NMANENIZTHMIO MEIPAIQZ

UNIVERSITY OF PIRAEUS

User authentication and detection of
malicious actions

A dissertation submitted to the
Department of Digital Systems, of
University of Piraeus in complete
fulfillment of the requirements for

the degree of Doctor of Philosophy

by
Stefanos Malliaros

B.Sc. School of Information and
Communication Technologies, Department of
Digital Systems, University of Piraeus

M.Sc. School of Information and
Communication Technologies, Department of
Digital Systems, University of Piraeus

Piraeus 2018

Advisory Committee

Christos Xenakis — Associate Professor, School of Information and
Communication Technologies, Department of Digital Systems,
University of Piraeus (supervisor)

Konstantinos Lambrinoudakis — Professor, School of Information and
Communication Technologies, Department of Digital Systems,
University of Piraeus

Sokratis Katsikas — Professor, School of Information and Communication
Technologies, Department of Digital Systems, University of Piraeus

Examination Committee

Christos Xenakis — Associate Professor, School of Information and
Communication Technologies, Department of Digital Systems,
University of Piraeus (supervisor)

Konstantinos Lambrinoudakis — Professor, School of Information and
Communication Technologies, Department of Digital Systems,
University of Piraeus

Sokratis Katsikas — Professor, School of Information and Communication
Technologies, Department of Digital Systems, University of Piraeus

Stefanos Gritzalis — Professor, School of Engineering, Department of
Information & Communication Systems Engineering, University of the
Aegean

Vassilis Chrissikopoulos — Professor, Department of Informatics, lonian
University

Emmanouil Magkos — Associate Professor, Department of Informatics,
lonian University

Panagiotis Rizomiliotis — Associate Professor, School of Digital
Technology, Department of Informatics and Telematics, Harokopio
University

Acknowledgements

| would like to thank my supervisor, Dr. Christos Xenakis, for his guidance and support
throughout the years of being a PhD candidate. Moreover, |1 would like to thank him for
selecting me as one of his core colleagues. | would also like to thank Dr. Costas
Lambrinoudakis and Dr. Sokratis Katsikas for all their constructive comments and
productive discussions not only during my PhD, but also during my master course.

Very special thanks to Dr. Christoforos Dadoyan for proving his knowledge, patience,
and guidance during my PhD period. I would also like to thank the members of the PhD
review committee for agreeing to serve on my dissertation committee.

A big “Thank You!” to Eleni Veroni for being an excellent friend, and colleague. You
provided valuable support these years.

Finally, I would like to thank my wife Chara because she has always supported my
decisions and has been with me throughout these years both in bad and good situations.
| cannot leave out my family and sister. | greatly express my gratitude for believing in
me and for all the sacrifices you made for me.

Evyoaprotieg

®a NBera va evyaploTom Tov entPAEnovta kabnynt pov Ap. Xpnoto Eevaxn yio v
kaBodynon Kot v vrooTPIEN Tov KaB’ OAN TN JdpKeED TG WOTNTAG LoV ®G
VoYM P0G ddktopas. EmmAéov de B pumopovoa vo unv Tov 0YapIGTHOM Yo TNV
EMAOYN MOV ¢ &évov amd Tovg Pactkog cvuvepydrteg tov. Oa Mbesho emiong va
evyoploTom tovg kadnyntéc Ap. Koota Aoumpivovddxkn ko Ap. Xokpatn Katowkd
YL OAEG TIG EMOKOOOUNTIKEG TAPOTNPNOELS TOVS KOl TOPAYOYIKEG GVINTHOELS, TOGO
KOTA TN SLIPKELNL TOV O1O0KTOPIKOD LoV OGO KOt KOTA TN O6PKELN TOV UETOTTUYLOKOV
TPOYPAUUOTOS GTOVIDV.

[dwaitepec evyapiotiec otov Ap. Xprotdépopo NTavToyldv Yo TIG YVAOOELS TOV OV
TPOGEPEPE, TNV VOOV Kot TV KoB0OyNon Tov Katd Tn S1dpKELD TV O100KTOPIKMY
LoV 6ovdaV. Oa NBela, emionc, Vo EVYAPICTHCM OITEPMG T LEAN TNG EEETAGTIKNG
EMTPOTNG Y. TNV TOAVTIUN PonBeld Tovg GTNV OAOKANP®GT ALTOV TOL KOKAOL
GTOVOMDV.

‘Eva peyaro "Evyapioto!" yio tnv EAEvn Bepmvn n onola otdbnke e€opetikn ¢idn kot
GLVASEAPOG,.

Oa 1n0ela, emmAéov, va evyapIoTNo® TN 6VLLYO pov, Xapd, Yo T cvuveyn oTPEN TS
OTIG AMOPAGELS LoV KB’ OAN TN SIUPKELD TOV ETOV. LTEKECAL GLVEXDG SITAN LLOL TOGO
0€ KOKEG OGO KOl 0€ KOAEG KOTAGTAGELS. TELOG, dgv Ba Lmopovca va Unv ovaeeEpm TV
OKOY£EVELL LoV Kot TNV 0deAT| pov. Efpon, Aowmdv, evyvou®v yio v vmost)pién Toug
TPOG HEVO Kot Yo OAEC TIS Buoieg OV KAVOTE Yl TNV TPAYUATOGCT TOV SIKOV OV
OTOYWV.

Abstract

Modern devices can carry out potentially dangerous actions, such as storing corporate
and personal data, performing electronic transactions, accessing health data, and many
more. All these actions introduce the ability to securely access increasingly personal
information, which, in fact, raises the problem of user authentication. The usage of
passwords introduces critical security issues due to their predictability, while tokens are
not resistant to malware attacks, such as key loggers and memory scrapers.

These issues can only be addressed by holistically investigating the problem of user
authentication. The security of online accounts is drastically affected by the password
predictability, as well as the parameters for password storage. Therefore, we propose a
mathematical model, based on the parameters that influence password security. The
main goal is to discover the cost of password guessing. Moreover, an extended survey
of the default password storage parameters indicates that a significant percentage of
websites use insecure password hashing. We have proved that the cost of password
guessing can be a measure of defense to password guessing attacks.

Apart from password storage, the security of user accounts relies on the protocols used
for authentication, as well as the feasibility of obtaining the user credentials via
malware. As a result, we explore the security of FIDO authentication framework, which
replaces passwords with biometric modalities. The result of the analysis is a list of
vulnerabilities that may be exploited by an attacker to compromise the authenticity,
privacy, availability, and integrity of the FIDO. Moreover, as recent research has
shown, authentication credentials and cryptographic keys remain in the volatile
memory and can be easily extracted by malware. Therefore, we present safeguards
that can be applied to the software level, either from the operating system or the
applications, to erase data in the volatile memory from running and terminated
applications.

Lastly, with continuous authentication, users are continually authenticated via a
“score”, which measures the certainty that the account owner is using a service or
application. Therefore, we propose gaithashing, which is a secure two-factor
authentication scheme based on the gait modality. The proposed scheme eliminates the
noise and distortions caused by different silhouette types and achieves to authenticate
a user independently of his/her silhouette. Lastly, this thesis proposes a novel technique
to detect malicious actions using machine learning. This has been applied in the context
of Ad hoc networks, where a new critical attack parameter has been identified. This
parameter can be used to quantify the relation between AODV’s sequence number
parameter and the performance of blackhole attacks.

Iepiinyn

Ot 60yypoveg CLOKEVEG UTOPOVV VAL TPOLYUOTOTOLOVV OLVNTIKA EMKIVOVVEG EVEPYELEC,
OGN AT0HNKELGON ETAPIKMV KO TPOCHOTIKMV OES0UEVAOV, 1] EKTELECT] NAEKTPOVIKDV
ocuvaAlaydv, N TpoOcPacn oe dedopéva vyelag Kot ToAAG AAla. OAeg anTég 01 evEPYELEG
EMTPETOLY TNV ACPOAN TPOSPacn o€ evaicOnteg TANpoPopieg, YEYOVOG TOV dleyeipel
10 TPOPANUa emaifevong ypnot. H xprion tov kodikodv tpdsPacng elodyetl kpioua
nmuata aceareiog, eved 1 awbevtikoroinorn 600 mapayovimv dev gival avOekTikn o
eMOEGELS KaKOBOVAOL AOYIGUIKOV.

AvTa To TpOoPANUOTO LTOPOVV VO, AVTILETOTIGTOVV HLOVO LE OAGTIKT O1EPEVVIOT TOV
npoPAquatog ¢ motomoinong tavtotntag ypnotn. H acediein tov online
Aoyoplacumv emmpedletal OpaoTikd omd TNV TPOPAEYIUOTNTO TOV KOIKOV
npocPaonc, kabmg Kot amd Tov TPOTOo amrodnKevong Tovg. ¢ K TOVTOV, TPOTEIVOVE
éva LoBnuoTikd HoviéAo PacIOUEVO GTIG TAPAUETPOVS TTOL EXNPEALOVY TNV ACPAAELN
TOV KOIKOV TpodcPacnc. O okomdg gival 0 LTOAOYIGHOG TOV KOGTOVG EMOEGEDV
password guessing. EmmAéov, mporypotomotoOpe pio, evOEAEXT EPEVVOL TV TAUPAUETPMV
TPOEMAEYUEVG OmOONKEVLONG KMOKOL TPOSPacNG OV Oeiyvel OTL €VOL GNUOVTIKO
TOGOGTO TMOV IGTOTOTMV YPTGLLOTOOVV U1 AGPAAELG TPOTOVG AMOONKEVONG KOOIKMV
npooPacnc. Exovpe amodeifel mmg 1o kKdoTog TV password guessing embécewmv umopel
va gtvat £vog TpOTog GHLLVOG ATEVOVTL GE QVTEG.

Ext6g and v amobnkevon 1oV Kodkdv tpdsfacng, 1 acQEAELD TOV AOYOPLUCLOV
xpPNoTOV Paciletor 6To TPOTOHKOAAN TOV YPNCLOTOIOVVTOL Y10 TOV EAEYYO TOVTOTNTOGS,
KaOdG Kot 6N duvatdTnTa S10pPonG Tovg HECH KaKOBovlov Aoyicukov. Enopévac,
e€etdlovpe ™V ac@dieln tov mAociov eréyyov tavtdémrag FIDO, to omoio
avTIKaoTd TOVG KOOV TPOGRacnG e PropeTpikd yapaktnpiotikd. To amotélecua
™G aviivong stvar pa AMota eutafeidv mov pmopel va ekpeTaArevtel vag elocfoAidag
v va Béc€l og kKivduvo TV awBevtikdOTnTa, TV W TIKOTTA, TN SfesIHOTNTA Kot
mv axepatdotnta Tov FIDO. EmumAéov, kabng tpodceateg Eépevveg Exouvv deilet OtL Ta
TIGTOTOMTIKA EAEYYOV TOVTOTNTOG KOL TO KPLITOYPAPIKA KAEWH TOPAUEVOLV KO
UTOPOVV VO SLOPPEVCOVY UECH TNG TTNTIKNG UVIUNG, TOPOVGIALOVUE TEYVIKEG OV
UTOPOVV VO EPUPUOGTOVV GE EMIMEDO AOYIGHKOD, €iTe amd TO AETOVPYIKO CVOTNUA
elte amd TIC EPOPUOYES, LE GKOTO TNV J0YPAPT] TOV KOOK®OV TpdsPfaong and v
TTNTIKY WUVTUN.

