
1

University of Piraeus

Department of Digital Systems

M.Sc. Digital Systems and Services

Big Data and Analytics

Thesis by Kalderemidis Alexandros St.

Experimental Evaluation of Online

Classification Models

Supervisor: Telelis Orestis

2018-2019

2

3

Abstract

 In this thesis we compare experimentally several online machine learning

methods, for classification. The term "online" refers to the fact that the classifier

examines the training examples one by one and not as a whole dataset, and

additionally the classifier's decision is irrevocable. We evaluate their performance on

three different datasets. Specifically, the online learning methods used are

Perceptron, Support Vector Machines (SVMs), Winnow, Logistic Regression (LR),

along with kernel methods for Perceptron and SVM. The datasets used cover real-life

application fields. The first dataset is used to predict spam e-mails, the second for

cancellation of shipment and the third for constant surveillance of people suffering

epilepsy. After transforming the datasets to the desired form, we implement the said

methods and algorithms from scratch using Python, evaluate the models created and

present our results. Our findings are summarized as follows. First, the kernel methods

do not outperform the non-kernel ones, due to the lack of quantity of training

examples. Second, the Winnow performance was poor, probably due to its lack of

negative correlation. Finally, we find that the deviation between the models we

created, and the corresponding static models created by Python's sk-learn, was

insubstantial, therefore proving our models' performance was satisfactory.

Περίληψη

 Σε αυτή τη διατριβή συγκρίνουμε πειραματικά διάφορες μεθόδους άμεσης

μηχανικής μάθησης (online machine learning) για κατηγοριοποίηση. O όρος "άμεση"

αναφέρεται στο γεγονός ότι o κατηγοριοποιητής εξετάζει τα παραδείγματα ένα-ένα

και όχι σαν ολόκληρο σετ δεδομένων, συν το ότι η απόφαση του κατηγοριοποιητή

είναι μη ανακλήσιμη. Αξιολογούμε την απόδοσή τους σε τρία διαφορετικά σύνολα

δεδομένων. Συγκεκριμένα, οι ηλεκτρονικές μέθοδοι μάθησης που χρησιμοποιούνται

είναι το Perceptron, οι μηχανές διανύσματος στήριξης (SVM), ο Winnow, λογιστική

παλινδρόμηση (LR), καθώς και μέθοδοι πυρήνα για Perceptron και SVM. Τα σύνολα

δεδομένων που χρησιμοποιούνται καλύπτουν πολλά πεδία εφαρμογής στη ζωή. Το

πρώτο σύνολο δεδομένων χρησιμοποιείται για την πρόβλεψη μηνυμάτων

ηλεκτρονικού ταχυδρομείου ανεπιθύμητης αλληλογραφίας, το δεύτερο για την

ακύρωση της αποστολής παραγγελίας και το τρίτο για τη συνεχή παρακολούθηση

των ατόμων που πάσχουν από επιληψία. Μετά τη μετατροπή των συνόλων

4

δεδομένων στην επιθυμητή μορφή, υλοποιούμε τις εν λόγω μεθόδους και

αλγόριθμους από το μηδέν χρησιμοποιώντας Python, αξιολογούμε τα μοντέλα που

δημιουργήσαμε και παρουσιάζουμε τα αποτελέσματά μας. Τα ευρήματά μας

συνοψίζονται ως εξής. Πρώτον, οι μέθοδοι πυρήνα δεν ξεπερνούν σε απόδοση τις

γραμμικές μεθόδους, λόγω έλλειψης ποσότητας παραδειγμάτων εκπαίδευσης.

Δεύτερον, η απόδοση του Winnow ήταν φτωχή, πιθανώς λόγω της έλλειψης

αρνητικής συσχέτισης. Τέλος, εξακριβώνουμε πως η απόκλιση μεταξύ των μοντέλων

που δημιουργήσαμε, με τα αντίστοιχα στατικά μοντέλα που δημιούργησε η

βιβλιοθήκη sk-learn της Python, ήταν ελάχιστη, συνεπώς αποδεικνύεται πως η

επίδοση των μοντέλων μας ήταν ικανοποιητική.

5

Contents
1. Introduction .. 7

1.1 Different Types of Machine learning ... 7

1.2 Linear Methods .. 9

1.3 Perceptron ... 9

1.4 Support Vector Machines ... 11

1.5 Logistic Regression ... 12

1.6 Winnow ... 14

1.7 Gradient Descent ... 15

1.8 Kernel Methods ... 17

2 Online Machine Learning ... 19

2.1 Online Machine Learning Overview .. 19

2.2 Evaluation of Online Machine Learning Models .. 20

2.3 Online Perceptron .. 21

2.4 Online SVM .. 22

2.5 Online Winnow .. 23

2.6 Online Logistic Regression .. 25

2.7 Incremental Machine Learning with Kernels ... 26

2.7.1 Incremental Perceptron with Radial Basis Function 26

2.7.2 Incremental Support Vector Machine with Radial Basis Function 28

3 Experimental evaluation .. 30

3.1 Datasets ... 30

3.1.1 Spam Mail .. 30

3.1.2 Online retail ... 30

3.1.3 Epileptic Seizure ... 31

3.2 Dataset Handling ... 31

3.3 Experimental Methodology .. 32

3.4 Parameterization of ML Methods ... 32

3.5 Comparative Results .. 33

3.6 Comparative Results - Regret ... 35

3.7 Comprative results - Relative Regret .. 39

4 Conclusion ... 42

5 Bibliography .. 43

6

7

1. Introduction

 This research focuses on the use of online machine learning algorithms in

order to provide predictive models for real world problems. We compare the

performance of six different online learning algorithms (Perceptron, SVM, Logistic

Regression, Winnow, RBF-Perceptron, RBF-SVM) and try to minimize their error rate

by tuning their hyper-parameters. The datasets used are Spam, where we predict if a

new mail is spam, Online Retail, where we predict if an incoming order is going to be

cancelled, and Epileptic Seizure, where we monitor people suffering from epilepsy

and we monitor if they are currently having an epileptic seizure episode. Our results

show that the kernel methods are not necessarily more reliant with respect to non-

kernel methods with regards to performance, the Winnow performance was poor

because of its inability for negative correlation and that the deviation between our

models and sk-learn's models was insubstantial.

 In the first chapter we discuss machine learning in general, meaning how it

works, what are the linear methods, how we measure the performance of an

algorithm and how to overcome the obstacle of having to deal with non-linear

decision boundaries. In the second chapter we focus on online machine learning,

that is the changes that have to take place in order to turn a method from offline to

online, and how to evaluate their performance. In the third chapter we provide more

information on the specifics of the datasets and our methodology, along with

providing our results. In the forth chapter we discuss the conclusions of our research

and provide possible improvements or changes concerning our research. Finally, in

the fifth chapter you can find the citation used in order to actuate this research.

1.1 Different Types of Machine learning

 The machine learning training process is as follows. First, we create a weight

vector which we initialize with values equal to zero or a small arbitrary number.

