

Πανεπιστήμιο Πειραιώς – Τμήμα Πληροφορικής

Πρόγραμμα Μεταπτυχιακών Σπουδών

«Πληροφορική»

Μεταπτυχιακή Διατριβή

 Τίτλος Διατριβής Αυτοματοποιημένος έλεγχος ασφαλείας του Android API

μέσω fuzzing

Automated security testing of Android API using fuzzing

Ονοματεπώνυμο Φοιτητή Βασιλική Πουλάκη

Πατρώνυμο Δημήτριος

Αριθμός Μητρώου ΜΠΠΛ/ 14070

Επιβλέπων Κωνσταντίνος Πατσάκης, Επίκουρος Καθηγητής

Ημερομηνία Παράδοσης Δεκέμβριος 2018

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 1

Τριμελής Εξεταστική Επιτροπή

Πατσάκης Κωνσταντίνος

Επίκουρος Καθηγητής

Αλέπης Ευθύμιος

Επίκουρος Καθηγητής

Τασούλας Ιωάννης

Επίκουρος Καθηγητής

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 2

Περίληψη

Η ανάπτυξη της τεχνολογίας των έξυπνων κινητών τηλεφώνων, καθώς και η αλματώδης εξέλιξη

των λειτουργικών συστημάτων τους, δημιουργούν τεράστιες δυνατότητες στους προγραμματιστές

για ανάπτυξη εφαρμογών. Ταυτόχρονα όμως τα λειτουργικά αυτά συστήματα εκτίθενται σε

κινδύνους έναντι κακόβουλων λογισμικών. Η διεπαφή που παρέχει το λειτουργικό σύστημα

Android της Google στους προγραμματιστές για ανάπτυξη εφαρμογών ανανεώνεται συνεχώς,

παρέχοντας ποικίλες δυνατότητες αξιοποίησης των λειτουργικοτήτων της συσκευής. Το γεγονός

αυτό σε συνδυασμό με την οικονομική προσιτότητα των κινητών συσκευών Android έχει εκτοξεύσει

την αγορά της ανάπτυξης εφαρμογών που υλοποιούνται για το συγκεκριμένο λειτουργικό σύστημα,

αλλά ταυτόχρονα έχει ανοίξει διόδους εκμετάλευσης αυτών με κακόβουλο σκοπό. Το σύστημα

παροχής αδειών του Android στις εφαρμογές τρίτων προκειμένου αυτές να αποκτήσουν πρόσβαση

στα πιο ευαίσθητα δεδομένα του κινητού ή σε σημαντικούς πόρους του υλισμικού, αποτελεί ένα

από τα βασικά μέτρα ασφαλείας του συστήματος. Το εν λόγω σύστημα αναβαθμίστηκε τον

Οκτώβριο του 2015, έτσι ώστε ο χρήστης να αποκτήσει μεγαλύτερη επίβλεψη της πρόσβασης

αυτής, με την έγκριση της να γίνεται σε πραγματικό χρόνο κατά τη χρήση της εφαρμογής και όχι

μόνο στην αρχική εγκατάσταση. Παρά τη βελτίωση αυτή, δεν επιλύθηκαν όλα τα θέματα ασφαλείας

της συσκευής και προστασίας της ιδωτικότητας των χρηστών. Συγκεριμένα, η χρήση της διεπαφής

του Android API που θα γίνει έπειτα από τους προγραμματιστές εφαρμογών ενέχει νέους κινδύνους

και θα πρέπει να έχουν προβλεφτεί μέτρα περιορισμού της. Για το λόγο αυτό η Google που εξελίσσει

το Android προβαίνει σε καθημερινό αυτοματοποιημένο έλεγχο εκατοντάδων χιλιάδων εφαρμογών

ως προς τη δυνατότητά τους να βλάψουν τις παραπάνω συσκευές για να προστατεύσει τους

χρήστες. Στο πλαίσιο της παρούσας εργασίας αναπτύχθηκε με χρήση του Android SDK και της

τεχνικής fuzzing η Android εφαρμογή XenonAutomated, η οποία χρησιμοποιήθηκε για τον έλεγχο

ασφαλείας - κατά πόσο δηλαδή μπορεί μια εξωτερική εφαρμογή να κάνει ‘κακή’ ή ακραία χρήση -

των διεπαφών προγραμματιστή Android από το API Level 21 έως το API Level 28. Τα

αποτελέσματα που προέκυψαν παρατίθονται για να βρεθούν πιθανά συμπεράσματα.

Abstract

Today, the vast evolution of the technology of smart devices and their operating systems is

offering enormous potential for the development of the emerging industry producing applications

appropriate for such devices. At the same time, the mobile operating systems become more and

more exposed to the danger of malware. The Application Programming Interface provided by

Google’s Android operating system to software developers undergoes often upgrades and

evolves, offering multiple capabilities regarding the exploitation of the device resources. This, in

conjunction with the fact that many Android devices are affordable in general, has caused the

Android application development market to take off, giving a boost to malicious applications’

evolution too. The permissions system that Android operating system utilizes in order to give third

party applications access to user’s sensitive data and vital systems resources of the device, is

one of the fundamental security measures of this system. Since October of 2015 it has been

upgraded so that the device’s end user has more visibility over that access, by granting the

permissions at the point of the actual usage of the respective feature by the applications, instead

of once at installation time. However, not all potential security dangers have been eliminated by

this enhancement. Moreover, the further usage of the Android API by the application

programmers poses new risks, and the platform should be designed to enforce its own proper

use. For this reason, in order to protect users, Google for Android uses automated ways for the

daily evaluation of hundreds of thousands of applications, regarding their ability to potentially harm

the devices. Under the context of this work, the fuzzing test tool XenonAutomated was developed

and used for an extended security check of possible ‘extreme’ or ‘bad’ usage of the Android API

levels from 21 to 28. The results of this test work are presented hereby.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 3

Contents
1. Introduction – Brief Description of the Objective 4

1.1 Introduction .. 4

1.2 Main Contributions .. 6

1.3 Road Map.. 6

2. Permissions ... 7

3. Reflection Overview .. 11

4. Fuzzing .. 13

5. Test Application and Results .. 14

5.1 Background ... 14

5.1.1 Brief Overview of Android Platform Architecture 14

5.1.2 Progarmming languages for the Android Platform 15

5.2 The basic idea .. 16

5.2.1 The outlining adversary model ... 16

5.3 The testing tool ... 17

5.3.1 The testing environment ... 17

5.3.2 The tool overview ... 17

5.3.3 The tool and Android permissions. ... 19

5.3.4 Tool architecture ... 21

5.4 Results .. 22

6. Summary - Conclusions .. 32

7. Acknowledgments ... 32

8. References .. 33

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 4

1. Introduction – Brief Description of the Objective

1.1 Introduction

In modern society, enterprises and individuals rely on smart devices for business operations,

collaboration and interpersonal communication, accessing huge amounts of proprietary data and

information during their usage. Thus, the integrity of the devices and data protection becomes

crucial subject to study.

As the application development business is now mature and part of the world economy [1],

users’ data are critical and considered valuable. From mobile devices manufactures and

developers demonstrating applications specific to such devices, up to mobile advertising networks

and affiliate networks [1] taking advantage of multiple channels provided by the mobile device

ecosystem in order to generate revenue by digital marketing. It is obvious that with so many

stakeholders profiting from mobile devices industry and especially from retrieving users’ data,

malicious applications become a real danger.

Additionally, users’ data produced by the use of smart devices can be really sensitive and

proprietary, considering all the evolution of the devices hardware technology. Furthermore,

modern smartphones are not anymore simple communicating tools and may be supplied with

sensors, the most common of which are the GPS receiver, microphone and camera, while there

is a number of other sensors that may be built in, depending on the type and cost of the device,

such as barometers, photometers, thermometers, e.t.c. The most popular mobile operating

systems provide some middleware, which can be used from third party applications to access all

these vital system components mentioned above, and create applications manipulating this

private information.

Considering all the above, users need urgently to protect their privacy and avoid any

unwanted behavior of their devices, due to harmful applications.

Within this context, the prevailing currently mobile operating systems software companies

are engaged intensively in actions towards two directions with conflicting, very often, interests. To

offer the tools that enable developers to produce and circulate mobile applications with plenty of

capabilities, and at the same time to upgrade their operating systems to defend against potential

harmful applications.

Very quickly a new world has been created consisting of three ‘components’ struggling for

equilibrium. The apex of the triangle is companies and independent developers developing

thousands of mobile applications daily, by exploiting the new capabilities offered by the devices’

and operating systems middleware. At the base of the triangle, on one top are mobiles’ and

mobiles’ operating software enterprises, and on the other top are mobiles’ users.

For a number of reasons, the vulnerable component of the triangle consists the users’ group,

since they constitute valuable sources of information and data, which they cannot assess or

manage in order to prevent malware applications from breaching their integrity and privacy. At

the same time, mobile users need various applications in order to facilitate everyday life and save

time and money. A significant portion of the aforementioned users are in fact plain users,

technology illiterate, without any specific knowledge on the potential of such applications and they

usually install them with limited awareness of the potential consequences.

Thus, in order to maintain their market share, the enterprises developing mobiles’ operating

systems software are obliged to constantly upgrade their products to safeguard the interests of

both target groups: developers uploading mobile apps, based on their platforms and software tool

kits, and the end user. A prominent example is the permissions measure case.

