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Abstract	
  

The purpose of this thesis is to develop a prediction model for fuel consumption by 

taking into account design, operational and environmental parameters of a typical passenger 

vessel (Ro/Pax type).  More precisely, an ANN predictive model was developed based on 322 

historical voyage reports of a typical vessel, elaborating different input variables for the 

development of the model. After testing 90 ANN models of varying architectures, topologies 

and combinations of input variables, it was concluded that a Multilayered Feed-Forward 

neural network model (ML FFNN) with 10-15-1NN structure is the optimal neural network, 

which can accurately predict the fuel consumption of the reference vessel. The findings also 

revealed that the model’s highest prediction accuracy was achieved when exogenous factors 

were used as input variables, indicating that the prediction of fuel consumption is more related 

to exogenous variables rather than on its previous values, namely autoregressive model. 

In addition to the above, the performance of the ANN model is compared with a 

Multiple Regression (MR), and it is observed that the former model seems to have a better 

forecasting accuracy as its MAPE (2.16%) is lower than the MR’s MAPE (2.54%), denoting 

also the non-linear relationship between the fuel consumption and the input variables.  

The proposed FFNN model can be integrated into the energy management system of 

companies with similar vessels, as it can help ship operators in choosing the most efficient 

measures in order not only to achieve vessel’s fuel efficiency and sustained operational 

performance but also to reduce ship-generated emissions, fact that will also lead to lower 

operational costs for the shipping company. The contribution of the thesis in the literature is 

the provision of a more accurate method for the prediction of the fuel consumption of this 

vessel type through the incorporation of several exogenous variables important for the vessel 

operation.  
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1. Introduction	
During the past years it has been observed that due to the high demand of transporting 

goods via sea, there was a need of expanding the world’s fleet. Of course, that automatically 

meant that at the same time the average fuel consumption has rapidly risen. Unfortunately, 

this fact has significantly affected the fuel prices that have been roughly increased. Despite, 

such increase in the fuel prices was not enough to affect the afore-mentioned trend. This is 

partly justifiable taking into consideration that due to globalization and the expansion of the 

fleet, there was also an increase in the income of the shipping companies. As the time went 

by, both the society and the shipping community started to deeply concern about the increase 

of the emissions that were produced as a result of the commercial shipping.  

The beginning of this concern was the “Kyoto Protocol” which introduced a series of 

measures that had to be urgently adopted in order to reduce the emissions of CO2 and therefore 

restrict the global development of the greenhouse gases. It was only in 2008 when shipping 

was included in the target of reducing the emissions of CO2 as well as other greenhouse gases. 

As there was an expectation of an extreme growth of CO2 in the future, shipping could no 

more be a member of a non-regulation team in this matter. Further to the “Kyoto Protocol”, 

the E.U-  MRV Regulation has been enforced in the shipping sector, suggesting that all the 

shipping companies and operators are obliged to monitor, report and verify the ships’ 

emissions and consequently to observe their daily fuel consumption. At this point, it should be 

mentioned that most of the existing regulations are focused on the reduction of CO2 as it is the 

one constituting the greenhouse gases’ dominant. Also, the vessel’s fuel consumption in 

conjunction with the ship-generated emissions is subject, which has been analyzed, taken into 

account various types of vessels.    

According to International Maritime Organization (IMO), the vessels that produce the 

higher emissions are those, which are the most fuel consuming (IMO, 2018). Despite the fact 

that they do not represent a big part of the global fleet, the container ships and the passenger 

vessels, are the two most fuel consuming categories. This has been repeatedly justified by their 

speed and the time they both need to stay at the port area.  

This research will focus on the fuel consumption of the passenger vessels (Ro/Pax), 

taking as a case study a typical vessel. This category has been chosen as it significantly rises 
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the average port emissions, which of course might not significantly contribute to the national 

emissions’ inventory, but they are extremely important for the port’s greater area and thus for 

the health of the crew and local inhabitants (Tzanatos, 2011). It has been proven by previous 

examinations that the port emissions, which are generated by seagoing vessels, can directly 

affect the human health. Here, it should be pointed out that this might be a result arising from 

the fact that port emissions, contrary to voyage emissions, can be much easily quantified. 

1.1 	The	Research	Problem	

This study’s first part of the research problem is to predict the fuel consumption of a 

typical passenger vessel, for the day ahead (next voyage) and not for the long-term future. 

This will be carried out by taking into account several design, operational and environmental 

factors which will be presented in following chapters. Further to the above, the common 

relationship of the fuel consumption with these variables will be examined. Moreover, the 

linear and non-linear methods for the prediction will be compared, while at the end the most 

accurate prediction method with the lower error will be proposed.  

1.2 	The	Research	Aim	

To begin, one of the aims of this study is to present the variables on which the fuel 

consumption is depended. Then by analyzing several models, the aim is to conclude to the 

most accurate predictive model. It is also taken into consideration that due to the fact that the 

voyage of a passenger vessel is predefined regarding the distance and the duration, by 

optimizing various parameters, the decrease in fuel consumption can be achieved.  

Additionally, another aim is to prove that by predicting the fuel consumption through 

the employment of ANN (Artificial Neural Network) model based on various operational 

conditions can lead to the proper voyage design, when several parameters and past data are 

known. Last but not least, another target of this paper is to show that such model can be used 

on board the vessel, through a real voyage and in real time conditions. Furthermore, another 

purpose of this study is to fill the gap in the literature review as limited studies have addressed 

this specific subject. 

This topic is considered to be a feasible one, as there are various previous studies 

examining that. Moreover, any variable needed to carry out the research has been available by 

certified sources and thus it is considered that this study concludes to accurate evaluations.    
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1.3 	The	Research	Objectives	
One of this research’s objectives is to cover the topic from each single perspective by 

analytically presenting the results of similar past studies as well as any related topics. 

Moreover, another objective is that the research will be conducted by taking into account only 

actual data and not physics models. In addition to the above, through the analysis of various 

models there is a short discussion on previous findings while through this study’s analysis 

there is also an approval or disapproval of them. The research will conclude by proposing the 

most accurate model with the lower error, which can be used in order to predict the fuel 

consumption of a passenger vessel.  

1.4 	Structure	of	the	Thesis	
The remainder of this thesis is organized as follows. The Chapter 2 includes all the 

literature review concerning the International and European legislative framework focused on 

the ship-generated emissions and how the regulations affect the vessel’s operations and 

consequently the fuel consumption. Moreover, all relevant studies and researches concerning 

the factors that affect the fuel consumption and the methods used in order to predict the 

bunker usage are also outlined.  Further to the above, in the Chapter 3, the Artificial Neural 

Network (ANN), a Vessel case study and a Multiple Regression Analysis (MR) constitute the 

proposed Methodology. Chapter 4 includes the Data Analysis and more precisely, a 

correlation analysis of the factors affecting the fuel consumption, the development of the 

proposed ANN model, the implementation of the Multiple Regression (MR) model and a 

comparison between those two models. The outcomes and a summary of these methods in 

conjunction with a proposal for further research are provided in the Chapter 5. 

1.5 	The	Research	Questions	

• Which variables have the highest impact on the fuel consumption? 

• Through which model can the fuel consumption be most accurately predicted? Through a 

linear or a non-linear one? 

• Can the Artificial Neural Network (ANN) accurately predict the fuel consumption? 
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2. Literature	Review		
In this chapter, as a more comprehensive view should be provided to the reader, some 

general points that are strictly connected to the examined subject, had to be presented. The 

target is to present a literature review which covers the topic from any aspect that might be 

either directly or indirectly related to it and not to be only limited in providing the results of 

previous findings. This is very crucial in order to underline the need of further examining this 

topic.   

2.1 	Shipping	Sector	and	Emissions		

Through the years, several studies have been focused on the development of 

sustainable transport. The sustainability of transport is clearly set out by the OECD (1996) and 

it is referred as a transport, which does not imperil the public health and has low impact to the 

environment.  This sustainable transportation incorporates legislation, policies, systems and 

technologies (Global Development Research Center, 2018). Numerous guidelines, regulations 

and systems have been developed promoting sustainable transportation through energy 

efficiency measures. Hence, sustainability is considered one of the major challenges and 

opportunities that the maritime industry should deal, as shipping companies should change the 

business as usual. 

Shipping industry plays vital role to the economic development and it is recognized 

not only as the cornerstone of the world trade as “over 90% of the world’s trade is carried by 

sea” but also as a low cost transportation mean (IMO, 2018). However, the growing demand 

of goods will lead to a rise of the world fleet fact that will result not only to an increase in 

global emissions from seaborne transportation but also more fossil fuel will be required for 

ships’ operations (Nwaoha, Ombor, and Okwu, 2016). It is well known that shipping related 

activities are mainly relied on fossil fuel consumption, fact that has great impact not only to 

the environment but also to the public health (Castells Sanabra, Usabiaga Santamaría and 

Martínez De Osés, 2013). This fossil fuel utilization leads to the production of greenhouse 

gases (CO2) but also Nitrogen oxides (NOx) and Sulfur oxides (SOx), which are related to 

human fatalities and environmental degradation (Marine Insight, 2017). According to 

International Council on Clean Transportation (ICCT) (2007), for the period 1990-2007 it is 
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observed that seaborne emissions are increased from 585 to 1096 million tons. Moreover, 

Tzanatos (2011) in his research stated that, in 2008 the emissions generated from shipping 

amounted for 7.4 million tons and their externalities were estimated at about 2.95 billion 

euros. 

 Further to the above, despite the fact that the maritime sector is considered relatively 

“clean” compared to other industries as shipping emissions represent the 3.3% of the global 

anthropogenic emissions, this percentage is expected to be risen by 2050 (Tzannatos and 

Stournaras, 2014). The following chart presents (Figure 1) the CO2 emissions from the 

shipping sector compared to other industries and it is observed that the maritime sector is the 

second largest emitter of carbon dioxide compared to other transportation means. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From another point of view, it should be stated that bunkers have always been a key 

factor of ships operations, as the fossil fuels account for 50%-60% of a company’s operational 

running costs (Talley, 2012). Thus, a potential rise in the price of oil will constitute a liability, 

affecting negatively the profitability of the shipping company. Therefore, the need for the 

development of a prediction tool for fuel consumption is clearly noted as it would be 

considered not only as a competitive advantage but also it can attribute to the increase of 

company’s revenues through sustained energy savings (Nwaoha, Ombor, and Okwu, 2016). 
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Figure	1:	C02	emissions	per	Industry	(IMO,	2019)	
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This prediction tool can be used for achieving both optimization of ship’s operations and fuel 

efficiency (Nwaoha, Ombor, and Okwu, 2016). 

In the existing literature, numerous researches have been carried out focusing on 

emissions estimation taking into account several variables such as transported cargo volumes, 

vessels itineraries etc. (Gusti and Semin, 2016). Nevertheless, the calculation of emissions is 

mainly related to engine propulsion, fuel type and an emission factor. The latter is determined 

by the characteristics, and the quality of fuel used (Gusti and Semin, 2016). Pitana et al. 

(2010) concluded that the emission rate could be calculated by taking into consideration the 

fuel consumption and the emission factor and it is given by the following equation: 

𝑬 = 𝑭𝑪 × 𝑬𝑭 ,	 	 	 	                 (2.1) 

where:	
𝐸 = 𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑘𝑔) 
𝐹𝐶 = 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑡𝑜𝑛𝑠 ℎ𝑟𝑠) 

𝐸𝐹 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑘𝑔 𝑡𝑜𝑛𝑠 𝑜𝑓 𝑓𝑢𝑒𝑙)  
 

Another aspect that it should be pointed out here is that NOx emissions are not tightly 

related to fuel usage (Aulinger et al., 2016). On the contrary, SOx emissions are strongly 

dependent both on the fuel consumption and the sulfur content of the fuel used, whilst CO2 

emissions are clearly related not only to fuel consumption but also to operational conditions 

(Aulinger et al., 2016).  

2.2 		Legislative	Framework	

The global environmental organizations and maritime regulatory bodies have been 

awakened regarding the increase of atmospheric emissions generated by the shipping sector, 

as there was a prediction that CO2 would be increased up to 2050 by 150% to 250% if no 

actions and strict measures were taken (IMO, 2009). The aforementioned results are 

established by the OECD (2010) too. Moreover, according to the research of IPCC (2007), the 

indices of the greenhouse gas emissions have been completely against the expected global 

reductions. However, maritime transport was considered as the least-regulated sector 

regarding the anthropogenic emissions, fact that led to the development and implementation of 

maritime policies and regulations regarding measures and actions that must be taken in order 

to stay within safe emission limits and to prevent the rapid deterioration of the environment 
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(Aksoyoglu, Prévôt and Baltensperger, 2015). Below, the existing legislations in regards of 

the maritime emissions are presented, divided in two main categories; the International 

Regulations and the European Regulations.   

2.2.1 International	Regulations	

Until a few years ago, shipping was not deeply committed to the establishment of the 

Kyoto Protocol. By examining the high indices of the maritime emissions, all countries of 

Annex I have been requested to limit or ideally eliminate the greenhouse gases emitted by the 

seagoing ships, via the IMO (Lindstad H., Asbjornslett B.E. & Stromman A.H., 2011). 

Regretfully, that was a non-fertile measure and its results were insignificant (Lindstad H. et al, 

2011). The above could be justified taking into consideration the differences in terms of the 

views between the Annex I and non-Annex I countries, the interpretation of Article 2.2 and 

the IMO’s non-discriminatory regulation concerning the adoption of a common policy for all 

vessels trading globally (Faber et al, 2009). Upon this, the IMO focused on finding the way to 

reduce ships’ emissions at the highest possible percentage (Lindstad H. et al, 2011).  Another 

IMO’s study provides that the efficiency of the existing global fleet can be increased from 

25% to 75% through the adoption and the implementation of both operational and technical 

measures (IMO, 2018). 

This legislative framework has been established both at international and European 

level in order to set standards not only for exhaust emissions but also for fuel consumption. 

The majority of abatement measures proposed for emissions reduction result also to the fuel 

consumption reduction. At this point it is noteworthy to state, that ship generated air pollutants 

are clearly related to fuel use.  

To begin, IMO (2018) and its treaty MARPOL in the Annex VI adopted regulations 

aiming to limit GHG emissions and promoting energy efficiency through the efficient 

management of fuel consumption. More precisely, IMO’s focal point lies upon SOx and NOx 

air pollutants and provide mandatory requirements in order to reduce ship-generated emissions 

by at least 50% from 2008 levels by 2050 (IMO, 2018). These requirements are applying to 

companies operating vessels above 5,000GT (gross tonnage), representing the three quarters 

of the global tonnage (Green, 2018). Companies should collect information and data regarding 

fuel use and fuel type, which will be used on future decisions in case that additional control 

measures, should be enforced (IMO, 2018). Further to the above, OECD (2018) states that the 
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decarbonization of the shipping sector will be achieved through the deployment of new 

technologies, new sustainable fuels and renewable energy systems.  

In conjunction to all before stated, IMO developed the Energy Efficiency Index 

(EEDI) and the Energy Efficiency Operational Indicator (EEOI) (IMO,2018). The former sets 

technical standards in order to increase energy efficiency and to reduce CO2 emissions in 

newbuilding vessels through the implementation of new technologies while the latter provides 

guidelines in order to improve both energy and fuel efficiency in the existing fleet 

(Hagemeister and Holmegaard Kristensen, 2011). Both energy and fuel efficiency are related 

to ship generated emissions and consequently to fuel consumption. More precisely, EEOI 

provides guidelines to shipowners and operators in order to calculate and improve vessel’s 

energy efficiency (IMO, 2018). Such will be achieved through the procedures for designing 

the optimum voyage, hull’s and propulsion system proper maintenance and the employment of 

technical measures such as the ballast water treatment and waste heat recovery systems (IMO, 

2018). At this point it should be stated, that the voyage EEOI is expressed as a function of fuel 

consumption, CO2 emissions, the cargo carried and the distance and it is provided by the 

following equation (Acomi and Acomi, 2014): 

𝑬𝑬𝑶𝑰 =  𝑭𝑪𝒋 ×𝑪𝑭𝒋𝒋

𝒎𝒄𝒂𝒓𝒈𝒐×𝑫𝒊
,	 	 	 	 	 	 	 	 																															(2.2) 

where: 𝑗 is the fuel type, 𝑖 is the voyage number, 𝐹𝐶! is the fuel consumption of the fuel type 𝑗, 

𝐶!" is the fuel mass of CO2 , 𝑚!"#$% the mass of cargo carried and 𝐷! is the distance of the 

voyage 𝑖 (Acomi and Acomi, 2014) 

Furthermore, IMO introduced in 2016 the SEEMP (Ship Energy Efficiency 

Management Plan), which is considered as an operational mechanism in order the operator to 

monitor the performance of the vessel during the voyage and manage the energy consumption. 

SEEMP is a mandatory measure and it must be integrated into the Company’s system, as all 

the data collected regarding the operation of the vessel should be reported to the Flag State 

(IMO, 2018). To be more precise, every vessel above 400GT must have on board a designated 

SEEMP, which could be subject to external inspections (IMO, 2018). The third party auditors 

will conduct audits and inspections to the ship and the company as well in order to assess the 

implementation of the SEEMP (IMO, 2018).  

Therefore, it is understood that the IMO through the SEEMP obliges the shipowners 

and the operators not only to improve existing practices (i.e. weather rerouting, speed and 
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shaft power optimization, improved cargo handling, energy management etc.), but also to 

adopt new measures in order to boost vessel’s energy efficiency and consequently ship-

generated emissions will be reduced (IMO, 2018). Moreover, the Company is required to 

review and amend the existing SEEMP in accordance with IMO’s guidelines and ship’s 

current status, fact that will result to fleet’s sustained operations (IMO, 2018).  

Another measure that is adopted by the IMO regarding the anthropogenic emissions is 

the Emission Control Areas. The Annex VI of MARPOL established restrictions regarding the 

sulfur content of fuel oil onboard, forcing companies and operators to use bunker fuel onboard 

with sulfur content less than 3.5% m/m and from 2020 a new 0.5 % limit will be enforced 

(IMO, 2018). These Emission Control Areas (ECA) are divided into to two categories the 

Sulfur Emission Control Areas (SECA) and Nitrogen Oxide Emission Control Areas (NECA), 

where vessels must use fuel with low content in sulfur and nitrogen respectively (IMO, 2018). 

In these designated sea areas, the limit is set to 0.1% m/m sulfur content (Fagerholt et al., 

2015).  