Téhog, pe v ypnomn ¢ ovveyovs avbevtikomoinong, ot ypNoteg emaindevovral
ouveymsg péco piog pétpnong, m omoio petpd tn PefardtnTar 6TL 0 KATOYOG TOL
Aoyaplacpol ypnotpomolel eite v vampecio | Vv epapuoyn. Q¢ ek tovTov,
npoteivovpe €va acQAAEG GUOTNUO TOVTOTOINOTG dV0 PAcemV, To omoio epelng Ba
avaeépete o¢ gaithashing, Paciopévo ot pébodo Padionc. To mpotewvouevo oynua
e€areipel 10 BO6pLPO KOl TIC TOPAUOPPDOGES TOV TPOKOAOVVTOL OO S1OLPOPETIKOVG
TOTOVG GIAOVLETOG TOL XPNOTN Kol emTVYYAvVEL TNV eakpifmon TG TavTOTNTOS TOV
ave&apmta amd T othovéta Tov. TELOG, auTi 1 dtaTpin TpoTeivel pa vEa TEYVIKN Yo
v aviyvevon KakoBovilmv evepyeimv mov PBaciletal oty unyovikn pabnon. Avt
€QaPUOGTNKE 6TO TAIGLO TV dikTvmv ad hoc, 6mov opiotnke pia véa TapaUeETPOs, 1
0moil0. TOGOTIKOTOLEL TN GYéon UeTaEL TV apldudv akolovBiag Tov AODV kot g
am6doong embécewv Tomov blackhole.

Table of Contents

ISR 101 oo [0 Tox o o USSR 19
1.1. Research Contribution and StrUCTUIEccceeriirieiieie e 20
2. Password based authentication: A deficient approach...........cccccocvvniiiiiiicnnenn 22
2.1, BACKQIOUNGccviiiicieieee e et 22
2.1.1. Password guessing attaCksccucvviieeiieieiiieieese e 22
2.1.2. Hardware based password gUESSING.........cccvevuereereaiiereereseeseesieseesneas 23
2.1.3. CMS and web application frameworks...........c.cccccvvveiieiieiieiieie e, 23
2.1.4. Related WOTKooviiiiiiiciceee s 24

2.2. Password hashing SCEMES...........ccoveiiiiiiieie e 26

2.3. A mathematical model for cost estimation of password guessing attacks. ...28

2.3.1. Mathematical Parameters..........cccooereieriniieeieee e 28
2.3.2. Effectiveness: Brute Force password guessing attacks.............cccceevenee. 29
2.3.3. Cost analysis: Brute Force password guessing attacks.............cccceevenee. 32
2.3.4. Effectiveness: Dictionary password guessing attacks.............ccccceevennenn 34
2.3.5. Cost analysis: Dictionary password guessing attacks.............cccccccveuen. 34
2.4. Password hashing scheme evaluationcccocevveieiiieiecse s 35
2.5. Cost of password CraCkingccccoeieevieiieiieeie e 41
2.5.1. HASNIALES.....coii e 41
2.5.2. Comparative analySiS........cocurieieiireie e 42
2.6. Misuse of password hashing schemes for denial of service attacks.............. 46
2.7. Recommendations on Password hashingccccceoviiiinninincniccee, 51
3. Overcoming the limitation of PasSWOIdSccccveiiieii e 54
3.1. Strong authentication with Fast IDentity Online.............cccocveviiieiieieciennnn, 54
311, BaCKgroUNd.........coovciiiiiiicie et 54
3111, Related WOrKcoeiieiee e 54
3.1.1.2. FIDO UAF protocol Operations...........ccocueeeeereererienenesieseseseens 55
3.1.2. SECUNLY @NAIYSIS ...eoveiiiiiieiiieiie e 60
313, TRreat @NalYSISccvooveiviiiiiiieeee e 62
3.1.4. ReSUlts and dISCUSSIONccueeeerieeieiiesieesie e see e see e e eneesreenaeeneeseees 65
3.2. Real-time protection of user authentication credentials.............ccc.cceecvvvenenn 66
32,1, Related WOIK ..o s 66
3.2.2. Software level protectioncccceviiiiiieiie i 67
3.2.2.1. Operating System level protectionc.ccocevviiinnienenienesie s 67

3.2.2.2. Source code level protection...........ccooceeerieenenie e 70

3.2.3. Results and diSCUSSIONcooeeeeeeeeeeeeeee e 73

4. Continuous authentication and detection of malicious actions..............cc.ccevene.n. 74
4.1. Continuous authentication using biometric modalities............cccceevvervenenne. 74
4.1.1. Security and performance of Biometric based authentication 74
4.1.2. Related WOIKcccoiiiiiiiieieee e 76
4.1.3. Continuous authentication using the gait modality.............cc.ccooevenene. 77
4.1.3.1. Feature EXIraCtion.........cccooeieiieie i 77
4.1.3.2. BIOhASNINGccoiiiiiiiee 79
4.1.4. Initial experiments and ODSErVatioNSccccevererencnenineseeeeees 80
4,141, T%SCREME ..ocvvivicieiceee e 80
8142, 2" SCRBIME.....ouceeceriiciieeiecie ettt 82
4.1.4.3. Experiments and numerical results.............cccooveveiiieiieerecieseeenene 82
4.1.5. User registration and authentication using the gait modality................. 85
4.1.6. Performance eValUationccooverieieiieiise e 90
4.1.7. ReSUItS and diSCUSSIONcveeveiieiiieieeiesieesie e see st enes 96
4.2. Detection of malicious actions using machine learning...........c.ccocvvevvveinenn. 97
421, BaCKGrOUNG.......cooiiiiiiieieee e 97
4.2.1.1. Routing in mesh Networks...........ccccovevveieiieiecic e 97
4.2.1.2. Blackhole attack: Acting as a sinkhole for all network traffic 99
4.2.1.3. Related WOIK.......ccooiiiieeicece e 102
4.2.2. Blackhole attack INtENSItYcccoeiieiiiiiciecie e 105
4.2.3. Using machine learning to detect malicious actions..............ccccceeueueee. 106
4.2.4. ReSUItS and diSCUSSIONcveeiveeieiieiierie e see e ee e ae e e 110

T O] o o 111 o oL SO 111
TS R ¥ o] [Tt 4 o] ST 112
5.1.1. Journal ArtiCIESooiueeieeie et 112
5.1.2. Conference/Workshop Publications............c.cccccoovviiiiiiiiiiic e, 112

R B B B CES .. nnnnn 113

List of Figures

Figure 1: CPU utilization VS 10giN FAEcccieiiiirieieriesiee e 48
Figure 2: CPU utilization vs password 1ength ... 50
Figure 3: CPU utilization VS IterationS..........cccvivieiieiiiiese e 51
Figure 4: Layered Hashing scheme of FacebookK............cccevvvieiieiiiiciecic e 52
Figure 5: The FIDO UAF ProtoColcccooveiiiiiiiieie s 56
Figure 6: The UAF registration Operationccccccvvvveveeiesiieseese e esee e 58
Figure 7: The UAF authentication OPerationcccccevveresieesienesie e ese e 59
Figure 8: First testing application used to discover the total number of instances of the
password variable in the volatile Memory ..o, 68
Figure 9: Second testing application used to discover the total number of instances of
the passwrod variable ni the volatile MeMOry ..o 72
Figure 10: Third testing application used to discover the total number of instances of
the passwrod variable in the volatile MeMOry ..., 73
Figure 11: Genuine and impostor distributions as a function of distance between
enrollment and authentication teMPIAES ..o 75
Figure 12: Distributions of the FinalResult values of the first scheme for genuine users
AN IMPOSTOTS. ...ttt bbbttt bbbttt ne e nn s 84
Figure 13: Distributions of the FinalResult values of the second scheme for genuine
USETS 8N TMPOSTONS. ...ttt bbbt nb bbbt 86
Figure 14: Gaithashing enrollment proCeAUrecooeiiiiiinieieiese e 86
Figure 15: Gaithashing enrollment algorithm ... 87
Figure 16: Gaithashing authentication proCedure............ccoouvveeienene i 88
Figure 17: Gaithashing authentication algorithmcccccooiiiiiiicic 90
Figure 18: Distributions of the FinalResult values of gaithashing for genuine users and
tNrEE IMPOSION TYPES ...ttt ettt e sre e sre e eeaeaneeare s 91
Figure 19: Gaithashing FRR-FAR values as functions of the threshold value............ 93
Figure 20: The "reactive™ blackhole attack (step a: route request, step b: route replies,
step C: data tranSMISSION)cviiuiiieeie et s re e sre e re e e e 101

Figure 21: Pseudocode of the CUSUM algorithm............ccccooeviiiiiiiiiicceeece, 110

List of Tables

Table 1: Popular CMS USage STALISTICS.ccviiiriieieieesiesie e 24
Table 2: Popular web application frameworks based on GitHubc.ccceeveiin. 24
Table 3: Charset value for different types of character Sets...........ccccccevvveveiveieeiennnn, 29
Table 4: Categories and number of leaked passWOrds..........c.ccecvevvevieerecieseesesieinnn 31
Table 5: Values for password length as a function of character set distributions........ 32
Table 6: Effectiveness values for pure dictionary password guessing attacks (values
were taken from [18]) .oovvoveiiie i 34
Table 7: Effectiveness values for dictionary password guessing using PCFG or Markov
models (values were taken from [18])cccovveiiiiiiicii e 34
Table 8: The default hashing scheme parameters of the investigated open source CMS
.. 37
Table 9: The default hashing scheme parameters of the investigated web application
TFAMEWOTKS ...ttt ettt e s e sre e teereesreenteaneenreas 41
Table 10: Hashrates and runtime ValUEScooviieiieri e 43
Table 11: Numerical results of the cost time for various CMS and web application
TrAMEWOTKS. ..ottt et e b e s e sre e teereesbeenteaneenreas 46
Table 12: Parameters of the hashing SChEMES.ccoviiiiiiiici e, 47
Table 13: Threats related to the UAF protocol and their associated consequences.....65
Table 14: Number of instances of the password variable.............ccccocooviiiiniiiiinn, 69
Table 15: Conversion Of Zi t0 DiS.......ccciiiiiiicc s 80
Table 16: Gaithashing tested weight values and corresponding EER of type 2 impostors
.. 94

1. Introduction

Modern devices can carry out potentially dangerous actions, such as storing corporate
and personal data, performing electronic transactions, accessing health data, etc. All
these actions introduce the ability to securely access increasingly personal information,
which in fact raises the problem of user authentication. Currently, user authentication
and access control are mainly carried out based on the usage of passwords or tokens.
However, these mechanisms present fundamental limitations in terms of both security
and usability. On the one hand, short length passwords are usually of low entropy,
which means that an attacker may guess them, while lengthy passwords are difficult to
remember. This results in the reuse of a password or the creation similar passwords for
each service, which increases significantly the risk of a password to be broken and the
associated services to be compromised. On the other hand, tokens can be easily stolen,
while they are not resistant to malware attacks, such as key loggers and memory

SCrapers.

