

User authentication and detection of

malicious actions

A dissertation submitted to the

Department of Digital Systems, of

University of Piraeus in complete

fulfillment of the requirements for

the degree of Doctor of Philosophy

by

Stefanos Malliaros

B.Sc. School of Information and

Communication Technologies, Department of

Digital Systems, University of Piraeus

M.Sc. School of Information and

Communication Technologies, Department of

Digital Systems, University of Piraeus

Piraeus 2018

Advisory Committee

Christos Xenakis – Associate Professor, School of Information and

Communication Technologies, Department of Digital Systems,

University of Piraeus (supervisor)

Konstantinos Lambrinoudakis – Professor, School of Information and

Communication Technologies, Department of Digital Systems,

University of Piraeus

Sokratis Katsikas – Professor, School of Information and Communication

Technologies, Department of Digital Systems, University of Piraeus

Examination Committee

Christos Xenakis – Associate Professor, School of Information and

Communication Technologies, Department of Digital Systems,

University of Piraeus (supervisor)

Konstantinos Lambrinoudakis – Professor, School of Information and

Communication Technologies, Department of Digital Systems,

University of Piraeus

Sokratis Katsikas – Professor, School of Information and Communication

Technologies, Department of Digital Systems, University of Piraeus

Stefanos Gritzalis – Professor, School of Engineering, Department of

Information & Communication Systems Engineering, University of the

Aegean

Vassilis Chrissikopoulos – Professor, Department of Informatics, Ionian

University

Emmanouil Magkos – Associate Professor, Department of Informatics,

Ionian University

Panagiotis Rizomiliotis – Associate Professor, School of Digital

Technology, Department of Informatics and Telematics, Harokopio

University

Acknowledgements

I would like to thank my supervisor, Dr. Christos Xenakis, for his guidance and support

throughout the years of being a PhD candidate. Moreover, I would like to thank him for

selecting me as one of his core colleagues. I would also like to thank Dr. Costas

Lambrinoudakis and Dr. Sokratis Katsikas for all their constructive comments and

productive discussions not only during my PhD, but also during my master course.

Very special thanks to Dr. Christoforos Dadoyan for proving his knowledge, patience,

and guidance during my PhD period. I would also like to thank the members of the PhD

review committee for agreeing to serve on my dissertation committee.

A big “Thank You!” to Eleni Veroni for being an excellent friend, and colleague. You

provided valuable support these years.

Finally, I would like to thank my wife Chara because she has always supported my

decisions and has been with me throughout these years both in bad and good situations.

I cannot leave out my family and sister. I greatly express my gratitude for believing in

me and for all the sacrifices you made for me.

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου Δρ. Χρήστο Ξενάκη για την

καθοδήγηση και την υποστήριξή του καθ’ όλη τη διάρκεια της ιδιότητας μου ως

υποψήφιος διδάκτορας. Επιπλέον δε θα μπορούσα να μην τον ευχαριστήσω για την

επιλογή μου ως έναν από τους βασικούς συνεργάτες του. Θα ήθελα επίσης να

ευχαριστήσω τους καθηγητές Δρ. Κώστα Λαμπρινουδάκη και Δρ. Σωκράτη Κατσικά

για όλες τις εποικοδομητικές παρατηρήσεις τους και παραγωγικές συζητήσεις, τόσο

κατά τη διάρκεια του διδακτορικού μου όσο και κατά τη διάρκεια του μεταπτυχιακού

προγράμματος σπουδών.

Ιδιαίτερες ευχαριστίες στον Δρ. Χριστόφορο Νταντογιάν για τις γνώσεις που μου

προσέφερε, την υπομονή και την καθοδήγησή του κατά τη διάρκεια των διδακτορικών

μου σπουδών. Θα ήθελα, επίσης, να ευχαριστήσω ιδιαιτέρως τα μέλη της εξεταστικής

επιτροπής για την πολύτιμη βοήθειά τους στην ολοκλήρωση αυτού του κύκλου

σπουδών.

Ένα μεγάλο "Ευχαριστώ!" για την Ελένη Βερώνη η οποία στάθηκε εξαιρετική φίλη και

συνάδελφος.

Θα ήθελα, επιπλέον, να ευχαριστήσω τη σύζυγό μου, Χαρά, για τη συνεχή στήριξη της

στις αποφάσεις μου καθ’ όλη τη διάρκεια των ετών. Στέκεσαι συνεχώς δίπλα μου τόσο

σε κακές όσο και σε καλές καταστάσεις. Τέλος, δεν θα μπορούσα να μην αναφέρω την

οικογένειά μου και την αδελφή μου. Είμαι, λοιπόν, ευγνώμων για την υποστήριξή τους

προς μένα και για όλες τις θυσίες που κάνατε για την πραγμάτωση των δικών μου

στόχων.

Abstract

Modern devices can carry out potentially dangerous actions, such as storing corporate

and personal data, performing electronic transactions, accessing health data, and many

more. All these actions introduce the ability to securely access increasingly personal

information, which, in fact, raises the problem of user authentication. The usage of

passwords introduces critical security issues due to their predictability, while tokens are

not resistant to malware attacks, such as key loggers and memory scrapers.

These issues can only be addressed by holistically investigating the problem of user

authentication. The security of online accounts is drastically affected by the password

predictability, as well as the parameters for password storage. Therefore, we propose a

mathematical model, based on the parameters that influence password security. The

main goal is to discover the cost of password guessing. Moreover, an extended survey

of the default password storage parameters indicates that a significant percentage of

websites use insecure password hashing. We have proved that the cost of password

guessing can be a measure of defense to password guessing attacks.

Apart from password storage, the security of user accounts relies on the protocols used

for authentication, as well as the feasibility of obtaining the user credentials via

malware. As a result, we explore the security of FIDO authentication framework, which

replaces passwords with biometric modalities. The result of the analysis is a list of

vulnerabilities that may be exploited by an attacker to compromise the authenticity,

privacy, availability, and integrity of the FIDO. Moreover, as recent research has

shown, authentication credentials and cryptographic keys remain in the volatile

memory and can be easily extracted by malware. Therefore, we present safeguards

that can be applied to the software level, either from the operating system or the

applications, to erase data in the volatile memory from running and terminated

applications.

Lastly, with continuous authentication, users are continually authenticated via a

“score”, which measures the certainty that the account owner is using a service or

application. Therefore, we propose gaithashing, which is a secure two-factor

authentication scheme based on the gait modality. The proposed scheme eliminates the

noise and distortions caused by different silhouette types and achieves to authenticate

a user independently of his/her silhouette. Lastly, this thesis proposes a novel technique

to detect malicious actions using machine learning. This has been applied in the context

of Ad hoc networks, where a new critical attack parameter has been identified. This

parameter can be used to quantify the relation between AODV’s sequence number

parameter and the performance of blackhole attacks.

Περίληψη

Οι σύγχρονες συσκευές μπορούν να πραγματοποιούν δυνητικά επικίνδυνες ενέργειες,

όπως η αποθήκευση εταιρικών και προσωπικών δεδομένων, η εκτέλεση ηλεκτρονικών

συναλλαγών, η πρόσβαση σε δεδομένα υγείας και πολλά άλλα. Όλες αυτές οι ενέργειες

επιτρέπουν την ασφαλή πρόσβαση σε ευαίσθητες πληροφορίες, γεγονός που διεγείρει

το πρόβλημα επαλήθευσης χρήστη. Η χρήση των κωδικών πρόσβασης εισάγει κρίσιμα

ζητήματα ασφαλείας, ενώ η αυθεντικοποίηση δύο παραγόντων δεν είναι ανθεκτική σε

επιθέσεις κακόβουλου λογισμικού.

Αυτά τα προβλήματα μπορούν να αντιμετωπιστούν μόνο με ολιστική διερεύνηση του

προβλήματος της πιστοποίησης ταυτότητας χρήστη. Η ασφάλεια των online

λογαριασμών επηρεάζεται δραστικά από την προβλεψιμότητα των κωδικών

πρόσβασης, καθώς και από τον τρόπο αποθήκευσης τους. Ως εκ τούτου, προτείνουμε

ένα μαθηματικό μοντέλο βασισμένο στις παραμέτρους που επηρεάζουν την ασφάλεια

των κωδικών πρόσβασης. Ο σκοπός είναι ο υπολογισμός του κόστους επιθέσεων

password guessing. Επιπλέον, πραγματοποιούμε μια ενδελεχή έρευνα των παραμέτρων

προεπιλεγμένης αποθήκευσης κωδικού πρόσβασης που δείχνει ότι ένα σημαντικό

ποσοστό των ιστότοπων χρησιμοποιούν μη ασφαλείς τρόπους αποθήκευσης κωδικών

πρόσβασης. Έχουμε αποδείξει πως το κόστος των password guessing επιθέσεων μπορεί

να είναι ένας τρόπος άμυνας απέναντι σε αυτές.

Εκτός από την αποθήκευση των κωδικών πρόσβασης, η ασφάλεια των λογαριασμών

χρηστών βασίζεται στα πρωτόκολλα που χρησιμοποιούνται για τον έλεγχο ταυτότητας,

καθώς και στη δυνατότητα διαρροής τους μέσω κακόβουλου λογισμικού. Επομένως,

εξετάζουμε την ασφάλεια του πλαισίου ελέγχου ταυτότητας FIDO, το οποίο

αντικαθιστά τους κωδικούς πρόσβασης με βιομετρικά χαρακτηριστικά. Το αποτέλεσμα

της ανάλυσης είναι μια λίστα ευπαθειών που μπορεί να εκμεταλλευτεί ένας εισβολέας

για να θέσει σε κίνδυνο την αυθεντικότητα, την ιδιωτικότητα, τη διαθεσιμότητα και

την ακεραιότητα του FIDO. Επιπλέον, καθώς πρόσφατες έρευνες έχουν δείξει ότι τα

πιστοποιητικά ελέγχου ταυτότητας και τα κρυπτογραφικά κλειδιά παραμένουν και

μπορούν να διαρρεύσουν μέσω της πτητικής μνήμης, παρουσιάζουμε τεχνικές που

μπορούν να εφαρμοστούν σε επίπεδο λογισμικού, είτε από το λειτουργικό σύστημα

είτε από τις εφαρμογές, με σκοπό την διαγραφή των κωδικών πρόσβασης από την

πτητική μνήμη.

Τέλος, με την χρήση της συνεχούς αυθεντικοποίησης, οι χρήστες επαληθεύονται

συνεχώς μέσω μίας μέτρησης, η οποία μετρά τη βεβαιότητα ότι ο κάτοχος του

λογαριασμού χρησιμοποιεί είτε την υπηρεσία ή την εφαρμογή. Ως εκ τούτου,

προτείνουμε ένα ασφαλές σύστημα ταυτοποίησης δύο φάσεων, το οποίο εφεξής θα

αναφέρετε ως gaithashing, βασισμένο στη μέθοδο βάδισης. Το προτεινόμενο σχήμα

εξαλείφει το θόρυβο και τις παραμορφώσεις που προκαλούνται από διαφορετικούς

τύπους σιλουέτας του χρήστη και επιτυγχάνει την εξακρίβωση της ταυτότητας του

ανεξάρτητα από τη σιλουέτα του. Τέλος, αυτή η διατριβή προτείνει μια νέα τεχνική για

την ανίχνευση κακόβουλων ενεργειών που βασίζεται στην μηχανική μάθηση. Αυτή

εφαρμόστηκε στο πλαίσιο των δικτύων ad hoc, όπου ορίστηκε μια νέα παράμετρος, η

οποία ποσοτικοποιεί τη σχέση μεταξύ των αριθμών ακολουθίας του AODV και της

απόδοσης επιθέσεων τύπου blackhole.

Table of Contents

1. Introduction .. 19

1.1. Research Contribution and structure ... 20

2. Password based authentication: A deficient approach ... 22

2.1. Background ... 22

2.1.1. Password guessing attacks ... 22

2.1.2. Hardware based password guessing... 23

2.1.3. CMS and web application frameworks .. 23

2.1.4. Related Work ... 24

2.2. Password hashing schemes.. 26

2.3. A mathematical model for cost estimation of password guessing attacks. ... 28

2.3.1. Mathematical parameters ... 28

2.3.2. Effectiveness: Brute Force password guessing attacks 29

2.3.3. Cost analysis: Brute Force password guessing attacks 32

2.3.4. Effectiveness: Dictionary password guessing attacks............................ 34

2.3.5. Cost analysis: Dictionary password guessing attacks 34

2.4. Password hashing scheme evaluation ... 35

2.5. Cost of password cracking .. 41

2.5.1. Hashrates .. 41

2.5.2. Comparative analysis ... 42

2.6. Misuse of password hashing schemes for denial of service attacks 46

2.7. Recommendations on Password hashing .. 51

3. Overcoming the limitation of passwords ... 54

3.1. Strong authentication with Fast IDentity Online... 54

3.1.1. Background .. 54

3.1.1.1. Related Work .. 54

3.1.1.2. FIDO UAF protocol operations .. 55

3.1.2. Security analysis .. 60

3.1.3. Threat analysis ... 62

3.1.4. Results and discussion ... 65

3.2. Real-time protection of user authentication credentials 66

3.2.1. Related work .. 66

3.2.2. Software level protection ... 67

3.2.2.1. Operating System level protection ... 67

3.2.2.2. Source code level protection... 70

3.2.3. Results and discussion ... 73

4. Continuous authentication and detection of malicious actions 74

4.1. Continuous authentication using biometric modalities 74

4.1.1. Security and performance of Biometric based authentication 74

4.1.2. Related Work ... 76

4.1.3. Continuous authentication using the gait modality 77

4.1.3.1. Feature Extraction ... 77

4.1.3.2. Biohashing .. 79

4.1.4. Initial experiments and observations ... 80

4.1.4.1. 1st scheme ... 80

4.1.4.2. 2nd scheme... 82

4.1.4.3. Experiments and numerical results ... 82

4.1.5. User registration and authentication using the gait modality................. 85

4.1.6. Performance evaluation ... 90

4.1.7. Results and discussion ... 96

4.2. Detection of malicious actions using machine learning 97

4.2.1. Background .. 97

4.2.1.1. Routing in mesh networks .. 97

4.2.1.2. Blackhole attack: Acting as a sinkhole for all network traffic 99

4.2.1.3. Related Work .. 102

4.2.2. Blackhole attack intensity .. 105

4.2.3. Using machine learning to detect malicious actions 106

4.2.4. Results and discussion ... 110

5. Conclusions .. 111

5.1. Publications ... 112

5.1.1. Journal Articles .. 112

5.1.2. Conference/Workshop Publications... 112

References .. 113

List of Figures

Figure 1: CPU utilization vs login rate .. 48

Figure 2: CPU utilization vs password length ... 50

Figure 3: CPU utilization vs iterations... 51

Figure 4: Layered Hashing scheme of Facebook ... 52

Figure 5: The FIDO UAF protocol .. 56

Figure 6: The UAF registration operation ... 58

Figure 7: The UAF authentication operation ... 59

Figure 8: First testing application used to discover the total number of instances of the

password variable in the volatile memory ... 68

Figure 9: Second testing application used to discover the total number of instances of

the passwrod variable ni the volatile memory ... 72

Figure 10: Third testing application used to discover the total number of instances of

the passwrod variable in the volatile memory ... 73

Figure 11: Genuine and impostor distributions as a function of distance between

enrollment and authentication templates ... 75

Figure 12: Distributions of the FinalResult values of the first scheme for genuine users

and impostors. .. 84

Figure 13: Distributions of the FinalResult values of the second scheme for genuine

users and impostors. ... 86

Figure 14: Gaithashing enrollment procedure ... 86

Figure 15: Gaithashing enrollment algorithm .. 87

Figure 16: Gaithashing authentication procedure .. 88

Figure 17: Gaithashing authentication algorithm .. 90

Figure 18: Distributions of the FinalResult values of gaithashing for genuine users and

three impostor types ... 91

Figure 19: Gaithashing FRR-FAR values as functions of the threshold value 93

Figure 20: The "reactive" blackhole attack (step a: route request, step b: route replies,

step c: data transmission) ... 101

Figure 21: Pseudocode of the CUSUM algorithm ... 110

List of Tables

Table 1: Popular CMS usage statistics... 24

Table 2: Popular web application frameworks based on GitHub 24

Table 3: Charset value for different types of character sets ... 29

Table 4: Categories and number of leaked passwords ... 31

Table 5: Values for password length as a function of character set distributions 32

Table 6: Effectiveness values for pure dictionary password guessing attacks (values

were taken from [18]) .. 34

Table 7: Effectiveness values for dictionary password guessing using PCFG or Markov

models (values were taken from [18]) ... 34

Table 8: The default hashing scheme parameters of the investigated open source CMS

.. 37

Table 9: The default hashing scheme parameters of the investigated web application

frameworks .. 41

Table 10: Hashrates and runtime values .. 43

Table 11: Numerical results of the cost time for various CMS and web application

frameworks. ... 46

Table 12: Parameters of the hashing schemes. .. 47

Table 13: Threats related to the UAF protocol and their associated consequences 65

Table 14: Number of instances of the password variable .. 69

Table 15: Conversion of zi to bis .. 80

Table 16: Gaithashing tested weight values and corresponding EER of type 2 impostors

.. 94

Table 17: EER values of the three proposed schemes ... 95

19

1. Introduction

Modern devices can carry out potentially dangerous actions, such as storing corporate

and personal data, performing electronic transactions, accessing health data, etc. All

these actions introduce the ability to securely access increasingly personal information,

which in fact raises the problem of user authentication. Currently, user authentication

and access control are mainly carried out based on the usage of passwords or tokens.

However, these mechanisms present fundamental limitations in terms of both security

and usability. On the one hand, short length passwords are usually of low entropy,

which means that an attacker may guess them, while lengthy passwords are difficult to

remember. This results in the reuse of a password or the creation similar passwords for

each service, which increases significantly the risk of a password to be broken and the

associated services to be compromised. On the other hand, tokens can be easily stolen,

while they are not resistant to malware attacks, such as key loggers and memory

scrapers.

User authentication is the process of determining whether someone is, in fact, who he

declares to be. This is usually performed by checking if a user's credentials match the

credentials in a database of authorized users. Several corporates [1] have become

victims of security breaches, resulting in the disclosure of billions of stored user

passwords. One of the most significant data breaches during 2016 disclosed a database

containing 1 billion users’ authentication details [2], and was put on sale for 300.000

dollars [3], while one of the biggest data breaches during 2017 included 145.5 million

users’ details. Hackers take advantage of the computing power of graphics processing

units (GPU) and specialized hardware to crack the users’ passwords. Although the price

of top tier graphics cards is relatively high (e.g., 2999$ for an NVIDIA TITAN V [4]),

hackers can also rent cloud infrastructure including dedicated GPUs for a monthly or

pay-as-you-go price (e.g. Google rents a GPU for maximum 2.55$ per hour [5]),

making password guessing attacks easier and faster to perform.

Apart from password guessing attacks, that target passwords originating from an online

database, users are also threatened from malware that can steal their authentication

credentials in real time. Recent research has shown that authentication credentials and

cryptographic keys remain in the volatile memory and can be easily extracted [2].

For this reason, the volatile memory has become a prime target for malicious

software. As a matter of fact, a new malware category has emerged named as

20

memory scrapers, which specifically target the volatile memory, to steal sensitive

information, such as credit card numbers [5]. To achieve this, memory scrapers use

regular expression matches, to harvest credit card data from the volatile memory, and

then the collected data are sent to a malicious server. The first known memory scraper,

named StarDust targeted point of sale terminals and compromised nearly 20.000 credit

cards in the US [7].

1.1. Research Contribution and structure
The first part of this work (see section 2) focuses on studying the security of the

currently used methodologies for user authentication. This is performed by proposing

a mathematical model, based on the parameters that influence password security, for

estimating the cost of brute force and dictionary password guessing attacks. By

performing an extended survey on the hashing performance of graphics processing

units, we applied the proposed model to the most commonly used CMSs and web

application frameworks to investigate whether they offer secure password hashing.

Although, the first observations of the first part showed that a significant percentage of

websites use insecure password hashing, we proved that the cost of password guessing

can be a measure of defense to password guessing attacks.

The second part of this work (see section 3) investigates already existing solutions that

offer advantages over traditional authentication mechanisms. Therefore, we explore the

FIDO UAF protocol by comprehensively analyzing the client-side operation, including

any associated security measures proposed by the UAF protocol specifications. The

critical functionality of the UAF protocol typically operates in a consumer platform

such as a mobile device, which is susceptible to a variety of attacks such as malware

and viruses. Based on a comprehensive security analysis, we have identified several

vulnerabilities that may be exploited by an attacker to compromise the authenticity,

privacy, availability, and integrity of the UAF protocol. Although FIDO increases the

users’ security by abolishing the use of passwords, disclosure attacks can also target the

users’ personal computer, Thus, we investigate safeguards that can be applied at the

software level, either from the operating system or the applications, to zeroize data in

the volatile memory. Experimental results showed that Windows kernel zeroizes data

after a process termination, while the Linux kernel does not. Moreover, by comparing

software functions in C/C++ programming language and built in Windows functions,

21

we have concluded that only Windows provides a specific function, named

SecureZeroMemory, that can reliably zeroize volatile memory data.

Lastly, the third part of this work (see section 4) focuses on proposing novel solutions

and methodologies for continuous authentication and detection of malicious actions.

The first solution, named gaithashing, is a two-factor authentication that interpolates

between the security features of biohash and the recognition capabilities of gait features

to provide a high accuracy and secure authentication system. A novel characteristic of

gaithashing is that it enrolls three different human silhouettes types. By selecting

appropriate weight values, the proposed scheme eliminates the noise and distortions

caused by different silhouette types and achieves to authenticate a user independently

of his/her silhouette. The second solution focuses on the detection of malicious actions.

This has been performed in the context of Ad hoc networks, and one of the simplest yet

effective attack that targets the AODV routing protocol. Particularly, a comprehensive

analysis of the blackhole attack is conducted focusing not only on the effects of the

attack, but also on the exploitation of the route discovery process. As a result, a new

critical attack parameter is identified (i.e., blackhole intensity), which quantifies the

relation between AODV’s sequence number parameter and the performance of

blackhole attacks.

22

2. Password based authentication: A deficient approach

2.1. Background

2.1.1. Password guessing attacks

Password guessing (also known as password cracking) is an attack in which an

adversary attempts to guess the users’ password. We distinguish two password guessing

attack categories: i) Online and ii) Offline. In online attacks, an attacker can try to login

to a website by selecting frequently used passwords. After several unsuccessful

attempts, the IP address or the username that the attacker is trying to login can be

locked. On the other hand, in an offline attack, the scenario is that an attacker has in her

possession a database of users’ password hash values and she can attempt to crack each

user’s password offline by comparing the hashes of likely password guesses with the

stolen hash value. Because the attacker can check each guess offline it is no longer

possible to lockout the adversary after several incorrect guesses. Subsequently, in this

thesis we consider offline attacks.

Moreover, we can classify password guessing attacks to three categories: i) brute

force ii) dictionary and iii) rainbow tables. In a brute force attack, the adversary tries

every possible password combination considering two parameters; a) the password

length; and b) the character set. On the other hand, in a dictionary attack, the adversary

uses passwords from a list, which are likely to be used as passwords by users. There are

four types of dictionary attacks: i) pure ii) Probabilistic Context Free Grammar (PCFG)

based [6], iii) Markov model based [7] and iv) mangling rules [8]. In the pure dictionary,

the attacker simply uses a set of predefined words as candidate passwords. In the second

type, PCFG theories are used to construct a dictionary containing modified passwords

with assigned probabilities. In the third type, Markov-based models are applied to

create candidate passwords based on the probability distribution over sequences of

characters. In the fourth type (i.e., mangling rules), the attacker creates password

variations from a dictionary by applying various modifications rules, such as “add the

symbol ! at the end of the password”. Finally, the third category of guessing attacks is

rainbow tables, in which the attacker uses a precomputed list to reverse the hash value.

In this thesis, the term password guessing (or cracking), unless stated otherwise, refers

specifically to brute force and dictionary attacks but not rainbow tables. Moreover, from

the four types of dictionary attacks we exclude mangling rules as these are specific to

each cracking tool.

23

2.1.2. Hardware based password guessing

An attack scales linearly with invested resources, mainly cost of the equipment and

energy consumption, and thus we have to take their influence into account. General

purpose computing on GPUs can boost the computation performance, since the multiple

GPU processing cores can be used in parallel for high-power calculations. Typically, a

GPU consists of hundreds of computing cores grouped into computing clusters sharing

the same memory bus. Due to this architecture, GPUs are specialized in Single

Instruction, Multiple Data (SIMD) computations [9], which refer to the simultaneous

execution of the same instruction on multiple processors with different input data for

each processor (i.e., parallel computing). Consequently, GPUs can accelerate password

guessing, since the same hashing scheme (i.e., the same instruction) can be executed

simultaneously by hundreds of computing cores with different passwords as input. In

[10], the authors measured the performance of the password guessing functions, where

it was observed that the time required for password guessing decreased by 97% with

GPU acceleration, compared with the time required using only CPU.

Apart from GPUs, special purpose hardware such as field-programmable gate arrays

(FPGAs) and more recently application-specific integrated circuits (ASICs) have been

utilized to yield even higher hashrate values. Generally speaking, equipment cost is in

favor of the graphic cards, as GPUs are a consumer product that is sold in large

quantities. Also, older versions usually receive a discount, making them more cost-

effective. Interestingly, FPGA vendors use a different strategy: with the release of a

new product line, the price of the old family stays roughly unchanged, while the new

version is offered with a small discount to make the consumers switch away from the

abandoned hardware platform. In this thesis, we will consider GPUs as the hardware

platform of password guessing attacks.

2.1.3. CMS and web application frameworks

Nowadays, the majority of websites originate either from CMS or web applications

frameworks. CMS are intended to be plug and play solutions and their main aim is to

allow non-developers to deploy websites. CMS play an important role in the Internet.

According to [11], 52.3% of websites in the Internet are based on CMS. Table 1 shows

statistics of CMS usage among all websites in the Internet and among all CMS [11]. In

particular, first comes the popular WordPress with a whopping 31.3% usage among all

24

websites in the Internet, while 59.8% usage among CMS. Second is Joomla with a 3.1

percentage usage among all websites in the internet, while Drupal is third with 2%.

CMS Market share among all

websites in the Internet

Market share

among CMS

WordPress 31.3% 59.8%

Joomla 3.1% 6. 0%

Drupal 2.0% 3.9%

Magento 1.1% 2.1%

PrestaShop 0.7% 1.4%

TYPO3 0.7% 1.4%

OpenCart 0.4% 0.8%

Table 1: Popular CMS usage statistics

On the other hand, web application frameworks are utilized by developers and aim at

supporting the development of rich web applications by providing a standard way to

build and deploy web applications. For web application frameworks, we could not find

a reliable source of statistics regarding their market share in the Internet. Considering

that many frameworks share the same programming language, it is difficult to

determine which specific framework a website uses. Therefore, we used statistics from

GitHub to discover the most popular open source frameworks [12]. Table 2 shows the

number of stars that each web application framework has which can be considered as a

popularity metric among web developers. Laravel which uses PHP has the largest

number of stars, which is 44.465. The second most popular framework, Ruby on Rails,

is based on Ruby with 40.263 stars, while MeteorJS, based on Javascipt, has 40.068

stars. Note that from Table 2 ASP.NET is excluded, since GitHub is used only open-

source projects.

Web application

framework

Programming Language # of stars on GitHub

Laravel PHP 44.465

Ruby on Rails Ruby 40.263

MeteorJS Javascript 40.068

ExpressJS Javascript 39.333

Flask Python 37.515

Django Python 35.230

SailsJS Javascript 19.350

Table 2: Popular web application frameworks based on GitHub

2.1.4. Related Work

The related work has studied extensively the area of password security from various

scopes, including: i) password guessing attacks in leaked databases, and, ii) analysis of

password complexity. Here we present only the most recent and relevant works.

Regarding the first category, which is password guessing, the main metric which is used

25

by the related work to estimate the attack efficiency is called effectiveness. In essence,

effectiveness is the fraction of passwords that will be correctly cracked after an attack.

The authors in [6] have used the PCFG technique, which uses grammar theories to

construct a dictionary containing passwords in a decreasing probability order and

succeeded in cracking 28% - 129% more passwords in comparison to John the Ripper

(JtR) [13]. In [14], the authors analyzed the Rock you [15] database to identify regular

expressions that were used to create candidate passwords. The numerical results

showed that the proposed method cracks 14% - 239% more passwords in comparison

with JtR.

