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Abstract 

Data clustering attempts to classify a database into object groups based on the 

similarities between the objects in question. The quest for a good-quality solution can 

become a complex process because of its unsupervised existence. There is currently a 

wide range of clustering algorithms, and it can be a slow and expensive process to 

select the best one for a given problem. For every dataset that is related to clustering 

problems, there is an exhaustive procedure that requests from a Data Scientist firstly 

to test each clustering algorithm to find the most suitable one. A system that 

recommends the clustering algorithm and guides the user for selecting the right one 

would be a great tool that would provide significant benefits to the scientific 

community. Rice formulated the Algorithm Selection Problem (ASP) in 1976, which 

postulates that the output of the algorithm can be predicted based on the structural 

features of the problem. Meta-learning has been used successfully for recommendation 

tasks with algorithms. It uses machine learning to induce meta-models capable of 

predicting the best algorithm of a new dataset. Experimental results show that the 

recommendation improves with these meta-attributes. With a significant accuracy, it 

is presented that a system could indeed recommend a clustering algorithm for an 

“unknown” dataset only by examining its meta-attributes firstly. Also, this Master 

Thesis discusses the relevance to the recommendation of each meta-feature. 
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Περίληψη 

Η συσταδοποιήση δεδομένων είναι μια προσπάθεια ομαδοποίσης μιας βάσης 

δεδομένων σε ομάδες αντικειμένων βασισμένες στις ομοιότητες των εν λόγω 

αντικειμένων. Η αναζήτηση μιας ποιοτικής λύσης μπορεί να γίνει μια περίπλοκη 

διαδικασία λόγω απουσίας της επιτήρησης. Αυτή τη στιγμή υπάρχει ένα ευρύ φάσμα 

αλγορίθμων ομαδοποίησης και μπορεί να είναι μια αργή και δαπανηρή διαδικασία για 

την επιλογή του καλύτερου για ένα δεδομένο πρόβλημα. Για κάθε σύνολο δεδομένων 

που σχετίζεται με προβλήματα ομαδοποίησης, υπάρχει μια εξαντλητική διαδικασία 

που ζητά από έναν Data Scientist πρώτα να ελέγξει κάθε αλγόριθμο ομαδοποίησης για 

να βρει το πιο κατάλληλο. Ένα σύστημα που συνιστά τον αλγόριθμο ομαδοποίησης 

και καθοδηγεί τον χρήστη για την επιλογή του σωστού θα ήταν ένα εξαιρετικό 

εργαλείο που θα προσέφερε σημαντικά οφέλη στην επιστημονική κοινότητα. Ο Ράις 

διατύπωσε το πρόβλημα επιλογής αλγορίθμου (ASP) το 1976, το οποίο υποθέτει ότι 

η παραγωγή του αλγορίθμου μπορεί να προβλεφθεί με βάση τα δομικά 

χαρακτηριστικά του προβλήματος. Η μετα-μάθηση έχει χρησιμοποιηθεί με επιτυχία 

για εργασίες συστάσεων με αλγόριθμους. Χρησιμοποιεί την εκμάθηση μηχανών για 

να προκαλέσει μετα-μοντέλα ικανά να προβλέψουν τον καλύτερο αλγόριθμο ενός 

νέου συνόλου δεδομένων. Τα πειραματικά αποτελέσματα δείχνουν ότι η σύσταση 

βελτιώνεται με αυτά τα μετα-χαρακτηριστικά. Με σημαντική ακρίβεια, 

παρουσιάζεται ότι ένα σύστημα θα μπορούσε πράγματι να συστήσει έναν αλγόριθμο 

ομαδοποίησης για ένα "άγνωστο" σύνολο δεδομένων μόνο εξετάζοντας πρώτα τα 

μετα-χαρακτηριστικά του. Επίσης, αυτή η Διπλωματική εξετάζει τη συνάφεια με τη 

σύσταση κάθε μετα-χαρακτηριστικού. 
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Chapter 1: Introduction 

One of the main Machine Learning (ML) applications is data clustering [1]. With 

the growing interest in understanding, processing, and summarizing data 

automatically, clustering algorithms have been successfully applied to various 

application domains, such as anomaly detection, gene expression analysis, community 

detection, and object segmentation.  

To obtain a model with a good predictive or descriptive efficiency, the selection 

of an appropriate algorithm to address a given ML task is fundamental. Each algorithm 

attempts to model and solve a problem by extracting information on those 

characteristics, leading researchers to investigate a large number of algorithms. The 

selection of the most suitable algorithms among this large number is typically based 

on empirical observation or previous experiences of the user, which can be subjective 

and have a high computational cost 

Problem-solving is a central and well-defined concept of Computer Science in 

general. After formulating a computational problem, an algorithm is used to solve the 

problem. Algorithms are formal and methodical approaches to a certain problem that 

returns a solution within finite (and reasonable) time and space. A problem may be 

(and is often) approached by more than one algorithms. Much research has been 

invested in analyzing the properties of algorithms and their efficiency in problem-

solving, to be able to understand the impact of choosing a particular algorithm.  

Unfortunately, there is no single algorithm that achieves the best performance overall 

instances of a problem class. Rice [2] formulated the Algorithm Selection Problem 

(ASP), which proposes that there is a relation between the characteristics of a problem 

and has been tackled in different research fields, well known as meta-attributes.  

 

1.1 META - LEARNING 

The meta-attributes compose the knowledge (meta-knowledge) to select the 

most suitable algorithm for a new, unseen problem, and this can be achieved by a 

system that aims to learn which problems characteristics contribute to a better 
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performance of one algorithm over the others. This is a meta-learning system that deals 

with the ASP by learning about the behavior of the learning algorithms. The meta-

knowledge, also known as meta-data, consists of the meta-attributes and the meta-

target. The meta-attributes are features or characteristics derived from the problems. 

The meta-target is the meta-learning device destination vector. A comprehensive 

review of meta-learning and ASP can be found in Smith-Miles [3][4], in which the 

author described how their application is applied to various fields of research, such as 

time series prediction [5], sorting [6], and optimization [3][4], among others. 

 

1.2 WHAT THIS WORK IS ABOUT 

In this Master Thesis, it is proposed the direction of selecting dynamic 

algorithms, using divergent algorithms on different sub-instances of the original 

problem, in a way that ends up making use of the best aspects of each available 

algorithm, by applying the most suitable algorithm to each sub-instance to yield the 

minimum possible cost. In other words, during the problem-solving process, we leave 

usable algorithms in between. Of course, how this dynamic selection works must be 

general and not unique to a specific problem or set of algorithms. Otherwise, the 

reusability benefit of this work would be limited if any  

Work is focused on clustering Algorithms, where it is designed and implemented 

a new framework in which each “unknown” dataset will be imported, and the most 

suitable clustering algorithm will be recommended in order then to be run. With this 

framework, it is reduced a significant time from configuring and running all suitable 

clustering algorithms and then choose the most relevant one.  

The way that this “system” recommends a clustering algorithm comes from 

extracting dataset’s meta-data and then compares its results with a pool of already 

known clustering datasets. Then the system recommends the most suitable clustering 

algorithm according to its similarity of their meta-data. The whole meta-data idea is 

based on previous work by Daniel Gomes Ferrari and Leandro Nunes de Castro [7]. In 

their work, are proposed two different ways to collect the meta-data. In the first way, 

meta-attributes are based on the object’s attributes. The other way proposes meta-

attributes based on the distance between the objects of the clustering problem instead 

of on the object attributes themselves.  
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A series of 50 datasets (Appendix A), four algorithms, and five internal indices 

are used to validate the proposals, and the meta-knowledge is constructed with two 

distinct sets of meta-attributes: the conventional approach, the modern unsupervised 

distance-based method. In performance evaluation, three hybrid ranking approaches 

are used: an existing system using the average rank level and two new methods focused 

on score and competition. Next, this information is applied to a meta-learning system 

to learn the relationship between the features of the problems and the output of the 

algorithms, and a selection process tests the quality of meta-knowledge. 

 

1.3 HOW IT IS DONE 

The implementation uses 50 datasets that are collected from different sources, 

extracts their meta-data, runs clustering algorithms, and after store their meta-attributes 

and their performance in a dataset. A framework was built, in which each dataset where 

imported, its meta-data were extracted, and then all four clustering algorithms were 

run. Using the five internal indices, the most efficient one was selected and stored 

along with the dataset’s meta-data. The dataset that contains the meta-data and the 

most suitable clustering algorithm is used for training and test purposes, where a 

classification algorithm K-NN [8] is run. K-NN is an instance-based algorithm that 

classifies an object based on a search for its nearest neighbors. 

 

1.4 OVERALL PICTURE 

The algorithm recommendation systems are fascinating research topics, as also, 

they can be precious to the research community. Overall, the results of the below work 

were encouraging, and they prove that the meta-learning system can be an extremely 

positive addition in the clustering algorithm recommendation.  

 

1.5 THESIS OUTLINE 

This Thesis is organized as follows: In Chapter 2 it will be provided the 

necessary theoretical background, which includes clustering algorithms, internal 

indices, and a basic introduction to the K-NN classification algorithm. In Chapter 3 it 
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will be provided a more detailed problem statement and an overview of the related 

work in the area. In Chapter 4 it will be described the approach to extract the 

appropriate meta-knowledge. In Chapter 5 it will be presented all the implementation 

details of this approach. In Chapter 6 it will be provided the results of this work and 

finally, in Chapter 7 it will be discussed the final results and the comparison between 

the two meta-data approaches and will also be suggested future work. 
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Chapter 2: Background Knowledge 

This chapter provides the background information required for further 

comprehension of the research discussed in this study. We explain the notion of 

machine learning and its principal categories first; we then delve into the subarea of 

Algorithm Selection, explaining tis goals and methodologies. Finally, we introduce the 

evaluators of the clustering algorithms known also as clustering indices 

 

2.1 MACHINE LEARNING 

Machine learning [9][10] is an interdisciplinary research field which combines 

ideas developed in the fields of computer science, mathematics, statistics, operational 

research, cognitive science and engineering to provide machine intelligence. Machine 

learning is a research field which is dedicated to automated system learning.  

Automated learning systems range in complexity and application. They may be 

defined by a very simple memorization-based learning system [11] such as the one 

filtering unwanted emails (spams) based on memorized table of unwanted senders, to 

those using inductive reasoning in dynamic environments to perform more complex 

tasks [12]. Machine learning has recently become the tool of choice when it is 

important to extract useful information from huge, complex datasets. In this section 

we will shed some light on the field of machine learning with a focus on the various 

approaches available. 

There are many different ways to describe machine learning. It can be defined 

by the learning process or the model (engine) that it uses to determine. Another way 

of classifying a learning system is based on the principle of learning that occurs, 

another is based on the level of interaction that a learning system employs with its 

feedback. An interactive learner will engage with his / her environment (data) by 

conducting an experiment, for example, to gain more input information, whereas a 

passive learner will simply rely on observing the input information. Machine learning 

research is generally divided into three distinct branches. Supervised [13], 

Unsupervised [14] and Learning for Reinforcement [15] 
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2.1.1 Supervised Learning 

A desired set of outputs for given inputs (learning phase) are given to the 

machine in supervised machine learning. It then asks the machine to produce an output 

for the newly arriving input.  

