Online Learning
Algorithms

with Application in Ranked Recommendations

TABLE OF CONTENTS

ACKNOWIBAZEMENT ... i e e e e s rbee e e s st e e e s sabee e s esnbeeesssaseeeesnrens 6
FY o1 o - [ot A T TSP TPV UUPTOPRTORPTOPRO 8
T DA ettt ettt ettt e et e e be e e tbe e e be e e tb e e e abee e baeeeabeeebeeeatbeeebaeeetbeeeateeetaeeenbeeeaneeas 9
R) o oo [¥ ot T o OSSP T PP PRUPRUPPRPRN 10
1.1 ONIINE LEAINING ..evviieiiieee ettt e e e e eee e e e e tae e e e abee e e e eabee e e senbaeeeennees 10
1.2 Online Learning Problemsoccuuiiiiiiii et 12
13 OVEBIVIBW ...ttt ettt st e s st e s st e e e s aab e e e e s b e e e s s mre e e s sanreeeeenrees 14

2 The Multiarmed Bandit Problem ..o e 16
2.1 The stochastic bandit ProblemMooiiiiiii i 18
2.1.1 The UCBL AlZOTithmcciieiiiecciiee ettt e 19
2.1.2 The e-Greedy AlZOrithmcooiiiiiice e 20

2.2 The adversarial bandit problem ... 21
2.2.1 The EXP3 AlGOIthMeeiiieeeeeee et 22

3 CoNEEXTUAI BANGILS ..eoueieiieiieiiieee ettt sttt sb e et s n e 26
3.1 Non-stochastic Contextual Bandit Algorithmsccccvevviiiiiiiiiiiee e, 29
3.1.1 EX P . 29
3.1.2 EXPALP e bbb sttt b e saeesae e s 30
3.1.3 INEXP ettt et b e sttt et b e b s ae e et e b e naeesaee e 30

3.2 Stochastic Contextual Bandit Algorithmscoocciiiiiiciiee e 31
3.2.1 oo Yol o B € - Te 1Y PSPPSR 31
3.2.2 Algorithms for context inducing linear rewards.........cccoccveeeeivieeescciieeeciineenn, 32

4 Ranked RECOMMENAALIONS. ...c..uiiiiirieeiiieiiieeie ettt sttt et ettt st sbeeneeas 34
4.1 DiIVEISE RANKINGS...cccccuiiieieiiiie ettt e et e e et e e e et e e e e are e e e eabeeeeenreeeseanes 34
41.1 REC AN RBA ...ttt ettt st e e st e e s st a e e s abee e s s abes 35
4.1.2 PIE @NA PIE-C.ooneieeteeet ettt s e 38
4.1.3 LSBGIEEAY...c.ueeuiierieieeteetee sttt s e e 39

4.2 LY 10 14 o] 1 O ol &R 39
421 DB A 40
4.2.2 ACMKL-UCB .ttt s sttt ene e 41

4.3 OthEr WOTKS ..ottt ettt s st st e s saeeeaneens 42
43.1]2 5 TP P PP TR ORRPR 42

5 Experiments of Rankings With CONTEXtceiiiiiiiiiiiiie e e 44
5.1 Datasets Creation ..o i 45
51.1 Artificial data Creationcooeevveiieriee e 45

5.1.2 Datas et LY PO i, 47
5.2 1Y/ 1] g oTe [o] oY -V NSRRI 47
5.21 Selection of the datasetscouei i i 48
5.2.2 EXPerimental Phasecciiiiiiieiie e 48
53 Analysis of the EXPErimeENTScoiiciiiiiiiiiie et e srae e e e saaee e 48
5.3.1 Average Rate of Rewards (ARR) and Standard Deviation of Rewards (SDR)...49
5.3.2 RBA-LIinUCB vs IBA-LInUCB via ARR and SDR........cccevciieeiiiiee e 50
5.3.3 RBA-LINUCB vs IBA-LINUCB Vi@ ClICKS ...veviviiieieiiiiieeeriieee e 53
534 RBA-LINUCB vs IBA-LINUCB via |€arning........cccoecuveeeiiiieeeiniieeesieeeesceee s 54
5.4 CONCIUSIONS ...ttt sttt et b e st e st st et e nbeesbeesaeesneeeaneens 57
B REFEIENCES ..ottt sttt 58

INDEX OF FIGURES AND TABLES

Figures

Figure 2.1. The Multiarmed Bandit model with K slot-machines...........ccccceeevivieeiiieeeccnnenn. 16
Figure 2.2. Definition of the Multiarmed Bandit problemcccccvveiiiiiiiieiiiiecceeeeee, 17
Figure 2.3. The stochastic bandit problem, as given in Bubeck and Cesa-Bianchi, 2012 [21] 18
Figure 2.4. Pseudocode for algorithm UCBI1 [18]........ccccouiiieeiiiieeeiiiie e 19
Figure 2.5. Pseudocode for algorithm e-Greedycoovcvieiiiciieiiiciiee e 20
Figure 2.6. The adversarial bandit problem, as given in Bubeck and Cesa-Bianchi, 2012 [21]
... 21
Figure 2.7. Pseudocode for algorithm EXP3 [19].......coiiviiiiiiiiiiieeeciiee e 22
Figure 3.1. Pseudocode for the algorithm EXP4, as presented in Auer et al. [19] 29
Figure 3.2. Pseudocode of LINUCB, as given in [14]........ccccvviviiiiiiiiiiiiniiiniicicicieceens 32
Figure 4.1. Pseudocode for algorithm REC [12] ..ccccviiiiiiiiiiiciieeccitee e 36
Figure 4.2. Pseudocode for algorithm RBA [12]euviiiiiiiiieeceee et 37
Figure 4.3. Pseudocode of the algorithm IBA [13]ceviiiiiiiiiiiieeeciiee e 40
Figure 5.1. The relationship between ARR and SDR for number of features d € {1,2,3}......49
Figure 5.2. Cumulative average regret and its relationship with ARR and SDR for number of
fEAtUres d € {1,2,3] ittt e ees 50
Figure 5.3. Regret calculation for RBA and IBA in the same scenario.ccccccveeeeevveeeecnnenn. 51
Figure 5.4. Difference of RBA-LinUCB minus IBA-LinUCB in SSAARS against SDR for feature
NUMDBET A € {1,2,3] ettt ettt sttt b et nr e s 52

Figure 5.5. The accumulated clicks of RBA-LinUCB and IBA-LinUCB for d € (1, 2, 3}, T=10000,
K=10. The charts display the increase in IBA clicks as a percentage of the RBA clicks. The

results were averaged over the 100 experimental repetitions for each dataset. 54
Figure 5.6. The ability to learn for the RBA and IBA slots, tested for 3 features and with two
datasets With SDR € {0.03, 0.2 .c..eoiiiiieieieeeee ettt s 55
Figure 5.7. The ability to learn for the RBA and IBA slots, tested for 2 features and with two
datasets With SDR € {0.02,0.24}......coiiiieiieeeeee ettt 56
Figure 5.8. The ability to learn for the RBA and IBA slots, tested for 1 feature and with two
datasets With SDR € {0.015,0.197. ettt 56
Tables

Table 2.1. Regrets bounds and proposed use of MAB algortihms..........cccceeeeieeeeciieeeccinennn. 24
Table 3.1. Representative contextual bandit algorithms and their regret bounds................. 31
Table 4.1. Reward system of items iN RBAooiiiiiiieeceee et 38
Table 5.1. Terms used in our experimental analysis and their definitions.ccccceeeunneee. 45

Table 5.2. The steps of the algorithm used for creating the datasets of the arm features....46
Table 5.3. The steps of the algorithm used for creating the datasets of the contextual arm

2N o [PPSR PR 46
Table 5.4. The types of the datasets that were used in our experiments on rankings with
(oo] a1 i=) PP PP P PPPPPPPPPPPPPPPRt 47

file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673453
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673454
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673454
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673456
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673456
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673457
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673457
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673457
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673458
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673458
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673459
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673459
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673460
file:///F:/back-up%20Thesis/New%20Datasets/final%20Thesis%2009.07.19.docx%23_Toc13673460

ACKNOWLEDGEMENT

I would like to thank my thesis advisor, Assistant Professor Orestis Telelis of the Department
of Digital Systems at University of Piraeus. The door to his office was always open and there
was always time in his schedule whenever | needed guidance about my research or writing.
For all his support, patience and useful advice, | thank him.

Evgenia Panagiotopoulou

ABSTRACT

In this work we study the Online Learning and its application in ranked recommendations’
systems that use context. Nowadays, modern platforms, websites and applications create an
increased need for recommendations’ systems that offer useful content suggestions. Online
learning poses a great solution towards that purpose, as it can leave the customer — or user —
satisfied, while requiring minimal computational resources, without demanding training or
past data and with the ability to adapt quickly to new data. Furthermore, by introducing
relevant context — side information — into an online learning recommendation system we can
expect to produce content suggestions for the users that are appealing and tailored to their
needs and interests.

Specifically, over the course of this study we explore bibliographically the Multiarmed Bandit
problem (MAB), the Contextual Bandits, the Rankings of Recommendations and the
corresponding algorithms. In order to delve deeper into the online learning
recommendations, we design and conduct experiments with our own generated artificial
datasets, using the algorithms that we found the most interesting. Our idea was to combine
the recommendation meta-algorithms RBA and IBA with instances of the linear rewards
contextual algorithm LinUCB. As it is, the two cases we are comparing are the RBA-LinUCB —
a single-click, diverse-rankings algorithm that has been tested experimentally before — and
the IBA-LinUCB, which is a multiple-clicks algorithm that is being tested for the first time in
this work, to our knowledge.

In the results of our experiments it appears that the RBA-LinUCB has an increasingly better
performance than the IBA-LinUCB, as an increase in the standard deviation of the arm rewards
(SDR) of the MAB leads to a higher cumulative average regret by the IBA-LinUCB, while the
RBA-LinUCB remains unaffected. Moving to another viewpoint, though, it appears that the
IBA-LinUCB vyields increasingly more clicks than RBA-LinUCB, as the average rate of rewards
(ARR) of the arms increases. Finally, by monitoring the way the instances in the
recommendation slots learn, it is revealed that the IBA-LinUCB slots learn much faster and
more accurately than those of RBA-LinUCB. The above observations lead us to the fact that
the IBA-LinUCB is expected to offer more substantial results and yield more clicks than the
RBA-LinUCB, and thus constitutes a more effective solution when used in online contextual
recommendation systems.

MEPIAHWH

TNV mapovoa SUTAWMATIKNA Epyacio LEAETAUE TNV TTEPLOXN TNG «Apeong EKUABnong» kaltnv
edappoyn tNG O CUCTHUOTA TIOU TIAPAYOUV SLATETOYUEVEG CUOTAOELS, KAVOVTOG XPHon
emUMpOcBetng mAnpodoplag. Zruepa, oL cUYXPoveS MAATHOPUEC, LOTOOEAISEG KOl EPAPUOYEG
SnuLloupyolLV TNV AVAYKN YLOL CUCTAUATO CUCTACEWY TIOU TIPOCGHEPOUV XPIOLUO TIEPLEXOUEVO
yla tov xprnotn. H dueon ekpuadnon mpoodEpet pia tdavikr AUon mpog autr) tnv katevBuvon,
KaBw¢ pmopel va LKAVOTIOLCEL TOV TEAATN — R XPNotn — Xwpig va amattel akpiBoug
UTIOAOYLOTLKOUG IOPOUG, ekmaideuon A mapeABovta Sedopéva kat £xovtog Tn duvatdtnta va
npooapuoletal yprnyopa oe véa Sedopéva. EMUMAEOV, €L0AYOVTAG TIAPOKELUEVN OXETIKA
mAnpodopia og £va cUOTNUA CUCTACEWY AUECNG EKUABNONG, UITOPOUUE VA TAPAYAYOUE
OUOTAOELG TIEPLEXOUEVOU, TO OTIOLO £lval EAKUOTIKO KAl TPOCAPOOUEVO OTLC AVAYKEG TWV
XPNOTWV.

JUYKEKPLUEVQ, KOTA TN OldpKeld QaUTAG tNg HeAétng efepeuvolpe BiBAloypadikd Tto
«MpoBAnua twv MoMamAwv Kouloxépndwv», Ttouc «Kouloxépndeg EmumpooBetng
MAnpodopiag», TG «ALATETOYHUEVEG SUOTACELGY KOL TOUC OVTIOTOLKoUG aAyoplBuous. Me
okomo va eUPabBUvoupe OTIC OUCTACELG QUEONG eKuAOnong oxedlalovpe Kal
TIPOYLLOTOTIOLOULIE TIELPAUATA LE TEXVNTA 0UVOAX SIKLAG LG TIOPOYWYNC, XPNOLLOTIOLWVTOC
Toug alyopiBuoug mou pog davnkay Tio evdladEpoviec. H béa pag nTav va cuvSuAdooupe
TOUC META-aAYOpLlOuou¢ ocuotdoswv RBA kat IBA pe otwypotuna tou LInUCB, evog
oAyopiBuou emunmpooBetng mAnpodoplog HE YPAUMLKEC OVIAUOLBEC. TUVEMWE, ol Svo
TIEPUTTWOELC TIOU ELYOE VO CUYKPivou e gival o RBA-LinUCB — évag adyoplBuoc povou KALK,
SladopomoLNUEVWY CUCTACEWV TIOU £XEL SOKLUOOTEL TIELPAUATIKA 0TO TapeABOV — Kal o
IBA-LinUCB, o omoiog eival évoc alyoptBuog moAamAwWy KALKG TToU SOKLATETAL yLa TTPWTN
dopa otnv napovoa epyacia, €€ ’60wv yvwpiloupe.

ITa QMOTEAEOUATA TWV TMELPAUATWY pag daivetal mw¢ o RBA-LInUCB éxel auvavopeva
KoAUTtepn emiboon amd tov IBA-LInUCB, kaBwg n auvfnon tng TUTIKAG OTMOKALONG OTLG
ovVTapOLBEC TwV XePLwV 0dnyel oe auénuévo cwpeuTikd opaipa yia tov IBA-LinUCB, evw o
RBA-LinUCB mopopével avemnpéaotoq. Ano pio AAAN OTTk ywvia, ouwg, daivetal mwe o
IBA-LinUCB emudépel avéavopeva meploocotepa KALKG amo O,tL o RBA-LinUCB, kaBwg o pécog
puUBUOG avtapolBwy Twv Xeplwv oufavetal. TENOC, TapakoAouBwvTag ToV TPOTO HE TOV
omolo paBaivouv Ta OTLYULOTUTIA TwV OAYOpiOUWY OUCTACEWY, ATMOKOAUTTETAL WG TA
OTLYHLOTUTIA TOU IBA-LINUCB paBaivouv oAU Ttilo ypriyopa Kat pe peyohltepn akpifelo amod
0,TL autd Tou RBA-LINUCB. OL mopamdvw mopatnpAoeLs Hag o8nyolv 0TO CUUTIEPOCHA TIWG
o IBA-LinUCB avapévetal va TPoodEPEL TILO OUCLAOTIKA QTIOTEAECUOTA KoL va eMLEPEL
TeEPLOOOTEPA KALKG oo O,TL 0 RBA-LinUCB Kot dpol amoTeAel pLa o amoteAeopatikn Avon,
OTAV XPNOLLOTOLEITAL O€ CUOTILOTO CUCTACEWVY AUECNC EKUABNONG LE XPrON EMUTPOCGOETNG

mAnpodoplag.