Today, iOS operating system together with the Android platform count for more than 90% of

the market share, with the Android platform being the one most popular for mobile devices. The

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 5

main reason for this fact is that both operating systems have the option of installation of third party

applications. The platform API they provide, which can be used from applications’ code to access

vital system components of the device, such as sensors, the microphone, the camera, the GPS,

SMSs, offer a lot of potential for innovation to mobile developers, but at the same time creates

the framework of vulnerability for privacy breaches. Thus, a permissions’ system limits the

accessibility to the sensitive components, and gives partial control of it to the end user.

The initial model of this permission system, informing users about which device features an

application intends to use, and asking for permission once during installation, was dismissed since

it was considered insufficient [2]. The problem with it was that application developers started

requesting for permissions that neither the end user nor the Application Stores could know or test

where will be used, so they could stealthy utilize them at any point, collecting data for several

purposes, breaching user’s privacy. Subsequently, iOs 7 from Apple initially, and Google later,

introduced improvements in their permission models so as the necessary permissions were

requested during runtime. Thus, the user is informed about when the application is attempting to

handle data or key components (e.g. sensors) and resources of the mobile device and may decide

whether to accept or reject the app’s intervention, but still use the app (which acts in the interests

of the user experience). [2]

However, in order to claim that users’ privacy and data are secure, the efficiency of all

security models provided by the manufactures should be tested thoroughly. Even if a user grants

permission to an application in order to access a critical resource of his device, he still needs to

be protected against possible misusage of the resource. Moreover, the latter should be

safeguarded by the concerned platform and the platform API.

The Android mobile operating system comprises Google's open source and free software,

including middleware and key applications applicable to handset devices. As said above, the

Android platform, after its radical redefinition which was implemented by Google, is the one used

most widely for both mobile and tablet devices.

Figure1: http://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201208-

201810 [3]

In fact, according to recent statistics (see above Figure 1), Android OS surpassed in about

2013 that time’s biggest OS in terms of percentage of mobile/tablet devices having it installed

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 6

(that is Apple’s iOS), and gradually reached 75% – 85% of the market share in 2016, maintaining

its precedence till now. The remaining 15%-20% refers mainly to iOS and a very small percentage

is shared by the rest operating systems. [3]

The reason of this tremendous growth is attributed mainly to the fact that device manufactures

were allowed to incorporate, often after adaption, the Android's open platform to their products.

Thus, there was much flexibility to create and sell several hardware devices equipped with

Android at diversified prices, whereas the Apple Company (producing itself both the hardware

and the corresponding iOS software) remained at comparatively high prices per unit product.

Considering users’ need for low cost efficient and smart mobiles, a consortium consisting of

approximately 84 members, including network operators, software developer companies,

component and mobile manufacturers and others, Open Handset Alliance, came together under

the leadership of Google and released the Android Platform, an open-source mobile operating

system, unveiling its free distribution in 2007, under the open-source Apache License [4]. The

business aliance’s goal was to develop open standards for mobile and handset devices, driven

by the concept of an open source, free and unified mobile platform that would facilitate low overall

cost for handset and development friendly environment that will leverage the post-development.

The Android Open Source Project includes the corresponding source code repository which can

be used to even edit its code, recompile it and create a custom variant of Android (as it is called,

a custom ROM) based on Google’s Android platform, replacing the preinstalled firmware of the

device manufacturer.

Except the Android core which is released under the open-source Apache License, Android

devices use a lot of software which are licensed (Play Store, Google Play Services, Google

Music).

Overall, third-party applications for mobile devices are supported by the Android open source

platform and application environment. Globally, numerous applications are developed by

independent users daily, exploiting the chances that Google Play Store offers. Google Play Store

consist of an ideal channel for the distribution and promotion of Android applications.

A key concern is whether security is enforced by the development tools of the SDK against

its users - the third-party application developers. As long as these programming tools are

generally available for free to the software development community, and Android applications

created using them can be freely uploaded to Google Play Store, security measures must be

applied prior they are available to the general public. Permissions is one strong security measure,

but also the libraries of SDK must be designed properly to serve the security goals. In this context,

we are concerned on how someone can misuse the components of this software tool kit in order

to harm an Android device and its user’s data.

1.2 Main Contributions

The basic contributions of this work can be summarized as follows: We investigate possible

vulnerabilities of the Java API framework available by the Android SDK of APIs 21 to 28. Our

approach to the problem is to pass ‘edge’ or ‘’extreme’ values to library classes’ methods, to

discover unpredictable behavior of the operating system. This has been achieved by building an

Android testing application-tool, which utilizes the fuzzing technique and automates the methods

invocation with the ‘bad’ arguments in a full testing suite, but also enables the isolated execution.

1.3 Road Map

The rest of this work is structured as follows: In section 2, we provide brief description of the

Android’s permission model and present the needs that led to its introduction and some issues

recognized as security problems. Then, in section 3, we make a sort reference to the Reflection

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 7

concept, in order to elaborate on our attack methodology. In section 4 we introduce fuzzing, which

is the software testing technique that we use in this work. In section 5, we present the test

application developed to validate our claims, and describe our adversary model, attack

methodology and attack evaluation. Also, we cite the results of the tool’s execution. Finally, in

section 5, we conclude the work.

2. Permissions

Android apps are built to perform a set of actions, some of them requiring permissions from users.

Such actions include accessing sensitive user data like contacts and SMSs, or vital hardware

features, like the camera and device sensors. Android permissions is a measure for protecting

user’s privacy. In some cases, a permission might be granted to the application by the system,

while in others the user might be prompt to give his consent.

Until Android Lollipop (API level 22), the permission model applied by Google used a “take-

it-or-leave-it” approach [2], in which the application permissions should be granted by users right

before the application installation gets started. An Android application would retain all of its

permissions during its lifecycle, and the only option for revoking a permission would be to uninstall

the app. However, a user could not foresee whether an application had good reasons for needing

a particular permission or if it would make proper use of it, and there was not much of control over

it after the installation. Gradually, it was noticed that developers started adding permissions, which

were utilized after the installation with several ways, some of them including data collection,

affecting thus the privacy of the user [5]. At that time Google did not check whether or why the

app actually required the mentioned permission, while there was no alternative option for the user

who wished to continue to use the app, but accepting all permissions at the installation, thus giving

developers plenty of time to access system information or the device sensors without any restraint

[5].

In October 2015, Google redesigned its permission model with the introduction of

Marshmallow (Android version 6.0, API level 23) and concluded with “Runtime Permissions”,

where users can directly manage application permissions at runtime [6]. According to Google,

this new permission model gives to users more control and visibility over the permissions [6], and

allows them to selectively repel dangerous permissions in order to adopt the privacy level they

want. More specifically, with the “Runtime Permissions” of Google, the developer has to ask

during runtime for the permission to perform actions like to use the camera or access the user’s

storage to save a file, and the user can reject the request but continue using the app.

Additionally, permissions in Android were further classified by Google mainly into normal

(see below Table 1) and dangerous (Figure 2 and Table 2). The normal ones, namely those which

are not considered quite threatening, are now granted by the system automatically.

Technically, all permissions relate to cases where the application needs to access data or

resources outside its sandbox, but some of them, that is the normal ones, are considered to pose

lower risk of harming the device, user’s data or other applications. Examples of this type include

those used for connecting to the internet, setting alarms and wallpapers, and modifying audio

settings on a device. On the other hand, potentially dangerous permissions are those giving

access to the camera, the microphone and sensors of the device as well as the ones giving access

to the contacts’ and storage data. In such cases, the user must agree to grant permissions.

As of Android 9 (API level 28), the following permissions are classified as

PROTECTION_NORMAL: [7]

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 8

Table 1: Normal Permissions - Android 9 (API level 28) [7]

 ACCESS_LOCATION_EXTRA_COMMANDS

 ACCESS_NETWORK_STATE

 ACCESS_NOTIFICATION_POLICY

 ACCESS_WIFI_STATE

 BLUETOOTH

 BLUETOOTH_ADMIN

 BROADCAST_STICKY

 CHANGE_NETWORK_STATE

 CHANGE_WIFI_MULTICAST_STATE

 CHANGE_WIFI_STATE

 DISABLE_KEYGUARD

 EXPAND_STATUS_BAR

 FOREGROUND_SERVICE

 GET_PACKAGE_SIZE

 INSTALL_SHORTCUT

 INTERNET

 KILL_BACKGROUND_PROCESSES

 MANAGE_OWN_CALLS

 MODIFY_AUDIO_SETTINGS

 NFC

 READ_SYNC_SETTINGS

 READ_SYNC_STATS

 RECEIVE_BOOT_COMPLETED

 REORDER_TASKS

 REQUEST_COMPANION_RUN_IN_BACKGROUND

 REQUEST_COMPANION_USE_DATA_IN_BACKGROUND

 REQUEST_DELETE_PACKAGES

 REQUEST_IGNORE_BATTERY_OPTIMIZATIONS

 SET_ALARM

 SET_WALLPAPER

 SET_WALLPAPER_HINTS

 TRANSMIT_IR

 USE_FINGERPRINT

 VIBRATE

 WAKE_LOCK

 WRITE_SYNC_SETTINGS

Figure2: Dangerous permissions groups (Source: Unravelling Security Issues of Runtime

Permissions in Android by Efthimios Alepis and Constantinos Patsakis) [2]

Table 2: Dangerous permissions and permission groups. [7]

Permission Group Permissions Permission Group Permissions

CALENDAR  READ_CALENDAR

 WRITE_CALENDAR

MICROPHONE  RECORD_AUDIO

CALL_LOG  READ_CALL_LOG

 WRITE_CALL_LOG

 PROCESS_OUTGOING_CALLS

PHONE  READ_PHONE_STATE

 READ_PHONE_NUMBERS

 CALL_PHONE

 ANSWER_PHONE_CALLS

 ADD_VOICEMAIL

 USE_SIP

CAMERA  CAMERA SENSORS  BODY_SENSORS

CONTACTS  READ_CONTACTS

 WRITE_CONTACTS

 GET_ACCOUNTS

SMS  SEND_SMS

 RECEIVE_SMS

 READ_SMS

 RECEIVE_WAP_PUSH

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 9

 RECEIVE_MMS

LOCATION  ACCESS_FINE_LOCATION

 ACCESS_COARSE_LOCATION

STORAGE  READ_EXTERNAL_STORAGE

 WRITE_EXTERNAL_STORAGE

Apart from the normal and dangerous, Google has also introduced another protection level,

the signature permissions, for Android applications that need to share resources or interoperate

with each other. This permission type can only be granted to applications that have been signed

with the same certificate as the application that defined the permission. Moreover, signature

permissions may refer to either permissions that can be used exclusively by systems apps, or to

custom ones, defined by third-party developers. Android platform provides developers the option

to define their own permissions as well as permission groups to expose their functionality and

data to other apps. Only apps that were developed by the same author and wish to use the same

resources can request these defined permissions.