Towards this direction, the work in [16] performs an analysis of Chinese web passwords

by using the PCFG and Markov-based model, which create candidate passwords

phonetically relevant to the words included in a dictionary. The authors succeeded in

increasing password cracking efficiency by 48% and 4.7%, respectively, for each

technique. In [17], the authors proposed a tool named OMEN, which was compared in

password guessing with the PCFG and the Markov-based techniques. The recorded

effectiveness was higher by 20% and 40% in comparison to PCFG and Markov-based

techniques respectively. Moreover, [18] performed an empirical analysis on passwords

and compared the effectiveness of dictionary password guessing attacks to this of the

PCFG and Markov-based techniques. The PCFG method managed to crack 40-50% of

the passwords, while 61.90% of passwords were cracked using the Markov-based

methodology with 850 million guesses.

The second category of the related work is password complexity analysis. More

specifically, the work in [19] performs a password analysis of the RockYou leaked

database consisting of cleartext passwords. The results pinpointed that most of the

passwords are not secure enough to withstand password guessing attacks. In fact, 30%

of the users chose passwords whose length is equal or below six characters, and 60%

of the users use the limited alpha-numeric set to form their passwords, while the most

commonly used password was “123456”. Reports from the Keeper password manager

[20] show that, even in 2016, the users’ passwords are still predictable, since the most

common recorded passwords include “123456”, “qwerty” and “111111”. Ιn [21], the

authors performed interviews with several different groups (i.e., students, ICT

specialists, etc.) regarding their password habits. They discovered that 50% of the

respondents use less than 4 different passwords for all their services. Moreover, in all

26

groups more than 50% of the respondents use passwords shorter than nine characters

and most of the passwords still consisted of letters and characters.

2.2. Password hashing schemes

A hashing scheme takes as an input a plaintext password and transforms it into a hash

value considering three parameters: i) hash function; ii) iterations; iii) salt. More

specifically, the core parameter of a hashing scheme is the employed hash function,

such as MD5. The iterations parameter is optional and specifies the number of

consecutive executions of the employed hash function to compute the hash value. For

example, if a hashing scheme uses the MD5 hash function and the number of iterations

is 100, then it will conduct 100 consecutive executions of MD5 to compute the

password hash. The number of iterations can be adjusted so that the computation of the

hash value takes an arbitrarily large amount of computing time (also known as key

stretching). In this way, iterations are used to slow down password guessing attacks.

Regarding the last parameter, the salt is also optional, and it is a random string which

together with the password are the inputs to the hash function to produce the hash value.

Using random salts, rainbow tables become ineffective. That is, an attacker won’t know

in advance what the salt value is and therefore he/she cannot pre-compute a rainbow

table.

There are numerous functions used for password hashing including: MD5 [22], SHA1

[23], SHA256 - SHA512 [24], PBKDF2 [25], BCRYPT [26], SCRYPT [27] and

Argon2 [28]. The first four hash functions (i.e., MD5, SHA1, SHA256, SHA512) do

not require the use of a salt by default. Thus, a separate function should be used to

generate a salt for the hashing scheme. On the other hand, the rest of the hash functions

internally generate and use a random salt during hash calculation.

As we mentioned previously, the iterations parameter specifies the number of

consecutive executions of the employed hash function, increasing the computation time

to compute the hash value. For this reason, PBKDF2, BCRYPT, SCRYPT and Argon2

hash functions use iterations by default. More specifically, PBKDF2 is the simplest

function, since it iterates the employed hash function, usually SHA256 or SHA512. On

the other hand, BCRYPT, which is based on the blowfish encryption algorithm, uses

iterations only in the Blowfish key setup function using the salt and password

parameters as inputs. For PBKDF2 and BCRYPT, memory usage is not tunable

27

separately (i.e., it is fixed for a given amount of CPU time). On the other hand, SCRYPT

and Argon2 belong to a special category of hash functions named as memory hard

functions (MHF), which are designed to use an arbitrary large and tunable amount of

memory compared to PBKDF2 and BCRYPT making the size and the cost of a

hardware implementation of these hash functions much more expensive, and therefore,

limiting the amount of parallelism an attacker can use. Similar to BCRYPT, both

SCRYPT and Argon2 use iterations in specific parts of the algorithm. SCRYPT was

one of the first proposed MHF [27] and recently in 2016, the SCRYPT algorithm was

published by IETF as a standard (RFC 7914) [29]. It is important to mention that for

BCRYPT and SCRYPT, the literature uses the term cost factor [26], [27] instead of

iterations (specifically for SCRYPT it is called CPU/Memory cost factor). In the rest

of this thesis we will explicitly use the term iterations instead of cost factor. Apart from

iterations, SCRYPT and Argon2 include several parameters that can be used to adjust

the memory requirements for hash value computation. We will specifically focus on the

iterations parameter.

Regarding the exact value of iterations for the above hash functions, NIST guidelines

recommend PBKDF2 with minimum 10.000 iterations [30], while the author of

SCRYPT recommends 16384 iterations [27]. On the other hand, there is no official

recommendation for BCRYPT and Argon2. We have only discovered that PHP

programming language by default uses BCRYPT with 1024 iterations [31].

As mentioned in section 2.1.2, password guessing attacks greatly benefit from multiple

processing cores, especially for hashing schemes that can be executed in parallel. MD5,

SHA1, SHA256, SHA512 hash functions can be executed in parallel on multi-processor

systems, fact that increases significantly the efficiency of password guessing attacks.

Moreover, several weaknesses of PBKDF2 [32] allow efficient implementations with

very little use of RAM, which makes brute-force attacks to PBKDF2 using FPGAs

relatively cheap. Also, the work in [33] achieved a great optimization in running

PBKDF2 on GPU hardware.

On the other hand, BCRYPT, due to its pseudorandom access to memory makes

difficult to cache data into the GPU’s internal memory [34]. Subsequently, BCRYPT

implementations on GPUs use the external memory, thus spending more time

transferring operands to and from the GPU. Thus, compared to PBKDF2, BCRYPT is

less parallelizable and more resistant to password guessing attacks [27]. However,

28

recent works such as [35] [36] have presented BCRYPT implementations that achieve

a high level of parallelization in embedded hardware devices. Finally, MHF such as

SCRYPT and Argon2 are specially designed to withstand against hardware-equipped

adversaries. MHF bound the memory amount and the memory bandwidth, limiting in

this way the level of parallelism that an attacker can achieve. While a practical attack

for SCRYPT has not been demonstrated yet, new MHF were proposed in the password

hashing competition in 2014 [37] in which Argon2 was the winner.

2.3. A mathematical model for cost estimation of password guessing

attacks.

In this section we propose a cost analysis framework for password guessing attacks.

The rationale is to first compute the number of hashes, that will be performed

throughout password guessing attacks, and secondly to estimate their effectiveness (i.e.,

percentage of successfully guessed passwords). By utilizing these two values, the cost

of password guessing attacks is defined as the average number of hashes required to

successfully crack a password hash. Lastly, the cost can be transformed into the average

time required to crack a password hash. It is important to mention that the aim here is

not to derive new mathematical models for password cracking, which has been already

done in the previous works extensively (see section 2.1.4). Instead, our aim is to

formulate a simple framework that will allow us to perform a security comparison and

evaluation between the various CMS and application frameworks by quantifying the

cost of password cracking.

2.3.1. Mathematical parameters

This section elaborates on the parameters of the proposed framework for the cost

estimation of password guessing attacks. These parameters are as follows:

• Iterations (I): The iterations parameter represents the number of consecutive

executions of a hash function to compute the password hash. For example, a

hashing scheme of 500 SHA1 iterations requires 500 consecutive executions of

SHA1 to compute the hashing result. Note that this value is relevant only for

iterations of MD5, SHA1, SHA256, SHA512 hash functions. On the other hand,

PBKDF2, BCRYPT, SCRYPT and Argon2 that use iterations as an internal

parameter, the parameter Ι is not considered (i.e., I=1).

29

• Database passwords (D): This parameter indicates the number of password

hashes in the database.

• Salt (S): This parameter indicates the number of salts in the database. We will

assume that each password has a unique salt, therefore the number of database

passwords D is equal to number of salts S. On the other hand, if the database

does not use salt, then the parameter S is not considered (i.e., S=1).

• Hashrate (Hr): It is the number of calculated hash values per second.

• Password length (pwd_length): This parameter is the length of the target

passwords that an attacker desires to crack in a brute force attack. We also define

as pwd_lengthmin the minimum and pwd_lengthmax, the maximum password

length that the attacker aims to crack.

• Charset (C): The charset is the second attacking parameter of brute force

password guessing attacks. The value of charset depicts the number of unique

characters of the different sets that are used for the composition of a password

(see Table 3)

• Attempts in a dictionary attack (attempts): It is the number of candidate

passwords that an attacker will attempt to crack the passwords. This parameter

is relevant only for a dictionary attack.

• Effectiveness (EBF or EDC): The effectiveness of a password guessing attack is

the percentage of password hashes in a database that will be cracked after the

completion of the attack. The effectiveness of the brute force attack is denoted

as EBF, while for the dictionary attack is noted as EDC.

Type of character set Charset (C) value

Numeric 10

Lowercase 26

Uppercase 26

Loweralphanumeric or

Upperalphanumeric

36

Mixedcase 52

Mixedalphanumeric 62

Special 94

Table 3: Charset value for different types of character sets

2.3.2. Effectiveness: Brute Force password guessing attacks

To compute the effectiveness of a brute force attack EBF, we define the parameter

Ppwd_length as the percentage of passwords that have a specific length and the parameter

PC,pwd_length, as the percentage of passwords to have a specific length and charset C. For

30

instance, for pwd_length=8, then Ppwd_length represents the percentages of 8-character

passwords, while for charset C=10 (see Table 3) and pwd_length=4, then PC,pwd_length is

the percentage of numerical passwords with 4 digit numbers. Recall also from section

2.3.1, that pwd_lengthmin and pwd_lengthmax, is the minimum and maximum password

length respectively that the attacker aims to crack. Based on the above, the EBF value

can be estimated as shown in equation (9).

 𝑬𝑩𝑭 = ∑ 𝑷𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉 · 𝑷𝑪,𝒑𝒘𝒅_𝒍𝒆𝒏𝒕𝒈𝒉

𝒑𝒘𝒅_𝒍𝒆𝒈𝒏𝒕𝒉𝒎𝒂𝒙

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

 (9)

To the best of our knowledge there is no work that has calculated the Ppwd_length and the

PC,pwd_length values. To this end, we perform an empirical analysis of passwords, in order

to derive numerical values for Ppwd_length and PC,pwd_length. More specifically, we have

gathered a large collection of leaked password datasets from various online services

across multiple years (from 2006 to 2017). The total number of collected passwords is

254.38 million passwords from 12 datasets. Note that these datasets are public and can

be found in the Internet in various blogs and forums. It is also important to mention that

we have collected leaked datasets that include only plaintext passwords. This is a key

factor to avoid biasing results, since in this way we guarantee that all passwords are

included in our statistical analysis. On the contrary, if we had used datasets that include

cracked passwords, then we would have performed a statistical analysis only with

passwords that have been guessed biasing the results. We verified that the considered

databases are composed of plaintext passwords using a two-step procedure: i) by

checking that the length of the passwords in the datasets do not match the length of a

hash value (e.g., an MD5 hash has always a fixed output of 16 bytes), and ii) by

performing a cross check with a historical record of leaked passwords available as a

public service [38]. Considering that the processed usernames and passwords are in

plaintext form, we do not reference their source, since many of these accounts may be

still active.

In Table 4, we classify the breached websites into various categories (9 in total) based

on their content or service they provide. We observe that the associated user accounts

of these websites are diverse in the sense that they are created from non-technical users

(e.g. Mate1 was an online dating platform) to web developers (e.g. 000webhost is a web

hosting platform for PHP/MySQL websites). Moreover, the breached websites offer

their services globally, except for Auction-warehouse which explicitly requires their

31

users to be US citizens. Therefore, we believe that the collected datasets represent a

diverse and generic set of passwords.

Dataset # Website Category Number of Passwords

1 000webhost Web hosting 15.311.565

2 1394store e-shop 20.649

3 Auction-warehouse Auctions 26.616

4 Clixsense Advertisemts 2.222.542

5 Mail.ru

email 4.664.479

6 Mate1 Social 27.403.959

7 Neopets Gaming 68.743.269

8 Rockyou Social 32.625.471

9 Tuscl Adult 38.599

10 VKontakte Social 100.544.934

11 Yahoo voices Publishing 453.837

12 Youporn Adult 2.325.492

Table 4: Categories and number of leaked passwords

The numerical values of the password analysis are shown in Table 5. Note that the

presented values are averages of the password length and character set distributions

from each one of the considered databases. For the character set distributions we

classify the passwords based on the following categorization: i) numeric: only numbers

(e.g., 1234567890); ii) lowercase: only lowercase Latin alphabet characters (e.g.

password); iii) uppercase: only uppercase Latin alphabet characters (e.g.,

PASSWORD); iv) mixedcase: uppercase + lowercase (e.g., PassworD); v)

loweralphanumeric: lowercase + numeric (e.g., passw0rd); vi) upperalphanumeric:

uppercase + numeric (e.g., PASSW0RD); vii) mixedalphanumeric: mixedcase +

numeric (e.g., Passw0rD); and viii) special: passwords that contains at least one special

character (e.g., P@ssw0rD).

Table 5 can be used to derive the Ppwd_length and PC,pwd_length values and consequently the

effectiveness EBF of brute force attacks. To exemplify, consider an attack targeting 7 to

8-character lowercase passwords (i.e., pwd_length=8 and C=26). In this case, Ppwd_length

equals to 20.68%, and PC,pwd_length equals to 30.36%, while pwd_lengthmin=7 and

pwd_lengthmax=8. Thus, using equation (9), the effectiveness for a brute force attack

EBF is equal to 12.16%.

32

Table 5: Values for password length as a function of character set distributions

2.3.3. Cost analysis: Brute Force password guessing attacks

In this section, we elaborate on the cost estimation of brute force password guessing

attacks. The first step of the cost estimation is to compute the average number of hashes

that will be performed during a brute force password guessing attack, defined as

hashesBF. To achieve this, we need to calculate the number of candidate passwords, by

leveraging the charset and the pwd_length parameters. The usage of a unique salt per

password affects the hashesBF value, since the guessing attempts performed during a

brute force attack, will be a multiplication of all the candidate passwords by the total

number of salts. Lastly, the hashesBF is affected by the usage of iterations, since a

guessing attempt requires iterations consecutive hash executions.

Based on the above, it can be deduced that the hashesBF value can be estimated by using

equation (1). Τhe hashesBF value is analogous to both the iterations I and to the number

of salts (i.e. S). In addition, hashesBF value is analogous to the sum of all candidate

passwords (i.e. Ci), considering specific charset and password length values. That is,

𝑯𝒂𝒔𝒉𝒆𝒔𝑩𝑭 = 𝒂 · 𝑰 · 𝑺 · ∑ 𝑪𝒊

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒂𝒙

𝒊=𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

 (1)

Note that the parameter 𝑎 is a real number, where 𝑎 ∈ (0,1]. The parameter 𝑎 is defined

as the attack success factor and is related to the probability to successfully crack all

hashed passwords at the end of the attack. In the worst-case scenario for the attacker,

the value of 𝑎 is equal to 1. In this case, the attack will cover all the candidate

passwords. To better understand the role of the parameter 𝑎, we consider the following

example. Assume a brute force attack in which the attacker aims to crack numeric

passwords (i.e., C=10 from Table 3) of minimum length 4 and maximum length 5 (i.e.,

33

pwd_lengthmin = 4, pwd_lengthmax = 5), for a hashing scheme that uses 100 iterations

(I=100). The number of the hashed passwords is D=100. This means that the salt S is

also equal to 100 (i.e., one salt per password). All the candidate 4-character numeric

passwords are 104, while the 5-character are 105, summing to a total number of 1.1 105

passwords. If we assume the worst-case scenario for the attacker (i.e., 𝑎=1), then by

multiplying the number of candidate passwords with the iterations and the number of

salts, the value of hashesBF will be 1.1·109. This means that the attacker for each

password (with its related salt) will cover all candidate passwords. On the other hand,

in the average case we have 𝛼 = 1 2⁄ and in this case the attacker will cover half of

candidate passwords (i.e., 𝐻𝑎𝑠ℎ𝑒𝑠𝐵𝐹 =
1.1·109

2
).

The second step of this analysis is to estimate the number of target password hashes

that will be cracked by a brute force attack, defined as cracked_passBF. This can be

achieved by leveraging the effectiveness parameter EBF (see section 2.3.2), which

defines the percentage of password hashes that will be successfully cracked by the

attack. Therefore, using EBF, we can calculate the cracked_passBF by multiplying the

EBF with the number of password hashes in the database D, as shown in equation (2).

 𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑩𝑭 = 𝑫 · 𝑬𝑩𝑭 (2)

Having calculated the hashesBF and the cracked_passBF, we can calculate the cost of

password guessing for the brute force attack, (defined as costBF). The cost costBF

represents the average number of hashes that will be performed during the attack to

crack a password hash in the database. To calculate costBF we use the following

equation.

 𝒄𝒐𝒔𝒕𝑩𝑭 =
𝒉𝒂𝒔𝒉𝒆𝒔𝑩𝑭

𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑩𝑭

By replacing the hashesBF with equation (1) and cracked_passBF with equation (2), the

final form of costBF can be derived as follows:

 𝒄𝒐𝒔𝒕𝑩𝑭 =
𝒂 · 𝑰 · 𝑺

𝑫 · 𝑬𝑩𝑭

· ∑ 𝑪𝒊

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒂𝒙

𝒊=𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

 (3)

Lastly, the costBF can be translated into the average time required to crack a password

hash in the database D, (defined as cost_timeBF) using the hashrate (i.e. Hr) parameter,

as shown in equation (4).

 𝒄𝒐𝒔𝒕_𝒕𝒊𝒎𝒆𝑩𝑭 =
𝒄𝒐𝒔𝒕𝑩𝑭

𝑯𝒓
 (4)

34

2.3.4. Effectiveness: Dictionary password guessing attacks

In this section, we analyze the effectiveness EDC (see section 2.3.1) for three types of

dictionary attacks: i) pure ii) Markov model and iii) PCFG. These values are obtained

from the related work. For pure dictionary attacks, we use the EDC and the attempts

parameter values from [18] (see Table 6). The authors of this work used dictionaries

with English, Italian and Finish lowercase words and executed pure dictionary attacks

against two databases DB1 and DB2 respectively, recording effectiveness EDC values

24.79% and 26.02% respectively. Note that the DB1 included hashed passwords leaked

from an Italian messaging server, while DB2 consisted of hashed passwords from

Finnish speaking forums.

Dictionary attempts EDC DB1 EDC DB2

English, Italian

and Finnish words
1.45·103 24.79% 26.02%

Table 6: Effectiveness values for pure dictionary password guessing attacks (values were taken

from [18])

Moreover, we have obtained the EDC values based on Markov model and PCFG as

derived from [18] (see Table 7). The EDC for the PCFG model ranges from 41.50% for

1.45 million guessing attempts to 49.36% for 145 million guessing attempts. On the

other hand, the Markov model is more efficient, since its EDC values are greater than

the ones of PCFG. Particularly, by leveraging the Markov model, 53.49% of the

passwords can be cracked with 149 million attempts, while this value can be increased

to 99.70% for 1040 guessing attempts.

Model attempts EDC

PCFG 1.45·106 41.50%

PCFG 41·106 46.33%

PCFG 145·106 49.36%

Markov ~149·106 53.49%

Markov ~156·106 54.58%

Markov ~850·106 61.90%

Markov ~7·1016 91.44%

Markov ~1040 99.70%

Table 7: Effectiveness values for dictionary password guessing using PCFG or Markov models (values

were taken from [18])

2.3.5. Cost analysis: Dictionary password guessing attacks

In this section, we elaborate on the cost estimation of dictionary password guessing

attacks. The first step of the cost estimation is to compute the number of hashes that

35

will be performed during an attack, defined as hashesDC. The hashesDC value can be

estimated by multiplying the iterations I with the salt S and with the number of guessing

attempts (i.e., attempts). Thus, hashesDC can be estimated as follows:

 𝒉𝒂𝒔𝒉𝒆𝒔𝑫𝑪 = 𝒂 · 𝑰 · 𝑺 · 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔 (5)

As in the brute force attack, the parameter 𝑎 is the attack success factor. The next step

for the cost estimation is to compute the number of password hashes that will be cracked

after the completion of a dictionary password guessing attack, defined as

cracked_passDC. The value of cracked_passDC relies on the effectiveness EDC of the

dictionary attacks. Note that the EDC value relies on the actual method of dictionary

attack (e.g., pure, PCFG or Markov model). Using EDC, the estimated number of the

cracked passwords can be computed as follows:

 𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑫𝑪 = 𝑫 · 𝑬𝑫𝑪 (6)

Having calculated the hashesDC, and the cracked_passDC, the last step is to estimate the

average hashes that will be performed until a successful password crack, defined as

costDC. To achieve this, we divide hashesDC by cracked_passDC.

 𝒄𝒐𝒔𝒕𝑫𝑪 =
𝒉𝒂𝒔𝒉𝒆𝒔𝑫𝑪

𝒄𝒓𝒂𝒄𝒌𝒆𝒅𝒑𝒂𝒔𝒔𝑫𝑪

Next, we can use equations (5) and (6), to derive the final form of costDC.

 𝒄𝒐𝒔𝒕𝑫𝑪 =
𝒂 · 𝑰 · 𝑺 · 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔

𝑫 · 𝑬𝑫𝑪

 (7)

Finally, to convert costDC into the average time required until a successful password

crack in the database D, cost_timeDC, we need to divide costDC by the hashrate (i.e. Hr),

as shown in equation (8).

 𝒄𝒐𝒔𝒕_𝒕𝒊𝒎𝒆𝑫𝑪 =
𝒄𝒐𝒔𝒕𝑫𝑪

𝑯𝒓
 (8)

2.4. Password hashing scheme evaluation

This section evaluates the default hashing schemes used by CMS and web application

frameworks based on the following parameters: i) hash function; ii) iterations; iii) usage

of salt, and iv) minimum acceptable pwd_length. In total, we have examined 49

commonly used CMS and 47 popular web application frameworks. Table 8 shows the

considered CMS classified into 7 categories: i) 13 CMS are included in the generic

category, which represents CMS that allow the development of websites with various

36

functionalities that focus on the content (e.g. blog, news web site), ii) 9 for forums, iii)

5 for ecommerce, iv) 7 for Enterprise Resource Planning (ERP) and Customer

Relationship Management (CRM), v) 2 for coding and bug tracking, vi) 2 for project

management, and vii) 11 are classified as “Other”, which do not belong to any of the

above categories.

Based on the results of Table 8 which depicts the default hashing schemes of the

investigated CMS, we can observe that 26.53% of the CMS including osCommerce,

SuiteCRM, WordPress, X3cms, SugarCRM, CMS Made simple, Mantisbt, Simple

Machines, miniBB, Phorum, MyBB, Observium, and Composr use the outdated hash

function MD5. MD5 is highly parallelizable and we will analyze in section 2.5.1, it is

the fastest among all hash functions that can be executed in GPUs. Regarding the

remaining hash functions of the CMS, GetSimple CMS, Redmine, Collabtive, PunBB,

Pligg, and Omeka (i.e. 12.24%) use the SHA1 hash function, which similar to MD5 is

highly parallelizable on GPUs. Drupal, EspoCRM, PhreeBooks, Odoo, ImpressCMS,

Magento, Bugzilla, TYPO3 CMS, Mediawiki, and PhpList (i.e. 20.41%) use either

SHA256/SHA512 or PBKDF2. These hash functions are also parallelizable, thus

increasing the effectiveness of password guessing attacks. Lastly, Joomla, Zurmo,

OrangeHRM, SilverStripe, Elgg, XOOPS, e107, NodeBB, Concrete5, phpBB, Vanilla

Forums, Ushahidi, Lime Survey, Mahara, Mibew, vBulletin, OpenCart, PrestaShop,

and Moodle (i.e. 40.82%) use the BCRYPT hash function. As we mentioned in section

2.2, BCRYPT is more secure than the rest of the hashing schemes, since it more difficult

to be parallelized in GPU hardware. Based on the above we can conclude to the

following observation:

Observation 1: A whopping number (i.e., 59.18%) of CMS use default hashing schemes

that can be highly parallelized with GPU hardware, making password guessing attacks

easier. Indicatively, the popular CMS WordPress uses by default MD5. On the other

hand, 40.82% of the CMS use BCRYPT by default including Joomla.

Another observation which is related to the usage of the hashing schemes is the

following:

Observation 2: No CMS has adopted SCRYPT, Argon2 or any other MHF yet.

Observation 2 may come as no surprise if we consider that the PHP programming

language that all the CMS are based on, has no official SCRYPT implementation. This

37

means that in case an administrator of a CMS wants to use SCRYPT, he/she should rely

on a third party or custom implementation of SCYPT. However, using non-official

implementations is considered an insecure practice, as they may include backdoors

[39], [40] or insecure code [41]. On the other hand, Argon2 was included recently (late

2017) in PHP v7.2 and compared to SCRYPT it can be more easily adopted in a CMS.

However, Argon2 is a relatively new hash function and the audits are too scarce to draw

safe conclusions about its security properties. Finally, a common reason that hinders

the adoption of both SCRYPT and Argon2 is related to the fact that the transition to a

new hashing scheme of an already deployed website can lead to downtimes or it may

require once again the registration of its users with a new (or the same) password.

Therefore, for backwards compatibility reasons website administrators avoid to modify

hashing schemes and choose to remain with legacy hash functions. A case in point is

the CMS named Phorum; it still uses the MD5 as the default hashing scheme (see Table

8), despite the fact that there is a request in the official development repository of

Phorum to change MD5 to a stronger hash function [42]. After a discussion between

users and the development team (see [42]), the main developer opposes to this change,

because the developers of Phorum CMS are considered how existing installations are

going to update to the new hash function. Thus, they decide not to proceed with any

modification to the hash function leaving MD5 as the main hash function. Another

similar discussion takes place for Magento CMS [43], which is an e-commerce platform

and still uses SHA256.

Table 8: The default hashing scheme parameters of the investigated open source CMS

38

Regarding the usage of salt, the most important finding is that 14,29% of the targeted

CMS, and specifically X3cms, GetSimple CMS, miniBB, Phorum, MantisBT,

Collabtive, and phpList do not use salt in their hashing scheme (see Table 8), which

renders password hashes vulnerable to rainbow table attacks. The fact that salt is

missing in these CMS implies that users with the same plaintext passwords will also

share the same password hash. Another important finding is that 36.73% of the tested

CMS do not use iterations in their password hashing scheme (i.e., the iterations value

is 1). Also, the rest of the CMS that use iterations use an arbitrary number of iterations.

For instance, for BCRYPT we observe that there are CMS that use 256, 1024, or 4096

iterations, while for PBKDF2 we observe 10000, 12000, or 30000. These variations

stem from the fact that BCRYPT does not have official recommendations for its

iterations, while NIST proposes a minimum of 10.000 iterations for PBKDF2. Based

on the above, we can conclude to the following observation:

Observation 3: Password hashes created by 14.29% of the CMS are vulnerable to

guessing attacks based on rainbow tables, since the relevant CMS do not use salt in

their hashing scheme. Also, 36.73% of the CMS do not use iterations, which makes

them even more vulnerable to password guessing attacks. On the other hand, the rest

of the CMS that use iterations, select the number of iterations inconsistently and

arbitrarily.

The last parameter to be analyzed is the minimum acceptable password length.

Although this parameter does not affect the execution time of a hashing scheme,

password hashes created from small passwords are more likely to be cracked. From the

analysis of Table 8 it is observed that only 12.24% of the CMS (i.e., e107, Typo3 CMS,

Bugzilla, Redmine, Phplist, and Moodle) enforce passwords of 8 characters length or

greater. On the other hand, 6.12% require passwords with a minimum length of 7

characters, 14.29% of 6 characters, 20.41% of 5 characters and 8.16% of 4 characters.