User authentication is the process of determining whether someone is, in fact, who he
declares to be. This is usually performed by checking if a user's credentials match the
credentials in a database of authorized users. Several corporates [1] have become
victims of security breaches, resulting in the disclosure of billions of stored user
passwords. One of the most significant data breaches during 2016 disclosed a database
containing 1 billion users’ authentication details [2], and was put on sale for 300.000
dollars [3], while one of the biggest data breaches during 2017 included 145.5 million
users’ details. Hackers take advantage of the computing power of graphics processing
units (GPU) and specialized hardware to crack the users’ passwords. Although the price
of top tier graphics cards is relatively high (e.g., 2999$ for an NVIDIA TITAN V [4]),
hackers can also rent cloud infrastructure including dedicated GPUs for a monthly or
pay-as-you-go price (e.g. Google rents a GPU for maximum 2.55% per hour [5]),

making password guessing attacks easier and faster to perform.

Apart from password guessing attacks, that target passwords originating from an online
database, users are also threatened from malware that can steal their authentication
credentials in real time. Recent research has shown that authentication credentials and
cryptographic keys remain in the volatile memory and can be easily extracted [2].
For this reason, the volatile memory has become a prime target for malicious

software. As a matter of fact, a new malware category has emerged named as

19

memory scrapers, which specifically target the volatile memory, to steal sensitive
information, such as credit card numbers [5]. To achieve this, memory scrapers use
regular expression matches, to harvest credit card data from the volatile memory, and
then the collected data are sent to a malicious server. The first known memory scraper,
named StarDust targeted point of sale terminals and compromised nearly 20.000 credit
cards in the US [7].

1.1.Research Contribution and structure
The first part of this work (see section 2) focuses on studying the security of the

currently used methodologies for user authentication. This is performed by proposing
a mathematical model, based on the parameters that influence password security, for
estimating the cost of brute force and dictionary password guessing attacks. By
performing an extended survey on the hashing performance of graphics processing
units, we applied the proposed model to the most commonly used CMSs and web
application frameworks to investigate whether they offer secure password hashing.
Although, the first observations of the first part showed that a significant percentage of
websites use insecure password hashing, we proved that the cost of password guessing
can be a measure of defense to password guessing attacks.

The second part of this work (see section 3) investigates already existing solutions that
offer advantages over traditional authentication mechanisms. Therefore, we explore the
FIDO UAF protocol by comprehensively analyzing the client-side operation, including
any associated security measures proposed by the UAF protocol specifications. The
critical functionality of the UAF protocol typically operates in a consumer platform
such as a mobile device, which is susceptible to a variety of attacks such as malware
and viruses. Based on a comprehensive security analysis, we have identified several
vulnerabilities that may be exploited by an attacker to compromise the authenticity,
privacy, availability, and integrity of the UAF protocol. Although FIDO increases the
users’ security by abolishing the use of passwords, disclosure attacks can also target the
users’ personal computer, Thus, we investigate safeguards that can be applied at the
software level, either from the operating system or the applications, to zeroize data in
the volatile memory. Experimental results showed that Windows kernel zeroizes data
after a process termination, while the Linux kernel does not. Moreover, by comparing

software functions in C/C++ programming language and built in Windows functions,

20

we have concluded that only Windows provides a specific function, named
SecureZeroMemory, that can reliably zeroize volatile memory data.

Lastly, the third part of this work (see section 4) focuses on proposing novel solutions
and methodologies for continuous authentication and detection of malicious actions.
The first solution, named gaithashing, is a two-factor authentication that interpolates
between the security features of biohash and the recognition capabilities of gait features
to provide a high accuracy and secure authentication system. A novel characteristic of
gaithashing is that it enrolls three different human silhouettes types. By selecting
appropriate weight values, the proposed scheme eliminates the noise and distortions
caused by different silhouette types and achieves to authenticate a user independently
of his/her silhouette. The second solution focuses on the detection of malicious actions.
This has been performed in the context of Ad hoc networks, and one of the simplest yet
effective attack that targets the AODV routing protocol. Particularly, a comprehensive
analysis of the blackhole attack is conducted focusing not only on the effects of the
attack, but also on the exploitation of the route discovery process. As a result, a new
critical attack parameter is identified (i.e., blackhole intensity), which quantifies the
relation between AODV’s sequence number parameter and the performance of

blackhole attacks.

21

2. Password based authentication: A deficient approach

2.1. Background

2.1.1. Password guessing attacks
Password guessing (also known as password cracking) is an attack in which an
adversary attempts to guess the users’ password. We distinguish two password guessing
attack categories: i) Online and ii) Offline. In online attacks, an attacker can try to login
to a website by selecting frequently used passwords. After several unsuccessful
attempts, the IP address or the username that the attacker is trying to login can be
locked. On the other hand, in an offline attack, the scenario is that an attacker has in her
possession a database of users’ password hash values and she can attempt to crack each
user’s password offline by comparing the hashes of likely password guesses with the
stolen hash value. Because the attacker can check each guess offline it is no longer
possible to lockout the adversary after several incorrect guesses. Subsequently, in this

thesis we consider offline attacks.

Moreover, we can classify password guessing attacks to three categories: i) brute
force ii) dictionary and iii) rainbow tables. In a brute force attack, the adversary tries
every possible password combination considering two parameters; a) the password
length; and b) the character set. On the other hand, in a dictionary attack, the adversary
uses passwords from a list, which are likely to be used as passwords by users. There are
four types of dictionary attacks: i) pure ii) Probabilistic Context Free Grammar (PCFG)
based [6], iii) Markov model based [7] and iv) mangling rules [8]. In the pure dictionary,
the attacker simply uses a set of predefined words as candidate passwords. In the second
type, PCFG theories are used to construct a dictionary containing modified passwords
with assigned probabilities. In the third type, Markov-based models are applied to
create candidate passwords based on the probability distribution over sequences of
characters. In the fourth type (i.e., mangling rules), the attacker creates password
variations from a dictionary by applying various modifications rules, such as “add the
symbol ! at the end of the password”. Finally, the third category of guessing attacks is
rainbow tables, in which the attacker uses a precomputed list to reverse the hash value.
In this thesis, the term password guessing (or cracking), unless stated otherwise, refers
specifically to brute force and dictionary attacks but not rainbow tables. Moreover, from
the four types of dictionary attacks we exclude mangling rules as these are specific to
each cracking tool.

22

2.1.2. Hardware based password guessing

An attack scales linearly with invested resources, mainly cost of the equipment and
energy consumption, and thus we have to take their influence into account. General
purpose computing on GPUs can boost the computation performance, since the multiple
GPU processing cores can be used in parallel for high-power calculations. Typically, a
GPU consists of hundreds of computing cores grouped into computing clusters sharing
the same memory bus. Due to this architecture, GPUs are specialized in Single
Instruction, Multiple Data (SIMD) computations [9], which refer to the simultaneous
execution of the same instruction on multiple processors with different input data for
each processor (i.e., parallel computing). Consequently, GPUs can accelerate password
guessing, since the same hashing scheme (i.e., the same instruction) can be executed
simultaneously by hundreds of computing cores with different passwords as input. In
[10], the authors measured the performance of the password guessing functions, where
it was observed that the time required for password guessing decreased by 97% with
GPU acceleration, compared with the time required using only CPU.

Apart from GPUSs, special purpose hardware such as field-programmable gate arrays
(FPGAs) and more recently application-specific integrated circuits (ASICs) have been
utilized to yield even higher hashrate values. Generally speaking, equipment cost is in
favor of the graphic cards, as GPUs are a consumer product that is sold in large
quantities. Also, older versions usually receive a discount, making them more cost-
effective. Interestingly, FPGA vendors use a different strategy: with the release of a
new product line, the price of the old family stays roughly unchanged, while the new
version is offered with a small discount to make the consumers switch away from the
abandoned hardware platform. In this thesis, we will consider GPUs as the hardware

platform of password guessing attacks.

2.1.3. CMS and web application frameworks
Nowadays, the majority of websites originate either from CMS or web applications
frameworks. CMS are intended to be plug and play solutions and their main aim is to
allow non-developers to deploy websites. CMS play an important role in the Internet.
According to [11], 52.3% of websites in the Internet are based on CMS. Table 1 shows
statistics of CMS usage among all websites in the Internet and among all CMS [11]. In

particular, first comes the popular WordPress with a whopping 31.3% usage among all

23

websites in the Internet, while 59.8% usage among CMS. Second is Joomla with a 3.1
percentage usage among all websites in the internet, while Drupal is third with 2%.

CMS Market share among all Market share

websites in the Internet among CMS
WordPress 31.3% 59.8%
Joomla 3.1% 6. 0%
Drupal 2.0% 3.9%
Magento 1.1% 2.1%
PrestaShop 0.7% 1.4%
TYPO3 0.7% 1.4%
OpenCart 0.4% 0.8%

Table 1: Popular CMS usage statistics
On the other hand, web application frameworks are utilized by developers and aim at
supporting the development of rich web applications by providing a standard way to
build and deploy web applications. For web application frameworks, we could not find
a reliable source of statistics regarding their market share in the Internet. Considering
that many frameworks share the same programming language, it is difficult to
determine which specific framework a website uses. Therefore, we used statistics from
GitHub to discover the most popular open source frameworks [12]. Table 2 shows the
number of stars that each web application framework has which can be considered as a
popularity metric among web developers. Laravel which uses PHP has the largest
number of stars, which is 44.465. The second most popular framework, Ruby on Rails,
is based on Ruby with 40.263 stars, while MeteorJS, based on Javascipt, has 40.068
stars. Note that from Table 2 ASP.NET is excluded, since GitHub is used only open-

source projects.

Web application | Programming Language # of stars on GitHub
framework
Laravel PHP 44.465
Ruby on Rails Ruby 40.263
MeteorJS Javascript 40.068
ExpressJS Javascript 39.333
Flask Python 37.515
Django Python 35.230
SailsJS Javascript 19.350

Table 2: Popular web application frameworks based on GitHub
2.1.4. Related Work
The related work has studied extensively the area of password security from various
scopes, including: i) password guessing attacks in leaked databases, and, ii) analysis of
password complexity. Here we present only the most recent and relevant works.

Regarding the first category, which is password guessing, the main metric which is used

24

by the related work to estimate the attack efficiency is called effectiveness. In essence,
effectiveness is the fraction of passwords that will be correctly cracked after an attack.
The authors in [6] have used the PCFG technique, which uses grammar theories to
construct a dictionary containing passwords in a decreasing probability order and
succeeded in cracking 28% - 129% more passwords in comparison to John the Ripper
(JtR) [13]. In [14], the authors analyzed the Rock you [15] database to identify regular
expressions that were used to create candidate passwords. The numerical results
showed that the proposed method cracks 14% - 239% more passwords in comparison
with JtR.