The permissions allowed to be used by third party apps, classified as

PROTECTION_SIGNATURE, are as follows for Android 8.1 (API level 27): [7].

Table 3: Protection_Signature Permissions - Android 8.1 (API level 27) [7]

 BIND_ACCESSIBILITY_SERVICE

 BIND_AUTOFILL_SERVICE

 BIND_CARRIER_SERVICES

 BIND_CHOOSER_TARGET_SERVICE

 BIND_CONDITION_PROVIDER_SERVICE

 BIND_DEVICE_ADMIN

 BIND_DREAM_SERVICE

 BIND_INCALL_SERVICE

 BIND_INPUT_METHOD

 BIND_MIDI_DEVICE_SERVICE

 BIND_NFC_SERVICE

 BIND_NOTIFICATION_LISTENER_SERVICE

 BIND_PRINT_SERVICE

 BIND_SCREENING_SERVICE

 BIND_TELECOM_CONNECTION_SERVICE

 BIND_TEXT_SERVICE

 BIND_TV_INPUT

 BIND_VISUAL_VOICEMAIL_SERVICE

 BIND_VOICE_INTERACTION

 BIND_VPN_SERVICE

 BIND_VR_LISTENER_SERVICE

 BIND_WALLPAPER

 CLEAR_APP_CACHE

 MANAGE_DOCUMENTS

 READ_VOICEMAIL

 REQUEST_INSTALL_PACKAGES

 SYSTEM_ALERT_WINDOW

 WRITE_SETTINGS

 WRITE_VOICEMAIL

There is another classification of permissions, referred by Google as “special”, as they

cannot be classified in any of the other categories. These are the SYSTEM_ALERT_WINDOW

and the WRITE_SETTINGS permissions. In fact, a third-party application can actually grant these

ones too, after a specific user interaction but it is recommended that applications should not use

them and Google documentation strongly discourages developers from requesting them, which

implies an increased risk.

Finally, it should be mentioned that the signatureOrSystem permission is an old term that

corresponds to the "signature | privileged" permissions (deprecated in API level 23), which is

mainly designed for manufactures supplying applications, and they are used in certain specific

situations. Such a permission is granted by the system only to apps located in a special folder on

the Android system image or that are signed with the same certificate as the application that

declared the permission [8]. In case that an app is privileged with such a permission it may have

the potential to reboot a device or to clear the caches of all installed applications on the device.

[2]

Permissions were further organized into permission groups, which are collections whose

members relate to similar functionalities or the same feature of the device. The user will be

informed for the permissions requests in group level rather than in permission level. This removed

the technical complexity from the previous, probably confusing descriptions that were given to the

user. For example, the user will only be asked to grant access to the contacts of his device,

referring to the CONTACTS group, which includes both READ_CONTACTS and

WRITE_CONTACTS permissions.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 10

Regarding dangerous permissions, they all belong to a permission group, while a permission

group can consist of any protection’s level permission (normal or dangerous) although only the

dangerous ones will trigger some user interaction [7]. If an app has already been granted by the

user at least one dangerous permission within a specific permission group, then it is automatically

granted any other dangerous permission of that group is requested, without additional prompt to

the user [7].

To elaborate more on how permissions work in practice, if an application wants to use a

system utility, it must include a special xml tag (<uses-permission>) with the corresponding

permission in the manifest file, declaring to the system its intent to use that utility. All kinds of

permissions should be mentioned in the manifest file, regardless their protection level or other

classification flag, even if the system will treat them differently.

Currently, if an application has declared a target-version tag up to API level 22 or the device

runs API level up to 22, then all the dangerous permissions for this app will be listed to the user

and ask for acceptance in the beginning of the installation process. If the user accept all the

permissions, then the app will be granted access to the system’s features once and for all,

otherwise the installation will be cancelled. In case that an app adds more dangerous permissions

in the future, a user that has already installed that app must consent again to all the additional

permissions, in order to proceed with the update in his device.

Now, in case a device is running Android API level 23 or higher and the declared target-

version is Android API level 23 or higher too, then the user doesn’t get notified for the dangerous

permissions at the installation. The app’s developer must include additional implementation, so

that the approval happens just before the usage. If so, the user will be prompted to accept the

permission at runtime with a special dialog-box. If the user denies the permission, the application

will be unable to use the system’s feature. The user can revoke his choice at any time, so the

application has to be functional with or without the dangerous permissions.

The platform permissions set has not remained the same over the years. Since many

unprotected APIs were found in previous versions [2], additional protection mechanisms had been

integrated for many intents. Thus, new restrictions were gradually enforced in newer API levels,

for actions that were previously allowed by default, and therefor new permissions have been

added. For this, Android might automatically add the definitions for the new permissions to an

application’s manifest file in order to avoid breaking the functionality of older apps installed in

newer versions of the API, which assume the free access to the specific APIs [7].

The limitations of the new Permission Model regarding safety have been highlighted in a

number of articles and researches. For example, the disclosure of the famous “Cloak and Dagger”

class of attacks, driven by scientists of Georgia Institute of Technology [9], proved how a very

dangerous application can elicit data like user passwords, or even take control of the device and

install other full-permissions-list applications, using the combination of the

SYSTEM_ALERT_WINDOW and BIND_ACCESSIBILITY_SERVICE permissions. These two,

when used together can create overlays on top of all other applications, with deceptive graphical

user interface (often referred as “chat heads”), as it allows malicious activity to be performed

underneath, by its hidden parts [10].

Another research at the University of Illinois discovered a trick with which third party

applications can gain unauthorized access to system features, by combining custom (declared by

untrusted third-party developers) permissions with system permissions [11]. Moreover, it is

possible to trick the system to grant the app with the system permissions, by creating an app

which initially requests a custom permission with the protection level normal or signature and

setting it afterwards to be a part of a system permission group. After installation, these

permissions are granted to the app, but an adversary may later update the app to request

dangerous permissions which will be automatically granted without any kind of user interaction

[2].

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 11

The above constitute a quick preview of the main points of the Android permissions’ model.

As said above, despite the radical changes in security, after the introduction of the new Google

Permission Model, the system still presents security vulnerabilities, and the area has yet more

room for research.

3. Reflection Overview

The concept of Reflection has been studied in several sciences, like Philosophy, and Logic, but

only after a long time of its existence there have been attempts to be formalized [16]. It has been

adopted by Artificial Intelligence, as it conceptually represents an ability to perform what we would

call an intelligent behavior. It has also found great application in the field of Computer Science,

and especially Programming Languages, under the name of computational reflection, originating

from Brian Smith’s seminal work in the early 80s [13], who introduced two new dialects of the Lisp

language, 2-Lisp and 3-Lisp, in his attempt to incorporate the concept of reflection in the area of

programming.

A quite general definition of Reflection has been given by Brian Smith during the

ECOOP/OOPSLA’90 workshop on reflection as: “An entity’s integral ability to represent, operate

on, and otherwise deal with its self in the same way that it represents, operates on and deals with

its primary subject matter.” [22].

Reflection has been redefined specifically for programming languages as: “Reflection is the

ability of a program to manipulate as data something representing the state of the program during

its own execution. There are two aspects of such manipulation: introspection and intercession.

Introspection is the ability for a program to observe and therefore reason about its own state.

Intercession is the ability for a program to modify its own execution state or alter its own

interpretation or meaning. Both aspects require a mechanism for encoding execution state as

data; providing such an encoding is called reification. The parts of the language that support these

capabilities are referred to as the introspective and intercessory protocols.” [15]

Reflection in programming languages can be further distinguished in structural and

behavioral. When the reification mentioned above relates to the structure of a program, then we

refer to structural reflection, while when it refers to the semantics of it, we refer to behavioral

reflection. In fact, behavioral reflection is more difficult to be adopted by a programming language

as it involves control over the semantics of the language, and thus, structural is incorporated into

programming languages in a bigger extend.

Programming languages possessing the abilities of reflection, are languages with embedded

self-representations of the language, in the language itself. In fact, languages can support

reflective programming, only if they provide a reflective architecture. Along with the introduction

of procedural reflection, Smith presented a general framework that enables the addition of the

reflective ability to a programming language [17].