For first time, in April 2018 the IMO adopted an “Initial Strategy on reduction of 

GHG emissions from ships” which is incorporated in the UN 2030 “Agenda for Sustainable 

Development” and it is considered as a framework for the Member States (IMO, 2018). IMO 

addresses the GHG emissions as a matter of urgency and provides short-term, mid-term and 

long-term abatement measures (IMO, 2018). More specifically, it sets targets for phasing out 

carbon emissions and it promotes the reduction of CO2 emissions from shipping related 

activities by at least 40% by 2030 compared to 2008 levels (IMO, 2018). Besides the 

aforementioned, this strategy identifies also some barriers and promotes new technological 

advances in order to be overcome (IMO, 2018). However, it outlines the potential impact that 

its implementation may have to the Member States and presents measures in order to mitigate 

this effect.  

At this point it necessary to state that, both US and China, which are the first and the 

second largest CO2 emitters respectively, didn’t sign their commitment to the aforementioned 

strategy (Green, 2018). This action can be justified by the fact that the abatement of shipping 

emissions leads to fewer voyages and consequently it affects the trade of goods. Therefore, 

this strategy may have impact to their economic growth as the shipping is tightly related to 

their economic development.  
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2.2.2 European	Regulations	and	EU	-	MRV	

As it concerns the European level, a similar to the IMO emission regulation have been 

adopted, namely, “Monitoring, Reporting, Verifying” (EU-MRV), by which the ships’ 

emissions will be monitored, reported and verified (European Commission, 2017). The 

regulation has been enforced on 2016 and the period from 1st January 2018 until 31st 

December 2018 is considered as the first monitoring period (ICS Shipping, 2016). The scope 

of MRV regulation is that every company should monitor and report annually CO2 emitted 

from its vessels (European Commission, 2016). This report should be in accordance with 

ISO14064, an international standard that provides fundamentals and specific conditions 

regarding the management of GHG emissions at organization level (ISO, 2018).  

More precisely, every vessel above 5,000GT should comply with the regulation in 

conjunction with the fact that the fuel consumption during the voyages should be monitored 

and then recorded (European Commission, 2017). Additionally, it should be mentioned that in 

order this regulation to be in force at least one port of call during the voyage should be under 

the jurisdiction of EU’s member state irrespective of the ship’s registered flag (ICS Shipping, 

2016).  

Shipping companies are obliged to develop and implement a monitoring plan including 

not only the fuel consumption and CO2 emissions but also other factors such as vessel’s 

loading conditions and cargo carried during the specific voyage (Shortsea, 2017). The 

quantification of CO2 will be obtained from the fuel use, the type of fuel, the bunkering 

volume, the technical and operational energy efficiency of the vessel and the fuel’s emission 

factor (Stevens et al., 2015). The extracted reports from the monitoring plan will be submitted 

by the shipping companies on annual basis and they will be assessed by independent 

accredited verifiers (European Commission, 2018). Further to the above, through MRV, EU is 

collecting all the necessary information and data as it is considering to expand its Emissions 

Trading Scheme (ETS) in shipping sector (Stevens et al., 2015). 

Through MRV regulation, shipping CO2 emissions are integrated into the European 

Strategy for GHG reduction, which clearly specifies that the target for shipping sector is to 

reduce at least 40% of emissions from 2005 levels by 2050 (European Commission, 2018). In 

addition to all above, it is estimated that MRV will contribute to a 2% reduction of CO2 

emitted from vessels by the end of 2030 (European Commission, 2018). Therefore, it is 
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clearly understood that MRV will be not only the catalyst towards to the decarbonization of 

maritime transportation but also the foundation of an international emission system (Wan et 

al., 2018). 

Moreover, it is noteworthy to present the key elements of the MRV Regulation. MRV 

introduces four different procedures to quantify the actual fuel consumption, which will be 

incorporated into the monitoring plan. To begin, the fist method, “Bunker Delivery Note 

(BDN) and periodic stock takes of fuel tanks”, refers to the procedure that the company will 

extract data from delivery notes and it is clearly related to the quantity and the fuel type that 

was bunkered in the ship (Verifavia, 2018). This method also incorporates tank soundings and 

measurements that will be performed both at sea and during vessel’s stay at port (Verifavia, 

2018). The tank reading “at sea” consists of two separate measurements, the first takes place 

after the departure of vessel and the second one is carried out shortly prior the arrival of the 

vessel to the destination point (Verifavia, 2018). The fuel consumed at port is measured also 

twice, when the vessel is berthed at port and when it is unberthed. The fuel consumed or the 

fuel remaining on board should be converted from liters to metric tons taking into account the 

temperature and the fuel density (Verifavia, 2018).  

The second procedure refers to “Bunker fuel tank monitoring onboard” and it is 

performed manually using a sounding tape or electronically through pressure sensors or 

mechanically through a tank indicator or level sensor (Faber et al, 2013). However, this 

procedure may lead to large deviations due to the fact that the tank’s measurements and the 

actual consumption are never coincident.  

“Flow meters for applicable combustion processes” is the third method where flow 

meters are used in order to calculate directly or indirectly the quantity of fuel consumed from 

emission sources (main and auxiliary engines and boilers) (Verifavia, 2018).  

The last method is based on “Direct emission measurements” while the vessel is 

berthed at EU port and CO2 exhaust emissions are measured in vessel’s funnels (Verifavia, 

2018). Under this method, the vessel’s fuel consumption is calculated from exhaust emissions 

applying the fuel emission factor provided by the IMO (Verifavia, 2018). 

In conjunction to MRV regulation, EU adopted also a Sulfur Directive (Directive 

2012/33/EU) that imposes stricter limits compared to those provided by IMO’s regulation. 

More precisely, this directive introduces a 0.5% m/m limit for sulfur content of bunker fuel 
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onboard and 1.5% limit for passenger vessels operating to or from port under the EU 

jurisdiction (Fagerholt et al., 2015). Berthing emissions are also featured in the regulation by 

imposing a 0.1% maximum sulfur limit to vessels remaining at port for more than 2hrs (Zis 

and Psaraftis, 2017).  

In relation to above, EU also appointed European Maritime Safety Agency (EMSA) to 

conduct inspections through drones in order to verify the compliance of operators with the 

regulation and to identify gaps in the system (EMSA, 2018) 

At this point it should be stated that the area under study is the Mediterranean Sea and 

more precisely the Adriatic Sea (Greece – Italy route). It is noteworthy to mention that 

according to EMEP (2018) in 2000, the ship generated air pollutants in the Mediterranean 

accounted for the 50% of the total emissions in the European seas (Cofala et al., 2007). As 

reported by the IMO (2018) this area is not designated as a SECA area and thus only the MRV 

regulation and the low sulfur limits are enforced in the designated sea area. The Adriatic Sea 

is divided into three segments regarding its navigable waters: international waters, European 

waters and ports (Buschmann and Nolde, 2018). Hence, three different sulfur limits are 

applied: 0.1% m/m at the ports, 1.5% within European waters and 3.5% within international 

waters (Verifavia, 2018). 

2.3 Roll	On/	Roll	Off	Passenger	(Ro/Pax)	Vessels	and	Emissions		

This study is based on passenger vessels and more precisely on RO/PAX vessels, the 

acronym for Roll On/Roll Off passenger ships. This type of vessel is chosen as in Greece, 

seaborne passenger transport is not only related to country’s economic development but also 

possesses a large share in the European market, representing the 17% of total passenger traffic 

in EU (IOBE, 2014). As stated above, the area understudy is the Adriatic Route and more 

precisely, the Patras – Igoumenitsa - Bari itinerary (Figure 2). According to Eurostat (2018), 

during the period 2016 - 2017, about 1,137,000 passengers chose the afore mentioned route, 

fact that makes it one of the busiest maritime routes in the Europe. 
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Ro/Pax vessels are designed to transport both passengers and vehicles (i.e. trucks, cars 

etc) and their design is characterized by complexity as they combine both transportation and 

hotel operation services in order to accommodate passengers (i.e. restaurants, bars, cabins etc.)  

(Raunek, 2017). It is well known that Ro/Pax vessels have 3 ship-activities (cruising, 

maneuvering and hoteling) and each one of them produces a significant amount of emissions, 

as engine power is required to meet their energy needs (Saraçoğlu, Deniz and Kılıç, 2013) 

This lead to the fact, that apart from their vital role in the Greek economy another important 

factor that must be studied is the energy consumption in this type of vessels, as they require 

more power in order to meet not only the usual ship operations but also the hoteling load 

(Pacetti, 2012).  

As far as emissions are concerned, recent researches revealed that at Greek ports 

anthropogenic emissions by Ro/Pax vessels account for 3.5% of the national transport GHG 

inventory (Tzannatos, 2010). To be more precise, at our research area, the port of Patras, the 

emissions generated from passenger ships contribute to more than 60% of the area’s total 

emissions (Cesapo, 2016). Besides the aforementioned, because of the seasonality of the 

coastal shipping, it is observed that the impact to air quality during summer peak is higher in 

the designated area compared to winter months due to heavy marine traffic (Marmer and 

Langmann, 2005). During the summer months, passenger vessels have higher activity in the 

Figure	2:		Map	of	the	Adriatic	Sea 
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area in order to comply with their sailing schedule, fact that leads to higher operational speed 

and consequently to higher fuel consumption.  

In contrary to the aforesaid, companies have started to implement the practice of slow 

steaming not only as a measure to reduce emissions and fuel consumption but also as a way to 

deal with vessel overcapacity (Maloni, Paul and Gligor, 2013). However, only during the low-

season (winter months), this practice is also adopted by companies owing Ro/Pax vessels. The 

vessels are sailing at low or eco speed in order to increase fuel efficiency and to improve fuel- 

related operating expenses. 

2.4 Fuel	Consumption	

The fuel consumption is a principle exponential to the vessel’s speed and it closely 

affects both the operational costs and the increase of GHG emissions (Meyer et al, 2012). 

Also, talking about fuel consumption, it should be taken into account that it is a complex 

variable due to its physical principles, which sometimes may lead to disputable and 

ambiguous results, a fact that makes a generalized explanation being virtually impossible 

(Meyer et al, 2012). It is necessary to state here that the vessel’s total fuel consumption can be 

expressed as the sum of main and auxiliary engines consumptions while the vessel is at port 

and during its service at sea (Cullinane, 2011).  In the following sections, the types of fuels 

and the parameters, which affect the fuel consumption, are presented. 

2.4.1 Types	of	Fuels	

To begin, an important factor that must be taken into consideration is the type of fuel 

oil used onboard the vessels. Several studies have concluded that the vessel’s energy 

efficiency and the fuel consumption are related to the type of fuel used. Lundh et al., (2016) 

proved that variations in fuel consumption are observed during the voyages due to fuel 

specifications (i.e. sulfur, water, ash quality etc.). The aforementioned can also be confirmed 

by engines’ manufactures, admitting that the type of fuel in conjunction with operational 

practices may result to an increment in fuel consumption (Roh and Lee, 2017).  

Shipping companies and operators are forced to adopt “switch bunkering fuel” 

practice in order to meet regulations’ requirements. Moreover, it should be stated that 

according to the international standard ISO 8217 marine fuel oils are classified into two 

distinct categories, the distillate and residual fuel oils. First of all, Heavy Fuel Oil (HFO) is an 
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industrial fuel and is also known as a “refinery residual” as it is incurred from refining process 

and more precisely from the distillation of crude oil (Nayak and Lakshminarayanan, 2013). As 

stated by Concawe (1998), HFO accounts for the 80% of the global marine fuel oils used and 

it is divided into three types regarding the their sulfur content. Additionally, HFO is also 

classified, with regard to its viscosity, to HFO 180 and HFO 380 (180 mm2/s and 380mm2/s) 

(Bomin, 2018). 

On the contrary, the most commonly used distillate marine fuel oils are Marine Gas Oil 

(MGO) and Marine Diesel Oil (MDO) and they are both classified as low-sulfur. (Weintrit 

and Neuman, 2013). Their main difference lies on the fact that MGO has lower sulfur content 

and viscosity than MDO. It is essential to state here that these distillate fuels are more 

expensive but have lower sulfur content compared to HFOs (Weintrit and Neuman, 2013). 

Although, distillate marine fuels (MDO and MGO) have higher carbon content, fact that can 

be observed by their emission factors provided by the IMO (Acomi and Acomi, 2014). The 

table below (Table 1) depicts all the aforementioned information regarding the specifications 

of each fuel and their emissions factors.  

 

Table	1:	Fuel	Types	&	Specifications	&	Emission	Factors	

   (source: Koffi et al., 2017) 
 

From all above, it is undelined that the “bunkering switch” process to lower sulfur 

content fuel oil may have impact to the profitability of a shipping company due to the fact that 

Fuel Types, Specifications and Emission Factors 

Fuel Types 
Sulphur 
Content 
(m/m) 

Carbon 
Content 

Emission 
Factors 

High Sulphur Fuel Oil 180 (HSFO 180) 1% - 3,5% ≈0.85 3.114 
High Sulphur Fuel Oil 380 (HSFO 380) 1% - 3,5% ≈0.86 3.116 
Low Sulphur Fuel Oil 180 (LSFO 180) < 0.5 % ≈0.86 3.151 
Low Sulphur Fuel Oil 380 (LSFO 380) < 0.5% ≈0.86 3.151 

Ultra Low Sulphur Fuel Oil 180 
(ULSFO 180) 

< 0.1 % ≈0.86 3.151 

Ultra Low Sulphur Fuel Oil 380 
(ULSFO 380) 

< 0.1 % ≈0.86 3.151 

Marine Gas Oil (MGO) 0.1% – 1% ≈0.875 3.206 
Marine Diesel Oil (MDO) 0.1% – 1.5% ≈0.875 3.206 
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low-sulfur bunkers are more expensive, resulting in additional expenses and thus an increase 

in freight rates will be occured (Fagerholt et al., 2015). This can also be confirmed by several 

studies providing that the “bunkering switch” process will increase the costs of a shipping 

company around 80% (Fagerholt et al., 2015). Hence, the implementation of low sulfur 

bunkering will affect significantly short sea-shipping companies including companies owning 

Ro/Pax vessels as operators will have to take a decision to either increase the ticket fare or to 

reduce daily itineraries (Notteboom, 2010).  

Another threat that shipping companies may face is the fuel oil price volatility, in a 

case of a potential increase of fuel price, the cost will pass on the customer, fact that that may 

force the passengers to use other less expensive transportation modes, affecting negatively 

company’s revenues (Notteboom, 2010). Moreover, another issue that must be stated is that in 

case that the operator chooses to use onboard the vessels low sulfur fuel oil, this decision will 

lead to higher CO2 emissions due to the fact that both MDO and MGO have higher carbon 

content. Therefore, the fuel switching process to fuels with low sulfur content may result both 

on additional costs and higher carbon emissions. 

2.4.2 Factors	Affecting	Fuel	consumption	and	Energy	Efficiency	

The prediction of fuel consumption plays important role for the viability of a shipping 

company as already provided in previous sections of the Literature Review and it is 

characterized by uncertainties, as it is clearly dependent on ship’s design, operational 

performance and environmental conditions such as the weather, hull resistance, engine 

specifications, fuel types etc. (Lu, Turan and Boulougouris, 2013). The actual fuel 

consumption is monitored onboard the vessel through mass flow meters, which measure fuel 

oil usage both in main and auxiliary engines right after the arrival and before the departure of 

the vessel from the port.  

Therefore, the results of several studies in conjunction with the methodology used will 

be presented as several researches have been conducted through the years in order to predict 

both real time and future voyage fuel consumption. These studies were carried out through the 

employment of several predictive models or physical empirical models by combining various 

design, operational and environmental parameters. The findings of previous researches and the 

analysis will help us to choose the right variables for our predictive model.   
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Further to the above, it should be stated that this section is divided into three main 

subsections where the aforementioned parameters will be provided in accordance with the 

categories presented in the Figure 3. 

2.4.2.1 Ship	Design	

Several attempts have been made in order to estimate and calculate the fuel 

consumption taking into account the ship design. Most of the researches are conducted by 

investigating the propulsive power, hull resistances, engines’ specifications in combination 

with various operational and environmental factors in order to conclude to a more precise 

prediction of fuel consumption.  

To start with, Cullicane (2011) conducted an Ordinary Least Squares (OLS) in order 

explore the association between the fuel consumption of containerships by taking into 

consideration various design variables such as the size of the vessel in combination with the 

installed propulsion power. From the findings, it is observed that not only the aforementioned 

variables have great impact on the fuel consumption but also economies of scale can be 

achieved by applying efficient ship design. Tezdogan et al. (2014) also focused their research 

on ship design and they estimated both the fuel usage and the effective horsepower by 

examining the vessel’s total resistance through the implementation of VERES CFD 

(Computational Fluid Dynamics) simulations for container ships. Lu, Turan and Boulougouris 

(2013) used the empirical formula of Holtrop – Mennen for the estimation of vessel’s total 
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Figure	3:	Factors	Affecting	Fuel	Consumption	(source:	author) 
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hull resistance and they modified the Kwon semi-empirical model in order to conclude to 

more accurate prediction of fuel consumption by taking into account also the effect of weather 

conditions in the hull form.  

From the above studies, it is concluded that the ship resistance is considered a crucial 

component for the prediction of fuel consumption (Molland, 2011). The hull’s total resistance 

is defined as a sum of ship resistance in calm waters and the added resistances. Ship resistance 

in calm waters results to power losses due to fact that the ship’s hull is in contact with the 

viscous fluid and it is divided into three other “resistance categories”: frictional resistance, 

viscous pressure resistance and wave resistance (Molland, 2011) .The latter can be also 

divided into wave breaking and wave pattern resistance (Molland, 2011). However, the 

viscous pressure and wave resistance are also referred as residuary resistances of the ship 

(Molland, 2011). All the equations used in order to estimate the afore mentioned resistances 

are provided in the Appendix A section. 

To begin, frictional resistance is associated to the vessel’s wetted surface, speed, and 

hull roughness, contributing to the 40% of the total resistance of Ro/Pax vessels (Jang et al., 

2014). Higher frictional resistance is also observed to ships operating in low speed (Wartsila, 

2018). Thus, it is understood that a potential decrease to hull roughness and consequently to 

frictional resistance will lead to reduction in fuel consumption (Molland, 2011). On the 

contrary, viscous pressure resistance is related not only to speed but also to the wetted area 

and it represents about 5 – 10% of the total resistance of a Ro/Pax vessel, while the wave 

resistance accounts for 50 - 55% (Molland, 2011). Several empirical methods and CFD 

computations based on Navier – Stokes Equations (i.e. RANS, URANS etc) have been used in 

order to estimate and calculate vessel’s resistances under different operational and 

environmental conditions. However, the most commonly used mathematical model was 

developed by Holtrop and Mennen (1982) for the empirical calculation of the total resistance 

based on real time conditions. 