Towards this direction, the work in [16] performs an analysis of Chinese web passwords
by using the PCFG and Markov-based model, which create candidate passwords
phonetically relevant to the words included in a dictionary. The authors succeeded in
increasing password cracking efficiency by 48% and 4.7%, respectively, for each
technique. In [17], the authors proposed a tool named OMEN, which was compared in
password guessing with the PCFG and the Markov-based techniques. The recorded
effectiveness was higher by 20% and 40% in comparison to PCFG and Markov-based
techniques respectively. Moreover, [18] performed an empirical analysis on passwords
and compared the effectiveness of dictionary password guessing attacks to this of the
PCFG and Markov-based techniques. The PCFG method managed to crack 40-50% of
the passwords, while 61.90% of passwords were cracked using the Markov-based

methodology with 850 million guesses.

The second category of the related work is password complexity analysis. More
specifically, the work in [19] performs a password analysis of the RockYou leaked
database consisting of cleartext passwords. The results pinpointed that most of the
passwords are not secure enough to withstand password guessing attacks. In fact, 30%
of the users chose passwords whose length is equal or below six characters, and 60%
of the users use the limited alpha-numeric set to form their passwords, while the most
commonly used password was “123456”. Reports from the Keeper password manager
[20] show that, even in 2016, the users’ passwords are still predictable, since the most
common recorded passwords include “123456”, “qwerty” and “111111”. In [21], the
authors performed interviews with several different groups (i.e., students, ICT
specialists, etc.) regarding their password habits. They discovered that 50% of the

respondents use less than 4 different passwords for all their services. Moreover, in all

25

groups more than 50% of the respondents use passwords shorter than nine characters
and most of the passwords still consisted of letters and characters.

2.2.Password hashing schemes

A hashing scheme takes as an input a plaintext password and transforms it into a hash
value considering three parameters: i) hash function; ii) iterations; iii) salt. More
specifically, the core parameter of a hashing scheme is the employed hash function,
such as MDS5. The iterations parameter is optional and specifies the number of
consecutive executions of the employed hash function to compute the hash value. For
example, if a hashing scheme uses the MD5 hash function and the number of iterations
is 100, then it will conduct 100 consecutive executions of MD5 to compute the
password hash. The number of iterations can be adjusted so that the computation of the
hash value takes an arbitrarily large amount of computing time (also known as key
stretching). In this way, iterations are used to slow down password guessing attacks.
Regarding the last parameter, the salt is also optional, and it is a random string which
together with the password are the inputs to the hash function to produce the hash value.
Using random salts, rainbow tables become ineffective. That is, an attacker won’t know
in advance what the salt value is and therefore he/she cannot pre-compute a rainbow
table.

There are numerous functions used for password hashing including: MD5 [22], SHA1
[23], SHA256 - SHA512 [24], PBKDF2 [25], BCRYPT [26], SCRYPT [27] and
Argon2 [28]. The first four hash functions (i.e., MD5, SHA1, SHA256, SHA512) do
not require the use of a salt by default. Thus, a separate function should be used to
generate a salt for the hashing scheme. On the other hand, the rest of the hash functions

internally generate and use a random salt during hash calculation.

As we mentioned previously, the iterations parameter specifies the number of
consecutive executions of the employed hash function, increasing the computation time
to compute the hash value. For this reason, PBKDF2, BCRYPT, SCRYPT and Argon2
hash functions use iterations by default. More specifically, PBKDF2 is the simplest
function, since it iterates the employed hash function, usually SHA256 or SHA512. On
the other hand, BCRYPT, which is based on the blowfish encryption algorithm, uses
iterations only in the Blowfish key setup function using the salt and password

parameters as inputs. For PBKDF2 and BCRYPT, memory usage is not tunable

26

separately (i.e., it is fixed for a given amount of CPU time). On the other hand, SCRYPT
and Argon2 belong to a special category of hash functions named as memory hard
functions (MHF), which are designed to use an arbitrary large and tunable amount of
memory compared to PBKDF2 and BCRYPT making the size and the cost of a
hardware implementation of these hash functions much more expensive, and therefore,
limiting the amount of parallelism an attacker can use. Similar to BCRYPT, both
SCRYPT and Argon2 use iterations in specific parts of the algorithm. SCRYPT was
one of the first proposed MHF [27] and recently in 2016, the SCRYPT algorithm was
published by IETF as a standard (RFC 7914) [29]. It is important to mention that for
BCRYPT and SCRYPT, the literature uses the term cost factor [26], [27] instead of
iterations (specifically for SCRYPT it is called CPU/Memory cost factor). In the rest
of this thesis we will explicitly use the term iterations instead of cost factor. Apart from
iterations, SCRYPT and Argon2 include several parameters that can be used to adjust
the memory requirements for hash value computation. We will specifically focus on the

iterations parameter.

Regarding the exact value of iterations for the above hash functions, NIST guidelines
recommend PBKDF2 with minimum 10.000 iterations [30], while the author of
SCRYPT recommends 16384 iterations [27]. On the other hand, there is no official
recommendation for BCRYPT and Argon2. We have only discovered that PHP
programming language by default uses BCRYPT with 1024 iterations [31].

As mentioned in section 2.1.2, password guessing attacks greatly benefit from multiple
processing cores, especially for hashing schemes that can be executed in parallel. MD5,
SHA1, SHA256, SHA512 hash functions can be executed in parallel on multi-processor
systems, fact that increases significantly the efficiency of password guessing attacks.
Moreover, several weaknesses of PBKDF2 [32] allow efficient implementations with
very little use of RAM, which makes brute-force attacks to PBKDF2 using FPGAS
relatively cheap. Also, the work in [33] achieved a great optimization in running
PBKDF2 on GPU hardware.

On the other hand, BCRYPT, due to its pseudorandom access to memory makes
difficult to cache data into the GPU’s internal memory [34]. Subsequently, BCRYPT
implementations on GPUs use the external memory, thus spending more time
transferring operands to and from the GPU. Thus, compared to PBKDF2, BCRYPT is
less parallelizable and more resistant to password guessing attacks [27]. However,

27

recent works such as [35] [36] have presented BCRYPT implementations that achieve
a high level of parallelization in embedded hardware devices. Finally, MHF such as
SCRYPT and Argon2 are specially designed to withstand against hardware-equipped
adversaries. MHF bound the memory amount and the memory bandwidth, limiting in
this way the level of parallelism that an attacker can achieve. While a practical attack
for SCRYPT has not been demonstrated yet, new MHF were proposed in the password
hashing competition in 2014 [37] in which Argon2 was the winner.

2.3.A mathematical model for cost estimation of password guessing

attacks.
In this section we propose a cost analysis framework for password guessing attacks.
The rationale is to first compute the number of hashes, that will be performed
throughout password guessing attacks, and secondly to estimate their effectiveness (i.e.,
percentage of successfully guessed passwords). By utilizing these two values, the cost
of password guessing attacks is defined as the average number of hashes required to
successfully crack a password hash. Lastly, the cost can be transformed into the average
time required to crack a password hash. It is important to mention that the aim here is
not to derive new mathematical models for password cracking, which has been already
done in the previous works extensively (see section 2.1.4). Instead, our aim is to
formulate a simple framework that will allow us to perform a security comparison and
evaluation between the various CMS and application frameworks by quantifying the

cost of password cracking.

2.3.1. Mathematical parameters
This section elaborates on the parameters of the proposed framework for the cost

estimation of password guessing attacks. These parameters are as follows:

e Iterations (I): The iterations parameter represents the number of consecutive
executions of a hash function to compute the password hash. For example, a
hashing scheme of 500 SHA1 iterations requires 500 consecutive executions of
SHAZ1 to compute the hashing result. Note that this value is relevant only for
iterations of MD5, SHA1, SHA256, SHA512 hash functions. On the other hand,
PBKDF2, BCRYPT, SCRYPT and Argon2 that use iterations as an internal

parameter, the parameter 7 is not considered (i.e., 1=1).

28

e Database passwords (D): This parameter indicates the number of password
hashes in the database.

e Salt (S): This parameter indicates the number of salts in the database. We will
assume that each password has a unique salt, therefore the number of database
passwords D is equal to number of salts S. On the other hand, if the database
does not use salt, then the parameter S is not considered (i.e., S=1).

e Hashrate (Hr): It is the number of calculated hash values per second.

e Password length (pwd_length): This parameter is the length of the target
passwords that an attacker desires to crack in a brute force attack. We also define
as pwd_lengthmin the minimum and pwd_lengthmax, the maximum password
length that the attacker aims to crack.

e Charset (C): The charset is the second attacking parameter of brute force
password guessing attacks. The value of charset depicts the number of unique
characters of the different sets that are used for the composition of a password
(see Table 3)

e Attempts in a dictionary attack (attempts): It is the number of candidate
passwords that an attacker will attempt to crack the passwords. This parameter
is relevant only for a dictionary attack.

e Effectiveness (Esr or Epc): The effectiveness of a password guessing attack is
the percentage of password hashes in a database that will be cracked after the
completion of the attack. The effectiveness of the brute force attack is denoted

as Egr, while for the dictionary attack is noted as Epc.

Type of character set Charset (C) value
Numeric 10
Lowercase 26
Uppercase 26
Loweralphanumeric or 36

Upperalphanumeric

Mixedcase 52
Mixedalphanumeric 62
Special 94

Table 3: Charset value for different types of character sets
2.3.2. Effectiveness: Brute Force password guessing attacks
To compute the effectiveness of a brute force attack Egr, we define the parameter
Ppwd_length @S the percentage of passwords that have a specific length and the parameter

Pcpwd_length, @S the percentage of passwords to have a specific length and charset C. For

29

instance, for pwd_length=8, then Ppwd_length represents the percentages of 8-character
passwords, while for charset C=10 (see Table 3) and pwd_length=4, then Pc pwd_length IS
the percentage of numerical passwords with 4 digit numbers. Recall also from section
2.3.1, that pwd_lengthminand pwd_lengthmax, is the minimum and maximum password
length respectively that the attacker aims to crack. Based on the above, the Egr value
can be estimated as shown in equation (9).

pwd_legnth,qx

Egr = Ppwd_length) PC,pwd_lentgh (9)
pwd_lengthpyin

To the best of our knowledge there is no work that has calculated the Ppwd_ength and the
Pc,pwd_length Values. To this end, we perform an empirical analysis of passwords, in order
to derive numerical values for Ppwd_length and Pc pwd_length. More specifically, we have
gathered a large collection of leaked password datasets from various online services
across multiple years (from 2006 to 2017). The total number of collected passwords is
254.38 million passwords from 12 datasets. Note that these datasets are public and can
be found in the Internet in various blogs and forums. It is also important to mention that
we have collected leaked datasets that include only plaintext passwords. This is a key
factor to avoid biasing results, since in this way we guarantee that all passwords are
included in our statistical analysis. On the contrary, if we had used datasets that include
cracked passwords, then we would have performed a statistical analysis only with
passwords that have been guessed biasing the results. We verified that the considered
databases are composed of plaintext passwords using a two-step procedure: i) by
checking that the length of the passwords in the datasets do not match the length of a
hash value (e.g., an MD5 hash has always a fixed output of 16 bytes), and ii) by
performing a cross check with a historical record of leaked passwords available as a
public service [38]. Considering that the processed usernames and passwords are in
plaintext form, we do not reference their source, since many of these accounts may be

still active.