However, the most important remark is that 38.78% (i.e. Drupal, SuiteCRM,

WordPress, SugarCRM, EspoCRM, GetSimple CMS, CMS Made simple, Odoo,

Mantisbt, Collabtive, Vanilla Forums, Observium, Lime Survey, MediaWiki, Phorum,

vBulletin, Mibew, and Composr) of the CMS do not check the password length during

the registration process, since we were able to create single character passwords. Based

on the above, we can conclude to the following observation:

39

Observation 4: 38.78% of the CMS do not enforce minimum password length policy,

which may result in users selecting weak passwords. Notably, WordPress and Drupal

belong to this category of CMS that allow a single character password. This

observation, alongside with the fact that many CMS use parallelizable hash functions

makes password cracking even more effective.

Driven by the above observations, we can conclude that the majority of CMS offer

weak hashing schemes in the default settings. A prime example is Phorum; it uses

MD5 without iterations and salt, while it allows even 1-character length passwords

(seeTable 8). Of note, the majority of the considered CMS allow modifications to the

default settings. For instance, there is a plugin for WordPress that allows to easily

change the default MD5 to BCRYPT for password hashing. However, CMS are

characterized as “plug and play” solutions. In particular, their main goal is to allow

even non-developers to easily deploy websites. This fact makes it less probable that

CMS administrators will ever try to modify the default configurations. What is more,

this argument is also strengthened by the fact that in general individuals tend to remain

at the default assignment (also known as default effect [44]). Based on the above, a

more generic observation can be extracted as follows:

Observation 5: CMS follow an opt-in policy for security configurations. That is, by

default they do not provide the most secure hashing schemes, but they allow the

modification to more secure schemes. However, considering that CMS administrators

may not be developers and do not have the appropriate security expertise, we argue

that most CMS are deployed in the Internet with the default security settings including

the hashing scheme.

The second part of this section examines the default hashing schemes of the most

commonly used web application frameworks. As we mentioned in section 2.1.3, a key

difference between CMS and web application frameworks is that the latter require

programming knowledge and they are utilized by web developers, while the former

(i.e., CMS) does not require coding knowledge, since it is based on installable modules.

Table 9 shows the investigated web application frameworks classified into 5 categories,

based on the programming language for web application development. More

specifically, we investigated i) 10 frameworks which rely on PHP, ii) 14 that are based

on Python, iii) 11 that use Ruby on Rails, and iv) 11 based on Javascript. ASP.NET is

the last framework we explored, and we categorized it as “Other”, since it supports

40

development in several programming languages. The default hashing schemes of the

investigated web application frameworks are depicted in Table 9. An important

observation that can be derived is that 48.94% of the web application frameworks do

not offer a default password hashing scheme, which might lead to improper password

hashing. Moreover, the Kohana PHP framework uses the same salt value for all stored

passwords, thus they are vulnerable to rainbow table attacks. Another significant

finding is that Kohana, Django, CherryPy, Bottle, ExpressJS, MeanJS, MernJS, nodeJS,

AllcountJS, Cuba, and ASP.NET (i.e. 23.40%) use parallelizable hash functions (i.e.,

MD5, SHA1, SHA256, SHA512 and PBKDF2), while Kohana, CherryPy, Bottle,

AllcountJS, Cuba, and ASP.NET (i.e. 12.77%) use only 1 iteration of the employed

hash function. On the other hand, Laravel 5.4, Codeigniter 3.1.4, CakePHP 3.3, Zend

framework3, Yii 2, Phalcon 3.0.4, Aura PHP, Lithium, MeteorJS, SailsJS, FathersJS,

Derby, and Ruby on Rails, which stand for 27.66% use the BCRYPT hash function by

default. Based on the above we can conclude to the following observation:

Observation 6: 23.40% of the web application frameworks opt for weak (i.e.,

parallelizable) hash functions, while 12.77% of them do not use iterations. What is

more, only 27.66% use the BCRYPT hash function by default. Similar to CMS and

observation 2, SCRYPT and Argon2 are absent from the default settings.

Moreover, from Table 9, we can notice that:

Observation 7: 48.94% of the investigated web application frameworks do not offer a

default password hashing scheme, which might lead to the selection of a weak password

hashing scheme in web applications.

The underlying assumption of observation 7 lies to the fact that developers are expected

to have the knowledge of selecting appropriate hash functions and configure securely

the hashing scheme of the websites they develop using salts. In a recent work [45], web

developers were given the task to store passwords for authentication in a website.

Among the many key insights of this work, the most important ones were: i) many

developers stored the passwords in plaintext; ii) most of the developers focused on the

functionality and only added security as an afterthought; iii) even participants who

attempted to store passwords security often did it insecurely, because they used

outdated methods (e.g., they used MD5 without even iterations) as security is a fast

moving field; iv) different standards and security recommendations made it difficult for

41

developers to decide what is the right course of actions. Therefore, all the above

observations imply that there is a lack of adequate security knowledge even by

developers, and simply assuming that they will select a secure password storage scheme

is a dangerous misconception. Hence, it would be beneficial for web applications

frameworks to offer secure default hashing schemes.

Table 9: The default hashing scheme parameters of the investigated web application frameworks

2.5. Cost of password cracking

2.5.1. Hashrates

First, we derive hashrate values using a popular GPU-based password cracking tool

named Hashcat [46]. Due to its’ popularity, there are numerous benchmarks available

on the Internet that calculate the hashrate of various GPU models. However, due to the

fact that we were not able to find up to date benchmarks (i.e., the most recent ones were

of 2014) we opted for our own benchmarks. To this end, we derived hashrate values

(see Table 10) of various hash functions and iterations using the GeForce GTX 1070

[47], which was NVIDIA’s second-best GPU model of 2016. As expected the hash

functions MD5, SHA1, SHA256 and SHA512 exhibit high performance in the sense

that GPUs can compute several hashes per second. PBKDF2 slows downs the

computations due to the iterations used. Regarding BCRYPT and SCRYPT, we observe

42

that BCRYPT has the slowest performance for number of iterations up to 16384

iterations, but for higher values, SCRYPT is slower than BCRYPT.

Along with GPU based hashrates, it is imperative to derive the runtime of a hash value

calculation in a typical Web Server machine. The reason for this calculation is that the

number of iterations should not be set too high; otherwise the calculation of a hash

value can be significantly delayed, disrupting the normal operation of the website. That

is, authentication delays (due to the multiple iterations for a hash calculation) can

frustrate users that are trying to login, especially if they have to provide multiple times

their password, because they provided an erroneous input. As mentioned in [48], [49],

authentication delays higher than 1 second are not acceptable by many internet users.

As a side note, for an offline environment (i.e., disk encryption), higher numbers of

iterations can be used (e.g., for key generation from low entropy passwords). To this

end, we have used a typical server setup, an Intel Xeon E5-2640 v2 CPU with 4 GB

RAM to estimate the runtime of the hash functions for various iterations (see Table 10).

We observe that in almost all considered iterations values, the runtime of the hash

functions does not exceed the upper limit of one second, except for BCRYPT for 32678

and 65536 iterations, which the runtime is 2.72 sec and 5.45 seconds respectively.

2.5.2. Comparative analysis

Here we use our cost analysis model that we presented in section 2.3 to perform a

comparative analysis of the cost time between different CMS and web application

frameworks. To derive numerical results for the cost time we consider the values from

section 2.5.1 for the hashrates, as well as sections 2.3.2 and 2.3.4 for brute force and

dictionary effectiveness. We also consider the worst-case scenario for the attacker,

which means that the attack success factor 𝑎 is equal to 1 (see section 2.3.3). Table 11

summarizes the numerical results. The comparison is performed using five (5) different

groups. Group 1 compares the cost time for a brute force attack (i.e., cost_timeBF)

between a CMS that does not enforce a password policy by default and a CMS which

applies a password policy.

From the investigated CMS we identified that the majority of the CMS do not enforce

a password policy by default, except for Magento CMS. To this end, in group 1 we

include

43

Hash function (iterations)
Hashrate (H/s)

(NVIDIA GTX1070)

Runtime (sec)

(Intel Xeon E5-2640 v2)

MD5 (1) 21,359,700,000.00 1.06·10-6

SHA1 (1) 7,043,888,888.00 1.37·10-6

SHA256 (1) 2,536,500,000.00 1.75·10-6

SHA512 (1) 844,100,000.00 1.95·10-6

BCRYPT (1024) 358.00 8.68·10-6

BCRYPT (8192) 44.75 6.85·10-5

BCRYPT (16384) 22.00 6.8·10-1

BCRYPT (32768) 11.00 2.72

BCRYPT (65536) 5.00 5.45

PBKDF2SHA256 (8192) 121,375.00 1.09·10-2

PBKDF2SHA256 (16384) 60,574.00 3.92·10-2

PBKDF2SHA256 (32768) 30,271.50 7.67·10-2

PBKDF2SHA256 (65536) 15243.50 1.57·10-1

PBKDF2SHA256 (131072) 7,587.00 3.04 10-1

PBKDF2SHA256 (262144) 3,797.00 6.16·10-1

PBKDF2SHA512 (8192) 43,631.00 2.61·10-2

PBKDF2SHA512 (16384) 22,174.00 5.23·10-2

PBKDF2SHA512 (32768) 10,895.25 1.03·10-1

PBKDF2SHA512 (65536) 5487.00 2.06·10-1

PBKDF2SHA512 (131072) 2,752.00 4.12·10-1

PBKDF2SHA512 (262144) 1,388.00 8.22·10-1

SCRYPT (8192) 122.00 2.75·10-2

SCRYPT (16384) 34.00 5.24·10-2

SCRYPT (32768) 9.00 1.06·10-1

SCRYPT (65536) 2.00 2.16·10-1

SCRYPT (131072) 0.3 4.35·10-1

SCRYPT (262144) 0.012 8.71·10-1

Table 10: Hashrates and runtime values

for the comparison a CMS named EspoCRM (which does not have a password policy)

to Magento CMS (which by default uses a password policy). In particular, Magento

policy accepts passwords that are composed from at least 3 different charsets (i.e.,

numeric, lowercase, uppercase, special). Thus, for this comparison, we estimate the cost

time of a brute force attack cost_timeBF for 8-character length mixedalphanumeric

passwords for Magento (due to the password policy), and 8-character length lowercase

passwords for EspoCRM (due to the absence of a password policy). Using equation (4)

in section 2.3.3 and the input values derived in section 2.3.2 we calculate that for

EspoCRM the cost_timeBF is equal to 3940 seconds, while for Magento is 8708036

seconds, which is a whopping 220.916% increase. This can be justified by the fact that

password charset C of Magento is 62 (mixedalphanumeric – see Table 3) which greatly

increases the required number of hashes for the brute force attack.

44

Observation 8: A simple password policy such as the one of Magento, can have a

drastic effect on the effort of the attacker to perform password guessing. Unfortunately,

the majority of CMS and web application frameworks do not enforce the use of

password policies, not even in the password length.

Group 2 compares a CMS (i.e., Mibew) that uses BCRYPT with its lowest number of

iterations (i.e., 2) among all CMS and web application frameworks as shown in Table

8, with a web application framework (i.e., Flask) that uses PBKDF2, which is the

highest number of iterations (50.000 iterations) among all CMS and web application

frameworks. The attack is brute force and since no password policy is enforced in these

CMS, we select 8-character numeric passwords. The numerical results (see Table 11)

show that even the lowest iterations of BCRYPT have significantly higher cost time

(i.e., 2499488 seconds) compared to the highest iterations of PBKDF2 (i.e., 181814

seconds). This is due to the fact that BCRYPT reduces the level of parallelism [26]. As

we mentioned in section 2.2, NIST guidelines [30] recommend PBKDF2 for hashing

passwords with a minimum number of 10.000 iterations. Given our results, we argue

that this recommendation is not adequate to withstand against offline passwords attacks.

Observation 9. BCRYPT even only with 256 iterations provide significant

improvements in terms of security over PBKDF2 with 50.000 iterations. Thus, we argue

that not only the minimum recommended iterations of PBKDF2 by NIST is too low (i.e.,

10.000), but also the recommended hash function itself (i.e., PBKDF2) is not resistant

to password guessing.

Group 3 investigates the effect of iterations for BCRYPT on the cost time in a dictionary

attack. For this reason, we selected OpenCart, which uses 1024 iterations, and Zend

framework, which uses the highest number of BCRYPT iterations among all CMS and

web application frameworks (i.e. 16384). In this group, the derived numerical results

of cost time are based on a dictionary attack. Specifically, we select a dictionary attack

based on PCFG with 1.45·106 attempts and EDC=41.5% (see first row of Table 7). As

observed, an attacker needs 17302 seconds to guess a password for OpenCart (i.e., 1024

BCRYPT iterations), while this value increases to 276836 seconds for Zend Framework

(i.e., 16384 BCRYPT iterations), which is an 1500% increase. Considering that the

runtime of BCRYPT for 16384 iterations on a server is 6.8·10-1 seconds (see Table 10),

45

which is lower than the login delay threshold of one second (see section 2.5.1),

OpenCart (and all other CMS using BCRYPT) can increase the value of iteration.

Observation 10. Most CMS uses 1024 iterations for BCRYPT. This is attributed to the

fact that the PHP programming language which all the CMS are based on, uses 1024

BCRYPT iterations by default. We argue that PHP can increase the default number of

BCRYPT iterations (e.g., 16384) without imposing significant delays in the login

procedure.

Group 4 aims at investigating the cost time of MHFs compared to BCRYPT. For this

reason, we opt for phpBB which uses BCRYPT with 1024 iterations and a hypothetical

website utilizing SCRYPT with 16384 iterations. Note that the recommended value of

SCRYPT [27] is 16384. We select a dictionary attack based on PCFG using

EDC=41.5%. From numerical results we can deduce that the SCRYPT hash function

increases the robustness of password hashing schemes, considering that an attacker

needs 31376 seconds to crack a password. Moreover, the runtime of SCRYPT on

servers is negligible, since it equals to 5.24·10-2
 seconds for 16384 iterations (see Table

10). From group 4 results, we can conclude to the following:

Observation 11. As a long-term solution, we suggest CMS to upgrade their default hash

function to a MHF, such as SCRYPT, which is resistant to password cracking and does

not add login delays. Also NIST guidelines should replace PBDKF2 with a MHF. On a

positive note recent 2017 NIST guidelines do suggest (but not impose) the use of MHF.

Finally, group 5 aims at comparing the three most popular CMS namely WordPress,

Joomla, and Drupal. WordPress, which is the most commonly used CMS, uses the weak

MD5 hash function with 8192 iterations, while Drupal uses 65536 iterations of the

highly parallelizable SHA512 hash function. On the contrary, Joomla uses BCRYPT

with the PHP’s default iteration value (i.e. 1024). As observed, a dictionary attack with

EDC=41.5% can crack a WordPress password in 2.4 seconds, while this value increases

to 481 seconds for Drupal. The low level of parallelization of BCRYPT, has a

significant impact on the cost_timeDC considering that an attacker needs 17302 seconds

to crack a Joomla password hash. To conclude, the most secure CMS is Joomla,

followed by Drupal, while WordPress is the most vulnerable to offline password

guessing attacks despite it is the most widely used CMS.

46

Table 11: Numerical results of the cost time for various CMS and web application frameworks.

2.6. Misuse of password hashing schemes for denial of service

attacks

In this section we investigate whether hashing schemes can be misused to lead to denial

of service attacks to web applications. The rationale behind the experiments was that

resource intensive configurations of hashing schemes (e.g., high number of iterations)

can deplete the CPU resources of the web server and eventually result in denial of

service conditions. To this end, we deployed a custom version of the popular WordPress

CMS using the Apache web server. We implemented a plugin for WordPress with

which we can easily modify and configure all the parameters of the hashing scheme,

such as the hash function, the number of iterations, etc. (see below for the parameter

values of the hashing schemes). Finally, we wrote a script that performs multiple login

requests with a registered username and random password values, forcing WordPress

to hash and verify them. On the web server, we measured the CPU utilization using

htop toolkit [50]. Regarding the hardware setup, we used an Intel Xeon E5-2640 v2

CPU and 4 GB memory running Ubuntu server 18.04, Apache 2.4.29 and PHP 7.2.

As shown in Table 12, the parameters of the experiment were: i) the hash function, ii)

iterations, iii) password length and iv) rate (login requests per second). More

specifically, we examined hash functions that are used. Particularly, we considered the

following hash functions, which are the default ones for the 3 most popular CMS (i.e.,

WordPress, Joomla, Drupal). That is, we examined: i) MD5 as it is the default one used

by WordPress, ii) SHA512 which is the default one of Drupal, and iii) BCRYPT used

by Joomla. Apart from the above hash functions we also included in the experiments

SCRYPT, which is a memory hard function as discussed in section 2.2. Moreover, the

47

iterations value ranges from 1 to 65536 (216), while the password length ranges from

10 to 10000 characters. Lastly, the rate of the login requests per second of users varies

from 1 to 30 requests per second.

Parameter Values

Hash function
MD5, SHA512, BCRYPT,

SCRYPT

Iterations (I)
1, 1024, 4096, 8192, 16384,

32768, 65536

Password length (pwd_length) 10, 1000, 5000, 10000

Rate (login requests per second) 1, 5, 10, 15, 20, 25, 30

Table 12: Parameters of the hashing schemes.

Figure 1 shows the CPU utilization as a function of the login rate for the MD5, SHA512,

BCRYPT, and SCRYPT hash functions. In this experiment, we have used the default

iteration values of the hash functions as they employed in the popular CMS. That is, we

use: i) MD5 with 8192 iterations, as this is the default setting in WordPress, ii)

BCRYPT with 1024 iterations, which is the default setting of Joomla iii) SHA512 with

65536 iterations, which is the default setting of Drupal. Moreover, to include also a

MHF in the experiments, we use SCRYPT with 16384 iterations, as recommended in

its specifications [27]. As it is observed, in all cases the increase of the CPU utilization

is almost linear as the login rate increases. It is important to note that BCRYPT (i.e.

Joomla), and SHA512 (i.e. Drupal) with their default settings could cause the CPU

utilization to increase to 100% for rate equal to 20 and 25 requests respectively. By

maintaining such CPU load, the web server cannot cope with the required login

attempts, thus keeping occupied all the available Apache connections. This results in a

denial of service at the application layer, since the web server cannot respond to new

requests. A significant remark is that denial of service attacks realized even with 20-25

login requests per second, are not easily detectable by firewalls, if the logins are

performed from different IPs (i.e., distributed denial of service). On the other hand,

SCRYPT reaches 80% for rate equal to 30 requests per second. It is important to

mention that during the experiments we observed that when CPU utilization reached

80%, the website was responsive, but its pages were loading after a significant delay

(i.e., 10-15 seconds). Therefore, although SCRYPT did not reach 100% CPU

utilization, it was still capable of clogging the web server. On the other hand, Figure 1

suggests that MD5 cannot deplete the CPU resources as its increase rate is very slow

48

and does not exceed 30% CPU utilization. Based on the above, we can conclude to the

following observation:

Observation 12: Slow rate denial of service attacks against websites that use hash

functions with iterations are feasible (except for MD5). BCRYPT with 1024 iterations

can reach 100% CPU utilization, even for login rate equal to 20 requests per second.

This result is alarming considering that distributed denial of service attacks originated

by botnets can far exceed the rates of our experiments. As mentioned in [51] the

majority of the distributed denial of service attacks in 2017 was performed using 100

to 1000 requests per second.

Figure 1: CPU utilization vs login rate

Although slow rate denial of service attacks are not easily detectable by intrusion

detection systems and next generation firewalls [52], the nature of our considered denial

of service based on password hashing has a weak point that defenders can take

advantage of, to withstand websites against this attack. In particular, by using a

mechanism called rate-limit (aka throttle), a website can block the usernames related to

the incorrect logins, for a specific time period when a predefined threshold of failed

consecutive attempts is reached. In this way, attackers cannot continue performing the

denial of service for a long time period, since eventually all the usernames under the

possession of the attacker will be blocked and the related login attempts will be

discarded. Another beneficial characteristic of this solution lies to the fact that the rate

limit can be applied at the application layer. As a matter of fact, there are many ready

to use free CMS plugins, (such as [53] for WordPress) or a middleware for web

application frameworks (such as [54] for CakePHP) that an administrator/developer can

consider to use.

49

Observation 13: It is imperative to employ rate-limit in websites to mitigate denial of

service attacks based on concurrent login attempts. The rate limit of login attempts is

an effective and easy to deploy security mechanism available in many CMS and web

applications frameworks. NIST guidelines consider as highly important to enforce rate

limits and recommend maximum 100 failures account [30].

In the next two experiments we will investigate if password length and iterations can

cause denial of service attacks even for very slow rates. More specifically, Figure 2

shows the CPU utilization versus the password length for the same hash functions and

iterations number as in the previous experiment. The rate of attempts is equal to 1

request per second. The first and most important finding is that SHA512 with 65536

iterations (i.e., Drupal default settings) is vulnerable to denial of service attacks, since

the CPU utilization reaches 100% for password length equal to 6000. MD5 has also an

increasing behavior but reaches almost 15% CPU utilization for password length equal

to 10.000. This happens because MD5 and SHA512 do not have a maximum acceptable

password length. On the contrary, BCRYPT has a constant CPU utilization independent

from the password length, because the maximum password length for BCRYPT is 72

characters. Lastly, although SCRYPT does not have a password length limitation, its’

CPU utilization does not change significantly, possibly due to its fast runtime on CPUs

(see Table 10). Based on the above results, we infer that CMS and application

frameworks should set by default a maximum acceptable password length policy to

avoid denial of service with very large passwords. We discovered that WordPress by

default limits to 4096 characters, while Drupal limits even more the password length to

128 characters.

Observation 14: All websites that use SHA1, SHA256, SHA512 or PBKDF2 with very

high number of iterations should accordingly limit the maximum password length

similarly to WordPress and Drupal to avoid falling victim of denial of service. On the

other hand, BCRYPT and SCRYPT are not susceptible to denial of service with large

passwords.

50

Figure 2: CPU utilization vs password length

Finally, Figure 3 shows the CPU utilization as a function of iterations. In this

experiment, we use a small password length and slow login rate, equal to 10-character

and 1 request/sec respectively. From Figure 3 we can observe that in all cases the CPU

utilization increases with iterations. However, increasing iterations we also increase the

resistance of passwords against guessing attacks. In other words, the iterations regulate

an inherent tradeoff between security and performance. In particular, as the number of

iterations increases, on the one hand the password hashes are more resistant to guessing

attacks (security), but on the other hand CPU utilization is increased (performance).

Figure 3 depicts also that BCRYPT is vulnerable to denial of service, since it reaches

100% CPU utilization with 32768 iterations, while SCRYPT reaches only 25% CPU

utilization for 65536 iterations. At the same time, the runtime for SCRYPT is lower

than 1 second in typical server machine (see Table 10), which makes it suitable for

interactive logins, due to its small authentication delay. Subsequently, we can conclude

to the following observation:

Observation 15: Compared to BCRYPT, SCRYPT is more scalable in the sense that the

number of iterations can be increased for password security without introducing denial

of service conditions and login delays provided that the web server has enough physical

memory (>4 GB).

51

Figure 3: CPU utilization vs iterations

2.7. Recommendations on Password hashing

In light of our analysis, this section provides recommendations and alternative solutions

to enhance robustness of passwords against guessing attacks.

Update NIST recommendations. As mentioned previously, NIST recommends the

use of PBKDF2 with 10.000 iterations minimum. Based our observations, we believe

that NIST guidelines should be updated to replace PBKDF2 with a MHF, which is

adequately audited and proved that it is robust against attacks.

Use of secure default settings. One of the most influential insights from the behavioral

sciences is that whatever is in the “default” position generally persist. Thus, CMS

developers should shift from an “opt-in” to an “opt-out” policy with stronger security

configurations. Web application frameworks should also follow this practice and avoid

assuming that developers are able to select secure and appropriate hashing schemes

(e.g., use of salt, password policy, etc.).

Upgrade legacy hash functions. Regarding legacy hash functions, it is a fact that many

websites have remained with outdated hash functions such as MD5 or SHA1. The

problem that hinders adoption of a new hash function is the possible frustration to the

users of the website, because they will be forced to register once again to provide a new

password for the new hash function [55]. We argue that there are two possible ways to

upgrade a hash function without the need of a new registration. The first solution is to

keep two tables side by side one with the old hash function (e.g., MD5) and another

table for the new hash function. When a user logs in for the first time after the addition

of the new hash function, the website will first verify the legacy hash (e.g., MD5) and

then store the new hash (derived from the new hash function). When all the new hashes

52

have been calculated by all users, then the website can delete the old table with the

MD5 hashes. This solution is feasible only for a small number of users, otherwise it

could take an extremely long time to achieve the migration to the new hash function.

The second solution is called layered hashing scheme and it has been adopted by

Facebook [56] (see Figure 4). The idea is to use multiple hashes one after the other.

That is, the output of a hash function becomes input for another hash function. In this

way, a website can update a hash function at any time simply by adding a new layer of

a hash function, eliminating the need to maintain two separate tables and wait the users

to log in first. In the case of Facebook, the layered hashing scheme is as follows:

1. H = md5(pwd) (the legacy hash function)

2. H = hmacsha1(H, K1, salt) (K1 is a secret

3. H = Cryptoservice::hmac(H, K2) (K2 is a secret key stored in the cryptoservice)

4. H = scrypt(H, salt) (the new key hash function. Depending on the implementation SCRYPT output

length can be several bytes)

5. H = hmacsha256(H, K3, salt) (this hash function is used to limit the output length to 256 bits)

Figure 4: Layered Hashing scheme of Facebook

Note that in step 3, the Cryptoservice::hmac(H, K) refers to the computation of a hash

value by an external service (see below for analysis) using a keyed HMAC function

(this is known as distributed hashing – see below). In the example of Facebook, the

output of the legacy MD5 (i.e., step 1) is being used as an input to multiple hash function

including a HMACSHA1 in step2, another HMAC value (with unknown hash function)

in a remote cryptoservice (i.e., step 3), an SCRYPT (i.e., step 4), and finally a

HMACsha256 (i.e., step 5). Therefore, using this layered approach, a hash function can

be updated without causing disruptions to the normal operation of the website.

Distributed hashing. A solution which is orthogonal to the actual hash function that a

website uses and can substantially protect against offline password guessing attacks is

named distributed hashing. The main idea of this solution lies in the delegation of the

hash value computation to an external service. More specifically, a hashing scheme

which is composed of multiple hash functions as the one presented previously in Figure

4 can offload the computation of an intermediate hash calculation to a remote crypto

service (aka crypto as a service) and send back the hashed value back to the web

application to continue the calculation of the hash value. Note that the hash calculation

in the cryptoservice is based on a keyed HMAC function, using a secret key, which is

stored in the cryptoservice (see step 3 in Figure 4). In this way, even if an attacker is

53

able to compromise the database of a web platform, in order to perform the guesses, he

should necessarily request the cryptoservice to obtain the intermediate hash value, since

the attacker does not possess the secret key for the HMAC function. In this way, the

offline guessing attack becomes an online attack, which means that the cryptoservice

can detect anomalies (i.e., a spike due to attempts of the attacker) and throttle

appropriately the traffic (thus reducing the number of attempts an attacker can perform).

Of note, recently a new research area has emerged [57] [58] [59] where the aim is to

enhance the cryptographic primitives used in distributed hashing schemes to eliminate

possible attacks against crypto services.

Federation and FIDO. Moreover, websites can opt for federated authentication

solution using OpenID Connect protocol. In this way, there is no need for websites to

maintain a user database including passwords, due to the delegation of authentication

to established services such as Google and Facebook. On the users’ side, good security

practices for selecting passwords are still relevant. Users should select high entropy

long passwords and avoid reusing passwords across multiple websites. What is more,

passwords managers and two-factor authentication are traditional yet effective

measures to resist against password cracking. Also, the emerging FIDO protocol [60],

which is based on device-centric authentication, aims to eliminate the use of passwords

using public key cryptography.

Server relief. Regarding denial of service attacks that take advantage of intensive hash

functions to overload web servers, these can be mitigated by the use of a relatively new

mechanism named server relief. As a matter of fact, Argon2 has adopted this solution

to facilitate web servers to withstand against denial of service attacks. The rationale of

server relief mechanism is to allow the server to carry out the majority of computational

burden on the client. That is, instead of doing the entirety of the computation on the

server, the client does the most demanding - in terms of computation - parts and then

the client sends the intermediate values to the server, which calculates the final hash

value. Evidently, all intermediate values on the client side should not leak any

information for the actual password. An overview of various server relief solutions

highlighting advantages and drawbacks can be found in [61].

54

3. Overcoming the limitation of passwords

3.1. Strong authentication with Fast IDentity Online

3.1.1. Background

3.1.1.1. Related Work

The FIDO security reference [60] outlines a list of assets that must be protected

against malicious behavior and provides a limited set of security requirements with the

goal of protecting these assets. It is important to point out that these requirements are

optional and vendors receiving FIDO certification are not obliged to implement them.