In order to add the reflective ability to a programming language, someone must extend the

language’s model with the model of implementation of the language itself. This means that in a

reflective programming language, a program is potentially able to modify its own execution state

and semantics during runtime. From a programmer’s perspective, it is possible to change the

model of the language from within the language [17]. We can notice here that this partially

removes the abstraction layer between programmers and the machine accomplished by the

programming language, which abstraction consist the initial reason for the creation of

programming languages.

Regarding object oriented programming, type introspection constitutes the ability of a

program to identify the type and properties of its own objects at runtime. Some OOP languages

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 12

go one step further and enable the traversing of the inheritance class tree to discover if an object’s

class is derived from another. Accordingly, the intercession concept in practice, within the context

of OOP programming languages, includes the ability of a program to initialize objects or call

methods of a class that were not mentioned at the compilation time, by knowing their class names

at runtime, and also to modify the attributes of methods and properties/members of a class

definition at runtime.

In Java, reflection allows inspection of classes, interfaces, fields and methods at runtime

without knowing the names of the interfaces, fields, methods at compile time. It also allows

instantiation of new objects and invocation of methods after the compilation of the program, given

their class/method names. In the Java language the reflection feature is implemented through the

Reflection API, which is located in the java.lang.reflect package, one of the built-in packages

that come with Java API. Some important elements of it will be listed below.

A key component for implementing reflection in Java is the class java.lang.Class, which

models the notion of the Class (models the classes of the language itself). A “class” object can

be initialized using its String name, by calling the static java.lang.Class.forName method, or

by calling the java.lang.Object.getClass method of the Object class (thus every Java class

inherits it). A Class object then can be used to introspect every component of the definition of that

class (and by class we also include Interfaces, Enums etc) and its elements (methods, fields) as

well as their Modifiers (that indicate the encapsulation level).

Regarding methods, the java.lang.reflect.Method class of the reflection API can hold

a ‘method’ object retrieved by a call to java.lang.Class.getMethod, which can be later on used

to actually invoke the respective method, using the java.lang.reflect.Method.invoke

method. Additionally, someone could get an array with Method objects (corresponding to all

methods defined in a class) by calling java.lang.Class.getDeclaredMethods.

An object of a specific class can be instantiated using the java.lang.Class.newInstance

method, or by getting all constructor methods for that class using the

java.lang.Class.getDeclaredConstructors and then invoking the proper one (the

parameters-type list for a constructor would be retrieved by

lang.reflect.Constructor.getParameterTypes) [18] [19].

Java Reflection API enables a programmer to change the encapsulation level of a field or

method at runtime, and convert it from private to public or protected, and so on. This is

accomplished by calling the java.lang.reflect.AccessibleObject.setAccessible method

that both java.lang.reflect.Method and java.lang.reflect.Field classes inherently

have, as they are direct subclasses of the java.lang.reflect.AccessibleObject class.

Reflection is a widespread notion in the world of sciences, and a powerful feature in Java

that introduces many capabilities to the language which would be impossible otherwise. It has

found great application in libraries and tools that need to manipulate objects through xml files or

other external sources, and thus, it consists the backbone for many Java frameworks and

Integrated Development Environments. The Spring framework uses reflection in order to initialize

and manage the objects lifecycle through Java beans, and generally implements Dependency

Injection through it. Junit framework uses reflection to collect through annotations the test

methods that need to be invoked. Development environments, like eclipse, need reflection to

accomplish auto-complete, and other static analyzing techniques.

However, the Reflection API is also followed by some drawbacks, as it is created to facilitate

framework-type of code, giving unlimited access to the language’s components, and does not

take into consideration the security issues that might raise from it. In cases, for example, where

the execution environment is shared with other probably untrusted applications, all this freedom

can pose unpredictable risks. A security manager can be applied in such cases, to restrict the

accessibility level modification when it is absolutely needed. Additionally, Reflection can cause a

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 13

performance hit, when applied to a big extend, as all actions are executed slower through

Reflection compared to direct implementation. Finally, the maintainability of the software can be

compromised when Reflection is used, as it can obfuscate the code and reduce the clarity and

directness of it.

4. Fuzzing

Among the several testing techniques that are used to find security vulnerabilities of software

systems, fuzzing methods stand out due to their efficiency and simple logic. In the last years they

have gained even more attention, as they accomplish really fast detection of critical security

vulnerabilities of applications at certain cases.

Fuzzing (or fuzz testing or fault injection) is a highly automated software testing method with

core strategy to provide various invalid, unexpected or random data input to a target software

system in order to test it for failures. Moreover, the goal of a “fuzzer” testing tool is to provide its

target with “semi-valid” input, which is data that are valid enough to avoid getting immediately

rejected by their target, while they are invalid enough to cause unexpected behaviors. Fuzzing is

mostly used to security vulnerabilities testing.

The concept of fuzzing test is firstly proposed in 1989 by Professor Barton Miller [27] from

Wisconsin-Madison College, who developed two programs at his work “An Empirical Study of the

Reliability of UNIX Utilities” to test the robustness of the UNIX system, one of which was the “fuzz”.

Fuzz could generate a stream of random characters to be consumed by a target utility program

[28].

Fuzzers are often used to test software that accepts structured input, such as specific file

formats or protocols, in which cases they can discriminate the valid from invalid input [29].

Additionally, they can test a significantly large number of boundary cases quite efficiently. This

kind of testing aims to conclude the ‘absence’ of exploitable vulnerabilities.

Boundary conditions testing is a really big chapter in software testing, especially for systems

that accept input values, as they can hide numerus possible failures. Boundary cases can be

classified as ‘negative test cases’, which are meant to prove that an application does not do

something that is not supposed to, in contrast to the ‘positive test cases’, which verify that the

application actually does what it is supposed to (works as designed) and are easier to test using

simple functional testing. Thus, for the boundary cases, which are incredibly large in number, the

fuzzing methodology has been proven one of the most efficient and fast, as it can give a good

code coverage in a short time, due to its automation. It would be impossible for all these cases to

be tested with the other known testing techniques.

Another typical usage of fuzzing methodology is for testing the trust boundary of applications

that accept input from untrusted sources [26], such as a web server that takes input from users.

A trust boundary is the point to which some data or the execution moves from one trust level

(permissions assigned to resource) to another. For example, when an operating system changes

from user to kernel mode, it crosses a trust boundary, as the kernel is trusted to make any of the

processor operations, whereas a user’s access to them is quite limited [26].

Some common data input points for most systems would include files, APls, user interfaces,

network interfaces, database entries, and command line arguments. Thus, the aforementioned

inputs are ideal targets for fuzzing, although anywhere a system can accept any kind of input,

malformed data submission should be considered as a possibility. As a general rule, an

application that is parsing data entered by a user should be a subject to fuzz testing, so that any

possible security vulnerabilities are detected early.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 14

To sum up, a fuzzer generates semi-valid data (edge case data that is valid enough to pass

through parsers’ validations, but as invalid as needed to cause failures), feeds its target system

with it, and then observes the system under test to see if it fails during the data consumption. In

such case, the tool records the respective submitted data and the observed behavior for later

analysis and proceeds with new malformed data [26]. Performing all the above actions manually,

the coverage would be incomparably smaller. The fuzzing technique, which automates the entire

cycle, can perform even millions of such iterations, covering a significant number of cases, for

which it would be difficult to write individual test cases.

We could organize, the whole process of fuzzing methodology in five phases: identify the

target and the input, generate fuzzing test data, provide the fuzzing test data as input to the target,

monitor the failure, determine the utilization [27]. An important step is the test data generation, as

the strategy that will be followed here can vary and affect the effectiveness of the testing. Also, it

is very important to monitor the application’s behavior during a fuzzing test, and debuggers are

often used for that purpose. In specific cases, there are other parameters that should be

monitored during the fuzzing process too, such as memory usage, network and file system

activities etc.

Although fuzz testing has proven successful in revealing critical security vulnerabilities in

large applications in short time, traditional fuzzers share a well-known common drawback, which

is that they can be ineffective if most of their generated malformed inputs are rejected by the

target’s parsing process in an early stage, and so most test cases fail to access the interior of

software (low testing efficiency) [27]. Let’s mention here that fuzzing techniques, although being

effective in general, cannot be applied to the detection of all kinds of security vulnerabilities that

can exist in a software system. Some of the vulnerabilities, due to their nature, are impossible to

detect with fuzzing, e.g. when some prior state is required to be initialized before giving the

malformed input. The main advantages of the fuzzing technique are simplicity, efficiency and

automation, which considerably speeds up the whole process of security vulnerabilities detection.

5. Test Application and Results

5.1 Background

5.1.1 Brief Overview of Android Platform Architecture

In order to elaborate on the Android API’s parts that we will test, we should get a bigger picture

of the platform structure and the way these APIs communicate with the rest system. In the Figure

4 below, we can see a descriptive diagram of the platform architectonic layers, taken from the

official documentation [20], which we will briefly summarize.

The base layer of the Android software stack is the Linux kernel, and the rest system

depends on it for low-level operations, such as memory-management and threading. Using the

Linux kernel, Android can utilize its UNIX-type security system, which follows a Discretionary

Access Control model [23], where each application runs in a different process and as a different

user.

A Hardware Abstraction Layer (HAL) on top of the kernel constitutes the communication

layer between the higher level Java API framework and the device hardware resources’ interfaces

of the kernel. It consists of one library module dedicated for each hardware component, and these

modules are being loaded whenever the Java API framework requests access to the respective

hardware features.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 15

One layer above lays the Android Runtime (ART), as well as the Native C/C++ Libraries.