Then, we separate the features or attributes of the dataset from what we want to

predict (called class or label). The algorithm then takes a new incoming feature

vector from the dataset, uses the weight vector and predicts the label. If necessary,

which most commonly means if the prediction was wrong, the weight vector is

updated using an update rule. This process is continued until the whole dataset has

been parsed, or another stop condition is met.

 The most common and well-known type of machine learning is the

supervised learning. In supervised learning, when we train our model, we already

know the labels of the data and train the model as such. For example, let's say we

8

are working for a marketing agency and we want to run specific ads for our clients. In

this scenario we collect information for our client and based on his behavior and

preferences, we build a model feeding it input-output pairs, or in other words, we

have the knowledge of all labels of our data. Supervised learning algorithms include

K-nearest neighbors, decision trees, neural networks, naive Bayes, logistic

regression, support vector machine and many more.

 The next type of machine learning is unsupervised learning. In unsupervised

machine learning, we have no prior knowledge of our labeled data. Or in other

words, we don't know the labels of our data. Using this type of machine learning, we

try to find the commonalities in data. Let's assume that a new microbe is discovered

and we want to learn if it dangerous, but obviously, we cannot test it on humans or

animals. A way to approach this problem, would be to train a model of some

microbes that are known to be dangerous and other harmless, and if the new

microbe belongs to the dangerous group, we can decide (with a certain error margin)

that it could be dangerous, or vice versa. Unsupervised learning methods include

Clustering, dimensionality reduction, principal component analysis, anomaly

detection and others.

 Between supervised and unsupervised, there is semi-supervised learning. In

semi-supervised learning, we have some knowledge of the labeled data, meaning

that we have some information which is limited, and we want to maximize the use of

it. Big companies like YouTube, Amazon and Netflix use semi-supervised learning to

improve customer experience. Let's say we just subscribed on Netflix and have only

watched one movie, the Lord of the Rings. Other people have also watched this

movie, and based on them (rather than us), they also liked the Harry Potter movie,

so the Netflix algorithm will suggest Harry Potter to us. Using this method, Netflix

doesn't just know that we will probably like Harry Potter, but rather it knows the

probability of us liking every single movie in their database! semi-supervised learning

methods include generative models, low-density separation, graph-based methods,

heuristic approaches and latent factor models.

 Another type of machine learning is reinforcement learning. In reinforcement

learning, rather than data, the machine is given an environment, in which it should

maximize its reward. A very common use of reinforcement learning is in several

games, such as the game of chess. The machine starts out as "unintelligent",

meaning it only knows how to play the game, but not well. The human agent, the

person training the machine, provides some knowledge of the game, either through

actual games of good players, or through general chess knowledge (castle as soon as

possible, don't move the pawns in front of your king, take control of the center etc.).

The machine slowly learns what moves to prioritize and avoid, but always seeks its

reward mechanism, for example, victory

9

1.2 Linear Methods

 When dealing with classification problems, many well-known algorithms fall under

the category of linear methods, due to their efficiency and accuracy. Linear methods take

their name from the fact that they use a line to separate the labels of the data, using the

equation:

𝒘 ∗ 𝒙 + 𝑏 = 0

Figure 1: Example of linear method separation of data

where y is the label, w is the weight vector which indicates the importance of a given

attribute, x is the attribute vector and b is a constant. Depending on which algorithm we use,

the goal of a linear method is to optimize this line according to a criterion measuring the

accuracy of the dataset.

1.3 Perceptron

 The Perceptron, as proposed by Rosenblatt (1958) is another well-known

machine learning algorithm that many scientists of the field have studied. Since that

time, further research has evolved this algorithm, each towards a certain

improvement. In [20], the researchers manage to develop distributed training

strategies, and thereby reducing the training time, when computer clusters are

available. Another research [22] focuses on improving the accuracy by bounding the

number of mistakes, using eigenvalues and a parameter controlling the sensitivity of

10

the algorithm. Using this technique the experimental results showed a twenty to

thirty percent increase in accuracy compared to the Perceptron. Further research

with the goal of increasing the accuracy has been done in [17] with the introduction

of the boosting algorithms, whose idea is to combine many weak learners in order to

create a strong and accurate classifier.

 The perceptron is a popular machine learning algorithm proposed by

(Rosenblatt, 1958; Collins, 2002). It is one of the most famous and oldest machine

learning methods that is used for both classification and regression.

 Consider a dataset with target values y(where yϵ{-1, 1}), and a set of

attributes x. This algorithm maintains a weight vector w with initial values equal to

zero or a random number between minus one and one. In each iteration t, it receives

a new data point with attributes 𝒙𝒕, and using the w predicts the class of the new

data point, using the 𝒔𝒊𝒈𝒏(𝒘 ∗ 𝒙) function, where:

𝒘 ∗ 𝒙 = ∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖=1

Figure 2: The Perceptron algorithm

 The model then checks if the prediction was correct or not. In case the model

misclassified the data point, the weight vector w is updated using the update rule:

𝒘𝒋 ∶= 𝒘𝒋 + 𝑛 ∗ 𝑦𝑡 ∗ 𝒙𝒕

11

where n is the learning rate, a constant used to control the step size of the

convergence of a model. The algorithm stops when it performs a certain number of

iterations. For more information, please consult [32].

1.4 Support Vector Machines

 Online support vector machines have been thoroughly studied by many

machine learning experts throughout the years. It was first proposed by [6], who also

had the revolutionary idea of creating a prediction model whose training time was

independent of the size of the dataset. In [24], using a new design of storage and

numerical operations, managed to train SVM models five to twenty times faster than

the previously known models. Another breakthrough regarding SVMs was the

creation of LIBSVM [15], a library available to the public which is evolving until today

and provides many options to the user such as classification, regression, probability

estimates, feature selection and more with excellent accuracy and training times.

Finally, in [26], we come across a radical idea of suppressing the effect of outliers

and therefore decreasing training time and improving robustness without sacrificing

generalization or performance, along with gaining the ability of better scaling of the

data.

 The Support Vector Machine (SVM) is a machine learning method used for

classification and regression. SVMs are one of the modern ML methods and have

gained popularity due to their strong theoretical background and exceptional results.

 In order to separate the data points of a given dataset with two classes {-1,1},

there are infinite decision boundaries. The way SVMs work, they try to find the

optimal line (or hyperplane) to divide the data points. The optimal boundary is the

line that has equal distance from the closest points of each class.

 Consider a dataset with binary target values y (where yϵ{-1, 1}), and a set of

attributes x. SVMs also keep a weight vector in memory, with initial values equal to

either zero or some small random number 𝑤0 ϵ [0,1]. Each iteration t, the SVM

performs a prediction using the sign(w*𝒙𝒕) function (where 𝒙𝒕 the attributes of the

new data point). Then, the algorithm verifies if its prediction was correct or not and

updates the weight vector w accordingly.