1 INTRODUCTION

In this work we discuss topics related to learning and we focus on the online contextual
learning and its application in ranked recommendations. Specifically, we give an overview of
an area in learning, which is called “Online Learning”. We study two formalized problems of
the kind and the most known algorithms that treat these problems. We examine each learning
model and the way each algorithm learns, which depends on the various reward systems and
the learning environments. In addition, we study the role of online learning in
recommendations and rankings of recommendations, and evaluate its applicability and the
value it can bring in real-world systems. Lastly, we design and conduct experiments on the
contextual ranked recommendations with the algorithms that we found the most interesting.
We compare their performance and their learning style and draw useful conclusions.

1.1 ONLINE LEARNING

In this section we are going to give the reader a brief introduction in the area of Online
Learning. The Online Learning is a kind of reinforcement learning [1], where the learning
occurs from interaction and the feedback of actions. In such a setting, the problems do not
require any statistical and distributional assumptions; instead we are called to make a
sequence of decisions and predictions. A setting like that has many applications in game
theory and optimization [2].

Prediction of individual sequences has been a main topic of research in the theory of machine
learning, specifically in the area of online learning. The need for individual sequence
prediction came from various problems, such as games, compressing data, gambling and
investment [3]. It is not easy to trace back the first appearance of such a study of this problem,
but certainly, Blackwell, Hannan, Robbins and others in the 50’s were pioneers in the field [3].

It is important to understand two things about the online learning setting; first of all, the
requests for actions come in a stream —a sequence — and secondly, there is no training phase.
In online learning the algorithms do not learn by training and testing, as it happens
traditionally in supervised learning. Instead, in each step they receive an input, decide an
action and obtain the payoff of this action. In a way, the learning happens sequentially, one
bit at a time, as this process is repeated over and over again. For the above reasons, the
algorithms of online learning are great in real-world large-scale applications, as they do not
require any batch processing — they rather process one sample at a time.

In the online learning setting, the learner — otherwise called agent — is trying out different
actions out of the available ones. In every time step, or trial, the learner selects an action and
the environment — or nature — provides the learner with a reward. The reward for the action
selected can be either positive reinforcement, or negative feedback, depending on the
setting. The learner, thus, learns which choices yield better results.

Unlike static supervised learning, where the learner is in need for past data, in order to devise
a strategy, the online learning algorithms devise their strategy one step at a time. They do not

10

need any past recollection, batch data, or any distributional assumptions, but they take into
consideration the given reward and immediately re-assess the strategy, according to which
they decide on the next action.

Online learning comes in handy in the following cases:

= [fitis expensive to train the algorithm with past data
= |f there are no available training data
= [f the data get cold and outdated quickly (i.e. in a news website).

The problems in online learning usually attempt to achieve dynamic allocation of the available
resources. The algorithms used for such problems seek to find an effective allocation strategy,
or policy. The performance of the algorithms and the actions taken are measured through the
loss suffered, or the gain obtained by the allocation policy used. The ultimate goal is the
minimization of regret, which is the comparison between the cumulative loss/gain of the used
strategy and that of the best strategy.

As it is, an online learning algorithm can work perfectly fine with streaming data, usually
generated as a function over time. These kinds of algorithms are capable of handling data that
change pattern often and can quickly re-adapt their strategy. This means that the points
should not necessarily be i.i.d.%, or following a fixed distribution, which makes online learning
applicable in numerous real-world settings.

One popular application of the online learning is in the recommendations, or the rankings of
recommendations, where the used algorithm is called to make an item suggestion, or a list of
item suggestions to the user, or client. For example, the online learning algorithms could be
used in a news website in order to produce a list of suggested news articles to the users. The
decision for the suggestions could be made based on the popularity of the articles, so that the
suggestions are appealing to the majority of the users. On the other hand, the decision can
be made by taking into consideration the context — side information to be used along with
the online feedback — such as the age of the user, gender, country of origin and more. This
can contribute to a drastic change in the quality of our recommendations, as it can offer
suggestions tailored to the interests of the users.

Apart from the use or no use of context, one other parameter of the recommendations can
be the number of suggestions — or clicks in the case of a news website — that the customer,
or user, is allowed to. There are recommendation algorithms that accept multiple clicks from
the user, while others are considered single-click algorithms. In this work, we compare
experimentally the efficiency and performance of algorithms from both categories.

In the next sections and chapters, we are going to introduce some online learning problems
and algorithms and we are going to maintain our focus on the application of online learning
in ranked recommendations, with the use of context.

1i.i.d.: independent and identically distributed

11

1.2 ONLINE LEARNING PROBLEMS

In this section we are going to present two formalized problems in the area of Online Learning;
first, the problem of “Prediction with Expert Advice” and, secondly, “The Mutliarmed Bandit”
problem. These two problems have been studied both stochastically and non-stochastically.

To introduce ourselves into the “Prediction with Expert Advice” problem, let us contemplate
the following scenario [4].

Each morning, a farmer needs to predict if it will rain, or not. For this task, he seeks the advice
of some weather predicting websites and, based on them, he makes his own prediction. At
the end of the day, he knows the real outcome of the daily weather. He then evaluates how
truthful the predictions of the websites were, so that he knows which of them he can trust or
not and he can make more accurate predictions in the future.

The problem described above is called Prediction with Expert Advice and it was introduced in
Online Learning around 1990 in various works [3]. The algorithms that predict individual
sequences with expert advice — as it is usual with the online learning algorithms — pose an
efficient option for large-scale applications, because of their inexpensive processing needs
and simplicity.

The problem of prediction with expert advice involves a forecaster — in the example above
the farmer — who must predict a sequence of T elements, one-by-one. It also implicates N
advisors, or experts —in the above example the weather predicting websites — who give their
individual predictions to the forecaster about the next outcome of the sequence. Based on
them, the forecaster makes his own prediction and receives the true result, so that he can
evaluate his estimation and that of his experts.

This problem can be met in scenarios with both distinct and continuous sequence outcomes.
Furthermore, it should be noted that we are in the adversarial scenario: this means that the
elements of the sequence that we must predict are not independent and identically
distributed, but instead they can be random draws from a bounded interval [a, b] with
a<b.

Further to the above setting, we can note that this problem corresponds to the full
information game, according to the definition by Auer, Cesa-Bianchi, Freund, and Schapire, in
1998 [5]. And that is because in each time-step t the forecaster has access to the opinions of
all the experts and, by receiving the outcome y;, he gets to know the loss of every expert for
round t.

Some of the most well-known algorithms that treat the Prediction with Expert advice problem
are The Halving Algorithm (N. Littlestone, 1987) [6], The Weighted Majority Average
(N. Littlestone and M. K. Warmuth, 1989) [7], The Randomized Weighted Majority Algorithm
[7] and The Exponential Weighted Average Algorithm [7].

Now, in order to understand the Multiarmed Bandit problem, let us consider the following
scenario.

12

A gambler in a casino has K available slot-machines in front of him to play. He does not know
which machines give better payoffs than others, or which is the optimal machine profit-wise.
In his possession he has T coins, which he will spend, one by one, in the slot-machines of his
choice. For each coin:

= he chooses a machine out of the K available ones, enters the coin and pulls the lever
= he receives the payoff of the machine.

His objective is clear — he must cumulatively collect as big a profit as possible.

This kind of setting is a problem of prediction with limited feedback, or a partial information
game, according to [8]. That is to say, the gambler in each round chooses an action and the
only feedback he gets is the consequence of this action: the reward corresponding to arm i
for time-step t. It is important to note that the gambler does not see the reward of any other
arm, except for the one he chose to play in each time-step t. It is for this reason that the
feedback is considered to be limited, in contrast to the “Prediction with expert advice”
problem, discussed previously. This detail in the problem formulation, along with the lack of
expert advice, are the two key factors that set the two problems apart.

The MAB problem can be met in settings where the actions of the player yield either losses
[9], or gains [8]. This fact, along with its general and simplistic nature, makes the multiarmed
bandit problem and its variations useful in numerous applications, such as auctions [10],
pricing [11], recommendations [12], [13], [14], clinical trials [15], adaptive routing in networks
[16], advertising [17] and more.

The following examples illustrate some possible applications of bandits:

= (linical trials: A pharmaceutical company might use the multiarmed bandit model to
test different drugs for the treatment of a disease. In this setting, the K drugs would
correspond to the K arms and the payoffs would be the results of the drugs in the
health of the patients.

= Marketing: A marketing company might apply a multiarmed bandit model to test
possible ads, or possible ad placements, to test which ones are the most effective. In
this setting, the K ad alternatives represent the K arms and the payoff might be the
response of the customer, e.g. clicking on the online ad, or buying the product etc.

= Pricing: A retailer can test different price points for its new product with the help of
the multiarmed bandit model. The K price points, which correspond to the K arms,
can be put to test to check the reaction of the customers. In this case, the payoff of
each arm could be the buying, or no buying of the product by the customer.

The algorithms UCB1 (P. Auer, N. Cesa-Bianchi and P. Fischer, 2002) [18], e-Greedy (R. S.
Sutton and A. G. Barto, 1998) [1] and EXP3 (P. Auer, N. Cesa-Bianchi, Y. Freund and R. Shapire)
[19] are some of the most known algorithms for the Multiarmed Bandit problem. We will
present these algorithms in detail in Chapter 2. For more Reinforcement Learning problems
and algorithms, we refer the reader to the work of R. S. Sutton, A. G. Barto [1].

13

1.3 OVERVIEW

In this section we give an overview of our contributions, that can serve as a map of our work.
After this general introduction into the Online Learning subject and its two famous problems,
the Prediction with Expert Advice problem and The Multiarmed Bandit problem, we proceed
in Chapter 2, where we discuss in detail the Multiarmed Bandit problem —in its stochastic and
non-stochastic version — and the respective algorithms in length. In Chapter 3, we study the
Contextual Bandits, that is bandits that make decisions based on the available context, or side
information. In Chapter 4 we engage ourselves with Ranked Recommendations settings and
we examine algorithms that produce diverse rankings, or accept multiple clicks. Finally, in
Chapter 5 we design some experiments regarding the area of ranked recommendations with
the use of context, we generate artificial datasets and compare the performance and the
learning style of some interesting algorithms.

14

15

2 THE MULTIARMED BANDIT PROBLEM

In the previous chapter we gave the reader an introduction into the Multiarmed Bandit
problem, using the example of the gambler and the slot machines. This scenario describes
perfectly the Multiarmed Bandit problem (MAB) and, therefore, lent its name to it. In the past,
the slot-machines were often called “one-armed bandits”, thus the setting with the K slot-
machines was named “K-armed bandit”, or “Multiarmed Bandit” (Figure 2.1). In general, the
K arms or machines, represent K available actions, the reward generations of which are
unknown and are assumed to be different to each other in general.

K-Armed Bandit

Bl

=

machine 1 machine 2 machine -1 machine k

LR

k-machines

Figure 2.1. The Multiarmed Bandit model with K slot-machines

This sequential decision-making problem was originally formulated by Herbert Robbins in
1952 [20]. In this work, Robbins wrote for the problem: “[...] Note that there is no terminal
decision to make... The whole problem lies in deciding how to draw the sample [...]"”. This
captures the core of the problem: we are not interested in estimating anything after we finish
playing the machines, we merely intend to devise a rule — a strategy — according to which we
should draw machines to play in each round.

In the heart of the multiarmed bandit problem lies the exploration versus exploitation
dilemma. In the example of the gamble, we can imagine that the gambler would naturally
want to keep playing a machine that has brought good results so far. This is the part of the
exploitation and it is essential for the increase of the gambler’s profits. On the other hand, if
the gambler does not explore his options enough, he might not get a good sample of the
machines’ rewards and he might fail to discover a truly advantageous machine. The
exploration and exploitation parts are not two separate phases to be implemented one after
another in a gambler’s strategy — although they could. Instead, they must be balanced
effectively throughout the strategy. As it is expected, the more you exploit, the less you get
to explore — and vice versa — and that is why this situation is often described as the
exploration-exploitation tradeoff.

16

In the following paragraphs we will discuss the multiarmed bandit problem in more detail.
Furthermore, there will be definitions of the terms and notations that will be used in the next
sections. The presentation is based on [19], [18], [3], [21].

For the setting of this problem, we consider that the forecaster, otherwise called learner,
player, or gambler, is repeatedly faced with K options: there are K € N* available machines,
which are also called arms, or actions. The forecaster must explore and exploit those options,
in order to get profitable results over time. Each time-step, or trial, or round, is indexed by t.
The time horizon of this game will be noted as T € N*, thus t € {1, ..., T}.

THE MULTIARMED BANDIT PROBLEM
For each trial ¢, for t € {1, ..., T} :
» the forecaster chooses an action i € {1, ..., K}

= the environment receives the choice of action and gives back to the
forecaster the r;(t), which is the reward of the action i for trial t

Figure 2.2. Definition of the Multiarmed Bandit problem

The environment, or nature receives the choice of the forecaster and returns to him the
payoff, or reward 1;(t) that corresponds to machine i € {1, ..., K} for trial t. The Figure 2.2
gives an illustration of the exact steps of the problem.

The MAB problem has been formulated and studied in both stochastic and non-stochastic
ways. There has also been the Markovian approach, which we will not discuss in this work,
however for an overview we refer the reader to Chapter 3 of [1]. The variations in the problem
formulation originate from the mathematical assumptions that we make about the process
of reward generation. The presentation of the stochastic and the
non-stochastic problems are based on [19], [18], [21], [8].

However, before we can even talk about the stochastic and non-stochastic distinction, we
have to establish some concepts and notions that will be shortly needed:

Definition 1. A strategy, or policy, usually noted as A or B, is a sequence of action choices
noted as (iy, iy, ..., i), OF (j1,J2, s JT)-

Definition 2. The cumulative reward of the forecaster, by following a strategy A of actions

(il, iz, ey iT)I is:
T
Gi=) Ti(®
t=1

Definition 3. The gain — or loss — that occurs when the forecaster follows a strategy A,
instead of a strategy B, is measured through the worst-case regret:

Ga(T) — Gp(T)

17

In the bandit problem, we often use the notion of the optimal machine. This is the machine
that has the maximum expected reward, which of course we can never know beforehand. The
expected reward of a machine exists only as a theoretical concept, as the player could never
accurately estimate it, unless he played only a certain machine for every t € {1, ...,T}.

Definition 4. In the case that one of the two strategies is the optimal, meaning that it is
the consistent playing of the optimal machine:

T
Ga(T) = Gax(T) = max,<i<k <Z Ti(t)) ,

t=1

then the difference G4(T) — Gg(T) = Gax(T) — Gg(T) is called weak regret.

2.1 THE STOCHASTIC BANDIT PROBLEM

The stochastic bandit problem was primarily analyzed in the work of Lai and Robbins in 1985
[22]. In this setting, the assumption is that the rewards of each machine are independent and
identically distributed (i.i.d.). That is to say, the rewards of the K machines come from
unknown distributions Py, ... , Px, with means yy, ..., Ug, respectively.

In other words, in every time-step the environment receives the chosen action of the
forecaster, iy, and draws a reward to return, according to the distribution Pit- Note that every
draw of reward by the environment is independent from the past actions of the forecaster.
The steps of the problem are illustrated in Figure 2.3.

THE STOCHASTIC BANDIT PROBLEM
For each trial t, for t € {1, ...,T}:

» the forecaster chooses an action i € {1, ..., K}

» the environment draws independently and returns to the forecaster the
1;(t)~P;, which is the reward of the action i for trial t, according to the
distribution P;

Figure 2.3. The stochastic bandit problem, as given in Bubeck and Cesa-Bianchi, 2012 [21]

In the stochastic scenario we use the notion of the pseudo-regret:

Definition 5. If i; is the choice of the forecaster for time-step t, then we define as
pseudo-regret the following:

18

7, (1)

1

T
=Tu" —E
t=

£

t=1

T
Ry = max;—q1, . iE [Z ri(t) —

t=1

as " = max;<isk M-

The measure of pseudo-regret is the most suitable for the stochastic bandit problem, as it can
be bounded logarithmically. In addition, an algorithm that appears to work very well for the
stochastic bandit model is the Upper Confidence Bound algorithm, introduced by Auer et al.
in 2002 [18].