The optimal result could be either a class mark used for classification in machine 

learning systems [16], or a real number in those used for regression [17]. The optimal 

performance in regression problems is to predict or calculate a new value for a 

dependent variable using values derived from data attributes based on learning from 

previous training sets.  

Nonetheless, the optimal output for classification problems is to classify the 

input data into predefined labels or groups using a training set of previously classified 

data.  

2.1.2 Unsupervised Learning 

Unlike supervised machine-learning systems, the machine is not provided with 

the desired result during the training phase in unmonitored machine-learning systems. 

It is the duty of the computer (model) to learn how to construct a function that clusters 

the input data according to their statistical characteristics.  

This clustering is not established by any supervisory mechanism during the 

learning phase or by any user; rather, it is carried out on the basis of the discovered 

relationship between the different features of the input and the modeled clusters. 

Deciding how to organize inputs into clusters that share common properties is 

an essential job of the unsupervised learning systems. Clustering is the process of 

dividing the datasets into sub-sets which share common features. The K-means 

clustering algorithm (will be explained in a later section) is a popular technique for 

unsupervised learning. Other examples of unsupervised learning are those that are used 

in our framework and will be presented more extensively at the following chapter 

(chapter 2.2), like the particle swarm optimization (PSO) [24] and Density-based 

spatial clustering of applications with noise (DBSCAN) [19] and Single linkage [20].  
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2.2 CLUSTERING ALGORITHMS 

As previously mentioned, this Master Thesis tries to figure out a mechanism in 

which in an unknown dataset, a clustering algorithm will be recommended. However, 

it is necessary to clarify what clustering is and where it can be implemented. According 

to Zubin and Joseph [18], the goal of cluster analysis or clustering is to group a 

collection of objects in such a way that objects in the same group (called a cluster) are 

more similar to each other (in a sense) than objects in other groups (clusters). 

Cluster analysis itself is not a particular algorithm but the overarching process 

that needs to be resolved. Multiple algorithms that differ significantly in their 

understanding of what constitutes a cluster and how to find them effectively can 

achieve this. Popular cluster notions include groups with small distances between 

members of the cluster, large areas of data space, intervals, or unique statistical 

distributions. Consequently, clustering can be formulated as a problem of multi-

objective optimization. The required clustering algorithm and parameter settings 

(including parameters such as the distance function to be used, a density threshold, or 

the number of predicted clusters) depend on the individual data set and the planned 

application of the results.  

Cluster analysis as an action is not an automatic task but an iterative knowledge 

discovery process or multi-objective interactive optimization involving trials and 

failures. Sometimes, preprocessing data and modeling parameters need to be changed 

until the output achieves the desired properties. 

 

2.2.1 DBSCAN 

DBSCAN stands for Density-based spatial clustering of applications with noise 

and is a proposed data clustering algorithm by Hans-Peter Kriegel, Martin Ester, Jorg 

Sander, and Xiaowei Xu in 1996 [19]. It is a non-parametric density-based clustering 

algorithm: given a set of points in some space, it aggregates points that are tightly 

packed together (points with many adjacent neighbors), labeling them as outliers lying 

alone in low-density regions (whose closest neighbors are too far away). 

The algorithm that runs for DBSCAN has one goal and this aims to define dense 

regions that can be calculated by the number of the objects near a given point.  

DBSCAN requires two important parameters: epsilon ("eps"), and minimum points 
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("MinPts"). The eps parameter defines the neighborhood radius around a point x. 

MinPts parameter is the minimum number of neighbors within the radius of “eps”. 

Each point x in the dataset is marked as a core point, with a neighbor count greater 

than or equal to MinPts. We say x is border point if the number of its neighbors is less 

than MinPts, but it belongs to some core point z's epsilon-neighborhood. Ultimately, 

if a point is neither a center nor a boundary point, then a noise point or an outlier is 

named. The following figure shows the different types of points using MinPts= 4 (core, 

boundary, and outlier points). Here x is a core point because (neighbors epsilon(x) = 

4), y is a boundary point because (neighbors epsilon(y) < MinPts), thus belongs to the 

core point x (epsilon) neighborhood. Z is a noise level, at last. 

 

Figure 1: Visualization of the DBSCAN approach. 

  



 

Chapter 2: Background Knowledge 9 

The algorithm of density-based clustering works as below, where this begins 

with an unvisited arbitrary point of departure. The epsilon-neighborhood of this point 

is retrieved, and if it contains enough points, a cluster is started. The argument is 

otherwise known as noise. Remember that this point may be found later in a 

sufficiently sized epsilon-environment of a different point and thus become part of a 

cluster. If a point is found to be a dense part of a cluster, it is also part of that cluster 

in its epsilon-neighborhood. Therefore, all points which are located within the 

neighborhood are included, as is their own neighborhood when they are dense as well. 

This process continues until the cluster that is related to density is completely defined. 

Then, a new unvisited point is retrieved and analyzed, resulting in a further cluster or 

noise being detected.  

Density-based spatial clustering  
 
DBSCAN(dataset, eps, MinPts){ 

# cluster index 

C = 1 

for each unvisited point p in dataset { 

         mark p as visited 

         # find neighbors 

         Neighbors N = find the neighbor points of p 

 

         if |N|>=MinPts: 

             N = N U N' 

             if p' is not member of any cluster: 

                 add p' to cluster C  

} 

Figure 2: The DBSCAN pseudo-algorithm 

2.2.2 Single-Linkage 

Single-linkage clustering [20] is one of several Hierarchical clustering methods 

in statistics. It is based on grouping clusters in bottom-up fashion (agglomerative 

clustering), combining two clusters at each step that contain the closest pair of 

elements that are not yet part of the same cluster as one another. One downside of this 

approach is that it tends to produce large, thin clusters in which neighboring elements 
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of the same cluster have small distances, but elements at opposite ends of a cluster can 

be much farther from each other than two elements of other clusters. This can lead to 

difficulties in class definition that could usefully subdivide the data. 

That participant is within a cluster of its own at the beginning of the 

agglomerative clustering process. The clusters are then grouped sequentially into 

larger clusters until all of the components end up in the same cluster. The two clusters 

divided by the shortest distance are combined at each stage. The definition of' shortest 

distance' is what distinguishes the different methods of agglomeration. In single-link 

clustering, the distance between two clusters is determined by a single pair of elements, 

namely those two elements which are closest to each other (one in each cluster). The 

shortest of those connections that remain at any point causes the two clusters whose 

elements are involved in fusing together. The process is also known as the closest 

clustering of neighbors. The product of the clustering can be visualized as a 

dendrogram showing the cluster fusion series and the distance at which each fusion 

occurred.  

Mathematically, the linkage function – the distance D(X,Y) between the clusters 

X and Y – is described by the expression 

𝐷(𝑋, 𝑌) = min
𝑥∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦) 

where X and Y are any two sets of elements that are considered as clusters, and d(x,y) 

denotes the distance between the elements x and y. 

2.2.3 K-Means 

K-means clustering, as defined by James MacQueen in 1967 [21], is a method 

of vector quantization that is common for cluster analysis in data mining, originally 

from signal processing. The goal of the clustering of k-means is to divide n 

observations into k clusters. In that, each observation belongs to the cluster with the 

nearest mean, serving as a cluster prototype. These results in data space partitioning 

into Voronoi cells [22]. K-Means minimizes distances within the cluster (squared 

Euclidean distances), but not regular Euclidean distances, which would be the most 

challenging problem for Weber's problem: The mean optimizes square errors, while 

the Euclidean distances are minimized only by the geometrical median. For example, 

better Euclidean solutions can be found using k-medians and k-medoids. 
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The problem is computationally complicated (NP-hard) however, efficient 

heuristic algorithms easily converge to a local optimum. Typically these are close to 

the expectation-maximization algorithm for Gaussian distribution mixtures through an 

iterative optimization approach used by both k-means and Gaussian mixture modeling. 

Both use cluster centers to model the data. However, clustering k-means tends to find 

clusters of comparable spatial magnitude, while the method of expectation-

maximization enables clusters to have different forms. 

The algorithm has a loose relationship with the k-nearest neighbor classifier, a 

common classification machine learning technique that is often confused with k-means 

by the name. Applying the1-nearest neighbor classifier to the k-means-obtained cluster 

centers classifies new data into existing clusters. This is known as the Rocchio 

algorithm [23] or the nearest centroid classifier. 

The K-means algorithm in data mining begins with the first group of randomly 

selected centroids, which are used as the starting points for each cluster, and then 

perform iterative (repetitive) calculations to optimize centroid positions. This prevents 

the formation and optimization of clusters; if either the centroids stabilized— their 

values are unchanged because the clustering was efficient or the number of iterations 

specified was achieved. 

K-Means 
 
Initialize k means with random values 

 

For a given number of iterations: 

    Iterate through items: 

        Find the mean closest to the item 

        Assign item to mean 

        Update mean 

Figure 3: The K-Means pseudo-algorithm 

2.2.4 Particle Swarm Optimization 

In computational science, particle swarm optimization (PSO) is a computational 

approach that optimizes a problem by attempting to iteratively develop a candidate 

solution with respect to a given quality measure. It solves a problem by having a 

population of candidate solutions, here dubbed particles, and moving these particles 
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over the position and velocity of the particle in the search space based on simple 

mathematical formulae. The movement of each particle is determined by its locally 

best-known location but is also directed towards the best-known search-space 

positions, which are modified as other particles find better positions. This should push 

the swarm towards the best solutions. 

Credited initially to Kennedy, Eberhart, and Shi [24], PSO was initially intended 

to model social behavior as a stylized depiction of organism activity in a bird flock or 

fish school. The algorithm was simplified, and optimization was observed. Kennedy 

and Eberhart's book [25] discusses many facets of PSO and swarm intelligence in 

philosophical terms. Poli carries out a detailed study of PSO applications. Recently, 

Bonyadi and Michalewicz [26] have released a comprehensive review of theoretical 

and experimental work on PSO. 

PSO is a metaheuristic, as it makes few or no assumptions about optimizing the 

problem and can search for vast spaces of candidate solutions. Metaheuristics like 

PSO, however, do not guarantee that an optimal solution is ever found. PSO often does 

not use the gradient of the problem being optimized, which means that PSO does not 

require that the issue of optimization be distinguished as needed by traditional methods 

of optimization such as gradient descent and quasi-newton methods. 