Prior to Android API level 21, the legacy Dalvik was in the place of the ART. The ART is designed

to execute multiple virtual machines on low-memory devices, by executing a special bytecode

format created for Android. This bytecode format is optimized for minimal-memory resources. In

devices running Android API level 21 or higher, each app runs in its own process and with its own

instance of the ART. ART includes some Android-specific key features, such as optimized

Garbage Collection, enhanced debugging support and so on, as well as a set of runtime libraries

that contain the most of the functionality of Java Programming Language (including Java 8

features) which are used by the higher-level Java API framework layer. Regarding the Native

C/C++ Libraries module, although it facilitates for many of the rest core system components and

services, like the ART and the HAL, some of its underling libraries can be accessed directly by

native C or C++ code using the Android NDK, and it is used by Android applications developed

in C or C++.

The Java API framework contains the entire set of the features provided by the Android

operating system, and is available to the outside world (Android programmers) through Java APIs.

These APIs can serve as the fundamental building modules for creating Android applications, and

include features such as User Interface components (View System), Notification Manager for

creating alerts that will be displayed in the device status bar (notifications), as well as an even

higher abstraction layer for all the hardware device components featured in HAL, incarnated in

these Java APIs (namely the ‘Managers’). These APIs written in Java constitute the middleman

that will enable apps (system and third-party) to access hardware resources. Our testing app is

built on top of that framework (like the other Android applications) which is the one whose security

we will actually test.

Finally, the System Apps that come pre-installed to the Android Platform and implement very

fundamental device functionalities, such as sending emails or messages and web browsing,

comprise the last architectural element of the Android software stack.

5.1.2 Progarmming languages for the Android Platform

Regarding the non-System Android applications, the majority of them are being developed within

the Java programming language, the official Android programming language and most supported

by Google and Android studio until recently.

However, there are a couple of other languages that someone can also use to create an

Android app, such as Kotlin and C/C++ (using the Android NDK as mentioned above). Kotlin,

particularly, is very similar to Java language. It is also able to run in the JVM, and is made to

interoperate with Java. It must be noted that in October of 2017 Kotlin was announced by Google

to be a secondary official Android language, and has been added to the official documentation

ever since, which now contains example code-snippets for both Java and Kotlin. However, Java

is by far the most popular language for Android development, and the vast majority of the Android

apps currently uploaded to Play Store are written in Java.

In general, the Java Development Kit (JDK) is available by the Java language. The Java

platform also provides the "Application Programming Interface", or "API" as abbreviation, which

is a huge class library appropriate for general-purpose programming. The packages in this library

include the Reflection API, which we will use for the exploration, identification and execution of

the available components of the Android SDK.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 16

Figure 3: The Android architecture (Source: https://developer.android.com/guide/platform/

5.2 The basic idea

The main idea of our work, is that a malicious Android application will ‘exploit’ weaknesses of the

Android API in order to cause ‘harm’ to the user of the device installed. The possible harm that is

assumed here, would most probably be to compromise the integrity and/or the availability of user’s

data, or even the device.

5.2.1 The outlining adversary model

The adversary considered in this work, creates the malicious app that a victim installs in her smart

device. The app could request for certain permissions, which will facilitate for certain supposed

functionality. In such case, the user grants them. During the execution, the app invokes the

‘insecure’ Android API method with the proper argument values, and causes unexpected

reactions to the operating system, such as a restart or UI unresponsiveness. As a result, other

https://developer.android.com/guide/platform/

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 17

applications running at that time in the device or the file system might experience data loss,

because, for example, of an unexpected restart, or even the system might get damaged, which

also constitutes data loss.

5.3 The testing tool

5.3.1 The testing environment

This work’s testing Android application was written in Java language (for Android). All the

development of the application took place in the Android Studio IDE. The application was installed

and run at some of the available by Android Studio emulator device images, which were created

and launched by the Android Studio’s AVD manager tool. The emulator of our choice was a Nexus

device. Additionally, the output files of the developed tool ware retrieved from the emulator’s file

system using the platform-tools_r28.0.1-windows tool.

5.3.2 The tool overview

The idea of the testing methodology that XenonAutomated application followed was based on the

functionality of its ancestor application, Xenon. Xenon focuses on a category of classes that

belong to the Android API (see the Managers in the Java API framework layer of the Android

software stack in the diagram above), each one of which is bound to a specific vital hardware

component’s interface to the operating system, and every method-member of it, facilitates the

usage of that component. Such a class has the suffix ‘Manager’ in its name, as it gives control to

its user (that is, the source code of a system application or a third-party application) over the

bound hardware component’s functionality. For example, the

android.bluetooth.BluetoothManager class makes available all the functionalities related to

the manipulation of the Bluetooth hardware resource of the device.

The main goal of Xenon application is to instantiate such a Manager-Class and execute all

of its underlying methods with certain ‘extreme’ arguments passed to the parameter references.

These ‘extreme’ argument values are, in most cases, the maximum and the minimum possible

values for the respective type. For example, for Integer parameter types, the Max and the Min

integer numerical value supported by the Java language will be passed (e.g. a test method with

an Integer parameter would consist of the calls: methodName(Integer.MaxValue); and

methodName(Integer.MinValue);). Similarly, for an image parameter, which can be expressed as

an android.graphics.Bitmap or an android.graphics.drawable.Icon object type in our

case, the respective Min and Max object arguments would be created using a ‘small’ and a ‘big’

- in terms of size in MB - image that is located in the ~Project\app\src\main\res\drawable

package. It can be inferred from the above that, for every method of the class, two invocations

will take place. Like in any fuzzing test technique, after each method invocation, a proper “result”

will be written in a text file which can be then retrieved from the emulator’s file system and opened

for study.

An important requirement for the Xenon application is to be able to invoke all the methods

of a class sequentially but without hardcoded method calls, in order to accomplish the appropriate

automation level of the fuzzing. Additionally, this should work for all the Manager-Classes. This is

accomplished by the Reflection feature of Java. Moreover, once a Manager-Class is instantiated

by the tool, the Reflection API takes over, and creates a Class object for the respective Manager-

Class, retrieves the list with its declared methods and creates Method objects for each one. Then,

it retrieves the parameter-types array for each Method object, in order to create the corresponding

arguments array that should hold the values to be passed. Then, it does the final method

invocation. Let’s mention here that not actually all methods of a Manager class will be invoked by

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 18

our tool; the ones that we are ‘interested’ in and will be executed are selected according to their

parameters list. We have chosen to deal with certain class types consisting the parameters list,

which are easy to instantiate with edge values. Furthermore, we started picking methods

containing only Integer and String type of parameters, and gradually – in the context of the

extended XenonAutomated application – also added Float, Double, Boolean, CharSequence,

Long, Sort, byte, char, Icon, Bitmap and Context parameter types in the list (for all primitive types

of java, both the equivalent Class type and the primitive type are included).

This is, more or less, how Xenon application does the methods invocation. The last part to

complete the presentation of Xenon functionality is how the Manager-Classes are instantiated in

the first place. This is accomplished with the help of the fundamental Context class of the Android

API. Furthermore, the android.content.Context Java abstract class of the Android SDK

constitutes the basic access point to the system features interfaces’ implementation, and is

responsible for providing instances for all the Manager-Classes. The Activity class, as the building

block for an Android application, extends the Context class, thus an initialized Context instance

reference is always available from within an Activity (or a subclass of the Activity) by a call to

this. Context class definition contains a set of String constant members, each one of which

corresponds to a Manager-Class and should be used in order to retrieve an instance of the

respective Manager. For example, the

android.content.Context.getSystemService(BATTERY_SERVICE) method call will return

back an instance of the BatteryManager Class, which is able to handle any functionalities for the

battery hardware component [24].

The execution of our fuzzer tool should be monitored. While executing all the methods for a

Manager-class, someone shall observe the emulator’s behavior, as well as the Log output of the

Android Studio IDE, and notice if anything unexpected happens. The conclusions will come from

the output file, as well as the observations.

The enhancements that was needed to be added to the tool were, on the one hand, the

app’s ability to execute all these classes previously discussed sequentially, without any additional

manual action, as the existing implementation could only run one class in a single execution, and,

on the other hand, to keep track of the execution progress so that it continues executing from the

next method or class in case of a crash. In general, it should keep a ‘state’ of the execution in a

persistent storage. This state should be aware of the list of classes and methods that remain for

a full execution to complete.

The requirement for these new features led to the XenonAutomated creation, which retains

the core testing implementation (as described above) unchanged, but introduces this new state

awareness functionality, that orchestrates the execution of the whole class list in a full testing

suite. This speeds up significantly the investigation pace towards the direction we want, and

increases the efficiency of the fuzzing method implemented. Once the application crashes, then

it can be re-run and the execution will continue from the next declared method of the class, or the

next class of the list when the method list empties. Additionally, the output of the execution is

written in an Excel file, one row for each method. If the invoked method returns normally, a simple

‘SUCCESS’ message will assigned to the result, whereas if it throws an exception that can be

caught, the exception message will be assigned to the result. Finally, if a thrown exception does

not get caught and causes the application to crash, probably nothing will be written in the column

of the result, and the application should be restarted by the tester that leads the investigation.