A variety of vendors such as Samsung, LG, Qualcomm, and Huawei [62] have already

received FIDO certification, however, their implementations are proprietary, and,

therefore, not open to 3rd party evaluation. Per FIDO specifications, the critical assets

of the UAF protocol are the private key of the authentication key pair, the private key

of the UAF authenticator attestation key pair, and the UAF authenticator attestation

authority private key [63]. Furthermore, the UAF protocol specifications incorporate

the following (optional) security requirements: the authentication keys must be securely

stored within a UAF authenticator and thus protected against any misuse, users must

authenticate themselves to the UAF authenticator before the authentication keys are

accessed, the UAF authenticators may support authenticator attestation using a shared

attestation certificate, and a UAF authenticator may implement a secure display

mechanism (also referred as transaction confirmation mechanism), which can be used

by the UAF client for displaying transaction data to the user. Therefore, the UAF

specifications do not incorporate any mechanisms that safeguard the cryptographic

material stored in the UAF authenticators or protect against attacks that may target the

UAF client. Instead, the responsibility for the design and implementation of any

security measures that protect these critical entities is passed on to the vendors.

One solution to address the security requirements of the UAF specifications and provide

a secure operational environment for the UAF authenticators, is the incorporation of

trusted computing platform technologies [64]. The trusted computing platform

constitutes of specialized hardware that provides a variety of services, such as secure

input/output, device authentication, integrity measurement, sealed storage, remote

attestation, cryptographic acceleration, protected execution, root of trust, and digital

rights management. Two prevalent platforms for trusted computing currently exist [64],

the Trusted Platform Module (TPM) [65], which is based on the specifications created

55

by the Trusted Computing Group, and the TrustZone (TZ) platform [66], created by the

ARM corporation. The TPM is a co-processor, which provides basic cryptographic

capabilities like random number generation, hashing, protected storage of sensitive data

(e.g. secret keys), asymmetric encryption, as well as generation of signatures. The TPM

platform presents some significant limitations [64]: (i) the need for a separate module

increases the cost of a device; (ii) it cannot be deployed on legacy devices; (iii) it does

not protect against runtime attacks; (iv) it relies on the assumption that a TPM cannot

be tampered; (v) the physical size and energy consumption requirements make it an

unsuitable solution for mobile and embedded devices; (vi) in case of a TPM

compromise, the hardware module must be physically replaced; and (vii) the supported

cryptographic algorithms have been found to pose security concerns (i.e., SHA-1), and

are not well suited for resource restricted devices (i.e., RSA).

The TrustZone platform, is part of ARM's processor cores and system on chip (SoC)

reference architecture. The associated hardware is part of the SoC silicon, and thus, it

does not require any additional hardware. The primary objective of TrustZone is to

establish a hardware-enforced security environment providing code isolation, that is, a

clear separation between trusted software, which is granted access to sensitive data like

secret keys, and other parts of the embedded software. To achieve this, the TrustZone

platform provides two virtual processing cores with different privileges and a strictly

controlled communication interface, enabling the creation of two distinct execution

environments, encapsulated by hardware. Nevertheless, to the best of our knowledge,

Samsung is the only certified vendor that implements a UAF authenticator using the

TrustZone platform [67]. Furthermore, this approach only protects the UAF

authenticator, while the UAF client is still susceptible to a variety of attacks. Finally,

extensive literature has shown that the TrustZone platform itself is not immune to

weakness and vulnerabilities [68] [69] [70] [71].

3.1.1.2. FIDO UAF protocol operations

The UAF protocol (see Figure 5) encompasses three major operations, namely,

registration, authentication, and deregistration. During the registration operation, the

UAF protocol allows a user to register to a relying party using one or more UAF

authenticators. Once registration is complete, the user can then invoke the

authentication operation, in which the relying party prompts for a user authentication

using the UAF authenticator previously used during the registration operation. Finally,

56

in the deregistration operation, the relying party can trigger the deletion of the

authentication key material and remove the user from its list of authenticated users.

Figure 5: The FIDO UAF protocol

The UAF registration operation. The registration operation is initiated when a user

requests a registration to a relying party, either through a compatible application or

through a browser. The relying party replies to the registration request by transmitting

a registration message with the following parameters: the AppID, the authenticator

policy, the server generated challenge, and the username to the UAF client residing in

the user’s device (illustrated in Figure 6). The AppID parameter is used by the UAF

client to determine if the calling application (or website) is authorized to use the UAF

protocol and it is associated with a key pair by the UAF authenticator (during key

generation), so that access to the generated key pair is limited to its respective

application. The authenticator policy lists the type of UAF authenticators required by

the relying party, while the server generated challenge is a random nonce value used to

protect against replay attacks. Finally, the username parameter is used by the UAF

authenticator to distinguish key pairs that belong to the same application (or website),

but to different users.

Once the UAF client receives the registration message from the relying party, it first

identifies the calling app (or website) and then determines (based on the AppID

parameter) whether the associated application is trusted and allowed to proceed with a

registration request. To accomplish this, the UAF client queries the relying party for

the trusted facet list (i.e., a list of all the approved entities related to the calling app)

57

and, based on this list, decides whether registration will proceed or not. For example, if

the registration request was initiated by an application, then the trusted facet list will

contain a signature of the calling application that the UAF client can use to verify the

app. If, on the other hand, the registration was initiated by a website, then the trusted

facet list will contain all the associated and approved domain names. Subsequently, the

UAF client will check the authenticator policy parameter and generate a key registration

request to the set of UAF authenticator(s) mandatory by the policy. If the required UAF

authenticators are not present in the user’s device, then the registration operation will

be canceled.

The UAF client communicates with the UAF authenticator(s) using the authenticator

specific module (ASM), a software associated with a UAF authenticator that provides

a uniform interface between the hardware and the UAF client software. At this stage,

the UAF client performs the following operations: it first calls the UAF authenticator

in order to compute the final challenge parameter (FCP), which is a hash of the AppID

and the server challenge. Then, it generates the KHAccessToken, which is an access

control mechanism for protecting an authenticator's UAF credentials from unauthorized

use. It is created by ASM by mixing various sources of information together. Typically,

KHAccessToken contains the following four data items: AppID, PersonaID,

ASMToken and CallerID. The AppID is provided by the relying party and it is

contained within every UAF message. The PersonaID is obtained by ASM from the

operating system, and, typically, a different PersonaID is assigned to every user

account. The ASMToken is a random generated secret which is maintained and

protected by ASM. In a typical implementation ASM will randomly generate an

ASMToken when it is first executed and will store this secret until it is uninstalled.

CallerID is the calling UAF client's platform assigned ID. Once the FCP and the

KHAccessToken are computed, the UAF client will send the key registration request to

the UAF authenticator including the FCP, the KHAccessToken, and the username

parameter.

Following the reception of a key registration request by a UAF authenticator, the later

will first prompt the user for authentication, and, then, generate a new key pair

(Uauth.pub, Uauth.priv), store it on its secure storage, and associate it with the received

username and KHAccessToken. Subsequently, the UAF authenticator will create the

key registration data (KRD) object containing the FCP, the newly generated user public

58

key (Uauth.pub), and the authenticator’s attestation ID (AAID), which is a unique

identifier assigned to a model, class or batch of UAF authenticators, and it is used by

the relying party to identify a UAF authenticator and attest its legitimacy. Once the

KRD is generated, the UAF authenticator will sign it using its attestation private key

and return to the UAF client a key registration reply (which the later forwards to the

relying party) that encompasses: the signed KRD, the AAID, Uauth.pub, and its

attestation certificate (Certattest). Upon the reception of the key registration reply by

the relying party, the later cryptographically verifies the KRD object, uses the AAID to

identify if the UAF authenticator is a legitimate authenticator with a valid (i.e.,

unrevoked) attestation certificate, and, finally, stores the Uauth.pub key in a database

for the purposes of user authentication in any subsequent authentication requests.

Figure 6: The UAF registration operation

The UAF authentication operation. The authentication operation (illustrated in

Figure 7) is initiated when a user requests a service that requires authentication to a

relying party, either through a compatible application or through a browser (in a similar

fashion with the registration operation outlined above). The relying party replies to the

authentication request by transmitting an authentication message with the following

parameters: the AppID, the authenticator policy, and a server generated challenge, to

the UAF client residing in the user’s device. The UAF client receiving the

authentication request, first identifies the calling app (or website) and then determines

(based on the AppID parameter) whether the associated application is trusted and

allowed to proceed with the authentication request. Subsequently, the UAF client

checks the authenticator policy parameter and sends a key authentication request to the

set of UAF authenticator(s) mandatory by the policy. If the required UAF authenticators

59

are not present in the user’s device, then the authentication operation will be canceled.

Using ASM, the UAF client performs the following operations: it first calls the UAF

authenticator in order to compute the FCP, which is a hash of the AppID and the server

challenge. Then, it retrieves the KHAccessToken, and finally, sends the key

authentication request to the UAF authenticator(s) including the FCP and the

KHAccessToken.

Following the reception of a key authentication request by a UAF authenticator, the

later will first check if the UAF client is authorized to request an authentication for that

particular user key, based on KHAccessToken. If the UAF client is authorized, then the

UAF authenticator will prompt the user for authentication, and, then, retrieve the

associated Uauth.priv from its secure key storage. Subsequently, the UAF authenticator

will create the SignedData object containing the FCP, a newly generated nonce, and a

Sign Counter (cntr). The cntr variable is a monotonically increasing counter,

incremented on every sign request performed by the UAF authenticator for a particular

user key pair. This value is then used by the relaying party to detect cloned

authenticators. Once the SignedData object is generated, the UAF authenticator will

sign it using the Uauth.priv key and return to the UAF client a key authentication reply

(which the later forwards to the relying party) that encompasses: the signed object

SignedData, the FCP, the nonce n, and the counter cntr. Finally, upon the reception of

the key authentication reply by the relying party, the later first retrieves Uauth.pub from

its database, cryptographically verifies the signedData object, and stores the value of

the cntr counter. If the verification of the SignedData object succeeds, then the user is

successfully authenticated.

Figure 7: The UAF authentication operation

60

3.1.2. Security analysis

UAF authenticator vulnerabilities. The first and most apparent attack vector of the

UAF protocol is the authentication keys. Therefore, an attacker may attempt to (directly

or indirectly) gain unprivileged access to these keys. As we previously mentioned, the

responsibility of storing the authentication keys lies with the UAF authenticator and

based on the UAF protocol security requirements, the UAF authenticator utilises some

form of secure/privileged storage. However, it has been shown in the literature that such

types of key storage solutions can still be compromised [72]. UAF authenticators

typically rely on trusted computing platforms for the storage of cryptographic material.

Cooijmans et al [69] have shown that on several widely adopted trusted computing

platforms, an attacker with privileged rights can gain the ability of using encrypted

credentials by moving them to a different directory, which designates a malicious

application as the owner of the credentials. Finally, an attacker may also attempt to

indirectly gain access to the authentication keys, by fully compromising the UAF

authenticator(s). Based on the literature, an attacker can gain full access to a trusted

computing platform by performing an integrated circuit attack (i.e., ICA) [68]. One

limitation of this attack is the requirement to have physical access to the user’s device.

However, once the attack is performed, the attacker can then create a cloned UAF

authenticator, alleviating any further need for the original user’s device.

When utilizing a cloned UAF authenticator, an attacker must then evade the security

mechanisms of the UAF protocol, implemented on the purpose of identifying such

malicious behavior. Recall that the UAF protocol incorporates two security

mechanisms that safeguard the operation of the UAF authenticator: (i) an attestation

mechanism, in which the UAF authenticator must prove its legitimacy by providing an

attestation signature during the registration process and (ii) a sign counter (cntr)

mechanism, which is a monotonically increasing counter, incremented on every sign

request performed by the UAF authenticator for a particular user key pair and used by

the relaying party to detect cloned UAF authenticators.

Regarding the attestation mechanism, we have identified three approaches that can be

used by an attacker to circumvent detection. In the first method, an attacker may utilize

the extracted attestation key from the compromised UAF authenticator and perform

registration requests to relying parties, impersonating the legitimate user. Since the

attestation keys for each UAF authenticator are not unique (i.e., a group of UAF

61

authenticators share the same attestation key pair), the malicious behavior cannot be

easily detected by the relying party. If, however, the attestation keys are revoked by the

device’s vendor, then there is a risk of detection by the relying party. A second method

that can be used by an attacker when employing a cloned authenticator is to avoid the

attestation mechanism all together. This can be achieved by exploiting a limitation in

the attestation process. Recall that the attestation process takes place only during the

registration operation. Therefore, an attacker may allow the legitimate UAF

authenticator to perform the registration process, and, subsequently, without the users’

knowledge, use the cloned authenticator to authenticate itself to the relying party,

masquerading as the legitimate user. Finally, an attacker may use the cloned UAF

authenticator temporarily to collect personal information related to the legitimate user,

and, then, register at other relying parties using a different, non-cloned UAF

authenticator. Subsequently, since the attestation procedure takes place at a non-cloned

authenticator, there is no risk of revocation, while the attacker retains the ability to

impersonate the legitimate user to any relying party.

On the other hand, the second security measure proposed by the UAF specifications

(i.e., sign counter), can be circumvented by an attacker, if the later actively attempts to

perform an authentication operation immediately after the completion of cloning a UAF

authenticator. Recall from that during the authentication operation, a relying party will

assume a UAF authenticator is legitimate if the sign counter encapsulated in the key

authentication reply is equal to the sign counter maintained by the relying party

incremented by one. Therefore, a race condition evolves between the legitimate and the

cloned UAF authenticator, since only the UAF authenticator that manages to perform

an authentication request first, will be considered legitimate by the relying party (while

the second authenticator will attempt to authenticate using an older value of the sign

counter). Thus, an attacker can circumvent this security measure by performing an

authentication request to the relying party as soon as the UAF authenticator is cloned,

maximizing his chances of winning the race condition.

UAF client vulnerabilities. The second critical entity of the UAF protocol that resides

at a user’s device is the UAF client. Recall that the UAF client acts as an intermediator

between the relying party on one hand and the UAF authenticator on the other and it is

responsible for most of UAF’s protocol operations, short of generating the encryption

keys or performing cryptographic operations. Furthermore, the UAF client is

62

implemented entirely in software, making it an ideal candidate for software attacks.

Even more importantly, the UAF protocol does not incorporate any security measures

that safeguard the UAF client from attacks or verifies that a user’s device operates a

legitimate version of the client. The UAF protocol specifications propose the execution

of the UAF client in a “privileged” environment, however, since the client is typically

embedded within a browser either fully or as a plug-in, it is de-facto implemented as a

normal application.

The simplest method of delivering a malicious UAF client to a user’s device is by

deceiving the user to install the application voluntarily. Common delivery methods

include attachments in e-mails or browsing a malicious website that installs software

after the user clicks on a pop-up. Other methods of compromising a UAF client is

through malicious software residing at the user’s device (such as a virus, worm. trojan,

or root kit) or by exploiting an operating system vulnerability. The latter enables the

execution of a plethora of attacks such as spoofing of inter-process communication,

privilege escalation, return-oriented programming, or code injection attacks. For

example, in a variety of sources such as [73] [74] [75], the authors demonstrate

methodologies for accomplishing privilege escalation in the android operating system,

one of the most widely used platforms, which includes a variety of privilege protection

mechanisms, such as application specific sandboxing and Mandatory Access Control

(MAC) policies. Furthermore, in the most recent versions of android, privilege

escalation is typically achieved using system less root [74], which is the process of

gaining escalated privileges without any modification to the system partition, thus

evading detection by any security mechanisms that validate an operation system

through a checksum of its system partition (i.e., a common security mechanism used by

most of the trusted computing platforms).

3.1.3. Threat analysis

Critical assets related to the UAF protocols’ secure operation. The UAF

specifications [76] provide a limited list of assets that must be protected in an

implementation of the UAF protocol. These assets include the private key of the

authentication key pair, the private key of the UAF authenticator attestation key pair,

and the UAF authenticator attestation authority private key. However, an attacker may

also target several other assets that are either part of the UAF protocol, or they are

integral in its secure operation. In particular, an attacker may either target the UAF

63

authenticator(s) or the UAF client that are present in a legitimate users’ device.

Furthermore, an attacker may indirectly compromise the secure operation of the UAF

protocol by exploiting existing vulnerabilities (i) at the underlying operating system in

which the UAF protocol is executed, or (ii) at the trusted computing platform (typically

the TrustZone platform), used for the hardware-assisted protection of the encryption

keys and the operation of the UAF authenticator(s).

Threat evaluation. Based on the security analysis, the private keys stored in the UAF

authenticator, namely the attestation private key and the authentication private keys

pose a critical attack vector of the UAF protocol. Recall from that these keys are used

by the UAF authenticator to sign registration and authentication replies, respectively.

On the other hand, the relying party uses these signed replies to authenticate the UAF

authenticator and verify its legitimacy. Therefore, if an attacker compromises the

attestation private key, he would then be capable of impersonating the legitimate user

by registering to other relying parties on the users’ behalf, without the latter’s consent

(including fraudulent relaying parties). In order to have access to the authentication

keys associated with the malicious registrations and to avoid detection by the user, the

attacker will have to import the attestation private key to a cloned and silent

authenticator, i.e., an authenticator that appears to have been manufactured by the same

vendor as the legitimate one and does not prompt the user for any action during the

registration and authentication operations of the UAF protocol. On the other hand, if

the attacker compromises one or more authentication private keys, he would then be

capable of impersonating the legitimate user by authenticating as the user to relying

parties. The attacker is limited, however, to relying parties that the legitimate user has

already registered. Nevertheless, once authenticated, the attacker can then collect

personal data related to the legitimate user and stored at the relying party, as well as

perform transactions with the relaying party without the users’ consent.

An attacker may also attempt to indirectly gain access to the attestation and

authentication keys, by fully compromising the UAF authenticator(s) residing at the

device of a legitimate user. This can be accomplished in the following ways: the user

unwillingly installs a malicious authenticator to his/her device, the attacker

compromises the UAF authenticator by targeting the UAF authenticators’ underlying

trusted computing platform, and, the attacker gains physical access to the device and

either installs a malicious authenticator, or tampers with the legitimate UAF

64

authenticator(s) installed on the device. As a result, any subsequent registration and

authentication requests will be captured by the malicious authenticator, enabling the

attacker to impersonate the legitimate user, collect personal data, and perform

transactions on the users’ behalf, similarly to the cloned authenticator threat we

analyzed previously. Furthermore, the attacker can also extract the attestation and

authentication keys, to create a cloned authenticator that resides outside the device of

the user.

The UAF client signifies another critical attack vector identified in the security

evaluation. An attacker may attempt to compromise the UAF client by exploiting one

or more of the following vulnerabilities: gaining physical access to the user’s device

and manually installing a malicious client, deceiving the user to install the malicious

client voluntarily, using other malicious software residing at the user’s device (such as

a virus, worm. trojan, or root kit) to install the malicious client, or by exploiting an

operating system vulnerability. Having successfully compromised the UAF client, an

attacker is then capable of launching several additional attacks against the UAF

protocol, such as: allowing itself or other malicious applications to perform

registration/authentication operations without the user’s consent, enforce the use of the

weakest/less secure UAF authenticator during a legitimate registration process, direct a

user to a fake or malicious relying party, and defeat the user consent, transaction

confirmation, and trusted facet list security measures of the UAF protocol. During the

registration operation, the UAF client is responsible for initiating registration requests,

determining if applications (or websites) are authorized to use the UAF protocol,

present a UI to the user, and directing the relying party challenge to the UAF

authenticator based on the authenticator policy transmitted by the relying party (i.e.,

based on the trusted facet list). Since the UAF client is the only entity responsible for

assessing the trusted facet list, it can allow the registration operation for any website,

or from any application, regardless of what is enforced by the trusted facet list security

measure. Therefore, the user may unwillingly be redirected to a malicious relying party

masqueraded as a legitimate one, so that personal/valuable information can be phished

by an attacker. Furthermore, as we mentioned previously, it is the UAF client’s

responsibility for presenting a UI to the user, and, therefore, even if the user’s device

incorporates a transaction confirmation security mechanism, the confirmation will

always be true, since the mechanism validates if the information provided to the user is

65

tampered/modified/spoofed after leaving the UAF client, and not if the later modified

the displayed content. Finally, a malicious UAF client may forward a relying party

challenge to the weakest UAF authenticator (preferably one with a low entropy secret).

Subsequently, during authentication, the attacker could attempt to discover the secret

and access the user’s account without the legitimate users’ consent.

Asset Threat Consequences

Attestation private

key

Attacker gains access

to the attestation keys

Impersonate user, create a clone

authenticator

Authentication

private key

Attacker gains access

to the authentication

keys

Impersonate user, capture user

data

UAF authenticator User installs a

malicious

authenticator

Impersonate user, capture user

data, register the user to a

fraudulent replaying party

TrustZone, UAF

authenticator

Attacker compromises

the trusted computing

platform

Create cloned authenticator,

impersonate user, compromise the

UAF authenticator

UAF client, UAF

authenticator,

TrustZone

Attacker gains

physical access to a

user’s device

Create cloned authenticator,

impersonate user, compromise the

UAF authenticator, install

malicious UAF client

UAF authenticator Attacker employs a

cloned authenticator

Impersonate user, capture user

data, register the user to a

fraudulent relaying party

UAF client User installs a

malicious client

Register to a fraudulent relaying

party, phishing – lead to malicious

websites, downgrade

authentication policy, capture user

data, circumvent transaction

confirmation security mechanism,

allow malicious apps to

register/impersonate the user

Operating system Attacker can execute

privileged code at the

user’s device

Compromise the UAF client

Table 13: Threats related to the UAF protocol and their associated consequences

3.1.4. Results and discussion

The UAF protocol provides several important advantages over traditional

authentication mechanisms, such as strong authentication and a simplified registration

and authentication procedure. However, the UAF protocol also transfers user

authentication operations from the server-side to the client-side. Therefore, the critical

functionality of the UAF protocol typically operates in a consumer platform such as a

mobile device, which is susceptible to a variety of attacks such as malware and viruses,

its users deploy unsupervised software, and the deployed operating systems may be

susceptible to several vulnerabilities. As a part of this thesis, we have provided a

comprehensive security analysis of the UAF protocol and have identified several

66

vulnerabilities that may be exploited by an attacker to compromise the authenticity,

privacy, availability, and integrity of the UAF protocol. More specifically, we have

investigated methods of attacking the two entities of the UAF protocol residing at a

user’s device, namely, the UAF authenticator and the UAF client, including the ability

of an attacker to gain unprivileged access to the cryptographic material stored within

the UAF authenticator and highjack either the of these two entities. Furthermore, we

have investigated and identified how an attacker can circumvent the security measures

provided by the UAF protocol, including the authenticator attestation mechanism, the

transaction confirmation mechanism, the trusted facet list, and the sign counter.

3.2. Real-time protection of user authentication credentials

3.2.1. Related work

Regarding the retrieval of sensitive information in the volatile memory, Darren et al.

tried to recover data remnants from cloud storage applications including Dropbox

[77], Skydrive [78], and Google Drive [79]. Similarly, in [80] the authors investigate

the volatile memory of cloud services applications, such as Amazon S3, Dropbox,

Google Docs and Evernote. In all the aforementioned publications, several artifacts

were recovered such as authentication credentials, visited URLs, filenames and

hashes. Apart from personal computers, sensitive information was also recovered from

the volatile memory of Android devices using two different methods. More

specifically, in the first method [81] the authors used the Linux Memory Extractor

(LiME) kernel module [82] and a physical Samsung i9000 phone to dump the Android

memory, whereas in the second technique [83] the Android emulator was used

alongside with Dalvik Debug Monitor Server (DDMS) to acquire the memory data.

In both cases, critical and secure applications, such as mobile banking and password

managers, were examined and authentication credentials were recovered in plain text

from the dumped memory.

Regarding memory encryption, the proposed solutions can be further classified into

two categories: software- based and hardware-based. For software-based solutions, in

[84], the authors propose a modified secure memory bus controlled by the OS, in

which the encryption key is generated each time the system boots up. Peterson, in

[85], modified the virtual memory manager of the Linux 2.6.24 kernel and partitioned

the volatile memory into a plaintext and an encrypted segment. However, [86] shows

that the memory maps, should be maintained in the plaintext segment; thus pointing

67

the addresses to where the encrypted volatile data are stored. The second category of

the proposed solutions for memory encryption is based on hardware modifications.

In particular, several publications [87] [88] [89] [90] [91] [92] [93] for single processor

systems propose the addition of an encryption unit to cipher and decipher data from

and to the volatile memory. Moreover, for multi-processor systems, [94] proposes a

shared bus, containing a crypto engine, to coordinate and secure traffic between

processors, while [95] [96] proposed the use of sequence numbers for the

coordination between different processors. Lastly, in [97], the authors propose SecBus,

a cryptographic coprocessor between the volatile memory and the main processor.

The main limitation of the proposed memory encryption solutions has to do with

the fact that hardware-based solutions require extensive changes in the current

computer architecture, while the software-based solutions require modifications at

the OS kernel. In contrast to the relevant works, in this thesis we investigate if the

latest OS versions (Windows and Linux) provide built-in data zeroization methods

as well as whether C/C++ developers can use existing software libraries and methods

in order to perform data zeroization in their applications.

3.2.2. Software level protection

3.2.2.1. Operating System level protection

Memory management is the procedure of administering the volatile memory at the

system level. This is performed by the kernel of the Operating System (OS) with the

support of a part of the central processing unit, named memory management unit.

Allocation and deallocation requests are used in order to grant or revoke memory blocks

to applications. Allocation is the procedure in which memory blocks are granted to

applications and are then used by them for handling the necessary data for their

functionalities. On the other hand, deallocation is the procedure in which the

applications free the memory blocks they do not longer need, making them available

for other running or starting applications. It is important to note that the OS does not

modify the allocated memory blocks, since this action could cause the running

applications to crash. Subsequently, during the applications’ runtime, only the

applications themselves are accountable of modifying their allocated memory blocks.

In order to find out whether the OS performs data zeroization, we developed a testing

application written in C programming language (see Figure 8), that holds a secret

value in a variable named as password. The aim of the experiments was to investigate

68

how many instances of the password variable can be extracted from the volatile

memory. More specifically, as shown in Figure 8, the testing application defines the

password variable at line 3, which is an array of type char and size length. Moreover,

the stdin (e.g. keyboard input) is used to fill in the array of the password variable. For

the experiments, three types of memory dumps were considered which are: A)

Process: This memory dump includes only the memory blocks that are allocated to

the executable of Figure 8. B) All- Processes: This memory dump includes memory

blocks allocated to all running user-mode processes in the OS. In this way we can find

out whether the password variable of Figure 8 can be extracted from other user-

mode running processes; C) System: This memory dump contains the entire volatile

memory including memory allocated not only to user-mode processes but also to the OS

kernel, drivers, unallocated blocks. The technical methodology that we followed in

order to obtain the memory dumps is as follows. To perform a Process dump in Linux,

the GNU debugger (i.e. GDB) was used to dump the memory blocks of a process based

on its PID. Similarly, the All-processes dump was performed using a script that feeds

GDB with all the running PIDs. The same methodology was followed in Windows. In

particular, we used the Windows Powershell in order to list all the running PIDs and

feed them to ProcDump [98] (i.e., a Windows utility which performs memory dumps of

running processes). It is important to note that all the aforementioned memory dumps,

were executed using root privileges both in Linux and Windows. To perform System

dump, we used virtual machines, in order to dump the entire volatile memory of the

system in an easy manner.

First testing application

01: void main() {

02: static int length;

03: char password[length];

04: fgets(password, length * sizeof(char), stdin);

05: sleep(120);

06: } //suspend for 120 seconds

Figure 8: First testing application used to discover the total number of instances of the password

variable in the volatile memory

Moreover, two scenarios were considered. In the first scenario named as “Running

process” we performed memory dumps (all three types) while the process of the

executable was running. This was achieved during the sleep function (see line 5 of

Figure 8), where the execution of the process was suspended, and we were able to

69

recover the memory dump. In the second scenario named as “After termination”, we

performed the

Memory

Dump

Operating System

Ubuntu Linux Windows 7/10

Running

Process

After

termination

Running

Process

After

termination

Process 1 Not Applicable 3 Not Applicable

All-Processes 1 1 3 0

System 9 2 5 0

Table 14: Number of instances of the password variable

memory dumps immediately after the termination of the executable. Evidently, in this

scenario, we performed only All- processes and System memory dumps, since

Process dump cannot be performed after the termination of the executable. The

experiments were conducted in Windows 7 and 10 and Ubuntu Linux 14.04, fully

updated as of 15th of April 2016. In both versions of Windows, the compiler of

Microsoft Visual Studio 2015 suite was used, while in Ubuntu Linux we used the

latest version of the GCC compiler (i.e., v5.3).