Another aspect that must be investigated is the association between ship’s power 

system and the fuel consumption. Coraddu et al., used MATLAB’s simulation tool SESAP in 

order to forecast and evaluate the fuel consumption through the exploration of energy system 

processes (i.e. main & auxiliary engine specifications, engine loads, diesel generators load 

etc.) operating under different conditions. More precisely, they applied the above-mentioned 
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Sustainability Analysis to a tanker and modeled its electrical network based on vessel’s 

operational data.  

At this point, it is noteworthy to state that Main Engines, Auxiliary Engines and 

Boilers, which are considered as prime movers, constitute ship’s power train, while the 

gearbox, the shaft and the bearings are interfering between the prime movers and the 

propeller, transmitting mechanical energy to the propeller (Molland, 2011). The Figure 4 

depicts that the ship drive train can be expressed as a function of different power outputs. 

These different power outputs occurred due to transmission losses in the ship’s energy system 

as both mechanical and fluid losses took place in the gearbox, shaft and the propeller, 

accounting for the three-quarter of the fuel energy affecting the ship’s efficiency (Molland, 

2011). Therefore, it is understood that the engine’s power incorporates power occurred not 

only from losses in the gearbox and shaft but also from the hull resistances (Molland, 2011).  

 This complex energy system can break down into Brake horsepower (BHP - 𝑃!), 

Shaft horsepower (SHP - 𝑃!), Delivered horsepower (DHP), Thrust horsepower (THP) and 

Effective horsepower (EHP) (Molland, 2011). More precisely, BHP refers to the engine’s 

power output, which is predetermined by the engine manufacturer (Molland, 2011). The SHP 

is defined as the difference between the BHP and the losses occurred in the gearbox (Carlton, 

2012). The reduction gearbox is a critical part in the marine transmission system as they used 

to reduce the engine’s revolutions per minute (rpm) to lower propeller’s rpm while the engine 

is performing in full power (Carlton, 2012). 

 

 

 
 

 

 

Figure	4:	Ship's	Drive	Train	(source:	Castello	Branco,	2011) 
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According to Woud and Stapersm (2002), the frictional losses in the gearbox are 

estimated between 3 - 5% and the gearbox efficiency 𝜂!" is ranging between 0.95 and 0.97 

depending on the gearbox specifications(Woud and Stapersm 2002). Afterwards, the 

difference between the SHP and the losses in bearings and seals form the DHP and it should 

be greater than the effective horsepower, the shaft efficiency of shaft 𝜂! is estimated between 

0.98 and 0.99 (Woud and Stapersm 2002). Also, it should be noted that the DHP is clearly 

correlated to the fuel consumption as it is observed that a potential increase in the delivered 

power results to an increase of the fuel usage (Woud and Stapersm 2002). 

 As it concerns the THP, Woud and Stapersm (2002) have concluded that it can be 

expressed as a subtraction between the delivered power and the propeller losses and the 

propeller efficiency 𝜂! takes values between 0.65 – 0.75 when the ship is operating at design 

speed. From the other hand, EHP is referred to the power output in order the vessel to operate 

without the existence of the propeller taking into account the hull resistance in calm waters 

and the operating speed (Woud and Stapersm 2002). All the equations for estimating the 

aforementioned horsepowers are presented in the Appendix B section. 

After presenting the losses occurred in the ship’s drive train, another important 

parameter is the specific fuel consumption (SFOC) of main engine in calm waters. The SFOC 

of main engines is provided by the manufacturer as it is dependent on the type and the 

specifications of the engine installed, in conjunction with the engine load factor and the 

maximum continuous rating (MCR) (Roh and Lee, 2017). However, variations in the SFOC 

are observed during the voyages resulting also in fluctuations in the fuel consumption due to 

several reasons, for example the fuel specifications may cause an increase in fuel consumption 

(Lundh et al., 2016). From the above findings, it is denoted that the total fuel consumption can 

be expressed as a function of SFOC and the BHP and it is provided by the following formula: 

𝑭𝑪 =  𝑷𝑩  𝑺𝑭𝑶𝑪 𝑷𝑩 𝒅𝒕 ,	 	 	 	 	 	 	 	 																(2.3) 

where: 𝑃!is the BHP (Brake Horsepower) and SFOC is the Specific fuel consumption.	

Furthermore, an increment of 6% in fuel consumption is also noted between the time 

interval of the engine overhaul taking into account all parameters including also the fuel 

quality (Wartsila, 2018). At this point, it should be stated that MCR of the brake horsepower 

indicates the maximum power output in which the engine’s load is generated while the speed 

is maintained without causing failure to the machine (Roh and Lee, 2017).   
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Another aspect that must be considered is the sea margin, which is playing crucial role 

in the speed – power relationship and consequently to fuel consumption (Kim et al., 2017). 

More specifically, during the ship design process the ship resistance and power output 

estimation in calm waters are the focal points, but also sea margin calculation is also 

considered necessary as it shows how the added resistance affects the power output (Kim et 

al., 2017). In other words, sea margin projects the increase of the required power when the 

vessel is operating in actual waters as it incorporates all environmental factors (added 

resistance, hull fouling etc.) that have impact in the performance of the vessel (Magnussen, 

2017). According to Arribas (2007), the sea margin is estimated between the interval of 15% 

and 30% where the 10% it is occurred by the wind and waves affecting the ship’s performance 

(Molland, 2011).  

2.4.2.2 Operational	Performance	

To begin, Nwaoha, et. al (2016) applied successfully Fuzzy Rule Base (FRB) in 

conjunction with Utility Theory (UT) in order to estimate the fuel consumption of diesel 

engine powered vessels taking into consideration various operational parameters such as 

ship’s hull and propeller condition, engine efficiency, routing, loading and weather conditions 

etc. Their study provided successful modeling results and they concluded that the engine’s 

efficiency plays crucial role to the fuel consumption as it has been observed that the fuel use is 

reduced in cases when both main and auxiliary engines are operating in optimal point 

(Nwaoha, Ombor, and Okwu, 2016).  

Papanikolaou (2014) provided that the fuel consumption is strictly related to the 

engine’s load in combination with engine’s operating hours as in case it operates continuously 

beyond a predefined limit may result to higher fuel consumption. The above mentioned is also 

proved by Borkowski, Kasyk, and Kowalak (2011) through the implementation of both a sea 

trial program and empirical formulas (i.e. specific fuel consumption, effective power formula 

etc.) in accordance with ISO standards and the employment of Least Square method (LMS) by 

taking into account sea trial records. To be more precise, the results of their study showed that 

the estimation of the fuel consumption is dependent on main engine operational state and its 

continuous operating time. Kee, Lau Simon and Yong Renco (2018) in their research 

conducted Statistical Analysis in order to predict both the fuel use and the speed curve. So, 
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they developed a Multiple Regression model for forecasting the fuel consumption, which 

included five independent variables (distance, travelled hours, vessel speed, DWT and wind). 

Their study was based on operational data from two tugboats. In addition to all above, they 

used performance curves in order to estimate the optimum speed for the lower fuel 

consumption. 

Further to the above, Wartsila (2015), through its research program, concluded that 

proper maintenance of marine engines is also an important issue in order a vessel to operate 

efficiently and to void any decrease in power output, fact that will result to more energy usage 

and consequently to higher fuel consumption. Wang et al. (2017) proposed a successful 

LASSO (Least Absolute Shrinkage and Selection Operator) regression model in order to 

predict fuel consumption taking into account several operational variables depicted in the 

vessel’s reports (i.e. speed, trim, displacement, cargo weight etc.). The results revealed that 

the prediction ability of the model is more accurate than a multiple regression model (MR).   

Carlton (2012) in his research stated that the hull condition is also related to power and 

fuel consumption due to ship’s frictional resistance, because the hull’s fouling can increase the 

fuel usage by 30-40% and consequently emissions increase too. This is justified by the fact 

that in order the vessel to maintain its speed, additional power is required. This issue has been 

addressed by the EEDI (Energy Efficiency Index), promoting several methods such as anti-

fouling coating and paints in order to reduce hull roughness (IMO, 2018). Furthermore, it 

should be noted that hull roughness is strongly related to the age of the ship, the time spent at 

sea and at port and the vessel’s speed (Magnussen, 2017). It is apparent that ships with longest 

stays at ports and operating at low speed have the tendency to develop fouling (Giorgiutti et 

al., 2014).  

According to other studies, the age of the vessel also plays crucial role to hull 

degradation and a 8 year vessel has hull roughness approximately 400 - 500 micrometers, 

which results to a 33% power increase in order the vessel to sustain its speed, fact that is also 

depicted in the Figure 5 (Hellio, 2009). However, according to International Regulations, 

passenger vessels should be out of service every two years for their maintenance, where hull 

cleaning and coating takes place (Hellio, 2009). After the hull cleaning, the hull degradation 

and consequently the resistance due to fouling are both decreased (Hellio, 2009). Molland et 

al. (2011) in their research concluded that the resistance margin due to hull roughness is 
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estimated to 10% in case that no hull maintenance is carried out during these two years where 

the vessel is in service. Although, passenger’s vessels are less prone to marine fouling, 

compared to commercial vessels (i.e. tankers, bulkers etc.) due to their higher speed, and the 

short port stays (Hellio, 2009). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

From all above, it is denoted that an increment to ship’s resistance can also be 

occurred due to deteriorative effects to hull and the propeller (Molland, 2011). These effects 

are a combination of ship design and environmental factors and they are divided into hull and 

propeller fouling and hull and propeller roughness and all of them have direct impact to 

vessel’s speed resulting in the rise of propulsive power and consequently to the increase in 

fuel consumption (Molland, 2011). The hull fouling is considered uncontrollable variable and 

it is difficult to be forecasted as its increase is not linear and it is related to many operational 

parameters (Molland, 2011). Thus, the hull’s roughness can only be expressed as an increase 

in the ship’s frictional resistance. 

Another factor that affects the ship’s fuel consumption is the vessel’s loading 

conditions. Alderton (1981) built a formula that estimates the fuel consumption but without 

taking into account the vessel’s total weight, resulting to relatively high deviation compared to 

actual consumption of a ship. From the other side, Coraddu, et al. (2017) applied Gray Box 

Models (GBM) in order to forecast the fuel consumption and they concluded that the trim 

optimization leads to lower fuel consumption, as it considered one of the easiest practices in 

Figure	5:	Hull	roughness	vs	Age	of	ship	(source:	Hellio,	2009) 
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order a sustained operational performance to be achieved. Lee et al. (2014) combined White 

Box Numerical Models (WBM) and CFD in order to find also the optimal trim for several 

types of vessels. Moustafa, Yehia and Hussein (2015) used the Holtrop –Mennen’s method 

through the employment of CFD software in order to estimate the ship resistance and they also 

proved that the trim optimization leads to higher fuel savings. 

Variations in fuel consumption have been observed when the vessel is in ballast or 

partially loaded or fully loaded (Tiling et al., 2018). The loading conditions of Ro/Pax vessels 

vary, as their trading pattern is known right before its departure from the port and the loading 

plan cannot be developed in order to better accommodate the vehicles, trucks, trailers etc. 

achieving the optimal loading conditions. Therefore, the ship’s draught differs depending on 

the volume of cargo loaded, fact that results to added resistance to vessel’s hull and especially 

to bow region (Tiling et al., 2018). Additionally, as stated by Reichel et al., (2014) the 

employment of CFD software proved that the trim optimization of a vessel can contribute to 

hull resistance deduction and consequently to reduction of fuel consumption by 1%-3%. Thus, 

in case that this practice is applied to vessels, which are not fully loaded, the reduction in fuel 

usage is estimated up to 5% (Reichel et al., 2014). 

It is noteworthy to state that the speed is also a dominant factor that must be 

investigated in relation with the fuel consumption as it plays crucial role both for the operator 

and the customer (Mander, 2017). During the last years, it is observed that many companies 

and operators change the fleet operational practice by adopting the slow steaming (decreasing 

the vessel’s speed) in order not only to minimize the fuel cost and but also to meet 

International Regulations requirements concerning the fuel emissions limits (Mander, 2017). 

The voluntary speed reduction was introduced during 2007 by the shipowners, as response to 

high global oil prices (Mander, 2017). However, the reduction of the vessel speed has as an 

effect, the extension of the voyage time (Mander, 2017). 

First of all, it should be mentioned that the relationship between the speed and the fuel 

consumption is non-linear and a quadratic function of speed is applied in order to estimate the 

vessel’s bunker consumption (Fagerholt, Laporte and Norstad, 2010). Gusti and Semin (2017) 

developed and implemented a speed optimization model resulting that when the vessel is 

operating in optimum speed, the fuel consumption decreases compared to the service speed 

provided by the engine’s manufacturer during the sea trials. Moreover, other studies presented 
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that the fuel consumption is strongly correlated to vessel speed in conjunction with weather 

conditions (Gusti, and Semin 2016). However, in Ro/Pax vessels, the speed is also affected by 

other factors such as port speed limits, and the speed variations during the voyage (Gusti, and 

Semin, 2016). Prpić-Oršić et al. (2016), used both MATLAB and FORTRAN to carry out 

numerical analysis and they concluded that the afore mentioned variations can be resulted 

either by speed reduction due to fuel economy reasons or to maintain the vessel afloat and 

seaworthy or by sea state conditions which is also referred as involuntary speed reduction. 

Moreover, the speed loss has been estimated by taking into account the engine and propeller 

performance indicators. More precisely, Arribas (2007) performed Linear Regression and 

concluded that the vessels consume 15-30% more energy when operate in actual conditions 

compared to the energy required when they operate in calm waters due to resistance caused by 

wave and wind forces. Furthermore, Wang et. al, (2013) applied Pareto- optimal solutions and 

they concluded that the speed optimization leads to lower fuel consumption and consequently 

to lower CO2 emissions.  

The relationship between the fuel consumption and the speed of containerships has also 

been investigated by Notteboom and Vernimmen (2009) through the employment of empirical 

models and the outcomes revealed that a minimum rise in vessel speed may result to an 

exponential increase to fuel consumption and thus the non-linear relationship between the 

aforementioned variables is illustrated in the Figure 6.  

 
 
 
 
 

Figure	6:	Fuel	Consumption	vs	Service	speed	(source:	Notteboom	and	Vernimmen,	2009) 
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Moreover, Coraddu et al. (2017) applied the LAR (Least Angle Regression) method in 

order to identify the features with greater impact on fuel consumption. The results from their 

research provided that the propeller pitch in conjunction with the vessel’s speed are 

considered as the most critical variables for determining the fuel consumption as both they 

depict the overall operational performance of the propulsion system. Nevertheless, other 

studies investigated the association between the speed loss and the fuel consumption and how 

the former affects the latter one. More specifically, it is observed that when the ship is 

operating in high speed the mechanical losses increase compared to those observed when 

performing at low speed, resulting in a rapid rise in fuel consumption (Oleksiy et al., 2013). 

Banawan, Mosleh and Seediek (2013) focused on the prediction of fuel consumption in 

catamaran vessels by taking as variable the operational speed. Through the employment of 

Maxsurf program in combination with model experiments, they concluded that a potential 

reduction in the fuel consumption could be achieved through the speed lowering.  

2.4.2.3 Environmental Conditions  

Tillig et al. (2018) in their research applied uncertainty analysis in conjunction with 

Monte Carlo simulation and the findings revealed that the predicted fuel consumption is 

different from the real-time results and the accuracy of the model was estimated around to 

60%-70%. This deviation can be justified due to incomplete observations and missing 

parameters such as “the water depth, rudder angle and water current” (Tillig et al.,2018). 

From the other hand, Bialystocki and Konovessis (2016) by applying an algorithm, concluded 

to a 0.81% deviation of the predicted fuel consumption from the actual calculations as they 

didn’t take into account also the water current, sea condition and wind directions. Kim et al. 

(2017) by applying CFD and URANS method in both operational and environmental 

parameters, the results showed that the lower ship’s service speed, the higher involuntary 

speed loss is noticed due to effects of the wind and wave and especially wave forces play 

important role to this observation. Furthermore, Yuan and Nian (2018) used as a reference 

vessel for their research, a tanker and they developed a Gaussian Process Metamodel in order 

not only to assess the interaction of different factors (engine, weather conditions etc.) to the 

vessel’s fuel performance but also to predict the fuel usage under different wave and wind 

conditions.  
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 It is denoted from the findings of the above-mentioned studies that the environmental 

conditions have significant contribution in order to get an accurate prediction for fuel 

consumption (Magnussen, 2017). Hence, the added resistance from wave and wind cannot be 

neglected as both have significant impact to ship’s speed and consequently to the fuel 

consumption (Henk, 2006). At this point it noteworthy to state that the term “added 

resistance” is used in order to explain the occurrence of energy loss due to external factors and 

it is described as the sum of resistances due wind, wave sea’s composition and current (Henk, 

2006). All the afore mentioned principles constitute the Added Resistance due to 

environmental factors and they contribute in the increase of Total Resistance 𝑅! of the vessel. 

(Magnussen, 2017).  

As it concerns the added resistance due to waves, it refers to the effects of waves over 

the vessel’s hull (Molland, 2011). The resistance of a vessel can be increased by a 15-30% 

when she is operating in actual conditions in comparison with calm waters and a great 

percentage of this increase is resulted from the added resistance due to waves (Henk, 2006). 

Moreover, it should be noted that the latter is strongly related to the vessel’s speed and it is 

observed that as the speed increases, the wave resistance is escalating (Molland, 2011). The 

added resistance is expressed as a function of wave characteristics and the vessel’s speed 

(Molland, 2011). Through the years several methods have been developed in order to estimate 

the wave resistance in actual waters. More precisely, the most commonly used method is 

through the combined application of both empirical models and CFD software (Molland, 

2011).  