2.1.1 The UCB1 Algorithm

UCBL1 is an algorithm fit for the stochastic bandit model and its name is an abbreviation for
“Upper Confidence Bound”. In 2002, Auer, Cesa-Bianchi and Fischer [18] introduced some
probabilistic policies, among which the deterministic UCB1.

Earlier in 1985, Lai and Robbins were the first ones to introduce the upper confidence index
[22], a measure that served as an estimation of the expected reward for each machine. This
index was very hard to calculate, as it relied on the complete sequence of rewards of each
arm. In 1995 [23], R. Agrawal came up with a family of strategies that rely only on the sum of
rewards of each machine for the computation of the index, which makes it a much easier
computation than that of Lai and Robbins’. The UCB1, introduced in [18], is a variant of
Agrawal’s (1995) index-based policy and it appears to be the best fitting algorithm for the
stochastic model.

In UCB1 the index for each machine i is the sum of two parts:

e the mean reward 7; of the machine i until time-step t and

fm , Which is the one-sided confidence interval for the average reward of i.
It should be noted that UCB1 works with the K machines having arbitrary distributions

Py, Py, ..., Pg, with support in [0,1]. The pseudocode of the algorithm is fully displayed in
Figure 2.4 below, based on the presentation of [18].

ALGORITHM UCB1

Initialize the algorithm by playing each machine once.

Then for every time-step t:
2 ln(t—l))
t; ’
where t; is the number of times the machine i has been played and
7;(t — 1) is the mean reward of machine i so far

= play the machine i that maximizes (fi t-1)+

» receive reward r;(t) and update t; and 7;(t)

Figure 2.4. Pseudocode for algorithm UCB1 [18]

19

As seen in the figure with the algorithm’s pseudocode, for the initialization of UCB1, all K
arms must be played once. After that, for each round t, we calculate the upper confidence
bound for each machine i:

and we play the machine with the highest UCB.

If one were to observe the quantity (fi t-1)+ /M) and its behavior over time t, they

would notice that for machine i:

= the confidence bound grows with the number of rounds,
= but it gets smaller as we play the machine.

On the one hand, this means that, as time t goes by, the algorithm does not set in its ways,
but instead it invites exploration. On the other hand, it seems that we get more certain about
machine i, as we play it.

In Theorem 1 of [18], it is proved that UCB1 achieves logarithmic regret uniformly over time.

2.1.2 The e-Greedy Algorithm

e-Greedy is also an algorithm addressing the stochastic multiarmed bandit problem. It was
introduced in 1998 by Sutton and Barto [1] and it is the most simplistic one out of the
algorithms discussed in this chapter. This algorithm balances the exploration versus
exploitation dilemma by applying a fixed ratio of exploration e € [0,1]. One can easily
implement the e-Greedy by following the pseudocode of the algorithm, as seen in Figure 2.5.

In each trial t € {1, ..., T}, the algorithm explores or exploits, according to the probabilities e
and 1 — e, respectively. To explore, the forecaster chooses uniformly at random an arm to
play out of the K available ones. To exploit, the forecaster plays the arm that has the highest
mean reward 7;.

ALGORITHM e-GREEDY

Input parameter e € [0,1]
For each time-step t:

= with probability e choose an arm i € {1, ..., K} uniformly at random and

play
= with probability 1 — e play the arm i that has the highest mean reward so
far, 7;(t — 1)

Figure 2.5. Pseudocode for algorithm e-Greedy

20

In their work in 2002, Auer et al. [18] gave a variant of the e-Greedy, the e,,-Greedy, where
the parameter of exploration e convergesto zeroast — T.

2.2 THE ADVERSARIAL BANDIT PROBLEM

The formulation of the non-stochastic, or adversarial bandit problem, has originated from the
Game Theory and it was not considered an instance of the multiarmed bandit problem [21],
until the work of Auer et al.,2002 [19] linked it to the stochastic bandit problem. In this game,
the player is playing the K machines against an opponent, or an adversary. In every round,
while the player chooses his next action, the adversary decides on the rewards of the K
machines. The steps of the problem are illustrated in Figure 2.6.

In this version of the problem, there are no statistical assumptions on the generation of
rewards. Instead, we consider the generation of rewards to be an arbitrary selection of
payoffs in a real interval [a, b], with a < b. In that context, the sequence of rewards can even
be dependent on time.

In the adversarial setting, there is room for some more considerations, such as that of an
oblivious, or non-oblivious adversary. A non-oblivious adversary, as opposed to an oblivious,
is one that has the potential to adapt its strategy, according to the actions of the player. In
this case, the adversary can devise a strategy, which depends on the player’s past actions, and
even maliciously set the rewards to be disadvantageous for the player.

With the scenario of a non-oblivious adversary in mind, two points are becoming apparent:

= The concept of the optimal machine could get invalidated. This means that if the
adversary saw that the player has discovered and plays the optimal machine, he could
adapt his strategy and worsen the rewards of this machine, possibly turning it into
non-optimal anymore.

= The necessity of a randomized player strategy. A deterministic player would have no
chance against a malicious non-oblivious adversary.

THE ADVERSARIAL BANDIT PROBLEM
For each round ¢, fort € {1, ...,T}:

= the player chooses an action i € {1, ..., K}

= the adversary decides on the rewards of the machines for round t

= the adversary receives the choice i of the player and returns to him the
1;(t), which is the reward of the action i for trial ¢

Figure 2.6. The adversarial bandit problem, as given in Bubeck and Cesa-Bianchi, 2012 [21]

21

In the theorem 5.1 of [19], it is proved that there exists a set of K reward distributions with
expected weak regret 2(vVKT) for any time horizon T.

2.2.1 The EXP3 Algorithm

EXP3 is an algorithm that solves the adversarial bandit problem, introduced in 2002 by Auer,
Cesa-Bianchi, Freund and Shapire [19]. The name EXP3 is an abbreviation for the full name of
the algorithm: “Exponential-weight algorithm for Exploration and Exploitation”. As the name
suggests, the EXP3 algorithm uses exponential weighting for the available actions and
attempts to strategically balance the exploration and the exploitation.

The algorithm is a variant of the algorithm Hedge [9], which solves the full information game.
The Hedge algorithm was a generalization of the weighted majority algorithm, originally
proposed by Littlestone and Warmuth in 1989 [71].

EXP3 works with arbitrary rewards in the interval [0,1] and in the following paragraphs we
will assume that this is the case, but the rewards and theoretical guarantees can be expanded
to any interval [a, b], where a < b. The trick is to rescale the rewards into the [0,1] interval.
This trick can also be applicable to loss scenarios with negative rewards.

Note that in the adversarial scenario the algorithm does not need fixed distributions of
rewards in order to work. In their theoretical analysis, Auer et al., [19] prove bounds for the
regret that hold for any worst-case sequence of rewards. This means that the rewards of the
K arms could even be dependent on the time variable t.

The above elements - the generalization in any interval [a, b] and the lack of obligation for
fixed distributions of rewards - make the algorithm EXP3 very convenient and applicable in
numerous problems. In fact, the algorithm can be used in real-world problems, with scenarios
of either gains or losses, and with rewards’ distributions that change over time.

ALGORITHM EXP3

To initialize:
* Input parameter y € (0,1]
= Set initial weights w;(0) to 1, fori = {1, ..., K}

Then for each time-step t:

. () =(1=-7)2® ¥ | =
Calculate p;(t) = (1 y)z§_<=le(t)+K,forl {1,..,K}

= Choose an action a;, according to the probabilities p,(t), ..., px(t) and
receive reward 7, (£)
() =1 (t)/pi(0), fori=a,

= (Calculate {ﬁ-(t) =0, fori # a;

K

» Set the weight w;(t + 1) = w;(t) exp (y fi(t))

Figure 2.7. Pseudocode for algorithm EXP3 [19]

22

A pseudocode description of the algorithm EXP3 appears in Figure 2.7, based on the
presentation of the algorithm in [19]. What the algorithm basically does, is that it takes as
input y € (0,1] and sets the weights of the K arms to 1. After that — for each round t — an
action is chosen, according to the probabilities p; (t) that depend on the parameter y and the
weights w;. For that action we receive the payoff and adjust the weights for the next round
w;(t —1).

If we were to look more closely at the algorithm, we would notice that the parameter y
regulates the randomness in the probability p;(t) formula and, thus, modifies the
exploration-exploitation ratio. Specifically:

w;(t)

y-0 = p®)>c——=
l jeaw; (©)

fori={1,..,K}
and

1
y-1 = Pz(t)ﬁf, fori={1,..,K}

The uniform part, y/K, of the probabilities p;(t) promotes the exploration, which in turn
increases the chances that the best action will be spotted and used for exploitation. On the
other hand, the part

w;(t)

of the probabilities p; (t) is the basis of the exploitation of the best actions discovered so far.

In addition, the inverse-propensity weighting estimator

7i(t) = 1 (t)/pi(2),

gives an extra boost to actions that have lower probability p;(t), meaning that they are more
unlikely to be drawn and played. Giving an advantage to arms that were picked, despite their
low odds, and gave an unexpectedly high reward, contributes to the exploration and might
lead to the discovery of a hidden gem. The score of the inverse-propensity weighting
estimator is used afterwards to adjust the exponential weight:

7 (t
K

wi(t + 1) = w;(t) exp <y)>, for i ={1,..,K}.

The choice of the value of the parameter y is a matter that needs special attention, as it
defines how randomized the algorithm gets. In [19] there is a way to calculate the optimal
value of the parameter y. If the horizon T > 0 is given, we can use the corollary 3.2. from [19]
and apply the formula:

KInK

Y =mins 1, [———,
(e—1g

where g = Gy -

23

Calculating g is usually impossible, however, there is a trick that can be used, in the case that
the horizon T is known and the distributions are in [0,1]. Instead of g, we can use the value
of T as following:

g=T- (reward,,) =T -1=T.
The above formula gives us the optimal value of the parameter y, which in turn makes:

Gmax — E[Gexps] < 2.63,/gKInK < 2.63VTKInK.

Algorithm Bound Proposed use

EXP3 Expected Cumulative Regret O (VTKInK) E(;;ggc\;ersarial il
ety et iy 0TI oo rsh
UCB1 Expected Cumulative Regret O (VKTInT) s sitoehiEie e imee

bandits
Table 2.1. Regrets bounds and proposed use of MAB algortihms

24

25

3 CONTEXTUAL BANDITS

One very interesting extension of the multiarmed bandits model is the contextual bandits
model. The contextual model is very similar in structure to that of the multiarmed bandit,
with the extra addition of some side information, or context. In numerous problems and
applications, there is information available that can be used to enhance the decision-making
of the bandits. This side information is exactly what the contextual bandits are targeting to
utilize in order to make more informed decisions.

Contextual bandits go by many other names, such as “multiarmed bandits with expert advice”
[24] [25], “associative reinforcement learning” [26], “multiarmed bandits with side
information” [27] and more. In the 1990’s the contextual bandit settings were studied in
various works as “associative reinforcement learning”, under assumptions about linearity in
the reward functions.

The context may be conveyed in the form of features, which bear information about the
environment at time t and/or the arms of the bandit. As an example setting, we can consider
a recommender system that displays ads to users on a website and records their clicks. In this
system, the knowledge of user information like the gender, the location, or the age could be
indicative of the user’s taste. This information, paired with the ad’s specific category, or type,
can boost the suggestions of a recommender system. To take advantage of the side
information, we need to map the context to certain actions, meaning we need to map the
context to the bandit arms.

The above mapping is modeled through the notion of experts. The forecaster has N experts,
who provide him with advice about which arm he should play in every round t. The forecaster
no longer decides himself about the arm pulls, but instead at each round t he consults an
expert about which arm to pull. He has to explore and exploit his way to the discovery of the
cumulatively most reward-generating expert. What the expert, essentially, represents is a
strategy, or a policy — a mapping of contexts to actions.

The recommendation of each expert is otherwise called the distribution of the expert i. This
is because the expert gives a distribution over the arms: for the sake of generality, we consider
that he does not only predict the single most promising arm, but instead he gives a vector of
probabilities, one for each arm. As expected, these probabilities should add up to 1. The
recommendation for the K arms of each expert i, at time ¢, is:

ei(t) = (€11(8), -, €1 (1))

While it is possible that the estimation of an expert is deterministic, this is considered as a
special case of this problem. That is to say, if the expert were to become the decision maker
for one round, in the general case he would choose an action at random, according to the
probabilities he gave in his distribution, whereas in the case of the deterministic estimation
he would recommend and play only one specific arm.

The expert advice in a system could either be external advice, or calculations of the forecaster.
In general, there are two contextual bandit models that have been studied: the non-stochastic
and the stochastic contextual bandit model, which will be analyzed in the following

26

paragraphs. These two models correspond to different expert models as well: in the case of
the non-stochastic scenario, the logic behind the mapping of an expert is not necessarily
known — it can be any arbitrary strategy. On the other hand, in the stochastic scenario, the
values of the features are continuous and the reward of each arm is assumed to be linear —
or approximately linear —to the features of the arm [28]. In such a case, the experts represent
a linear function: each expert i, for each round t corresponds to a vector of coefficients for
the features in the linear function.

Overall, in the contextual model we suppose that the experts’ opinions are fixed and they do
not change according to the rewards. The experts react only to the context of the round. It
should be noted that in the contextual bandit setting we only get to observe the reward of
the arm that was chosen to be played. This means that we have no idea about the rewards of
the other arms. Usually, in a web setting the measure we use in order to track the rewards is
the click, or no click of the user. This way we can quantify that a link, an article, or an item has
a certain Click-Through-Rate (CTR).

While collaborative filtering is a traditional solution in recommendations, the contextual
bandits pose a great alternative: they can take advantage of context, they learn fast and they
do not require past data about the users, or the arms. In their majority, they are also easy to
implement. Indeed, the contextual bandits have been proposed as a suitable solution in many
recommendation problems in websites and applications, such as advertisements’ placement,
display of content to the user and more. In [14], Li, Chu, Langford and Schapire use a real-
world dataset from the Yahoo! Front Page Today module in order to recommend news articles
to users, according to the user and article features. They compare contextual bandits with
context-free multiarmed bandits and they claim a 12,5% increase in clicks. The same dataset
has been used by Beygelzimer, Langford and Li in [29] for experimentation with various
contextual bandit algorithms, towards a more personalized user experience. In [24],
McMahan and Streeter use contextual bandits to achieve effective ad placement in search
queries.

We hereby give the notations and definitions that will be used in the next paragraphs.
In the following paragraphs, we will index the experts by i € {1, ..., N} and the arms by a €
{1, ..., K}. As per usual, the time variable will be indexed by t € {1, ..., T}.

Given the difference between the stochastic and non-stochastic model, we are going to be
giving some model-specific definitions. Firstly, for the non-stochastic model we can define the
following:

Definition 1. The recommendation of expert i at round tis a distribution over the K arms,
specified by a vector e;(t) of K probability masses:

ei(t) = (e11(8), ., €1 (©))
As we can imagine, the sum of the probabilities that each expert i gives in each round t will
correspond to 1, thus:

K

Yea®=1

a=1

As in the previous sections, the cumulative regret is the difference between the cumulative
reward of the best expert and that of the forecaster.