In Table 4, we classify the breached websites into various categories (9 in total) based
on their content or service they provide. We observe that the associated user accounts
of these websites are diverse in the sense that they are created from non-technical users
(e.g. Matel was an online dating platform) to web developers (e.g. 000webhost is a web
hosting platform for PHP/MySQL websites). Moreover, the breached websites offer
their services globally, except for Auction-warehouse which explicitly requires their

30

users to be US citizens. Therefore, we believe that the collected datasets represent a

diverse and generic set of passwords.

Dataset # Website Category Number of Passwords
1 000webhost Web hosting 15.311.565
2 1394store e-shop 20.649
3 Auction-warehouse Auctions 26.616
4 Clixsense Advertisemts 2.222.542
5 Mail.ru email 4.664.479
6 Matel Social 27.403.959
7 Neopets Gaming 68.743.269
8 Rockyou Social 32.625.471
9 Tuscl Adult 38.599
10 VKontakte Social 100.544.934
11 Yahoo voices Publishing 453.837
12 Youporn Adult 2.325.492

Table 4: Categories and number of leaked passwords

The numerical values of the password analysis are shown in Table 5. Note that the
presented values are averages of the password length and character set distributions
from each one of the considered databases. For the character set distributions we
classify the passwords based on the following categorization: i) numeric: only numbers
(e.g., 1234567890); ii) lowercase: only lowercase Latin alphabet characters (e.g.
password); iii) uppercase: only uppercase Latin alphabet characters (e.g.,
PASSWORD); iv) mixedcase: uppercase + lowercase (e.g., PassworD); V)
loweralphanumeric: lowercase + numeric (e.g., passwOrd); vi) upperalphanumeric:
uppercase + numeric (e.g.,, PASSWORD); vii) mixedalphanumeric: mixedcase +
numeric (e.g., PasswOrD); and viii) special: passwords that contains at least one special

character (e.g., P@sswOrD).

Table 5 can be used to derive the Ppwd_length and Pc pwd_length Values and consequently the
effectiveness Egr of brute force attacks. To exemplify, consider an attack targeting 7 to
8-character lowercase passwords (i.e., pwd_length=8 and C=26). In this case, Ppwd_length
equals to 20.68%, and Pcpwd_length e€quals to 30.36%, while pwd_lengthmin=7 and
pwd_lengthmax=8. Thus, using equation (9), the effectiveness for a brute force attack

Egr is equal to 12.16%.

31

Password
length

Password
Length
Distribution

Character set distributions

Numeric

Lowercase

Uppercase

Mixedcase

Loweralphenumeric

Upperalphanumeric

Mixedalphanumeric

Special

2,68%

38,47%

39,92%

2,06%

4,80%

3,46%

0,38%

0,08%

10,83%

3.60%

13,71%

57.27%

1.83%

5.19%

9,69%

0,53%

0,40%

11,39%

19,12%

25,25%

39.96%

1.21%

1,56%

28.,40%

1,10%

1.21%

1.31%

15,53%

10,57%

37.88%

0,96%

1,68%

42,94%

1,38%

2,18%

2.42%

20,68%

13,51%

30,36%

0,61%

1,88%

44,76%

1.31%

4,78%

2,79%

12,26%

6,80%

30.23%

0,77%

1,59%

50,53%

1,50%

436%

422%

= IA
S|e el aw|p

8.57%

9.96%

29.77%

0,49%

1,58%

46,18%

1,52%

5,14%

5.37%

11

4,22%

6,80%

27.46%

0,59%

2,31%

44,39%

1.47%

7,95%

9.05%

12

2.96%

3.37%

27.28%

0,52%

2,05%

45,02%

1,26%

8,44%

12,06%

13

1,48%

2,52%

20,62%

1.48%

324%

44,79%

2,48%

8,30%

16,56%

14

1,12%

3,23%

19.61%

1,29%

1,85%

4427%

1,88%

9,10%

18,77%

15

0.97%

2,09%

18.,66%

1,54%

2,19%

43 50%

2,12%

8.43%

21.46%

16

L17%

3.97%

19.59%

2,24%

3,12%

34,59%

2,61%

12,65%

21,24%

=17

5.64%

3,49%

21,25%

1.24%

1,65%

31.83%

1,87%

9,00%

29.68%

Table 5: Values for password length as a function of character set distributions

2.3.3. Cost analysis: Brute Force password guessing attacks

In this section, we elaborate on the cost estimation of brute force password guessing
attacks. The first step of the cost estimation is to compute the average number of hashes
that will be performed during a brute force password guessing attack, defined as
hashesgsr. To achieve this, we need to calculate the number of candidate passwords, by
leveraging the charset and the pwd_length parameters. The usage of a unique salt per
password affects the hashessr value, since the guessing attempts performed during a
brute force attack, will be a multiplication of all the candidate passwords by the total
number of salts. Lastly, the hashesgr is affected by the usage of iterations, since a

guessing attempt requires iterations consecutive hash executions.

Based on the above, it can be deduced that the hashesgr value can be estimated by using
equation (1). The hashesgr value is analogous to both the iterations | and to the number
of salts (i.e. S). In addition, hashesgr value is analogous to the sum of all candidate
passwords (i.e. C'), considering specific charset and password length values. That is,

pwd_length,qx
Hashesgr=a-1-S- Z c 1)

i=pwd_lengthmyin
Note that the parameter a is a real number, where a € (0,1]. The parameter a is defined
as the attack success factor and is related to the probability to successfully crack all
hashed passwords at the end of the attack. In the worst-case scenario for the attacker,
the value of a is equal to 1. In this case, the attack will cover all the candidate
passwords. To better understand the role of the parameter a, we consider the following
example. Assume a brute force attack in which the attacker aims to crack numeric
passwords (i.e., C=10 from Table 3) of minimum length 4 and maximum length 5 (i.e.,

32

pwd_lengthmin = 4, pwd_lengthmax = 5), for a hashing scheme that uses 100 iterations
(1=100). The number of the hashed passwords is D=100. This means that the salt S is
also equal to 100 (i.e., one salt per password). All the candidate 4-character numeric
passwords are 10%, while the 5-character are 10°, summing to a total number of 1.1 10°
passwords. If we assume the worst-case scenario for the attacker (i.e., a=1), then by
multiplying the number of candidate passwords with the iterations and the number of
salts, the value of hashesgr will be 1.1-10° This means that the attacker for each
password (with its related salt) will cover all candidate passwords. On the other hand,

in the average case we have « = 1/2 and in this case the attacker will cover half of

, _ .
candidate passwords (i.e., Hashesgy = ==>).

The second step of this analysis is to estimate the number of target password hashes
that will be cracked by a brute force attack, defined as cracked_passsr. This can be
achieved by leveraging the effectiveness parameter Egr (see section 2.3.2), which
defines the percentage of password hashes that will be successfully cracked by the
attack. Therefore, using Egr, we can calculate the cracked_passgr by multiplying the
Esr with the number of password hashes in the database D, as shown in equation (2).

cracked passgy = D - Egp)
Having calculated the hashesgr and the cracked_passsr, we can calculate the cost of
password guessing for the brute force attack, (defined as costgr). The cost costsr
represents the average number of hashes that will be performed during the attack to
crack a password hash in the database. To calculate costsr we use the following

equation.

hashesgp
cracked_passgr

COStBF =

By replacing the hashesgr with equation (1) and cracked_passsr with equation (2), the
final form of costgr can be derived as follows:
pwd_lengthyqx

¢t ®)

i=pwd_lengthpyin

Lastly, the costsr can be translated into the average time required to crack a password

hash in the database D, (defined as cost_timegr) using the hashrate (i.e. Hr) parameter,

as shown in equation (4).

costpp

Hr (4)

cost_timegp =

33

2.3.4. Effectiveness: Dictionary password guessing attacks
In this section, we analyze the effectiveness Epc (see section 2.3.1) for three types of
dictionary attacks: i) pure ii) Markov model and iii) PCFG. These values are obtained
from the related work. For pure dictionary attacks, we use the Epc and the attempts
parameter values from [18] (see Table 6). The authors of this work used dictionaries
with English, Italian and Finish lowercase words and executed pure dictionary attacks
against two databases DB1 and DB2 respectively, recording effectiveness Epc values
24.79% and 26.02% respectively. Note that the DB1 included hashed passwords leaked
from an Italian messaging server, while DB2 consisted of hashed passwords from

Finnish speaking forums.

Dictionary attempts Eoc DB1 | Epc DB2
English, Italian
and Finnish words

1.45-10% 24.79% 26.02%

Table 6: Effectiveness values for pure dictionary password guessing attacks (values were taken
from [18])

Moreover, we have obtained the Epc values based on Markov model and PCFG as
derived from [18] (see Table 7). The Epc for the PCFG model ranges from 41.50% for
1.45 million guessing attempts to 49.36% for 145 million guessing attempts. On the
other hand, the Markov model is more efficient, since its Epc values are greater than
the ones of PCFG. Particularly, by leveraging the Markov model, 53.49% of the
passwords can be cracked with 149 million attempts, while this value can be increased

to 99.70% for 10*° guessing attempts.

Model attempts Ebc
PCFG 1.45-108 41.50%
PCFG 41-10° 46.33%
PCFG 145-108 49.36%
Markov ~149-108 53.49%
Markov ~156-10° 54.58%
Markov ~850-10°8 61.90%
Markov ~7-10% 91.44%
Markov ~10%0 99.70%

Table 7: Effectiveness values for dictionary password guessing using PCFG or Markov models (values
were taken from [18])

2.3.5. Cost analysis: Dictionary password guessing attacks

In this section, we elaborate on the cost estimation of dictionary password guessing
attacks. The first step of the cost estimation is to compute the number of hashes that

34

will be performed during an attack, defined as hashespc. The hashespc value can be
estimated by multiplying the iterations | with the salt S and with the number of guessing
attempts (i.e., attempts). Thus, hashespc can be estimated as follows:

hashespc =a-I-S - attempts (5)

As in the brute force attack, the parameter a is the attack success factor. The next step
for the cost estimation is to compute the number of password hashes that will be cracked
after the completion of a dictionary password guessing attack, defined as
cracked_passpc. The value of cracked_passpc relies on the effectiveness Epc of the
dictionary attacks. Note that the Epc value relies on the actual method of dictionary
attack (e.g., pure, PCFG or Markov model). Using Epc, the estimated number of the
cracked passwords can be computed as follows:

cracked_passpc =D - Ep (6)
Having calculated the hashespc, and the cracked_passpc, the last step is to estimate the
average hashes that will be performed until a successful password crack, defined as
costpc. To achieve this, we divide hashespc by cracked_passopc.

hashespc

cracked
passpc

COStDC =

Next, we can use equations (5) and (6), to derive the final form of costpc.

a-I-§-attempts
costpc = D E @)
DC

Finally, to convert costpc into the average time required until a successful password
crack in the database D, cost_timepc, we need to divide costpc by the hashrate (i.e. Hr),

as shown in equation (8).

costp¢
Hr

(®)

cost_timep, =

2.4. Password hashing scheme evaluation
This section evaluates the default hashing schemes used by CMS and web application
frameworks based on the following parameters: i) hash function; ii) iterations; iii) usage
of salt, and iv) minimum acceptable pwd_length. In total, we have examined 49
commonly used CMS and 47 popular web application frameworks. Table 8 shows the
considered CMS classified into 7 categories: i) 13 CMS are included in the generic

category, which represents CMS that allow the development of websites with various

35

functionalities that focus on the content (e.g. blog, news web site), ii) 9 for forums, iii)
5 for ecommerce, iv) 7 for Enterprise Resource Planning (ERP) and Customer
Relationship Management (CRM), v) 2 for coding and bug tracking, vi) 2 for project
management, and vii) 11 are classified as “Other”, which do not belong to any of the

above categories.