However, if the method invocation causes not only the application, but the whole system to crash

(which is the main case under investigation), like an OS restart, this should be observed by the

tester (and again, nothing will be written to the result column at the Excel report). Then, this

observation should be written down to a report file. Note that, the result columns will include both

the minimum and the maximum values’ invocation result.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 19

Another extra functionality added to the extended app is the dynamic retrieval of the classes

list. After the addition of the execution-state storage in the app, the classes to be executed had

to be stored in a persistent list too. And, by saying ‘classes’ it is meant the constant fields that

shall be used to request from Context the relative class object, just as described above. In the

previous version of the app, the class was always one, and the constant was hardcoded in the

program (and the hardcoded value could be changed on demand). For the extended version, it

was considered preferable the constant values to be dynamically resolved during runtime, from a

credible source. The retrieval is accomplished by calling an HTTP request to the documentation

website, and parsing over the result.

This implementation gave the idea of further expansion of the range of the classes under

test, which could include even more classes of the Android API. Thus, additional modules were

added that acquire lists of Android SDK API classes (class names) from the official

documentation. For these extra Android API classes the object instantiation is accomplished

differently, as they are not provided by the Context class (these new classes are not necessarily

related to the hardware components; they are of general purpose). Instead, the solution was

provided by the Reflection API, once again. Using the class name, a ‘Class’ type object can be

created for that class. Then, all constructors declared for that class can be returned by the

Reflection API, and a proper one can be chosen to initialize the object (method invocation by the

Reflection API). The rest process remains the same.

In like matter, another expansion idea that came up naturally was to convert all methods to

public, with the use of Reflection. After executing some classes, it was observed that some

methods were throwing illegal-accessibility exception messages, as they were declared as

protected or private in their class definition, and the successful invocation was deprived by the

language. Reflection provides this feature of intercession, that enables the modification of the

accessibility level of a method (or a member), and this was used by this work in order to turn all

method modifiers to public, and then do the invocation, therefore bypassing the

IllegalAccessException.

During the development of XenonAutomated app, it was found that it is useful to be able to

isolate a single method of a class and execute it independently, in case, for example, of a strange

behavior of the operating system where we want to identify which exactly is the root cause. As

such, we added the additional feature of two drop down lists: one containing the full classes list,

and the second dynamically rendered upon list item selection of the first one, containing all the

methods of the selected class (see the screenshots shown in the figures 4, 5 below). Thus,

someone can invoke the selected method only. With this functionality, along with the use of the

debugging support of the Android Studio, someone can focus on specific methods testing, and

make conclusions about the observed behaviors.

5.3.3 The tool and Android permissions.

According to the initial idea of this work, regardless of the permissions granted by the user to the

application, malicious actions could be performed, exploiting Android API’s vulnerabilities. As

such, we have implemented the tool so that is requests all the available to third parties

permissions of the current API level running on the device (and the target version of the tool). The

user of the tool must approve each one, granting all permissions for the app. This set of user

interactions will happen at the beginning, after the first launch of the application, so that when the

testing begins, all possible Android APIs are accessible. In the adversary model this tool is aiming,

an appropriate subset of these permissions would be used - the ones needed to access a

vulnerable API component. The unsuspecting user, would allow an application to use some of

the vital system components, but nevertheless, he would not expect to experience some damage

in his device, and in general, granting permissions does not imply allowing harming operations to

act on the device.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 20

Figure 4 : The XenonAutomated application Tool running in the Emulator of the Android Studio

Figure 5: The XenonAutomated application Tool running in the Emulator of the Android Studio

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 21

5.3.4 Tool architecture

With respect to the code structure, XenonAutomated is a relatively simple Android application, in

order to facilitate its goal better. It consists of two Activities (accordingly two application views),

which split the functionality in two parts according to the classes they test. These two inherit from

a generic activity class, as there is a lot of common implementation between them. The several

services that help the activities implement the logic, are spread to sub-packages in order to

decompose the functionality to smaller entities. A key feature of the implementation is the

methodology by which the arguments passed to the methods under test are created. The latter is

centralized for all the places where we have test-method invocation (e.g. for the single method

execution, or the full class execution). This is accomplished with the help of an Enumeration class

that declares all the possible parameter types, and a map that is available to all the activities,

which maps an Enumeration value to a lambda (callback) that will return (when the under-test

method is called) the corresponding min and max values (see code-snippets below). This design

enables the extensibility of the tool, as even more ‘accepted’ class types can be added to the list

in the future, with minimum effort. It also facilitates the flexibility to change the values provided to

the methods on demand, making it more D.R.Y. (the developer does not have to search in many

places to do the same work).

Figure 6: Code snippet of The XenonAutomated application Tool

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 22

Figure 7: Code snippet of The XenonAutomated application Tool

5.4 Results

After completing the execution of XenonAutomated app for the APIs 21 to 28 inclusive, we can

describe the output of the testing.

We tested numerous methods, belonging to over 180 classes of the Android API. A finding

is that there were some method invocations that caused intervention to the mobile’s UI, which

can be considered as valid for some of these cases. However, for some other cases, we can

question how proper such actions are, when performed by third-party applications. For example,

in the case of android.telephony.TelephonyManager, the dial method opened a telephony-

manager view and typed several numbers of the keyboard, while the application kept running in

the background. The user is supposed to have granted all telephony-related permissions to the

app, but typing numbers on the keyboard of a telephony-manager Android view, almost

attempting to perform a phone call, cannot be considered as a proper use of the aforementioned

permissions. Additionally, the ability to dial a phone number is not even documented as an

available action.

The most outstanding outcome of the test results is arguably the cases where the method

invocation caused a restart to the Operating System. Moreover, this behavior was observed at

four methods in total, and they all concern Android API level 26: the

android.media.AudioManager.adjustSuggestedStreamVolume(int,int,int), the

android.media.AudioManager.adjustVolume(int,int), the

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 23

android.media.AudioManager.setStreamMute(int,boolean) under certain circumstances

and the

android.media.session.MediaSessionManager.dispatchAdjustVolume(int,int,int).

The above methods were executed isolated in debugging mode in order to be tested thoroughly,

as we should confirm the origin of the system failure. The finding is that right after the method

call, the operating system rebooted. This even more dangerous ‘unpredictable’ behavior could

even be combined with other security currently unresolved issues of the platform, to seriously

harm the user.

A sample of the most important result tables (coming out of the extracted Excel files), are

presented below. The first table is an example of the output (originally Excel) file that our tool

produces. After that, we presented an overview table containing the observations for all the

Context classes methods, for all APIs under test. There were many more classes investigated,

with no significant results to present.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 24

Table 4: Example sheet of the code running_API_26 (part of the excel sheet)

Class Name Method Name Arguments List Invoke Result Min Invoke Result Max

android.hardware.display.Display
Manager

getOrCreateDisplayLocked (int , boolean) SUCCESS SUCCESS

android.hardware.display.Display

Manager

connectWifiDisplay (java.lang.String) InvocationTargetException: null Cause:

Permission required to connect to a wifi

display: Neither user 10085 nor current

process has

android.permission.CONFIGURE_WIFI_DISPLAY

.

InvocationTargetException: null Cause:

android.os.TransactionTooLargeException: data

parcel size 42949772 bytes

android.hardware.display.Display

Manager

forgetWifiDisplay (java.lang.String) InvocationTargetException: null Cause:

Permission required to forget to a wifi display:

Neither user 10085 nor current process has

android.permission.CONFIGURE_WIFI_DISPLAY

.

InvocationTargetException: null Cause:

android.os.TransactionTooLargeException: data

parcel size 42949772 bytes

android.hardware.display.Display

Manager

getDisplay (int) SUCCESS SUCCESS

android.hardware.display.Display

Manager

getDisplays (java.lang.String) SUCCESS SUCCESS

android.hardware.display.Display

Manager

renameWifiDisplay (java.lang.String ,

java.lang.String)

InvocationTargetException: null Cause:

Permission required to rename to a wifi

display: Neither user 10085 nor current

process has

android.permission.CONFIGURE_WIFI_DISPLAY

.

InvocationTargetException: null Cause:

android.os.TransactionTooLargeException: data

parcel size 85899452 bytes

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 25

Class Name Method Name Arguments List Invoke Result Min Invoke Result Max

android.hardware.fingerprint.Fing

erprintManager

getAcquiredString (int , int) SUCCESS SUCCESS

android.hardware.fingerprint.Fing

erprintManager

getErrorString (int , int) SUCCESS SUCCESS

android.hardware.fingerprint.Fing

erprintManager

getEnrolledFingerprints (int) SUCCESS SUCCESS

android.hardware.fingerprint.Fing

erprintManager

hasEnrolledFingerprints (int) InvocationTargetException: null Cause: Must

have

android.permission.INTERACT_ACROSS_USERS

permission.: Neither user 10085 nor current

process has

android.permission.INTERACT_ACROSS_USERS.

InvocationTargetException: null Cause: Must

have

android.permission.INTERACT_ACROSS_USERS

permission.: Neither user 10085 nor current

process has

android.permission.INTERACT_ACROSS_USERS.

android.hardware.fingerprint.Fing

erprintManager

rename (int , int , java.lang.String) InvocationTargetException: null Cause: Must

have

android.permission.MANAGE_FINGERPRINT

permission.: Neither user 10085 nor current

process has

android.permission.MANAGE_FINGERPRINT.

InvocationTargetException: null Cause:

android.os.TransactionTooLargeException: data

parcel size 42949796 bytes

android.hardware.fingerprint.Fing

erprintManager

setActiveUser (int) InvocationTargetException: null Cause: Must

have

android.permission.MANAGE_FINGERPRINT

permission.: Neither user 10085 nor current

process has

android.permission.MANAGE_FINGERPRINT.