27

Definition 2. If r(t) = (1 (t), ..., 7x(t)) is the vector with the rewards of the arms for the
round t, then the expected cumulative reward of an expert i up to time T is:

T
YT =) e 1@
t=1
Definition 3. This means that the expected cumulative regret of the forecaster up to time
T, if he follows the advice of the expert A, is:

maxy<i<y (Vi (T)) — ya(T)

In the stochastic scenario where the rewards are continuous and we can assume that the
context is approximately linear to the rewards of the arms, we use “linear” experts. A linear
expert corresponds to a vector of coefficients: each expert consults on one arm a only, for
each round t, and gives its estimation of coefficients for the linear equation of the arm. For
the stochastic case we define the following:

Definition 4. The values of the context features for arm a, at time t, will be noted in the
form of a M,-dimensional vector:

£2® = (far © o famg)

Definition 5. If 1, (t) is the reward of the arm a for the round t, then there is a vector of
coefficients

T
* * *
co = (CanrrComy) »
for which:

() = ;" - fa (0.

Definition 6. At time t and for the arm a, the respective linear expert gives an estimation
for the coefficients c;. The estimated vector will be noted as:
T

ca(t) = (car(®) s Cap, (©)

Lastly, it should be noted that in the non-stochastic case it is usual for the algorithms to
assume the existence of the uniform expert in the expert set, in order to prove the bounds
for their algorithms. This would be an expert that always gives the same probabilities to each
arm: 1/K. With this technique the convexity of the rewards’ space is ensured.

In the next paragraphs we are going to be looking into some of the most important contextual
bandit algorithms. Our presentation of the algorithms is organized by the type or rewards of
the arms. The two categories to be discussed are the stochastic category and the
non-stochastic one, or worst-case scenario.

28

3.1 NON-STOCHASTIC CONTEXTUAL BANDIT ALGORITHMS

Our first category is the non-stochastic — or adversarial — contextual bandit setting. In such a
scenario, the rewards of the K arms can be arbitrary and there are no assumptions about
their generation. In adversarial bandits we use the experts as mere policies, mappings from
the context to the arms. There are no assumptions here about the form of the context and
the context itself is only used by the experts.

3.1.1 EXP4

The first algorithm that was presented for the non-stochastic contextual bandit problem is
the EXP4, which was introduced by Auer, Cesa-Bianchi, Freund and Schapire in 2002 [19]. It
was presented as part of a family of policies, that can be implemented in the
non-stochastic, or adversarial, bandit scenarios. The EXP4 — Exponential-weight algorithm for
Exploration and Exploitation using Expert advice — is a variant of the EXP3 algorithm, which
was discussed previously in the section 2.2.1. The idea is the same as EXP3, but here instead
of exponentially weighing the arms, we are weighing exponentially the experts, as we are in
search for the best strategy.

ALGORITHM EXP4

To initialize:
* Input parameter y € (0,1]
= Set initial weights w;(0) to 1, for i € {1, ..., N}

Then for each time-step t:
= For each expert i € {1, ..., N} get the advice vector e;(t)

» (Calculate p,(t) =1 —vy) Z?Llw +£, fora ={1,..,K}

w(t)
and W(t) = XL, wi(t)
»= Choose an action a;, according to the probabilities p;(t), ..., px(t) and

receive reward 7, (t)

. e = (7 - [fa@®) =1,(t)/pa(t), fora=a,
Calculate #(t) = (A(t), ..., fx () as: {0' fora % a,

= For each expert i € {1, ..., N} calculate 6;(t) = e;(t) - 7(¢t)

= Set the weights for i € {1,..., N}: w;(t + 1) = w;()exp(y %)

Figure 3.1. Pseudocode for the algorithm EXP4, as presented in Auer et al. [19]

As presented in Figure 3.1, the algorithm needs as input the parameter y € (0,1], which is
related to the exploration. The closer the parameter is to 1, the more uniform and at random
is the choice of arms, meaning that the algorithm is more explorative. Whereas, in the case
that the parameter is closer to 0 the algorithm gives priority to exploitation. In every round t

29

of the algorithm, the experts give their advice vectors e;(t). After that, for each arm a the
probabilities p,(t) are calculated, which are mathematical expressions involving the
parameter y and the weighted advice of each expert i for a specific arm. They are a tool for
deciding which arm to pull next: at every round t an action is chosen at random, according to
the p,(t) probabilities. The reward of the drawn arm is received and the weights of the
experts are adjusted for the next round.

To prove a bound of regret for the EXP4, the authors assume that there is a uniform expert,
who is always included in the set of experts and who assigns uniform weights to all K actions.
Under this assumption, it is proved in Theorem 7 of [19] that the expected regret of EXP4 is
0(/gKInN), where g < Gpqy, K is the number of actions and N is the number of experts.
As with the proof of EXP3’s regret bound, we can use the Corollary 3.2 of [19] if the horizon
T is known and rewards are in [0,1] and turn the regret bound into O (VTKInN).

3.1.2 EXP4.P

The algorithm EXP4.P — a variant algorithm of EXP4 — was presented by Beygelzimer, Langford,
Li, Reyzin and Shapire [29] in 2011. Unlike EXP4, for which we have a proven regret bound in
expectation [19], it is proved that for this algorithm we can get a regret bound of O (VKTInN)
with high probability. This bound can be very useful in practice and may be preferable to that
of EXP4 for applications of contextual bandits.

The pseudocode of EXP4.P has little difference with that of EXP4. The only distinctions lie in
the p, (t) probabilities’ and the weights’ computation of the experts. That is because for both
those computations, the EXP4.P uses a new parameter instead of y:

InN
Pmin = ﬁ

One possible drawback of EXP4.P is that it can favor some badly-performing arms by giving
them higher probabilities, because it makes use of the uniform distribution to set up the
probabilities of the K arms. EXP4.P, just as EXP4, can also become computationally inefficient,
if the number of experts N becomes very high, because the algorithm maintains weights on
all the experts.

3.1.3 NEXP

Another algorithm in this category is the NEXP — N stands for Nonuniform exploration. The
algorithm was introduced as a solution for adversarial contextual bandit problems by
McMahan and Streeter, in 2009 [24]. This approach is proposed as fitting in settings where
the number of arms K is quite larger than the number of experts N. This is also the case where
EXP4 might perform poorly.

A distinction about NEXP is its exploration phase. McMahan and Streeter propose in [24] 3
different exploration policies, which are based on linear programing. These policies are to be

30

used as subroutines in the code of the algorithm. With the above features, the NEXP algorithm

has been proved to achieve a bound for the expected cumulative regret in O(VTSInN),
where the S is a measure of how much the experts agree on their recommendations.

The NEXP algorithm, with a specific exploration subroutine, was used in the same work for
experimentation in a real-world problem, with real-world dataset of a 12-month period. The
training data were Google queries containing a certain keyword and the clicks of the ads that
were displayed in it. In the experiments that took place, the number of arms K was
approximately 40 times larger than the number of experts N. As the authors promised, NEXP
outperformed EXP4, who was expected not to do well under these parameters.

Algorithm Regret Bound
L | EXP4 [19] OWTKInN)
a in expectation
d5
8 | EXP4.P [29] _ O(VTKInN)
(7 with high probability
c
S | NEXP [24] DSt
in expectation
Epoch-greedy 0(T?/3)
[27] in expectation
£ | SupLinREL O(TdInT)
_g (LinREL) [30] with high probability
§ LinUCB [14] No theoretical guarantees
3
SupLinUCB [25] 0(\/.le’? (KTI”(T?_/‘D)'
with high probability

Table 3.1. Representative contextual bandit algorithms and their regret bounds.

3.2 STOCHASTIC CONTEXTUAL BANDIT ALGORITHMS

In this paragraph we are going to be mentioning some of the most representative algorithms
of the stochastic contextual bandit scenario, where the rewards are assumed to be
independently and identically distributed.

3.2.1 Epoch-Greedy

A simple algorithm addressing the stochastic contextual bandit problem is the Epoch-Greedy.
The algorithm was presented by Langford and Zhang, in 2007 [27] and, as its name suggests,
it is a greedy algorithm that implements the exploration and the exploitation phases in
epochs. The Epoch-Greedy bears great similarity and was inspired by the e-Greedy of the
context-free bandit problem, now translated into the contextual bandit problem.

31

Each new epoch of the algorithm starts with exploration: the algorithm explores the arms and
the context with a certain fraction of exploration e. During this phase, the payoffs are
observed, so that the most promising results are exploited during the exploitation phase that
comes next. After a certain epoch ends, a new one begins with a different value of e. The
parameter e gradually decreases to zero as the epochs go by — this means the exploration
decreases and the exploitation increases, in the attempt to gain cumulatively more rewards.

In [27] it is proven that the algorithm has a regret bound in 0(T2/3).

3.2.2 Algorithms for context inducing linear rewards

As mentioned before, it is common for contextual bandit settings to be accompanied by
assumptions about linear functions of rewards. Therefore, for such settings there have been
developed various algorithms, which have been analyzed, or tested experimentally. In 1999,
Abe and Long [26] presented such an algorithm —algorithm A —for which was proved an upper
bound for the expected regret in 0(T3/4’). Later in 2002, Peter Auer [30] improved on that
bound with his algorithm LinREL and its modified alternative SupLinREL, achieving an upper

bound for the regret in O(VTdInT) with high probability.

Another such algorithm for contextual bandits is the LinUCB. The algorithm was originally
proposed by Li, Chu, Langford and Schapire in 2010 [14]. In this work, the authors discuss the
contextual bandit problem through a popular real-world application — personalized news
article recommendations in the web. This is only one of the many scenarios where the
contextual bandits are applicable and there are other similar web problems that can be
modeled this way.

ALGORITHM LinUCB

To initialize:
* Input parameter 1 > 0

Then for each time-step t € {1,,T}:
= Observe the K features f; (t), ..., fx (t)
» Foreacharma€{}],...,K}:
» Ifaisnew,thenset A, =1; and b, = 045
" Setc,(t) =4, ‘b,
= (Calculate upper confidence bound:

Palt) = ca T - ful®) + A (O Ag ™ 0

= Choose the action a;, for which p,(t) is the highest, and receive
reward 7, (t)

* Set Aat = Aat + fat (t)fat (t)T

" Set bat = bat + rat (t)fat (t)

Figure 3.2. Pseudocode of LinUCB, as given in [14]

32

The LinUCB algorithm is an Upper-Confidence-Bound-type of algorithm and it is applicable to
many scenarios beyond the news article recommendations. The “Lin” prefix hints the
assumption that the payoffs of the arms are linear to the features of the arms. This linearity
assumption allows the algorithm to use ridge regression for the computation of the upper
confidence bounds of the arms. As per usual, the algorithm chooses to play the arm with the
highest upper confidence bound. LinUCB's logic is very similar to that of its ancestor LinREL,
as they both try to predict the arm with the highest expected reward by linearly fitting the
past observations.

Specifically, the algorithm applies ridge regression for each arm using training data of the past
rounds. This calculation enables the algorithm to define an estimated upper bound for the
reward of each arm and, subsequently, to pick the arm with the highest upper bound. The
algorithm presents the advantage that arms’ pool can be changed — items can be removed or
added — and that is very useful for many real-world applications.

The authors consider two models for this setting and present two versions of the LinUCB
algorithm: the disjoint and the hybrid one. What makes the distinction between the two of
them is the features’ type. There are contextual bandit settings, where the context features
are exclusively arm-specific, while in others there are common — commonly shared — features
between the arms. In the first case we can use the disjoint LinUCB, while in the second case
we can use the hybrid LinUCB algorithm.

Although there is no theoretical analysis for LinUCB and no proven upper bound for regret,
the algorithm holds interest, because it is simpler in its implementation and more efficient
computationally than LinREL. Furthermore, its experimental performance is very promising
and, in fact, outperforms other known contextual bandit algorithms.

Because the LinUCB poses a challenge in its theoretical analysis, Chu, Li, Reyzin and Shapire
(2011) in [25] are proposing a modification of LinUCB — the SupLinUCB —that has an expected

regret of O (\/len3 (KTln(T)/d)).

33

4 RANKED RECOMMENDATIONS

In the problems we discussed in the previous sections, we tried to produce recommendations
for just one spot — a single recommendation in each round. In the problem we are going to be
discussing next we are required to provide P ranked recommendations. Our interest, again,
is to examine the problem through solutions in the spectrum of online learning and bandits.

The traditional recommendation systems, like collaborative filtering, work well in cases when
offline computation and evaluation is needed. But in situations where data are produced in
fast rates, or in systems that go under frequent changes, there is need for fast online methods.

This is where the online learning and specifically bandits can provide sustainable solutions. In
fact, the multiarmed bandits have been proposed as fitting for a number of real-world
contemporary problems in the ranked recommendations area. For example:

= |n [12] Radllinski, Kleinberg and Joachims are using multiarmed bandit algorithms
— adapted for ranking settings — for ranked recommendations of documents to users.

= In [13] Kohli, Salek and Stoddard are using their newly-presented algorithm for
rankings and they experiment with two real-life problems: movies’ recommendations
and jokes’ recommendations to users.

= |n [31] Katariya, Kveton, Szepesvari and Wen face the problem of ranked web page
recommendations in response to search queries.

= In [32] Combes, Magureanu and Proutiere also experiment on the problems of
movies’ and search queries’ recommendations.

®= In [33] Yue and Guestrin are using their algorithm in personalized news articles
recommendations.

In modern web problems the biggest challenge is to identify the tastes of the users and use
that knowledge to captivate their interest. A user’s interest — or lack of it —in such settings is
revealed through the clicking, or no clicking, of items, links, documents etc. Again, we can use
the measure of the Click Through Rate. The situation where a user does not click on any of
the recommended items is called abandonment — also called %no. It means that the user
found no interest in any of the displayed items. As expected, the challenge in the ranked
recommendations problems is minimizing the abandonment.

It is defined that in a ranked recommendations problem there are K items, as a pool of arms.
In every round t € {1,...,T}, the system has to create a list of ranked suggestions of
dimension P. The ordered list is displayed and the reward r(t) is recorded. The positions of
the ordered list are going to be indexed by p € {1, ..., P}.

4.1 DIVERSE RANKINGS

There are problems where the audience taste might be steady and universal. In that case the
best set of items to recommend is deterministic. However, in most problems the taste of
different users is rather diversified. In this case, there is need for ranked recommendations
that incorporate diversity, so that the engagement of users is maximized.

34

Older approaches did not consider the relevance of the documents to each other when
creating the results for a query. They rather tried scoring the documents in relevance with the
qguery and displayed as recommendations the top P of them. This approach is based on the
Probability Ranking Principle (PRP) [34], which suggests that the items should be ranked by
descending order of probability of being relevant to the query.

In reality, the score, or relevance of the documents with queries should not be deterministic,
as two users might mean something different by the same search query. For example, a query
with the keyword “bear” in a search engine could refer to the animal bear, or the verb bear.
Thus, the display of a document with information about bears would not be appreciated by
all users.

The above reasons motivate for more modern approaches that target to produce diverse
rankings. A list of suggestions that incorporates diversity is one that lists items that are
relevant to the query, but they are as diversified between them as possible. This practice, as
opposed to displaying similar versions of the same topics, has the advantage that it increases
the likelihood to appeal to the user’s taste. There are more options for the user and,
therefore, it is more likely that the user will find what he is looking for, and in the long run,
more users will be satisfied. Often, a needed step in diverse rankings is establishing a way of
calculation, or a measure of how similar two documents are and how much of the same
audience are targeting.

Some of the most known works on diverse rankings are described in the following paragraphs.

4.1.1 RECandRBA

In 2008, Radlinski, Kleinberg and Joachims [12] studied the problem of diverse rankings and
presented some results, that have been extensively studied ever since. They came up with
two algorithms that address the problem of recommending P items out of K, with the
intention of maximizing the reward, which usually means maximizing the clicks of the users.

In their approach they claim to produce optimally diverse rankings by learning through the
clicking behavior of the users. The ranked recommendations that they produce are not user
specific and they do not attempt personalization in any way. They are rather geared towards
offering a solution that will be interesting to as many users as possible. Therefore, they seek
to find the best set of P objects that will bring the highest possible cumulative reward. For
this purpose, they proposed the following two methods.