Based on the results of Table 8 which depicts the default hashing schemes of the
investigated CMS, we can observe that 26.53% of the CMS including osCommerce,
SuiteCRM, WordPress, X3cms, SugarCRM, CMS Made simple, Mantisbt, Simple
Machines, miniBB, Phorum, MyBB, Observium, and Composr use the outdated hash
function MD5. MD5 s highly parallelizable and we will analyze in section 2.5.1, it is
the fastest among all hash functions that can be executed in GPUs. Regarding the
remaining hash functions of the CMS, GetSimple CMS, Redmine, Collabtive, PunBB,
Pligg, and Omeka (i.e. 12.24%) use the SHA1 hash function, which similar to MD5 is
highly parallelizable on GPUs. Drupal, EspoCRM, PhreeBooks, Odoo, ImpressCMS,
Magento, Bugzilla, TYPO3 CMS, Mediawiki, and PhpList (i.e. 20.41%) use either
SHA256/SHA512 or PBKDF2. These hash functions are also parallelizable, thus
increasing the effectiveness of password guessing attacks. Lastly, Joomla, Zurmo,
OrangeHRM, SilverStripe, Elgg, XOOPS, €107, NodeBB, Concrete5, phpBB, Vanilla
Forums, Ushahidi, Lime Survey, Mahara, Mibew, vBulletin, OpenCart, PrestaShop,
and Moodle (i.e. 40.82%) use the BCRYPT hash function. As we mentioned in section
2.2, BCRYPT is more secure than the rest of the hashing schemes, since it more difficult
to be parallelized in GPU hardware. Based on the above we can conclude to the

following observation:

Observation 1: A whopping number (i.e., 59.18%) of CMS use default hashing schemes
that can be highly parallelized with GPU hardware, making password guessing attacks
easier. Indicatively, the popular CMS WordPress uses by default MD5. On the other
hand, 40.82% of the CMS use BCRYPT by default including Joomla.

Another observation which is related to the usage of the hashing schemes is the

following:
Observation 2: No CMS has adopted SCRYPT, Argon2 or any other MHF yet.

Observation 2 may come as no surprise if we consider that the PHP programming
language that all the CMS are based on, has no official SCRYPT implementation. This

36

means that in case an administrator of a CMS wants to use SCRYPT, he/she should rely
on a third party or custom implementation of SCYPT. However, using non-official
implementations is considered an insecure practice, as they may include backdoors
[39], [40] or insecure code [41]. On the other hand, Argon2 was included recently (late
2017) in PHP v7.2 and compared to SCRYPT it can be more easily adopted in a CMS.
However, Argon2 is a relatively new hash function and the audits are too scarce to draw
safe conclusions about its security properties. Finally, a common reason that hinders
the adoption of both SCRYPT and Argon2 is related to the fact that the transition to a
new hashing scheme of an already deployed website can lead to downtimes or it may
require once again the registration of its users with a new (or the same) password.
Therefore, for backwards compatibility reasons website administrators avoid to modify
hashing schemes and choose to remain with legacy hash functions. A case in point is
the CMS named Phorum; it still uses the MD5 as the default hashing scheme (see Table
8), despite the fact that there is a request in the official development repository of
Phorum to change MDS5 to a stronger hash function [42]. After a discussion between
users and the development team (see [42]), the main developer opposes to this change,
because the developers of Phorum CMS are considered how existing installations are
going to update to the new hash function. Thus, they decide not to proceed with any
modification to the hash function leaving MD5 as the main hash function. Another
similar discussion takes place for Magento CMS [43], which is an e-commerce platform
and still uses SHA256.

CMS Category Hash Iterations | Salt | Min pwd CMS Category Hash Iterations | Salt | Min pwd
function length function length
Drupal 8.4.4 Generic SHAS512 65536 J 1 OsCommerce2.3.4.1 | Ecommerce MD35 1 4 5
Joomla 3.8.3 Generic BCRYPT 1024 v 4 Zen Cart 1.5.5 Ecommerce BCRYPT 1024 Vv 7
‘WordPress 4.9.1 Generic MD5 8192 < 1 SuiteCRM 7.9.9 ERP/CRM MD5 1000 < 1
X3cms 0.5.3 Generic MD5 1 X 5 Zurmo 3.2.3 ERP/CRM BCRYPT 4096 v 5
ImpressCMS 1.3.10 Generic SHAS12 5000 4 5 QrangeHRM 4.0 ERP/CRM BCRYPT 4096 4 4
GetSimple CMS 3.3.13 Generic SHAL 1 X 1 SugarCRM 6.5.25 ERP/CRM MD5 1000 v 1
CMS Made simple Generic MD35 1 v 1 EspoCRM 5.0.2 ERP/CRM SHAS512 1 < 1
SilverStripe 4.0.1 Generic BCRYPT 1024 v 1 PhreeBooks 9 ERP/CRM SHA256 1 v 5
Elgg 235 Generic BCRYPT 1024 4 6 Odoo 11 ERP/CRM | PBKDF2guasn2 12000 4 1
XOOPS 2.5.9 Generic BCRYPT 1024 v 5 Mantisbt 2.10.0 Coding MD35 1 X 1
€107 2.1.7 Generic BCRYPT 1024 v 8 Bugzilla 5.1.1 Coding SHA256 1 < 8
TYPO3 v9 Generic PBKDF2sras12 25000 v 8 Redmine 3.4.4 Proj. Mgmt SHAL 2 v 8
Concrete5 8.3.1 Generic BCRYPT 4096 i 5 Collabtive 3.1 Proj. Memt SHAL 1 X 1
PhpBB 3.2.2 Forum BCRYPT 1024 v 6 Ushahidi 3 Other BCRYPT 4096 v 7
Vanilla Forums 2.6 Forum BCRYPT 1024 v 6 Pligg 1.2.2 Other SHAL 1 v 5
Simple Machines 2.0.15 Forum MD3 1 v 6 Observium 0.17.11 Other MD3 1000 v 1
MiniBB 3.2.2 Forum MD5 1 X 5 Lime Survey 2 Other BCRYPT 1024 J 1
Phorum 5.2.23 Forum MD5 1 X 1 MediaWiki 1.30.0 Other PBKDF2suas12 30000 N4 1
MyBB 1.8.12 Forum MD5 1 v 6 Omeka 2.5 Other SHAL 1 Vv 6
PunBB 1.44 Forum SHAL1 1 v 4 phpList 4 Other SHA256 1 X 8
vBulletin 5.3.4 Forum BCRYPT 1024 4 1 Mahara 17.04 Other BCRYPT 4096 4 6
NodeBB Forum BCRYPT 4096 v 6 Mibew 3.1.3 Other BCRYPT 256 v 1
OpenCart 3.0.2.0 Ecommerce BCRYPT 1024 v 4 Composr 10 Other MDS5 1 v 1
PrestaShop 1.7 Ecommerce BCRYPT 1024 v 5 Moodle 3.4 Other BCRYPT 1024 v 8
Magento 2.2 Ecommeree SHA256 1 v 7

Table 8: The default hashing scheme parameters of the investigated open source CMS

37

Regarding the usage of salt, the most important finding is that 14,29% of the targeted
CMS, and specifically X3cms, GetSimple CMS, miniBB, Phorum, MantisBT,
Collabtive, and phpList do not use salt in their hashing scheme (see Table 8), which
renders password hashes vulnerable to rainbow table attacks. The fact that salt is
missing in these CMS implies that users with the same plaintext passwords will also
share the same password hash. Another important finding is that 36.73% of the tested
CMS do not use iterations in their password hashing scheme (i.e., the iterations value
is 1). Also, the rest of the CMS that use iterations use an arbitrary number of iterations.
For instance, for BCRYPT we observe that there are CMS that use 256, 1024, or 4096
iterations, while for PBKDF2 we observe 10000, 12000, or 30000. These variations
stem from the fact that BCRYPT does not have official recommendations for its
iterations, while NIST proposes a minimum of 10.000 iterations for PBKDF2. Based

on the above, we can conclude to the following observation:

Observation 3: Password hashes created by 14.29% of the CMS are vulnerable to
guessing attacks based on rainbow tables, since the relevant CMS do not use salt in
their hashing scheme. Also, 36.73% of the CMS do not use iterations, which makes
them even more vulnerable to password guessing attacks. On the other hand, the rest
of the CMS that use iterations, select the number of iterations inconsistently and

arbitrarily.

The last parameter to be analyzed is the minimum acceptable password length.
Although this parameter does not affect the execution time of a hashing scheme,
password hashes created from small passwords are more likely to be cracked. From the
analysis of Table 8 it is observed that only 12.24% of the CMS (i.e., €107, Typo3 CMS,
Bugzilla, Redmine, Phplist, and Moodle) enforce passwords of 8 characters length or
greater. On the other hand, 6.12% require passwords with a minimum length of 7
characters, 14.29% of 6 characters, 20.41% of 5 characters and 8.16% of 4 characters.
However, the most important remark is that 38.78% (i.e. Drupal, SuiteCRM,
WordPress, SugarCRM, EspoCRM, GetSimple CMS, CMS Made simple, Odoo,
Mantisbt, Collabtive, Vanilla Forums, Observium, Lime Survey, MediaWiki, Phorum,
vBulletin, Mibew, and Composr) of the CMS do not check the password length during
the registration process, since we were able to create single character passwords. Based

on the above, we can conclude to the following observation:

38

Observation 4: 38.78% of the CMS do not enforce minimum password length policy,
which may result in users selecting weak passwords. Notably, WordPress and Drupal
belong to this category of CMS that allow a single character password. This
observation, alongside with the fact that many CMS use parallelizable hash functions

makes password cracking even more effective.