The added resistance due to wind refers to the effects of the wind loading not only to 

the hull but also to the above-water hull. According to Molland (2011) the air resistance 

accounts a 4-8% of ship’s total resistance. The air resistance 𝑅!! is associated with the wind 

speed and direction as well as with the particulars of the superstructure (i.e. dimensions and 

shape) and the vessel’s speed (Molland, 2011). The wind parameters are provided by the IMO 

(2012) guidelines where a Beaufort Number (B.N.) describes each sea state in accordance 

with the wind speed and direction and are depicted in the following table (Table 2).  
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Table	2:	Wave	characteristics	corresponding	to	Beaufort	Number	

        
 
 
 
 
 
 
 
 
 
 
 

        (source: IMO, 2012) 
Another parameter, that has impact on hull resistance, is the added resistance due to 

seawater and consequently it affects also the fuel usage (Henk, 2006). This can be justified by 

the fact that the water properties are different from those of the actual water (Magnussen, 

2017). More precisely, this composition can be expressed as a function of temperature, 

density, viscosity and salinity (NPL, 2018). Therefore, these mentioned factors should be 

taken into account in order to have more accurate estimation of the added resistance due to 

seawater. Festus and Samson (2015) applied ITTC-57 methods and their observations 

revealed that there is a strong association between the hull resistance and the density of the 

seawater. Hence, a potential increase in the density of the water causes not only an increase on 

hull resistance but also an increase effective power, fact that has a negative effect in vessel’s 

fuel efficiency (Festus and Samson, 2015).  

In addition to above stated, Manheim (2017) also proved that the temperature of the 

seawater is playing crucial role as both the viscosity and density are related to the former 

principle. It is necessary to state that these properties are relative to location and season and 

thus variations in the temperature, viscosity and density are minor (Magnussen, 2017). 

Therefore, in the most of the studies conducted, the additional resistance is estimated based on 

the typical seawater temperature (𝑇 =  15° 𝐶) and density 𝜌 =  1,026 𝑘𝑔 𝑚!, without taking 

into account the afore mentioned variations (Magnussen, 2017).  

All the methods and the models, which are employed in order to estimate the Added 

Resistance due to environmental factors, are outlined analytically in the Appendix A section. 

Wave Characteristics corresponding to B.N 
B.N 𝑯𝟏/𝟑(m) - significant 

wave height 
𝑻𝟎𝟏 (s) – mean 
wave period 

𝝀 (m) – wave 
length 

0 0.0 0 0.0 
1 0.1 1.22 2.32 
2 0.4 2.44 9.29 
3 0.8 3.45 18.57 
4 1.5 4.73 34.91 
5 2.0 5.46 46.52 
6 3.0 6.67 69.43 
7 4.5 8.19 104.67 
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2.5 ANN	for	Fuel	Consumption	Prediction	

This section focuses in presenting only the researches that applied Artificial Neural 

Networks (ANN) in order to predict the vessel’s fuel consumption. To be more precise, the 

selected variables, the type of ANN used and the obtained results are outlined. It is noteworthy 

to state here that from the above analysis of previous studies and their findings, it is observed 

that there are limited researches that use the Artificial Neural Networks predictive models in 

order to forecast vessel’s fuel consumption and her operational performance. On the contrary, 

ANN is widely used in numerous studies for predicting the fuel usage in various means of 

transportation (i.e. airplanes, trucks and vehicles).  

First of all, Bal Beşikçi et al. (2016) developed an Artificial Neural Network (ANN) 

prediction model including seven input variables provided by noon dataset (speed, trim, draft, 

weather conditions, quantity of the cargo) in conjunction with engine’s RPM. This ANN 

model was used in a latter phase so a decision support system (DSS) for energy efficiency in 

real time operations to be built. Furthermore, the predictive ANN model was compared to 

Multiple Regression (MR) model leading to the outcome that the former achieved better 

prediction performance than the latter. 

Moreover, Weintrit and Neumann (2017) developed also an ANN and more 

specifically a DBN (Deep Belief Network) in order to forecast a ship’s fuel consumption 

based on ship’s operational data. They used several input variables combining both 

operational, design and environmental parameters (distance, load, trim, draft, vessel 

specifications, wind, swell, wave length) leading to a high accuracy model. The developed 

DBN model in combination with the weather rooting software can provide information about 

the variations of fuel consumption when the vessel is operating under various environmental 

conditions. 

In addition to all above, Petersen, Winther and Jacobsen (2012) modeled the fuel 

consumption for real time conditions through the implementation of Tap-Delay Artificial 

Neural Network. More specifically, the factors that describe the dynamic state of the vessel 

(i.e. speed, trim, draft, propeller pitch and engine’s rpm) have been collected through sensors 

and they were used as input variables to the model. The outcomes from this research provided 

that this model can obtain accurate results and it can be used for vessel’s trim optimization. 
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 From the other hand, Pedersen and Larsen (2009) presented in their study a neural 

network for propulsion power predicting model by taking into account, vessel’s noon report 

dataset, weather and onboard measurement data. They concluded that the ANN model is more 

accurate compared to other linear and other non-linear models. 

Taking into consideration all the above, it is outlined that the developed models 

presented in these researches were mainly based on vessel’s operational data collected either 

by vessel’s noon reports or through sensors on board. 

3. Research	Methodology		

In this chapter, the outline of the methodology implemented will be described in order 

this study to be carried out and to answer the research questions. More precisely, the structure 

of the research is stated through the research design, the techniques for collecting the data as 

well their reliability and validity are also presented. Furthermore, the research approach plays 

crucial role in order to draw conclusions as it shapes the design and denotes possible 

limitations and delimitations. In addition to all above, the specifications of the vessel, which is 

used as a case study, are also provided in this chapter.  Last but not least, Artificial Neural 

Network (ANN) model and a Multiple Linear Regression (MR) model will be also presented. 

3.1 	Research	Design		
To begin, this thesis was conducted by interpreting quantitative secondary data as its 

quantified nature is entirely obvious and the purpose of this research is exploratory, 

descriptive and predictive as well. This can be justified by the fact that the interaction between 

the input variables will be explored and described, the response of these variables under 

different operational conditions will be evaluated and finally the prediction of vessel’s fuel 

consumption will be modeled.  

The implementation of the afore mentioned methodology will lead to the employment 

of both descriptive and predictive analytics tools. A predictive Artificial Neural Network will 

be developed and it will be used as a model in order to address the objectives of this study. 

The choice of this predictive method was based on the fact that provides more accurate 

predictions compared to other predictive models as it is well suited in real-time data in 

combination with its generalization capability. 
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The ANN model will be built, by using previous researcher’s conclusions, existing 

empirical models and theoretical findings that will be applied to actual condition case study in 

order not only to choose the most suitable combination of input variables but also to explain 

the performance and the outcomes of the network. In conjunction with all above, the case 

study approach is also interpreted, as a modest scale study will be employed by enabling the 

exploration and the investigation of the fuel consumption under real – time vessel’s operating 

conditions through continuous historical observations. 

 In order to build an accurate prediction model, factors such as vessel’s speed, main 

engine working hours, fuel consumption, distance, weather conditions and the weight of the 

vessel are taken into account. Therefore, previous theoretical and empirical findings will be 

applied. It is necessary to state that these factors should encompass ship design, environmental 

conditions and operational performance. After identifying the topology of the ANN network, 

the selection of the best architecture will take place and the training process will be employed 

in order to learn the complex associations between the input variables and the output. 

Furthermore, it is noteworthy to be stated that the data used will be divided in two subsets, the 

one set will be used to train the network and the second to test the performance of the model.  

Moreover, a correlation analysis will be conducted between the fuel consumption and 

the selected variables in order to identify the integration among them. Apart from the ANN 

model, a Multiple Regression model (MR) will be also developed as well to examine also the 

relationship between the dependent variable and the predictor factors. The performance and 

the accuracy of both models will be evaluated through Mean Absolute Percentage Error 

(MAPE).  

3.2 	Data	Collecting	Techniques,	Validity	and	Reliability	
It is widely known that in order to feed, train and validate the ANN prediction model, 

a significant amount of dataset is required.  This research is mainly based on the ship’s 

operational recorded data that are depicted in voyage reports. This dataset, extracted from the 

MRV software, and it contains: the date, the time, the voyage number, departure and arrival 

ports, the vessel speed, the duration of the voyage, some hindcast weather data (B.N.), engine 

load, the vessel’s loading conditions (cars, passengers, trailers, buses, motorcycles and trucks), 

the voyage total fuel consumption, the voyage consumption per engine (main and auxiliary 
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engines), boiler and fuel type (MGO, HFO, LSFO), vessel’s draft (trim, aft, fore) and CO2 

emissions. The crew onboard feed this voyage report every 24h with all necessary data 

provided by the measurement instruments during the voyage and vessel’s stay at port. This 

study was carried out by taking into account 322 electronic operational reports which are 

referred to the period from 1st January 2018 until 31st October 2018 for one vessel that is 

operating in the Adriatic route (Patras – Igoumenitsa – Bari).  The research data contains one 

excel file provided by the Shipping Company showing all the afore mentioned dataset. Hence, 

the aforementioned 322 observations are considered sufficient to develop an ANN prediction 

model. 

The theory, that deals with the vessel’s fuel consumption, emissions and the design, 

operational and environmental factors which affect the fuel usage as well as the outcomes 

from previous studies and research papers regarding the models used in order to predict the 

fuel consumption are provided in the literature review section. The results in conjunction with 

the collected data from the vessel’s voyage reports are demonstrated and analyzed in the Data 

Analysis chapter where also the development of ANN and MR predictive models will be 

presented.   

Furthermore, despite the fact that the Company through its official website presents 

ship’s particulars and specifications, although, some necessary information is not provided, 

such as the calm water resistance, hull design dimensions etc. All these factors are considered 

necessary data in order to have an accurate prediction of fuel consumption. Unfortunately, 

ship’s hull parameters cannot be estimated through mathematical calculations based on 

empirical methods and findings from previous research papers as they are provided only from 

the Shipbuilding Company during the seakeeping and model tests.  These data are considered 

sensitive and could not be officially declassified by the shipowing Company, consequently 

these design parameters that affect the fuel consumption couldn’t be taken into account. It is 

important to state here, that this limitation may have impact on the model’s performance, 

resulting in lower predictive accuracy. As a result, the focus of the research study is based 

more on parameters depicted by the vessel’s voyage reports rather than on the design factors. 

In addition to all above, it is necessary to state that the Company’s name as well as the name 

of the vessel cannot be disclosed and thus the name of the vessel used as a case study is 

fictional. 
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The dataset provided by the voyage reports outline the average values of the 

aforementioned data, fact that does not provide the ship’s operation under real - time 

conditions. Another aspect that must be mentioned is that even if these reports are obtained by 

the company which owns the vessel, the data are filled manually by crew members leading to 

the fact that their validity may be doubtable as these log data may be exposed to human factor 

or error.  

At this point, it is worth noting that it is assumed that the data gathered will be valid as 

the company’s Operations department checks, monitors, and evaluates daily the data recorded 

in the voyage reports and in case that implausible data or an error occurs, the department is in 

a continuous communication with the ship’s officers in order to correct imprecise observations 

and harmonize the data. Last but not least, the data regarding the ship’s particulars are 

obtained by Company’s official website and they are considered both valid and reliable.  

3.3 	Case	Study	–	Vessel	ROPAX-NI	
In order the present study to be conducted, a Ro/Pax ship is used for a demonstrative 

case study. The reference ship is the Passenger/Ro-Ro ferry, M/V ROPAX-NI, which is 

performing a regular service in the route Patras – Igoumenitsa – Bari for more than 8 years. 

M/V ROPAX-NI is a high-speed vessel and it is owned by a Greek based shipping company. 

This ship is selected as our case study because it is operating in the chosen geographical area 

presented in the Literature Review section. In this thesis, the research and the analysis is 

mainly relied on the data set of this specific ship which incorporates all the specifications of a 

typical Ro/Pax. The shipwoner provided all the necessary data in order this study to be carried 

out for this specific vessel and the proposed ANN prediction model can be generalized also to 

other Ro/Pax vessels with similar particulars without changing the selected input variables of 

the network.  

The vessel has carrying capacity of 800 passengers and 140 trucks/ 500 vehicle cars 

and its guaranteed service speed is up to 23 knots. More precisely, the specifications of a 

typical passenger ship are presented in the Table 3. The vessel is operating in the route daily 

and more precisely, during the low season, from October until May, the vessel departs from 

the port of Patras every second day at 18:00, arriving at the port of Igoumenitsa and Bari at 

23:59 and 10:30 (the next day) respectively. From the port of Bari, the vessel departs at 20:30 
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and arrives at the port of Igoumenitsa and Patras at 05:30 and 13:00 (the next day) 

respectively. It should be stated that the departure and arrival times correspond in Greek local 

time (GMT +2).  Hence, it is observed that the voyage duration is 16hr and 30min and the 

distance covered is approximately 318 nautical miles.  During the high season, from June until 

September, the vessel reaches also the Corfu port departing from Igoumenitsa port but not on 

daily basis. The voyage duration for this specific itinerary is 9hr and 30min and the distance 

covered is 197 nautical miles. Moreover, it is noteworthy to mention that every two years, the 

vessel is out of service for a month in order to carry out its planned drydocking and annual 

maintenance.   
Table	3:	Ship's	Particulars	(M/V	ROPAX-NI)	

 
Apart from the geographical area where the ship is operating, another factor for 

choosing this case ship is that the EU-MRV regulation has been implemented to this specific 

vessel from January 2018 and the company has developed a MRV Monitoring Plan in order to 

record and then verify all necessary data regarding the emissions and fuel consumption. The 

minimum number of expected voyages falling under the scope of this regulation is 240 in 

accordance with ship’s schedule. 

As it concerns the fuel types used in ship’s engines, it should be stated that both main 

and auxiliary engines consume all the fuel types presented in the Literature Review and no 

potential engine retrofit will be needed. Therefore, the company in order to cope with 

international and European regulations has implemented the “bunkering switch” process. 

Ship’s Particulars 
Vessel Name ROPAX-NI Deadweight 9,000 

Type of vessel RO/PAX Draft  (m) 6.4 
Flag State Greece Nr. Passengers  800 

Gross Tonnage 24,600 Propulsion power 
(total KW) 

24.000 

Length overall 
(LOA) 

200 Guaranteed Service 
Speed (% MCR, 

sea margin) 

23 knots (80% MCR, 
up to Beaufort) 

Length BP (m) 177   
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3.4 	Artificial	Neural	Networks	(ANN)	
Artificial Neural Networks are non-linear empirical models and they are motivated by 

human’s biological neural network features and functions as they are trying to simulate brain’s 

learning ability, the flexible information processing and memory (IBM, 2018). These 

computational based models are considered Machine Learning models and find great 

application in various fields (i.e. aerospace, finance, transportation etc.) as they have the 

ability to learn from datasets and they are trained in order to forecast future events taking into 

account data from the past (Hagan et. all, 2016). ANN models are widely used as they solve 

complex problems and they produce better outcomes compared to other prediction methods by 

providing more accurate results in real-time systems (Graupe, 2007).  

The network’s architecture consists of neurons called nodes, which are the basic 

component of a neural network. These neurons mimic the biological neurons as they have the 

ability to learn the information acquired by the input, to process internally the information and 

finally to generate the output (Graupe, 2007).  The neurons are organized into layers (inputs, 

hidden layers and outputs) and they are linked to each other through edges. These edges have 

weights, which are adjusted during training process (Barh, Khan and Davies, 2015). More 

precisely, there are input nodes (numeric data points), which consist the Input layer and they 

are considered as the input variables. In the Input neurons, no computation takes place as they 

receive data and transfer the information from the environment to the network (Barh, Khan 

and Davies, 2015). Furthermore, Hidden layers are formed also by neurons where the most 

information process of the network takes place and it is considered as linkage between the 

Input and Output layer (Amardeep, 2017).  

It should be noted that the complexity of the model is clearly associated to the number 

of neuros in the hidden layers (Amardeep, 2017). The output of the hidden layer is dependent 

on the output of the Input layer multiplied with the weight associated to the corresponding 

edge (Amardeep, 2017). The weight refers to the strength of the connection between the input 

and the output and how the input determines the output (Barh, Khan and Davies, 2015). 

Moreover, the Output layer transmits the information learned by the network to the 

environment (Figure 7) (Barh, Khan and Davies, 2015).   
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Another important element that plays crucial role to the neural network’s performance 

during the training process is the activation or transfer function as it determines the output of 

the node and it is contained in the artificial neuron (Amardeep, 2017). The activation function 

not only determines the relationship between the nodes of input layer and the nodes of the 

hidden layer but also the interconnection between the nodes of hidden layer and the output 

(Amardeep, 2017). More specifically, the activation functions are either linear or non-linear 

mathematical equations converting the neuron’s input into output signal (Amardeep, 2017). 

As it concerns the choice of ANN’s activation function, there are many activation functions 

that can be applied in order to develop an ANN and the most commonly used are presented in 

Appendix C section (i.e. linear function, sigmoid or logistic activation function, hyperbolic 

tangent function, rectified linear unit etc.) However, the choice of the most suitable activation 

function depends on the complexity of the task that the network performs and the nature of the 

problem (Amardeep, 2017).  

At this point, it is necessary to state that another feature of artificial neuron is the bias 

node, an extra input node, which takes a nonzero constant value and increases the flexibility of 

the model (Amardeep, 2017). The bias node determines the activation of the neuron as it is 

added to the summation of inputs multiplied by their weights and it is not affected by 

incoming connections from previous layers (Amardeep, 2017). Therefore, it is observed that a 

neuron is characterized by inputs, weights, bias and activation function and its structure is 

depicted in the Figure 8.  

Figure	7:	Mutli-layer	Feed-forward	Artificial	Neural	Network	(source:	author) 
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From all the above it is understood that the weights of inputs and the adding bias are 

summed up and the total weighted sum value of all inputs to the neuron is entered to 

activation function leading to the activation of the neuron (Barh, Khan and Davies, 2015). The 

total value of the neuron can be derived by the following equation: 
 

𝒖𝒊 =  𝒘𝒊𝒋𝒙𝒋𝒏
𝒋!𝟏 +  𝒃𝒊	 	 	 	 	 	 	 	 	                (3.1)	

						 	 	 	 	 	 	 	 	 					 
where: 
𝑤 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 
𝑥 = 𝑖𝑛𝑝𝑢𝑡𝑠 
𝑏 = 𝑏𝑖𝑎𝑠 

 
 Thus, the activation function takes the total weighted sum of inputs and the bias of the 

neuron  (𝑢! ) and performs all the necessary calculations in order to determine whether the 

neuron is activated or not (Barh, Khan and Davies, 2015). The output  (𝑦!) of the activation 

function is provided by the following equation: 

𝒚𝒊 =  𝒇 𝒖𝒊  ,                        (3.2) 

or 

𝒚𝒊 =  𝒇( 𝒘𝒊𝒋𝒙𝒋𝒏
𝒋!𝟏 +  𝒃𝒊)          (3.3) 	

If the result from the activation function is above a certain limit then the neuron is 

considered activated (Barh, Khan and Davies, 2015). In case that the output from the 

activation function is below the predefined value, then the neuron is not fired (Barh, Khan and 

Davies, 2015).  