* Ranked Explore and Commit (REC)

The REC algorithm, as its name suggests, explores and then commits to the results of the
exploration. It is a greedy approach that begins with a massive exploration phase: for each
rank P, it tries out all the available documents x times and records the clicks. The documents
that received the best score at a certain rank are committed to the respective rank. The
authors [12] prove for the algorithm a regret bound in O(K3P/£?In(K/5)).

35

ALGORITHM REC

Input parameters: ¢, §, P

Set x = 2P%/£%log(2P/6)
Make a list of P arbitrarily chosen documents
For each rank in {1, ..., p}:
Set scores of documents to zero
Iterate through {1, ..., x}:
For each document in {1, ..., k}:
= display the current document in current rank
= ifitis clicked, then increase its score by 1
Choose document with highest score and commit to the current rank

Figure 4.1. Pseudocode for algorithm REC [12]

This algorithm provides a basic solution to a rankings problem: very straight-forward, it tests
out the items at different ranks and uses the ones that did best. However, it also carries the
limitation that it is not very flexible, as it assumes that the pool of items and the interests of
the users remain stationary. The pseudocode for algorithm is given in Figure 4.1 — based on
its presentation in [12].

* Ranked Bandits Algorithm (RBA)

The second algorithm, presented by Radlinski et al. in [12], is the Ranked Bandits Algorithm
(RBA). The RBA, unlike REC, is an algorithm that learns throughout t. It does not assume that
the user interests and pool of items remain the same and it is capable of detecting changes
and adjust to them, through constant alternations of exploration and exploitation. The

algorithm has an upper bound for the expected regret? in O(P,/TKlogK).

The RBA learns and exploits by using P independent versions of the same multiarmed bandit
algorithm (MAB), one for each rank of the recommendation list. The MAB algorithm can either
be a stochastic, or a non-stochastic one. Each copy, or instance, of the MAB algorithm learns
what is the most profitable option for the specific rank and takes advantage of it.

Specifically, for each time-step and each rank, the algorithm asks for the suggestion of the
corresponding MAB instance. If the arm that the MAB algorithm suggests has already been
selected in a higher rank, then another arm is selected arbitrarily instead. After all ranks have
been filled, the selected items are displayed to the user. The user may click up to one item in
the list. Then the rewards of the items get determined and subsequently the MAB algorithms

2 The upper bound in the expected regret is calculated by Radlinski et al. [12], using P instances of the
EXP3 as multiarmed bandits. Since EXP3 has the optimal regret bound, the bound of RBA with EXP3 is
also optimal. In general, the upper bound of the RBA depends on the multiarmed bandit algorithm
that is used with it.

36

get updated with the respective rewards. The exact steps of the algorithm can be seen in the
Figure 4.2. Pseudocode for algorithm RBA .

ALGORITHM RBA

Initialize the P MAB instances

For each time-step t € {1, ..., T}:
For each rank p € {1, ..., P}:
* select item with MAB,
= if the selected item is displayed in one of the previous ranks
{1, ..., p — 1}, then select arbitrarily another unselected item
Display the P selected items to user
For each rankp € {1, ..., P}:
= Set reward for the item in the position p to:
{ 1,if the item was clicked and it was selected by the MAB,,

0, in all other cases
* Update the MAB,, with the reward

Figure 4.2. Pseudocode for algorithm RBA [12]

The work of Radlinski et al. [12] and, specifically, the RBA algorithm is one that has been often
studied and built upon [13] [33]. The reason being that it provides a simple, flexible and easy
to implement solution. The fact that it can work with both stochastic and non-stochastic
multiarmed bandits’ algorithms is a big advantage and it makes the algorithm applicable in
many different settings.

What is also interesting in this algorithm is its rewards’ system, as it has some particularities.
In Table 4.1 we can see the four possible cases of rewards for one item, depending on the
user clicks and the way the item is selected. If we take a moment to look at the table, we
could observe that:

= Only items that were selected by the respective MAB can get a reward of 1, in case
they get clicked by the user.

* In case an item has been selected arbitrarily for some rank p, it is predefined that it
will receive a reward of 0.

This rewarding system is in line with the greediness of the algorithm, emphasizing on finding
the locally optimal choices. However, it should be noted that the lower ranks of the
recommendation list might have a learning disadvantage. This is due to the following two
facts:

= The lower ranks generally do not get as much attention from the users as the higher
ones.

= The lower ranks are more likely to select an item that has been suggested in a higher
rank, resulting thus in a zero reward.

37

As an effect, the last ranks have a more “pessimistic” way of learning, as they are rewarded
with zero more frequently.

USER CLICKED

Definition of reward ON ITEM
for item p in RBA
YES NO
(%)

ITEM WAS s 1 0
SELECTED
BY MAB,, % 7 0

Table 4.1. Reward system of items in RBA

41.2 PIEandPIE-C

In 2015, Combes, Magureanu, Proutiere and Laroche [32] presented the results of their
studying on the “structured” stochastic multiarmed bandit problems. As they explain, by
structure they mean that the reward functions of the arms of the multiarmed bandit have
certain properties.

In their approach, they consider a system where the user can input queries. Upon request,
the system must return an ordered list of P items out of the K available ones. The target is
the maximization of the cumulative reward. To achieve this target, they propose
categorization of items, according to the topic and clustering of the users, according to their
interests. The number of item categories — let us say C — is equal to the number of user
clusters, creating thus a 1-1 mapping of the topics and the users. That is to say, a user of a
certain cluster would like the items of a certain items’ category.

Of course, in this approach there is the difficulty of not always knowing the user cluster, or
the topic of the query. For this reason, the authors [32] examine separately the two cases. In
the first case, where the topic of the query is known, they introduce a new algorithm, the
Parsimonious Item Exploration (PIE), which has a regret in O(|c|log(T)), with |c| being the
number of items in the item category c. They prove that this lower bound stands for any
algorithm in this specific problem. In the second case, they consider the scenario, where the
user cluster is known, but the mapping between user clusters and item categories is unknown.
For this case, they introduce the Parsimonious Item Exploration-Clustered (PIE-C), which has
the same regret as PIE, since the learning of the mapping only inflicts a constant regret, as
they prove in section 6 [32].

Both algorithms attempt to bring diversity in the recommended lists, by exploring several
topics, in case that the topic of the query is unknown. At the same time, the algorithms try to
incorporate a system, where the items are presented in a decreasing order of relevance. With
the assumption that the user examines the items of the list from the top to the bottom and
clicks if he finds something relevant, the reward decreases with the position of the item

38

clicked. Note that both algorithms take for granted that the system has some side information
on the user and, therefore, the user cluster is always known.

In order to confirm the optimal performance of their results, the authors conducted
experiments in the same work [32], where they used both artificial data and the real-world
dataset Movielens.

4.1.3 LSBGreedy

In 2011, Yisong Yue and Carlos Guestrin [33] work on the combination of the contextual bandit
problem with the ranked recommendations, in order to produce diverse rankings. Their study
is a logical next step for the contextual bandits and their application in more than just single
recommendations, as well as for the rankings, which now can be more flexible and
personalized through the use of context. For this purpose, they define the linear submodular
bandits’ problem, where the target is to optimize a submodular utility function and yield
diverse rankings. For the defined problem they introduce a new algorithm, the LSBGreedy,
which has a regret bound?® in O(d\/P_T).

This approach has multiple advantages, the biggest of which is the flexibility. In such a setting
it is possible to change the pool of arms, which is great for systems that undergo frequent
changes, or updates. With an algorithm, such as the LSBGreedy, the system can generalize
from past knowledge and recommend to new users, or find out how to use newly entered
items in recommendations. In addition, the system is able to produce not just a single best
set for all users, like other approaches do [12] [32], but it is able to adapt to each user’s
interests, achieving greater personalization. Lastly, by applying the principal of diversity we
can avoid redundant recommendations and appeal to a wider range of users.

The authors also put their ideas into practice: they conduct experiments with a synthetic and
areal-world dataset with news articles recommendations from a blog [35]. In the experiments
they compare the LSBGreedy, with the RBA using LinUCB, Multiplicative Weighting [35] and
e-Greedy. The results reveal that LSBGreedy and RBA-LinUCB do much better that the other
two algorithms, with LSBGreedy having the best overall performance between the four of
them.

4.2 MuULTIPLE CLICKS

Some recommendation systems, like the ones we are discussing, are able to support the
feature of accepting multiple clicks. This means that such a recommendation system can
record the reaction of a user in more than one items of the recommended list. Unlike all the
settings that we discussed previously, in such a system the multiple clicks of the user are
accepted, tracked and rewarded befittingly.

3 1gnoring log factors. d is the number of topics that we wish to cover.

39

This is a very advantageous feature for two main reasons. The first one is that in many real-
world scenarios the multiple clicks are more realistic, as opposed to limiting the user to just
one click. The second is that the multiple clicks permit the algorithm to learn faster, as there
is more feedback per round usually.

Some examples of bandit recommendation works that support multiple clicks are the
following.

421 IBA

An interesting work that is similar to that of Radlinski et al. [12] — transferred in the multiple
clicks setting — is that of Kohli, Salek and Stoddard, in 2013 [13]. In this work, they present the
Independent Bandit Algorithm (IBA), which promises great performance, fast learning from
past user behavior and minimizing abandonment. While the RBA — discussed in the previous
section (4.1) — is based on the diversity principle, the IBA is based on the PRP principle. Kohli
et al. make a comparison of the two principles by comparing the two algorithms, RBA and IBA.

Just like RBA, the IBA uses P instances of the same multiarmed bandit algorithm, one for each
rank of the recommendation list. These instances work independently to form collectively the
best set of items to recommend. The optimal set is considered the one that appeals to the
most possible users. This means that, in the optimal set, for the most possible users there is
at least one item out of the recommended ones, which they find relevant.

The writers assume that, for every pair of user and item, there is a mapping of 0 or 1, which
represents the relevance of the item for the user. Therefore, they use a vector of relevance
for every user j, X = {0,1}K, where K is the number of all the items [13]. If there is an item

i in the recommended set, which the user finds relevant — meaning that Xl.j = 1- then the
payoff for this item is 1, otherwise 0. The vector of relevance for every user is, of course,
unknown, until it is partially revealed (P elements out of K) when the user reacts to the
recommended set.

ALGORITHM IBA

Initialize the P MAB instances

For each time-step t € {1, ...,T}:
For each rankp € {1, ..., P}:
* select an item with MAB,, that has not been selected in highest ranks
Display the P selected items to user
For each rankp € {1, ..., P}:
» For the item in the position p set reward to:
{ 1, if the item was clicked on

0, otherwise
* Update the MAB, with the reward

Figure 4.3. Pseudocode of the algorithm IBA [13]

40

Since the target here is to maximize the payoff of the recommended set in expectation and
the user payoffs are 0 or 1, then the expected regret is the expected difference between the
portion of satisfied users by the optimal set and the portion of satisfied users by the algorithm.

It should be noted that the IBA uses stochastic multiarmed bandit instances and not
adversarial ones, as they make an assumption of independence in their theoretical analysis.

The independence of the ranks in IBA is essentially owed to the independence of the payoffs
between the ranks. Unlike RBA, where the payoff of one rank depends on the payoff of the
previous ranks, the IBA rewards every item that was clicked by the user with 1. In other words
—even though it is not specifically advertised in the work of Kohli et al. [13] —the IBA algorithm
supports the very interesting feature of multiple clicking by the user. Because of multiple
clicks, the different instances of MABs in IBA learn at the same time, which makes the
algorithm achieve good results quicker.

This is apparent also in the experiments, where the authors [13] compare the RBA and IBA
algorithms, using four datasets. In these experiments they use the stochastic algorithms UCB1
and e-Greedy as MAB instances in both RBA and IBA. The results reveal that the IBA algorithm
performs better than RBA in most cases. According to the authors, this might indicate that
diversity is not that much needed for maximizing rewards in ranked recommendations.

4.2.2 dcmKL-UCB

In 2016, Katariya, Kveton, Szepesvari and Wen [31] proposed the DCM bandits, a learning
variant of the dependent click model (DCM), which is a generalization of the cascade model.

In this model, the user’s query is answered with an ordered list of items, as per usual. The
user then can view the list and click on as many items as he wants to examine. The authors
assume that the user views the items from top to bottom and clicks on the items he wants to
examine one by one. After the clicking of one item:

= if the user leaves, then the system considers that the user has been satisfied
= if the user keeps examining items lower in the list, then the user is yet considered
to be unsatisfied.

At the end, the reward is set to one, if the user leaves satisfied, or zero if the user remains
unsatisfied. Note that the reward is not specific for every item, but it is intended that the list
of suggested items is the one to be rewarded, or not rewarded.

For this problem, the authors proposed the algorithm dcmKL-UCB:

At each round t, the algorithm starts by calculating the attraction probabilities for every item
— the upper confidence bounds on them, to be exact — which depend on the popularity of the
item in the previous rounds. The P items with the highest UCBs are selected to be displayed
to the user at the round t. The order of the items in the displayed list depends on the
termination probabilities, which are computed according to the frequency of the termination

41

positions? in the past rounds. After the user clicks and examines the items he is attracted to,
the reward is defined and the statistics are updated.

This model is quite interesting, as it supports multiple clicking by the user. The question
remains, if the assumptions made by the authors make the scenario hard to be applied in
real-life problems. In their work, Katariya et al. [31] test their algorithm, dcmKL-UCB, in
experiments with a real-world dataset. Even in these experiments, the applicability of the
algorithm is dubious, as the assumptions they have made in their analysis are in many cases
violated. Nevertheless, the algorithm exhibits good performance even in those cases.

4.3 OTHER WORKS

There are more interesting results and approaches than the ones we have described so far.
Therefore, we reference the reader towards:

= Slivkins, Radlinski, Gollapudi (2010) [36], for diverse learning over large documents
collection

= Slivkins (2014) [37], for contextual bandits with similarity information

= Bubeck and Cesa-Bianchi (2012) [21] and Busa-Fekete and Hullermeier (2014) [38],
for surveys on online learning and bandit studies.

Lastly, we will talk about the work of Yue and Joachims (2009) [39].

43.1 DBGD

A different approach from the ones we have seen can be read in the publication of Yue and
Joachims, in 2009 [39]. In this work, the authors study the dueling bandit problem, which they
categorize as “an online optimization problem”.

Yue et al. propose a new algorithm for the above problem, which achieves sublinear regret:
the Dueling Bandit Gradient Descent (DBGD). As its name suggests, the algorithm uses duels
— comparisons — in order to approximate the best retrieval function. That is to say, they
choose a relative measures’ method, rather than a most commonly used absolute measures’
method.

Their approach is based on the comparison of neighboring points in a space of defined
retrieval functions. In order to do so, they use the notion of distinguishability between
functions, upon which they also build the definition of the regret for this problem. The
comparison between two functions, the distinguishability, is a reference to the portion of
users that prefer the recommendations of the one function over the other.

The authors use a real-world web search dataset for experimentation with the algorithm. By
consecutive function comparisons they are performing gradient descent, to produce results
with the most rewarding function.

41n [31] the termination position is defined as the position reviewed right before the user terminated
the examination of the presented list.

42

43

5 EXPERIMENTS OF RANKINGS WITH CONTEXT

In the previous chapters we talked about some algorithms of various categories. From the
algorithms described thus far we were the most interested in LinUCB, as the context seems
to be very powerful and has the potential of offering tailored, personalized recommendations
to users. Especially, we were intrigued by the idea of using LinUCB instances into the
meta-algorithms RBA and in IBA and experimenting with them.