Driven by the above observations, we can conclude that the majority of CMS offer
weak hashing schemes in the default settings. A prime example is Phorum; it uses
MD5 without iterations and salt, while it allows even 1-character length passwords
(seeTable 8). Of note, the majority of the considered CMS allow modifications to the
default settings. For instance, there is a plugin for WordPress that allows to easily
change the default MD5 to BCRYPT for password hashing. However, CMS are
characterized as “plug and play” solutions. In particular, their main goal is to allow
even non-developers to easily deploy websites. This fact makes it less probable that
CMS administrators will ever try to modify the default configurations. What is more,
this argument is also strengthened by the fact that in general individuals tend to remain
at the default assignment (also known as default effect [44]). Based on the above, a

more generic observation can be extracted as follows:

Observation 5: CMS follow an opt-in policy for security configurations. That is, by
default they do not provide the most secure hashing schemes, but they allow the
modification to more secure schemes. However, considering that CMS administrators
may not be developers and do not have the appropriate security expertise, we argue
that most CMS are deployed in the Internet with the default security settings including

the hashing scheme.

The second part of this section examines the default hashing schemes of the most
commonly used web application frameworks. As we mentioned in section 2.1.3, a key
difference between CMS and web application frameworks is that the latter require
programming knowledge and they are utilized by web developers, while the former
(i.e., CMS) does not require coding knowledge, since it is based on installable modules.
Table 9 shows the investigated web application frameworks classified into 5 categories,
based on the programming language for web application development. More
specifically, we investigated i) 10 frameworks which rely on PHP, ii) 14 that are based
on Python, iii) 11 that use Ruby on Rails, and iv) 11 based on Javascript. ASP.NET is

the last framework we explored, and we categorized it as “Other”, since it supports

39

development in several programming languages. The default hashing schemes of the
investigated web application frameworks are depicted in Table 9. An important
observation that can be derived is that 48.94% of the web application frameworks do
not offer a default password hashing scheme, which might lead to improper password
hashing. Moreover, the Kohana PHP framework uses the same salt value for all stored
passwords, thus they are vulnerable to rainbow table attacks. Another significant
finding is that Kohana, Django, CherryPy, Bottle, ExpressJS, MeanJS, MernJS, nodeJS,
AllcountJS, Cuba, and ASP.NET (i.e. 23.40%) use parallelizable hash functions (i.e.,
MD5, SHA1, SHA256, SHA512 and PBKDF2), while Kohana, CherryPy, Bottle,
Allcount]S, Cuba, and ASP.NET (i.e. 12.77%) use only 1 iteration of the employed
hash function. On the other hand, Laravel 5.4, Codeigniter 3.1.4, CakePHP 3.3, Zend
framework3, Yii 2, Phalcon 3.0.4, Aura PHP, Lithium, MeteorJS, SailsJS, FathersJS,
Derby, and Ruby on Rails, which stand for 27.66% use the BCRYPT hash function by
default. Based on the above we can conclude to the following observation:

Observation 6: 23.40% of the web application frameworks opt for weak (i.e.,
parallelizable) hash functions, while 12.77% of them do not use iterations. What is
more, only 27.66% use the BCRYPT hash function by default. Similar to CMS and
observation 2, SCRYPT and Argon2 are absent from the default settings.

Moreover, from Table 9, we can notice that:

Observation 7: 48.94% of the investigated web application frameworks do not offer a
default password hashing scheme, which might lead to the selection of a weak password

hashing scheme in web applications.

The underlying assumption of observation 7 lies to the fact that developers are expected
to have the knowledge of selecting appropriate hash functions and configure securely
the hashing scheme of the websites they develop using salts. In a recent work [45], web
developers were given the task to store passwords for authentication in a website.
Among the many key insights of this work, the most important ones were: i) many
developers stored the passwords in plaintext; ii) most of the developers focused on the
functionality and only added security as an afterthought; iii) even participants who
attempted to store passwords security often did it insecurely, because they used
outdated methods (e.g., they used MD5 without even iterations) as security is a fast

moving field; iv) different standards and security recommendations made it difficult for

40

developers to decide what is the right course of actions. Therefore, all the above
observations imply that there is a lack of adequate security knowledge even by
developers, and simply assuming that they will select a secure password storage scheme
is a dangerous misconception. Hence, it would be beneficial for web applications

frameworks to offer secure default hashing schemes.

PHP Frameworks Hash function Iterations Salt JavaScript Hash function Iterations Salt
Kohana 3.3 SHA256 1 7 MeteorlS BCRYPT 1024 7
(Constant)
Symfony 3.2 No default Express]S PBKDF2suasiz 10000 v
Laravel 5.4 BCRYPT 1024 v SailsIS BCRYPT 1024 v
Codeigniter 3.1.4 BCRYPT 1024 v FathersIS BCRYPT 1024 v
CakePHP 3.3 BCRYPT 1024 v Derby BCRYPT 1024 v
Zend framework3 BCRYPT 16384 v ‘Wakanda No default
Yii2 BCRYPT 8192 v MeanlS PBKDF2sga512 10000 v
Phalcon 3.0.4 BCRYPT 256 v MernJS PBKDF2sHas12 10000 Vv
Aura PHP BCRYPT 1024 v nodelS PBKDF2sHas12 10000 Vv
Lithium BCRYPT 1024 v Allcount]S SHA1 1 v
Python Frameworks Hash function Iterations Salt Angular]S No default
Django PBKDF2sr4356 30000 v Ruby Frameworks | Hash fanction Iterations Salt
ChenryPy. MD5 1 v Ruby on Rails BCRYPT 1024 v
Flask PBKDF2sH4256 50000 v Padrino No default
Bottle No default Nyny No default
Pyramid SHAS512 | 1 X Grape No default
Klein No default Nancy No default
Web2Zpy SHAS12 | 1000 X Ramaze No default
Objectweb No default Cuba SHA1 1 <7
Pecan No default Camping No default
Tornado No default Scorched No default
Grok No default Celluloid No default
Zope No default Sinatra No default
Turbogears No default Other Frameworks | Hash function Iterations Salt
Quixote No default ASP.NET SHA256 1 v

Table 9: The default hashing scheme parameters of the investigated web application frameworks

2.5.Cost of password cracking

2.5.1. Hashrates
First, we derive hashrate values using a popular GPU-based password cracking tool

named Hashcat [46]. Due to its’ popularity, there are numerous benchmarks available
on the Internet that calculate the hashrate of various GPU models. However, due to the
fact that we were not able to find up to date benchmarks (i.e., the most recent ones were
of 2014) we opted for our own benchmarks. To this end, we derived hashrate values
(see Table 10) of various hash functions and iterations using the GeForce GTX 1070
[47], which was NVIDIA’s second-best GPU model of 2016. As expected the hash
functions MD5, SHA1, SHA256 and SHA512 exhibit high performance in the sense
that GPUs can compute several hashes per second. PBKDF2 slows downs the
computations due to the iterations used. Regarding BCRYPT and SCRYPT, we observe

41

that BCRYPT has the slowest performance for number of iterations up to 16384
iterations, but for higher values, SCRYPT is slower than BCRYPT.

Along with GPU based hashrates, it is imperative to derive the runtime of a hash value
calculation in a typical Web Server machine. The reason for this calculation is that the
number of iterations should not be set too high; otherwise the calculation of a hash
value can be significantly delayed, disrupting the normal operation of the website. That
is, authentication delays (due to the multiple iterations for a hash calculation) can
frustrate users that are trying to login, especially if they have to provide multiple times
their password, because they provided an erroneous input. As mentioned in [48], [49],
authentication delays higher than 1 second are not acceptable by many internet users.
As a side note, for an offline environment (i.e., disk encryption), higher numbers of
iterations can be used (e.g., for key generation from low entropy passwords). To this
end, we have used a typical server setup, an Intel Xeon E5-2640 v2 CPU with 4 GB
RAM to estimate the runtime of the hash functions for various iterations (see Table 10).
We observe that in almost all considered iterations values, the runtime of the hash
functions does not exceed the upper limit of one second, except for BCRYPT for 32678

and 65536 iterations, which the runtime is 2.72 sec and 5.45 seconds respectively.

2.5.2. Comparative analysis
Here we use our cost analysis model that we presented in section 2.3 to perform a

comparative analysis of the cost time between different CMS and web application
frameworks. To derive numerical results for the cost time we consider the values from
section 2.5.1 for the hashrates, as well as sections 2.3.2 and 2.3.4 for brute force and
dictionary effectiveness. We also consider the worst-case scenario for the attacker,
which means that the attack success factor a is equal to 1 (see section 2.3.3). Table 11
summarizes the numerical results. The comparison is performed using five (5) different
groups. Group 1 compares the cost time for a brute force attack (i.e., cost_timegr)
between a CMS that does not enforce a password policy by default and a CMS which

applies a password policy.

From the investigated CMS we identified that the majority of the CMS do not enforce
a password policy by default, except for Magento CMS. To this end, in group 1 we

include

42

L . Hashrate (H/s) Runtime (sec)
Hash function (iterations) (NVIDIA GTX1070) | (Intel Xeon E5-2640 v2)
MD5 (1) 21,359,700,000.00 1.06-10®
SHA1 (1) 7,043,888,888.00 1.37-10®
SHA256 (1) 2,536,500,000.00 1.75-10®
SHA512 (1) 844,100,000.00 1.95-10®
BCRYPT (1024) 358.00 8.68-10°
BCRYPT (8192) 44.75 6.85-10°
BCRYPT (16384) 22.00 6.8-10
BCRYPT (32768) 11.00 2.72
BCRYPT (65536) 5.00 5.45
PBKDF2sHazs6 (8192) 121,375.00 1.09-107?
PBKDF2shazs6 (16384) 60,574.00 3.92-102
PBKDF2sHazs6 (32768) 30,271.50 7.67-1072
PBKDF2sa256 (65536) 15243.50 1.57-101
PBKDF2shaz56 (131072) 7,587.00 3.04 107
PBKDF2sazs6 (262144) 3,797.00 6.16-107
PBKDF 251512 (8192) 43,631.00 2.61-102
PBKDF2sHas12 (16384) 22,174.00 5.23:107?
PBKDF2snas12 (32768) 10,895.25 1.03-101
PBKDF2sHas12 (65536) 5487.00 2.06-10*
PBKDF2shas12 (131072) 2,752.00 4.12-101
PBKDF2shas12 (262144) 1,388.00 8.22-101
SCRYPT (8192) 122.00 2.75-102
SCRYPT (16384) 34.00 5.24-102
SCRYPT (32768) 9.00 1.06-10
SCRYPT (65536) 2.00 2.16-10%
SCRYPT (131072) 0.3 435107
SCRYPT (262144) 0.012 8.71-107

Table 10: Hashrates and runtime values
for the comparison a CMS named EspoCRM (which does not have a password policy)
to Magento CMS (which by default uses a password policy). In particular, Magento
policy accepts passwords that are composed from at least 3 different charsets (i.e.,
numeric, lowercase, uppercase, special). Thus, for this comparison, we estimate the cost
time of a brute force attack cost_timesr for 8-character length mixedalphanumeric
passwords for Magento (due to the password policy), and 8-character length lowercase
passwords for EspoCRM (due to the absence of a password policy). Using equation (4)
in section 2.3.3 and the input values derived in section 2.3.2 we calculate that for
EspoCRM the cost_timesr is equal to 3940 seconds, while for Magento is 8708036
seconds, which is a whopping 220.916% increase. This can be justified by the fact that
password charset C of Magento is 62 (mixedalphanumeric — see Table 3) which greatly

increases the required number of hashes for the brute force attack.