Figure	8:	Structure	of	a	neuron	(source:	author) 
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Once the network’s structure is developed, then the network is ready to be trained 

(Graupe, 2007). The most critical part of the training is the learning process of the network 

and two commonly used learning methods are observed, such as the supervised learning and 

the unsupervised learning (Graupe, 2007). More precisely, the supervised learning is 

considered the most utilized method, where a training pair (𝑥,𝑦) is set, meaning that for each 

input vector, an output is provided (Graupe, 2007). The predicted outputs are compared with 

the outputs already predefined and all weights (𝑤!") are randomly set (Graupe, 2007). When 

the forecasted output is different from the desired one, then the network adjusts the weights 

until the target is achieved (Graupe, 2007). On the contrary, under the unsupervised learning 

the network is considered as self-organized where only input vectors are fed into the network 

(Graupe, 2007). Thus, the network is trained without any predefined data leading to the 

prediction of a target output (Graupe, 2007). 

Another aspect that must be taken into account is the form of the ANN based on the 

flow of information and the number of hidden layers (Barh, Khan and Davies, 2015). As it 

concerns the flow of information the most commonly used structures are the Feed-Forward 

Networks, Radial basis function networks and Recurrent Neural Networks (Barh, Khan and 

Davies, 2015).  

To begin, the Feed-Forward Network (FF) has one input layer, which is consisting of 

one, or more input nodes, then this layer is linked with the other hidden layer (multilayer feed-

forward network) or directly to the output layer (single layer feed-forward network) (Barh, 

Khan and Davies, 2015). The Feed-Forward Network processes the information in one 

direction (forward) from the input layer to the output layer and no feedbacks (loops) are 

observed as each node in a layer is connected to every node of the previous layer (Barh, Khan 

and Davies, 2015). It is noteworthy to state, that the most commonly used learning method for 

Multilayered Feed-forward network is the Backward Propagation Algorithm (BPA), which is 

used to minimize the error (Amardeep, 2017). More specifically, during the training process 

when an error occurs at the output, then the recalculation proceeds backwards (from the last 

layer to the first) re-calculating the weights and the biases (Amardeep, 2017).  

It is important to state that the error occurs when the network’s output is different from 

the target set, as the network must provide a specific output (target) for each input (training 

pairs) (Amardeep, 2017). This can be justified by the fact that the weights are randomly 
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initialized (Barh, Khan and Davies, 2015). For this reason, BPA method is repeated until the 

adjusted weights result to minimum value of error, which is provided by the following 

formula (Amardeep, 2017):  

𝑬𝒊 =  𝟏
𝟐

(𝒚𝒏 − 𝒚𝒊)𝟐𝒏
𝒊!𝟏 ,           (3.4)	

where the 𝑦! is the target output and 𝑦!is predicted output.	

There is a variation of learning algorithms that are applied in order to train the neural 

network, such as Gradient Descent, Resilient Backpropagation, Quasi-Newton, and 

Levenberg-Marquardt algorithms (Comert and Kocamaz 2017). The choice of the most proper 

algorithm is based on its learning rate in conjunction with its stability (Comert and Kocamaz 

2017). The afore mentioned algorithms can be expressed by the following formulas: 

• Gradient Descent: 𝒙𝒌!𝟏 =  𝒙𝒌 −  𝒂𝒌𝒈𝒌 ,        (3.5) 

where: 𝑥!!! is the new weight vector, 𝑥! is the weights and biases, 𝑎!is the learning rate and 

the 𝑔!is the gradient of the error 

• Resilient Backpropagation:  𝜟𝒙𝒌 =  −𝒔𝒊𝒈𝒏 𝜟𝜠𝒌
𝜟𝒙𝒌

𝜟𝒌 ,      (3.6) 

where: 𝛥𝑥! is the change in weights vector, 𝛥𝐸! is the error function E at  𝑘 and 𝛥𝑘 is the 

change in bias. 

• Quasi-Newton: 𝒙𝒌!𝟏 =  𝒙𝒌 −  𝑯𝒌
!𝟏𝒈𝒌  ,        (3.7)	

where: 𝐻! is the Hessian matrix of the current weights and biases.	

• Levenberg-Marquardt: 𝒙𝒌!𝟏 =  𝒙𝒌 −  𝑱𝑻𝑱 + 𝝁𝜤 !𝟏𝑱𝑻𝒆 ,      (3.8)	

where: 𝐽 is the Jacobian matrix, e is the vector of errors (Comert and Kocamaz 2017) 

Regarding the Radial basis function networks (RBF), they consist strictly of three 

layers, one input, one hidden and one output. The FF network’s flow of information is applied 

also in the RBF network while the main difference is observed to the activation functions. 

More precisely, in the RBF network, the implemented activation function in the hidden layer 

is one of the radial basis functions, which introduces non-linearity (i.e. Gaussian, Multi-

Quadric, Generalized, Multi-Quadric etc.) while the activation functions used in the output are 

the same with those employed in the MLP network. 

Another commonly used ANN is the Recurrent Neural Network (RNN), which has a 

completely different flow of information from the FF and RBF (Comert and Kocamaz 2017). 
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The Recurrent Neural Network bears a closer resemblance to the biological neurons as the 

information processing has bidirectional flow (forward and backward) while their connections 

form a directed cycle (Graves, 2014). Moreover, the RNN has a memory capability as the 

previous iterations of inputs flow to network’s internal state and influence each output 

(Graves, 2014).  

Last but not least, the empirical evaluation of network’s accuracy and performance is 

considered as an essential element for the successful implementation of the model. Several 

measures-metrics are used in order to examine the predictive ability of forecasting models. 

However the most commonly used methods are the Mean Squared Error (MSE), the Mean 

Average Percentage Error (MAPE) and the Coefficient of Determination (R2 ) and are 

provided by the following equations: 

𝑴𝑺𝑬 = 𝟏
𝒏

 𝑨𝒊 − 𝑭𝒊 𝟐𝒏
𝒊!𝟏  ,          (3.9)  

𝑴𝑨𝑷𝑬 =  𝟏𝟎𝟎%
𝒏

𝑨𝒊!𝑭 𝒊
𝑨𝒊

,𝒏
𝒕!𝟏                     (3.10) 

𝑹𝟐 = 𝟏 −  𝑨𝒊!𝑭𝒊 𝟐𝑵
𝒊!𝟏

𝑨𝒊!𝑭! 𝟐 𝑵
𝒊!𝟏

 ,                     (3.11)	

where:  𝐴! is the actual value, the  𝐹! is the predicted value and 𝑛 is the number of data points. 

3.5 	Multiple	Linear	Regression	Analysis	(MR)	

The most commonly used method for examining linear relationships between variables 

is the Multiple Linear Regression Analysis. Besides its statistical application, the MR is also 

employed as a predictive tool, hence a dataset is used in order a predictive mathematical 

model to be developed (Keith, 2015). This predictive technique will forecast the value of the 

dependent variable based on multiple explanatory variables (predictors) (Keith, 2015). To be 

more precise, the mathematical model used is linear and not only assesses the effect of two or 

more independent variables to one dependent variable but also predicts the value of the 

dependent variable taking into account the values of predictors and hence its equation is 

defined by the following formula: 

𝒚 = 𝒂 +  𝒃𝟏𝒙𝟏 +  𝒃𝟐𝒙𝟐 +⋯+  𝒃𝒏𝒙𝒏  +  𝜺,                  (3.12)	

where the y is the response or predicant variable, while the 𝑥!, 𝑥!,… 𝑥! are the explanatory or 

independent variables. Moreover, 𝑎, 𝑏!, 𝑏!…  𝑏! are the regressions coefficients and 𝜀 is the 
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error (Keith, 2015). From the formula above, it is observed that the dependent variable has 

linear association with each one of the independent variables (Keith, 2015). Moreover, it is 

essential to state that in order to model the relationship between a predicant and a predictor by 

applying the MR, the following assumptions must be tested (Osborne and Waters, 2002): 

1. The dependent and at least two predictor variables must be continuous. 

2. Linearity between the dependent variable with each one of predictors. The predicant 

must be expressed as a linear function of independent variables. 

3. The difference between the predicted and the actual values (residuals) must follow the 

Gaussian distribution. 

4. Absence of multicollinearity, providing that regressors (independent variables) must 

not be tightly correlated to each other. 

5. Absence of autocorrelation, providing that the residuals must be independent from 

each other. Therefore, the observations must be independent from their past values. 

6. The residuals must be homoscedastic (constant variance of errors) (Osborne and 

Waters, 2002) 

In case that one of the afore mentioned assumptions is not met, then the implications 

of the violation may lead to invalid or misleading results and thus the model must be adjusted 

(Keith, 2015). However, not all the violations have the same impact to the analysis. More 

specifically, a linearity violation is critical and it results to biased predictions, while a 

violation in the independence of residuals has impact only on standard errors (Keith, 2015). 

Additionally, a violation in homoscedasticity influences negatively the standard errors and the 

statistical significance of the model (Keith, 2015). 

At this point it should be stated that the statistical procedure of the Least Square 

method is applied in order to reduce the squares of residuals occurred (Keith, 2015). Both the 

goodness of fit plays and the statistical significance play also a crucial role, as they reveal 

whether the regression model adequately describes the set of observations (Keith, 2015).  
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4. Data	Analysis		
In this section, the development and the selection of the most well-fitting ANN model 

in conjunction with its performance will be described and analyzed. Furthermore, the model’s 

efficiency in accordance with the training and testing results will be provided. Additionally, 

the association between some operational parameters and the fuel consumption will be also 

investigated. On the top of that, a MR model will be employed and a performance comparison 

between these two models will be performed. 

4.1 	Operational,	Design,	Environmental	Factors	and	Fuel	Consumption	

At this point, the integration between some operational, design and environmental 

parameters and the fuel consumption will be explored and analyzed in order to find which 

factors have impact on vessel’s fuel consumption. More precisely, a correlation analysis will 

be conducted in order to examine the afore mentioned association. The potential relationship 

will be evaluated through the Pearson’s correlation coefficient and a scatter plot, both will be 

performed under IBM SPSS Software. All the necessary data were derived from vessel’s 322 

voyage reports and the examined factors were selected based on Literature Review. The chart 

below (Figure 9) demonstrates the evolution of total fuel consumption in time. 

In accordance with the Literature Review, the total fuel consumption is affected by the 

parameters illustrated in the Figure 3 and in order to conduct our study, we chose some factors 

by each category in accordance with the data provided by the voyage reports.  
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Figure	9:	Evolution	of	Fuel	Consumption	(MT/hrs)	in	time	(days)	(source:	author) 
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To be more precise, from the ship design we chose Main Engines working hrs & 

LSFO consumption, from the operational performance, we selected the average speed of the 

vessel, the distance and the weight of the vessel (passengers, trucks, cars etc.) while from the 

environmental conditions we chose the Wind force expressed in B.N. In addition to the 

correlation between the aforementioned factors and the total fuel consumption, we carried out 

also a correlation analysis between total fuel consumption and the fuel consumption of Low 

Sulfur Oil (LSFO), Marine Gas Oil (MGO) and Heavy Sulfur Fuel Oil (HSFO) in order to 

perceive which of the previous fuels have greater impact on the total fuel consumption.  

From the dataset of the voyage reports, some statistics of the total fuel consumption 

can be denoted. More precisely, in the examined case study the average fuel consumption is 

54.93 MT/hr while its lowest value is 30 MT/hr and the highest fuel consumption is observed 

in the value 74.72 MT/hr. 

The results from the correlation analysis between the total fuel consumption and the 

afore mentioned operational parameters are presented in the Table 4. First of all, it is observed 

that there is a strong uphill linear correlational relationship between the total fuel consumption 

variable and the LSFO fuel consumption of Main Engines as the Pearson correlation 

coefficient was found 0.919. This result shows that those two variables are tightly associated 

as the correlation coefficient value is very close to 1. This can be justified by the fact that 

during the most of the voyage the ship’s main engines consume more LSFO as it is operating 

in European navigational waters where legislations obligate the operator to use fuel with low 

sulfur content. 

Moreover, positive correlations are also observed between the total fuel consumption 

and both variables HSFO and MGO fuel consumptions with correlation coefficients r2=0.373 

and r3=0.165 respectively. This outcome can be justified by the fact that the HSFO is 

consumed by main engines when the vessel is operating in international waters while the 

MGO is consumed during the vessel’s stay at port for only 5hrs in conjunction with the fact 

that only auxiliary engines and boilers use this specific fuel.  
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(source: author) 
 

The aforementioned observation can be explained by the fact that the MGO has the 

lower consumption as it is used while the vessel is at port and only by auxiliary engines, 

which are operating, for 5hrs providing only the power required for covering the hotel 

operations. From the other hand, the LSFO has the highest fuel consumption as it is consumed 

by vessel’s main engines, which are operating for 8hrs in European waters, covering not only 

the hotel but also the propulsive demand. Although the HSFO is only consumed for 3,5hrs 

during the vessel’s passage from international waters, it has stronger correlation with the total 

fuel consumption compared to MGO. This observation can be justified by the fact that the 

vessel has higher speed variations when she is sailing in high seas, resulting to higher engine’s 

rpm fluctuations and consequently to higher fuel consumption, fact that is also confirmed by 

the findings of Gusti, and Semin (2016).  

Additionally, the correlation coefficient between the examined variable and the 

distance (r5=0.886) points out also a tight association. This can also be confirmed also by the 

Table	4:	Correlation	Analysis	of	Fuel	Consumption 
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Figure	11:	Scatterplot	between	Fuel	
Consumption	and	distance	(source:	author)	

fact that the maximum value of the total fuel consumption (74.72 MT/hrs) is observed when 

the vessel reroutes for commercial reasons and calls the port of Corfu, covering a distance of 

400 miles whilst the scheduled itinerary was 318 miles (Patra – Igoumenitsa – Bari). 

Therefore, under this case it is also provided that the fuel consumption is dependent on the 

distance covered, which is also depicted in the Figure 11. 

 

 

 

Further to the above, the values of r6=0.211 and r7=0.437, which are referred to the 

correlation coefficients between the fuel consumption and the variables of wind (BN) and 

weights respectively, also indicate a positive linear relationship between the examined 

variables. At this point it should be stated that the weight refers to the weight of cargo, the 

light ship and the weight of bunkers. The dataset from voyage reports provided the number of 

passengers, trailer, trucks, campers, moto, buses, cars and in order to assess the total weight of 

the cargo, we used IMO’s conversion factors for Ro/Pax load calculation (IMO, 2019). The 

value of the r7 coefficient depicts that the vessel’s weight has impact on the fuel consumption, 

as the weight increases, the consumption rises as well.  

As it concerns the Wind, the coefficient r6 reveals that those variables are also 

associated and the fuel consumption is affected by the wind but it also demonstrates that those 

two variables do not perform at the same way, as the weather conditions do not have 

significant impact on fuel consumption. This can be proved by the fact that, on the one hand 

we didn’t take into account the wind directions while on the other, the impact of the wave 

Figure	10:	Scatterplot	between	Fuel	Consumption	
and	M&E	LSFO	Fuel	Cons.	(source:	author) 
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effect cannot be estimated which is considered as the most important environmental factor 

according to the Literature Review.  

Last but not least, there is a negative correlation between the examined variable and 

the speed r4=-0.179. This observation implies that there is not a tight association between 

these two variables while they move in opposite directions. However, according to Literature 

Review, it is denoted that the speed and the fuel consumption has a non-linear relationship, 

fact that may justify the above observation.  

The outcome of this statistical analysis indicates that the fuel consumption is tightly 

associated with the distance and the main engines’ LSFO fuel consumption and consequently 

to engine’s operating hours. Moreover, the weight and the weather conditions (wind) also 

affect the fuel consumption. However, the results provide that there is a negative association 

between fuel consumption and speed. 

4.2 Design	of	the	ANN	model	

In order this study to be conducted, an Artificial Neural Network (ANN) is developed and 

applied for the total fuel consumption prediction of the day ahead, which incorporates the 

consumption of LSFO, HSFO and MGO, which are used by the both the main and auxiliary 

engines, and boilers of the vessel. This ANN model is designed and developed by using 

Neural Net Fitting (nftool) provided by MATLAB Deep Learning Toolbox. The Figure below 

depicts the operation and the flow of information in the ANN. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure	12:	Operation	of	Artificial	Neural	Network	(source:	author) 
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The ANN model is developed based on the 322 observations provided by the voyage 

reports, which are referred to the period from 2nd January 2018 until 14th November 2018. A 

sample of 257 (80%) voyage reports for the period from 2nd January 2018 until 12th September 

2018 were used as training data, where the neural network was learning, while the remaining 

65 (20%) input data was selected in order to validate and test the model’s performance and 

accuracy.  

It is noteworthy to state here that the data used both for training and testing process are 

normalized before feeding the network. However, after the training and testing process, the 

output values will be also converted to normal values in order to be compared with the actual 

values of fuel consumption. More precisely, all the rescaled values of the data are ranging 

between 0.1 and 0.9 in accordance with the following min-max normalization equation: 

 

𝑿𝒏 =  𝑿! 𝑿𝒎𝒊𝒏
𝑿𝒎𝒂𝒙! 𝑿𝒎𝒊𝒏

	 	 	 	 	 	 	 	 	 	 	(4.1)	

	 	 	 	 	 	 	 	 	 			 	

where, the 𝑋! is the normalized data,  𝑋 is the real value of the variable, while the 𝑋!"# and 

𝑋!"# are the maximum and minimum real value of the data respectively. 

After the rescaling of the data, the structure and the topology of the network must be 

identified. In our case, the Feed-forward structure of ANN with supervised learning algorithm 

is chosen to predict the total fuel consumption based on the fact that this structure guarantees 

the stability of the network and generalizes the input–output association by predicting values 

for inputs that it is not trained on. Hence, it is understood that the proposed ANN network has 

the topology of a Multilayered (more than one layers) Feed-Forward Neural network (ML 

FFNN). 

The most important part for ANN modeling is to identify the optimum network 

architecture, as it t influences also its performance and it is related to the number of hidden 

layers, neurons in the hidden layers and the training algorithm. Such will be achieved through 

the identification of the number of input data (variables), the number of neurons in the hidden 

layers and the output data (prediction). The structure of the proposed ANN is determined by 

trying various combinations in order to carefully choose the most appropriate architecture for 

the examined problem.  
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As it concerns the input neurons, three different scenarios were taken into account in 

order to configure the ANN model. Under these three scenarios, different numbers of input 

neurons were taken into consideration and varied between 2 and 12 input variables while there 

is one output data. These three scenarios will be further elaborated in the next section. 