The results of the experiments are summarized in Table 14. We can observe that in

the “Running process” scenario in all three memory dump types for both Linux and

Windows OS we were able to recover the value of the password variable. It is

interesting to notice that in the All-processes memory dump type, the number of the

instances of the password variable were the same as in the Process memory dump

type (i.e., 1 time in Linux and 3 times in Windows). This means that apart from the

process itself of the testing application (see Figure 8), the other processes running in

the system did not use the password variable. We can also observe that in the System

memory dump, the number of recovered password instances increased (i.e., 9 times in

Linux and 5 times in Windows). This result means that i) apart from the process of the

testing application itself, the OS kernel stores also the value of the password variable

and ii) the OS kernels stores in multiple memory regions the value of the password.

Regarding the results of the “After termination” scenario, we can observe an

interesting outcome: for both All-processes and System dumps in Linux we were able

of recovering the password variable (1 and 2 times respectively). On the other hand,

in Windows we were not able to recover it. This result means that Windows kernel

70

zeroize the deallocated blocks of a process immediately after its termination. On the

other hand, the Linux kernel follows a different approach. That is, instead of zeroizing

the deallocated memory blocks of a terminating process, it zeroizes the memory blocks

right before their allocation [99]. Thus, in Linux, a malicious software that has access

to the entire system memory can extract potentially sensitive information (such as

authentication credentials) even from applications that were terminated, in case the

related deallocated blocks have not been allocated to a new process. On the contrary,

in Windows, a malicious software can extract information only from the memory blocks

of running applications.

The above observation implies that Windows is more secure than Linux to memory

disclosure attacks. To overcome this issue, we have identified that there is a Linux

kernel patch, named as GRsecurity, which provide several security enhancements

for the Linux kernel [100]. One of these enhancements enables the Linux kernel to

zeroize the deallocated memory blocks after process termination by compiling the

Linux kernel with the PAX_MEMORY_SANITIZE option that the GRsecurity provides.

To this end, we repeated the experiments (using the testing application of Figure 8)

in Ubuntu 14.04 compiled with a kernel that has GRSecurity installed and the

PAX_MEMORY_SANITIZE option enabled. We observed that this time we were not

able of recovering instances of the password variable after the process termination.

Based on the above discussion, we propose the use of GRsecurity (with the

PAX_MEMORY_SANITIZE option enabled), in order to minimize information

disclosure in volatile memory.

Despite the fact that GRsecurity may enable the kernel to perform data zeroization, it

is not widely adopted in Linux Distributions. Even those that offer a GRsecurity patched

kernel by default, many of them have not enabled the PAX_MEMORY_SANITIZE

option. In total, we found six Linux distributions [101] [102] [103] [104] [105] [106]

that come with a GRsecuity patched kernel and only three of them have the

PAX_MEMORY_SANITIZE option enabled.

3.2.2.2. Source code level protection

The previous results show that OS zeroize data only after the termination of the

running process which means that during the runtime of a process, sensitive

information can be extracted in its allocated memory blocks. In this section, we

investigate functions and methods that developers can use in order to zeroize memory

71

blocks during the runtime of their applications. We focus on C/C++ programming

language, since it provides low-level memory manipulation. All experiments carried

out in this section perform Process dump in a “Running-process” scenario.

First, we investigate for Windows OS, if there are special functions that can be used

in order to zeroize data. More specifically, by including the windows.h header file in

a C/C++ source code, a developer has the ability of using the macro

SecureZeroMemory, which calls the function RtlSecureZeroMemory that guarantees

to zeroize memory blocks, even if it is not subsequently written or accessed by the

code [107]. We repeated the experiments performed in the previous section (i.e., as

mentioned previously only Process dump in the “Running process” scenario) using

the same testing application with the difference that at the end of the code we called

the SecureZeroMemory macro. We observed that indeed the macro

SecureZeroMemoy replaced the contents of the password variable with zeroes. Thus,

in Windows, developers should use the macro SecureZeroMemory to ensure that the

memory blocks of their applications are zeroized.

On the other hand, for Linux OS, there is no similar C function that can be used to

zeroize data in the volatile memory. To this end, we have used the function memset

of the C programming language to manually try to zeroize memory blocks allocated

to a process. In particular, we have used the testing application of Figure 9, which is

identical to the code of Figure 8, with the difference that Figure 9 includes in line 5,

the command memset(password, ‘0’, length). This command writes in the memory

block, which is allocated for the value of the password variable, the 0 character as

many times as indicated by the value of the length variable. This will result in the

zeroization of the data of the array password. We repeated the experiments of the

previous section and we observed that the memset function was not operating as we

expected, since the value of the password variable was detected in the process dumps.

After investigation, we identified that the memset function was not being called due

to code optimization. The latter is the process in which a compiler tries to improve the

generated executable code by making it consume fewer resources, such as CPU and

Memory. This is performed by several techniques. One of these methods is to avoid

compiling specific code which is not necessary for the execution flow. For this

reason, in our experiments, the compiler skipped the calling of the memset function,

because the new value of the password variable (i.e., the zeroized data) is not used

72

after the memset function. Note that although the executable of Figure 9 was compiled

using GCC without optimization flags, the GCC compiler did perform optimization

and did not include the memset function in the executable.

Second testing application

01: void main() {

02: static int length;

03: char password[length];

04: fgets(password, length * sizeof(char), stdin);

05: memset(password, ‘0’, length);

06: sleep(120); //suspend for 120 seconds

07: }

Figure 9: Second testing application used to discover the total number of instances of the passwrod

variable ni the volatile memory

The above results raise the following question: “is it feasible to avoid optimization

caused by the GCC compiler, in order to ensure that the memset function will be

executed”? To answer this question we tried two different methods. In the first

method we used the function memset_s. The latter has the same functionality as

memset. The main difference between those two functions is that the memset_s

cannot be optimized out by the compilers [108]. However, memset_s is included only

in the currently last version of the standard of the C programming language (i.e., C11

[109]) in Annex K. Unfortunately, Annex K is not mandatory in C11, while GCC

compiler (i.e., v5.3) has not implemented the Annex K, and thus the developers have

no way to use the memset_s function.

The second method that we attempted in order to avoid bypassing optimization was

to write a testing application similar to the one described in [110] (see Figure 10),

which uses a function pointer of type volatile named memset_volatile, as defined at

line 1. The declaration of a variable as volatile instructs the compiler not to optimize

out functions that access the variable. This is due to the fact the volatile type is

used mainly for buffers in communication with hardware devices or other applications.

Based on this observation, we defined the function pointer named memset_volatile

pointing to the function memset at line 1. At line 4, a pointer named password_heap

is defined, which points to a block of memory of size length*sizeof(char). This block

of memory is allocated using the malloc function, which is used for dynamic memory

allocation during the application execution. In line 5, the user enters his password,

and in line 6, the memory block allocated at line 4 is freed with the free command.

It should be noted that the free command does not zeroize the data of the memory

73

block it deallocates. Consequently, we used the memset_volatile function pointer to

indirectly call the memset function. We repeated the experiments once again, using

all the available optimization flags of the GCC compiler. In all cases we observed

that the GCC compiler did not optimize the call to the memset function. Although the

experiments showed that the data type volatile in C/C++ programing language

prevents the optimization caused by the compilers, it should be noted that GCC

compiler can arbitrary perform optimization even in volatile data types as mentioned

in [111]. In any case, volatile function pointers can be used to increase the chances

that the memset function will not be optimized out during compilation.

Second testing application

01: void *(*volatile memset_volatile)(void *, int, size_t) = memset;

02: void sensitive_function() {

03: static int length;

04: char *password_heap = malloc(length * sizeof(char));

05: fgets(password_heap, n, stdin);

06: memset_volatile(password_heap, 0, n * sizeof(char));

07: free(password)

08: sleep(120); //suspend for 120 seconds

09: }

Figure 10: Third testing application used to discover the total number of instances of the passwrod

variable in the volatile memory

3.2.3. Results and discussion

The real-time user security is significant, as authentication credentials can be stolen in

real-time. Therefore, this thesis investigates security measures that can be applied at

the OS and the source code level to protect sensitive information in volatile memory

from disclosure attacks. Based on the experimental analysis, it was observed that

Windows delete the data from deallocated memory blocks, while Linux does not. This

can be solved using the GRsecurity Linux kernel patch that enables the zeroization of

deallocated memory blocks, using the PAX_MEMORY_SANITIZE option during the

kernel compilation. At the source code level, the Windows developers may use the

SecureZeroMemory function for manually modifying volatile memory data without

facing any optimization issues. In Linux, we propose the use of volatile function

pointers to ensure that the call to memset will not be optimized out. Lastly, the

experiments performed in web browsers show that in most cases it was feasible to

recover user authentication credentials from all the web browsers except when the

user has closed the tab that used to access the website.

74

4. Continuous authentication and detection of malicious

actions

4.1. Continuous authentication using biometric modalities

4.1.1. Security and performance of Biometric based authentication

Protection schemes for biometric templates can be categorized as follows: a) biometric

cryptosystems, and b) cancelable biometrics. Biometric cryptosystems are designed to

securely bind a key to a biometric feature or generate a key from a biometric feature.

On the other hand, cancelable biometrics consists of intentional, repeatable distortions

of biometric features, based on one-way transforms, where the comparison of biometric

templates takes place in the transformed domain. A comprehensive overview of

biometric template protection schemes is presented in [112]. One of the most widely

used cancellable biometrics algorithm is biohash and its variations [113], [114]. The

one-way transformation of biohash is based on random projections [115]. The

mathematical properties of random projections ensure the security of the protected

template, while at the same time the authentication performance is not deteriorated. For

this reason, the proposed scheme adopts a simple variation of biohash to secure the

extracted gait features.

As mentioned previously, biometric systems include two procedures: a) enrollment and

b) authentication. During enrollment, biometric features are extracted from a user of

the system to form its biometric template, which is stored in a database or token. During

authentication, the system extracts the considered biometric features of a user and

creates a new biometric template, which is compared against the enrolled one for user’s

acceptance or rejection. Due to the intrinsic noise of biometric features, the

authentication and enrollment template cannot perfectly match. For this reason,

biometrics systems compare the distance ((i.e., Euclidean, Hamming, or any other

metric) between the enrolled and authentication template of a user against a

predetermined threshold. If the distance is lower than the threshold value, then the user

is successfully authenticated; otherwise he/she is rejected.

The performance of a biometric system can be estimated and quantified using the

following two metrics: i) false acceptance rate (FAR) and ii) false rejection rate (FRR).

FAR represents the probability that an authentication system will incorrectly accept an

authentication attempt by an impostor (i.e., a non-valid user that does not have an

75

enrolled biometric template in the system); whereas FRR represents the probability that

the system will incorrectly reject an authentication attempt by a genuine user (i.e., a

valid and registered user of the system with an enrolled biometric template). As we

analyze below, the exact value of FAR and FRR depend on the predetermined threshold

value of the system. Another important metric that can be used to evaluate the

authentication performance of a biometric system, is the Equal Error Rate (EER). The

latter is the rate at which both acceptance and rejection errors are equal (i.e.,

EER=FAR=FRR). It is evident that the lower the value of EER is, the higher the

accuracy of the biometric system.

Figure 11: Genuine and impostor distributions as a function of distance between enrollment and

authentication templates

To gain better understanding of the FAR, FRR and EER metrics, Figure 11 plots

genuine and impostor distributions of a generic biometric system as a function of the

distance between the enrolled and authentication templates. As expected, genuine users

have small distances, while impostors have high distances. We can also observe that

the two distribution curves have an overlapping area. This means that in this

overlapping area the system cannot distinguish genuine users from impostors.

Moreover, as shown in Figure 11, the threshold value is set at the intersection point of

the two curves. The threshold value divides the overlapping area into two sub-areas.

The left sub-area represents the FAR, while the right sub-area represents the FRR. The

intersection point of the two curves defines the EER value (see Figure 11), since at this

point the FAR and FRR are equal (i.e., EER=FAR=FRR). Moreover, it is evident that

a biometric system presents optimum results (i.e., FAR and FRR equal to 0) when the

genuine and impostor curves do not overall at all. On the other hand, as the overlapping

area between the genuine and impostor curves increases, then the authentication

performance is deteriorated.

76

4.1.2. Related Work

Over the last years, several studies have been performed to consider gait signatures, by

using shape analysis and extracting features from the silhouette of the human body.

Here, we provide a brief overview of the most recent works in this area. In [116], the

authors pinpoint that temporal information is critical to the performance of gait

recognition. To address this, they propose a novel temporal template, named chrono-

gait image (CGI) in order to retain temporal information in a gait sequence. Moreover,

the authors of [117] argue that the change of viewing angle of the sensor causes

significant distortion to the extracted features. Based on this observation, they

formulate a new patch distribution feature (PDF) to address this issue. The same

viewing angle problem is addressed in [118]. The authors propose a transformation

framework of the walking silhouettes to normalize gaits from arbitrary views. In [119],

the proposed method is based on the idea that the problem of human gait recognition

can be transformed from the spatiotemporal into the spatial domain, specifically, the

2D image domain. This is achieved by representing a sample of a human gait as a still

image.

Towards this direction, [120] argues that variations of walking speed may lead to

significant changes of human walking patterns. Based on this observation, a differential

composition model (DCM) is proposed that differentiates the effects caused by walking

speed changes on various human body parts; while at the same time it balances the

different discriminabilities of each body part on the overall gait similarity

measurements. In [121], the concept of the gait energy image (GEI) is extended from

2D to 3D images, creating gait energy volume (GEV). The obtained numerical results

show that the GEV performance is improved, compared to the GEI baseline and fused

multi-view GEI approaches. Next, in [122] the authors instead of using human

silhouette images from moving picture, they apply 3D point clouds data of human body

obtained from stereo camera, which has the scale-invariant property. In this way, they

achieve significant performance improvement in terms of gait recognition. In [123], the

authors propose a multi-view, multi-stance gait identification method, using unified

multi-view population hidden Markov models, in which all the models share the same

transition probabilities. Hence, the gait dynamics in each view can be normalized into

fixed-length stances by Viterbi decoding. [124] provides an extensive overview of the

methods used for accelerometer-based gait analysis, using mobile devices. In [125], the

77

extraction of distinguishable gait features is proposed using the radial integration

transform (RIT), the circular integration transform (CIT), and the weighted Krawtchouk

moments. In our proposed scheme, we use the CIT and RIT transformations for gait

feature extraction, due to their excellent recognition capabilities

On the other hand, the related work in protection schemes for gait features is rather

limited. In [126], the authors propose an authentication system that protects gait

features using biometric cryptosystems. Gait features are extracted using an

accelerometer attached to the user’s body. Experimental results show that the proposed

scheme achieves small EER values, only, for small key sizes. Thus, high accuracy is

achieved without providing an adequate level of security. Finally, in [127], the authors

propose a template protection scheme for gait features, based on channel coding (i.e.,

LDPC codes). Their approach achieves EER=6% for straight silhouette types, but 20%

and 30% for bag and coat types respectively.

A common limitation of the majority of the literature is that it focuses, only, on the

extraction and not on the protection of the gait features. On the contrary, as a part of

this thesis we propose and integrate feature extraction and protection into one system,

providing a complete solution for biometric authentication based on gait features.

Moreover, the previous works [127] and [126] that attempt to secure gait features, fail

to achieve an optimum tradeoff between security and performance. On the hand, by

interpolating between the security of biohash and the recognition capabilities of gait

features, we achieve to outperform existing solutions, without undermining the

provided security. Finally, it is important to mention that biohash has been successfully

applied to various biometric features including fingerprints [113] [128], face [129]

[130], signatures [114], palmprints and palm veins [131] [132], but to the best of our

knowledge it has not been applied to gait features.

4.1.3. Continuous authentication using the gait modality

4.1.3.1. Feature Extraction

For the extraction of gait features, this part considers three different types of human

silhouettes: 1) straight (i.e., the user wears trousers, blouse and shoes), 2) coat (similar

to straight silhouette, but the user also wears a coat), and, 3) bag (similar to straight

silhouette, but the user carries also a briefcase). It is worth noting that although the

current work considers only the above three types of silhouettes, the proposed

authentication system can be easily extended to take into account other types of

78

silhouettes (e.g., the user wears a hat) or various combinations (e.g., a user wearing a

coat and a hat).

The extraction of gait features is based on two feature-based algorithms: the RIT and

CIT transformations. These algorithms are selected due to their capability to represent

important shape characteristics [131]. That is, during human movement, there is a

considerably large diversity in the angles of lower parts of the body (e.g. arms, legs),

which vary among individuals. Both RIT and CIT transformations ensure that the

important dynamics of human shape are captured, thus enabling the correct

classification of individuals. Moreover, these algorithms are less sensitive to the

presence of noise on the silhouette image, compared to other schemes [131].

At this point, we provide a brief presentation of these transformations, where additional

details can be found in [125]. The first step in gait analysis is the extraction of the

walking subject's silhouette from the input image sequence. The normalized silhouettes

are defined as 𝑆̃𝐺(𝑥, 𝑦) where transformations are applied. More specifically, the RIT

transform of a function 𝑓(. , .) is defined as the integral of 𝑓(. , .) along a line starting

from the center of the silhouette(𝑥0, 𝑦0), which forms angle 𝜃 with the horizontal axis.

The discrete form of RIT, which computes the transform in steps of 𝛥𝜃 is given by:

𝑅𝐼𝑇(𝑡𝛥𝜃) =
1

𝐽
∑ (𝑆̃𝐺(𝑥0 + 𝑗𝛥𝑢 ∗ cos(𝑡𝛥𝜃) , 𝑦0 + 𝑗𝛥𝑢 ∗ sin (𝑡𝛥𝜃)))𝐽

𝑗=1 ,

where 𝜏 = 1, … , 𝛵, 𝛥𝑢 and 𝛥𝜃 are constant step sizes of distance 𝑢 and angle 𝜃, 𝐽 is the

number of silhouette pixels that coincides with the line that has orientation 𝜃 and are

positioned between the center of the silhouette and the end of the silhouette in that

direction, and 𝑇 = 360∘/𝛥𝜃.

In a similar manner, CIT is defined as the integral of a function 𝑓(. , .) along a circle

curve ℎ(𝜌) with center (𝑥0, 𝑦0) and radius 𝜌. The discrete form of the CIT transform is

given by:

𝐶𝐼𝑇(𝑘𝛥𝜌) =
1

𝑇
∑ (𝑆̃𝐺(𝑥0 + 𝑘𝛥𝜌 ∗ cos(𝑡𝛥𝜃) , 𝑦0 + 𝑘𝛥𝜌 ∗ sin (𝑡𝛥𝜃)))𝑇

𝑡=1 ,

where 𝑘 = 1, … 𝐾, 𝛥𝜌 and 𝛥𝜃 are the constant step sizes of the radius and angle

variables, 𝑘𝛥𝜌 is the radius of the smallest circle that encloses the binary silhouette

79

image 𝑆̃𝐺, and 𝑇 = 360∘/𝛥𝜃. The output of the CIT and RIT transformations are the

fixed-length vectors 𝛤𝐶𝐼𝑇 and 𝛤𝑅𝐼𝑇 of size 𝑛1 = 80 and 𝑛2 = 120 respectively.

4.1.3.2. Biohashing

After the extraction of the gait features (using the CIT and RIT transformations), the

biohash algorithm is applied to secure them. The biohash algorithm is a two-factor

authentication scheme that identifies a user based on what he/she is (i.e., biometrics)

and what he/she has under his/her possession (i.e., token). In the context of our

proposed scheme, the biohash algorithm converts the gait feature vectors 𝛤𝐶𝐼𝑇 and 𝛤𝑅𝐼𝑇

to non-invertible bitstreams, using a token that the user possesses. Since the application

of biohash is similar to both CIT and RIT vectors, here we present the biohash algorithm

in a generic way. More specifically, we present the application of biohash to a vector 𝛤

of size 𝑛, which is converted to a bitstream 𝐵. Biohash includes the following phases

[115]:

1. The token of the user generates a set of orthonormal pseudorandom vectors

{𝑟𝑖 ∈ 𝑅𝑛|𝑖 = 1, … , 𝑛},

2. A vector Z of size n with elements 𝑧𝑖 is computed such as:

𝑧𝑖 = 〈𝛤|𝑟𝑖〉 ∈ 𝑅, 𝑖 = {1, … , 𝑛},

where ⟨. |. ⟩ indicates the inner product operation. This procedure is also known

as random projection.

3. The mean value 𝜇 and standard deviation 𝜎 of 𝑧𝑖 are computed.

4. The final step is the binarization of 𝑧𝑖. As shown in Table 15, first it divides the

real-space of 𝑧𝑖 into 8 segments. Next, each segment is mapped to a three bit digit

value 𝑏𝑖 ∈ {0,1}3, so that two successive segments have only one bit difference

between them (see Table 16). In this way, it transforms the elements of vector

𝑍 into a bitstream 𝐵 = {𝑏1𝑏2 … 𝑏𝑛} of 3𝑛 bits length.

80

Segment zi bi

1 −∞ ≤ 𝑧𝑖 < 𝜇 − 3𝜎 000

2 𝜇 − 3𝜎 ≤ 𝑧𝑖 < 𝜇 − 2𝜎 001

3 𝜇−2𝜎 ≤ 𝑧𝑖 < 𝜇 − 𝜎 011

4 𝜇 − 𝜎 ≤ 𝑧𝑖 < 𝜇 010

5 𝜇 ≤ 𝑧𝑖 < 𝜇 + 𝜎 110

6 𝜇 + 𝜎 ≤ 𝑧𝑖 < 𝜇 + 2𝜎 111

7 𝜇 + 2𝜎 ≤ 𝑧𝑖 < 𝜇 + 3𝜎 101

8 𝜇 + 3𝜎 ≤ 𝑧𝑖 < +∞ 100

Table 15: Conversion of zi to bis

4.1.4. Initial experiments and observations

In this section we propose and evaluate experimentally two initial enrollment and

authentication schemes. As we analyze below, despite the fact that these two schemes

proved inadequate, due to their poor authentication performance, they provided useful

observations and insights that allowed us to fine-tune and design and optimal

enrollment and authentication scheme that is presented in section 4.1.5.

As we mentioned in section 4.1.3.1, we consider three types of gait features that are

extracted from three types of human silhouettes: i) straight Gstraight, ii) coat Gcoat, and,

iii) bag Gbag. Thus, an important question that arises here is: Which one of the three

considered gait features the authentication system should enroll? To answer this

question, we consider the following two enrollment and authentication schemes each

of which encompasses a different technical approach:

1st scheme: Enrollment of one of the three considered gait feature vectors. The selection

of the specific silhouette type that will be used for enrollment is arbitrary.

2nd scheme: First, a feature-level fusion of all three gait feature vectors is performed.

Next, we enroll the single vector generated from the fusion.

In the sections below, we present and evaluate through experiments the two above

mentioned enrollment and authentication schemes.

4.1.4.1. 1st scheme

In the first scheme, we enroll gait features that are extracted only from one of the three

considered types of human silhouettes. The specific gait feature that will be used for

81

enrollment is selected arbitrary. In this analysis, we consider gait features from a

straight human silhouette to be used for enrollment (note that the same procedure is

followed, if another type of human silhouette is selected for enrollment). In this case,

the CIT and RIT transformations are applied to extract the gait features from a straight

silhouette Gstraight. That is,

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐶𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)),

 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝑅𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡).

Next, the biohash algorithm is applied to the two feature vectors (i.e., one for CIT and

one for RIT), in order to generate two different enrollment bitstreams, denoted Ebits(cit,

straight) and Ebits(rit, straight), respectively, which are stored in the enrollment database. That

is:

𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) , 𝑇𝑜𝑘𝑒𝑛),

𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) , 𝑇𝑜𝑘𝑒𝑛).

In the authentication procedure, the silhouette G of the user can be one of the three

types (i.e., straight, coat, bag). First, the CIT and RIT transformation are applied to

extract two gait feature vectors (i.e., one from CIT and one from RIT) as follows:

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡) = 𝐶𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺),

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡) = 𝑅𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺).

Next, using the user’s token and the extracted feature vectors, biohash is applied to

generate two different authentication bitstreams Abits(cit) and Abits(rit). That is:

𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡) , 𝑇𝑜𝑘𝑒𝑛),

𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡) , 𝑇𝑜𝑘𝑒𝑛).

At this point, the hamming distance between the authentication and the enrollment

bitstreams is computed, separately for each transformation. Finally, the sum of the two

hamming distances is computed as follows:

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡), 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)) +

 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡), 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡))

Finally, a user is accepted if FinalResult is less than a predetermined threshold,

otherwise he/she is rejected.

82

4.1.4.2. 2nd scheme

In the second scheme, we apply feature-level fusion [133], in order to enroll gait

features from all the three considered human silhouettes. In particular, the CIT and RIT

transformations are applied to extract the gait features from the three considered human

silhouettes: i) straight, ii) coat, and, iii) bag. Next, we fuse the extracted feature vectors

to create two mean feature vectors 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑓𝑢𝑠𝑒𝑑) and 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)as

follows:

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)=
𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)+𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑏𝑎𝑔)+𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑐𝑜𝑎𝑡)

3
 ,

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)=
𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)+𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑏𝑎𝑔)+𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑐𝑜𝑎𝑡)

3
 .

Subsequently, biohash is applied to the two mean feature vectors, in order to generate

two different enrollment bitstreams denoted Ebits(cit, fusion) and Ebits(rit, fusion),

respectively, which are stored in the enrollment database. The computation of the

enrollment bitstreams is performed as follows:

𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑓𝑢𝑠𝑖𝑜𝑛) = 𝐵𝑖𝑜𝐻𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)),

𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑓𝑢𝑠𝑖𝑜𝑛) = 𝐵𝑖𝑜𝐻𝑎𝑠ℎ (𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)).

Similarly to the first scheme, in the authentication procedure, the silhouette G of

the user can be one of the three types that were captured in the enrollment procedure

(i.e., straight, coat, bag). First, the CIT and RIT transformations are applied to extract

two gait feature vectors (i.e., one from CIT and one from RIT). As previously, using

the user’s token and the gait features vectors, biohash is applied to generate two

different authentication bitstreams Abits(cit) and Abits(rit). Next, the hamming distance

between the authentication and the enrollment bitstreams is computed, separately, for

each transformation. After that, the final score named FinalResult is computed, which

is the sum of the two previously computed hamming distances. That is:

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑓𝑢𝑠𝑖𝑜𝑛), 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)) +

 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑓𝑢𝑠𝑖𝑜𝑛), 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡))

4.1.4.3. Experiments and numerical results

In this section, we evaluate the authentication performance of the two enrollment and

authentication schemes. To this end, we have implemented in C++ programming

language the following software modules: i) the CIT and RIT transformation

83

algorithms, ii) the biohash algorithm, and iii) the above two enrollment and

authentication schemes. In the carried out experiments, we captured silhouettes of 75

subjects (i.e., users). Three different human silhouette categories were considered: a)

straight, b) coat, and, c) bag. The relative position of the camera and the subject was

vertical. Thus, the angle of the direction of the camera and the face of the subject was

90 degrees.

The evaluation of the two schemes is performed by computing the genuine and

impostor distributions. More specifically, to investigate the authentication performance

of the proposed scheme, we classify the users as: a) genuine and b) impostors. Let user

A be a genuine user with a token denoted as TRNA, while his/her biometric data is

denoted as GAITA. Assume now that an impostor has his/her own biometric data

GAITimpostor and his/her own token TRNimpostor. The goal of the impostor is to be

authenticated as user A. We identify three different attack scenarios for the impostor:

i) a type 1 impostor uses his own biometric data GAIT impostor and his own TRNimpostor;

ii) a type 2 impostor has stolen and uses user’s A token TRNA but uses his/her own

biometric data GAITimpostor; and iii) a type 3 impostor has stolen and uses the biometric

data of user A GAITA and uses his/her own TRNimpostor. Impostors of type 1 are weaker

(in terms of probability of successful authentication as genuine users) than impostors

of type 2 and 3, since they do not possess any authentication credential (token or gait

features). It is evident that in case that an impostor possesses both gait features and the

token of a valid user, then he/she can be successfully authenticated as a genuine user.