A simple version of the PSO algorithm works by having a population of 

candidate solutions (called a swarm) (called particles). According to a few simple 

formulae, these particles are moved around in the search space. The motion of the 

particles is guided by their own best-known position in the search space, as well as the 

best-known position of the whole swarm. When improved positions are found, these 

will then come to guide the swarm's movements. The process is repeated, and it is 

expected that a satisfactory solution can eventually be seen but not guaranteed. 
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Particle Swarm Optimization 
 
For each particle 
    Initialize particle 
END 
 
Do 
    For each particle 
        Calculate fitness value 
        If fitness value is better than best fitness value 
(pBest) in history 
            set current value as new pBest 
    End 
 
    Choose the particle with best fitness value of all the 
particles as the gBest 
    For each particle 
        Calculate particle velocity according equation (a) 
        Update particle position according equation (b) 
    End 

 
While maximum iterations or min error criteria is not attained 

Figure 4: The PSO pseudo-algorithm 

 

 

2.3 CLUSTERING INDICES 

The concept of validation steps for clustering results has, therefore been a 

challenging issue that numerous methods have sought to overcome. A Clustering 

Validation Index (CVI) can be used to measure the quality of the clustering 

performance and multiple of them are described by M. Halkidi [27] [28]. A CVI's goal 

is to estimate the most suitable K based on cluster compactness and separation. The 

indices of validity may be divided into three categories [29]: internal, external, and 

relative. The external validation index takes advantage of prior knowledge, the internal 

index is based on data information only, and multiple clustering findings are compared 

in a relative CVI. Alternative approaches for calculating the number of clusters also 

exist, for example, by evaluating the stability of the clustering method [30]. 

Cluster validation takes into account the quality of the result of a clustering 

algorithm, trying to find the partition which best fits the nature of the data. The number 

of clusters given as a parameter for many clustering algorithms should be determined 
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based on the data's natural structure. Like the best clustering solution, also the number 

of clusters is not always straightforward, and there may be several' false' answers. The 

number can also depend on the resolution, i.e., whether the separabilities within and 

between the clusters are considered globally or locally. 

During the implementation, the clustering validation was measured by 5 

different cluster internal indices. These are the Davies-Bouldin index, Hubert-Levin 

index (also known as C-Index), Dunn index, Calinski-Harabasz index, and Silhouette 

index. The sections below will be given further information about these indices. 

2.3.1 Davies-Bouldin index 

The Davies-Bouldin index (DBI) was introduced by David L. Davies and Donald 

W. Bouldin in 1979 [31] as a metric for evaluating clustering algorithms. This is an 

internal assessment scheme where the analysis of how well the clustering was 

performed is achieved using the inherent quantities and features of the dataset. This 

has a downside that this approach recorded a good value that does not mean the best 

retrieval of the information. 

How does this index work? First, as δk is denoted the mean distance of the points 

belonging to cluster Ck to their barycenter G{k}: 

 

Also, it is indicated by  

 

The distance between the barycenters G{k}and G{k’} of clusters Ck and Ck’. One 

computes, for each cluster k, the maximum Mk of the quotients  
δk + δk′ 

𝛥kk′ 
 for all indices 

k’ ≠ k. The Davies-Bouldin index is the mean value, among all the clusters, of the 

quantities Mk: 

 

2.3.2 Hubert and Levin index 

The Hubert and Levin index is an internal clustering index discovered by L.J 

Hubert and J.R Levin in 1976 [32]. It is also known as C-Index. The C-Index is an 
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evaluation measure expressed as: [dw - min(dw)] / [max(dw) - min(dw)], where dw is the 

sum of all nd within-cluster distances, min(dw) is the sum of the nd smallest pairwise 

distances in the data set, and max(dw) is the sum of the nd biggest pairwise distances. 

All pairwise distances in the data set must be measured and stored in order to calculate 

the C-Index. In this case of binary data, distance storage poses no issues because only 

a few distances are feasible. Calculating all distances, however, will make the index 

prohibitive for large data sets. The maximum value of the second difference is taken 

as the proposed number of clusters. 

2.3.3 Dunn index 

The Dunn index was firstly introduced by J. C. Dunn in 1974 [33] as a metric for 

evaluating clustering algorithms. This is part of a validity index category, including 

the Davies-Bouldin index or Silhouette index, as it is an internal assessment scheme 

where the outcome is focused on the clustered data itself.  

Like all other such indices, the aim is to classify compact cluster sets with a small 

variance between cluster members and well separated where the means of different 

clusters are sufficiently far apart compared to the variance within the cluster. A higher 

Dunn index would indicate better clustering for a given cluster assignment. One of the 

drawbacks of using this is the computational cost as cluster numbers and data 

dimensionality increase. 

In order to compute the Dunn index, it has to be denoted by dmin the minimal 

instance between points of different clusters and dmax the largest within-cluster 

distance. The distance between clusters Ck and Ck’ is measured by the distance between 

their closest points: 

 

And dmin is the smallest of these distances dkk’: 

 

For each cluster Ck, there is a Dk as the largest distance separating two distinct 

points in the cluster (sometimes called the diameter of the cluster): 
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Then dmax is the largest of these distances Dk: 

dmax = max
1≤𝑘≤𝐾

𝐷𝑘 

The Dunn Index is defined as the quotient of dmin and dmax: 

𝐶 =  
𝑑𝑚𝑖𝑛 

𝑑𝑚𝑎𝑥
 

2.3.4 Calinski-Harabatz index 

The Calinski-Harabatz index discovered by T. Calinski and J. Harabasz in 1974 

[34] is an evaluation index for clustering algorithms and is defined as the ratio between 

the inter-cluster dispersion and the intracluster dispersion. 

(𝐵𝐶𝐷 ∗ (𝑁 − 𝑘)) / (𝑊𝐶𝐷 ∗  (𝑘 − 1))  

where n is the number of data points, and k is the number of the clusters. The 

minimum value of the second difference is taken as the proposed number of the 

clusters. 

2.3.5 Silhouette index 

The Silhouette index is also an internal index responsible for the interpretation 

and validation of consistency with clusters of data. The technique offers a brief 

graphical depiction of how well each item was categorized. It was firstly introduced 

by Peter J. Rousseeuw in 1987 [35].  

The silhouette value is the measure of how close an entity is to its own (cohesion) 

cluster relative to other (separation) clusters. The outline varies from −1 to + 1, where 

a high value means that the object is well aligned with its own cluster and poorly 

matched to neighboring clusters. If most objects have high value, then the 

configuration for the clustering is correct. If many points have a low or negative value, 

then there may be too many or too few clusters in the clustering configuration. The 

outline can be measured with any distance metric like the distance from the Euclidean 

or the distance from Manhattan. 

The silhouette index is calculated as below. For each point, Mi, its mean distance 

to each cluster. One defines the within-cluster mean distance a(i) as the mean distance 

of point Mi to the other points of the cluster it belongs to: if Mi ∈ Ck, we thus have 
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On the other hand, while evaluating the mean distance 𝜕(Mi, Ck’) of Mi to the 

points of each of the other clusters Ck’: 

 

Now, b(i) is denoted as the smallest of these mean distances: 

 

The value k’, which realizes this minimum indicates the best choice for re-

affecting, if necessary, the point Mi to another cluster than the one it currently 

belongs to. 

For each point Mi, one then forms the quotient 

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
 

Which is called the silhouette width of the point. Its quantity takes values 

between -1 and 1: a value near 1 indicates that the point Mi affects clusters to the 

right whereas a value near -1 indicates that the point should be affected to another 

cluster.The mean of the silhouette widths for a given cluster Ck is called the cluster 

mean silhouette and is denoted as sk: 

 

Finally, the global silhouette index is a calculation of the mean of the mean 

silhouettes through all the clusters: 

𝐶 =  
1

𝐾
∑ 𝑠𝑘

𝐾

𝑘=1
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Chapter 3: Problem Statement 

3.1 ALGORITHM SELECTION: A META-PROBLEM 

As stated in the introductory section, the critical issue that this work seeks to 

address is that of selecting algorithms for clustering problems. Selecting the right 

algorithm for a problem is a decision that depends on more than just the theoretical 

assumptions of each algorithm regarding time and memory complexity. Hardware 

information is significant, as is the expected distribution of input from a statistical 

point of view.  

Inner details of an algorithm, in combination with the above, are also relevant. 

That makes the selection of algorithms a complex problem in itself, a kind of meta-

problem. As such, it requires the same amount of exploration and analysis as any 

standard computational problem. Solutions should be formulated generically and 

methodically so that they can be applied to each instance of this meta-problem with 

minimal modification. 

A per-instance solution for any problem from scratch is usually not cost-

effective, especially when solutions that apply to the general nature of that problem 

have already been proposed. This is why there are generic algorithms that use to 

general problem formulations, such as sorting algorithms, search algorithms, 

algorithms for limit satisfaction, etc. Since we have developed the process of selecting 

the appropriate algorithm as a problem, it would be reasonable to try to create solutions 

for that problem that will apply in the general case rather than a method per instance, 

where each instance is treated as a whole new problem. 

This directly implies that for each instance, the solution will not be the same, 

which is why we refer to this as a selection of dynamic algorithms. This means that a 

decision will be made based on the instance's specifics but will be made based on a set 

of general rules that will apply regulations that have been defined to make the best 

decision based on the particulars. 
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3.2 SELECTING AND RECOMMENDING AN ALGORITHM 

Consider selecting or recommending an appropriate subset of ML algorithms for 

a given task. The problem can be interpreted as a search problem, where the search 

space includes the individual ML algorithms, and the goal is to identify the best 

performing learning algorithms package. Figure 5 demonstrates a general framework 

for the collection of learning algorithms.  

The process can be divided into two phases, according to this framework. In the 

first phase, the objective is to identify an appropriate sub-set of learning algorithms 

given a training dataset using available meta-knowledge. The performance of this step 

is a ranked subset of ML algorithms, reflecting the new, reduced space for bias. 

Instead, the second phase of the process involves searching through the reduced area. 

To identify the best alternative, each learning algorithm is evaluated using different 

performance parameters (e.g., consistency, accuracy, recall, etc..). 

 

Figure 5: Selection of ML algorithms: finding a reduced space and selecting the best 

learning algorithm 

 

This varies from traditional approaches by using a foundation of meta-

knowledge. As described above, one important goal in meta-learning is to research 

how meta-knowledge can be extracted and used to benefit from past experience. 

Information contained in the base of metaknowledge may take various forms. It may 

include, for example, a set of learning algorithms showing good (a priori) performance 

on datasets similar to the one being analyzed; algorithms characterizing Machine 
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Learning algorithms and datasets and metrics available to measure similarity or task-

relatedness of the dataset. Meta-knowledge, therefore, includes not only useful 

information for dynamic bias selection but also functions and algorithms that can be 

invoked to generate new useful information.  

It is noted that metaknowledge usually does not remove the need for search 

entirely but rather offers a more efficient way of searching through alternative spaces. 

The success of the search process depends on the quality of the metaknowledge 

available. 

 

3.3 ALGORITHM RECOMMENDATION WITH META-LEARNING 

A recommendation algorithm system can be defined as a tool that supports the 

user in the data mining process selection algorithm step. It indicates which algorithm 

to use to achieve the best possible results given a dataset. If there are sufficient 

computational resources available to try multiple algorithms, it should also indicate 

which ones to execute and in which order. In practice, such a system can be said to 

guide the experimental process in a data mining application. 