12

Figure 3: SVM boundaries

 In a problem with two classes, we assume that the data points are separable

with a straight line 𝒘 ∗ 𝒙 + 𝑏, which indicates the existence of w and b such that for

each training example 𝑖 = 1,2, … , 𝑚 the sign of 𝒘 ∗ 𝒙𝒊 + 𝑏 is the same as the sign of

𝑦𝑖. Therefore, we solve the following equation to find w and b:

𝑤, 𝑏 = 𝑎𝑟𝑔 min
𝑤,𝑏

1

2
||𝑤||

2

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑦𝑖(𝑤 ∗ 𝑥𝑖 − 𝑏) ≥ 1, 𝑤𝑖𝑡ℎ 1 ≤ 𝑖 ≤ 𝑚

 This mathematical optimization can be solved by either Convex Optimization,

Gradient Descent[6] and Sequential Minimal Optimization[15].

 For more information on the topic, please visit [33].

1.5 Logistic Regression

 Logistic regression is a well known machine learning method that has been

studied extendedly by many scientists of the field. In [14], Francis Bach proves that

by having an adaptive step-size (instead of a constant one) the convergence rate

improves, therefore reducing the training time. In [29], a new kind of logistic

regression which combines a forgetting factor and posterior predictive distribution is

proposed, for the purpose of overcoming confidentiality breaches by only

temporarily storing the data. Finally, in [21] the researchers study the use of logistic

13

regression on encrypted data along with reducing the computational cost and

application of parallelization techniques.

 Logistic regression, despite its misleading name, is a probabilistic binary

classifier. It is a machine learning algorithm and belongs to the family of linear

methods. Logistic regression uses the sigmoid function to calculate the probability of

the label of an example be "0" or "1"like so:

𝑝(𝑦 = 1 |𝒙) = ℎ(𝒙) =
1

1 + exp (−𝒘 ∗ 𝒙)

𝑝(𝑦 = 0 |𝒙) = 1 − 𝑝(𝑦 = 1 |𝒙) = 1 − ℎ(𝒙)

where y is the label, w is the weight vector, x is the feature vector and h, the

hypothesis. Note that the sigmoid function is (𝛼) =
1

1+exp(−𝑎)
 . For every training

example, the logistic regression model utilizes the sigmoid function, using the

current weights and attributes, and predicts if the label of the example is 0 or 1. In

order to train a logistic regression model, we have to optimize the weights by

calculating the following:

Figure 5: Logistic Function

14

𝒘̇ = arg min
𝒘

{
1

𝑚
∗ ∑ log(1 + 𝑒𝑥𝑝(−𝑦𝑖(𝒘 ∗ 𝒙)))

𝑚

𝑖=1

 }

where 𝑤𝑇 the transposed weight vector. For more information, consult [34].

1.6 Winnow

 The Winnow algorithm is an online learning algorithm that has been

researched thoroughly. One of the most important research is [28], which proposes

a regularized Winnow, that is the winnow algorithm but with a modification so that

the weights do not exceed a certain threshold. Using this modification, both

accuracy and speed are increased based on the results. Another very interesting

paper [13] explains how it utilizes the Modified Balanced Winnow algorithm in order

to detect various types of computers attacks in real time. Finally, Winnow has been

used in various research for text analysis purposes, for example in [27,28], due to the

algorithm's natural robustness to irrelevant features.

 The Winnow algorithm is a machine learning algorithm created by Littlestone

[8] and is used for classification. It is similar to the Perceptron with the exception

that the weight update is multiplicative, instead of additive. The advantage of

winnow is that it tends to perform better when the dataset has many irrelevant

attributes and few relevant. There are different versions of this algorithm, we are

going to examine the most basic, the "Winnow 1".

 The algorithm initializes a weight vector w with initial values equal to one and

takes as input boolean features x. The algorithm multiplies the weight vector with

the input vector, makes a prediction and proceeds to update the weight vector if

necessary.

15

Figure 6: The Winnow1 Algorithm

 Specifically, a prediction is performed using this pattern:

𝑖𝑓 ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚

𝑖=1

> 𝛩 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 1

𝑖𝑓 ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚

𝑖=1

≤ 𝛩 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 0

where θ is the threshold, a constant. The algorithm then checks if the prediction was

correct or not and acts accordingly. There are three different responses. If the

prediction was correct, the algorithm does nothing. If the prediction was incorrect

and the real value was 0, for every attribute that was 1, the corresponding weight is

set to 0, or mathematically ∀ 𝒙𝑖 = 1 => 𝒘𝑖 = 0. Finally, if the prediction was

incorrect and the real value was 1, the corresponding weight is multiplied by n

(called promotion step), or ∀ 𝒙𝑖 = 1 => 𝒘𝑖 = 𝑛 ∗ 𝒘𝑖 .

 For further information, please visit [1].

1.7 Gradient Descent

 When solving an optimization problem, there are many possible solutions.

Each solution has a certain error rate. Gradient descent is an optimization algorithm

used extensively in machine learning for the purpose of minimizing a cost

16

function𝐽(𝑤), which represents a classification error, therefore reducing the error

rate to the minimum possible.

 Gradient descent assigns random initial weights w to the cost function. It

then parses the whole dataset and calculates the cost (or loss) for using those

weights. After that, it uses the negative derivative (or slope) to redistribute the

weights. In order to control the rate of change regarding the weights, gradient

descent also utilizes a constant n called learning rate.

 Mathematically, gradient descent is described as:

𝑤𝑗 ∶= 𝑤𝑗 − 𝑛 ∗
𝜕𝐽(𝑤)

𝜕𝑤𝑗

 This process continues until a certain condition is met, for example a small

error improvement from one iteration to the next. When using gradient descent, we

also have to be careful when tuning the learning rate. If the learning rate is too

small, the convergence will need many iterations over the dataset, therefore

increasing the time needed. If it is large, we increase the chance of deviating from

the minimum (overshooting).

Figure 4: Gradient descent

 Gradient Descent is mostly used for offline machine learning algorithms. For

online learning algorithms, we will use Stochastic Gradient Descend.

17

1.8 Kernel Methods

 Kernel SVMs are widely used and studied due to their phenomenal accuracy

and ability to interpret non-linear results. One of the studies [25] focuses on

automatically adapting the step size using the Stochastic Meta Descend algorithm,

which increases the speed needed to train a predictive model by needing fewer

iterations. In [19], the researchers propose a new kind of SVM that is scalable on

limited resources, which they call LLSVM (Low-rank Linearized SVM), by transforming

a non-linear SVM to a linear one via an empirical kernel map computed from

efficient kernel matrices. Finally, in [16], a state-of-the-art SVM is proposed called

Divide and Conquer SVM (DC-SVM), which partitions the problem of training a model

into subproblems by clustering the data, and achieving excellent accuracy and speed

between seven and one hundred times faster than the LIBSVM library.

 Kernel Perceptron is an infamous online learning algorithm that has been

used and studied for academic and business purposes due to its state-of-the-art

performance. In [18], the researchers come up with the Projectron, which instead of

discarding previous online hypotheses, it projects them onto a new space, which

proves to improve the algorithm's performance. In [23], emphasis is given in

reducing the memory usage, which is done by restricting the number of examples

the algorithm stores, and therefore "forgetting" the rest, while maintaining a relative

mistake bound. Finally, in [30] the Tighter Perceptron is introduced, which supresses

the number of misclassified training points keeping only those who help increase the

accuracy, therefore drastically increasing the model's performance.