InvocationTargetException: null Cause: Must

have

android.permission.MANAGE_FINGERPRINT

permission.: Neither user 10085 nor current

process has

android.permission.MANAGE_FINGERPRINT.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 26

Class Name Method Name Arguments List Invoke Result Min Invoke Result Max

android.view.inputmethod.InputM

ethodManager

checkFocusNoStartInput (boolean) SUCCESS SUCCESS

android.view.inputmethod.InputM

ethodManager

finishedInputEvent (int , boolean , boolean) SUCCESS SUCCESS

android.view.inputmethod.InputM

ethodManager

setUpdateCursorAnchorInfo

Mode

 (int) SUCCESS SUCCESS

android.view.inputmethod.InputM

ethodManager

showInputMethodAndSubt

ypeEnabler

 (java.lang.String) SUCCESS InvocationTargetException: null Cause:

android.os.TransactionTooLargeException: data

parcel size 42949796 bytes

android.view.inputmethod.InputM

ethodManager

showInputMethodPicker (boolean) SUCCESS SUCCESS

android.view.inputmethod.InputM

ethodManager

toggleSoftInput (int , int) SUCCESS SUCCESS

android.app.UiModeManager disableCarMode (int) SUCCESS SUCCESS

android.app.UiModeManager enableCarMode (int) SUCCESS SUCCESS

android.app.UiModeManager setNightMode (int) InvocationTargetException: null Cause:

Unknown mode: -2147483648

InvocationTargetException: null Cause:

Unknown mode: 2147483647

android.telecom.TelecomManager from (android.content.Context) SUCCESS SUCCESS

android.telecom.TelecomManager acceptRingingCall (int) SUCCESS SUCCESS

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 27

Class Name Method Name Arguments List Invoke Result Min Invoke Result Max

android.telecom.TelecomManager clearAccountsForPackage (java.lang.String) InvocationTargetException: null Cause:

Package b does not belong to 10085

SUCCESS

android.telecom.TelecomManager getCallCapablePhoneAccou

nts

 (boolean) SUCCESS SUCCESS

android.telecom.TelecomManager getDefaultOutgoingPhoneA

ccount

 (java.lang.String) SUCCESS SUCCESS

android.telecom.TelecomManager getPhoneAccountsSupporti

ngScheme

 (java.lang.String) SUCCESS SUCCESS

android.telecom.TelecomManager getSimCallManager (int) SUCCESS SUCCESS

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 28

Table 5: Results after running the Xenon Code - API_26

Class Name Result

android.hardware.display.DisplayManager No changes in the OS

android.hardware.fingerprint.FingerprintManager No changes in the OS

android.view.inputmethod.InputMethodManager showInputMethodAndSubtypeEnabler (java.lang.String) -

> white view poped up, application kept running in the

background toggleSoftInput (int , int) -> keyboard

poped up and application kept running normally,

showInputMethodPicker(boolean) -> a language picker

poped up and application kept running normally

android.app.UiModeManager disableCarMode(int) -> application closed down but kept

running in the background enableCarMode(int) -> black

view poped up on top of the application.

android.telecom.TelecomManager No changes in the OS

android.app.admin.DevicePolicyManager No changes in the OS

android.view.accessibility.AccessibilityManager No changes in the OS

android.app.AppOpsManager No changes in the OS

android.hardware.camera2.CameraManager No changes in the OS

android.content.pm.ShortcutManager No changes in the OS

android.view.textclassifier.TextClassificationManage

r

No changes in the OS

android.accounts.AccountManager No changes in the OS

android.media.AudioManager adjustSuggestedStreamVolume(int,int,int) -> OS restart,

adjustVolume(int,int), setStreamMute(int ,boolean)-> OS

restart under certain conditions

android.media.session.MediaSessionManager dispatchAdjustVolume(int ,int ,int)-> OS restart

ERROR-->CLASS: TV_INPUT_SERVICE ERROR

android.view.textservice.TextServicesManager No changes in the OS

android.app.AlarmManager No changes in the OS

android.app.usage.NetworkStatsManager No changes in the OS

android.app.KeyguardManager No changes in the OS

android.app.SearchManager No changes in the OS

android.companion.CompanionDeviceManager No changes in the OS

android.os.UserManager No changes in the OS

android.appwidget.AppWidgetManager No changes in the OS

android.app.NotificationManager No changes in the OS

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 29

Class Name Result

android.app.DownloadManager No changes in the OS

android.view.WindowManagerImpl No changes in the OS

android.hardware.SystemSensorManager No changes in the OS

android.content.pm.LauncherApps No changes in the OS

android.app.ActivityManager No changes in the OS

android.net.wifi.WifiManager No changes in the OS

android.net.ConnectivityManager No changes in the OS

android.telephony.CarrierConfigManager No changes in the OS

com.android.internal.policy.PhoneLayoutInflater No changes in the OS

android.os.PowerManager No changes in the OS

android.hardware.input.InputManager No changes in the OS

android.media.MediaRouter No changes in the OS

android.content.ClipboardManager No changes in the OS

android.telephony.SubscriptionManager No changes in the OS

android.view.accessibility.CaptioningManager No changes in the OS

android.telephony.TelephonyManager dial(java.lang.String) ->A phone manager view with

keyboard appeard, and 2 was typed. Appplication

continued running in the background.

android.bluetooth.BluetoothManager No changes in the OS

android.os.storage.StorageManager No changes in the OS

android.app.usage.UsageStatsManager No changes in the OS

android.location.LocationManager No changes in the OS

android.os.HardwarePropertiesManager No changes in the OS

android.app.JobSchedulerImpl No changes in the OS

android.content.RestrictionsManager No changes in the OS

android.os.health.SystemHealthManager No changes in the OS

android.app.usage.StorageStatsManager No changes in the OS

android.os.DropBoxManager No changes in the OS

android.hardware.usb.UsbManager No changes in the OS

ERROR-->CLASS: WIFI_AWARE_SERVICE ERROR

ERROR-->CLASS: WIFI_P2P_SERVICE ERROR

android.os.BatteryManager No changes in the OS

android.net.nsd.NsdManager No changes in the OS

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 30

Table 6: Results after running the Xenon Code - API_21

Class Name Result

android.view.inputmethod.InputMethodManager toggleSoftInput (int , int) -> keyboard poped up and
application kept running normally

android.app.UiModeManager disableCarMode(int) -> application closed down but kept
running in the background.

Table 7: Results after running the Xenon Code - API_22

Class Name Result

android.telephony.TelephonyManager dial(java.lang.String) ->A phone manager view with
keyboard appeard, and 2 was typed. Appplication
continued running in the background.

android.app.UiModeManager disableCarMode(int) -> application closed down but kept
running in the background

android.view.inputmethod.InputMethodManager toggleSoftInput (int , int) -> keyboard poped up and
application kept running normally

Table 8: Results after running the Xenon Code - API_23

Class Name Result

android.view.inputmethod.InputMethodManager toggleSoftInput (int , int) -> keyboard poped up and
application kept running normally,
showInputMethodPicker(boolean) -> a language picker
poped up and application kept running normally.

android.telephony.TelephonyManager dial(java.lang.String) ->A phone manager view with
keyboard appeard, and 2 was typed. Appplication
continued running in the background.

android.app.UiModeManager disableCarMode(int) -> application closed down but kept
running in the background

Table 9: Results after running the Xenon Code - API_24

Class Name Result

android.telephony.TelephonyManager dial(java.lang.String) ->A phone manager view with
keyboard appeard, and 2 was typed. Appplication
continued running in the background.

android.view.inputmethod.InputMethodManager showInputMethodAndSubtypeEnabler (java.lang.String) ->
white view poped up, application kept running in the
background toggleSoftInput (int , int) -> keyboard poped
up and application kept running normally,
showInputMethodPicker(boolean) -> a language picker
poped up and application kept running normally

android.app.UiModeManager disableCarMode(int) -> application closed down but kept
running in the background

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 31

Table 10: Results after running the Xenon Code - API_25

Class Name Result

android.os.BatteryManager dial(java.lang.String) ->A phone manager view with
keyboard appeard, and 2 was typed. Appplication
continued running in the background.

android.view.inputmethod.InputMethodManager showInputMethodAndSubtypeEnabler (java.lang.String) ->
white view poped up, application kept running in the
background toggleSoftInput (int , int) -> keyboard poped
up and application kept running normally,
showInputMethodPicker(boolean) -> a language picker
poped up and application kept running normally

android.app.UiModeManager disableCarMode(int) -> application closed down but kept
running in the background

Table 11: Results after running the Xenon Code - API_27

Class Name Result

android.view.inputmethod.InputMethodManager showInputMethodAndSubtypeEnabler (java.lang.String) ->
white view poped up, application kept running in the
background toggleSoftInput (int , int) -> keyboard poped
up and application kept running normally,
showInputMethodPicker(boolean) -> a language picker
poped up and application kept running normally

android.app.UiModeManager disableCarMode(int) -> application closed down but kept
running in the background enableCarMode(int) -> black
view poped up on top of the application.

android.telephony.TelephonyManager dial(java.lang.String) ->A phone manager view with
keyboard appeard, and 2 was typed. Appplication
continued running in the background.