To achieve this goal, predicting the true performance of the algorithms 

accurately is not as important to an algorithm recommendation method as predicting 

their relative performance is. Therefore the algorithm recommendation task can be 

defined as the algorithm ranking according to their predicted performance. 

It is important to use data describing the performance of algorithms and the 

characteristics of problems, which we will refer to as metadata to address this problem 

using a machine learning approach. The figure below illustrates how meta-learning 

with the ranking recommendation by Average Ranking works (Figure 6) 
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Figure 6: Meta-learning to obtain meta-knowledge for algorithm selection 

 

 The performance data is used for determining algorithm rankings. The primary 

function of this learning assignment is these scores, called target rankings. The 

criteria used to describe the problems are characteristics that are independent of the 

specific task. 

  

 

3.4 RELATED WORK 

Treating algorithm selection as a problem is not a whole new idea in itself. It 

was officially stated first by J.R. Rice as a computational problem in 1976 [36]. The 

Portfolio of Algorithms was introduced as a framework to treat algorithm collection 

as a formal computational problem [37]. 

Because algorithm selection was identified as a computational problem, a few 

methods have been developed as to how it should be solved. These include studying 

the instance to be solved and selecting a suitable algorithm for it [38], running multiple 

algorithms from the portfolio in parallel, and ending as soon as one solution is obtained 

by the fastest algorithm [39] and switching algorithms to runtime [40]. 

The work of Daniel Gomes Ferrari and Leandro Nunes de Castro [7] is the one 

closest to this Master Thesis, since the extraction of meta-features and the ranking 

method are based on their work. Also, the use of the specific clustering algorithms, as 

well as the clustering indices, are referred to this work. 
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Chapter 4: Proposed Approach 

To provide solution for the issues of selecting the proper clustering algorithm 

mentioned in the previous sections, the proposed method uses two sets of meta-

features. One that is related to the object’s attributes and based on statistical measures 

such as the percentage of missing values in a dataset and the other based on the 

Euclidean distance between each dataset’s instance.  

The general idea is the creation of a system that will import any dataset and 

preprocess its data according to some “pre-processing rules”. Then it will extract its 

meta-features (object/distance-based) and store it to a local database. After that, it will 

try to find similarities in these meta-features with an already stored collection of meta-

features, and finally, it will propose a clustering algorithm according to the similarities. 

To achieve the above, we created a local database that contains a collection of 

50 extracted meta-features along with their preferable clustering algorithm that were 

obtained by 50 datasets from different domains. Below it is described our steps in 

creating such a system and how efficient that system is. 

4.1 DATASET PRE-PROCESSING 

In this approach, the experiments used datasets collected from the different 

locations in the world wide web such as Kaggle, University of Eastern Finland, etc. 

These datasets cover various domains, including engineering, biology, medicine, 

physics, and robotics. Thus, unlike the datasets used in the previous studies, the 

datasets used here cover a wider variety of application domains. 

However, before starting experimenting in each one of them, some actions 

needed to be taken first, known as pre-processing steps. In all datasets, it was necessary 

to remove all information about labels or classes. Also, all nominal values were 

converted into numbers following the alphabetical order of the unique values. With 

the above two actions, the datasets contained now only numerical values. Then, if any 

attribute had the same value for all its objects, this attribute was removed.  

The same action (attribute removal) was also applied to any attribute that had a 

different value for each its object. Any object that had a missing value was replaced 
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by zero (0), and if any attribute had more than 40% missing values, this was removed 

as well. As a last necessary action, after completing all the above steps, was to 

normalize the remaining data over the interval [0,1]. 

To summarize, all preprocessing steps can also be found below. 

Table 1: Datasets pre-processing 

 

Pre-Processing Datasets 

 

(1) Information about labels or classes were removed 

(2) Nominal values were converted into numbers 

(3) Removal of attributes with same value at all their objects 

(4) Removal of attributes with different value at all objects 

(5) Removal of attributes of having more than 40% missing values 

(6) Replaced any object with missing value with 0 

(7) Data Normalization [0,1] 

 

4.2 OBJECT’S ATTRIBUTE APPROACH 

The object’s attribute approach was proposed by D.G. Ferrari and L.N. de 

Castro, as already mentioned before. At their approach, data similarity can be observed 

by extracting nine meta-attributes based on the object’s attributes of a dataset (Table 

2).  
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Table 2: Meta-attribute set based on the attributes 

 

Meta-attribute 

MA1 

MA2 

MA3 

MA4 

MA5 

MA6 

MA7 

MA8 

MA9 

Description 

Log2 of the number of objects 

Log2 of the number of attributes 

Percentage of discrete attributes 

Percentage of outliers 

Mean entropy of discrete attributes 

Mean concentration between discrete attributes 

Mean absolute correlation between continuous attributes 

Mean skewness of continuous attributes 

Mean kurtosis of continuous attributes 

 

The first four meta-attributes (MA1 – MA4) extract global information about the 

problem. They are universal values that can be easily obtained. At the 5th meta-

attributes and after the attributes are separated to discrete and continuous. To 

automatically distinguish whether an attribute is discrete or not so are defined the 

following rules. First, if the attribute has real numbers as objects, then the attributes 

are considered as continuous. Secondly, if the number of unique values is less than 

30% then these attributes are regarded as discrete. Lastly, if the above is not occurring, 

then the attributes are regarded as continuous. 

In order to identify the outliers of the datasets, the Interquartile Range (IQR) [41] 

rule is used. This method is based on the boxplot, as V. Hoge [42] suggested in 2004. 

Data suggests the beliefs are grouped around a certain core value. The IQR says how 

the "mean" values are distributed out; it can also be used to determine when some of 

the other values are "too far" from the central value. These "too distant" points are 

called "outliers" because they "lie outside" the range we expect them to be within. The 

IQR is the length of the box in your box-and-whisker plot. An outlier is any value that 

is more than 1⁄2 times the length of the box at either end of the box. The Lower Limit  

is calculated  as the subtraction of the first quartile (Q1) to the IQR that is multiplied 

first by 1,5 as follows 

   Lower Limit = Q1 – (1,5 * IQR) 
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The Upper Limit is calculated as the addition of the third quartile (Q3) to the 

IQR multiplied by 1,5 as follows 

   Upper Limit = Q3 + (1,5 * IQR) 

To summarize, an object is considered an outlier if at least one of its attributes 

has a value outside its respective upper or lower limits. 

4.2.1 Extracting meta-features 

In this method, each dataset is imported to our system, and then all the data 

cleaning rules (mentioned on 4.1) are applied. As a second step, the framework checks 

each dataset’s column if it contains a discrete object or continuous and for it breaks 

the dataset to two smaller. One that contains the discrete values and the other contains 

the columns with continuous values. 

For each column that contains discrete values (according to the rules on 4.2), the 

entropy and the concentration are calculated. Then, the mean value of each of these 

calculations is stored into two registers (MA5 and MA6). After that, is counted the size 

of the total objects of the dataset and then the length of the columns-attributes which 

that dataset contains. Then, we produce and store the values for the first two meta-

attributes (MA1 and MA2). While using the IQR method, we are dividing the dataset 

into two quantiles (0.25 and 0.75), and then we are calculating the outliers according 

to the rules. In order to find the percentage of the outliers in each dataset, we divide 

the outliers from the number of total objectives (which we calculated before), and this 

value is stored in a separate register (MA4). Knowing which attributes have discrete 

values and which have not, it is easy to calculate the percentage of discrete columns 

of the dataset (MA3). 

On the other hand, for each column with continuous attributes, it is calculated 

and stored (MA7, MA8, MA9) the correlation, the skewness, and the kurtosis of these 

columns. To calculate the correlation, it is used the Pearson method [43], which is the 

covariance of the two variables separated by the sum of their standard deviations. The 

description type includes a "product moment" that is, the mean (first moment about 

the origin) of the sum of mean-adjusted random variables. The framework continues, 

with the creation of two tables where they will be stored the score of each clustering 

algorithm according to the clustering indices and the ranking between all the clustering 

algorithms. 
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For each dataset, we will execute the four clustering algorithms (DBSCAN, SL, 

PSO, K-Means), and they will be evaluated by the five clustering indices (DB, CH, 

SIL, DU, HL). The first two clustering algorithms (DBSCAN and SL) require as a 

configuration only the threshold. We compare the results for the number of clusters 

for each of them, and we are using this number of clusters as an input to the next 

algorithms (PSO, K-Means), which request this number as an input. 

Starting with the DBSCAN, we are running this algorithm by changing its 

threshold in order to have the best result according to the clustering indices. After we 

end up in the ideal number of clusters according to the DBSCAN algorithm, we are 

storing this number to a register, and also we are saving the score of all clustering 

indices for DBSCAN.  

 

Figure 7: Plot example for DBSCAN 

 

Then, we continue with the Single – Linkage algorithm. Following the same 

procedure, we are running multiple times the Single – Linkage algorithm by changing 

the threshold until the most efficient number of clusters is found, always according to 

clustering indices.  
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Figure 8: Plot example for Single – Linkage 

 

We store again this number as well as the score of all five indices for this 

algorithm, and we compare the stored indices score between the Single – Linkage and 

the DBSCAN algorithm. For the above example (Figures  7, 8), according to the 

clustering indices, the adequate number of clusters were DBSCAN clusters, which 

were seven. At the below table, it can be observed the objective for each internal index 

we are using. 

Table 3: The internal indices and their respective domains and search objectives 

 

Internal Index 

Davies-Bouldin [20] 

Calinski-Harabasz [23] 

Silhouette [24] 

Dunn [22] 

Hubert-Levin [21] 

Interval 

[0;+∞) 

[0;+∞) 

[-1;+1) 

[0;+∞) 

[0;+1] 

Objective 

Min 

Max 

Max 

Max 

Min 

 

After comparing the indices, we take the number of clusters from the winner, 

and we use it as an input to the next clustering algorithm (K-Means). There, we again 

run a clustering algorithm, and we are storing the scores of the internal indices.  
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Figure 9: Plot example for K-Means 

 

The same procedure is followed back for the next and last one clustering 

algorithm (PSO). We store its indices values again. 

 

Figure 10: Plot example for PSO 

 

Completing the execution of all four clustering algorithms for each dataset we have 

stored their clustering indices values.  

Table 4: Example of stored clustering indices for all algorithms 
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There, somehow, we should consider one of them as a winning clustering 

algorithm. In order to find this winning algorithm, we are following the methods of 

score ranking and winner ranking.  

Table 5: Example of point system for score and winner ranking 

 

The method of score ranking is based on race tournaments, in which at the end 

of each race the pilots get points. At the end of the tournament, the winner is declared 

the pilot (algorithm), with more points. In this methodology, in each index ranking 

each algorithm receives a number of points, based on its location. These points are 

summed, and the final rankings are constructed in downward order. 

Table 6: Example of order after score ranking 

 

On the other hand, the method of winner ranking is based on the number of 

victories in a pairwise competition between the algorithms, taking all internal indices 

into account. The algorithm with the largest number of wins occupies the first place, 

and the algorithm with the smallest number of wins holds the last position. The number 

of victories can be calculated as follows: 

Vi = ∑ |𝑟|𝑚
𝑗=1  - pij 

Where Vi is the number of the victories of the i-th algorithm, m is the number of the 

internal indices, |r| is the number of the algorithms in the ranking, and finally, pij is the 

rank position for the i-th algorithm in the j-th internal index.  