 When using the linear methods, we make the assumption that the dataset is

linearly separable. However, for most of the real world datasets this is not true. In

general, kernel methods solve this problem by taking the data from the original

space (or input space) and projecting it to higher dimensions (or feature space) until

the data is linearly separable.

18

Figure 7: Kernel method projecting a 2D dataset in 3D

 Mathematically, a kernel function has the following form:

𝑘(𝑥, 𝑥′) = 𝜑𝛵(𝑥) ∗ 𝜑(𝑥′) = 〈𝜑(𝑥), 𝜑(𝑥′)〉

which is the inner product of the vectors φ(x)and φ(x') in the feature space. There

are many different types of kernel methods, as presented below:

Radial Basis Function (RBF): 𝑘(𝑥, 𝑦) = exp (−
|𝑥−𝑦|2

2𝜎2)

Sigmoid: 𝑘(𝑥, 𝑦) = tanh (𝑎 ∗ 𝑥𝑇 + 𝜃)

Polynomial:𝑘(𝑥, 𝑦) = [𝑥𝑇𝑦 + 𝑐]𝑑

with each method having its pros and cons. In specific, the most common type of

pros and cons is the tradeoff between accuracy of prediction and explanation of

results. The more you increase accuracy, the less likely it is one is able to interpret

the results, like which parameter is important, and vice versa. In our research, we

will use the radial basis function kernel, combining it with the Perceptron and the

Support Vector Machine. For more information on the topic, please consult [35].

19

2 Online Machine Learning

 In this section we discuss online learning and other specifics used in our

research. We present the theory behind the algorithms used and how we evaluated

the models we constructed.

2.1 Online Machine Learning Overview

 In machine learning, or offline machine learning, in order to create a model

which predicts we view a dataset as a batch, take all the training examples to train

the network and act accordingly. In online machine learning, or online learning for

short, the data becomes available to the model in a sequential order.

 Specifically, an online learning algorithm operates as follows. First, it

initializes a weight vector w (with zeros or random numbers between negative one

and one). Then, in time t (which represents the natural number of the training

example), a new feature vector arrives which the algorithm uses along with the

weight vector and predicts the class of the training example. If necessary, which

regularly means if the prediction was wrong, the weight vector is updated using its

corresponding update rule. The algorithm then continues to the next example, until

every training example has been parsed. This is the most common online machine

learning procedure, but there are other similar procedures, like random parsing

instead of serial.

 The typical learning process for an online model is as follows. After stating

what we want to predict and find the relevant data, we distinguish the attributes

and labels, and pick an online learning algorithm. In the beginning, our model is

"dumb" in the sense that it only knows the first (of many) training example and has

been trained with only this. Then, the model is given the second example and the

algorithm adjusts in order to explain both data points. In this way, the model is

eventually fed all the information. As time progresses and the more training

examples are fed to the model, it keeps getting "smarter", so as to adapt for the

purpose of explaining all the examples.

 But why would someone choose to use online learning? There is a plethora of

reasons. First and foremost, in online learning the algorithms have adaptability,

meaning that if there is a change in the trend, the algorithm gradually understands it

and proceeds with that "in mind". After that, there are many algorithms that bound

the number of possible mistakes an online model can make, assuring that there is

quality in the type of predictions that the model makes. Finally, in online learning, it

20

is much easier and cheaper to deal with large quantities of data. In offline learning,

one would typically need to train a model doing hundreds or even thousands of

iterations over the same dataset, whereas in online learning, the data is only parsed

once. For all these reasons, online learning is considered a staple in machine learning

theory.

2.2 Evaluation of Online Machine Learning Models

 In offline machine learning, there are various metrics we use in order to

determine the quality of a given model. Although, for offline models we deal with

the data as a batch. In online machine learning we deal with, and care for, the

progression of the data. So the conventional offline metrics cannot be used for

online machine learning.

 In online machine learning, we assess the value of a model using regret, and

measuring the cumulative loss over a sequence of examples. We assume that the

data were generated by an unknown, yet fixed, hypothesis h such that 𝑦𝑡 = ℎ(𝑥𝑡)

for 𝑡 𝜖 𝑇 and the entire sequence has no loss. Should this be the case, it is preferred

that the loss of our model be independent of T. But in reality, there is no such

hypothesis, so rather than searching for the ideal hypothesis, we calculate the

hypothesis that has the least cumulative loss of all hypotheses. Therefore, for every

hypothesis ℎ 𝜖 𝐻 we define as regret, the excess loss for not consistently predicting

with the hypothesis ,

𝑅(ℎ, 𝑇) = ∑ 𝑙(ℎ𝑡, (𝑥𝑡, 𝑦𝑡))

𝑇

𝑡=1

− ∑ 𝑙(ℎ, (𝑥𝑡, 𝑦𝑡))

𝑇

𝑡=1

or in other words, for every hypothesis we calculate the loss of the current

hypothesis compared to the "perfect" hypothesis.

 In our research, we define as the "perfect" hypothesis two different types of

hypotheses. The first one, is an offline model created with the use of Python's

sklearn library, which we arbitrarily call relative regret. For the second one, we

assume an actual perfect hypothesis with zero errors over T.

 A typical and desirable regret plot has increased error values for small T and

as time progresses the error rate,
𝑅(ℎ,𝑇)

𝑇
, drops drastically approaching zero,

simulating the transition from a bad learner to a good one. An example of a regret

plot is as shown below at Figure 8.

21

Figure 8: Regret Plot

 For more information on regret, we recommend [17].

2.3 Online Perceptron

 This method maintains a weight vector w. Each iteration t, it receives a new

data point with attributes 𝒙𝒕, and using the 𝒘𝒕predicts the class of the new data

point, using the 𝒔𝒊𝒈𝒏(𝒘𝒕 ∗ 𝒙𝒕) function. In case that the classifier missclassified the

data point, w is updated by 𝒘𝒕 = 𝒘𝒕 + 𝑛 ∗ 𝑦𝑡∗𝒙𝑡, where n is the learning rate (n>0),

and 𝑦𝑡 the real label of the data point. If the prediction was correct, the weights stay

the same.

Chart 2: Online Perceptron pseudocode

22

 The algorithm is given a set of m examples like so:

 {(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), . . , (𝑥(𝑚), 𝑦(𝑚))}

and sees the examples one by one. In particular, it first sees 𝑥(1), and we ask it to

predict the class of 𝑦(1). The perceptron makes its prediction and the true label is

revealed and it uses this information to induce learning by readjusting the weights if

need be. Then, we give the algorithm the second example (𝑥(2)) , we ask it to

predict 𝑦(2), we show the true label, and again it performs learning. Likeso, we feed

it every training example [36].

2.4 Online SVM

 As in offline SVMs, online SVMs are also a linear method which uses a line (or

generally a hyper-plane for higher dimensions) to separate the two classes of the

data.