Moreover, the proposed neural network consists of one input, one hidden and output layer 

(three layered neural network) and the number of neurons in the hidden layer are varied 

between 2 and 30. 

At this point it should be stated, that hyperbolic tangent sigmoid, the logarithmic 

sigmoid (𝑡𝑎𝑛𝑠𝑖𝑔 𝑛 =  !
!!!"# !!! !!

 ), function is applied as activation function in the 

trained neural network both in hidden and output layer in order the network to learn the non-

linear relationship between the input variables and the output. This activation function is 

similar to hyperbolic tangent (tanh(n)) and also related to bipolar sigmoid, and the range of its 

inputs and outputs is varied between -1 and +1. According to MathWorks (2018), under this 

specific activation function (‘TANSIG’) the learning process of the ANN is running faster 

compared to the hyperbolic tangent activation function. However, the results make small 

numerical differences apparent (MathWorks, 2018).  

In addition, the Levenberg-Marquardt (LM) is used as the network’s backpropagation 

learning algorithm, which is a combination of gradient descent and Gauss–Newton 

minimization methods. LM algorithm (‘TRAINLM’) is applied in order not only to update the 

weights and biases but also to reduce the sum of square errors functions with respect to new 

adjusted weights of the network. Hence, it is understood that the proposed neural network will 

be trained under the LM learning algorithm in order a specific input to meet the predefined 

output (target). The choice of the LM algorithm out of other learning methods is based on the 

fact that the LM is considered as the most suitable to solve non-linear problems in networks 

with few weights in conjunction with its fast convergence (MathWorks, 2018). The LM 

algorithm is provided by the formula (3.8) presented in the Methodology section. 

Moreover, the training of network will be completed after 1000 epochs, fact that 

indicates that the learning algorithm will train the data for 1000 iterations until the error is 

minimized. The Table 5 summarizes the fundamental characteristics of the ANN 

configuration.  
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Table	5:	ANN	Configuration	

 
 
 
 
 

  

(source: author) 

From all the above, it is noted that the training process of the Feed-Forward 

backpropagation network can be summarized to the following 5 basic stages: 

1. The weights of the neurons are set randomly. 

2. The feed-forward process, where the information flows from the input, to the output 

through the hidden layer. At this stage the input vectors are entered into the network, 

they will be transformed in the hidden layer, and an output will be produced, while all 

the weights are fixed.  

3. Backpropagation process is performed through the LM learning algorithm 

4. Weights and biases are adjusted until the error value to be minimized and the network 

provides the best approximation of the predefined output.  

5. Test for network’s stopping condition is applied. In our case, the criterion for stopping 

network’s training is determined by the number of epochs. 

Another feature that must be taken into account is the performance of the network, fact 

that will be determined by using Mean Absolute Percentage Error (MAPE). The overall 

accuracy of the model will be measured by MAPE both during the training and testing process 

and will be expressed as a percentage as it is the most widely used error indicator. At this 

point it should be stated that the choice of MAPE was based on the fact that there were no 

extreme values in the dataset. The MAPE is given by the formula (3.10) provided in 

Methodology section. Hence, the selection of the most suitable ANN model depends on the 

Parameters Specification 

Nr. Of total layers 3 

Input Layer Neurons 2 -12 
Hidden Layer Neurons 2 - 30 
Output Layer Neurons 1 

Learning Algorithm Levenberg-Marquardt (LM) 
Activation Function Hyperbolic tangent sigmoid (tansig(n)) 

Epochs 1.000 
Performance Functions Mean Absolute Percentage Error (MAPE) 
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value of MAPE as the model with the lowest MAPE value during the testing period will be 

used for forecasting.  

4.3 	The	Architecture	of	ANN	model	

As it has stated earlier, the choice of the most suitable architecture is a major challenge 

for the efficiency of the neural network. For this reason, three different scenarios were 

investigated and 90 different neural networks were developed and tested in order to conclude 

to the most suitable ANN model.  

The choice of the most optimum ANN structure will be determined by running various 

combinations of architectures during the training and the testing process. More precisely, in 

the first scenario, 30 neural networks are developed, trained and tested by assuming that the 

fuel consumption prediction is based on previous fuel consumption values. In the second 

scenario also 30 networks were built and the fuel consumption is predicted based on previous 

and future values of exogenous input variables. The third and last scenario is considered as 

combination of two previous scenarios as the 30 networks included both previous fuel 

consumption values and previous and future values of exogenous input variables. However, 

the selection of the ANN network will be determined during the testing process through the 

employment of error method. It is noteworthy to state here that no fixed number of hidden 

nodes was selected and thus it will be also determined by the model’s MAPE during the 

testing process.  At this point it should be stated that the testing results show the ability of the 

model to generalize.  

 

1st Scenario 

 

In this scenario, we assume that the fuel consumption is related to previous fuel 

consumption values. In order to examine this specific scenario, the degree of association 

between the fuel consumption values at different points in time must be investigated. 

Therefore, an Autocorrelation Analysis (serial correlation) will be carried out between fuel 

consumption’s current values and its preceding values and it is plotted from a lag of 30 days in 

order to determine whether the fuel consumption values are influenced by their historical 

values (Figure 13).  
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At this point, it is necessary to mention that variables are considered correlated when 

the Pearson correlation coefficient values are close to r0=0.90, which reflects that variables 

have a strong correlational association. The findings of the Pearson coefficient are depicted in 

the diagram below. However, the results reveal the absence of autocorrelation between fuel 

consumption values for the afore-mentioned lags, fact that may lead to low prediction 

accuracy. 

As it concerns the development of the ANN network, we choose as input neurons the 

total fuel consumption at the d-1 (day 1) with value 0.38 and d-8 (day 8) with value 0.43. At 

this point, it should be mentioned that aforementioned values were derived from 

autocorrelation coefficients for these two specific days and we assume that the neuron output 

of the neural network is the fuel consumption of the day (d). Therefore, it is understood that 

the developed neural network under this scenario has 2 neurons in the Input layer. As it 

concerns the number of neurons in the hidden layer, the network will be trained for different 

number of nodes. This process will be repeated for various numbers of nodes in the layer up to 

30. Nevertheless, the optimal number of neurons in the hidden layer will be determined after 

applying the MAPE error method. The graph below (Figure 14) depicts the results derived 

from testing and training process, the x-axis shows the number of neurons in the hidden layer 

while the mean absolute percentage errors are represented in the y-axis.  
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Figure	13:	Autocorrelation	coefficient	for	30	days	(source:	author)	



	 52	

0	

5	

10	

15	

2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	

M
AP
E	
(%

)	

Number	of	Neurons	in	the	Hidden	Layer	
Training	 Testing	

Figure	14:	MAPEs	for	the	1st	Scenario	(source:	author)	

 
 

From the Figure 14 it is observed, that both the reduction and the increase in the 

number of nodes in the hidden layer do not improve the training performance of the neural 

network. Furthermore, high difference in MAPE values between the training and testing 

period are also illustrated in the graph. The number of neurons in the hidden layer will be 

determined by the lowest percentage of the error in the testing process. We may notice that the 

lowest percentage is 2.66% and it provided when the hidden layer has 15 neurons. Hence, the 

ideal architecture for this FFNN under these specific scenario compromises 2 input neurons, 1 

hidden layer with 15 neurons and 1 output neuron (2-15-1NN). The network’s stucture under 

MATLAB Neural Net Fitting (‘NFTOOL’) is presented in the Appendix D. 

 

2nd Scenario 

Under this scenario, we assume that the fuel consumption depends only on exogenous 

factors and not on its past values. So, the ANN network will be developed in accordance with 

the variables presented in the 4.1 section of the Methodology. More precisely, the examined 

variables are the average vessel’s speed, wind force (BN), the number of passengers, Main 

Engine Hours and total Consumption of LSFO, the distance. It is necessary to point out that 

the number of passengers is taken into account as it has impact on the vessel’s weight and 

consequently to the total fuel consumption in accordance with the previous studies presented 

in the Literature Review section. Moreover, under this scenario, the previous day values 

(timed step 1) of the aforementioned variables are also used for the development of the ANN. 

Hence, it is assumed that the input variables are the following:  
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• Input 1:  Average Speed of the vessel at the day d-1 

• Input 2: Average Speed of the vessel at the day d  

• Input 3: Wind Force at the day d-1 

• Input 4: Wind Force at the day d 

• Input 5: Number of passengers at the day d-1 

• Input 6: Number of passengers at the day d  

• Input 7: Main Engine Hours & Total Consumption LSFO at the day d-1 

• Input 8: Main Engine Hours & Total Consumption LSFO at the day d  

• Input 9: Distance at the day d-1 

• Input 10: Distance at the day d 

As it concerns the nodes in the hidden layer, they were varied also between 2-30 

neurons during the training and testing method. However, also in this scenario, the MAPE 

error method will allocate the number of neurons in the hidden layer. From the Figure 15 

where the graph is illustrated, it is shown that the value of 2.16% is the lowest percentage of 

error during the testing period and it is observed when the hidden layer consists of 15 nodes. 

 

 

 

 

 

 

 

 

Thus, it is concluded that under this scenario the ANN with the best predictive 

performance consisted of 1 input layer with 10 neurons, 1 hidden layer with 15 neurons and 1 

output layer (10-15-1NN). The FFNN’s structure under this scenario developed by MATLAB 

‘nftool’ is provided in the Appendix D.  
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Figure	15:	MAPEs	for	the	2nd	Scenario	(source:	author)	
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Figure	16:	MAPEs	for	the	3rd	Scenario	(source:	author)	

3rd scenario 

As it is already stated, the third scenario is considered as a combination of the previous 

two scenarios. More precisely, we assume that the fuel consumption is related not only to 

exogenous factors and their previous day values (d-1) but also to its previous values. Hence, 

the ANN model will have 12 nodes in the input layer, 1 hidden layer and 1 output layer. 

Therefore, the ANN is tested based on the following input variables: 

• Input 1:  Average Speed of the vessel at the day d-1 

• Input 2: Average Speed of the vessel at the day d  

• Input 3: Wind Force at the day d-1 

• Input 4: Wind Force at the day d 

• Input 5: Number of passengers at the day d-1 

• Input 6: Number of passengers at the day d  

• Input 7: Main Engine Hours & Total Consumption LSFO at the day d-1 

• Input 8: Main Engine Hours & Total Consumption LSFO at the day d  

• Input 9: Distance at the day d-1 

• Input 10: Distance at the day d 

• Input 11: Total Fuel Consumption at the day d-1 

• Input 12: Total Fuel Consumption at the day d-8     
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As it concerns the neurons in the hidden layer, the Figure 16 depicts that during the 

testing process, the lowest percentage of MAPE has the value of 2.31% and it is observed 

when the neural network has 9 neurons in the hidden layer. Therefore, under this case the 

optimum ANN structure consists of 12 neurons in the input layer, 9 neurons in the hidden 

layer and 1 output neuron (12-9-1NN). The architecture of the FFNN under this case is also 

provided in the Appendix D. 

4.4 	Selection	of	ANN	model	

In the previous section, three different scenarios were conducted and 90 networks have 

been tested in order to choose the final optimal configuration of the ANN model. The 

proposed ANN model will be the one with lowest MAPE value during the testing period.  The 

lowest mean absolute percentage error is occurred under the 2nd scenario with MAPE value 

2.16%. Therefore, the network’s architecture of the developed ANN model is 10-15-1NN for 

the prediction of the fuel consumption, which indicates the number of nodes in the input, 

hidden and output layer respectively. 

 Further to the above, it is important to state that the most well-fitted model provides 

also the most optimal values of weights fact that leads also to error reduction. Hence, it is 

understood that the model’s predictive accuracy and performance it is related not only to its 

architecture but also to the optimum adjustment of weights and biases. Moreover, it is 

considered necessary to state here that the proposed model is not over-fitted as during both the 

training and testing process, provides good results, fact that outlines also its generalization 

ability. The final structure of the ANN model is presented in the Figure 17 while the 

Network’s architecture under MATLAB Neural Net Fitting (‘NFTOOL’) is presented in the 

Appendix D section. 

As already stated in the previous chapter, the activation function is the Hyperbolic 

tangent sigmoid both in the hidden and output layer as it evaluates better the association of 

nonlinear phenomena such as the relationship of the fuel consumption with various design, 

operational and environmental parameters, fact that is also confirmed by the literature. 
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From all the above, it is observed that the 10-15-1NN model is the most accurate 

model in terms of the predictive accuracy, generalization ability and overall performance. The 

MAPE method was used for explaining and exploring the model’s predictive performance and 

accuracy during both the training and testing process.  As it concerns its generalization ability, 

the proposed model responded to the unknown data subset during the testing in the same way 

it did during the training process, providing also good results.  

The graph below (Figure 18) depicts the mean absolute percentage errors for the three 

scenarios. More specifically, in the first scenario the MAPE is estimated 2.66%, while in the 

second and the third scenario the MAPE is 2.16% and 2.31% respectively. Hence, the lower 

the MAPE, more robust the predictive model is.  Moreover, the overall performance of the 

model can also be outlined by the fact that lower variations in the values of MAPE are 

observed under the second scenario.  

Moreover, it is noteworthy to state that the occurrence of 2.16% of error may be 

justifiable due to the fact that the total vessel’s resistance was not taken into account as input 

variable as this component has impact both on fuel consumption and the speed of vessel. 

Figure	17:	Schematic	Diagram	for	the	FFNN	(source:	author) 
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Figure	18:	Comparison	of	MAPEs	(source:	author)	

Figure	19:	ANN	predicted	values	vs	actual	values	(source:	author)	

          

  

In addition to all above, a comparison between the predicted and actual values of fuel 

consumption is also conducted. The results derived from the comparison are illustrated in the 

graph below (Figure 19), where it is observed that predicted values of the proposed ANN are 

very close to the actual values and both follow the same trend during the testing process (65 

observations). However, it is noteworthy to state that the proposed FFNN model has better 

generalization capability and accuracy when the model predicts the fuel consumption for the 

day ahead rather than when the ANN runs for long term fuel consumption prediction. 
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The findings from the employment of the ANN model revealed that the fuel 

consumption is more related to exogenous factors rather than to its preceding values. 

Additionally, the predictive model is an autoregressive model as its learning process depended 

on timed steps by using as input variables also the previous day values of the variables used. 

Thus, the 10-15-1NN model provides better prediction results for the fuel consumption for the 

day ahead when several parameters are known, consequently this tool can also be used for the 

estimation of the ship-generated emissions. Therefore, the total fuel consumption can be 

expressed as a function of operational, design and environmental parameters (average vessel 

speed, wind force, number of passengers, distance, and M.E Hours & Total Consumption of 

LSFO). More precisely, the hyperbolic tangent sigmoid is given by the following equation: 

𝒕𝒂𝒏𝒔𝒊𝒈 𝑼𝒊 =  𝟐
𝟏!𝐞𝐱𝐩 !𝟐𝑼𝒊 !𝟏

 ,          (4.2)	

where Ui is given by the following function: 

𝐔𝐢 = 𝐚𝐯𝐞𝐫𝐚𝐠𝐞 𝐯𝐞𝐬𝐬𝐞𝐥 𝐬𝐩𝐞𝐞𝐝 𝐝 − 𝟏 × 𝐂𝟏𝐢 +  𝐚𝐯𝐞𝐫𝐚𝐠𝐞 𝐯𝐞𝐬𝐬𝐞𝐥 𝐬𝐩𝐞𝐞𝐝 𝐝 × 𝐂𝟐𝐢 +𝐰𝐢𝐧𝐝 𝐟𝐨𝐫𝐜𝐞 𝐝 − 𝟏 × 𝐂𝟑𝐢  +
 𝐰𝐢𝐧𝐝 𝐟𝐨𝐫𝐜𝐞  𝐝  × 𝐂𝟒𝐢 + 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐚𝐬𝐬𝐞𝐧𝐠𝐞𝐫𝐬 𝐝 − 𝟏 × 𝐂𝟓𝐢 +  𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐚𝐬𝐬𝐞𝐧𝐠𝐞𝐫𝐬 𝐝 × 𝐂𝟔𝐢  +
𝐌.𝐄 𝐡𝐫𝐬 & 𝐓𝐂 𝐋𝐒𝐅𝐎 𝐝 − 𝟏 × 𝐂𝟕𝐢 +  𝐌.𝐄 𝐡𝐫𝐬 & 𝐓𝐂 𝐋𝐒𝐅𝐎 𝐝 × 𝐂𝟖𝐢 + 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐝 × 𝐂𝟗𝐢 +  𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐝 −
𝟏 × 𝐂𝟏𝟎𝐢             (4.3) 	

Moreover, it should be stated that 𝐶!"  is referred to adjusted weights of the input layer 

while the function used in the hidden layer (15 nodes) is given by the following equation: 

 𝑲𝒊 = 𝒕𝒂𝒏𝒔𝒊𝒈 (𝑼𝒊𝒏!𝟏𝟓
𝒍!𝟏 ) × 𝒍𝒘𝒊 ,         (4.4)	

The above stated equation provides the outputs from the hidden layer, which is consisted by 

15 neurons, and 1 bias (𝑏!) while the normalized value of the output is represented by the 

following Equation (20).  

 𝒚𝒊 =   𝒇 𝑼𝒊 =  𝟐
𝟏!𝒆𝒙𝒑 !𝟐𝑲𝒊 !𝟏

 ,                                     (4.5)

	   

At this point, it should be stated that the predicted output values will be converted back 

into their original scale values using the equation (4.1). 
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4.5 	Multiple	Regression	Model	
 

In this section, a Multiple Linear Regression Analysis will be interpreted in order a 

mathematical model to be developed which will predict the fuel consumption. Moreover, the 

association between the predictors will be explored and examined.  

The linear mathematical model will be used in order to understand whether the fuel 

consumption can be forecasted based on two or more independent variables. As already 

provided in the section 3.5 Multiple Linear Regression Analysis (MR), the linear regression 

equation is defined by the following formula: 

𝑦 = 𝑎 +  𝑏!𝑥! +  𝑏!𝑥! +⋯+  𝑏!𝑥!  +  𝜀	

where the dependent y variable represents the total fuel consumption prediction while the 

independent variables 𝑥!, 𝑥!,… 𝑥!  are Main Engine hrs & LSFO Consumption, Average 

Speed, Wind and Pax. Hence, it is understood that the Multiple regression model (MR) will be 

developed and assessed with the same data sets used for examining the accuracy of the ANN.  