Table 7: Example of order after winner ranking 

 

Finally, the winner algorithm is found by calculating and finding the mean 

value of its position for all algorithms. Then it is stored and printed in the application 

as below: 
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Table 8: Example of stored table with results of clustering indices and the rank of each 

algorithm 

 

Last but not least, we create a database instance locally, were we store the nine 

meta-attributes and the winner algorithm. The above procedure is followed for all 50 

datasets (Appedix A), so at the end we have 50 entries stored in this local database 

which we will use later for our prediction tests. 

 

Figure 11: 9 Meta-attributes and winner algorithm stored to local DB 

 

4.3 DISTANCE MEASURES APPROACH 

The distance measures approach assumes that data similarity can be noticed by 

extracting nineteen meta-attributes based on the object’s attributes of a dataset. To 

better understanding how this works, we can consider the following definitions. Let 

assume that an Ω exists where Ω = {1,….,k,….,n} be a set of n instances indexed by 

k. Each instance k is represented by a vector of quantitative attributes xk = (xk,1,…., 

xk,j,…., xk,p) described by p attributes indexed by j where xk,j ∈ ℜ. 

The distance measures approach has a time complexity O(n2), as it calculates for 

each row its distance to all the other rows. On the contrary in object’s similarity 

approach this complexity is simply O(n) as it only computes statistical values like the 

percentage of the outliers. This difference in complexity, it has a great impact in 

performance for Big Data problems as it could be easily understand that for big 
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datasets size of 3 million rows, the operations would be around to 3.000.0002 for this 

O(n2) algorithm, which is actually a lot.  

Firstly, the Euclidean distance between the instances in a dataset must be 

determined. The distance measured between instances xk and xl is given by the 

equation below: 

𝑑(𝑥𝑘, 𝑥𝑙) = 𝑑𝑘,𝑙  = √∑(

𝑝

𝑗=1

 𝑥𝑘,𝑙 −  𝑥𝑙,𝑗)2 

Based on this measure, a vector d, containing the dissimilarity among all 

instances, is built as follows: 

d = [d1,2, d1,3,.…, dk,l,…., dn-2, n-1, dn-1, n] 

Next, in the interval [ 0, 1 ], vector d is normalized, creating a new vector w’. 

Given a value indexed by u (w[u]) from vector w, the corresponding normalized value 

for index u (w’[u]) in vector w’ is given by: 

w’[𝑢] =
𝑤[𝑢]− min (𝑤)

max(𝑤)−min (𝑤)
 

The 19 meta-features are extracted from each dataset after obtaining the vector 

w’. These meta-features (MD1 to MD19) are described in table 4. 

According to A. Kalousis (2002) [44], histograms could provide more details 

about the characterizing data. In particular, from vector w’, MD1 to MD5 extract pure 

statistical data (measures, variance, standard deviation, skewness, and kurtosis). Meta-

functions MD6 to MD15 capture vector w’ dependent histogram information. This 

histogram occurs in the interval [0, 1], as the values from the vector w’ are normalized. 

The meta-functions from MD16 to MD19 are extracted from the absolute Z-score 

histogram. 
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Table 9: Distance-based meta-features and their respective description. 

 

Meta-attributes 

MD1 

MD2 

MD3 

MD4 

MD5 

MD6 

MD7 

MD8 

MD9 

MD10 

MD11 

MD12 

MD13 

MD14 

MD15 

MD16 

MD17 

MD18 

MD19 

Description 

Mean of w’ 

Variance of w’ 

Standard deviation of w’ 

Skewness of w’ 

Kurtosis of w’ 

% of values in the interval [0,0.1] 

% of values in the interval (0.1,0.2] 

% of values in the interval (0.2,0.3] 

% of values in the interval (0.3,0.4] 

% of values in the interval (0.4,0.5] 

% of values in the interval (0.5,0.6] 

% of values in the interval (0.6,0.7] 

% of values in the interval (0.7,0.8] 

% of values in the interval (0.8,0.9] 

% of values in the interval (0.9,1.0] 

% of values with absolute Z-score in the interval [0,1) 

% of values with absolute Z-score in the interval [1,2) 

% of values with absolute Z-score in the interval [2,3) 

% of values with absolute Z-score in the interval [3,∞) 

 

The Z-score [45] shows how many standard deviations an item is from the mean 

value of the distribution, and is measured as: 

𝑧 =
𝑥 − 𝜇

𝜎
 

Where x is the element value, μ is its mean value, and σ is its standard deviation. 

The absolute Z-score value is discretized into four bins, between the intervals [0,1), 

[1,2), [2,3) and [3,∞). 
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4.3.1 Extracting meta-features 

One more as at the previous method, each dataset is imported to our system, and 

then all the data cleaning rules (mentioned on 4.1) are applied. As a second step, the 

dataset is normalized to the interval [0,1], and then we create an array that contains the 

Euclidean distance values between each row. 

From this array, we can easily calculate the mean, the variation, the standard 

deviation, the skewness, and the kurtosis values and store these values to registers 

(MD1 to MD5). The next step is to calculate the histogram of this array with Euclidean 

distances and calculate / store requested meta-attributes MD6 to MD15. For the four 

last meta-attributes, we use the scipy library in order to calculate the Z-score first, then 

we calculate its absolute values and store them to registers MD16-MD19. The 

framework continues, with the creation of two tables where they will be stored the 

score of each clustering algorithm according to the clustering indices and the ranking 

between all the clustering algorithms. 

Working identical to the fist method (4.2.1), after calculating and storing all the 

necessary meta-attributes, we proceed with running the clustering algorithms and 

clustering indices. For each dataset, we will execute the four clustering algorithms 

(DBSCAN, SL, PSO, K-Means), and they will be evaluated by the five clustering 

indices (DB, CH, SIL, DU, HL). The first two clustering algorithms (DBSCAN and 

SL) require as a configuration only the threshold. We compare the results for the 

number of clusters for each of them, and we are using this number of clusters as an 

input to the next algorithms (PSO, K-Means), which request this number as an input. 

Identically to 4.2.1, we start by configuring and running the DBSCAN 

algorithm;  
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Figure 12: 2nd plot example for DBSCAN  

 

After configuring the threshold (Appendix B), in above example DBSCAN 

suggests that the adequate number of clusters for this dataset is number 2. Then, we 

continue with the Single-Linkage algorithm. Also, at this specific dataset example, 

Single linkage suggests 4 clusters (Figure 13). We store and compare their scores 

according to the clustering indices (table 3), and we conclude to the ideal number of 

clusters, which in our example case was 2 number of clusters. 

 

Figure 13: 2nd plot example for Single-Linkage 

 

 Later, this number of clusters is used as an input to the K-Means and PSO 

algorithm to store also their scores. 
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Figure 14: 2nd plot example for K-Means 

 

We are completing the execution of all four clustering algorithms for each 

dataset we have stored their clustering indices values.  

  

Figure 15: 2nd plot example for PSO 

 

As we can see at the below example, all stored values of clustering indices can 

be easily compared in order to produce the socre and winner rank.  

Table 10: 2nd example of stored clustering indices for all algorithms. 
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There, again, we should consider one of them as a winning clustering algorithm 

according to the combination of score and winner ranking as below.  

Table 11: 2nd example fo point system for score and winner ranking 

 

To calculate the score ranking, we sum the scores of each algorithm, and we 

put it in descending order. So in our example, K-Means achieves a 38 score. 

Table 12: 2nd example of order after score ranking 

 

Following now the calculations to produce the winner ranking, according to 

point system, K-Means acquired 14 points. 

Table 13: 2nd Example of order after winner ranking 

 

We again calculate the mean of score and winner ranking position and store it. 

In both ranks, winner and score, K-Means managed to be the leader so it is obvious 

that this algorithm will be also the winner algorithm for this example dataset. 

Table 14: 2nd example of stored table with results of clustering indices and the final  

rank of each algorithm 

 

Finally, we create a second database instance locally, where we store the 

nineteen meta-attributes and the winner algorithm. The above procedure is followed 

for all 50 datasets, so in the end, we have 50 entries stored in this local database, which 

we will use later for our prediction tests. 
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Figure 16: 19 Meta-attributes and winner algorithm stored to local DB 
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Chapter 5: Implementation Details 

5.1 LANGUAGE OF CHOICE AND REASONING 

As the problem of recommending a clustering algorithm belongs to the Machine 

Learning category, the use of Python as a programming language was the first choice. 

Python can be described as a programming language with a lower barrier to entry, 

flexible, has a cross-platform compatibility, and good visualization options. 

The main reason, however, for this choice was that Python offers a vast library 

ecosystem. A library is a module or collection of modules that are released by different 

sources, such as PyPi, including a pre-written piece of code that enables users to access 

certain functionality or perform various actions. Python libraries have base-level 

objects, so developers don't always have to code them from the very start. 

Machine Learning requires ongoing data processing, and the Python libraries 

allow you to access, manage, and transform data. Below are some of the libraries that 

were used in the framework: 

• Scikit-learn for handling the Machine Learning algorithms of clustering. 

• Pandas in order to create high-level data structures and analysis. Pandas 

library was responsible for importing data for their original format (*.txt or 

*.csv), data configuration, and exporting the results into a SQL schema. 

• Matplotlib assisted in plotting the data into 2D plots, and as a result, this 

visualization helped in understanding the clusters better. 

• SciPy offered some of the internal clustering indices as well as some of the 

clustering algorithms as well 

• And last but not least, the NumPy library. Numpy handed the mathematical 

functions for the arrays, and it assisted in extracting and creating all the meta-

attributes that were necessary for the implementation. 
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5.2 OPERATING SYSTEM, HARDWARE SPECIFICATIONS AND THEIR 

IMPACT 

The entire framework was implemented in a Windows 10 environment as we 

took advantage of python’s cross-platform compatibility. There, after installing the 

scientific Python distribution Anaconda, which is bundled in Spyder IDE, we could 

use Anacoda’s Jupyter utility. 

Jupyter Notebook is an Open-Source software that offered the opportunity to 

write “live” code with simultaneously executing and debugging every line of code. 

Also, it provided “live” charts and results. 

The system on which the application was benchmarked was a 64-bit system, 

which may be needed when calculating the rational numbers to allow for larger 

integers and longs. On both cores, the processor is dual-core with a core frequency of 

2GHz with 8 GB RAM. 

 

5.3 CODE STRUCTURE 

Following the typical approach, all functions were stored on a different notebook 

and were called at the declaration section at the main file. The code was arranged in 

such a way that the developer only needs to execute the main file line by line in order 

to observe the results of each command. 

At the end of the execution file, a command responsible for inserting the 

extracted data into a SQL database was applied. Then after creating these three 

databases, one for each implementation, the final step was to execute the K-NN file 

that contains the K-NN algorithm and produces all the relevant results. 