The setting of our experiments is similar to one where a website presents its users with a
number of options —recommendations — and the users can click on some of them, all of them,
or none. For this setting we determine that the users come in an orderly manner, meaning
that they visit the website one after another and they never coincide. The choices in the
recommendation list will be made by either the RBA-LinUCB or by the IBA-LinUCB. Although
this setting refers to web recommendations, the experiments can be translated and adapted
to fit numerous other scenarios involving recommendation, perhaps with different reward
system or rules.

In the following sections we will make a comparison of the performance of RBA-LinUCB and
IBA-LinUCB and examine the differences in their performance. Although the RBA and IBA
algorithms are very similar, there is one key difference that the reader should keep in mind;
the RBA allows only one click from the user, while the IBA allows multiple clicks. Our target is
to experiment with diversified datasets and see how the above algorithms perform in each
case and which are their strengths.

In order to be consistent with the previous chapters, we will use the following notation:

= K, as the number of arms
= T, asthe time horizon
= d, as the number of the arm features.

44

We also define in the table below some terms and metrics that will be used in the following
sections, along with some indications about their use (Table 5.1).

Term

Definition

Use cases

Average Rate of
Rewards (ARR)

Standard
Deviation of
Rewards (SDR)

It is defined as the mean of the arms
reward rates.

It is the calculated standard deviation
between the arm reward rates.

As a metric of diversity for
comparisons between the
generated datasets

As a predictive variable for the
performance of the algorithms
As a metric of diversity for
comparisons between the
generated datasets

As a predictive variable for the
performance of the algorithms

Sum of The sequence of average regret of each = Asan indication of good tuning of

Smoothed and repetition is smoothed by 10 and then all LinUCB over a dataset

Averaged the sequences are averaged for each = Asa performance metric of RBA-

Average Regret smoothed time-step t. The sum of the LinUCB and IBA-LinUCB

Sequence averaged and smoothed average regret

(SSAARS) sequence is the SSAARS.

Accumulated It is the cumulative clicks that the = As a metric of comparison

Clicks (AC) algorithm yields over the horizon T. between the algortihms RBA and
IBA with LinUCB.

Learning It is the Euclidean distance between the = As a metric of performance and

Distance (LD) 0 vector that the algorithm estimates comparison between the

and the actual 6, according to which the
rewards dataset was created.

algortihms RBA and IBA with
LinUCB.

Table 5.1. Terms used in our experimental analysis and their definitions.

5.1 DATASETS CREATION

In this section, we describe the process of creating datasets for experimentation with rankings
and context. For this purpose, we created datasets of features and of rewards. These two
types of datasets are created in sets, so that the rewards of the rewards’ dataset correspond
to the feature values of the features’ dataset. The logic behind the algorithms creating the
datasets is that we first choose random feature values for the arms and a random theta and
then we calculate the linear payoffs that develop after the multiplication of the features and
the theta. The specific steps of the algorithms are presented in the following section, so that
the reader can recreate our experiments.

5.1.1 Artificial data creation

For the creation of artificial features’ datasets of K arms, d features and T rounds, we used
the algorithm as presented in the Table 5.2. The steps that are followed are:

= |nitially, we choose the mean value of every feature of every arm from the uniform
distribution U(0,1), having the I, — norm of the arm vector being less than or equal
tol

45

distribution, which has as mean the mean value of every feature

dataset of features.

Then for every round in the horizon T, we choose a feature value from the uniform

Finally, we assemble all the feature values into a vector of vectors, forming thus the

ALGORITHM FOR FEATURES’ DATASET CREATION

For eacharma € {1, ...,K}:
Do until ||m%||, < 1:
For each feature f € {1, ...,d}:

* draw the mean value m, f of the feature from the U(0,1)
m®* = (mgq,..,Mgq)

For each time-step t € {1, ..., T}:
For eacharma € {1, ...,K}:
For each feature f € {1, ...,d}:

= draw the feature value xfll #, for time ¢, from the uniform

distribution that has as mean the m,, s

Set the features’ dataset:

1 1 7T T
X1,1 XK1 X1,1 XK1 \
F — | . o o

Table 5.2. The steps of the algorithm used for creating the datasets of the arm features

ALGORITHM FOR REWARDS’ DATASET CREATION

Do until ||8]], < 1:
For each feature f € {1, ...,d}:
* draw 8¢ from the U(0,1)
0=(0y..,04)

For each time-step t € {1, ..., T}:
For eacharma € {1, ...,K}:
t
Xa,1
* setp =0-x{, where x} =

t
xa,d

draw the reward 7,(t) from the Ber(p)

Set the rewards’ dataset:

R= ((r1(1), w1 D), e, (1 (T, ..., rK(T)))

Table 5.3. The steps of the algorithm used for creating the datasets of the contextual arm rewards

46

Using the same parameters — K arms, d features, T rounds — we proceed to create the
dataset of rewards. The steps of the algorithm for this dataset generation are presented in
Table 5.3 and they can be described as following:

= We begin by choosing the theta — 8 — of length d from the uniform distribution
U(0,1)

= Then for every round in the horizon T, we multiply the chosen theta with the features
chosen for the round for every arm

= We use the result of every such multiplication as the parameter of a Bernoulli
distribution, according to which we draw the payoff for a specific arm, for a specific
round

= Finally, we create a vector of vectors out of the arms’ payoffs, which is the required
dataset.

5.1.2 Dataset types

In order to experiment with LinUCB, RBA-LinUCB and IBA-LinUCB, we created datasets of the
six following types: 1F, 1R, 2F, 2R, 3F, 3R. With “F” we notate a dataset of feature values,
whereas with “R” we notate a dataset of arm rewards. In front of F, or R, there is a number
which indicates the number of features in the dataset. The features’ dataset and the rewards’
datasets are produced in bundles —sets —where the rewards of the “R” dataset are dependent
to the values of the features in the “F” dataset and the chosen theta.

Full details on the different datasets used in our experiments can be found in the appendix of
datasets, at the end of our work.

Set Category K d T Description Brief Type Name
2 . F 10 1 10000 Features’ dataset 1F
& R 10 1 10000 Rewards’ dataset 1R
2 o F 10 2 10000 Features’ dataset 2F
& R 10 2 10000 Rewards’ dataset 2R
2 F 10 3 10000 Features’ dataset 3F
& R 10 3 10000 Rewards’ dataset 3R

Table 5.4. The types of the datasets that were used in our experiments on rankings with context.

5.2 METHODOLOGY

For the experiments, we selected and used 10 datasets for each of the categories in Table 5.4.
The selection of the 10 datasets of each category was made between many generated
datasets, with the following criterion in mind; the datasets in the selection should be as
diversified as possible. The metric used to measure the diversity between the datasets is the
standard deviation between the arm rewards (SDR), which is a metric defined and explained
in the Table 5.1.

47

5.2.1 Selection of the datasets

The steps in the selection process of the datasets for experimentation with the algorithms
are:

= Generating sets of datasets — features’ datasets and rewards’ datasets — using the
algorithms described in Table 5.2 and Table 5.3.

= Measuring for each rewards’ dataset of each set the standard deviation between the
reward rates of the arms (SDR).

= Selecting 10 rewards’ datasets — and the 10 corresponding features’ datasets — that
are diversified in SDR, according to the above criterion.

5.2.2 Experimental phase

In this section we present the specifics of the experimental phase. All the experiments, as well
as the datasets’ generation, were implemented in Python. For each selected set of datasets,
the experimental phase proceeds as following:

Step 1. The features’ and the rewards’ datasets of the set are used for tuning the
algorithm LinUCB. Various values of the parameter a are tested, each one of them over
100 repetitions of the algorithm. The performances® of the algorithm for the various
values of a are compared and the parameter that yielded the best performance of the
algorithm is chosen for the next experiments.

Step 2. The set of the two datasets are used for implementing the RBA-LinUCB algorithm.
The RBA runs for 3 slots, using 3 instances of the LinUCB algorithm with the parameter a
that was chosen in Step 1. This experiment is repeated 100 times and some performance®
metrics are collected and used for the analysis.

Step 3. The set of the two datasets are used for implementing the IBA-LinUCB algorithm.
The IBA runs for 3 slots, using 3 instances of the LinUCB algorithm with the parameter a
that was chosen in Step 1. Again, this experiment is repeated 100 times and some
performance’ metrics are collected and used for the analysis.

5.3 ANALYSIS OF THE EXPERIMENTS

By analyzing the experiments, we get to observe the behavior of the algorithms, hopefully,
discovering patterns and gaining some intuition over them. For the purpose of the analysis of

5> The performance of the algorithm is evaluated by the examination of the plot of its average regret
and the SSAARS metric, which is defined in Table 5.1.

6 The performance of the algorithm is the evaluated by the SSAARS metric (Table 5.1), the
accumulated clicks and the learning distance.

7 The performance of the algorithm is the evaluated by the SSAARS metric (Table 5.1), the
accumulated clicks and the learning distance.

48

the experimental results, we plot, measure and observe the performance of each algorithm,
over the diverse datasets.

Specifically, in the following sections we are going to be evaluating the ARR and SDR metrics
as predictive variables of the performance of RBA-LinUCB and IBA-LinUCB. We will compare
the performance of the two algorithms through the SSAARS metric. We will also compare the
two algorithms through the cumulative clicks they yield and through their ability to learn
quickly and accurately.

5.3.1 Average Rate of Rewards (ARR) and Standard Deviation of Rewards (SDR)

In this phase of the analysis we observe the average rate of rewards (ARR) and the standard
deviation of rewards (SDR) of the selected rewards’ datasets. Specifically, we examine the
relationship between ARR and SDR in the rewards’ datasets we used in our experiments. The
plots for the 3 different types of sets can be seen below.

This paragraph and the examination of the relationship between the ARR and SDR is,
hopefully, going to add some extra insight for our readers for the paragraphs to come. As we
can see in the Figure 5.1, the average reward rate and the standard deviation of the rewards
seem to be correlated in all cases with a positive linear relationship. Naturally, this
observation does not stand against instinct. Furthermore, it seems that the higher the number
of arm features, the fuzzier the correlation line gets. For d=3 the positive correlation is still
apparent, but it is quite noisy.

ARR vs SDR ARRvs SDR
d=3 =2

SDR

0,25

0,2

0,15

01

0,05

041

0.2 03
ARR

03
0,25
0.2
o
a 015
wvy
01

0,05

0,4

0,05

0,5

0,1

06

SDR

0,25

0.2

0,15

01

0,05

ARR vs SDR

0,15

d=1

0,2
ARR

0,25

0,05

03

041 0,15 02 0,25 03
ARR

0,35 0,4

Figure 5.1. The relationship between ARR and SDR for number of features d € {1,2,3}.

0,35

04

SSAARS

SSAARS

SSAARS

500

400

300

200

100

600
500
400
300
200
100

600
500
400
300
200
100

5.3.2 RBA-LIinUCB vs IBA-LinUCB via ARR and SDR

In this section we plot and analyze the relationship of ARR and SDR against the SSAARS metric,
which corresponds to the cumulative average regret. One of our goals is to observe if the ARR
or the SDR are related to the SSAARS result of RBA-LinUCB and IBA-LinUCB. Our second
concern is to compare the performance of the two algorithms through the SSAARS. The plots
are depicting the experiments with 10 datasets with variations in ARR and SDR, repeated 100
times.

Cumulative Average Regret and ARR Cumulative Average Regret and SDR

d=3 d=3

500

400

£ 300

g 200

100

0

01 0,2 03 0,4 0,5 06 0 0,05 01 0,15 0,2
ARR SDR
—8—RBA-LiNUCB —8— IBA-LinUCB —8—RBA-LiNUCB —@—IBA-LinUCB

Cumulative Average Regret and ARR Cumulative Average Regret and SDR

d=2 d=2

600

500

n 400
o

Z 300
(%]

200

100

0

0,05 0,1 0,15 0,2 0,25 03 0,35 0,4 0 0,05 0,1 0,15 02
ARR SDR
—8—RBA-LiNUCB —@— IBA-LinUCB —8—RBA-LNUCE —@— IBA-LinUCB

Cumulative Average Regret and ARR Cumulative Average Regret and SDR

d=1 d=1

600

500

o 400
o

2 30
(%]

v 200

100

0

0,05 0,1 0,15 0.2 0,25 0,3 0,35 0,4 0 0,05 01 0,15 02 0,25
ARR SDR
—8—RBA-LiNUCB —@— IBA-LinUCB —8—RBA-LINUCB —@— IBA-LinUCB

Figure 5.2. Cumulative average regret and its relationship with ARR and SDR for number of features d € {1,2,3}.

In the Figure 5.2 there is an apparent differentiation between the lines that correspond to the
two algorithms. For the IBA-LinUCB there is a clear positive, almost linear, correlation
between the standard deviation of the rewards (SDR) and the SSAARS. On the other hand, the

50

0,25

0,25

03

RBA-LinUCB seems to be generally unaffected by the standard deviation. However, in all three
cases it seems that the relationship between the two algorithms is similar; the lower values
of SDR make the RBA-LInUCB have a slightly higher SSAARS than the IBA-LinUCB.
Nevertheless, the two lines have a meeting point around 0.1-0.15 and then the difference
between them increases again with the IBA-LinUCB rising steadily upwards.

The above observations are reasonable, if we consider the way the average regret is
calculated for the RBA and the IBA; in each time step t the RBA can have a regret of O or 1,
because it only allows one click from the user, whereas the IBA can have a regret of 0 to 3 for
a 3-slot recommendation, as it allows multiple clicks (Figure 5.3). This means that, as the
standard deviation increases, the probability of having an arm paying higher also increases,
which in turn favors the RBA, who finds the best arm and exploits it, thus achieving low regret.
However, the IBA has a higher regret by definition, since in its regret calculation all the
unclicked slots are considered, but this does not necessarily mean that the performance is
worse than that of RBA’s. In order to measure better the performance of the RBA-LinUCB and
IBA-LinUCB and compare the two algorithms closely, we will use some more metrics and plots
for comparison in the next sections.

Recommendation 1 userschoice

Recommendation 2

Recommendation 3

RBA regret: 0 IBA regree: 2

Figure 5.3. Regret calculation for RBA and IBA in the same scenario.

The average rate of rewards (ARR) on the other hand, seems to be a rather unfit predictive
variable for the behavior of the algorithms, as the lines are far noisier. Again, we can see
similar patterns between the three plots, with the RBA line being higher than that of IBA for
lower values of ARR and the lines reversing around 0.25-0.3 of ARR.

Taking a look at the next plots (Figure 5.4), where the metric of difference in SSAARS between
RBA-LinUCB and IBA-LinUCB is plotted against the SDR, will reveal a clearer picture. The SDR
appears to be a negative linear predictive variable for the difference in SSAARS between the
two algorithms. This means that, for the lower values of SDR in the datasets, the RBA has a
higher regret, while its performance gets significantly better than that of IBA’s for the higher
SDR values. As before, this observation is in line with the regret calculation philosophy of the
two algorithms.

51

200
100

-100

SSAARS

-200
-300
-400

100

-100
-200
-300
-400
-500
-600

SSAARS

200
100

-100
-200
-300
-400
-500

SSAARS

0,03

0,02

0,001

Difference of RBA-IBA
d=3

006 008 009 01 011 0,13 014 017 02
SDR

N RBA - IBA

Difference of RBA-IBA
a=2

006 009 011 012 0,14 015 018 021 024
SDR

N RBA - IBA

Difference of RBA-IBA

d=1

001 005 009 012 0,15 0,18 02 022 0727
SDR

N RBA - IBA

Figure 5.4. Difference of RBA-LinUCB minus IBA-LinUCB in SSAARS against SDR for feature number

de {123}

52

5.3.3 RBA-LIinUCB vs IBA-LinUCB via clicks

Since — as we mentioned above — the average regret and the SSAARS metric are affected by
the way each algorithm calculates regret, we believed that they might not be suitable
indicators of the true performance of an algorithm. Towards that purpose, we found useful
to approach the comparison of the algorithms from a different viewpoint. Instead of looking
at vague metrics, we decided to take a look at the actual clicks each algorithm had achieved.