At this point it is considered necessary to state that for the development of the MR 

model, the past values of the aforementioned variables weren’t taken into consideration. 

Furthermore, it is important to state here that in order our Regression Model to be valid, the 

assumptions provided under the Methodology section are considered fulfilled and not 

violated.  

In this study, the multiple linear regression analysis will be performed under IBM 

SPSS software by applying both enter and stepwise method for the selection process. 

Although, it is noteworthy to mention here that in order to run the MR analysis the original 

variables are converted into standardized values (z-scores) and it is provided by the following 

formula: 

𝒛 =  𝒙!𝝁
𝝈

 ,            (4.6) 	

where 𝑥  is the variable’s variable, 𝜇 is the population mean value and 𝜎 is the standard 

deviation. 

The overall MR model accuracy and the how well the regression line fits will be 

determined by the coefficient of determination (R
2
) and its values must range between 0 and 

1, where values closer to 1 indicates a perfect fit. Another aspect that must be evaluated is the 
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significance of the model which will be determined by the p-values by taking into 

consideration that the level of significance is a=0.05.  

Moreover, it should be stated that from the Table 4 “Correlation analysis of fuel 

Consumption” where correlation coefficients were presented, it is observed that the predictor 

variables “Main Engine & Total LSFO Consumption” and “Miles” are perfectly correlated 

with r=0.998, a fact which indicates the occurrence of multicollinearity in the regression 

model. Hence, the independent variable “Miles” is omitted from the MR analysis.  

In addition to all above, a stepwise regression procedure will be also applied in order 

to identify which predictor variables add variability to the model resulting in the increase of R 

squared. As a result, the Multiple Regression Analysis will be divided into two categories 

concerning the selection process (enter and stepwise) by which the predictor variables are 

entered in the equation.  

Under the enter method selection process, all predictor variables are entered in the 

equation simultaneously and the results from the Multiple Linear Regression Analysis 

performed under SPSS are depicted in the table below (Table 6).  

Table	6:	Model	Summary	(enter	method)	

Model Summary (enter method) 
 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Durbin-Watson 

1 .911a .831 .819 1.16219 2.118 
(source: author) 

 

It is observed that the R
2
 is 0.831, fact that shows that the relationship between the 

dependent and the predictor variables is strong enough, as that the 83% of the variation of the 

Total Fuel Consumption is linearly explained by the predefined independent variables. The 

remaining 17% of the variation in Total Fuel Consumption can be explained by other factors 

such as the vessel’s total resistance, hull roughness etc.  Another factor that must be taken into 

account is the Adjusted R square which is not much lower than the R Square, fact that shows 

that the regression model can be generalized to the population. Hence, the 81% of total 

variance of the response variable can be explained by the model.  
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Moreover, from Durbin-Watson value d=2.118, it is assumed that there is no linear 

autocorrelation in residuals, as it falls within the range of 1.5 and 2.5. Moreover, the Standard 

error represents the regression error. In our case, Se=1.16 provides that the 1.16% of variance 

in the Total fuel consumption cannot be explained by the regression model. Therefore, it is 

understood that the Se is not high enough leading to the fact that the values are well-fitted to 

the regression line. 

From the ANOVA Table (Table 7) we may examine the p-value in order to evaluate 

the significance of the regression model and whether the predictor values contribute 

significantly to the prediction of the total fuel consumption values. It is observed that the 

model’s p-value accounts for 0.000 while the level of significance is a=0.05, hence the p-value 

is much lower than the level of significance. As a result, it is proved that the developed model 

is significant. 

Table	7:	ANOVA	Table	(enter	method)	

ANOVA (enter method) 
Model Sum of 

Squares 
df Mean Square F Sig. 

1 Regression 397.160 4 99.290 73.510 .000b 
Residual 81.042 60 1.351   

Total 478.202 64    
(source: author) 
 

From the table below (Table 8), the contribution of the independent variables to the 

model is indicated by the Column “Sig”. More precisely from predictors’ p-values, it is 

observed that almost all independent variables significantly contribute to the regression 

model. However, only the Wind variable with p-value 0.424 does not contribute. Moreover, 

from the Column Variation Inflation Factor (VIF), the absence of multicollinearity is 

denoted, as only when the VIF ranges between 5 and 10 denotes the occurrence of 

multicollinearity in the model. 

Furthermore, the B column is used in order to develop our regression model, as the 

values in the column are replacing the coefficients. These coefficients represent the 

association between the total fuel consumption and the independent variables. However, from 

the Table 8, it is denoted that the predictor “Average Speed” has negative coefficient, fact that 
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indicates the negative association between this variable and the predicant.  This observation 

can be justified by the fact that the speed reduction can lead to higher fuel consumption due to 

the increase in the hull resistance and consequently to an increment in Effective Horsepower 

(Górski, Abramowicz-Gerigk and Burciu, 2013). 
Table	8:	Regression	Analysis	Outcomes	(enter	method) 

Coefficients (enter method) 

Model 

Unstandardized 
Coefficients 

Standardi
zed 

Coefficie
nts 

t Sig. 

Collinearity 
Statistics 

B 
Std. 

Error 
Beta 

Tolera
nce 

VIF 

1 

(Constant) 55.217 .144  383.
043 

.000   

Zscore(ME_LSFO
_fc) 

1.871 .179 .684 
10.4
66 

.000 .661 1.514 

Zscore(avg_speed
) 

-.884 .195 -.323 
-

4.53
8 

.000 .556 1.799 

Zscore(wind) .179 .223 .066 .805 .424 .425 2.351 

Zscore(pax) .475 .149 .174 
3.17

8 
.002 .944 1.059 

(source: author) 

Therefore, from all the above stated, the our regression model will the following form: 

 𝑭𝒖𝒆𝒍 𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝟓𝟓.𝟐𝟏𝟕 +  𝟏.𝟖𝟕𝟏 ∗𝑴𝑬 𝑳𝑺𝑭𝑶 𝒇𝒖𝒆𝒍 𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 +  𝟎.𝟏𝟕𝟗 ∗𝑾𝒊𝒏𝒅 −
𝟎.𝟖𝟖𝟒 ∗ 𝑺𝒑𝒆𝒆𝒅 + 𝟎.𝟒𝟕𝟓 ∗ 𝑷𝒂𝒙                       (4.7)	

	 	 	 	 	 	 	 	 
At this point, stepwise selection process will be performed in order to identify all the 

explanatory variables that significantly influence the dependent variable. From the Table 9, 

where the model summary is illustrated, the results from the regression analysis indicate that 

the model with the highest R squared value (0.829) is the third one which incorporates the 

variables: average speed, M.E & LSFO Fuel Consumption and passengers, while the variable 

Wind is omitted from the regression analysis as it does not significantly contribute to the 

model’s ability to predict the fuel consumption. This observation was also confirmed when 

applying enter method. 
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Table 9: Model Summary (stepwise method) 

Model Summary (stepwise method) 
Model R R Square Adjusted R 

Square 
Std. Error of 
the Estimate 

Durbin-Watson 

1 .838a .701 .697 1.50545  

2 .895b .800 .794 1.24079  

3 .910c .829 .820 1.15883 2.065 
(source: author) 
 

The coefficients and the variables used in the three regression models are illustrated in 

the Table 11 provided in the Appendix E. Furthermore, it is also denoted that only the 

variables with p-value more than 0.05 were entered in the model.  More precisely, from the t 

values it is observed that the strongest predictor is the Main Engine hrs & LSFO total 

consumption, which is also confirmed by the Literature Review as fuel consumption is tightly 

associated with the main engine’s working hours in conjunction with the LSFO fuel usage. It 

is denoted also that in the stepwise process, the “Average Speed” has a negative association 

with the dependent variable. The results also revealed the absence of multicollinearity in the 

regression model. Furthermore, the Figure 20 shows the interpretation of the Scatter Plot 

where the relationship between the actual and predicted values of the fuel consumption during 

the training and the testing process is depicted (322 observations). It should be stated that the 

x-axis shows the Fuel Consumption actual values while the y-axis represents the predicted 

values of the fuel consumption. A positive slope is clearly observed, fact that reflects the 

uphill positive relationship. Nevertheless, it should be stated that some outliers can be 

identified.		 	 	 	 	 	 	 	 	 	 	 	
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Figure	20:	Scatterplot	MR	predicted	values	vs	actual	values	(source:	author)	
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At this point, it is considered necessary, a comparison between the Feed-forward Neural 

Network model and the Multiple Regression model to be performed. More precisely, the 

graph below (Figure 21) shows the predicted and the actual values of Fuel Consumption for 

both the FFNN and MR models during the testing process (65 observations).  

	 	 	 	 	 	 	 	 	 	 	

	 It is observed that the predicted values of both models are very close to the actual 

values, however under FFNN model the values follow the same trend during the testing 

process fact that reflects that the FFNN model has higher prediction accuracy compared to 

MR model. The aforementioned can also be confirmed by the fact that the MAPE from the 

MR model is 2.54% while the MAPE for the ANN is 2.16%. 	

	

Table	10:	MAPE	for	ANN	and	MR	models	(training	&	testing)	

MAPE for ANN and MR models 
 ANN MR 
 Training Testing Training Testing 

MAPE 3.86% 2.16% 4.01% 2.54% 
(source: author) 

 

From the above analysis, it is concluded that both models are sufficient to predict the 

fuel consumption under different operating conditions (wind, speed, main engine working 

hours & LSFO fuel consumption), but the FFNN model has higher prediction accuracy 

compared to MR model due to the fact that the fuel consumption has non-linear relationship 

with the majority of these variables, which is also confirmed by the Literature used in this 

thesis. 

Figure	21:	ANN	&	MR	predicted	values	vs	actual	values	(source:	author)	
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5. Conclusion	
One of the primary targets of the shipping sector is to minimize the fuel consumption, 

not only to mitigate the effect of increased fuel prices and but also to reduce ship generated 

greenhouse gases emissions. Generally, a vessel’s energy efficiency strongly depends on the 

quantity of bunkers’ consumption and as a result when the fuel consumption can be properly 

predicted, a fuel reduction along with an improvement in the energy efficiency of the vessel’s 

operations can be achieved. The prediction of fuel consumption can significantly assist on 

indicating the over-consumption in terms of operating circumstances and can propose 

improved and qualitative operation strategies. Thus, the greenhouse gas emissions and costs of 

bunker fuel oils can be possibly decreased while the fuel can be also conserved for longer 

time.    

This thesis is mainly focused on introducing and implementing both a computational 

and a statistical approach for fuel consumption prediction of a typical passenger vessel 

(Ro/Pax type), through the development of an ANN aiming to provide a tool for ship 

operators in choosing the most efficient measures towards achieving both ship’s efficiency 

and sustained energy savings. The ANN model is very robust in examining the relationship 

between the fuel consumption and several input variables, as the forecasting error is very low, 

while when comparing its results with those arising from the use of an MR model, the ANN 

provided more accurate prediction results concerning the vessel fuel consumption.  

The method, which is proposed, can be integrated into the energy management system 

of companies operating this type of vessels, and it can be used as a supporting tool that can 

assist ship operators on predicting the fuel consumption based on each specific operational 

condition. Hence, its implementation can be considered a fuel saving practice as the vessel’s 

energy efficiency can be improved leading also to lower operational costs for the shipping 

company. Moreover, this model could be useful in terms of predicting the ship generated 

emissions.  

This research has concluded to two main results. Firstly, it has shown that it is possible 

to predict the bunker fuel consumption of a ship by employing an ANN model. Secondly, it is 

observed that the fuel consumption is mainly related to exogenous parameters rather than to 

its own historical fuel consumption values. This is confirmed by the fact that the most optimal 
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neural network has as input variables several exogenous parameters important for the vessel’s 

operation.  

The proposed ANN is a multilayered feed-forward network (ML FFNN) with a LM 

backpropagation algorithm, and its structure is 10-15-1NN, which indicates the neurons in the 

input, hidden and output layer. Such was a result of investigating several ANNs with different 

architecture and of comparing their performances during the testing procedure, by taking into 

account their MAPE indicators. The result with the lowest MAPE error (2.16%) was obtained 

from the afore-mentioned one. Furthermore, a multiple linear regression (MR) model has been 

developed in order to lead to a fuel consumption prediction too. The MR model has also led to 

accurate results but when the performance of the MR and FFNN have been compared, it 

clearly showed that the most accurate prediction could be done through the FFNN as the 

MAPE error of the MR was 2.54%.  

It is observed that an ANN model can be more accurate when forecasting the bunker 

fuel consumption compared to the linear model, as the fuel consumption has a non-linear 

relationship with the majority of the examined input variables. This has been also proved by 

previous studies and can now be re-confirmed. It is a general rule that the ANN model is used 

to mainly examine variables, which have a non-linear relationship, a fact that makes it 

workable for the case examined.  At this point, it is necessary to state that the present research 

seems to result to more accurate prediction model, compared to the existing models presented 

in the Literature Review section. This can be justified by the fact that it presents an 

autoregressive model as its examinations also contain variables’ values of the previous day 

(timed step), contrary to previous related researches, the values of which are only limited to 

these of the current day. 

As a further proposal, a different ANN model, and more precisely the ANFIS model, 

could be introduced. This is proposed as the ANFIS model can provide better results by 

combining both the neural networks and fuzzy logic, requiring less training data and 

demonstrates faster convergence speed, compared with this of the ANN. Furthermore, the fuel 

consumption based on a FFNN model shall be examined in combination with CFD software. 

To be more precise, this should be done by taking into account several other variables such as 

the ship’s total resistance in conjunction with the engine’s rpm in order to develop a more 

robust data-driven predictive model.         
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A. Ship’s	Total	Resistance	Equations		
		
Hull Resistance in calm waters 
	
The ship’s resistance is given by the ITTC – 57 (2014) formula below: 
 

𝑹 =  𝟏
𝟐

 𝝆 𝑪𝒕 𝑽𝟐 𝑺	 	 	 	 	 	 	 	                 (A.1)

	 	 	 	 	 	 	 	  	
where: 
𝑅 = 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝐶 = 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
𝑉 = 𝑠𝑝𝑒𝑒𝑑 
𝑆 = 𝑤𝑒𝑡𝑡𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
𝜌 = 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
 
Therefore, Molland (2011) concluded that the total resistance in calm waters is estimated as the sum of 
other resistances: 
 
𝑹𝒕𝒐𝒕𝒂𝒍  = 𝑹𝑭 𝟏 + 𝒌𝟏  +  𝑹𝑨𝑷𝑷  +   𝑹𝑾  +  𝑹𝑩 +  𝑹𝑻𝑹  +  𝑹𝑨                   (Α.2) 
                
where: 
𝑅!"!#$  = 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑅!  = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
1 + 𝑘! = 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑅!    
𝑅!""  = 𝐴𝑝𝑝𝑒𝑛𝑑𝑎𝑔𝑒 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑅!  = 𝑊𝑎𝑣𝑒 𝑚𝑎𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑊𝑎𝑣𝑒 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑅! = 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑢𝑙𝑏𝑜𝑢𝑠 𝑏𝑜𝑤 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
𝑅!"  = 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑜𝑚 𝑠𝑡𝑒𝑟𝑛 
𝑅!  = 𝑚𝑜𝑑𝑒𝑙 𝑠ℎ𝑖𝑝 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
 
At this point, it should be noted that Frictional Resistance (𝑅!) is dependent on Reynold Number 
(𝑅! ) Reynold Number, which is expressed as a function of water’s density and viscosity (Appendix 
1). Both are related to fluid’s temperature (T) and thus variations are observed in the values of 𝑅! and 
𝑅!  . For this reason, corrections are applied to the model and the resistance is calculated for 𝑇 =  15°𝐶 
(Molland, 2011). The frictional resistance can be estimated by the following equation provided by the 
ITTC – 57 (2014): 

𝑹𝑭!
𝟏
𝟐

 𝝆𝑽𝟐 𝑺𝑪𝑭                         (Α.3) 
  
The 1 + 𝑘!  can be found by the following formula: 
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𝟏 + 𝒌𝟏  = 𝒄𝟏𝟑 𝟎.𝟗𝟑 + 𝒄𝟏𝟐 𝑩 𝑳𝑹 𝟎.𝟗𝟐𝟒𝟗𝟕 𝟎.𝟗𝟓 −  𝑪𝑷 !𝟎.𝟓𝟐𝟏𝟒𝟒𝟖 𝟏 − 𝑪𝑷 + 𝟎.𝟎𝟐𝟐𝟓 𝒍𝒄𝒃 𝟎.𝟔𝟗𝟎𝟔            (Α. 4) 
 
where: 
 
𝒄𝟏𝟑 = 𝟏 + 𝟎.𝟎𝟎𝟑 𝑪𝑺𝒕𝒆𝒓𝒏                       (Α.5) 
 
For afterbody forms: 
V – shaped sections,  then: 𝐶!"#$% =  −10 
Normal sections shape,   then 𝐶!"#$% = 0 
U – shaped with Hogner stern,  then  𝐶!"#$% =  +10 
 
𝑐!" = (𝑇 𝐿)!.!!!"##$         when 𝑇 𝐿 > 0.05 
 
𝑐!" = 48.20 (𝑇 𝐿 − 0.02)!.!"# + 0.479948  when   0.02 < 𝑇 𝐿 < 0.05 
 
𝑐!" = 0.479948     when  𝑇 𝐿 < 0.02 
 
𝐿 = 𝑤𝑎𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 
𝑇 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑜𝑢𝑙𝑑𝑒𝑑 𝑑𝑟𝑎𝑢𝑔ℎ𝑡 
 
𝑆 =
𝐿 2𝑇 + 𝐵 𝐶!  0.453 + 0.4425𝐶! − 0.2862𝐶! − 0.003467𝐵 𝑇 + 0.3696𝐶!" + 2.38𝐴!" 𝐶! – 
Wetted surface of the hull 
 
𝐶!  = 𝑚𝑖𝑑𝑠ℎ𝑖𝑝 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
𝐶!  = 𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
 
𝐶!  = 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
 
• The Frictional Resistance Coefficient is provided by the following equation: 

 
𝑪𝑭 =

𝟎.𝟎𝟕𝟓
(𝒍𝒐𝒈𝟏𝟎 𝑹𝒆!𝟐)𝟐

                        (Α.6) 
      
• Reynold’s Number formula: 

 
𝑹𝒆 = 𝝆𝒗𝒍/𝝁                       (Α.7) 
  
• Appendage Resistance  can by found by the following formula: 

 
𝑹𝑨𝑷𝑷 =  𝟏

𝟐
 𝝆𝑽𝟐 𝑺𝑨𝑷𝑷  (𝟏 + 𝒌𝟐 )𝒆𝒒 𝑪𝑭                      (Α.8) 

 
where: 
𝑆!"" = 𝑤𝑒𝑡𝑡𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑎𝑝𝑝𝑒𝑛𝑑𝑎𝑔𝑒𝑠 
 
1 + 𝑘!  = 𝑎𝑝𝑝𝑒𝑛𝑑𝑎𝑔𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 
 
For Stabilizer fins the factor takes the value:  1 + 𝑘! = 2.8 
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• Bow thruster resistance can be found by the following equation: 

	
𝑹𝑩𝑻𝑶  = 𝝆𝑽𝟐𝝅𝒅𝟐𝑪𝑩𝑻𝑶                       (Α.9) 
 
where: 
 
d = the tunnel diameter 
 
𝐶!"# takes value between 0.003 and 0.012 
 
• The wave making and wave breaking resistance is provided by the following formula: 

 
𝑹𝑾  =  𝒄𝟏 𝒄𝟐𝒄𝟑 𝛁   ρ g   exp {𝒎𝟏 𝑭𝒏𝒅   +𝒎𝟐  𝐜𝐨𝐬(𝝀𝑭𝒏!𝟐 )}                 (Α.10) 
 
• The Additional pressure of bulbous bow is given by the equation below: 

 
𝑹𝑻𝑹 = 𝟎.𝟏𝟏 𝐞𝐱𝐩 −𝟑𝑷𝑩!𝟐 𝑭𝒏𝒊𝟑 𝑨𝑩𝑻𝟏.𝟓 𝝆𝒈/ (𝟏 + 𝑭𝒏𝒊𝟐  )	 	 	 	               (Α.11) 
 
while the additional pressure resistance of immersed transom stern is given by:	
 
𝑹𝑻𝑹 =

𝟏
𝟐

 𝝆𝑽𝟐 𝑨𝑻𝒄𝟔                    (Α.12)	
  
𝑐! is dependent on 𝐹!"   