Each python command has notes and commends easy to read and understand. It 

is worth noticing that the entire process of adding extra algorithms (if needed) it can 

be easily performed. The developer can extend the experiment by simply calling any 

other cluster algorithm or clustering index he wants. 

The most important parts of the implementation code can be found on Appendix 

D 
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Chapter 6: Results 

After evaluating each clustering algorithm for all the existing datasets and 

storing their meta-attributes to a local database, what comes next is the evaluating of 

these two methods. On the one hand, there are the meta-attributes based on the 

dataset’s attributes, and on the other hand, there are the meta-attributes based on the 

distance between the dataset’s objects. 

To evaluate each method, we treated this problem as a classification problem, 

and we performed the K-NN classification algorithm for the two datasets. For each of 

these datasets, we trained the system according to 75 percent of there total values. 

Then, with the remaining 25 percent, we tried to predict the winner algorithm for these 

values. Even if the datasets contained only 50 rows, the results were extremely 

positive. 

We tried first to run the K-NN algorithm for the dataset that contained the meta-

attributes based on the distance between its objects. Having the 75/25 ratio between 

the training and the test data, we managed to have a 77% accuracy in predicting the 

winner algorithm as it is depicted in the table below: 

Table 15: Prediction accuracy for the distance-based method 

 

 

The results reveal that there is an excellent correlation between the distance of each 

object and the clustering algorithm that provides the most accurate clusters.  

On the other side, when the K-NN algorithm was executed for the dataset that 

included the meta-attributes based on the attributes, with the analogy between training 

data and test data to be 75/25, we had only 46% accuracy in predicting the winner 

algorithm. 



 

44 Chapter 6: Results 

Table 16: Prediction accuracy for the attributes-based method (1st attempt) 

 

 

Trying to improve this rating, we increased the number of training data to 80%. Then 

with the remaining 20%, we tried the next prediction. 

Table 17: Prediction accuracy for the attributes-based method (2nd attempt) 

 

 

The accuracy of this prediction increased significantly to 70%. The above shows us 

that this method that contains the nine meta-attributes requests a dataset that includes 

more values from the existing one, which will adequately train the system, and as a 

result, the prediction later will become more accurate. 

Comparing those two methods, we realize that both approaches are efficient with 

high recommendation quality. Both results showed the feasibility of meta-learning 

systems for an unlabeled approach to the selection problem of the clustering 

algorithms.  

Characterization based on meta-attributes that do not depend on the object labels 

and evaluation of the algorithm by using internal indices that avoid known solutions 

allow the methodology proposed to be applied to any clustering problem. However, as 

the results reveal, the meta-attributes based on the distance between the objects are 

more efficient than the meta-attributes based on datasets attributes. With a slight 
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difference (77% from 70%), the second method produced better results in predicting 

the most suitable cluster algorithm.  

Lastly, it is worth to be mentioned, that for Big Data problems, the first approach 

has a lot more value on that as it overcomes the algorithm complexity of the distance-

based approach. 
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Chapter 7: Conclusions and Future Work 

This Master Thesis investigated the automatic recommendation of Clustering 

Algorithms. Data characterization is an essential part of meta-learning-based 

recommender systems. To improve the proposal, two methods were experimentally 

examined in a set of 50 datasets.  

The suggested collection of meta-functions incorporates the tests of correlation 

and dissimilarity. Using this new set of meta-functions, experiments were performed 

to test the predictive efficiency of a clustering algorithm recommender program. The 

framework recommends the most acceptable ranking of clustering algorithms for a 

new dataset. 

The assessment occurred on two occasions. The first was by obtaining some 

meta-attributes according to dataset’s statistic values, and the second was by obtaining 

these meta-attributes by the distanced base model. After extracting their meta-data, 

each dataset examined in order to find the most suitable clustering algorithm according 

to metrics from clustering internal indices. These two pieces of information, meta-data, 

and the clustering algorithm, were stored in local databases and then tries for prediction 

occurred. 

According to the K-NN algorithm, both methods were extraordinarily efficient 

and accurate. However, a comparison between them depicts that the method based on 

the distance between the dataset’s objects was more accurate, with also a smaller 

training set of data. It presented better results than the classic approach along with a 

higher recommendation quality. Finally, a selection technique of the attributes could 

be used for the meta-features collected by these two methods. 

As future work, new meta-features could be introduced and experimentally 

tested, removing other elements from the datasets. Using more datasets could make 

the meta-learners more accurate. Also, the recommender method might also use 

different classification algorithms.  

It is interesting to consider how the metalearing approach could be adapted or 

extended also to problems in other domains, such as operations research and of course 

how metalearning could be possible have an entity in Big Data problems.  
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Appendices  

Appendix A: List of Datasets used 

Dataset rows attributes 
DBSCAN 
(eps/min) SL 

3d_spatial_network 3750 4 0.11, 15 ward, 10 

absenteeism_at_work 740 21 1.1, 4 compl, 2.1 

ae_train 1250 12 0.3, 4 ward, 11 

c1r4r_02 180 10 0.44, 4 ward, 4 

c1r5r_01 162 10 0.49, 4 ward, 4 

c1r5r_02 168 10 0.46, 4 ward, 4 

c1r6r_02 147 10 0.4, 4 ward, 4 

c1r7r_02 120 10 0.5, 4 ward, 3.5 

Frogs_MFCCs 700 12 0.35, 4 ward, 7 

gesture_phase_b3_raw 750 12 0.32, 4 compl, 1.5 

HTRU_2 1700 9 0.41, 4 ward, 5 

l1n_01 136 10 0.33, 4 average, 0.9 

l1n_05 131 10 0.4, 4 average, 0.9 

l1r_02 134 10 0.4, 5 average, 0.9 

l1r_03 135 10 0.4, 5 average, 0.9 

l1r_04 138 10 0.37, 5 average, 0.9 

l1r_05 124 10 0.38, 4 average, 0.9 

LG_G-Watch_1 2100 6 0.107, 6 average, 0.9 

movement_libras_1 45 91 2, 4 ward, 5 

movement_libras_5 90 91 2.5, 4 ward, 10 

movement_libras_10 165 12 0.45, 4 ward, 3 

mturk_cluster_data 85 180 3, 3 ward, 13 

mturk_data_feature 30 500 7, 7 average, 8.9 

perfume_dataset 20 29 0.3, 2 ward, 2 

Samsung-Galaxy-Gear-2 2100 6 0.107, 6 average, 0.9 

SCADI 70 143 5, 6 ward, 12 

seeds_dataset 210 8 0.5, 4 ward, 2.5 

turkiye-student-evaluation 455 33 1, 4 ward, 15 

Wholesale_customers_data 440 8 1, 4 ward, 7 

zAggregation 788 3 0.1, 5 ward, 3.5 

zCollege 777 17 0.3, 4 ward, 6 

zD 3100 3 0.1, 4 ward, 9 

zflu 240 3 0.1, 4 ward, 3 

zGENERAL 8950 17 0.3, 4 ward, 30 

zMall_Customers 200 4 0.15, 4 ward, 3 

zs3 5000 2 0.02, 4 ward, 7 

ztoys 373 3 0.2, 4 single, 0.5 

zunb 6500 2 0.07, 4 ward, 8 
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zcars 261 7 0.23, 4 ward, 5 

buddymove_holidayiq 249 7 0.27, 4 ward, 4 

c1r4r_01 175 10 0.4, 4 ward, 5 

c1r6r_01 146 10 0.5, 4 ward, 3.5 

c1r7r_01 117 10 0.5, 4 ward, 3.5 

gesture_phase_a2_raw 750 12 0.32, 4 ward, 6 

gesture_phase_c3_raw 750 12 0.33, 4 ward, 6 

l1n_02 138 10 0.38, 4 ward, 6 

l1n_04 131 10 0.5, 4 ward, 3 

l1r_01 139 10 0.38, 4 ward, 3 

movement_libras_8 135 91 2, 4 ward, 4 

Sales_Transactions_Dataset 141 12 0.6, 4 ward, 3 
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Appendix B: Extracted meta-features at object’s similarity approach 

 

  