Figure 12 shows the genuine and impostor distributions for the first scheme (recall

that the straight silhouette has been selected to enroll gait features). Note that since the

genuine bag and coat distributions had exactly the same curves they are presented as

one curve named genuine bag/coat. The same applies also for type 1 and 3 impostors

distributions and, therefore, their curves are represented by a single one named type

1/3. Figure 12 shows that the type 1/3 impostors are clearly separated (i.e., no overlap)

from the genuine distributions, which means that the 1st scheme achieves

EER=FAR=FFR=0%. We also observe that the genuine straight distributions have a

very small overlap with type 2 impostors. We have estimated that the EER value for

type 2 impostors and genuine straight is equal to 9%. However, it can be deduced from

Figure 12 that genuine bag/coat distributions overlap greatly with type 2 impostor

distribution, which means that the system cannot distinguish them. As a matter of fact,

84

we have derived the EER value equal to 34% for type 2 impostors and genuine bag/coat,

which is considerably high and unacceptable.

It is worth noting that we repeated the experiments using this time gait features

extracted from a bag silhouette as enrollment. Again, the same distribution behavior

was observed with the difference that this time genuine bag distributions had a small

overlap with type 2 impostors, while straight/coat curves overlapped greatly with type

2 impostors. In this case, the Type 2 EER value was derived equal to 33%. Note that

similar results we observed using a coat silhouette as enrollment. From the above

analysis, we deduce the following observation:

Figure 12: Distributions of the FinalResult values of the first scheme for genuine users and impostors.

Observation 16: Gait features that are extracted from the same user are similar only

when they are extracted from the same silhouette type. On the contrary, gait features

that are extracted from different silhouette types of the same user have great

differences.

The above observation indicates that if, for example, we use enrollment templates

generated from a straight silhouette type, then a valid user may be rejected if his/her

authentication templates are generated from bag or coat types. Similarly, if we use gait

features extracted from bag silhouette as enrollment template, then a valid user may be

rejected, if the silhouette type for authentication is straight or coat. This happens

because when the enrollment and authentication templates (i.e., gait features) are

generated from different silhouette types, the extracted gait vectors differ significantly,

85

due to distortions that are caused by the different captured silhouette type. The above

leads to the more generic observation:

Observation 17: If we use enrollment templates only from one silhouette type, then the

authentication performance is significantly deteriorated.

Figure 13 shows the genuine and impostor distributions for the second enrollment

and authentication scheme. First, we observed that all three genuine silhouette types

had exactly the same distribution curve. For this reason, Figure 13 shows one genuine

distribution curve that represents all silhouette types. It is observed again that the type

1/3 and genuine distributions are clearly separated and thus EER=FAR=FFR=0% is

achieved for these types of impostors. On the other hand, the type 2 impostor

distribution overlaps almost entirely with the genuine one, resulting in a very high EER

value equal to 45% for type 2 impostors. This means that if we use feature fusion at the

enrollment phase, the authentication performance is worse than the first scheme for all

silhouette types.

4.1.5. User registration and authentication using the gait modality.

In this section, we describe the final enrollment and authentication scheme called

gaithashing that yields the best numerical results. Unlike the previous two schemes that

enroll only one feature gait vector (i.e., from a specific type of silhouette or fused),

gaithashing enrolls separately gait feature vectors from all the three considered human

silhouette types. Moreover, in the authentication process of gaithashing, the new

extracted gait features are fused with each one of the enrollment templates, using

weighted sums. By selecting appropriate weight values, gaithashing performs

comparison between gait features of the same silhouette type, in order to increase the

authentication performance and avoid the pitfalls of the previously mentioned schemes.

From the above analysis, we deduce the following observation:

Observation 18: Feature-level fusion has adverse impact on the authentication

performance.

More specifically, as shown in Figure 14, the first step of the enrollment procedure in

gaithashing is to capture the aforementioned three distinct silhouettes of the user: a)

straight Gstraight, b) coat Gcoat, and, iii) bag Gbag. Next, the CIT and RIT transformations

are applied, separately, to each one of the three silhouettes of the user to extract the gait

86

Figure 13: Distributions of the FinalResult values of the second scheme for genuine users and

impostors.

Figure 14: Gaithashing enrollment procedure

87

Algorithm 1: Enrollment Algorithm

Input: Three gait silhouettes (Gstraight, Gbag, Gcoat), Token

Output: Six enrollment Bitstreams (Ebits(cit,straight), Ebits(cit,bag), Ebits(cit,coat), Ebits(rit,straight), Ebits(rit,bag) ,

Ebits(rit,coat))

1. Categories={straight,bag,coat}

2. for i in Categories do

3. 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡 ,𝑖) = 𝐶𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺(𝑖));

4. 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡 ,𝑖) = 𝑅𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺(𝑖));

5. 𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡 ,𝑖) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡 ,𝑖) , 𝑇𝑜𝑘𝑒𝑛);

6. 𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡 ,𝑖) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡 ,𝑖) , 𝑇𝑜𝑘𝑒𝑛);

7. end

Figure 15: Gaithashing enrollment algorithm

features. In this way, in total, six different gait features are extracted: three from the

CIT transformation and three from RIT. In the second step, biohash is applied to each

one of the six gait features using the token of the user, generating six different

enrollment bitstreams. That is, three enrollment bitstreams for the CIT transformation

Ebits(cit,straight), Ebits(cit,bag), Ebits(cit,coat), and three enrollment bitstreams for RIT

Ebits(rit,straight), Ebits(rit,bag), Ebits(rit,coat), which are stored in the enrollment database. The

algorithm of the enrollment procedure is presented in Figure 15.

The authentication procedure includes four distinct steps. Note that in the authentication

procedure, the silhouette G of the user can be one of the three types that were captured

in the enrollment procedure (i.e., straight, coat, bag). In the first step, the CIT and RIT

transformation are applied to extract two different gait features (i.e., one from CIT and

one from RIT). In the second step, using the user’s token and the extracted features,

biohash is applied to generate two different authentication bitstreams Abits(cit) and

Abits(rit). During the third step, the authentication and the enrollment bitstreams are

compared and fused, separately, for each transformation to produce the intermediate

scores CitSum and RitSum (i.e., first-level fusion as shown in Figure 16). Finally, in

the fourth step, the CitSum and RitSum are fused (i.e., second-level fusion as shown in

Figure 16) to generate the final score named as FinalResult. At this point, the user is

accepted if FinalResult is less than a predetermined threshold; otherwise he/she is

rejected. As mentioned below, the first and second level fusions are based on weighted

sums. The exact values of the employed weights as well as the predetermined threshold

are derived experimentally (see section 4.1.6), maximizing the authentication

performance.

88

Figure 16: Gaithashing authentication procedure

First-level fusion

The first-level fusion module is invoked in the authentication procedure, right after the

generation of the authentication bitstreams. This module calculates the hamming

distances between each authentication and enrollment bitstream of the user. Note that

the hamming distance represents the number of different bits between two bitstreams.

In total, three hamming distances are computed for each transformation (CIT and RIT)

as follows:

𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡), 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)),

𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑏𝑎𝑔) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑏𝑎𝑔), 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)),

𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑐𝑜𝑎𝑡) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑐𝑜𝑎𝑡), 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)).

and

𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡), 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡)),

𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑏𝑎𝑔) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑏𝑎𝑔), 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡)),

𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑐𝑜𝑎𝑡) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑐𝑜𝑎𝑡), 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡)).

A small hamming distance value between the authentication and enrollment bitstreams

means that the compared bitstreams are similar. On the contrary, a high hamming

distance value means that the compared bitstreams are different and they do not share

similarities.

Since the user’s silhouette type should match with one of the three enrollment types, it

is evident that one of the previously generated scores from the RIT transformation and

one from CIT have small hamming distance values (see observation 16), while the

89

remaining scores have high hamming distance. Let X1 be the minimum between the

three scores of CIT, that is,

𝑋1 = 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡), 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑏𝑎𝑔), 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑐𝑜𝑎𝑡)),

and X2, X3 the remaining two scores. Similarly, we assign Y1 the minimum between

the three scores of RIT:

𝑌1 = 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡), 𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑏𝑎𝑔), 𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑐𝑜𝑎𝑡)),

and Y2, Y3 the remaining two scores. In essence, X1 and Y1 represent the hamming

distance between authentication and enrollment bitstreams of the same silhouette type,

while X2, X3 and Y2,Y3 represent the hamming distance between authentication and

enrollment bitstreams of different silhouette types. In other words, the values of X2, X3

and Y2,Y3 are considered to be noise. At this point, the first-level fusion module fuses

the hamming distances of each transformation using weighted sums and generates two

intermediate scores, CitSum and RitSum such as:

𝐶𝑖𝑡𝑆𝑢𝑚 = α1 ∗ Χ1 + α2 ∗ Χ2 + α3 ∗ Χ3,

𝑅𝑖𝑡𝑆𝑢𝑚 = b1 ∗ Y1 + b2 ∗ Y2 + b3 ∗ Y3,

where α1, α2, α3 and b1, b2, b3 are weight values such as α1 > α2, α3 and b1 >

b2, b3,while it is 𝛼1 + 𝛼2 + 𝛼3 = 1 and b1 + b2 + b3 = 1. Note that the impact of X1

and Y1 on the value of CitSum and RitSum respectively is greater than the other scores.

This happens because their corresponding weight values (i.e., α1 and b1) are greater

than the other weight values. In this way, the noise introduced by X2, X3 and Y2,Y3 do

not affect, significantly, the value of CitSum and RitSum.

Second-level fusion and decision

In this step, first a final score (denoted as FinalResult) is computed by fusing the

CitSum and RitSum values, using weighted sums such as:

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 = w1 ∗ 𝐶𝑖𝑡𝑆𝑢𝑚 + w2 ∗ 𝑅𝑖𝑡𝑆𝑢𝑚,

where w1and w2 are weights such as w1 + w2 = 1. Finally, the user is accepted or

rejected based on the following simple rule: If FinalResult is less than a predetermined

threshold, then the user is authenticated successfully; otherwise the user is rejected. The

algorithm of the authentication procedure is presented in Figure 17.

90

4.1.6. Performance evaluation

To evaluate the authentication performance of the proposed scheme, we have

implemented the two-level fusion and decision algorithm of gaithashing. The

parameters of the carried out experiments are the same as in section 4.3. That is, three

different human silhouette categories were considered: a) straight, b) coat, and, c) bag.

Moreover, we classify the users as: a) genuine and b) impostors. We identify three

different attack scenarios for the impostor: i) a type 1 impostor uses his own biometric

data and his/her own token; ii) a type 2 impostor has stolen and uses a valid token of a

genuine user but uses his/her own biometric data; and iii) a type 3 impostor has stolen

and uses the biometric data of a genuine user but uses his/her own token.

Algorithm 2: Authentication Algorithm

Input: An authentication gait silhouette (G), Six Enrollment Bitstreams,

 Token, Threshold

Output: Acceptance or rejection of the user

1: Categories={straight, bag, coat}

2: 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡) = 𝐶𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺);

3: 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡) = 𝑅𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺);

4: 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡) , 𝑇𝑜𝑘𝑒𝑛);

5: 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡) , 𝑇𝑜𝑘𝑒𝑛);

6: for i in Categories do

7: 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡 ,𝑖) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡 ,𝑖), 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡));

8: 𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡 ,𝑖) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡 ,𝑖), 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡));

9: end

10: 𝑋1 = 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡 ,𝑠𝑡𝑟 𝑎𝑖𝑔ℎ𝑡), 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡 ,𝑏𝑎𝑔), 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡 ,𝑐𝑜𝑎𝑡)) and X2, X3 the

remaining two scores;

11: 𝑌1 = 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡 ,𝑠𝑡𝑟𝑎𝑖𝑔 ℎ𝑡), 𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡 ,𝑏𝑎𝑔), 𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡 ,𝑐𝑜𝑎𝑡)) and Y2, Y3 the remaining

two scores;

12: 𝐶𝑖𝑡𝑆𝑢𝑚 = 𝛼1 ∗ 𝛸1 + 𝛼2 ∗ 𝛸2 + 𝛼3 ∗ 𝛸3;

13: 𝑅𝑖𝑡𝑆𝑢𝑚 = 𝑏1 ∗ 𝑌1 + 𝑏2 ∗ 𝑌2 + 𝑏3 ∗ 𝑌3;

14: 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑤1 ∗ 𝐶𝑖𝑡𝑆𝑢𝑚 + 𝑤2 ∗ 𝑅𝑖𝑡𝑆𝑢𝑚;

15: if 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

16: User is accepted;

17: else

18: User is rejected;

19: end

Figure 17: Gaithashing authentication algorithm

We have conducted two set of experiments. The aim of the first set is to derive the

distributions of the FinalResult values for both genuine users and impostors (all three

types). The FinalResult is the most important parameter in the proposed scheme, since

the authentication of a user is based on its value. By investigating the distribution of

FinalResult values, we gain insights for the behavior of the gaithashing scheme and

whether it can distinguish impostors from genuine users. In the second set of

experiments, the goal is to estimate the FAR, FRR and EER values. As mentioned

91

previously (see section 4.1.1), FAR represents the probability that the authentication

system will incorrectly accept an authentication attempt by an impostor, whereas FRR

represents the probability that the authentication system will incorrectly reject an

authentication attempt by a genuine user. This experiment allows us to estimate an

appropriate threshold value that can minimize both FAR and FRR, at the same time.

In the carried out experiments, the values of weights were set as follows:α1 = b1 =

0.5, α2 = b2 = 0.25, α3 = b3 = 0.25(first-level fusion) and w1 = 0.4 , w2 = 0.6

(second-level fusion). As we analyze below, these values were selected after trying

various combinations and experiments, in order to achieve the best authentication

performance (i.e., minimize the EER value).

Figure 18: Distributions of the FinalResult values of gaithashing for genuine users and three impostor

types

Figure 18 shows the distribution of the FinalResult values for both impostors 1, 2, 3

and genuine users. Note that the distributions of impostors type 1 and 3 were identical

and are presented in one curve. It is observed that the FinalResult values of type 1 and

type 3 impostors is considerably higher than the genuine. In fact, the highest value of

FinalResult for genuine users is 25, while the values of FinalResult for impostors type

1/3 begins at 110. As a result, the distribution curves of the genuine users and type 1/3

impostors do not overlap at all. This means that gaithashing can always distinguish

between impostors type 1/3 and genuine users. In other words, an impostor of type 1

and 3 cannot be authenticated as genuine user. For example, if we set the threshold

value equal to 60, then the FinalResult value for all genuine users is less than the

92

threshold value, while all impostors of type 1 and 3 have FinalResult value higher than

the threshold, which means that they will be rejected. On the other hand, we observe

that the type 2 impostor distribution marginally overlaps with the genuine one. The

intersection area of the two curves (i.e., genuine and impostor type 2 distribution)

begins for FinalResult equal to 10 and ends for FinalResult equal to 25. In this area,

gaithashing cannot distinguish between genuine users and type 2 impostors, since they

share the same FinalResult values. The above results indicate that depending on the

value of the selected threshold, an impostor type 2 may be authenticated, successfully,

as a genuine user or a genuine user may be rejected, incorrectly. For example, if we set

threshold equal to 10, then as shown in Figure 18, no impostor of type 2 will be

accepted. However, a small percentage of genuine users will be rejected, because their

FinalResult value is greater than the threshold.

To quantify and investigate further the authentication performance of gaithashing, we

have estimated the FAR and FRR values, as a function of threshold values (see Figure

19). As expected, the value of FRR decreases, as the threshold increases. On the other

hand, the values of FAR for the three impostors types increases as the threshold

increases. Thus, the value of the threshold regulates a tradeoff between FAR and FRR.

A small threshold value may minimize FAR, but the FRR may be very high. On the

contrary, a high threshold value may minimize FRR, but the value of FAR can be very

high. For this reason, we have to estimate the EER value (see section 4.1.1), where the

FAR and FRR are equal (i.e., EER=FAR=FRR). Evidently, the value of EER should be

as low as possible, since a low value of EER entails a low value of FAR and FRR. This

value can be easily estimated, since it is the intersection point of the FAR and FRR

curves. Thus, as shown in Figure 19, for impostors of type 2, the EER equals to 10.8%

which is obtained for threshold value equal to 14. This means that if we set the threshold

equal to 14, then for 100 authentication attempts, the proposed scheme presents in total

10 false rejections of a genuine user or false acceptance of a type 2 impostor. Moreover,

the EER for impostors of type 1/3 is equal to 0%, since the FRR and FAR curves do

not intersect. This means that gaithashing is able to always detect type 1/3 impostors.

Thus, we can deduce that the proposed scheme attains very high performance for all

impostor scenarios, while false alarms are kept to minimal.

93

Figure 19: Gaithashing FRR-FAR values as functions of the threshold value

It is important to mention that the employed weight values for the first and second level

fusion play a key role in the performance of gaithashing. These were derived after a

fine tuning procedure in which we performed several trials in order to minimize the

EER value. More specifically, Table 16 shows various weight values that we tested and

the corresponding EER value for impostors of type 2 (note that the EER value for

impostors type 1/3 was equal to 0% independently of weight values). Recall that α1 >

α2, α3 and b1 > b2, b3, while it is α1 + α2 + α3 = 1, b1 + b2 + b3 = 1 and w1+w2 =

1. First, we randomly selected weights values for the first-level fusion, while the

weights for the second level fusion were constant and equal to w1 = w2 = 0.5.

Initially, we tested the following weight values: α1 = 0.5, α2 = α3 = 0.25 and b1 =

0.5, b2 = b3 = 0.25, (1st trial). Numerical results showed that gaithashing achieved

EER=11.4%. Next, in the 2nd trial we increased the values of α1 (i.e., α1 = 0.6) and b1

(i.e., b1 = 0.6) and we observed that the EER value increased (i.e., EER=13.2%),

which was not acceptable. In the third trial we increased only the value of α1 (i.e., α1 =

0.6), while b1 was equal to its initial value (i.e., b1 = 0.5). Again, we observed that the

value of EER was higher compared to the first trial (i.e., EER=12.5%). In the fourth

trial, we reduced α1 (i.e., α1 = 0.4) and b1 (i.e., b1 = 0.4). We observed that the value

of EER did not modified, significantly, but it was higher than the first trial (i.e.,

EER=13.2%).

94

Trials 𝛂𝟏 𝛂𝟐 , 𝛂𝟑 𝐛𝟏 𝐛𝟐, 𝐛𝟑 𝐰𝟏 𝐰𝟐 EER

1 0.5 0.25 0.5 0.25 0.5 0.5 11.4%

2 0.6 0.2 0.6 0.2 0.5 0.5 13.2%

3 0.6 0.2 0.5 0.25 0.5 0.5 12.5%

4 0.4 0.3 0.4 0.3 0.5 0.5 13.2%

5 0.5 0.25 0.5 0.25 0.6 0.4 11.6%

6 0.5 0.25 0.5 0.25 0.4 0.6 10.8%

Table 16: Gaithashing tested weight values and corresponding EER of type 2 impostors

Next, we modified the weight values of the second level fusion w1 and w2, while the

weight values of the first-level fusion are constant and equal to the first trial. As shown

in Table 16, in the 5th trial we assigned w1 = 0.6 and w2 = 0.4 and observed that the

value of EER was not significantly modified, compared to the first trial (i.e.,

EER=11.6%). In the 6th trial, we selected w1 = 0.4 and w2 = 0.6. This time we

observed that the value of EER was decreased, compared to the first trial and it was

equal to 10.8%. Although we performed several other trials, the value of EER was not

reduced further. Thus, we concluded that the weight values of the sixth trial should be

selected in order to achieve the minimum EER value (i.e., EER=10.8%).

Apart from the aforementioned experiments, it is important to mention that we tried to

further improve the EER value of gaithashing for type 2 impostors, using decision based

fusion. In particular, we have implemented a scheme that performs two-level fusion.

The first-level fusion is identical with gaithashing. That is, the hamming distances

between each authentication and enrollment bitstreams of the subject are calculated and

the CitSum and RitSum are derived using weights. In the second-level fusion, the

CitSum and RitSum values are compared to two pre-defined thresholds (i.e.,

Thresholdcit and Thresholdrit respectively) to derive a binary decision (i.e., TRUE or

FALSE). That is:

𝐶𝑖𝑡𝐴𝑢𝑡ℎ = {
𝑇𝑅𝑈𝐸, 𝑖𝑓 𝐶𝑖𝑡𝑆𝑢𝑚 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑖𝑡

𝐹𝐴𝐿𝑆𝐸, 𝑖𝑓 𝐶𝑖𝑡𝑆𝑢𝑚 ≥ 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑𝑐𝑖𝑡

𝑅𝑖𝑡𝐴𝑢𝑡ℎ = {
𝑇𝑅𝑈𝐸, 𝑖𝑓 𝑅𝑖𝑡𝑆𝑢𝑚 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑟𝑖𝑡

𝐹𝐴𝐿𝑆𝐸, 𝑖𝑓 𝑅𝑖𝑡𝑆𝑢𝑚 ≥ 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑𝑟𝑖𝑡

The final result denoted as FinalAuth is calculated by performing a decision-level

fusion using the AND or OR logical rules. In particular, using the OR logical rule, a

user is successfully authenticated if either the CitAuth or RitAuth value is TRUE,

95

whereas using the AND rule, both CitAuth and RitAuth values should be TRUE. To

obtain numerical results (i.e., EER), we tested various values for the Thresholdcit and

Thresholdrit. The lowest EER values that we achieved for type 2 impostors were equal

to 48% and 19% for the OR and rules respectively. On the other hand, as we mentioned

previously gaitashing achieved EER =10.8%. Thus, it is evident that the decision based

fusion approach does not improve the EER of gaithashing and as a matter of fact, it

deteriorates the authentication performance [134].

To summarize, the EER values of the three proposed schemes are shown in Table 17.

We conclude that all schemes achieve 0% EER for both Type 1 and 3 impostors.

However, for type 2 impostors, we obtained EER = 34% for straight silhouette

enrollment, as well as 27% and 32% for coat and bag enrollment respectively.

Moreover, in the second scheme the EER was equal to 45%. However, the third scheme

achieves EER = 10.8%, which is a significant improvement over the previous two

schemes. This result means that for every 100 authentication attempts, the third scheme

has in average 10 false acceptances of type 2 impostors and 10 false rejections of

genuine users.

Apart from the fusion techniques, there are some other methods that could possibly

improve the authentication performance of the system. In particular:

a) Use of multiple feature extraction algorithms: Apart from CIT and RIT

transformation algorithms, we can extract gait features using other feature extraction

algorithms proposed

Impostors type 1st scheme 2nd scheme
3rd scheme

(Gaithashing)

Type 1 0% 0% 0%

Type 2

34% straight enrollment

27% coat enrollment

32% bag enrollment

45% 10.8%

Type 3 0% 0% 0%

Table 17: EER values of the three proposed schemes

in the literature (such as the ones presented in [120] and [119]). As a matter of fact, we

can use multiple extraction algorithms to extract multiple gait features for the same

user. Since different algorithms capture different characteristics of a human silhouette,

we can enroll all extracted features and perform a feature-level fusion, in order to

96

improve the authentication performance. The negative side effect of this approach is

that it increases the overall complexity as well as the processing and storage overhead,

due to the extraction and enrollment of several gait features for each user.

b) Use of multi-modal biometrics: The ISO/IEC standards propose the use of multiple

biometric features (i.e., also named as multi-modal biometrics), in order to overcome

the limitations imposed by uni-modal biometric systems [134]. In general, multi-modal

biometric systems are considered to be more reliable and robust to attacks [135], since

an impostor should compromise two or more biometric features of a genuine user. In

the proposed gaithashing system, gait features can be combined with face or iris or any

other biometric modality to create a feature vector for the user. The downside of this

approach is that the proposed system will inherit the usability issues of the other

biometric modalities. That is, gait is the only biometric modality that provides

unconstructive access control and authentication at-a-distance. All other biometric

modalities (including fingerprints, iris, face) have several usability issues (see section

4.1.6). Therefore, on the one, hand multimodal biometrics may improve the EER

results, but on the other hand it will reduce the usability of the system.

c) Use of multiple sensors: Another improvement in the authentication performance

may be achieved by using multiple sensors. That is, we can use different cameras to

capture the human silhouette of a user and obtain multiple gait features (each one

derived from a different camera) that can be used for enrollment. However, we have to

notice that the use of multiple cameras may cause deployment issues and increase the

overall cost.

4.1.7. Results and discussion

Section 4.1 of this thesis proposed gaithashing, a two-factor authentication scheme that

secures gait features in an efficient manner. The proposed scheme combines the security

features of biohash and the recognition capabilities of gait features to provide a high

accuracy authentication system. In gaithashing, a user is authenticated only if he/she

possesses a valid token and a valid gait feature. The performance of the gaithashing

scheme is evaluated by carrying out two sets of experiments. The obtained numerical

results and the carried out evaluation allow us to derive the following generic

observations:

97

• Gaithashing achieves EER=0% for type 1 and 3 impostors (i.e., type 1 impostor

uses his/her own gait features and his/her own token, while type 3 impostors use

compromised gait features and they own token for authentication). This means

that the proposed scheme always detects type 1 and 3 impostors.

• It achieves very high accuracy (EER=10.8%) for type 2 impostors (i.e., an

impostor that uses a compromised token and his/her own gait features for

authentication).

• Gaithashing addresses the distortions caused when the subject wears a coat or

holds a bag, by enrolling three different types of human silhouettes (i.e., straight,

coat, bag). The proposed scheme can be easily extended to take into account

other types of human silhouettes (e.g., a user wearing a hat).

• The proposed scheme secures gait features by converting them to non-invertible

bitstreams using the biohash algorithm and a user's token.

• Gaithashing provides unlinkability and easy revocability of the gait templates,

simply by replacing the user's token with a new one.

4.2. Detection of malicious actions using machine learning

4.2.1. Background

4.2.1.1. Routing in mesh networks

AODV is an on demand routing protocol, which maintains routes as long they are

needed by source nodes. It is scalable and offers low processing, memory, and

communication overheads to the underlying network. It utilizes three control messages

to achieve route discovery: route request (RREQ), route reply (RREP), and route error

(RERR). It also provides an optional fourth control message (i.e., Hello message),

which is used for preserving connectivity between neighboring nodes. Each node

maintains a list of previously established routing paths in a routing table. Each entry in

this table stores routing information to a destination node in the network. The most

essential fields of a routing table entry are:

• Destination IP address (dst): the IP address of the destination node.

• Destination SQN (denoted as SQNdst_node_entry): this is the latest SQN of the

destination node of the entry. This field can be updated during the route

discovery process. The destination SQN is a measure of the freshness of the

routing information in the related entry.

98

• Hop count (hop_count): represents the current distance to the destination node

of the entry.

• Next hop node (next_hop): all packets sent to the destination node of the entry

should be forwarded through this node.

When a source node S wishes to transmit a data packet to some destination D for which

it does not possess a route, it initiates a route discovery process by first incrementing

its own SQN by one, and, subsequently, broadcasting a RREQ message that includes

the: source IP address, source SQN, destination IP address, destination SQN, RREQ id,

and hop count field. The value of the destination SQN in the RREQ message (the values

of destination SQNs in the AODV messages are denoted as SQNdst_node) is taken from

the related routing table entry of the source node for the specific destination that wishes

to discover a route. The intermediate node that receive the RREQ first create a routing

table entry for the source node S. Then, it checks the routing table for a route to the

destination node D. If it possesses a fresh route to the destination (i.e., the

SQNdst_node_entry in its corresponding routing table entry is greater than or equal to the

SQNdst_node included in the RREQ message), then it responds to the source node with a

route reply (RREP) that includes: the hop count to the destination, the destination IP

address, the destination SQN, and the source IP address (i.e., the address of the node

that initiated the route request). The value of the destination SQN (i.e., SQNdst_node) is

taken from the stored in the intermediate nodes’ routing table. Otherwise, (i.e., if the

SQNdst_node_entry in the intermediate nodes’ routing table entry is less than the SQNdst_node

included in the RREQ message or there is no route to the destination at all), then the

intermediate node increments the hop count field by one and forwards the RREQ to its

neighbors.