 Online SVMs also keep a weight vector in memory, with initial values equal to

either zero or some small random number 𝑤0 ϵ [0,1]. Each iteration t, the SVM

performs a prediction using the 𝒔𝒊𝒈𝒏(𝒘𝒕 ∗ 𝒙𝒕)function (where 𝒙𝒕 the attributes of

the new data point). Then, depending on the outcome of a certain equality (as

explained below), the model induces learning as follows. If 𝑦𝑡 ∗ (𝒘𝒕 ∗ 𝒙𝒕) < 1

(where 𝑦𝑡 the real label of the new data point) , we update the weight vector by 𝑛 ∗

(𝒘𝒕 − 𝐶 ∗ 𝑦𝑡 ∗ 𝒙𝒕) , where n the learning rate and C the regularization parameter. In

this case, we have misclassified the instance so the weights are updated by a larger

amount. If 𝑦𝑡 ∗ (𝒘𝒕 ∗ 𝒙𝒕) > 1 , we update the weight vector by 𝑤𝑡 − 𝑛 ∗ 𝑤𝑡 . In this

case we have correctly classified the instance but we want to bring the decision

boundary closer to the correctly classified instance. If 𝑦𝑡 ∗ (𝒘𝒕 ∗ 𝒙𝒕) = 1 the weights

remain the same [36].

23

Figure 9: Example of changing decision boundary

Chart 1: Online SVM pseudode

2.5 Online Winnow

 The winnow algorithm maintains a non-negative weight vector w, with initial

values equal to the uniform weight vector with values summing to one. As an input,

we also choose a learning rate n. At each iteration, we predict the label of the

incoming data point using the 𝒔𝒊𝒈𝒏(𝒘𝒕 ∗ 𝒙𝒕)decision function (where 𝒙𝒕 is the

24

attribute values of the new data point). If we misclassified the data point, we first

calculate a normalization factor Z, where:

𝑍 = ∑ 𝒘𝑡 ∗ exp (𝑛 ∗ 𝑦𝑡 ∗ 𝒙𝑡)

𝑁

𝑖=1

and N the number of features. After obtaining zeta, we need to update weights using

the rule:

𝒘𝒕 ∶=
𝒘𝒕 ∗ exp (𝑛 ∗ 𝑦𝑡 ∗ 𝒙𝒕)

𝑍

 It is worth noting that since the initial weights are positive and the updating

rule is multiplicative and positive, the weights are always positive. In this way, we

manage to easily distinguish the relevant features as they will grow faster than in a

Perceptron. Therefore, it is theoretically proven that Winnow makes fewer mistakes

than the Perceptron if the number of relevant features is much smaller than the

total number of features.

 For more information, please consult [1].

Chart 3: Online Winnow pseudocode

25

2.6 Online Logistic Regression

 Online logistic regression is an online learning algorithm that uses

probabilities to determine if a data point should be positive or negative. It keeps in

memory a weight vector wand an attribute vector x. The values of the target

label𝑦 ϵ {0,1}, instead of {-1,1}.

 Online logistic regression first creates a hypothesis,

ℎ =
1

1 + exp (𝒘𝒕 ∗ 𝒙𝒕)

using the logistic function. It then predicts the class label of the incoming training

example using the decision function:

𝑦 = 1, 𝑖𝑓 ℎ > 𝜃

𝑦 = 0, 𝑖𝑓 ℎ ≤ 𝜃

where θ is the threshold, a constant (typically about 0.5). Then, the real value is

revealed to the model, triggering an update to the weight vector if the prediction

was incorrect, using the following update rule:

𝒘𝒕 ∶= 𝒘𝒕 − 𝑛 ∗ (𝜃 − 𝑦𝑡) ∗ 𝒙𝒕

26

Chart 4: Online Logistic Regression pseudocode

2.7 Incremental Machine Learning with Kernels

 In online machine learning, when the algorithm sees a training example, it

immediately discards it for the next (example). But in order to use kernel methods,

and particularly dual methods, we need to have a set of support vectors which we

will use in order to further train the algorithm. Therefore, we need to keep in

memory a certain number of training examples. The solution to this problem is to

use incremental learning, which remembers a specific amount of examples that it

uses in order to train and predict. According to each application, the amount of

examples kept in memory may differ, but the logic that we store some examples and

their features remains.

2.7.1 Incremental Perceptron with Radial Basis Function

 Kernel methods in incremental learning are also used to find a decision

boundary that is non-linear. The kernel Perceptron algorithm in this case maintains a

vector α rather than the weight vector, also known as the Lagrange variable. This

vector represents the coefficients assigned at each data point 𝒙𝒕, 𝑡 𝜖 [1, 𝑇]. The

initial values of this vector are typically zero. For the purpose of predicting the label

of our training example, we use the 𝑠𝑖𝑔𝑛(𝒘 ∗ 𝒙𝒕) function as well, but in this case:

27

Chart 5: Incremental RBF-Perceptron pseudocode

𝒘 = ∑ 𝑎𝑡 ∗ 𝑦𝑡 ∗ 𝐾(𝒙𝒕, 𝒙𝒔)

𝑇

𝑡=1

= ∑ 𝑎𝑡 ∗ 𝑦𝑡 ∗ exp (−
(𝒙𝒕 ∗ 𝒙𝒔)𝟐

𝟐𝝈𝟐
)

𝑇

𝑡=1

Each time the model makes an incorrect prediction, 𝑎𝑡 is incremented by one for the

particular data point and 𝒙𝒔represents (the attributes of) those data points that

were previously misclassified. For example, if we are about to predict the 10th data

point and example 3 and 7 were misclassified, those examples are going to have an

a equal to one, and we will use their attributes in order to predict the 10th data

point.

 An update for 𝑥𝑡, is almost identical to augmenting the weight vector w with

𝑦𝑡 ∗ 𝑥𝑡, showing that this algorithm matches the standard Perceptron algorithm.

Figure 10: Example of non-linear boundary

28

2.7.2 Incremental Support Vector Machine with Radial Basis Function

 The attribute vector x are mapped into higher dimensions to find a non-linear

decision boundary as 𝜑(𝑥), with C>0 being the penalty parameter, and solve the

following dual problem:

min
𝑎

 𝐹(𝑎) =
1

2
𝑎𝑇𝑄𝑎 − 𝑒𝑇𝑎

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑎𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑙,

𝑦𝑇𝑎 = 0

where e is a vector of ones, and Q is a positive semi-definite matrix. The (𝑖, 𝑗) −th

element of Q equals 𝑄𝑖𝑗 = 𝑦𝑖 ∗ 𝑦𝑗 ∗ 𝐾(𝑥𝑖𝑥𝑗) and 𝐾(𝑥𝑖, 𝑥𝑗) = exp (
−||𝑥𝑖−𝑥𝑗||

2

2𝜎2)since we

chose the RBF kernel. Finally,

𝑤 = ∑ 𝑎𝑖𝑦𝑖𝜑(𝑥𝑖)

𝑙

𝑖=1

and,

𝑠𝑖𝑔𝑛(𝒘𝑻𝜑(𝑥)) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑖𝑦𝑖 exp (
− ||𝒙𝒊 − 𝒙𝒋||

2

2𝜎2
)

𝑙

𝑖=1

)

is the decision function used to classify an incoming data point. For more

information on the topic, we recommend [5].