 
𝑐! = 0.2 (1 −  𝐹!"  )     when 𝐹!" < 5 
𝑐! = 0      when 𝐹!" ≥ 5 
 
• Froude number based on immersed transom stern is provided by the following equation: 

 
𝑭𝒏𝑻 = 𝑽 𝟐𝒈 𝑨𝑻 (𝑩 + 𝑩𝑪𝑾𝑷)                   (Α.13)	
        	
• The model ship correlation resistance is provided by the formula below: 

 
𝑹𝑨 =  𝟏

𝟐
 𝝆𝑽𝟐 𝑺𝑪𝑨                     (Α.14) 	

𝐶! = 0.006 (𝐿 + 100)!!.!" − 0.00205 + 0.003
𝐿
7.5

 𝐶!! 𝑐!(0.04 − 𝑐! ) 

with 
𝑐!  =  𝑇! 𝐿                   when 𝑇! 𝐿 ≤ 0.04 
𝑐! =  0.04                  when 𝑇! 𝐿 > 0.04 
 
 
• Total Resistance for the reference water is given by: 
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𝑹𝑻𝑶!
𝟏
𝟐

 𝝆𝑻𝑶𝑽𝟐 𝑺𝑪𝑻𝑶                    (Α.15)	
  
Total Resistance 
 
All equations in this chapter are provided by the ITTC (2014) 
 
Total Resistance 𝑹𝑻 is provided by the following equation: 
 
𝜟𝑹 =  𝑹𝑨𝑾 +  𝑹𝑨𝑨 +  𝑹𝑨𝑺 ,                   (Α.16)	
 
where: 
𝑅!" = 𝐴𝑑𝑑𝑒𝑑 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑊𝑎𝑣𝑒𝑠 
𝑅!! = 𝐴𝑑𝑑𝑒𝑑 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑊𝑖𝑛𝑑 
𝑅!" = 𝐴𝑑𝑑𝑒𝑑 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑆𝑒𝑎  
 
Added Wave Resistance 𝐑𝐀𝐖 
	
ISO (2018) standards introduced two empirical methods, STAWAVE 1 and STAWAVE 2, for the 
estimation of the mean added wave resistance (𝑅!"#). 
 
STAWAVE 1 method is applied to larger vessels and it is used in order to estimate head waves taking 
into account that the heave and the pitch are insignificant (ITTC, 2014). This method is used when the 
significant wave height should comply with the following restriction: 

𝐻!
!
≤ 2.25 𝐿𝐵𝑃

100 

 
STAWAVE 2 describes the 𝑹𝑨𝑾𝑳 in crested irregular waves in relation to ship’s speed, wave’s 
characteristics and combines both the wave reflection resistance 𝑹𝑨𝑾𝑹𝑳  and the induced motion 
resistance 𝑹𝑨𝑾𝑴𝑳 in regular waves (Magnussen, 2017). The mean added resistance is given by the 
following formula: 
 
𝑹𝑨𝑾𝑳 = 𝟐 𝑹𝒘𝒂𝒗𝒆 (𝝎;𝑽𝑺)

𝜻𝑨
𝟐

!
𝟎  𝑺𝜼 (𝝎)𝒅𝝎		 	 	 	 	 	 												(Α.17)	

		
	where:	
𝑅!"# = 𝑀𝑒𝑎𝑛 𝐴𝑑𝑑𝑒𝑑 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑤𝑎𝑣𝑒𝑠 (𝑁)	
𝑅!"#$ = 𝑀𝑒𝑎𝑛 𝐴𝑑𝑑𝑒𝑑 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑑𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑠 (𝑁)	
𝑆! = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 (𝑚!𝑠)	
𝑉! = 𝑉𝑒𝑠𝑠𝑒𝑙 𝑆𝑝𝑒𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 (𝑚 𝑠)	
𝜁! = 𝑊𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑚)	
𝜔 = 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑠 (𝑟𝑎𝑑 𝑠 )	
 
This formula is applied when the following restrictions are met: 
 
75 𝑚 <  𝐿!! < 350 (𝑚)  (if the length between perpendiculars is more than 75m and less than 
350m)  
1. 4.0 <  !!!

!
< 9.0 (if the ratio of the length between perpendiculars and vessel’s breadth is more 

than 4.0 and less than 9,0) 
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2. 2.2 < !
!
< 5.5 (if the ratio of the vessel’s breadth and draught is more than 2.2 and less than 9.0) 

3. 0.10 < 𝐹! < 0.30 (when the Froude Nr. (𝐹!) takes values between 0.10 and 0.30) 
4. 0.50 < 𝐶! < 0.90  (when the block coefficient (𝐶! ) takes values between 0.50 and 0.90 
5. −45° < 𝑎!  < 45° (when the wave direction is within 0° to ± 45°  from the bow 

 
• The mean added resistance increase due to regular wave: 

 
 𝑹𝒘𝒂𝒗𝒆 =  𝑹𝑨𝑾𝑹𝑳 +  𝑹𝑨𝑾𝑴𝑳                     (Α.18) 
 
• Resistance increase due to wave reflection is given by the following equation: 

 
𝑹𝑨𝑾𝑹𝑳 =

𝟏
𝟐
𝝆𝒈𝜻𝑨𝟐𝑩𝒂𝟏(𝝎)                   (Α.19)	

  
where: 
𝜌 = 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑔 𝑚! ) 
𝑔 = 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑔 = 9.8𝑚 𝑠!) 
𝜁! = 𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑚) 
𝐵 = 𝑆ℎ𝑖𝑝!𝑠 𝑏𝑟𝑒𝑎𝑑𝑡ℎ (𝑚) 
𝜔 = 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑠 (𝑟𝑎𝑑 𝑠 ) 
𝐶! = 𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
𝑇! = 𝑚𝑖𝑑𝑠ℎ𝑖𝑝 𝑑𝑟𝑎𝑢𝑔ℎ𝑡 (𝑚) 
𝑘 = 𝑤𝑎𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑟𝑎𝑑 𝑚 ) 
𝐼! = 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐵𝑒𝑠𝑠𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑘𝑖𝑛𝑑 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 1 
𝐾! = 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐵𝑒𝑠𝑠𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑘𝑖𝑛𝑑 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 1 
 
 
Another way to estimate the added resistance due to waves and wind is through the Kwon (2008) 
formula as it connects the involuntary speed loss with the added resistance due to weather conditions 
(Molland, 2011). The Kwon formula is applied to all vessels except container ships and is given by the 
following formula: 
 
𝛼 ∙ 𝜇 !!

!
 100%	 	 	 	 	 	 	 	 	               (Α.20)	

 
where:  
 
𝛼 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝐶! 
𝜇 = 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
𝑉! = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑐𝑎𝑙𝑚 𝑤𝑎𝑡𝑒𝑟𝑠 (𝑚 𝑠 ) 
𝑉! = 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑚 𝑠 −  𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑠 𝑎𝑛𝑑 𝑤𝑖𝑛𝑑 
𝛥𝑉 = 𝑆𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑚/𝑠) 
𝛥𝑉 =  𝑉! −  𝑉! 
𝛥𝑉
𝑉
=  𝑆𝑝𝑒𝑒𝑑 𝑙𝑜𝑠𝑠 % 
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Added Resistance due to wind 
 
The added resistance due to wind (𝑹𝑨𝑨 ) can be found with the following equation: 
𝑹𝑨𝑨 =  𝟏

𝟐
 𝝆𝒂𝒊𝒓𝑨𝑻𝑪𝑫𝒘𝒊𝒏𝒅 (𝑼𝒘𝒊𝒏𝒅 +  𝑽𝒘 )𝟐 −  𝑽𝑪𝟐 ,                (Α.21)	

 
where: 
𝑅!! = 𝐴𝑑𝑑𝑒𝑑 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑤𝑖𝑛𝑑 (𝑁) 
𝜌!"# = 𝐴𝑖𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  
𝑉! = 𝑊𝑖𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 
𝐶! = 𝐴𝑖𝑟 𝐷𝑟𝑎𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
𝐴! = 𝑆ℎ𝑖𝑝!𝑠 𝑎𝑏𝑜𝑣𝑒 𝑤𝑎𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑎𝑟𝑒𝑎 
𝑈!"#$ = 𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 
𝑉! = 𝑉𝑒𝑠𝑠𝑒𝑙!𝑠𝑝𝑒𝑒𝑑 𝑜𝑣𝑒𝑟 𝑔𝑟𝑜𝑢𝑛𝑑 
At this point it should be stated that 𝝆𝒂𝒊𝒓 will take the value 1.23 kg/m3 . The wind speed 𝑼𝒘𝒊𝒏𝒅 will be 
provided by the Table that depicts the B.N expressed as wind direction and speed.  
7.1.2.3 Added Resistance due to Roughness and Fouling  
 
𝜟𝑹𝑭!  

𝟏
𝟐

 𝝆 𝑽𝟐 𝑺 𝜟𝑪𝑭 ,                    (Α.22)	
  
where: 
 
𝜟𝑪𝑭  is the change in the frictional coefficient and its formula is provided by Towsin (2003): 

𝜟𝑪𝑭!  𝟎.𝟎𝟒𝟒 𝑨𝑯𝑹
𝟏
𝟑

𝑳𝒑𝒑
− 𝟏𝟎 𝟏

𝑹𝒆𝑳𝒑𝒑

𝟏
𝟑
+ 𝟎.𝟎𝟎𝟎𝟏𝟐𝟓, 	 	 	 	 	 													(Α.23)	

 
where: 
𝐴𝐻𝑅 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑢𝑙𝑙 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 
𝑅! = 𝑅𝑒𝑦𝑛𝑜𝑙𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 
𝐿!! = 𝐿𝑒𝑛𝑔𝑡ℎ 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟𝑠 
 
 
Added resistance due to seawater composition  
 
The ISO (2015) provided the formula of the resistance increase due to seawater’s composition and is 
estimated by: 
 
𝑹𝑨𝑺 =  𝑹𝑻𝑶 

𝝆𝒔
𝝆𝒔𝒐

− 𝟏 −  𝑹𝑭 (
𝑪𝑭𝑶
𝑪𝑭

− 𝟏),                   (Α.24) 
where: 
 
𝑅!" = 𝐴𝑑𝑑𝑒𝑑 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟 
𝑅!" = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤𝑎𝑡𝑒𝑟 
𝑅! = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 
𝐶! = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 
𝐶!" = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤𝑎𝑡𝑒𝑟 
𝜌! = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 
𝜌!" = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑤𝑎𝑡𝑒𝒓 
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However, these properties are relative to location and season. Since the vessel under study is 
performing on a specific itinerary, variations in the temperature, viscosity and density are minor. 
Nevertheless, in our model a difference of ± 10° 𝐶  in temperature will be applied due to season 
weather conditions (Magnussen, 2017). Therefore, the model will be corrected and the additional 
resistance will be estimated based on the typical seawater temperature (𝑇 =  15° 𝐶) and density 
𝜌 =  1,026 𝑘𝑔 𝑚!.  
 

B. Ship	Power	Train			
	

In this subsection all the necessary formulas in order to estimate the engine’s horsepowers are 
provided according to ICCT (2014) 
 
• Effective Horsepower (EHP): 

 
𝑷𝑬 = 𝑹𝑻 𝒙 𝑽,	 	 	 	 	 	 	 	 	 	 															(B.1)	
	 	 	 	 	 	 	 	 	  	
where : 
𝑅! = 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 ℎ𝑢𝑙𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑉 = 𝑡ℎ𝑒 𝑠ℎ𝑖𝑝!𝑠𝑝𝑒𝑒𝑑 
 
• Quasi - Propulsive Coefficient (QPC): 

 

𝑸𝑷𝑪 =  𝑷𝑬 𝑷𝑫 ,                       (B.2)	
where: 
𝑃! = 𝐸𝐻𝑃 
𝑃! = 𝐷𝐻𝑃 
 
or through the Emerson formula: 
 

𝑸𝑷𝑪 =  𝟎.𝟖𝟒 −  𝑵! 𝑳𝑩𝑷𝟎.𝟓

𝟏𝟎𝟎𝟎𝟎   ,                     (B.3)	
 where: 
𝑁 = 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 𝑟𝑝𝑚 
𝐿𝐵𝑃 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟𝑠  
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C. Activation	Functions	
	
1. Binary Activation Function or Step Function 

 
The neuron is activated if the following restriction is met: 
 

𝒇 𝒙 =  𝟎 𝒇𝒐𝒓  𝒙 < 𝟎 
𝟏 𝒇𝒐𝒓 𝒙 ≥ 𝟎                        (C.1)	

 
It is understood that the neuron is activated if the total value of its output is ≥0 (threshold) while it is 
not fired when the value is < 0. The plot of the activation function is given below: 
 
	
	

	

	

	

	

	

	

Figure	22:	Binary	Activation	Function	Plot	(source:	Sharma,2017)	

	
	
2. Linear Activation Function 

𝒇 𝒙 = 𝒄𝒙                        (C.2)	
 
The plot of the activation function is given below: 
 
	
	

	

	

	

	

	

Figure	23:	Linear	Activation	Function	Plot	(source:	Sharma,2017)	
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3. Logistic Sigmoid Activation Function 

Sigmoid is a differentiable non-linear activation function and its output takes values between 1 and 0.  
𝒇 𝒙 = 𝝈 𝒙 =  𝟏

(𝟏!𝒆!𝒙)
                      (C.3)	

 
The plot of the Logistic Sigmoid Activation Function is provided below: 
	
	
	

	

	

	

	

	

	

Figure	24:	Logistic	Sigmoid	Activation	Function	Plot	(source:	Sharma,	2017)	

	
4. Hyperbolic Tangent (tanh) Activation Function 

It has similar characteristics to sigmoid while its output takes values between -1 and 1. 
 

𝒇 𝒙 = 𝐭𝐚𝐧𝐡 (𝒙)  (𝒆
𝒙!𝒆𝒙)

(𝒆𝒙!𝒆!𝒙)
                     (C.4)	

 
The plot of the aforementioned activation function is given below: 
 
	
	

	

	

	

	

	

	

	

Figure	25:	Hyperbolic	Tangent	Activation	Function	Plot	(source:	Sharma,	2017)	
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5. RELU (Rectified Linear Unit) Activation Function 

 

𝒇 𝒙 =  𝟎 𝒇𝒐𝒓  𝒙 < 𝟎 
𝒙 𝒇𝒐𝒓 𝒙 ≥ 𝟎                       (C.5)	

 
The plot of the aforementioned function is given below 
	
	

	

	

	

	

	

	

Figure	26:	RELU	Activation	Function	Plot	(source:	Sharma,	2017)	
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D. 	ANNs	Architecture		
	
I. The FFNN’s architecture under the Scenario1 is presented below: 

 
 

	

	

	

	

	

	

Figure	27:	1st	Scenario	FFNN	model	under	MATLAB	Neural	Fitting		(nftool)	(source:	author)	

 
II.  The FFNN’s architecture under the Scenario 2 is presented below: 

	
 
 

	
	
	

	

	

	

Figure	28:	2nd	Scenario	FFNN	model	under	MATLAB	Neural	Fitting	(nftool)	(source:	author)	

 
	

III. The FFNN’s architecture under the Scenario 3 is presented below: 

	
	
	
	
	
	
	
	
	
	

	 	 	
Figure	29:	3rd	Scenario	FFNN	model	under	MATLAB	Neural	Fitting	(nftool)	(source:	author)	
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E. Multiple	Regression	Analysis	Outcomes	
	
The outcomes from the Regression Analysis Outcomes and more precisely the coefficients and the 
variables used in the three regression models are illustrated in table below:	
	

Table	11:	Regression	Analysis	Outcomes	(stepwise	method)	

 

(source: author) 
 
 
	
 
	
 

Coefficients (stepwise method) 

 

Model Unstandardized 
Coefficients 

Standardi
zed 

Coefficie
nts 

t Sig. Collinearity 
Statistics 

B Std. 
Error 

Beta Tolera
nce 

VIF 

1 (Constant) 55.217 .187  295.7
07 

.000   

Zscore(ME_LS
FO_fc) 

2.289 .188 .838 12.16
6 

.000 1.000 1.000 

2 (Constant) 55.217 .154  358.7
80 

.000   

Zscore(ME_LS
FO_fc) 

2.042 .161 .747 12.65
0 

.000 .923 1.083 

Zscore(avg_sp
eed) 

-.895 .161 -.327 -5.545 .000 .923 1.083 

3 (Constant) 55.217 .144  384.1
54 

.000   

Zscore(ME_LS
FO_fc) 

1.943 .154 .711 12.62
8 

.000 .886 1.129 

Zscore(avg_sp
eed) 

-.981 .153 -.359 -6.404 .000 .895 1.118 

Zscore(pax) .473 .149 .173 3.175 .002 .945 1.059 