Indeed, we monitored the clicks each algorithm yielded over the horizon T = 10000. The
datasets that were used were the same as before; K = 10,d € {1,2,3} and varying average
rewards (ARR).

Our first and most obvious conclusion is that in all cases the IBA-LinUCB yielded more clicks,
cumulatively. For all values of ARR, and all feature values, the IBA always accomplished to do
better than RBA. The second — and very interesting conclusion — is that there seems to be
relationship between the ARR value of the dataset and the increase in IBA clicks, over RBA
clicks. In fact, it appears that the higher the ARR is in the dataset, the higher is the difference
between IBA and RBA clicks, with IBA being always on top. In the set of figures (Figure 5.5)
one can see the cumulative clicks each algorithm achieved for the different values of ARR, as
well as the increase in IBA clicks, as a percentage of the RBA clicks. In one specific case — for
ARR=0.52 and d=3 —the IBA-LinUCB managed to get 90% increased clicks, which means it got
almost double clicks, compared to RBA-LinUCB.

One could argue that it is the capability of IBA to accept multiple clicks that makes the
difference and accounts for IBA-LinUCB always being a winner at the click battle. In any case,
the click comparison indicates that the use of IBA-LinUCB in a recommendation system of
rankings with context would be more lucrative than the use RBA-LinUCB.

Clicks and ARR
10000 rounds, 3 features

20000 +86% 190%

+73% 177%
+57% +65%
15000 6 +60%
10000 +26%
+13% +18%
5000 I I I
, 1
a

013 0,15 022 036 0, 0,44 045 047 051 052
ARR

cumulative clicks

ERBA-LINnUCB m IBA-LinUCB

53

Clicks and ARR
10000rounds, 2 features

16000 +53% +56%
14000 54% 451%
0 +38% +48%
S 12000 +40%
§10000 +28%
2 8000
& +12%
S 6000
5 4000 — 459 II I
2000
006 015 021 03 03 033 034 034 035 037

ARR

H RBA-LinUCB m IBA-LinUCB

Clicks and ARR

10000rounds, 1 feature
20000
" s09, +62%
=z 4+55% *
= 000 +48%
o +44%
2 10000 +32%
o +23%
=3
E 5000 +10%
(&)
1y A% II I
0 | [|

0,003 003 008 017 023 031 032 035 037 0,38
ARR

ERBA-LInUCB ® IBA-LinUCB

Figure 5.5. The accumulated clicks of RBA-LinUCB and IBA-LinUCB for d € (1,2, 3}, T=10000, K=10.
The charts display the increase in IBA clicks as a percentage of the RBA clicks. The results were
averaged over the 100 experimental repetitions for each dataset.

5.3.4 RBA-LinUCB vs IBA-LinUCB via learning

As a further step, in the spirit of comparing the algorithms in ways that are more intuitive
than dry metrics, we decided to monitor and analyze the learning style of each algorithm.
While thinking of possible ways in which we could measure the learning, it occurred to us that
the following learning distance (LD) could be quite intuitive and insightful; the Euclidean
distance between the theta that the algorithm estimates in round t and the actual chosen
theta of the dataset. This metric could show us how far is the algorithm from predicting the
real theta at every moment.

54

learning distance (LD)

learning distance (LD)

o
]

04

0,2

0,25

Figure 5.6. The ability to learn for the RBA and IBA slots, tested for 3 features and with two datasets with SDR € {0.03,0.2}.

For each slot, the learning distance was monitored individually, since each slot runs a different
algorithm instance. For each feature parameter, d € {1,2,3}, two datasets were chosen; one
with a larger standard deviation between the arm rewards and one with a smaller one.

The results of the experiments are presented in the figures (Figure 5.6, Figure 5.7, Figure 5.8).
As one might have expected, the first slots for the two algorithms learn in exactly the same
way, while the differences lie in the second and third slots, correspondingly. It appears that
the second and third slots of IBA-LinUCB learn in a much faster and more effective way than
the respective slots of RBA-LinUCB. In fact, the IBA slots number 2 and 3 appear to learn so
well, that in the cases of two and three features they learn even better than the first slot.

Learning ability of RBA slots Learning ability of IBA slots
d=3, SDR =0,2 d=3, SDR =0,2

o
o

o
[
w«

K=}
o
[nl

learning distance (LD)
o
=

o

time (t) time (t)
s S| 1 e S0t 2 Slot3 em—=Glot 1 emmS|ot2 Slot3
Learning ability of RBA slots Learning ability of IBA slots
d=3, SDR=0,03 d=3, SDR=0,03

learning distance (LD)

time (t) time (t)

e GOt] e S0t 2 Slot 3 e 5|01] s SO 2 Slot 3

As for the effect of SDR in learning, it seems that a higher SDR causes a higher gap between
the estimated theta and the real theta. It is important to note that a small learning distance
is bound to bring better results, as the closer it is the estimation of theta, the higher would
be the reward, as an effect of the linear rewards of LinUCB.

It is our estimation that two factors contribute towards the advantageous situation for the
IBA-LinUCB, as described above. First of all, the fact that the IBA allows for multiple clicks and,
thus, for more feedback. And secondly, the stricter feedback system of the clicks for RBA — as
discussed in paragraph 4.1 — leads to erroneous learning of all the slots, apart from the first
one. As a consequence, the IBA slots make more informed recommendations, that is
recommendations that have a higher possibility of being clicked.

55

Learning ability of RBA slots Learning ability of IBA slots

d=2, SDR=0,24 d=2, SDR=0,24
1.2 03
a1 o 0,25
= =
g og g o2
c c
[u] [u]
T o6 Z 015
- -
[T} [T}
Zoa £ 01
£ £
8 o2 8 o005
0 - 0 -
time (t) time (t)
o 5|0t 1 emm—Slot 2 s S|ot 3 S0t 1 em—Slot 2 e S|ot 3
Learning ability of RBA slots Learning ability of IBA slots
d=2, SDR=0,02 d=2, SDR=0,02
0,13 0,05
= 0,11 =
a3 S 0,04
g 009 =
g
g2 < 0,03
z Y o
o 005 > 0,02
[= [=
‘S 003 £
5 5 001
2 0,01 @
-0,01 0
time (t) time (t)

s 5|01] e S|t 2 e S0 3 ====Slot] e====S|ot2 ====S|0t3

Figure 5.7. The ability to learn for the RBA and IBA slots, tested for 2 features and with two datasets with SDR € {0.02,0.24}.

Learning ability of RBA slots Learning ability of IBA slots
d=1, SDR=0,19 d=1, SDR=0,19
08 0,06
z o 4 005
308 3
,E“ 05 ,E“ 0,04
B o4 % 0,03
- -
203 Zom
£02 £
201 2 o001
0 0
time (t) time (t)
——5I01 1 m—mSl0T2 =mSloT 3 S0t 1 m——Slot2 =—Slot 3
Learning ability of RBA slots Learning distance of IBA slots
d=1, SDR=0,015 d=1, SDR=0,015
0,06 0,02
§ 0,05 §
= = 0,015
8 0,04 8
g g
B 003 T 001
- -
-] -]
< 0,02 g
E E 0,005
@ 0,01 K]
0 TSyt 0
time (t) time (t)

s 5|01] e SOt 2 SOt 3 s 5|01] eSOt 2 eS0T 3

Figure 5.8. The ability to learn for the RBA and IBA slots, tested for 1 feature and with two datasets with SDR € {0.015,0.19}.

56

5.4 CONCLUSIONS

To sum up, this work is a study on the online learning area with a special focus in its application
in the ranked recommendations with use of context. We examined the Multiarmed Bandit
problem and we studied bibliographically its origins and the algorithms that treat the
problem. We evaluated the advantages and disadvantages of such algorithms and their
applicability in real-world scenarios. We also studied the Contextual Bandits, that involve the
side-information in their decisions, and the problem of Ranked Recommendations. We
revised the algorithms that fit in such recommendations’ scenarios and decided to contribute
by combining the use of context and the ranked recommendations. We selected the
meta-algorithms RBA and IBA with LinUCB instances, thus using the context with linear
rewards in rankings of recommendations.

Finally, we generated artificial data so that we can experiment with the algorithms
RBA-LinUCB and IBA-LinUCB, which make use of the context in order to produce ranked
recommendations. We compared the two of them to understand how they learn, how they
perform and what is the relationship between their performance and the metrics ARR and
SDR. Our results showed that the SDR has a positive linear relationship with the cumulative
average regret (SSAARS) of IBA-LinUCB, while the regret of RBA-LinUCB remains unaffected
by SDR, as the standard deviation of rewards increases. It was also clear that there is a
negative linear relationship between the SDR and the difference in SSAARS of RBA-LinUCB
minus IBA-LinUCB. This revealed that as the SDR increases, the RBA has an increasingly better
performance than the IBA.

On the other hand, the monitoring of the clicks yielded by each algorithm exposed the fact
that as the ARR increases in the dataset, the IBA-LinUCB brings increasingly more clicks than
the RBA-LinUCB. Lastly, we observed the way the slots — instances — of each algorithm learn
and we noticed that the IBA-linUCB slots learn much faster and more accurately than those
of RBA-LinUCB. This means that the IBA is bound to yield more clicks than the RBA and, thus,
leave the user — or client — more satisfied.

57

REFERENCES

[1]

(2]

3]

[4]

(5]

(6]

(7]

(8]

[9]

R.S. SUTTON and A. G. BARTO, Reinforcement Learning: An Introduction,
Bradford/MIT Press, Cambridge, MA; second edition, 2018.

M. MOHRI, A. ROSTAMIZADEH and A. TALWALKAR, Foundations of Machine Learning,
Adaptive computation and machine learning, MIT Press 2012, ISBN 978-0-262-01825-
8, pp. I-XIl, 1-412.

N. CESA-BIANCHI and G. LUGOSI, Prediction, Learning, and Games, Cambridge
University Press 2006, ISBN 978-0-521-84108-5, pp. I-XII, 1-394,

N. CESA-BIANCHI, Y. FREUND, D. HAUSSLER, D. P. HELMBOLD, R. E. SCHAPIRE and A. K.
WARMUTH, "How to use expert advice.," Journal of Association for Computing
Machinery 44(3): 427-485 (1997).

P. AUER, N. CESA-BIANCHI, Y. FREUND and R. E. SCHAPIRE, "Gambling in a Rigged
Casino: The Adversarial Multi-Arm Bandit Problem," in FOCS 1995: 322-331.

N. LITTLESTONE, "Learning Quickly When Irrelevant Attributes Abound: A New Linear-
Threshold Algorithm".Machine Learning 2(4): 285-318 (1987).

N. LITTLESTONE and M. K. WARMUTH, "The Weighted Majority Algorithm," in
Foundations of Computer Science (FOCS) 1989: 256-261.

P. AUER, N. CESA-BIANCHI, Y. FREUND and R. E. SCHAPIRE, "Gambling in a Rigged
Casino: The Adversarial Multi-Arm Bandit Problem," in Foundations of Computer
Science (FOCS) 1995: 322-331.

Y. FREUND and R. E. SCHAPIRE, "A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting".J). Comput. Syst. Sci. 55(1): 119-139 (1997).

[10] A. BLUM, V. KUMAR, A. RUDRA and F. WU, "Online Learning in Online Auctions".Theor.

Comput. Sci. 324(2-3): 137-146 (2004).

[11] K. MISRA, E. M. SCHWARTZ and J. ABERNETHY, "Dynamic Online Pricing with

Incomplete Information Using Multi-Armed Bandit Experiments (February 13, 2018).
Available at SSRN: https://ssrn.com/abstract=2981814 or
http://dx.doi.org/10.2139/ssrn," [Online].

[12] F. RADLINSKI, R. KLEINBERG and T. JOACHIMS, "Learning diverse rankings with multi-

armed bandits.," in International Conference on Machine Learning (ICML) 2008: 784-
791, Helsinki, Finland.

[13] P. KOHLI, M. SALEK and G. STODDARD, "A Fast Bandit Algorithm for Recommendation

to Users with Heterogenous Tastes," in Association for the Advancement of Artificial
Intelligence (AAAI) 2013: 1135-1141.

58

[14] L. LI, W. CHU, J. LANGFORD and R. E. SHAPIRE, "A Contextual-Bandit Approach to
Personalized News Article Recommendation," in The International World Wide Web
Conference (WWW) 2010: 661-670, Raleigh, North Carolina, USA.

[15] S. S. VILLAR, J. BOWDEN and J. WASON, "Multi-armed Bandit Models for the Optimal
Design of Clinical Trials: Benefits and Challenges".Statistical Science 30(2): 199-215,
2015.

[16] B. AWERBUCH and R. KLEINBERG, "Online Linear Optimization and Adaptive Routing".
J. Comput. Syst. Sci. 74(1): 97-114 (2008).

[17] E. M. SCHWARTZ, E. T. BRADLOW and P. S. FADER, "Customer Acquisition via Display
Advertising Using Multi-Armed Bandit Experiments".Marketing Science 36(4): 500 -
522 (2017).

[18] P. AUER, N. CESA-BIANCHI and P. FISCHER, "Finite-time Analysis of the Multiarmed
Bandit Problem".Machine Learning 47(2-3): 235-256 (2002).

[19] P. AUER, N. CESA-BIANCHI, Y. FREUND and R. E. SCHAPIRE, "The Nonstochastic
Multiarmed Bandit Problem".SIAM J. Comput. 32(1): 48-77 (2002).

[20] H. ROBBINS, "Some Aspects of the Sequential Design of Experiments".Bulletin of the
American Mathematical Society 58(5): 527-535 (September, 1952).

[21] S. BUBECK and N. CESA-BIANCHI, "Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems".Foundations and Trends in Machine Learning 5(1): 1-
122 (2012).

[22] T. L. LAl and H. ROBBINS, "Asymptotically Efficient Adaptive Allocation Rules," in
Advances in Applied Mathematics and Mechanics (AAMM) 6: 4-22 (1985).

[23] R. AGRAWAL, "Sample Mean Based Index Policies with O(log n) Regret for the Multi-
Armed Bandit Problem".Advances in Applied Probability 27(4): 1054-1078, (December
1995).

[24] H. B. MCMAHAN and M. J. STREETER, "Tighter Bounds for Multi-Armed Bandits with
Expert Advice," in Conference on Learning Theory (COLT) 2009.

[25] W. CHU, L. LI, L. REYZIN and R. E. SCHAPIRE, "Contextual Bandits with Linear Payoff
Functions," in Artificial Intelligence and Statistics (AISTATS) 2011: 208-214.

[26] N. ABE and P. M. LONG, "Associative Reinforcement Learning using Linear Probabilistic
Concepts," in International Conference on Machine Learning (ICML) 1999: 3-11.

[27] J. LANGFORD and T. ZHANG, "The Epoch-Greedy Algorithm for Multi-armed Bandits
with Side Information," in Neural Information Processing Systems (NIPS) 2007: 817-
824,

[28] N. ABE, A. W. BIERMANN and P. M. LONG, "Reinforcement Learning with Immediate
Rewards and Linear Hypotheses".Algorithmica 37(4): 263-293 (2003).

59

[29] A. BEYGELZIMER, J. LANGFORD, L. LI, L. REYZIN and R. E. SCHAPIRE, "Contextual Bandit
Algorithms with Supervised Learning Guarantees," in Artificial Intelligence and
Statistics (AISTATS) 2011: 19-26.

[30] P. AUER, "Using Confidence Bounds for Exploitation-Exploration Trade-offs".Journal of
Machine Learning Research 3: 397-422 (2002).