29

Chart 6: Incremental RBF-SVM pseudocode

30

3 Experimental evaluation

 In this section, we present the methodology and results of our research. We

evaluate our models . First, we present the regret for linear methods, then regret for

kernel methods, and after that we present the relative regret for linear methods and

kernel methods. The results were satisfying for the most part, with the exception of

winnow.

3.1 Datasets

 In this section we discuss the datasets used for this research. The datasets

were chosen due to their size (many data points), they have two classes, and

because of their importance on real world applications. Finally, the source for these

datasets is the UCI open source machine learning repository.

3.1.1 Spam Mail

 The objective for this dataset is to predict whether the mails are spam or not.

This is a usually studied subject since billions of e-mails are transferred daily for

several reasons such as prevent schemes and unwanted advertisements. The target

value for this class is "0" or "1", referring to whether the mail is spam or not. There

are in total 57 attributes concerning the word frequency, the number of capital

letters, the longest sequence of uninterrupted capital letters and other, and 4600

instances. For more information on this dataset, please visit [4].

3.1.2 Online retail

 Our objective for this dataset is to predict whether a specific order will be

cancelled. Online shops are increasing by the day. For a company to maximize its

profits one, it must minimize the loss, and predicting order cancellations plays a big

part in such a process. This dataset contains 541099 instances and 7 attributes

concerning the time of placement of order, the country, customer identification, the

type and quantity of product and other. This dataset is a time-series, ordered by the

time of transaction, and since we use the nominal feature of date as a feature in our

dataset, it means that we can't shuffle this dataset because it will affect the model's

correlation with the original ordering. Also, for this dataset there are only 6000

31

instances of cancellation of order and the rest are not. This does not necessarily pose

a problem, because we can predict that the order will be cancelled (even if it

doesn't), and act accordingly, for example increase the shipping cost or apply a no-

refund policy. For more information on this dataset, please visit [3].

3.1.3 Epileptic Seizure

 With the progress of technology there has been an uprising in protection and

prevention of spiraling negative incidents for susceptible social groups. In this

dataset there are over 11500 instances, and it has 178 attributes. The attributes

keep track of several medical data. This data is a succession of several time-series

(each of which is for a person), ordered by time, for several individuals and depicts

the general behavior of a patient for nearly 23 seconds. Our goal is to predict if a

person is currently having an epileptic seizure. For more information on this dataset,

please visit [2].

3.2 Dataset Handling

 In machine learning, our data is almost never in the desired form. A

necessary step before dealing with machine learning algorithms, is to shape the data

according to the needs of each algorithm. In our case, we use various linear

algorithms, so our main objective is to regularize the data in the range {-1,1}.

Technically, this is not possible because we do not have the whole dataset, but we

can use it if we know the upper and lower boundaries of our features. In this section

we discuss the changes made in each dataset to achieve this.

 For Spam and Epileptic Seizure datasets, the methodology was relatively easy.

After reading the data, we separate the attributes and label in two different

variables, and scale each attribute to the range {-1,1}. As for the labels, in the spam

dataset there are only two values "0" and "1", so we make it "-1" and "1". For the

epileptic seizure there are five classes, but only one of them is described as "having a

seizure" and the rest are not, so we set the value of having a seizure as "1" and not

having a seizure as "-1" (which is a common treatment for this dataset according to

its description [2]).

 For Online Retail dataset, there were various non-numerical values. In the

dataset description, it mentions that cancelled orders are mentioned with a 'C'

before the number of items bought (e.g. C32 means a person ordered 32 items and

cancelled the order). Therefore, we isolate the 'InvoiceNo' column, and if the string

32

begins with a "C" we mark it as -1 and if not, we mark it as 1. As for the attributes,

we take all the numerical and leave the nominal, and then scale it to {-1,1}.

3.3 Experimental Methodology

 For this research, the experimental process that took place was the same for

all ML methods. Even though six different online machine learning methods were

implemented, they all had a similar structure for efficiency and consistency

purposes. First of all, we normalized the data, which cannot technically be used in

online learning, but is possible if we know the upper and lower bounds of our

features. Next, we shuffled the datasets 10 times to remove any bias based on order,

but we didn't shuffle for the online retail dataset, because it was ordered by time

which was used as a feature. After that, we had a section in which we tuned the

hyperparameters of each method (for example in SVM, we had the hyperparameters

C and n). Next, we created a variable that would save the predictions our model

would make. Now, according to the ML method used, we had a section

implementing each method and saving the predictions of the model. An important

side note is that the dataset was accessed just once and in a serial way (starting from

the first data point all the way to the last). Finally, we split each dataset in 10 chunks

(where a chunk equals 1/10 of the length of the dataset) and counted the errors in

each chunk (for example if a dataset had one thousand data points, we split it into

ten one-hundred chunks) to help us measure both regret and relative regret. In

order to measure relative regret we created another model using the sklearn library

from python and would save the errors of this model on the same chunks, and

compare it to our model's errors. Noted, the procedure of chunking might not be the

most "correct" (because the model changes with each data point and, technically,

should be treated as such), but it is the most computationally efficient since our

resources are finite and it does capture the progression of the model. In order to

measure relative regret, we trained an offline model using a 50/50 split for

training/testing, and we chose the 50/50 split because we wanted to have the least

amount of training examples given as training and the maximum amount of

examples to predict.

3.4 Parameterization of ML Methods

 On Table 1 we provide the parameters used for each method on each

dataset. Several tests took place in order to maximize the efficiency of each method.

According to the parameter many ranges and different combinations of parameters

were used (for example in SVM which has more than one parameters) in order to

achieve a desirable regret with downwards trend and low overall error rate.

33

Dataset Method Parameters

Epileptic Seizure Perceptron n=0.05

SVM C=20
n=0.05

Logistic Regression n=0.5
threshold=0.5

Winnow -

RBF-Perceptron gamma=1018

RBF-SVM C=1

gamma=2*10−5

Spam Perceptron n=1

SVM C=1000
n=0.0002

Logistic Regression n=0.5
threshold=0.5

Winnow n=300

RBF-Perceptron gamma=105

RBF-SVM C=10
gamma=108

Online retail Perceptron n=0.05

SVM C=20
n=0.05

Logistic Regression n=0.2
threshold=0.5

Winnow -

RBF-Perceptron gamma=2 ∗ 10−5

RBF-SVM C=107

gamma=2 ∗ 10−5

Table 1: Parameter Tuning

3.5 Comparative Results

 In this section we compare the results for each method. We explore the

performance of each method on each dataset and the overall performance, using

both regret and relative regret as metrics.