Table 12: Results after running the Xenon Code - API_28

Class Name Result

android.view.inputmethod.InputMethodManager showInputMethodAndSubtypeEnabler -> white view poped
up, application kept running in the background
toggleSoftInput -> keyboard poped up

android.app.UiModeManager disableCarMode -> application closed down but kept
running in the background enableCarMode -> black view
poped up on top of the application.

android.telephony.TelephonyManager dial ->A dial view with keyboard appeard, and 2 was typed.
Appplication continued running in the background.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 32

6. Summary - Conclusions

In this work, we introduced the reader to general concerns regarding the Android ecosystem that

led us search specific security breaches of the Android platform API. We outlined the Android

permissions model and its historical evolution, as well as some of its reported, at various times,

vulnerabilities, as it constitutes a fundamental security layer for the Android system. We briefly

summarized the concept of reflection in science and its incarnation to the Java language, as it is

a key feature used in the development of is work. We introduced the “fuzzing” technique, which

is a software testing methodology mostly used to reveal security vulnerabilities, as is the one used

by out tool. We presented the adversary model considered for this work, and outlined the platform

components we indented to test. Finally, we gave analytical overview of the tool developed to

validate our claims (XenonAutomated), and reported sample of the most interesting results of the

tool’s execution.

The claim considered for this work is that permissions security measure alone cannot

provide full protection over the device and data integrity, privacy and availability, as their approval

should allow limited and safeguarded access to the corresponding APIs. The testing methodology

that was adopted is to pass some edge case values to the methods’ parameters and check for

unpredictable behavior of the system (fuzzing). The execution was performed over numerous

methods of each Android API - from level 21 to level 28 - and showed some remarkable UI

interventions and a few methods in the Android API level 26 that can potentially harm Android

user, since they cause operating system’s restart.

In this work, the parameters list of the API methods that were tested included specific types

of arguments. This module of the tool is quite extensible, as the list can be enriched in a future

work, and even more methods can be put under the microscope. Further investigation on the

matter that would spread to more classes and methods, could potentially disclosure more

interesting results. Another test parameter that could be modified in the future in order to increase

the tool’s effectiveness, is the algorithm used by our fuzzer. A number of algorithms have been

adopted by fuzzers over the years for randomizing or distributing the data input appropriately, and

similar logic can be adopted by this tool for experimentation.

We also concluded that the limitations of the fuzzing technique in general, restricted the

results of this work. In some cases, the methods’ execution should have been performed in a

‘logical’ sequence, in a way that makes sense and aims to a particular action, so that a prior ‘state’

has been initialized, in order to unravel the hidden vulnerabilities. Additionally, it was noticed that

some of the edge values passed to the API methods caused an early exception related to ‘size’

validations, and did not manage to pass to the interior system and cause a failure. After all, this

is the most common weakness of the fuzzing technique that can possibly affect the effectiveness

of the testing.

7. Acknowledgments

The first version of the application developed for this work, Xenon, which included the core testing

methodology, was developed by John Tsantilis.

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 33

8. References

[1] http://www.businessofapps.com/data/app-revenues/

[2] Efthimios Alepis and Constantinos Patsakis, 2017: “Unravelling Security Issues of Runtime

Permissions in Android”

https://www.researchgate.net/publication/328515601_Unravelling_Security_Issues_of_Runt

ime_Permissions_in_Android

[3] http://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201208-201810

[4] https://www.openhandsetalliance.com/

[5] https://clevertap.com/blog/understanding-android-permissions/

[6] https://developer.android.com/about/versions/marshmallow/android-6.0-changes

[7] https://developer.android.com/guide/topics/permissions/overview

[8] https://developer.android.com/guide/topics/manifest/permission-element

[9] http://cloak-and-dagger.org/

[10] https://www.news.gatech.edu/2017/05/21/combination-features-produces-new-android-

vulnerability

[11] TUNCAY, G.S., DEMETRIOU, S., GANJU, K., GUNTER, C.A.: RESOLVING THE PREDICAMENT OF

ANDROID CUSTOM PERMISSIONS. IN: ISOC NETWORK AND DISTRIBUTED SYSTEMS SECURITY

SYMPOSIUM (NDSS) (2018) http://wp.internetsociety.org/ndss/wp-

content/uploads/sites/25/2018/02/ndss2018_08-4_Tuncay_paper.pdf

[12] Knock-Knock: The unbearable lightness of Android Notifications

https://arxiv.org/pdf/1801.08225.pdf

[13] FRANCOIS-NICOLA DEMERS AND JACQUES MALENFAN

“REFLECTION_IN_LOGIC_FUNCTIONAL_AND_OBJECT-

ORIENTED_PROGRAMMING_A_SHORT_COMPARATIVE_STUDY”, PROC. OF THE IJCAI’95

WORKSHOP ON REflECTION AND METALEVEL ARCHITECTURES AND THEIR APPLICATIONS IN AI. PP.

29–38. AUGUST 1995,

https://www.researchgate.net/publication/2732177_Reflection_in_logic_functional_and_obje

ct-oriented_programming_a_Short_Comparative_Study

[14] BENJAMIN LIVSHITS, JOHN WHALEY, AND MONICA S. LAM “REFLECTION ANALYSIS FOR JAVA”,

https://suif.stanford.edu/papers/aplas05r.pdf

[15] DANIEL G. BOBROW XEROX PARC, RICHARD P. GABRIEL LUCID, INC., JON L WHITE LUCID, INC.,

“CLOS IN CONTEXT:THE SHAPE OF THE DESIGN SPACE”, MAY 3, 2004,

https://extravagaria.com/Files/clos-book.pdf

[16] Smith, B.C. Reflection and Semantics in Lisp. Proceedings of ACM Symposium on

Principles of Programing Languages (May 1984).

http://research.cs.queensu.ca/~cordy/cisc860/Biblio/hurd/cs/smith84.pdf

[17] Reflection for the Masses. Charlotte Herzeel, Pascal Costanza, and Theo D’Hondt. Vrije

Universiteit Brussel http://www.p-cos.net/documents/s32008.pdf

[18] https://docs.oracle.com/javase/tutorial/reflect/index.html

[19] https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html#a0v1

[20] https://developer.android.com/guide/platform/

[21] https://www.statista.com/chart/15561/smartphone-sales-by-os/

[22] Proc. of the First Workshop on Reflection andMetalevel Architectures in Object-Orient ed

Program-ming, OOPSLA/ECOOP’90, Oct. 1990.

[23] https://www.linux.com/learn/overview-linux-kernel-security-features

http://www.businessofapps.com/data/app-revenues/
https://www.researchgate.net/publication/328515601_Unravelling_Security_Issues_of_Runtime_Permissions_in_Android
https://www.researchgate.net/publication/328515601_Unravelling_Security_Issues_of_Runtime_Permissions_in_Android
http://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201208-201810
https://www.openhandsetalliance.com/
https://clevertap.com/blog/understanding-android-permissions/
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/manifest/permission-element
http://cloak-and-dagger.org/
https://www.news.gatech.edu/2017/05/21/combination-features-produces-new-android-vulnerability
https://www.news.gatech.edu/2017/05/21/combination-features-produces-new-android-vulnerability
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_08-4_Tuncay_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_08-4_Tuncay_paper.pdf
https://arxiv.org/pdf/1801.08225.pdf
https://www.researchgate.net/publication/2732177_Reflection_in_logic_functional_and_object-oriented_programming_a_Short_Comparative_Study
https://www.researchgate.net/publication/2732177_Reflection_in_logic_functional_and_object-oriented_programming_a_Short_Comparative_Study
https://www.researchgate.net/publication/2732177_Reflection_in_logic_functional_and_object-oriented_programming_a_Short_Comparative_Study
https://www.researchgate.net/publication/2732177_Reflection_in_logic_functional_and_object-oriented_programming_a_Short_Comparative_Study
https://suif.stanford.edu/papers/aplas05r.pdf
https://extravagaria.com/Files/clos-book.pdf
http://research.cs.queensu.ca/~cordy/cisc860/Biblio/hurd/cs/smith84.pdf
http://www.p-cos.net/documents/s32008.pdf
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html#a0v1
https://developer.android.com/guide/platform/
https://www.statista.com/chart/15561/smartphone-sales-by-os/
https://www.linux.com/learn/overview-linux-kernel-security-features

Μεταπτυχιακή Διατριβή Βασιλική Πουλάκη

Automated security testing of Android API using fuzzing 34

[24] https://developer.android.com/reference/android/content/Context

[25] Using fuzzing to detect security vulnerabilities, INFIGO-TD-01-04-2006, 25-04-2006:

https://www.infigo.hr/files/INFIGO-TD-2006-04-01-Fuzzing-eng.pdf

[26] Violating assumptions with fuzzing, P. Oehlert, IEEE Security & Privacy (Volume: 3 , Issue:

2 , March-April 2005) https://ieeexplore.ieee.org/document/1423963

[27] Research On The Generation Method Of Test Cases In Fuzzing https://www.atlantis-

press.com/proceedings/icmii-15/25844363

[28] Miller B P, Fredriksen L, So B. An empirical study of the reliability of UNIX utilities [J].

Commun. ACM, 1990 ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

[29] https://en.wikipedia.org/wiki/Fuzzing

https://developer.android.com/reference/android/content/Context
https://www.infigo.hr/files/INFIGO-TD-2006-04-01-Fuzzing-eng.pdf
https://ieeexplore.ieee.org/document/1423963
https://www.atlantis-press.com/proceedings/icmii-15/25844363
https://www.atlantis-press.com/proceedings/icmii-15/25844363
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
https://en.wikipedia.org/wiki/Fuzzing