If none of the intermediate nodes possesses a fresh route to the destination, then the

RREQ eventually reaches the destination node. In this case, the destination node

increases its own SQN by one (if the incremented value equals the value in the RREQ

message) and then sends a RREP message to the source node S that contains the: source

IP address, destination IP address, destination SQN, and hop count field. The

destination SQN (i.e., SQNdst_node) in the RREP message is equal to the value of the

destination node’s own SQN. Intermediate nodes receiving the RREP update their

routing tables, only, if the destination SQNdst_node in the message is higher from the

stored value in their routing tables (i.e., SQNdst_node_entry), or the destination SQNs are

99

equal, but the hop count field in the RREP is smaller than the stored value. If multiple

RREP messages reach the source node (i.e., this may occur when several intermediate

nodes have a routing path to the destination node), it accepts the RREP with the highest

destination SQN value or, in case these values are equal, the RREP with the smallest

number of hops to the destination. If a link breaks, an intermediate node initiates a local

repair mechanism attempting to discover a new route to the destination, by transmitting

a RREQ message. If the repair mechanism fails to discover a route, the node generates

a RERR message that includes the IP addresses and the last known destination SQNs

of the unreachable destinations, informing the receiving nodes that they should restart

the routing discovery process, if they want to communicate with them.

4.2.1.2. Blackhole attack: Acting as a sinkhole for all network traffic

The blackhole attack is a type of denial-of-service attack in which a malicious node

falsely claims to possess a fresh route to the destination, in order to attract network

traffic, and, subsequently, drops all data packets that are forwarded to it. In a more

advanced variation of the attack, the malicious node may even selectively drop a

percentage of packets (instead of all), in order to avoid detection. This variation is often

referred as greyhole attack [136]. The implementation of the attack can be achieved in

two ways, which we refer as "reactive" and "proactive". In the "reactive" version of the

attack, a malicious node awaits for RREQ messages. When it receives an RREQ, then

it responds to the source node with a spurious RREP message that includes a fake

destination SQN (i.e., SQNmalicious) of an arbitrarily high value. Upon receiving the fake

RREP message, the source node compares the SQNmalicious value with the SQN values

of any other received RREP messages, and, since SQNmalicious has the highest value; the

source node selects the malicious node as its path to the destination. Subsequently, the

source node begins the transmission of data through the malicious node.

In the "proactive" version of the attack, a malicious node actively generates fake RREQ

messages, masquerading as an intermediate node forwarding a RREQ message. First,

it selects a random source and destination address and then, it generates and transmits

a RREQ message that includes a fake source SQN of arbitrarily high value. Upon

receiving the fake RREQ message, intermediate nodes add the malicious node as a path

to the destination. Subsequently, when they have data to transmit to the destination,

they select the malicious node as a path to the destination. The "proactive" version of

the attack can yield more captured traffic for the malicious node, since: (i) the later does

100

not have to wait for RREQ messages in order to advertise its spurious path to the

destination; and (ii) it enables the malicious node to actively advertise a path to any

destination, contrary to the "reactive" version of the attack, where the malicious node

is limited to the destinations from which a RREQ message is received.

On the other hand, detecting the "proactive" version of the attack can be implemented

using a simple mechanism that takes advantage of the AODV operation. This detection

mechanism should run in every node and simply check if a received RREQ message

was actually generated and transmitted by the host node itself. In particular, according

to the AODV protocol specifications, when a node on the network receives a RREQ

message, it compares the source IP address and RREQ id with any values stored in its

buffer, in order to avoid processing RREQ messages that have already been processed

or that have been transmitted by itself [137]. If no matching values are found (i.e., the

RREQ message is new to the host node) then the detection mechanism checks if the

source IP address on the RREQ message matches the IP address of the host node. If the

two IP address values match, then the RREQ message has been generated by a

malicious node (even though the host node is listed as the source in the RREQ message's

header) and, thus, a “proactive” blackhole attack has been detected. Consequently, as

we have shown, the “proactive” version of the attack can be detected by intelligently

performing only one additional comparison by the detection mechanism, thus inducing

insignificant computational overhead to the host node. For this reason, throughout the

remainder of this section, we focus on the "reactive" version of the blackhole attack.

To better understand the functionality of a "reactive" blackhole attack, we provide a

numerical example that presents all of the steps taken by a malicious node. Figure 20

shows a network of six nodes. Node S denotes the source node, node D the destination

node, nodes I1, I2, I3 are intermediate nodes; while node M is the malicious node

performing a blackhole attack. When node S wants to transmit data to the destination,

it first checks for a valid route to its routing table. Since no such route exists, node S

generates a RREQ message (with parameters dst = D, SQNdst_node = 0) and transmits it

to its neighboring nodes I1 and I2, (see Figure 20, step a). These nodes do not possess a

route to the destination yet either, so the RREQ message is subsequently forwarded,

and, finally, it reaches both the malicious node M and the destination node D.

Upon the reception of the RREQ message, the malicious node M, generates a RREP

message (even though it does not possess a route to the destination node D), using as a

101

destination SQNdst_node (which is denoted as SQNmalicious) an arbitrarily high value, 1000

in our example, as well as a fake hop_count = 1, and transmits the message to the next

hop (i.e., node I1) towards the source node S (see Figure 20, step b). The intermediate

node I1 that receives the RREP message generated by the malicious node M; creates a

new route table entry for the destination, in which it stores the destination address (dst),

next_hop, hop_count incremented by one, and the fake SQNmalicious value from the

RREP message to its SQNdst_node_entry field. Subsequently, it updates the received RREP

message with the incremented hop_count and with the next_hop field set equal to its

own address. Finally, it forwards the RREP message towards the source node S. When

the source node S receives the RREP message, it creates a new route table entry for the

destination, in which it stores the destination address (dst), next_hop, hop_count

incremented by one, and the fake SQNmalicious value from the RREP message to the

SQNdst_node_entry field.

S

I1 M

I2 I3

D

[RREQ(dst, SQNdst_node_entry=0)]

a

[data packet]

c

[RREP(dst, SQNmalicious=1000,

hop_count=1,next_hop=M)]

b

[RREP(dst, SQNdst_node_entry=0,

hop_count=1,next_hop=I3)]

b

[RREQ(dst, SQNdst_node_entry=0)]

a

Figure 20: The "reactive" blackhole attack (step a: route request, step b: route reply, step c: data

transmission)

102

On the other hand, the destination node D generates a RREP message (with parameters

SQNdst_node = 0, hop_count = 0) and transmits it to the next hop (i.e., node I3) towards

the source node S (see Figure 20, step b). Each of the intermediate nodes (i.e., I3 and

I2) that receive the RREP message generated by the destination node D, create a new

route table entry for the destination, in which they store the destination address (dst),

next_hop, hop_count incremented by one, and SQNdst_node value from the RREP

message. Subsequently, they update the received RREP message with the incremented

hop_count and with the next_hop field set equal to their own address. Finally, they

forward the RREP message towards the source node S. When the source node S

receives the RREP message generated by the destination node D, it compares the SQN

value between the entry stored in the route table (i.e., SQNdst_node_entry) and the value in

the RREP message (i.e., SQNdst_node) and, since the later contains a lower value, the

RREP message is discarded.

Once the route discovery process is completed, the source node S looks up its route

table for the next_hop node of destination D (i.e., node I1) and transmits a data packet

to it (see Figure 20, step c). Subsequently, node I1 receives the data packet and checks

if the packet is addressed for itself. Since the data packet destination field indicates that

the message's destination is node D, node I1 looks up its route table for the next_hop

node of destination D (i.e., node M) and forwards the data packet to it. Finally, once

the malicious node M receives the data packet, it can perform one of the two possible

actions: it either (i) arbitrarily drops the data packet, or (ii) selectively drops the packet

based on a percentage of target packet drops.

4.2.1.3. Related Work

The blackhole attack has been repeatedly analyzed in the literature. In [138], the authors

provide an overview of routing attacks that target MANETs, including the blackhole

attack. Furthermore, the authors survey several detection mechanisms that attempt to

address blackhole attacks and outline their strengths and weaknesses. [139], [140], and

[141], have conducted a comprehensive set of simulations that illustrate the effects of

a blackhole attack to the AODV routing protocol. In particular, the authors focus on the

second part of the attack (i.e., packet drop) and evaluate its impact to the packet delivery

rate of the network, the end-to-end delay, as well as the throughput, under various

mobility scenarios. However, none of these works provide any insights regarding the

first step of the attack, the related routing parameters that are exploited by a malicious

103

node, or how these parameters affect the attack itself (i.e., such as the percentage of

routes won by a malicious node).

A variety of detection mechanisms for blackhole attacks in AODV also exists in the

literature and even though we provide an evaluation of the most recently proposed

solutions, a comprehensive analysis of all the related literature requires an extensive

review, which is outside the scope of this thesis. In [142], a distributed cooperative

mechanism (DCM) is proposed to resolve blackhole attacks, by monitoring data packets

transmitted by neighboring nodes. If a node has not routed any data packets during a

fixed time-threshold, then the monitoring node will transmit a “test packet” through the

suspicious node, destined for another cooperating detection node. If the later receives

the “test packet,” then the suspicious node is legitimate; otherwise, it is considered

malicious. The primary disadvantage of this scheme is that malicious nodes may

attempt to exploit this mechanism, by analyzing the duration of time before a malicious

node is detected (i.e., estimate the threshold value), and subsequently, the routing of at

least one packet within this time-frame (i.e., selective drop).

To address the limitation of [142], [143]proposes the use of a dynamically updated

normal profile. In this scheme, the normal profile is updated dynamically, using

monitored data collected during a period of time in which no malicious behavior was

detected. It utilizes a support vector machine classifier (SVM) for detecting an attack

by monitoring the delay between data transmissions. Although the use of dynamic

profiles may reduce the rate of false positives in volatile networks; on the other hand,

by relying on data transmissions for detection, attacks in which data packets are

selectively dropped, remain undetected.

In [144], the authors propose a mechanism to detect blackhole attacks by checking if

the SQN of a RREP message is higher than a dynamic threshold value, which is an

indication of a blackhole attack. The value of the threshold is updated by calculating

the difference between the SQNs of the RREP message and the average of the

previously received SQNs. However, in case of high mobility, the exchanged routing

information is greatly increased (i.e., caused by link breakages), resulting in an

unexpected increase in the SQNs of control packets, and thus, leading to considerably

high false alarms. Moreover, the proposed solution requires many significant

modifications to the AODV protocol.

104

In [145], the authors propose a reputation scheme called Prevention of Cooperative

Black-Hole Attacks (i.e., PCBHA). In this scheme, each node maintains reputation

scores for the other nodes of the network and when a route is required, the source node

selects the route that includes intermediate nodes with the highest reputation scores.

The carried out simulation results show that the performance of the AODV protocol is

not deteriorated, considerably, using the proposed solution. However, the reputation

information exchanged between nodes results in additional communication overhead

and the proposed scheme is vulnerable to byzantine attacks, since a colluding group of

malicious nodes may exploit the proposed scheme by providing fake reputation values

that are high.

A modified version of AODV, referred as the Gratuitous-AODV (i.e., GAODV), has

been proposed in [146], in order to address the issue of blackhole attacks. In GAODV,

when a source node receives a RREP from an intermediate node, it sends a verification

message to the destination node. The latter should also provide an acknowledgment

message to the source node. If the source node does not receive the acknowledgment,

then the intermediate node is considered malicious and thus, the advertised routing path

is not used. However, the functionality of GAODV requires extensive modifications to

the original AODV protocol, raising compatibility issues and it introduces considerable

delay in the route discovery process.

Finally, in [147], the authors propose a detection mechanism called the Anti-Blackhole

Mechanism (i.e., ABM), which captures both RREQ and their corresponding RREP

messages and, subsequently, estimates the difference between the two. When this

difference exceeds a predefined threshold, an alarm is raised informing all nodes on the

network to cooperatively isolate the malicious node. ABM requires each node to run in

promiscuous mode in order to capture, store, and, subsequently, process the RREQ and

RREP messages within their radio range. Consequently, monitoring nodes are hindered

with computational and storage overheads, as well as increased energy consumption.

In addition, during the collection of captured traffic, malicious activities are not

detected (i.e., non-real-time detection). The functionality of ABM also requires the

operation of a modified version of the AODV protocol (i.e., MAODV), raising

compatibility issues with the AODV protocol.

In summary, existing detection mechanisms are limited in the sense that their

deployment requires significant modifications to the AODV protocol [146] [147], while

105

some of the proposed solutions add considerable performance delays and

communication overheads [142] [145] [146]. Even more importantly, the majority of

these mechanisms attempt to resolve if a blackhole attack takes place, based only on

the second step of the attack (i.e., packet drop) [142] [143] [145] [146]. Thus, they do

not completely mitigate the attack (since detection can only be achieved after the

malicious node wins the route discovery process), and they are effective, only, when

the malicious node indiscriminately drops all of the forwarded traffic. On the other

hand, our proposed detection mechanism is capable of detecting a blackhole attack

during its first step (i.e., during the exploitation of the route discovery process), limiting

the ability of a malicious node to drop packets, and thus, induce damage onto the

network. Furthermore, by disassociating the detection of an attack from packet drop

monitoring, the proposed detection mechanism is capable of detecting not only the

blackhole attack but also the greyhole, in which a malicious node selectively drops

packets, in order to avoid detection, in which a malicious node might selectively drop

packets, in order to avoid detection. Finally, the proposed mechanism alleviates any

associated communication overheads and does not require any modifications to the

existing AODV routing protocol.

4.2.2. Blackhole attack intensity

In a blackhole attack, the objective of a malicious node is to attract as much traffic as

possible, in order to maximize the number of packets that can be dropped, when

legitimate source nodes transmit data. This is achieved during the first step of the attack,

in which the malicious node provides a fake SQN (i.e., denoted as SQNmalicious) greater

than all other SQN values provided by legitimate nodes, and, thus, wins all the received

route requests. This can be clearly seen in the example of section 4.2.1.2; at step b.

Furthermore, the parameter SQNmalicious affects not only the source node that initiated

the route request, but also all intermediate nodes (such as node I1 in the example) that

stored this parameter in their routing tables. However, the malicious node cannot

discern what the current values are for the SQNs of other nodes. Thus, it must increment

the SQN with a value high enough, to overcome legitimate nodes competing for the

route discovery process (i.e., nodes I2 and I3 in the example). We define this increment

as the blackhole intensity parameter or parameter L for short. Let SQNmalicious be equal

to the destination SQN in the RREP message (i.e., SQNdst_node), incremented by a value

L. That is,

106

𝑆𝑄𝑁𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 = 𝑆𝑄𝑁𝑑𝑠𝑡_𝑛𝑜𝑑𝑒 + 𝐿, 𝐿 ≥ 0 (1)

Evidently, the value of the destination 𝑆𝑄𝑁𝑑𝑠𝑡_𝑛𝑜𝑑𝑒 in the RREP message will be

selected by the attacker so that to be the highest between the destination SQN received

in the RREQ message and the one stored in its routing table (if it has a stored one). In

the example presented in section 4.2.1.2, the malicious node increments SQNdst_node by

a blackhole intensity parameter value equal to 1000. The blackhole intensity parameter

plays a crucial role to the success of the attack, because it determines whether or not

the malicious node will win a route request, and thus, attract traffic. However, there is

no indication as to what values this parameter should hold, and how this affects the

outcome of the attack. For example, if the malicious node selects a relatively "small"

value for L, then the malicious node might not win all of the route requests. This result

might be further exacerbated under different network conditions. In particular, a higher

number of traffic will lead to higher SQN values for competing legitimate nodes, and

thus, even less route request wins for the malicious node. On the other hand, selecting

a relatively "high" value for L may be counterproductive, because after some threshold,

the malicious node will be wining all of the received route requests, and thus, higher

values of L yield no further benefit. Moreover, since our goal is to utilize SQNs for

detection, there is an additional incentive for the attacker to use the lowest values of L

possible, in order to hinder the ability of a detection mechanism to distinguish its

malicious activity. In order to accurately quantify the impact of the blackhole intensity

parameter, we have conducted a comprehensive set of simulations that are presented in

the following section.

4.2.3. Using machine learning to detect malicious actions

In this section, we analyze and evaluate a novel blackhole detection mechanism that is

capable of detecting blackhole attacks during their first step. Particularly, we provide

an architectural overview of the proposed detection mechanism, we identify the

computational overhead associated with the operation of the proposed mechanism, and

we comparatively evaluate the performance of the proposed mechanism through an

extensive set of simulations. The proposed mechanism uses a non-parametric version

of the Cumulative Sum (CUSUM) test [148], with the goal of detecting abrupt changes

in the normal behavior of SQNs, caused by the occurrence of blackhole attacks. Two

variants of this mechanism are presented, depending on the type of threshold used (i.e.,

static or dynamic). The CUSUM test is a suitable solution for infrastructure-less

107

networks, since, it does not impose significant computational overheads [149] [150],

meaning that the performance of the AODV protocol is not deteriorated. Moreover, it

is insensitive to traffic patterns with unknown distribution, making the detection

mechanism generally applicable, regardless of the employed application-layer

protocols. Another advantage of using the CUSUM test is related to the fact that, given

an appropriate threshold value, it detects the attack at the earliest possible time while

maintaining a low percentage of false positives. It is evident that a fast detection

mitigates the impact of blackhole attacks, because it limits the ability of an attacker to

drop packets.

Architecture of the proposed detection mechanism

In the proposed scheme, each network node executes an instance of the detection

mechanism, which relies solely on local audit data (i.e., there is no cooperation between

nodes). Each of these instances, can be implemented at the application or routing layer

of a device, alleviating the need for any AODV protocol modifications. During their

execution, they passively monitor the SQN parameter values stored in the nodes’

routing table, and, at predefined time intervals, run the CUSUM test, in order to

determine if a blackhole attack takes place. More specifically, in case of a Linux based

device, we have identified three different implementation options [151], [152]: i)

sniffing, in which the node will promiscuously sniff all incoming packets on a network

interface (the code to perform sniffing is built into the kernel and is available to user-

space programs by using the Packet Capture Library (libpcap)); ii) kernel

modifications, using either patches (low portability – low complexity solution) or

recompilation of the whole kernel (high portability – high complexity solution); iii)

Netfilter, which is a packet filtering framework implemented as a set of hooks at well-

defined places in the Linux TCP/IP networking stack. The CUSUM test is a change

point detection algorithm, which evaluates the statistical distribution of SQNs prior to

change and after, and subsequently, raises an alarm if the difference between the two

exceeds some threshold. The later can be either dynamic (i.e., dynamic threshold

CUSUM) or static (i.e., standard CUSUM). In this analysis, both threshold variants are

elaborated, and, subsequently, the most suitable threshold mechanism is selected, by

comparatively evaluating the detection accuracy and the rate of false positives between

the two. The detection mechanism calculates the statistical distribution of SQNs based

on the monitoring feature SQNtotal_rate_i(t) (see eq. 2). Formally, for some node i

108

executing an instance of the detection mechanism, we define this monitoring feature as

the rate of increase for the sum of the SQNs included in the node’s i routing table:

 𝑆𝑄𝑁𝑡𝑜𝑡𝑎𝑙_𝑟𝑎𝑡𝑒_𝑖(𝑡) =
(∑ 𝑆𝑄𝑁𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑡𝑎𝑏𝑙𝑒_𝑖_𝑗(𝑡)𝐾

𝑗=1) + 𝑆𝑄𝑁𝑖(𝑡)

𝑡
 (2),

where SQNrouting_table_i_j(t) is the SQN value at time t of node j stored in the routing table

of node i. K is the total number of entries in the routing table of node i, while SQNi(t)

is the value of SQN of node i at time t.

At network initialisation, the CUSUM algorithm requires an initial statistical

distribution of SQNs to compare to. As a result, two phases are incorporated into the

detection mechanism, a training phase and a normal phase. We assume that during

training, no attack takes place (i.e., training can be performed in a controlled

environment), while during the normal phase, any node on the network can perform a

blackhole attack. Furthermore, in both phases, the CUSUM algorithm is executed at a

predefined, time interval. Since the detection of an attack requires the execution of the

CUSUM algorithm, this time interval represents the detection time of the proposed

mechanism. Therefore, it would seem practical to keep the time interval at the lowest

possible value so that attacks are resolved quickly. However, this interval has an

associated tradeoff: lower values produce more frequent executions of the detection

mechanism, and, consequently, higher induced overhead. Larger values, on the other

hand, may lead to: (a) the calibration of an outdated threshold value, resulting in a

higher percentage of false positives, and (b) a greater percentage of packets dropped by

the malicious node. Thus, the most optimal time interval is the largest possible value

that produces the least amount of false positives and packets dropped. In through

simulations, we identify the most optimal time interval value.

Training phase

During the training phase, at each time interval, the CUSUM algorithm first calculates

a random sequence Xn which we define as the difference between two successive

sampling values of the monitoring feature SQNtotal_rate_i(t). That is,

𝑋𝑛 = 𝑆𝑄𝑁𝑡𝑜𝑡𝑎l_rate_i(𝑛) − 𝑆𝑄𝑁𝑡𝑜𝑡𝑎l_rate_i(𝑛 − 1), 𝑋0 = 0 (3).

Next, the CUSUM test transforms Xn to another random sequence Zn such as:

109

 𝑍𝑛 = 𝑋𝑛 − 𝐶, 𝐶 ∈ 𝑅 (4),

where C is a constant variable that is equal to the upper bound of the mean value E[Xn].

The CUSUM algorithm also requires the calculation of a random sequence Yn that

represents the cumulative sum of the positive values of Zn. Yn is defined as the

maximum value between zero and Yn-1 + Zn. That is:

 𝑌𝑛 = 𝑚𝑎𝑥(0, 𝑌𝑛−1 + 𝑍𝑛), where 𝑛 ∈ 𝙽 and 𝑌0 = 0 (5).

The value of the threshold N is computed at the end of the training phase by each node.

Its value is equal to the mean value of the n samples of Xn. That is,

𝑁 = 𝐸[𝑋𝑛] (6).

The selection of threshold N regulates the following intrinsic tradeoff: having a

relatively “small” threshold may lead to a high percentage of false positives, since even

legitimate increases in the statistical distribution of SQNs will lead to false alarms,

while, on the other hand, having a relatively “high” threshold may lead to false

negatives, since increments to the SQN by a malicious node may not exceed the

threshold, and, therefore, the attack will not be detected. We have based the selection

of threshold N on previous literature [153] [154], in which it yielded the most optimal

results in terms of false positives/negatives.

Normal phase

During the normal phase, at each time interval, the CUSUM algorithm calculates all

three random sequences Xn, Zn, Yn. It then uses the random sequence Yn and the

threshold N to detect blackhole attacks. In particular, the detection is based on the

following simple rule: if at any time interval n, the random sequence Yn exceeds the

threshold N (i.e., Yn > N), then a blackhole attack is detected and an alarm is raised to

inform other nodes on the network. Finally, in the dynamic threshold variant of

CUSUM, for each time interval in which an attack is not detected, the threshold N is

also recalculated, to a value equal to the mean of Xn, Xn-1 (7). Figure 21 summarises

the operation of the CUSUM algorithm during both phases.

110

𝑁 = 𝐸[𝑋𝑛, 𝑋𝑛−1] (7).

CUSUM Algorithm

Input1: K // Number of routing table entries

Input2: is_dynamic // Boolean indicating the type of CUSUM (if TRUE

then CUSUM is dynamic)

01: set Y_0=0, n=1;

02: while Training

03: compute Xn,C,Zn;

04: if Y_(n-1)+Zn>0 then

05: Yn=Y(n-1)+Zn;

06: else

07: Yn=0;

07: compute N;

09: while Detection

10: compute Xn,C,Zn;

11: if Y(n-1)+Zn>0 then

12: Yn=Y(n-1)+Zn;

13: else

14: Yn=0;

15: if Yn>N then

16: raise an alarm

17: else

18: if is_dynamic = TRUE then

19: compute N;

20: n=n+1;

Figure 21: Pseudocode of the CUSUM algorithm

4.2.4. Results and discussion

Section 4.2 of this thesis provided a comprehensive analysis of the blackhole attack,

identified a new critical attack parameter (i.e., blackhole intensity), and evaluated the

impact of that parameter to the performance of the attack, through an extensive set of

simulations. Based on the results of the simulations, we identified a quantitative relation

between SQNs and blackhole attacks. This outcome led to the proposal of a novel

detection mechanism, which utilizes a dynamic threshold cumulative sum (CUSUM)

test to detect abrupt changes in the normal behavior of SQNs.

111

5. Conclusions

In this thesis, we have addressed the problem of user authentication in online services

by holistically investigating the users’ security both on server and client side.

Particularly, we examined the security of online user accounts by proposing a

framework that allows us to quantify the cost time of password guessing both for brute

force and dictionary attacks. We also identified the default hashing schemes of various

CMS and web applications frameworks and concluded that the majority of CMS and

web applications frameworks do not offer secure default settings for password storage.

Next, we applied our cost analysis framework to the default settings, in order to perform

a comparative security analysis between the various CMS and web applications

frameworks. Finally, we provided a set of best practices and alternative solutions to

enhance the security of password storage. Based on our analysis we advocate that

password hashing standards should be updated to require and not merely suggest the

use of new secure functions, such as memory hard hash functions.

Knowing that passwords are one of the weakest links in user security, this thesis

investigates the security of FIDO UAF protocol, which provides strong authentication

and a simplified registration and authentication procedure. However, the critical

functionality of the UAF protocol typically operates in a consumer platform such as a

mobile device, which is susceptible to a variety of attacks such as malware and viruses.

Based on a comprehensive security analysis, we have identified several vulnerabilities

that may be exploited by an attacker in order to compromise the authenticity, privacy,

availability, and integrity of the UAF protocol. Regarding volatile memory protection,

we have also investigated techniques that can be applied at the software level either

form the OS or the applications to protect the user’s passwords in the volatile memory.

Particularly, we discovered that Windows use built-in safeguards to protect against

memory disclosure attacks by deleting the volatile memory contents after the

termination of a process. It is important to note that most Linux distributions do not

have such safeguards. Lastly, we proposed software functions and techniques in C/C++

programming language that can be used by developers to protect the data in the volatile

memory of their applications.

Lastly, this thesis proposes two solutions for continuous authentication and detection

of malicious actions via the use of biometrics and machine learning. The first,

gaithashing, is a two-factor authentication scheme that secures gait features in an

112

efficient manner. The performance of the gaithashing scheme achieves EER=0% for

type 1 and 3 impostors (i.e., type 1 impostor uses his/her own gait features and his/her

own token, while type 3 impostors use compromised gait features and they own token

for authentication). It also achieves very high accuracy (EER=10.8%) for type 2

impostors (i.e., an impostor that uses a compromised token and his/her own gait features

for authentication). The second, performs a comprehensive analysis of the blackhole

attack. As a result, a new critical attack parameter is identified (i.e., blackhole intensity),

which quantifies the relation between AODV’s sequence number parameter and the

performance of blackhole attacks.

5.1. Publications
The contribution of this thesis can be found in the following per-reviewed conference

proceedings and journals.

5.1.1. Journal Articles

• Christoforos Ntantogian, Stefanos Malliaros, Christos Xenakis, "Gaithashing: a

two-factor authentication scheme based on gait features," Computers &

Security, Elsevier Science, Vol. 52, Issue 1, pp: 17-32, July. 2015.

• Christoforos Panos, Christoforos Ntantogian, Stefanos Malliaros, Christos

Xenakis, "Analyzing, quantifying, and detecting the blackhole attack in

infrastructure-less networks," Computer Networks, Elsevier Science, Vol. 113,

Issue 1, pp: 94-110, February 2017.

• Christoforos Ntantogian, Stefanos Malliaros, Christos Xenakis, " Evaluation of

Password Hashing Schemes in Open Source Web Platforms", Computer &

Security, Elsevier Science, [Under review]

5.1.2. Conference/Workshop Publications

• Stefanos Malliaros, Christoforos Ntantogian, Christos Xenakis, " Protecting

sensitive information in the volatile memory from disclosure attacks, " In Proc.

11th International Conference on Availability, Reliability and Security (ARES

2016), Salzburg, Austria, August 2016.

• Christoforos Panos, Stefanos Malliaros, Christoforos Ntantogian, Angeliki

Panou, Christos Xenakis, " A Security Evaluation of FIDO’s UAF Protocol in

Mobile and Embedded Devices, " In Proc. Towards a Smart and Secure Future

Internet: 28th International Tyrrhenian Workshop (TIWDC), Palermo, Italy,

Sept. 2017.

113

References

[1] "World's Biggest Data Breaches," [Online]. Available:

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-

hacks/. [Accessed May 2018].

[2] G. Vindu and N. Perlorth, "Yahoo Says 1 Billion User Accounts Were Hacked," New

York Times, 14 December 2016. [Online]. Available:

https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html. [Accessed April

2018].