34

Dataset Method Error

Epileptic Seizure Logistic Regression 0.1784

Perceptron 0.1823

SVM 0.1757

Winnow -

RBF-Perceptron 0.1812

RBF-SVM 0.1694

Spam Logistic Regression 0.1204

Perceptron 0.1586

SVM 0.1539

Winnow 0.1586

RBF-Perceptron 0.3244

RBF-SVM 0.3850

Table 2: Οffline error

Dataset Method Ending regret

Epileptic Seizure Logistic Regression 0.2001
Perceptron 0.228

SVM 0.1966

Winnow -
RBF-Perceptron 0.2

RBF-SVM 0.1802

Spam Logistic Regression 0.1937
Perceptron 0.1993

SVM 0.1848

Winnow 0.2848

RBF-Perceptron 0.3609

RBF-SVM 0.4098

Online retail Logistic Regression 0.0219
Perceptron 0.0428

SVM 0.0329

Winnow -
RBF-Perceptron 0.0428

RBF-SVM 0.0176

Table 3: Ending Regret

 On Tables 2 and 3 we also present information about the accuracy of the

offline models and the ending regret of our models. On an offline model, we train it

doing a 50/50 split for training/testing, and use that model to predict all the training

examples, count the errors the same way we counted the online errors, and get the

relative regret by subtracting the offline from online errors.

35

3.6 Comparative Results - Regret

 In this section we compare the results for each method and each dataset,

using the regret metric.

Figure 1: Regret comparison for Spam linear methods

Figure 2: Regret comparison for Spam kernel methods

 For the spam dataset, we see that all methods act as expected, by having a

good downwards trend. SVM, Logistic Regression and Perceptron had the best

36

performance with the lowest error rate and Winnow had a very good decrease in

error. The kernel methods (Figure 2) did not perform quite well, due to the lack of

many training examples, which is necessary when dealing with higher dimensions.

Figure 3: Regret comparison for Epileptic Seizure linear methods

Figure 4: Regret comparison for Epileptic Seizure kernel methods

37

 Regret for Epileptic Seizure dataset, based on Figures 3 and 4, was relatively

good, since all methods (except Winnow which is once again not depicted because of

its high error rate) had a downwards trend. The best performance was from kernel

SVM even if it did not have a good downwards trend.

Figure 5: Regret comparison for Online Retail linear methods

Figure 6: Regret comparison for Online Retail kernel methods

38

 The online retail dataset methods had low overall error rates but no

downwards trend (Figures 5 and 6). This leads us to the conclusion that learning was

not induced, other than in the beginning (since there was no downwards trend). One

reason that learning was not induced is because the class had several zeros (the

order will not be cancelled) and very few ones (the order will be cancelled), so the

models learn to prioritize the zeros. This, however, is a minor problem, since with

our models we can gain useful information by predicting that an order might be

cancelled (even if in the end it doesn't) and act accordingly, for example enforce a

no-refund policy. Lastly, in this figure Winnow was not depicted due to its very high

regret of over fifty percent.

Figure 7: Overall regret across all methods/datasets

 From Figure 7 we understand that SVM and Logistic Regression had the best

performance throughout all the datasets, with small median and overall values. The

kernel methods did not perform as well due to the lack of quantity of training

examples. Winnow had the worst overall performance with extremely high regret

values. Finally, the boxplots were created by collecting the values of all methods

across all datasets and representing them on this graph (Figure 7).

39

3.7 Comprative results - Relative Regret

 Here we present our results concerning relative regret on each dataset for

each method.

Figure 8: Relative Regret Comparison for Spam linear methods

Figure 9: Relative Regret Comparison for Spam linear methods

40

 Relative regret for the spam dataset (figures 8 and 9) was optimal. All

methods, linear and kernel, converged towards their offline model counterpart with

a very good rate. Winnow seemed to have some fluctuations but overall the trend is

obviously downwards.

Figure 10: Relative regret Comparison for Epileptic Seizure linear methods

Figure 11: Relative regret Comparison for Epileptic Seizure kernel methods

41

 An overall downwards trend for relative regret (Figures 10 and 11) for the

Epileptic Seizure dataset shows that most of our models were trained well. All

methods, kernel and linear, seem to be converging towards the offline model.

Figure 12: Overall relative regret across all methods/datasets

 Figure 12 shows that all methods were close their offline counterparts. The

kernel methods and winnow had some excessive outlier values. Overall, the kernel

methods seem to have the performance closest to assembling an offline model.

*: Figures 7 and 12 use a boxplot, which represents the distribution of quantitative

data. Inside the box there are 50% of the values, the orange line represents the

median, outside the box is 49.3% of values and 0.7% is outliers (dots above box).

42

4 Conclusion

 In this research, we managed to provide solutions to real-world problems

using linear and non-linear online machine learning algorithms, as well as provide

relatively good results.. By comparing the performance of the methods throughout

all datasets, it became clear that kernel methods do not necessarily perform better

than linear ones, if there is a lack of volume on the training examples, which

therefore means that the volume of training examples is an important factor to

implementing and increasing the quality of kernel methods for incremental learing.

In contrast, SVM and logistic regression had the best performance from the linear

methods, with a small median error rate, but they also had some higher error rates

throughout. Perceptron had a relatively higher median error rate, and Winnow was

disappointing throughout, with extremely high error rates and general results worse

than even a coin flip (except for spam dataset), due to Winnow's lack of

hyperparameters and inability of negative correlation. Furthermore, we did not

measure the relative regret of online retail dataset because of the lack of balance in

negative and positives examples (and therefore high accuracy), which would not give

us enough information with regards to our models' quality. Finally, it is worth

noticing that during the initial tests the algorithms were programmed using various

for loops, which when changed to vector multiplication/manipulation, the training

time became one to five thousand times quicker.

 For further extension of our research, we propose the comparison of these

methods with meta-algorithms like Weighted Majority and Exponential Weighted

Average, algorithms which train several unintelligent models, and use a voting

system to decide which of these models to trust during each iteration. Also, a useful

metric as an indicator for model performance is training time, which was not

measured in this research. Finally, with the exception of the Online Retail dataset

which had hundreds of thousands of entries, our datasets were relatively small, and

in a way hindering the evolution or development of our models. Therefore, larger

datasets would account for better and more meaningful performance.

43

5 Bibliography

[1] N Littlestone (1988), Learning Quickly when irrelevant Attributes Abound: A New-Linear-

Threshold Algorithm, Journal of Machine Learning Research 4 (2), 285-318

[2]Repository, U. M. Epileptic Seizure recognition Data Set. Retrieved from

https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition (2018)

[3] Repository, U. M. Online Retail Data Set. Retrieved from

https://archive.ics.uci.edu/ml/datasets/Online+Retail?fbclid=IwAR0Kth0FchTGO08w_yRi6O0

2_YVheg-celQvdP--xrpsC1XBZVbirb9JAqs (2018)

[4] Repository, U. M. Spambase Data Set. Retrieved from

https://archive.ics.uci.edu/ml/datasets/Spambase?fbclid=IwAR2QfISaliFLChbr_aC8HXNdsV0

Ch3ShrZN4YK3u1gZiPgX8aITWyFdb5Gs (2018)

[5] S. Keerthi, C. Lin (2003), Asymptotic Behaviors of Support Vector Machines with Gaussian

Kernel, Centre for Studies on Inclusive Education 7 (15), 1667-1689

[6] S. Shalev-Shwartz, Y. Singer, N. Srebro, A. Cotter (2011), Pegasos: Primal Estimated sub-

Gradient Solver for SVM, Mathematical Programming 3 (127), 3-30

 [7] D. Hush, C Scovel (2007), Stability of Unstable Learning Algorithms, Machine Learning 3