[31] S. KATARIYA, B. KVETON, C. SZEPESVARI and Z. WEN, "DCM Bandits: Learning to Rank
with Multiple Clicks.," in International Conference on Machine Learning (ICML) 2016:
1215-1224.

[32] R. COMBES, S. MAGUREANU, A. PROUTIERE and C. LAROCHE, "Learning to Rank:
Regret Lower Bounds and Efficient Algorithms," in Association for Computing
Machinery's Special Interest Group on Measurement and Evaluation (SIGMETRICS)
2015: 231-244.

[33] Y. YUE and C. GUESTRIN, "Linear Submodular Bandits and their Application to
Diversified Retrieval," in Neural Information Processing Systems (NIPS) 2011: 2483-
2491.

[34] S. E. ROBERTSON, "The Probability Ranking Principle in IR".Journal of Documentation
33:294-304 (1977).

[35] K. EL-ARINI, G. VEDA, D. SHAHAF and C. GUESTRIN, "Turning down the noise in the
blogosphere," in Conference on Knowledge Discovery and Data Mining (KDD) 2009:
289-298.

[36] A. SLIVKINS, F. RADLINSKI and S. GOLLAPUDI, "Learning optimally diverse rankings over
large document collections," in International Conference on Machine Learning (ICML)
2010: 983-990.

[37] A. SLIVKINS, "Contextual Bandits with Similarity Information".Journal of Machine
Learning Research 15(1): 2533-2568 (2014).

[38] R. BUSA-FEKETE and E. HULLERMEIER, "A Survey of Preference-based Online Learning
with Bandit Algorithms," in International Conference on Advanced Laser Technologies
(ALT) 2014: 18-39.

[39] Y. YUE and T. JOACHIMS, "Interactively Optimizing Information Retrieval Systems as a
Dueling Bandits Problem.," in International Conference on Machine Learning (ICML)
2009: 1201-1208, Montreal, Canada.

[40] A. KALAI and S. VEMPALA, "Efficient Algorithms for Online Decision Problems".J.
Comput. Syst. Sci. 71(3): 291-307 (2005).

[41] A. AGARWAL, D. J. HSU, S. KALE, J. LANGFORD, L. LI and R. E. SCHAPIRE, "Taming the
Monster: A Fast and Simple Algorithm for Contextual Bandits," in International
Conference on Machine Learning (ICML) 2014: 1638-1646.

60

61

Dataset
3R-1
3R-2
3R-3
3R-4
3R-5
3R-6
3R-7
3R-8
3R-9
3R-10

Dataset
3F-1

3F-2

3F-3

3F-4

3F-5

3F-6

3F-7

3F-8

3F-9

3F-10

APPENDIX OF DATASETS

Mean rewards of the arms

1
0,4307
0,5621
0,4121

0,333
0,4361
0,2215
0,7753
0,6794

0,142

0,107

2
0,3582
0,3041
0,6194
0,7305
0,3892
0,0883
0,5284
0,1426
0,1617
0,2041

3
0,3056
0,5807
0,5934
0,6408
0,2379
0,1082
0,3902
0,2654
0,0686
0,1495

4
0,4569
0,5114
0,3611
0,5641
0,574

0,0379
0,5536
0,2789
0,1714
0,2674

Mean feature values of the arms

1

(0.34,
0.91,
0.16)
(0.54,
0.047,
0.36)
(0.69,
0.3,
0.58)
(0.42,
0.14,
0.51)
(0.44,
0.37,
0.61)
(0.36,
0.77,
0.34)
(0.83,
0.52,
0.17)
(0.26,
0.71,
0.28)
(0.0003,
0.85,
0.40)
(0.17,
0.14,
0.02)

2

(0.23,
0.33,
0.20)
(0.047,
0.23,
0.64)
(0.49,
0.87,
0.06)
(0.51,
0.76,
0.18)
(0.43,
0.36,
0.17)
(0.31,
0.24,
0.81)
(0.14,
0.22,
0.80)
(0.19,
0.074,
0.37)
(0.19,
0.72,
0.28)
(0.25,
0.45,
0.22)

3

(0.013,

0.57,
0.29)
(0.65,
0.39,
0.20)
(0.43,
0.83,

0.047)
(0.8,
0.31,

0.015)
(0.28,

0.082,
0.15)
(0.85,
0.35,
0.12)
(0.24,
0.66,
0.12)
(0.25,
0.18,
0.65)

(0.017,

0.41,
0.088)
(0.11,
0.46,
0.81)

4

(0.43,
0.52,
0.15)
(0.36,
0.33,
0.65)
(0.41,
0.48,
0.7)
(0.88,
0.077,
0.25)
(0.73,
0.47,
0.28)
(0.31,
0.03,
0.78)
(0.46,
0.17,
0.39)
(0.53,
0.18,
0.12)
(0.64,
0.25,
0.63)
(0.51,
0.34,
0.75)

5
0,2841
0,5799
0,4972
0,4938
0,4821
0,0593
0,3933
0,7391
0,1662
0,1305

5

(0.23,
0.37,
0.07)
(0.7,
0.49,
0.06)
(0.71,
0.6,
0.36)
(0.56,
0.31,
0.46)
(0.6,
0.77,
0.23)
(0.52,
0.1,
0.8)
(0.086,
0.36,
0.57)
(0.23,
0.79,
0.46)
(0.071,
0.79,
0.59)
(0.16,
0.07,
0.42)

6
0,6875
0,4348
0,3712
0,4581

0,332
0,1087
0,6844
0,1375
0,1311
0,1799

6

(0.58,
0.22,
0.62)
(0.15,
0.17,
0.84)
(0.36,
0.37,
0.23)

(0.079,

0.55,
0.29)
(0.23,
0.75,
0.17)
(0.51,
0.32,
0.49)
(0.66,
0.41,
0.36)
(0.4,
0.016,
0.51)
(0.05,
0.53,
0.61)
(0.1,
0.95,
0.26)

7
0,7043
0,3614
0,2648
0,4724
0,2641
0,1075
0,5872
0,3522
0,1408
0,3135

7

(0.82,
0.54,
0.16)
(0.20,
0.18,
0.46)
(0.3,
0.23,
0.24)
(0.68,
0.11,
0.06)
(0.13,
0.43,
0.37)
(0.44,
0.31,
0.57)
(0.37,
0.16,
0.63)
(0.94,
0.17,
0.22)
(0.14,
0.21,
0.76)
(0.56,
0.18,
0.45)

8 9
0,3164 0,3873
0,5497 0,3777
0,2915 0,5245
0,686 0,3519
0,4206 = 0,5406
0,1986 0,1748
0,7443 0,1928
0,1931 0,3609
0,1708 = 0,1697
0,2223 0,2847
8 10

(0.05, (0.19, (0.55,
0.76, 0.7, 037,
0.21) 0.28) 0.19)
(0.58, (0.49, (0.26,
035, 0.65, 0.1,
0.27) 0.09) 0.69)
(0.73, (0.56, (0.38,
0.048, 0.66, 0.6,
0.64) 0.03) 0.49)
(0.26, (0.1, (0.63,
0.75, 0.39, 0.1,
0.29) 0.44) 0.46)
(0.52, (0.7, (0.33,
0.5, 0.8, 0.87,
0.15) 0.2) 0.05)
(0.64, (0.09, (0.46,
0.7, 0.62, 0.63,
0.14) 0.46) 0.2)
(0.73, (0.01, (0.38,
0.29, 0.12, 0.43,
0.37) 0.33) 0.02)
(031, (0.25, (0.36,
0.1, 042, 0.1,
0.2) 0.84) 0.42)
(0.76, (0.57, (0.16,
0.44, 0.54, 0.39,
0.18) 0.54) 0.68)
(0.34, (0.44, (0.59,
0.05, 0.65, 0.43,
0.39) 0.24) 0.24)

10 a
0,5266 1,8
0,4811 0,8
0,4249 0,5
0,4108 1
0,3557 1,1
0,1795 1,1
0,3936 0,8
0,4829 0,6
0,1468 0,7
0,3479 0,07

0

(0.70448539,
0.21952181,
0.60131692)
(0.84162602,
0.03489823,
0.40449049)
(0.32428396,
0.62908945,
0.08559457)
(0.56715651,
0.77019236,
0.02840739)
(0.66932208,
0.19589478,
0.2624173)

(0.02836751,
0.29475412,
0.02568552)
(0.79752291,
0.22365097,
0.48562551)
(0.22624748,
0.90132846,
0.08542429)
(0.1451488,

0.13533871,
0.12596317)
(0.55194864,
0.11658752,
0.07924622)

62

Mean rewards of the arms

Dataset 1 2 3 4 5 6 7 8 9 10 a

2R-1 0,2216 0,0785 0,0215 0,2046 0,182 0,1705 0,1442 0,1904 0,2227 0,0869 0,6
2R-2 0,1208 0,6194 0,849 0,1538 0,1924 0,1567 0,2747 0,2282 0,1994 0,5425 0,4
2R-3 0,2049 0,1677 0,2225 0,4062 0,079 0,2353 0,1231 0,1597 0,3293 0,136 0,2
2R-4 0,5197 10,2994 0,326 0,3998 0,2284 10,4321 0,3265 0,3354 0,1366 0,0206 0,07
2R-5 0,0567 0,0816 0,0849 0,0209 0,0507 0,0542 0,0802 0,0591 0,0395 0,0826 0,9
2R-6 0,0703 0,3662 0,3382 0,1487 0,2458 0,3477 0,2187 0,4346 0,4698 0,348 1,1
2R-7 0,2433 0,1001 0,4546 0,4921 0,1796 0,2044 0,5449 0,4659 0,5169 0,3445 0,7
2R-8 0,3019 0,1352 0,4173 0,4023 0,4172 10,3888 0,5054 0,2859 0,1797 0,3216 0,6
2R-9 0,5547 0,6997 0,0524 0,1953 0,1792 0,6216 0,5392 0,3567 0,248 0,2133 0,3
2R-10 0,6288 0,0322 0,3434 0,3828 0,3123 0,1737 0,4965 0,3465 0,5762 0,1451 0,4

Mean feature values of the arms
Dataset 1 2 3 4 5 6 7 8 9 10 0
2F-1 (0.43, (0.2, (0.06, (0.42, (0.11, (0.6, (0.07, (0.35, (0.14, (0.29, (0.26772485,
0.66) 0.14) 0.03) 0.57) 0.78) 0.07) 0.66) 0.55) 0.95) 0.05) 0.2002624)
2F-2 (0.11, (0.e4, (0.87, (0.13, (0.19, (0.14, (0.27, (0.22, (0.19, (0.55, (0.99722452,
0.6) 0.22) 0.35) 0.81) 0.23) 0.66) 0.17) 0.32) 0.19) 0.17) 0.02916942)
2F-3 (0.39, (0.29, (0.52, (0.99, (0.18, (0.56, (0.23, (0.26, (0.78, (0.26, (0.39157734,
0.58) 0.53) 0.22) 0.08) 0.11) 0.57) 0.27) 0.55) 0.31) 0.3) 0.11512913)
2F-4 (0.8, (0.43, (0.49, (0.62, (0.35, (0.8, (0.51, (0.59, (0.21, (0.03, (0.63825172,
0.49) 0.3) 043) 0.58) 0.01) 0.64) 0.45) 0.78) 0.02) 0.01) 0.10432262)
2F-5 (0.26, (0.15, (0.93, (0.02, (0.33, (0.5, (0.5, (0.11, (0.01, (0.89, (0.08082718,
0.5) 0.88) 0.26) 0.23) 0.3) | 0.27) 0.57) 0.63) 0.47) 0.21) 0.08082319)
2F-6 (0.04, (0.36, (0.98, (0.27, (0.02, (0.62, (0.41, (0.51, (0.23, (0.66, (0.34616488,
0.12) 0.58) 0.01) 0.12) 0.5) 0.33) 0.16) 0.72) 0.86) 0.3) 0.46392721)

2F-7 (0.9, (0.39, (0.21, (0.26, (0.74, (0.51, (0.01, (0.27, (0.09, (0.45, (0.1235766,
0.28) 0.09) 0.73) 0.81) 0.14) 0.25) 0.93) 0.76) 0.86) 0.56) 0.59022211)
2F-8 (0.4, (0.127, (0.65, (0.39, (0.44, (0.4, (0.78, (0.03, (0.2, (0.3, (0.55971034,

0.25) 0.12) 0.22) 0.81) 0.79) 0.7) 0.32) 0.89) 0.19) 0.52) 0.30549954)
2F-9 (0.72, (0.9, (0.04, (0.17, (0.2, (0.79, (0.69, (0.42, (0.2, (0.14, (0.76649147,
0.31) 0.23) 0.18) 0.58) 0.23) 0.25) 0.4) 0.63) 0.91) 0.89) 0.12060185)
2F-10 (0.02, (0.15, (0.22, (0.43, (0.42, (0.74, (0.2, (0.13, (0.27, (0.65, (0.10808829,
0.96) 0.03) 0.5) 0.58) 0.44) 0.14) 0.73) 0.5) 0.86) 0.12) 0.65071762)

63

Dataset
1R-1
1R-2
1R-3
1R-4
1R-5
1R-6
1R-7
1R-8
1R-9
1R-10

Dataset
1F-1
1F-2
1F-3
1F-4
1F-5
1F-6
1F-7
1F-8
1F-9
1F-10

Mean rewards of the arms

1
0,5697
0,3624
0,3423
0,4023
0,0894
0,0777
0,0663
0,0168
0,2419
0,0009

2
0,4291
0,2785
0,6104
0,2846
0,2543
0,2321
0,1222

0,049
0,365
0,0029

3
0,3087
0,1893
0,1099
0,4642
0,1732
0,3996

0,129
0,0296
0,5018
0,0002

0,5106
0,2046
0,5582
0,6442
0,3366
0,2969
0,0688
0,0099
0,285
0,0007

Mean feature values of the arms

1
0.6
0.7

0.44
0.61
0.23
0.16
0.35
0.31
0.3
0.17

2
0.44
0.54
0.77
0.43
0.65
0.49
0.63
0.96
0.45
0.43

3
0.32
0.36
0.14

0.7
0.44
0.84
0.65
0.56
0.63
0.03

4
0.53
0.39
0.7
0.98
0.85
0.64
0.35
0.19
0.36
0.11

5
0.03
0.33
0.44
0.77
0.61
0.49
0.22
0.67
0.88
0.44

5
0,0242
0,1638
0,3536
0,5116
0,2381
0,2413
0,0413
0,0336
0,6969
0,0033

6
0.25
0.73
0.93
0.14
0.46
0.03
0.78
0.97
0.06
0.32

6
0,2435
0,3771

0,735
0,0906
0,174
0,0102
0,1625
0,0476
0,0465
0,0027

0.1
0.07
0.42
0.21
0.04

0.7
0.12
0.49
0.91
0.57

7
0,099
0,0376
0,331
0,1393
0,0157
0,3391
0,0217
0,025
0,7293
0,0036

8
0.61
0.94
0.45
0.56
0.33
0.72

0.004
0.95
0.18
0.88

8
0,5921
0,4884
0,3542
0,3621
0,1263
0,3463
0,0006
0,0496
0,1402
0,0043

9
0.09
0.99
0.05
0.11
0.56
0.27
0.67

0.2
0.25
0.47

9
0,086
0,516

0,0371
0,069
0,2215
0,1292
0,1291
0,0083
0,204
0,0031

10
0.96
0.85
0.36

0.4
0.26
0.46
0.34
0.45
0.37
0.49

10

0,926
0,4442
0,2808
0,2601
0,1032
0,2203
0,0702

0,023
0,2944
0,0038

0
0.96575059
0.51699138
0.79399211
0.65547171
0.39025382
0.47775207
0.20034661
0.05172766
0.79630038

0.0062966

64

N e e S S R S A=)