[3] A. Ghoshal, "Yahoo’s billion-user database reportedly sold on the Dark Web for just

$300,000," The next web, January 2017. [Online]. Available:

https://thenextweb.com/security/2016/12/16/yahoos-billion-user-database-reportedly-

sold-on-the-dark-web-for-just-300000/#.tnw_7j4OqioP. [Accessed April 2018].

[4] "GEFORCE NVidia TITAN V," NVIDIA, [Online]. Available:

https://www.nvidia.com/en-us/titan/titan-v/. [Accessed 8 May 2018].

[5] "Google," [Online]. Available: https://cloud.google.com/gpu/. [Accessed 7 May 2018].

[6] M. Weir, S. Aggrawal and B. d. Medeiros, "Password Cracking Using Probabilistic

Context-Free Grammars," in 30th IEEE Symposium on Security and Privacy, 2009.

[7] A. Narayanan and V. Shmatikov, "Fast Dictionary Attacks on Passwords Using Time-

Space Tradeoff," in Proceedings of the 12th ACM Conference on Computer and

Communications Security, Virgina, 2005.

[8] S. Marechal, "Automatic mangling rules generation," December 2012. [Online].

Available: http://www.openwall.com/presentations/Passwords12-Mangling-Rules-

Generation/Passwords12-Mangling-Rules-Generation.pdf. [Accessed 8 May 2018].

[9] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk and W.-M. W. Hwu,

"Optimization principles and application performance evaluation of a multithreaded

GPU using CUDA," in Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and practice of parallel programming, New York, 2008.

[10] T. Murakami, R. Kasahara and T. Saito, " An implementation and its evaluation of

password cracking tool parallelized on GPGPU," in 10th International Symposium on

Communications and Information Technologies, Tokyo, 2010.

[11] "Usage of content management systems for websites," W3Techs, [Online]. Available:

https://w3techs.com/technologies/overview/content_management/all. [Accessed July

2018].

[12] "Github: Web application frameworks," [Online]. Available:

https://github.com/showcases/web-application-frameworks?s=stars. [Accessed July

2018].

[13] "http://www.openwall.com/john/," Openwall, [Online]. Available:

http://www.openwall.com/john/. [Accessed April 2018].

114

[14] E. I. Tatli, "Cracking More Password Hashes With Patterns," IEEE Transactions on

Information Forensics and Security, vol. 10, no. 8, pp. 1656-1665, 2015.

[15] "Passwords," Skullsecurity, [Online]. Available:

https://wiki.skullsecurity.org/Passwords. [Accessed April 2018].

[16] W. Han, Z. Li, L. Yuan and W. Xu, "Regional Patterns and Vulnerability Analysis,"

IEEE Transactions on Information Forensics and Security, vol. 11, no. 2, pp. 258-272,

2016.

[17] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito and A. Chaabane, "OMEN: Faster

Password Guessing Using an Ordered Markov Enumerator," International Symposium

on Engineering Secure Software and Systems, pp. 119-132, 2015.

[18] M. D. Amico, P. Michiardi and Y. Roudier, "Password Strength: An Empirical

Analysis," in Proceedings of the 29th conference on Information communications

(INFOCOM 2010), 2010.

[19] "The Imperva Application Defense Center (ADC) - Consumer Pasword Worst

Practices," [Online]. Available:

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf.

[Accessed Apr 2018].

[20] C. McGoogan, "The world's most common passwords revealed: Are you using them?,"

The Telegraph, January 2017. [Online]. Available:

http://www.telegraph.co.uk/technology/2017/01/16/worlds-common-passwords-

revealed-using/. [Accessed May 2018].

[21] B. Lorenz, K. Kikkas and A. Klooster, "The Four Most-Used Passwords Are Love, Sex,

Secret, and God'': Password Security and Training in Different User Groups," in Human

Aspects of Information Security, Privacy, and Trust: First International Conference, Las

Vegas, Springer Berlin Heidelberg, 2013, pp. 276-283.

[22] R. Rivest, "The MD5 Message-Digest Algorithm," Apr. 1992. [Online]. Available:

https://www.ietf.org/rfc/rfc1321.txt. [Accessed June 2018].

[23] D. Eastlake, "US Secure Hash Algorithm 1 (SHA1)," Sept 2001. [Online]. Available:

https://tools.ietf.org/html/rfc3174. [Accessed June 2018].

[24] D. Eastlake, "US Secure Hash Algorithms (SHA and HMAC-SHA)," Jul 2006. [Online].

Available: https://tools.ietf.org/html/rfc4634. [Accessed 2 Sept 2007].

[25] B. Kaliski, "PKCS #5: Password-Based Cryptography Specification Version 2.0," RSA

Laboratories, Sept 2000. [Online]. Available: https://tools.ietf.org/html/rfc2898.

[Accessed 3 Sept 217].

[26] N. Provos and D. Mazières, "A Future-Adaptable Password Scheme," in Proceedings of

the FREENIX Track: 1999 USENIX Annual Technical Conference, 1999.

[27] C. Percival, "Stronger Key Derivation via Sequential Memory-Hard Functions," 2009.

[Online]. Available: https://www.tarsnap.com/scrypt/scrypt.pdf. [Accessed April 2018].

115

[28] A. Biryukov, D. Dinu and D. Khovratovich, "Technical Report: Argon and argon2:

password hashing scheme," 2015. [Online]. Available: https://password-

hashing.net/submissions/specs/Argon-v2.pdf..

[29] I. E. T. F. (IETF), "RFC 7914: The scrypt Password-Based Key Derivation Function,"

August 2016. [Online]. Available: https://tools.ietf.org/html/rfc7914.

[30] "NIST Special Publication 800-63B: Digital Identity Guidelines Authentication and

Lifecycle Management," June 2017. [Online]. [Accessed July 2018].

[31] "PHP - password_hash()," [Online]. Available:

http://php.net/manual/en/function.password-hash.php. [Accessed July 2018].

[32] A. Visconti, S. Bossi, H. Ragab and A. Calò, "On the weaknesses of PBKDF2," in

International Conference on Cryptology and Network Security (CANS 2015),

Marrakesh, Morocco, 2015.

[33] A. Ruddick and J. Yan, "Acceleration Attacks on PBKDF2: Or, What Is inside the

Black-Box of oclHashcat?," in 10th USENIX Workshop on Offensive Technologies,

2016.

[34] "bcrypt on GPU," Openwall community wiki, [Online]. Available:

http://openwall.info/wiki/john/GPU/bcrypt. [Accessed May 2018].

[35] F. Wiemer and R. Zimmermann, "High-speed implementation of bcrypt password

search using special-purpose hardware," in International Conference on

ReConFigurable Computing and FPGAs, 2014.

[36] K. Malvoni, S. Designer and J. Knezovic, "Are Your Passwords Safe: Energy-Efficient

Bcrypt Cracking with Low-Cost Parallel Hardware," in 8th USENIX Workshop on

Offensive Technologies, 2014.

[37] "Password Hashing Competition," [Online]. Available: https://password-hashing.net.

[38] "Vigilante.pw," [Online]. Available: https://vigilante.pw/.

[39] P. Pierluigi, "Lenovo spotted and fixed a backdoor in RackSwitch and BladeCenter

networking switches," SecurityAffairs.co, [Online]. Available:

https://securityaffairs.co/wordpress/67729/hacking/lenovo-backdoor-networking-

switches.html. [Accessed July 2018].

[40] L. Armasu , "Backdoors Keep Appearing In Cisco's Routers," Tom's Hardware,

[Online]. Available: https://www.tomshardware.com/news/cisco-backdoor-hardcoded-

accounts-software,37480.html. [Accessed July 2018].

[41] T. McLean, "Critical vulnerabilities in JSON Web Token libraries," Auth0.com,

[Online]. Available: https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-

libraries/. [Accessed July 2018].

[42] "Phorum - Improving md5 password storage security," [Online]. Available:

https://www.phorum.org/phorum5/read.php?14,155691,155691. [Accessed June 2018].

116

[43] "Magento - Use native PHP Password API," [Online]. Available:

https://github.com/magento/magento2/issues/992. [Accessed July 2018].

[44] B. P. Knijnenburg, A. Kobsa and H. Jin, "Counteracting the Negative Effect of Form

Auto-completion on the Privacy Calculus," in AIS Electronic Library (AISeL), 2013.

[45] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand and M. Smith, "Why

Do Developers Get Password Storage Wrong?: A Qualitative Usability Study," in

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, 2017.

[46] "Hashcat," [Online]. Available: https://hashcat.net/hashcat. [Accessed June 2018].

[47] "GeForce 1070 / 1070 Ti," [Online]. Available: https://www.nvidia.com/en-

us/geforce/products/10series/geforce-gtx-1070-ti/.

[48] J. Blocki, B. Harsha and S. Zhou, "On the Economics of Offline Password Cracking,"

in IEEE Symposium on Security and Privacy (SP), 2018.

[49] G. Rempel, ""Defining Standards for Web Page Performance in Business Applications,"

in Proceedings of the 6th ACM/SPEC International Conference on Performance

Engineering ICPE '15, 2015.

[50] "march 2018 Web server Survey," Netcraft, [Online]. Available:

https://news.netcraft.com/archives/2018/03/27/march-2018-web-server-survey.html.

[51] "Global DDOS Threat Landscape Q4 2017," Incapsula, [Online]. Available:

https://www.incapsula.com/ddos-report/ddos-report-q4-2017.html. [Accessed July

2018].

[52] K. Ronen, "Why Low & Slow DDoS Application Attacks are Difficult to Mitigate,"

[Online]. Available: https://blog.radware.com/security/2013/06/why-low-slow-

ddosattacks-are-difficult-to-mitigate/. [Accessed July 2018].

[53] Arshid, "WP Limit Login Attempts," [Online]. Available:

https://wordpress.org/plugins/wp-limit-login-attempts/. [Accessed June 2018].

[54] "(API) Rate limiting requests in CakePHP 3," Github, [Online]. Available:

https://github.com/UseMuffin/Throttle. [Accessed May 2018].

[55] B. Schneier, "Schneier on Security: Changing Passwords," [Online]. Available:

https://www.schneier.com/blog/archives/2010/11/changing_passwo.html.

[56] A. Muffett, "Facebook: Password Hashing & Authentication," in Real World Crypto ,

2015.

[57] J. Camenisch, A. Lysyanskaya and G. Neven, "Practical yet universally composable

two-server password-authenticated secret sharing," in Proceedings of the 2012 ACM

conference on Computer and communications security, 2012.

[58] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels and T. Ristenpart, "The pythia PRF

service," in SEC'15 Proceedings of the 24th USENIX Conference on Security

Symposium, 2015.

117

[59] R. F. Lai, C. Egger, D. Schröder and S. S. M. Chow, "Phoenix: Rebirth of a

Cryptographic Password-Hardening Service," in 26th USENIX Security Symposium

(USENIX Security 17), 2017.

[60] "FIDO Alliance," [Online]. Available: http://www.fidoalliance.org/specifications.

[Accessed July 2018].

[61] S. Contini, "Online report: Method to Protect Passwords in Databases for Web,"

[Online]. Available: https://eprint.iacr.org/2015/387.pdf.

[62] "FIDO Certified Products," F.I.D.O. Alliance,, [Online]. Available:

https://fidoalliance.org/certification/fido-certified-products/. [Accessed June 2017].

[63] "FIDO UAF Protocol Specification v1.1: FIDO Alliance Proposed Standard.," F.I.D.O.

Alliance. [Online]. [Accessed 2016].

[64] C. Panos, C. Xenakis, P. Kotzias and I. Stavrakakis, "A specification-based intrusion

detection engine for infrastructure-less networks," Computer Communications, vol. 54,

no. C, pp. 67-83, 2014.

[65] "TCPA main specification v. 1.2," Trusted Computing Platform Alliance, [Online].

Available: http://www.trustedcomputing.org.

[66] J. Winter, "Trusted computing building blocks for embedded linux-based ARM

trustzone platforms," in Proceedings of the 3rd ACM workshop on Scalable trusted

compu-ting, 2008.

[67] "SAMSUNG SDS FIDO Server Solution V1.1 - Certification Report," 2015. [Online].

Available: https://www.commoncriteriaportal.org/files/epfiles/KECS-CR-15-

73%20SAMSUNG%20SDS%20FIDO%20Server%20Solution%20V1.1(eng).pdf.

[68] C. Helrmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit and J. P. Peirfert,

"Breaking and entering through the silicon," Computer and Communications Security

(CCS), pp. 733-744, 2013.

[69] T. Cooijmans, J. Ruiter and E. Poll, "Analysis of secure key storage solutions on

Android," in Proceedings of the 4th ACM Workshop on Security and Privacy in

Smartphones & Mobile Devices. ACM, 2014.

[70] S. Di, "Exploiting Trustzone on Android," in Black Hat US, 2015.

[71] D. Rosenberg, "Qsee trustzone kernel integer over flow vulnerability," in Black Hat

Conference, 2014.

[72] T. Cooijmans, "Secure key storage and secure computation in Android," Redboud

University, Nijmegen.

[73] D. Lucas, A. Dmitrienko, A.-R. Sadeghi and M. Winandy , "Privilege escalation attacks

on android," in International Conference on Information Security, 2010.

[74] P. C. Abhishek, "Student Research Abstract: Analysing the Vulnerability Exploitation

in Android with device-mapper-verity (dm-verity)," 2017. [Online].

118

[75] D. Thom and M. Marse, "Subverting Android 6.0 fingerprint authentication," 2016.

[Online].

[76] F. Alliance, "FIDO security reference," 2014. [Online]. Available:

https://www.fidoalliance.org/specifications.

[77] Q. Darren and R. C. Kim-Kwang, "Dropbox analysis: Data remnents on user machines,"

Digital Investigation, vol. 10, no. 1, pp. 3-19, 2013.

[78] Q. Darren and R. C. Kim-Kwang, "Digital droplets: Microsoft SkyDrive forensic data

remnants," Future Generation Computer Systems, vol. 29, no. 6, pp. 1378-1394, 2013.

[79] Q. Darrem and R. C. Kim-Kwang, "Google Drive: Forensic analysis of data remnants,"

Journal of Network and Computer Applications, vol. 40, pp. 179-193, 2014.

[80] C. Hyunji, P. Jungheum, L. Sangjin and K. Cheulhoon, "Digital forensic investigation

of cloud storage services," Digital Investigation, vol. 9, no. 2, pp. 81-95, 2012.

[81] D. Apostolopoulos, G. Marinakis, C. Ntantogian and C. Xenakis, "Discovering

Authentication Credentials in Volatile memory of Android Mobile Devices," in 12th

IFIP conference on e-business, e-services, e-society (I3E 2013), 2013.

[82] J. Sylve, A. Case, L. Marziale and G. G. Richard, "Acquisition and analysis of volatile

memory from android devices," Digital Investigation, vol. 8, pp. 175-184, 2012.

[83] C. Ntantogian, D. Apostolopoulos, G. Marinakis and C. Xenakis, "Evaluating the

privacy of Android mobile applications udner forensic analysis," Computers & Security,

vol. 42, pp. 66-76, 2014.

[84] X. Chen, R. Dick and A. Choudhary, "Operating System Controlled Processor-Memory

Bus Encryption," in Design, Automation and Test in Europe, 2008.

[85] P. Peterson, "Technologies for Homeland Security (HST)," in 2010 IEEE International

Conference , 2010.

[86] V. Nagarajan, R. Gupta and A. Krishnaswamy, "Compiler-assisted memory encryption

for embedded processors," in HiPEAC'07 Proceedings of the 2nd international

conference on High performance embedded architectures and compilers, 2007.

[87] Y. Chenyu, B. Rogers, D. Englender, D. Solihin and M. Prvulovic, "Improving Cost,

Performance, and Security of Memory Encryption and Authentication," in Computer

Architecture ISCA '06, 2006.

[88] H. Daeyoung, B. Luis, S. S. Lim and N. Dutt, "DynaPoMP: dynamic policy-driven

memory protection for SPM-based embedded systems," in Proceedings of WESS '11

Proceedings of the Workshop on Embedded Systems Security, 2011.

[89] B. Rogers, Y. Solihin and M. Prvulovic, "Memory predecryption: Hiding the latency

overhead of memory encryption," ACM SIGARCH Computer Architecture News, vol.

33, pp. 27-33, 2005.

119

[90] G. Duc and R. Keryell, "CryptoPage: An Efficient Secure Architecture with Memory

Encryption, Integrity and Information Leakage Protection," in in Computer Security

Applications Conference ACSAC '06, 2006.

[91] D. Lie, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell and M. Horowitz, "Architectural

support for copy and tamper resistant software," in ASPLOS IX Proceedings of the ninth

international conference on Architectural support for programming languages and

operating systems, 2000.

[92] G. Suh, C. O'Donnell and S. Devadas, "Aegis: A Single-Chip Secure Processor," Design

& Test of Computers, vol. 24, no. 6, pp. 570-580, 2007.

[93] L. Guan, J. Lin, B. Luo, J. Jin and J. Wang, "Protecting Private Keys against Memory

Disclosure Attacks Using Hardware transactional memory," in Proceedings of the IEEE

Symposium on Security and Privacy, 2015.

[94] S. Chhabra and Y. Solihin, "i-NVMM: A secure non-volatile main memory system with

incremental encryption," in Proceedings of the International Symposium on Computer

Architecture (ISCA), 2011.

[95] Z. Youtao, G. Lan, Y. Jun, Z. Xiangyu and R. Gupta, "SENSS: security enhancement to

symmetric shared memory multiprocessors," in 11th International Symposium on High-

Performance Computer Architecture, 2005. HPCA-11, 2005.

[96] S. Weigond, H. Lee, M. Ghosh and L. Chenghuai, "Architectural support for high speed

protection of memory integrity and confidentiality in multiprocessor systems," in

roceedings. 13th International Conference on Parallel Architecture and Compilation

Techniques, PACT 2004, 2004.

[97] L. Su, S. Courcambeck, P. Guillemin, C. Schwarz and R. Pacalet, "SecBus: Operating

System controlled hierarchical page-based memory bus protection," in Design,

Automation & Test in Europe Conference & Exhibition, DATE '09, 2009.

[98] M. Russinovich, "Windows Sysinternals, ProcDump v8.0," Technet, [Online].

Available: https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx.

[99] "The Linux Kernel Archives," [Online]. Available:

https://www.kernel.org/doc/gorman/html/understand/understand009.html.

[100] "GRSecurity," [Online]. Available: http://grsecurity.net/.

[101] "Atomicorp Linux Distribution," [Online]. Available: https://atomicorp.com/.

[102] "IPFire Linux Distribution," [Online]. Available: http://www.ipfire.org.

[103] "Alpine Linux Distribution," [Online]. Available: http://www.alpinelinux.org.

[104] "Pentoo Linux Distribution," [Online]. Available: http://www.pentoo.ch.

[105] "Hardened Linux Distribution," [Online]. Available:

http://hardenedlinux.sourceforge.net.

[106] "Subgraph OS Linux Distribution," [Online]. Available: http://subgraph.com/sgos.

120

[107] "MSDN, RtlSecureZeroMemory routine," Microsoft, [Online]. Available:

https://msdn.microsoft.com/en-

us/library/windows/hardware/ff562768%28v=vs.85%29.aspx.

[108] J. Damato, "MSC06-C. Beware of compiler optimizations”, Software Engineering

Institute – Carnegie Mellon University," [Online]. Available:

https://www.securecoding.cert.org/confluence/display/c/MSC06-

C.+Beware+of+compiler+optimizations.

[109] T. Plum, "C11: The New C Standard," [Online]. Available: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2013/n3631.pdf.

[110] S. Guelton, "A glance at compiler internals: Keep my memset," [Online]. Available:

http://blog.quarkslab.com/a-glance-at-compiler-internals-keep-my-memset.html.

[111] "Compiler optimization and the volatile keyword," ARMKEIL Microntroller Tools,

[Online]. Available:

http://www.keil.com/support/man/docs/armcc/armcc_chr1359124222941.htm.

[112] C. Rathgeb and A. Uhl, "A survey on biometric cryptosystems and cancelable

biometrics," EURASIP Journal on Information Security, pp. 1-25, 2011.

[113] A. T. B. Jin, D. N. C. Ling and A. Goh, "Biohashing: two factor authentication featuring

fingerprint data and tokenised random number," Pattern Recognition, vol. 37, no. 11, p.

22452255, 5117.

[114] A. Lumini and L. Nanni, "An improved biohashing for human authentication," Pattern

Recognition, vol. 40, no. 3, p. 10571065, 2007.

[115] A. B. J. Teoh, W. Kuan and S. Lee, "Cancellable biometrics and annotations on

biohash," Pattern Recognition, vol. 41, no. 6, pp. 2034-2044, 2008.

[116] C. Wang, J. Zhang, L. Wang, J. Pu and X. Yuan, "Human identification using temporal

information preserving gait template," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 34, no. 11, pp. 2164-2176, 2012.

[117] H. Hu, "Multi-view gait recognition based on patch distribution feature and uncorrelated

multilinear sparse local discriminant canonical correlation analysis," IEEE Transactions

on Circuits and Systems for Video Technology, vol. 24, no. 4, pp. 617-630, 2014.

[118] W. Kusakunniran, Q. Wu, J. Zhang, Y. Ma and H. Li, "A new view-invariant feature for

cross-view gait recognition," IEEE Transactions on Information Forensics and Security,

vol. 8, no. 10, pp. 1642-1653, 2013.

[119] M. Milovanovic, M. Minovic and D. Starcevic, "Walking in colors: Human gait

recognition using kinect and cbir," IEEE Multimedi, vol. 20, no. 4, pp. 28-36, 2013.

[120] W. Kusakunniran, Q. Wu, J. Zhang and H. Li, "Gait recognition across various walking

speeds using higher order shape configuration based on a differential composition

model," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

vol. 42, no. 6, pp. 1654-1668, 2012.

121

[121] S. Sivapalan, D. Chen, S. Denman, S. Sridharan and C. Fookes, "Gait energy volumes

and frontal gait recognition using depth images," in IEEE Intenational Joint Confernece

on Biometrics (IJCB '11), 2011.

[122] J. Ryu and S. Kamata, "Front view gait recognition using spherical space model with

human point clouds," in 18th IEEE Intenational Conference on Image Processing

(ICIP), 2011.

[123] M. Hu, Y. Wang and Z. Zhang, "Multi-view multi-stance gait identification," in 18th

IEEE International Conference on Image Processing (ICIP, 2011.

[124] M. Mcguire, "An overview of gait analysis and step detection in mobile computing

devices," in IRRR 4th International Confernece on Intelligent Networking and

Collaborative Systems (INCoS), 2012.

[125] D. Ioannidis, D. Tzovaras, I. G. Damousis, S. Argyropoulos and K. Moustakas, "Gait

recognition using compact feature extraction transforms and depth information," IEEE

Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 623-630, 2007.

[126] T. Hoang and D. Choi, "Secure and privacy enhanced gait authentication on smart

phone," Hindawi, The Scientific World Journal, 2014.

[127] S. Argyropoulos, D. Tzovaras, D. Ioannidis and M. Strintzis, "A channel coding

approach for human authentication from gait sequences," IEEE Transactions on

Information Forensics and Security, vol. 4, no. 3, pp. 428-440, 2009.

[128] N. Radha and S. Karthikeyan, "An evaluation of fingerprint security using non-

invertible bio-hash," International Journal of Network Security & Its Applications, vol.

3, no. 4, pp. 118-128, 2011.

[129] A. B. J. Teoh and D. C. L. Ngo, "Cancellable biometrics featuring with tokenised

random number," Pattern Recognition Letters, vol. 26, no. 10, pp. 1454-1460, 2005.

[130] A. T. B. Jin and T. Connie, "Remarks on biohashing based cancelable biometrics in

verification system," Neurocomputing, vol. 69, no. 16-18, pp. 2461-2464, 2006.

[131] T. Connie, A. Teoh, M. Goh and D. Ngo, "Palmhashing: a novel approach for dual-

factor authentication," Pattern Analysis and Applications, vol. 7, no. 3, pp. 255-268,

2004.

[132] R. Fuksis, A. Kadikis and M. Greitans, "Biohashing and fusion of palmprint and palm

vein biometric data," in IEEE International Conference on Hand-Based Biometrics

(ICHB), 2011.

[133] R. Arun and G. Rohin, "“Feature Level Fusion Using Hand and Face Biometrics," in

Proceedings of SPIE conference on Biometric Technology for Human Identification II,

2005.

[134] "ISO/IEC TR:24722:2007 Information Technology - Biometrics - Multimodal and other

multibiometric fusion".

122

[135] Z. Huang, Y. Liu, C. Li, M. Yang and L. Chen, "A robust face and ear based multimodal

biometric system using sparse representation," Pattern Recognition, vol. 46, no. 8, pp.

2156-2168, 2013.

[136] P. V. L. Veeraraghavan, "Trust in mobile ad hoc networks," in Telecommunications and

Malaysia International Conference on Communications, 2007. ICT-MICC 2007, 2007.

[137] C. Perkins, E. Belding-Royer and S. Das, "Ad hoc On-Demand Distance Vector

(AODV) Routing," IETF RFC 3561, 2003.

[138] B. Kannhavong, H. Nakayama , Y. Nemoto , N. Kato and A. Jamalipour, "A survey of

routing attacks in mobile ad hoc networks," IEEE Wireless Communications, vol. 14,

no. 5, pp. 85-91, 2007.

[139] A. Bala, B. Munish and S. Jagpreet, "Performance analysis of MANET under blackhole

attack," in Networks and Communications, NETCOM'09, 2009.

[140] S. Sharma and R. Gupta, "Simulation study of blackhole attack in the mobile ad hoc

networks," Journal of Engineering Science and Technology, vol. 2, 2009.

[141] E. Barkhodia, S. Parulpreet and G. K. Walia, "Performance analysis of AODV using

HTTP traffic under Black Hole Attack in MANET," Comput. Sci. Eng. Int. J.(CSEIJ) 2,

vol. 3, 2012.

[142] Y. Chang Wu, W. Tung-Kuang, C. Rei Heng and C. Shun Chao, "A Distributed and

Cooperative Black Hole Node Detection and Elimination Mechanism for Ad Hoc

Networks," in Emerging Technologies in Knowledge Discovery and Data Mining,

Springer Berlin Heidelberg, 2007, pp. 538-549.

[143] J. F. Joseph , B. S. Lee , A. Das and B. C. Seet, "Cross-Layer Detection of Sinking

Behavior in Wireless Ad Hoc Networks Using SVM and FDA," IEEE Transactions on

Dependable and Secure Computing, vol. 8, no. 2, pp. 233-245, 2011.

[144] P. N. Raj, B. Prashant and B. Swadas, "Dpraodv: A Dynamic Learning System Against

Blackhole Attack in AODV Based Manet," in CoRR abs/0909.2371, 2009.

[145] D. LathaTamilselvan and V. Sankaranarayanan, "Prevention of Co-operative Black

Hole Attack in MANET," Journal of Networks, vol. 3, no. 5, pp. 13-20, 2008.

[146] S. K. Dhurandher, I. Woungang, R. Mathur and P. Khurana, "GAODV: A Modified

AODV against single and collaborative Black Hole attacks in MANETs," in 27th

International Conference on Advanced Information Networking and Application

Workshops, 2013.

[147] M. Y. Su, "Prevention of selective blackhole attacks on mobile ad hoc networks through

intrusion detection systems," Computer Communications, vol. 34, pp. 107-117, 2011.

[148] M. B. a. I. Nikiforov, Detection of Abrupt Changes: Theory and Application, 1993.

[149] B. B. a. B. Darkhovsky, Nonparametric Methods in Change-Point Problems, Kluwer

Academic Publishers, 1993.

123

[150] T. B. T. Y. C. W. Patrick P. C. Lee, "On the detection of signaling DoS attacks on

3G/WiMax wireless networks," Computer Networks, vol. 53, no. 15, pp. 2601-2616,

2009.

[151] R. K. T. P. Gupta, "Design Strategies for AODV Implementation in Linux,"

International Journal of Advanced Computer Science and Applications(IJACSA), vol.

1, no. 6, 2010.

[152] E. M. B.-R. Ian D. Chakeres, "AODV Routing Protocol Implementation Design," in

Proceeding of IEEE 24th International Conference on Distributed Computing Systems

Workshops, 2004.

[153] P. L. C. a. R. K. Tao, "Proactively detecting distributed denial of service attacks using

source IP address monitoring," in International Conference on Research in Networking,

2004.

[154] V. a. P. F. Siris, "Application of anomaly detection algorithms for detecting SYN

flooding attacks," Computer communications, vol. 22, no. 9, pp. 1433-1442, 2006.