id  ma1  ma2  ma3  ma4  ma5  ma6  ma7  ma8  ma9  walgo

1 13.873 2.000 0.000 0.040 0.000 0.000 0.366 0.070 -0.074  KM

2 13.924 4.392 28.571 0.206 0.000 0.619 0.184 0.596 2.803  PSC

3 13.873 3.585 0.000 0.147 0.000 0.000 0.285 -0.072 -0.277  KM

4 10.814 3.322 0.000 0.722 0.000 0.000 0.300 0.127 -0.586  KM

5 10.662 3.322 0.000 0.864 0.000 0.000 0.334 0.254 -0.248  DBS

6 10.714 3.322 0.000 0.833 0.000 0.000 0.321 0.216 -0.295  DBS

7 10.522 3.322 0.000 0.884 0.000 0.000 0.392 0.127 -0.753  KM

8 10.229 3.322 0.000 0.917 0.000 0.000 0.320 0.385 -0.820  DBS

9 13.036 3.585 0.000 0.250 0.000 0.000 0.281 -0.089 -0.240  KM

10 13.136 3.585 0.000 0.233 0.000 0.000 0.287 -0.084 -0.231  PSC

11 13.901 3.170 11.111 0.118 0.000 0.858 0.485 2.240 12.571  PSC

12 10.409 3.322 0.000 1.176 0.000 0.000 0.247 0.094 19.338  SL

13 10.355 3.322 0.000 1.221 0.000 0.000 0.269 0.782 15.244  SL

14 10.388 3.322 0.000 1.269 0.000 0.000 0.306 -0.061 9.468  DBS

15 10.399 3.322 0.000 1.259 0.000 0.000 0.268 -0.368 14.567  DBS

16 10.430 3.322 0.000 1.232 0.000 0.000 0.303 -0.394 8.663  SL

17 10.276 3.322 0.000 1.371 0.000 0.000 0.308 0.162 9.207  SL

18 13.621 2.585 0.000 0.071 0.000 0.000 0.392 0.026 -0.581  KM

19 12.000 6.508 0.000 2.637 0.000 0.000 0.333 -0.221 -0.428  DBS

20 13.000 6.508 0.000 1.319 0.000 0.000 0.322 -0.458 -0.589  SL

21 10.951 3.585 0.000 0.909 0.000 0.000 0.296 -0.048 -0.371  SL

22 13.901 7.492 100.000 2.281 0.000 0.784 0.000 0.000 0.000  PSC

23 13.873 8.966 100.000 5.980 0.000 0.388 0.000 0.000 0.000  PSC

24 9.180 4.858 0.000 9.828 0.000 0.000 0.941 -0.272 1.174  SL

25 13.621 2.585 0.000 0.071 0.000 0.000 0.641 -0.112 -0.692  KM

26 13.289 7.160 99.301 2.428 0.000 0.721 1.000 0.379 -0.452  PSC

27 10.714 3.000 12.500 0.595 0.000 0.333 0.667 0.267 -0.732  PSC

28 13.874 5.044 33.333 0.233 0.000 0.292 0.682 -0.198 -1.000  KM

29 11.781 3.000 25.000 0.398 0.000 0.560 0.416 5.149 50.252  SL

30 11.207 1.585 33.333 0.127 0.000 0.218 0.508 0.227 -1.358  DBS

31 13.689 4.087 0.000 0.250 0.000 0.000 0.343 1.709 10.330  KM

32 13.183 1.585 0.000 0.032 0.000 0.000 0.426 -0.030 -1.220  DBS

33 9.492 1.585 33.333 0.417 0.000 0.538 0.508 0.067 -0.750  PSC

34 17.215 4.087 58.824 0.021 0.000 0.342 0.389 5.210 71.740  DBS

35 9.644 2.000 0.000 0.625 0.000 0.000 0.421 0.190 -0.699  KM

36 13.288 1.000 0.000 0.020 0.000 0.000 0.669 0.132 -1.075  PSC

37 10.128 1.585 33.333 0.268 0.000 0.615 0.721 0.230 -0.756  PSC

38 13.666 1.000 0.000 0.031 0.000 0.000 0.568 1.265 4.727  PSC

39 10.835 2.807 14.286 0.438 0.000 0.359 0.677 0.487 -0.387  KM

40 10.767 2.807 0.000 0.574 0.000 0.000 0.594 0.485 -0.376  KM

41 10.773 3.322 0.000 0.800 0.000 0.000 0.284 0.352 0.051  SL

42 10.512 3.322 0.000 0.959 0.000 0.000 0.336 0.167 -0.491  DBS

43 10.192 3.322 0.000 1.111 0.000 0.000 0.333 0.265 -0.555  DBS

44 13.136 3.585 0.000 0.211 0.000 0.000 0.276 -0.076 -0.320  SL

45 13.136 3.585 0.000 0.233 0.000 0.000 0.288 -0.085 -0.322  KM

46 10.430 3.322 0.000 1.087 0.000 0.000 0.268 0.581 14.925  KM

47 10.355 3.322 0.000 1.221 0.000 0.000 0.258 0.761 15.146  SL

48 10.441 3.322 0.000 1.295 0.000 0.000 0.268 -0.535 14.729  KM

49 13.585 6.508 0.000 0.920 0.000 0.000 0.298 -0.395 -0.528  DBS

50 10.725 3.585 0.000 1.123 0.000 0.000 0.296 -0.071 -0.227  KM
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Appendix C: Extracted meta-features at distance-based approach 

 

 

  

id  md1  md2  md3  md4  md5  md6  md7  md8  md9  md10  md11  md12  md13  md14  md15  md16  md17  md18  md19  walgo

1 0.570 0.050 0.224 0.212 -0.399 1.912 10.508 20.607 25.393 20.801 13.700 5.591 1.341 0.141 0.004 65.746 30.638 3.529 0.087  KM

2 1.708 0.146 0.382 -0.613 0.790 0.207 0.806 2.074 6.894 16.203 30.044 30.712 11.191 1.774 0.094 71.019 24.286 3.834 0.861  PSC

3 0.815 0.045 0.212 -0.048 -0.209 0.130 1.594 7.166 18.569 27.843 25.670 14.367 4.118 0.516 0.026 67.317 28.352 4.199 0.132  KM

4 1.140 0.171 0.414 -0.272 -1.173 0.521 4.221 10.093 15.059 11.657 8.132 14.606 22.266 12.297 1.148 59.417 39.398 1.186 0.000  KM

5 1.129 0.170 0.412 -0.174 -0.951 1.196 7.737 13.810 15.467 11.625 21.601 18.511 8.358 1.610 0.084 63.101 35.342 1.557 0.000  DBS

6 1.139 0.187 0.433 -0.193 -1.094 1.219 6.401 10.800 13.708 11.627 10.115 15.676 17.679 10.686 2.089 61.513 37.546 0.941 0.000  DBS

7 1.166 0.227 0.477 -0.231 -1.459 0.308 3.439 11.304 16.056 11.844 5.004 5.955 14.435 28.143 3.513 56.779 42.857 0.363 0.000  KM

8 1.190 0.175 0.418 -0.174 -0.965 0.980 4.314 8.992 13.165 13.389 15.168 11.933 16.821 12.731 2.507 59.664 38.782 1.555 0.000  DBS

9 0.866 0.049 0.221 -0.094 -0.175 0.116 1.449 6.422 16.392 26.620 26.913 16.220 5.073 0.740 0.056 67.595 28.020 4.233 0.152  KM

10 0.851 0.050 0.224 0.035 -0.159 0.121 1.548 7.612 19.854 28.551 24.975 12.929 3.802 0.569 0.039 67.618 27.998 4.202 0.182  PSC

11 0.484 0.171 0.414 1.392 0.911 37.292 33.875 6.914 4.854 8.469 5.242 2.666 0.559 0.127 0.002 80.093 13.224 5.996 0.687  PSC

12 0.804 0.069 0.263 0.866 3.048 1.307 9.292 22.876 31.100 25.370 7.930 0.654 0.000 0.752 0.719 72.190 24.924 1.416 1.471  SL

13 0.821 0.080 0.284 0.590 1.629 2.079 10.711 20.435 28.597 24.674 10.100 1.856 0.164 0.881 0.505 70.851 26.142 1.515 1.491  SL

14 0.873 0.094 0.307 1.183 3.520 1.234 8.619 22.007 36.012 22.904 5.084 1.190 0.943 1.212 0.797 76.961 18.887 1.784 2.368  DBS

15 0.849 0.067 0.259 0.594 2.370 1.061 6.877 18.032 32.968 28.358 10.404 0.818 0.243 0.818 0.420 72.029 24.356 2.134 1.481  DBS

16 0.852 0.094 0.307 1.005 2.440 1.619 9.923 24.236 27.124 24.289 8.590 1.312 0.360 1.492 1.058 74.537 21.908 1.058 2.497  SL

17 0.868 0.104 0.322 1.261 3.372 1.665 12.720 28.101 34.566 14.175 5.180 0.970 1.298 0.682 0.643 74.889 20.968 1.941 2.203  SL

18 0.704 0.129 0.359 0.675 -0.304 2.988 19.830 24.796 18.280 13.231 9.574 6.512 3.791 0.988 0.010 66.699 28.793 4.478 0.029  KM

19 3.333 1.034 1.017 -0.155 -0.066 1.212 3.131 6.061 13.737 18.586 20.909 19.394 10.000 5.253 1.717 68.889 26.162 4.949 0.000  DBS

20 3.298 0.982 0.991 -0.445 0.066 1.174 3.171 5.293 7.166 16.579 23.895 20.949 12.809 7.765 1.199 69.588 25.418 4.894 0.100  SL

21 0.989 0.064 0.253 -0.104 -0.273 0.177 1.382 6.548 15.085 23.112 25.358 19.135 7.354 1.715 0.133 67.214 28.655 4.050 0.081  SL

22 5.996 3.307 1.818 0.454 0.217 0.028 1.148 4.034 18.992 20.924 27.535 15.014 5.770 4.398 2.157 70.336 24.286 5.322 0.056  PSC

23 8.672 0.734 0.857 0.472 0.051 2.069 5.287 13.563 24.828 21.609 14.713 6.897 7.126 2.529 1.379 69.425 25.747 4.598 0.230  PSC

24 1.452 0.976 0.988 1.137 1.271 15.263 27.895 21.053 13.158 9.474 5.789 5.263 0.526 0.526 1.053 73.158 22.105 3.158 1.579  SL

25 0.710 0.162 0.402 0.683 -0.348 6.230 22.352 20.907 15.839 12.231 9.351 6.567 4.337 1.982 0.205 66.055 29.459 4.464 0.021  KM

26 6.185 1.423 1.193 -1.144 0.636 0.373 0.621 1.615 3.520 6.004 9.027 8.240 13.458 32.878 24.265 72.671 21.781 4.720 0.828  PSC

27 0.988 0.209 0.458 -0.145 -0.997 5.140 13.579 11.032 8.827 11.251 22.005 15.147 8.904 3.377 0.738 61.294 37.781 0.925 0.000  PSC

28 2.429 1.109 1.053 0.812 0.397 0.793 5.737 22.347 23.245 19.197 12.086 6.873 5.587 1.241 2.893 71.625 23.919 4.396 0.060  KM

29 0.796 0.217 0.466 -0.258 -1.201 20.597 7.992 10.684 0.702 29.627 17.443 9.023 3.375 0.466 0.090 60.494 38.999 0.507 0.000  SL

30 0.637 0.091 0.301 -0.397 -0.947 7.387 9.908 7.500 7.527 12.616 16.476 17.863 15.132 5.102 0.489 61.626 37.740 0.634 0.000  DBS

31 0.822 0.098 0.313 0.785 0.451 1.877 18.058 30.097 24.679 13.541 6.792 3.541 1.204 0.192 0.019 69.627 25.632 4.074 0.667  KM

32 0.631 0.064 0.253 -0.020 -0.129 3.527 4.923 11.298 20.504 21.189 17.968 12.391 5.548 2.018 0.635 67.490 26.737 5.773 0.000  DBS

33 0.724 0.178 0.422 -0.152 -1.618 11.789 15.143 10.875 7.354 5.418 2.699 4.732 31.688 9.568 0.736 55.220 44.780 0.000 0.000  PSC

34 1.065 0.192 0.438 -0.094 -0.689 4.399 12.900 19.512 22.524 24.317 13.376 2.721 0.217 0.031 0.002 64.538 32.797 2.625 0.040  DBS

35 0.681 0.082 0.286 0.147 -0.280 4.261 10.658 15.397 22.271 22.271 14.538 6.814 2.834 0.864 0.090 67.201 28.920 3.784 0.095  KM

36 0.396 0.040 0.199 0.335 -0.389 7.599 17.125 21.949 20.356 16.986 9.994 4.337 1.395 0.249 0.011 65.569 31.427 2.859 0.145  PSC

37 0.662 0.207 0.455 0.266 -1.519 13.757 15.000 14.529 15.225 2.900 0.000 2.335 16.132 15.202 4.919 52.754 47.246 0.000 0.000  PSC

38 0.217 0.058 0.241 1.808 2.204 28.518 51.172 5.823 0.080 0.068 2.930 3.620 4.749 2.448 0.592 85.602 4.288 8.452 1.657  PSC

39 0.865 0.170 0.412 0.372 -0.619 4.889 13.879 20.973 19.994 13.212 12.841 9.231 3.855 1.014 0.112 63.882 33.369 2.703 0.047  KM

40 0.796 0.126 0.355 0.432 -0.503 2.044 11.643 21.253 19.718 16.948 12.165 9.389 5.085 1.561 0.194 65.073 31.578 3.300 0.049  KM

41 1.081 0.167 0.409 -0.333 -1.169 1.071 6.883 12.512 11.987 9.741 10.818 16.841 24.335 5.471 0.342 57.511 41.406 1.084 0.000  SL

42 1.138 0.186 0.431 -0.260 -1.172 0.529 4.695 12.083 15.239 12.508 10.345 18.526 22.617 3.174 0.283 60.274 38.479 1.247 0.000  DBS

