresult[0] +1
fDBS = (wresult + sresult) /2

scoresTable.loc['Final Rank','KM'] = fKM
scoresTable.loc['Final Rank','SL'] = fSL
scoresTable.loc['Final Rank','PSC'] = fPSC

60 Appendices

scoresTable.loc['Final Rank','DBS'] = fDBS
print(scoresTable)

if fKM == 1:
 walgo = 'KM'
elif fSL == 1:
 walgo = 'SL'
elif fPSC == 1:
 walgo = 'PSC'
elif fDBS == 1:
 walgo = 'DBS'

conn = sqlite3.connect("2MetaAttributes.db")
cur = conn.cursor()
cur.execute("CREATE TABLE IF NOT EXISTS Attr (id integer PRIMARY KEY, ma1 float, ma2 float, m
a3 float, ma4 float, ma5 float, ma6 float, ma7 float, ma8 float, ma9 float, walgo string)")
conn.commit()
null is for autogenerated id value
cur.execute("INSERT INTO Attr VALUES (NULL,?,?,?,?,?,?,?,?,?,?)", (ma1, ma2, ma3, ma4, ma5, m
a6, ma7, ma8, ma9, walgo))
conn.commit()