(167), 197-206

[8] Y. Wang, I. Witen (2002), Modeling for Optimal Probability Prediction, International

Conference of Machine Learning, 650-657

[9] R. Webber (2013), The evolution of direct, data and digital marketing, Journal of Direct

Data and Digital Marketing Practice 4 (14), 291-309

[10] A. Singh, G Rumantir, A. South, B. Bethwaite , Clustering Experiments on Big Transaction

Data for Market Segmentation, Proceedings of the 2014 International Conference on Big

Data Science and Computing, Article no. 16, 2014

[11] Z. You, Y. Si, D. Zhang, X. Zeng, S. Leung, T. Li (2015), A decision-making framework for

precision marketing, Expert Systems with applications: An International Journal 7 (42),

3357-3367

[12] Andrzejak RG, Lehnertz K, Rieke C, Mormann F, David P, Elger CE (2001) Indications of

nonlinear deterministic and finite dimensional structures in time series of brain electrical

activity: Dependence on recording region and brain state, Phys. Rev. E, 64, 061907

[13] Amey Kulkarni, Y. P. (2016). Adaptive Real-time Trojan Detection Framework through

Machine Learning, Proceedings of the IEEE International Sympozium on Hardware Oriented

Security and Trust (HOST), 120-123

[14] F. Bach (2014), Adaptivity of averaged stochastic gradient descent to local strong

convexity for logistic regression, Journal of Machine Learning Research 1 (15), 595-627

44

[15] C. Chang, C. Lin (2011), LIBSVM: A Library for Support Vector Machines, ACM

Transactions on Intelligent Systems and Technology 3 (2), Article no. 27

[16] Cho-Jui Hsieh, S. S. (2014). A Divide-and-Conquer Solver for Kernel Support Vector

Machines, Proceedings of the International Conference on Machine Learning (ICML), 566-

574

[17] M. Collins (2002), Ranking Algorithms for named-entity extraction: boosting the voted

Perceptron, Proceedings on the 40th Annual Meeting on Association for Computational

Linguistics, 486-496

[18] F. Orabona, J. Keshet, B. Caputo (2008), The Projectron: a bounded kernel-based

Perceptron, Proceedings of the 25th Internation Conference of Machine Learning, 720-727

[19] K. Zhang, L. Lan, Z. Wan, F. Moerchen (2012), Scaling up Kernel SVM on Limited

Resources: A Low-Rank Linearization Approach, Proceedings of the fifteenth International

Conference on Artificial Intelligence and Statistics (22), 1425-1434

[20] L. Huang, S. Fayong, Y. Guo (2012), Structured Perceptron with inexact search,

Proceedings of the 2012 Conference of the North American Chapter of the association for

Computational Linguistics: Human Language technologies, 142-151

[21] M. Kim, Y. Song, S. Wang, Y. Xia, X. Jiang (2018), Secure Logistic Regression Based on

Homomorphic Encryption: Design and Evaluation, JMLR Med Inform 2 (6), e19

 [22] N. Cesa-Bianchi, A. Conconi, C. Gentile (2005), A Second-Order Perceptron Algorithm,

Society for Industrial and Applied Mathematics 3 (34), 640-668

[23] O. Dekel, S. Shwartz, Y. Singer (2005), The Forgetron: a Kernel Based Perceptron on a

fixed Budget, Proceedings of the 18th International Conference on Neural Information

Processing Systems, 259-266

[24] P. Laskov, C. Gehl, s Kruger, K. Muller (2006), Incremental Support Vector Learning:

Analysis, Implementation and Applications, Journal of Machine Learning Research (7), 1909-

1936

[25] S. Vishwanathan, N. Schraudolph, A. Smola (2006), Step size Adaptation in reproducing

Kernel Hilbert Space, Journal of Machine Learning Research (7), 1107-1133

[26] Seyda Ertekin, L. B. (2008). Ignorance is Bliss: Non-Convex Online Support Vector

Machines, IEEE Transactions on Pattern analysis and Machine Learning Intelligence 2 (33),

368-381

[27] Y. Lin, H. Lei, J. Wu, X. Li (2015), An Empirical Study on Sentiment classication of Chinese

Documents Review using Word Embedding, 29th Pacific Asia Conference on Language,

Information and Computation, 258-266

[28] T. Zhang, F. Damerau, D. Johnson (2002), Text Chunking based on a Generalization of

Winnow, Journal of Machine Learning Research 2, 615-637

45

[29] T. McCormick (2012), Dynamic Logistic Regression and Dynamic Model averaging for

Binary Classification, Biometrics, 23-30

[30] Z. Wang, S. Vucetic (2009), Tighter Perceptron with Improved Dual use of Cached Data

for Model representation and Validation, International Joint conference on Neural

Networks, 3297-3302

[31] Christos Dimitrakakis and SamyBengioy. Online Policy Adaptation for Ensemble

Classifiers, Proceedings of the 12th EuropianSympozium on Artificial Neural Networks

(ESANN) 2004

[32] M. Minsky, S. A. Papert (1987), Perceptrons: An Introduction to Computational

Geometry, Expanded Edition, MIT Press

[33] I. Steinwart, A. Christmann (2008), Support Vector Machines (Information Science and

Statistics), Springer

[34] D. G. Kleinbaum, M. Klein (2010), Logistic regression: A Self-learning Text (Statistics for

Biology and Health), Springer, 3rd edition

[35] B. Schlkopf, A J. Smola (2001), Learning with kernels: Support Vector Machines,

Regularization, Optimization and Beyond (Adaptive Computation and Machine Learning),

MIT Press

[36] M. Mohri, A. Rostamizadeh, A. Talwalkar (2012), Foundations of Machine Learning, MIT

Press

http://rexa.info/paper/3cb3fbd5512e3cd12111b598fece53fcb42c484b
http://rexa.info/paper/3cb3fbd5512e3cd12111b598fece53fcb42c484b

	1. Introduction
	1.1 Different Types of Machine learning
	1.2 Linear Methods
	1.3 Perceptron
	1.4 Support Vector Machines
	1.5 Logistic Regression
	1.6 Winnow
	1.7 Gradient Descent
	1.8 Kernel Methods

	2 Online Machine Learning
	2.1 Online Machine Learning Overview
	2.2 Evaluation of Online Machine Learning Models
	2.3 Online Perceptron
	2.4 Online SVM
	2.5 Online Winnow
	2.6 Online Logistic Regression
	2.7 Incremental Machine Learning with Kernels
	2.7.1 Incremental Perceptron with Radial Basis Function
	2.7.2 Incremental Support Vector Machine with Radial Basis Function

	3 Experimental evaluation
	3.1 Datasets
	3.1.1 Spam Mail
	3.1.2 Online retail
	3.1.3 Epileptic Seizure

	3.2 Dataset Handling
	3.3 Experimental Methodology
	3.4 Parameterization of ML Methods
	3.5 Comparative Results
	3.6 Comparative Results - Regret
	3.7 Comprative results - Relative Regret

	4 Conclusion
	5 Bibliography