43 1.121 0.183 0.428 -0.015 -1.135 0.324 3.581 10.669 17.006 15.178 13.454 10.772 17.846 10.492 0.678 57.928 41.424 0.648 0.000  DBS

44 0.884 0.050 0.224 -0.135 -0.172 0.161 1.572 6.202 15.775 26.059 26.440 17.349 5.523 0.872 0.048 67.610 28.005 4.240 0.146  SL

45 0.865 0.049 0.222 -0.083 -0.157 0.133 1.646 6.963 17.767 27.771 26.390 14.649 4.105 0.539 0.038 67.725 27.842 4.279 0.154  KM

46 0.907 0.086 0.293 0.504 0.742 0.582 5.988 16.249 24.162 26.764 17.709 5.162 1.269 1.576 0.540 70.168 25.643 3.142 1.047  KM

47 0.877 0.075 0.275 0.456 1.140 0.540 5.931 14.985 25.015 28.268 17.945 5.285 0.575 0.411 1.045 70.065 26.330 2.278 1.327  SL

48 0.843 0.071 0.266 0.809 3.017 1.522 9.342 22.406 32.239 25.107 7.371 0.542 0.219 0.657 0.594 72.391 24.502 1.668 1.439  KM

49 3.089 0.840 0.916 -0.251 -0.064 0.951 3.814 7.518 14.748 25.340 24.245 15.202 6.766 1.338 0.077 68.701 26.412 4.743 0.144  DBS

50 1.002 0.068 0.261 -0.071 -0.289 0.162 1.510 6.869 15.684 23.799 25.258 17.903 7.173 1.510 0.132 67.082 28.825 3.972 0.122  KM
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Appendix D: System’s important sections in python 

Data Preparation 

# Data import 

dataP = pd.read_csv("datasets/training/3d_spatial_network.txt", sep = " ", header = None) 

 
# Cleaning data from columns with same values or totally different 
# and Discover the discrete attributes from the dataset 
discrete = 0 
entr = [] 
concetr = [] 
dataContinuous = dataP 
 
for i in range(0,dataP.shape[1]): 
    perc = dataP[i].value_counts(normalize=True)*100 
       
    if perc.values[0] == 100: 
        dataP = dataP.drop([i],axis = 1) 
        dataContinuous = dataContinuous.drop([i],axis = 1) 
        print('found same') 
    elif perc.values[0] == (1/dataP.shape[0]): 
        dataP = dataP.drop([i],axis = 1) 
        dataContinuous = dataContinuous.drop([i],axis = 1) 
        print('found totally different') 
     
    if  30 <= perc.values[0] <100: 
        print('Column ', i, 'has discrete objects') 
        discrete += 1 
        # calculate the entropy 
        entr.append(pandas_entropy(i)) 
        # calculate the concetration 
        concetr.append(concentration(dataP, i))  
        # separates the dataset to Continuous and Discrete 
        dataContinuous = dataContinuous.drop([i],axis = 1) 
 

Meta Attributes (9) 

total_obj = dataP.size 
ma1 = math.log(total_obj, 2.0) 

total_attr = len(dataP.columns) 
ma2 = math.log(total_attr, 2.0) 

# Calculating Outliers based on IQR method 
Q1 = dataP.quantile(0.25) 
Q3 = dataP.quantile(0.75) 
IQR = Q3 - Q1 
dataOutliers = (dataP < (Q1 - 1.5 * IQR)) |(dataP > (Q3 + 1.5 * IQR)) 
d = dataOutliers.nunique() 

outliers = sum(d) 

ma4 = (outliers / total_obj)*100 

ma3 = (discrete / total_attr)*100 

if discrete == 0: 
    ma5 = 0 
    ma6 = 0 
else: 
    ma5 = np.mean(entr) 
    ma6 = np.mean(concetr) 

correlation = np.absolute(dataContinuous.corr(method = 'pearson')) 
if correlation.empty : 
    correlation = 0 
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correl = np.mean(correlation) 

ma7 = np.mean(correl) 

skewness = dataContinuous.skew(axis = 0, skipna = True) 
if skewness.empty : 
    skewness = 0 

ma8 = np.mean(skewness) 

kurt = dataContinuous.kurtosis() 
if kurt.empty : 
    kurt = 0 

ma9 = np.mean(kurt) 

rankingsTable = pd.DataFrame.from_items([('DB',[0, 0, 0, 0, 0, 0, 0]), 
                                      ('HL', [0, 0, 0, 0, 0, 0, 0]), ('DU', [0, 0, 0, 0, 0, 0
, 0]), 
                                      ('CH', [0, 0, 0, 0, 0, 0, 0]), ('SIL', [0, 0, 0, 0, 0, 
0, 0]),('Final Rank', [0, 0, 0, 0, 0, 0, 0]), ], 
                                     orient = 'index', columns = ['KM', 'SL', 'PSC', 'DBS']) 

scoresTable = pd.DataFrame.from_items([('DB',[0, 0, 0, 0, 0, 0, 0]), 
                                      ('HL', [0, 0, 0, 0, 0, 0, 0]), ('DU', [0, 0, 0, 0, 0, 0
, 0]),  
                                      ('CH', [0, 0, 0, 0, 0, 0, 0]), ('SIL', [0, 0, 0, 0, 0, 
0, 0]),('Final Rank', [0, 0, 0, 0, 0, 0, 0])], 
                                     orient = 'index', columns = ['KM', 'SL', 'PSC', 'DBS']) 

Meta Attributes (19 ) 

d = scipy.spatial.distance.pdist(dataNP, metric='euclidean') 

d_len = len(d) 

md1 = np.mean(d) 
md2 = np.var(d) 
md3 = np.std(d) 
md4 = scipy.stats.skew(d) 
md5 = scipy.stats.kurtosis(d) 

d_hist = np.histogram(d) 

x = d_hist[0] 

md6 = (x[0]/sum(x))*100 
md7 = (x[1]/sum(x))*100 
md8 = (x[2]/sum(x))*100 
md9 = (x[3]/sum(x))*100 
md10 = (x[4]/sum(x))*100 
md11 = (x[5]/sum(x))*100 
md12 = (x[6]/sum(x))*100 
md13 = (x[7]/sum(x))*100 
md14 = (x[8]/sum(x))*100 
md15 = (x[9]/sum(x))*100 

#Z-Score = (d[0]-md1) / md3 
z = scipy.stats.zscore(d) 

y1 = sum(0 <= x < 1 for x in np.absolute(z)) 
y2 = sum(1 <= x < 2 for x in np.absolute(z)) 
y3 = sum(2 <= x < 3 for x in np.absolute(z)) 
y4 = sum(3 <= x for x in np.absolute(z)) 
y = y1 + y2 + y3 + y4 

md16 = (y1/y)*100 
md17 = (y2/y)*100 
md18 = (y3/y)*100 
md19 = (y4/y)*100 

rankingsTable = pd.DataFrame.from_items([('DB',[0, 0, 0, 0, 0, 0, 0]), 
                                      ('HL', [0, 0, 0, 0, 0, 0, 0]), ('DU', [0, 0, 0, 0, 0, 0
, 0]), 
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                                      ('CH', [0, 0, 0, 0, 0, 0, 0]), ('SIL', [0, 0, 0, 0, 0, 
0, 0]),('Final Rank', [0, 0, 0, 0, 0, 0, 0]), ], 
                                     orient = 'index', columns = ['KM', 'SL', 'PSC', 'DBS']) 

scoresTable = pd.DataFrame.from_items([('DB',[0, 0, 0, 0, 0, 0, 0]), 
                                      ('HL', [0, 0, 0, 0, 0, 0, 0]), ('DU', [0, 0, 0, 0, 0, 0
, 0]),  
                                      ('CH', [0, 0, 0, 0, 0, 0, 0]), ('SIL', [0, 0, 0, 0, 0, 
0, 0]),('Final Rank', [0, 0, 0, 0, 0, 0, 0])], 
                                     orient = 'index', columns = ['KM', 'SL', 'PSC', 'DBS']) 

 

Ranking Combination Methods 

# Score Ranking 
ranks = {} 
points = [10, 8, 6, 4, 3, 2, 1] 
algs = list(scoresTable.axes[1]) 
 
for i,method in enumerate(eval_methods): 
    scores = sorted(list(zip(scoresTable.values[i:i+1, :].flatten().tolist(), algs)), key=lam
bda score: score[0], reverse=method[1]) 
    ranks[method[0]] = dict([(a[1], points[i]) for i,a in enumerate(scores)]) 
 
ranks 

def sum_scores(alg): 
    sum = 0 
    for method in eval_methods: 
        sum = sum + ranks[method[0]][alg] 
    return (alg, sum) 
 
scoreList = list(map(sum_scores, algs)) 
scoreList.sort(key=lambda tup: tup[1], reverse = True) 

# Winner Ranking 
def sum_wscores(alg): 
    sum = 0 
    for method in eval_methods: 
        sum = sum + len(algs) -points.index(ranks[method[0]][alg]) 
    return (alg, sum) 
 
winnerList = list(map(sum_wscores, algs)) 
winnerList.sort(key=lambda tup: tup[1], reverse = True) 

sresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'KM'] 
wresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'KM'] 
sresult = sresult[0] +1 
wresult = wresult[0] +1 
fKM = (wresult + sresult) /2 
 
sresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'SL'] 
wresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'SL'] 
sresult = sresult[0] +1 
wresult = wresult[0] +1 
fSL = (wresult + sresult) /2 
 
sresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'PSC'] 
wresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'PSC'] 
sresult = sresult[0] +1 
wresult = wresult[0] +1 
fPSC = (wresult + sresult) /2 
 
sresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'DBS'] 
wresult = [i for i, tupl in enumerate(winnerList) if tupl[0] == 'DBS'] 
sresult = sresult[0] +1 
wresult = wresult[0] +1 
fDBS = (wresult + sresult) /2 

scoresTable.loc['Final Rank','KM'] = fKM 
scoresTable.loc['Final Rank','SL'] = fSL 
scoresTable.loc['Final Rank','PSC'] = fPSC 



 

60 Appendices 

scoresTable.loc['Final Rank','DBS'] = fDBS 
print(scoresTable) 

if fKM == 1: 
    walgo = 'KM' 
elif fSL == 1: 
    walgo = 'SL' 
elif fPSC == 1: 
    walgo = 'PSC' 
elif fDBS == 1: 
    walgo = 'DBS' 

conn = sqlite3.connect("2MetaAttributes.db") 
cur = conn.cursor() 
cur.execute("CREATE TABLE IF NOT EXISTS Attr (id integer PRIMARY KEY, ma1 float, ma2 float, m
a3 float, ma4 float, ma5 float, ma6 float, ma7 float, ma8 float, ma9 float, walgo string)") 
conn.commit() 
# null is for autogenerated id value 
cur.execute("INSERT INTO Attr VALUES (NULL,?,?,?,?,?,?,?,?,?,?)", (ma1, ma2, ma3, ma4, ma5, m
a6, ma7, ma8, ma9, walgo)) 
conn.commit() 

 

 