43

Observation 8: A simple password policy such as the one of Magento, can have a
drastic effect on the effort of the attacker to perform password guessing. Unfortunately,
the majority of CMS and web application frameworks do not enforce the use of

password policies, not even in the password length.

Group 2 compares a CMS (i.e., Mibew) that uses BCRYPT with its lowest number of
iterations (i.e., 2) among all CMS and web application frameworks as shown in Table
8, with a web application framework (i.e., Flask) that uses PBKDF2, which is the
highest number of iterations (50.000 iterations) among all CMS and web application
frameworks. The attack is brute force and since no password policy is enforced in these
CMS, we select 8-character numeric passwords. The numerical results (see Table 11)
show that even the lowest iterations of BCRYPT have significantly higher cost time
(i.e., 2499488 seconds) compared to the highest iterations of PBKDF2 (i.e., 181814
seconds). This is due to the fact that BCRYPT reduces the level of parallelism [26]. As
we mentioned in section 2.2, NIST guidelines [30] recommend PBKDF2 for hashing
passwords with a minimum number of 10.000 iterations. Given our results, we argue

that this recommendation is not adequate to withstand against offline passwords attacks.

Observation 9. BCRYPT even only with 256 iterations provide significant
improvements in terms of security over PBKDF2 with 50.000 iterations. Thus, we argue
that not only the minimum recommended iterations of PBKDF2 by NIST is too low (i.e.,
10.000), but also the recommended hash function itself (i.e., PBKDF2) is not resistant

to password guessing.

Group 3 investigates the effect of iterations for BCRYPT on the cost time in a dictionary
attack. For this reason, we selected OpenCart, which uses 1024 iterations, and Zend
framework, which uses the highest number of BCRYPT iterations among all CMS and
web application frameworks (i.e. 16384). In this group, the derived numerical results
of cost time are based on a dictionary attack. Specifically, we select a dictionary attack
based on PCFG with 1.45-10° attempts and Epc=41.5% (see first row of Table 7). As
observed, an attacker needs 17302 seconds to guess a password for OpenCart (i.e., 1024
BCRYPT iterations), while this value increases to 276836 seconds for Zend Framework
(i.e., 16384 BCRYPT iterations), which is an 1500% increase. Considering that the
runtime of BCRYPT for 16384 iterations on a server is 6.8- 10" seconds (see Table 10),

44

which is lower than the login delay threshold of one second (see section 2.5.1),
OpencCart (and all other CMS using BCRYPT) can increase the value of iteration.

Observation 10. Most CMS uses 1024 iterations for BCRYPT. This is attributed to the
fact that the PHP programming language which all the CMS are based on, uses 1024
BCRYPT iterations by default. We argue that PHP can increase the default number of
BCRYPT iterations (e.g., 16384) without imposing significant delays in the login

procedure.

Group 4 aims at investigating the cost time of MHFs compared to BCRYPT. For this
reason, we opt for phpBB which uses BCRYPT with 1024 iterations and a hypothetical
website utilizing SCRYPT with 16384 iterations. Note that the recommended value of
SCRYPT [27] is 16384. We select a dictionary attack based on PCFG using
Epc=41.5%. From numerical results we can deduce that the SCRYPT hash function
increases the robustness of password hashing schemes, considering that an attacker
needs 31376 seconds to crack a password. Moreover, the runtime of SCRYPT on
servers is negligible, since it equals to 5.24-102 seconds for 16384 iterations (see Table

10). From group 4 results, we can conclude to the following:

Observation 11. As a long-term solution, we suggest CMS to upgrade their default hash
function to a MHF, such as SCRYPT, which is resistant to password cracking and does
not add login delays. Also NIST guidelines should replace PBDKF2 with a MHF. On a
positive note recent 2017 NIST guidelines do suggest (but not impose) the use of MHF.

Finally, group 5 aims at comparing the three most popular CMS namely WordPress,
Joomla, and Drupal. WordPress, which is the most commonly used CMS, uses the weak
MD5 hash function with 8192 iterations, while Drupal uses 65536 iterations of the
highly parallelizable SHA512 hash function. On the contrary, Joomla uses BCRYPT
with the PHP’s default iteration value (i.e. 1024). As observed, a dictionary attack with
Epc=41.5% can crack a WordPress password in 2.4 seconds, while this value increases
to 481 seconds for Drupal. The low level of parallelization of BCRYPT, has a
significant impact on the cost_timepc considering that an attacker needs 17302 seconds
to crack a Joomla password hash. To conclude, the most secure CMS is Joomla,
followed by Drupal, while WordPress is the most vulnerable to offline password

guessing attacks despite it is the most widely used CMS.

45

Attack | Target CMS Password Hash function | Iterations Attempts Effectiveness Cost time
Policy (sec)
Group BF Magento v SHA256 1 628 (Pl =8, C=62) Ezr=0.99% 8708036
s EspoCRM X SHAS512 1 26% (Pl =8, C=26) Epr=7.83% 3940
Group BF Flask X PBKDF 2554256 50000 102 (Pl =8, C=10) Ezr=2.79% 181814
z Mibew X BCRYPT 256 108 (Pl =8, C=10)| Epr=2.79% 2499488
Group DC OpenCart X BCRYPT 1024 1.45-106 Epc=41.5% 17302
3 Zend X BCRYPT 16384 1.45-106 Epc=41.5% 276836
Group DC PhpBB X BCRYPT 1024 1.45-105 Epc=41.5% 17302
4 Hypothetical X SCRYPT 16384 1.45-105 Epc=41.5% 31376
website
Group DC WordPress X MD35 8192 1.45-106 Enc=41.5% 2.4
5 Drupal X SHAS512 65536 1.45-106 Epc=41.5% 481
Joomla X BCRYPT 1024 1.45-10¢ Epc=41.5% 17302

Table 11: Numerical results of the cost time for various CMS and web application frameworks.

2.6. Misuse of password hashing schemes for denial of service

attacks

In this section we investigate whether hashing schemes can be misused to lead to denial
of service attacks to web applications. The rationale behind the experiments was that
resource intensive configurations of hashing schemes (e.g., high number of iterations)
can deplete the CPU resources of the web server and eventually result in denial of
service conditions. To this end, we deployed a custom version of the popular WordPress
CMS using the Apache web server. We implemented a plugin for WordPress with
which we can easily modify and configure all the parameters of the hashing scheme,
such as the hash function, the number of iterations, etc. (see below for the parameter
values of the hashing schemes). Finally, we wrote a script that performs multiple login
requests with a registered username and random password values, forcing WordPress
to hash and verify them. On the web server, we measured the CPU utilization using
htop toolkit [50]. Regarding the hardware setup, we used an Intel Xeon E5-2640 v2
CPU and 4 GB memory running Ubuntu server 18.04, Apache 2.4.29 and PHP 7.2.

As shown in Table 12, the parameters of the experiment were: i) the hash function, ii)
iterations, iii) password length and iv) rate (login requests per second). More
specifically, we examined hash functions that are used. Particularly, we considered the
following hash functions, which are the default ones for the 3 most popular CMS (i.e.,
WordPress, Joomla, Drupal). That is, we examined: i) MD5 as it is the default one used
by WordPress, ii) SHA512 which is the default one of Drupal, and iii) BCRYPT used
by Joomla. Apart from the above hash functions we also included in the experiments

SCRYPT, which is a memory hard function as discussed in section 2.2. Moreover, the

46

iterations value ranges from 1 to 65536 (2%), while the password length ranges from
10 to 10000 characters. Lastly, the rate of the login requests per second of users varies

from 1 to 30 requests per second.

Parameter Values
Hash function MDS5, SHA512, BCRYPT,
SCRYPT

1, 1024, 4096, 8192, 16384,
32768, 65536

Password length (pwd_length) 10, 1000, 5000, 10000
Rate (login requests per second) 1,5, 10, 15, 20, 25, 30

Iterations (1)

Table 12: Parameters of the hashing schemes.
Figure 1 shows the CPU utilization as a function of the login rate for the MD5, SHA512,
BCRYPT, and SCRYPT hash functions. In this experiment, we have used the default
iteration values of the hash functions as they employed in the popular CMS. That is, we
use: i) MD5 with 8192 iterations, as this is the default setting in WordPress, ii)
BCRYPT with 1024 iterations, which is the default setting of Joomla iii) SHA512 with
65536 iterations, which is the default setting of Drupal. Moreover, to include also a
MHF in the experiments, we use SCRYPT with 16384 iterations, as recommended in
its specifications [27]. As it is observed, in all cases the increase of the CPU utilization
is almost linear as the login rate increases. It is important to note that BCRYPT (i.e.
Joomla), and SHA512 (i.e. Drupal) with their default settings could cause the CPU
utilization to increase to 100% for rate equal to 20 and 25 requests respectively. By
maintaining such CPU load, the web server cannot cope with the required login
attempts, thus keeping occupied all the available Apache connections. This results in a
denial of service at the application layer, since the web server cannot respond to new
requests. A significant remark is that denial of service attacks realized even with 20-25
login requests per second, are not easily detectable by firewalls, if the logins are
performed from different IPs (i.e., distributed denial of service). On the other hand,
SCRYPT reaches 80% for rate equal to 30 requests per second. It is important to
mention that during the experiments we observed that when CPU utilization reached
80%, the website was responsive, but its pages were loading after a significant delay
(i.e., 10-15 seconds). Therefore, although SCRYPT did not reach 100% CPU
utilization, it was still capable of clogging the web server. On the other hand, Figure 1

suggests that MD5 cannot deplete the CPU resources as its increase rate is very slow

47

and does not exceed 30% CPU utilization. Based on the above, we can conclude to the

following observation:

Observation 12: Slow rate denial of service attacks against websites that use hash
functions with iterations are feasible (except for MD5). BCRYPT with 1024 iterations
can reach 100% CPU utilization, even for login rate equal to 20 requests per second.
This result is alarming considering that distributed denial of service attacks originated
by botnets can far exceed the rates of our experiments. As mentioned in [51] the
majority of the distributed denial of service attacks in 2017 was performed using 100

to 1000 requests per second.

S

T T T T T T
0 5 10 15 20 25 30

Rate (Login requests / second)

=]
=]

—e— MD5, 1=8192, Pwd_length=10
——BCRYPT, /=1024, Pwd_length=10
—+— SHA512, [=65536, Pwd_length=10
—o— SCRYPT, /=16384, Pwd_length=10

@
o
1

S
=]

CPU Utilization (%)

n
(=]
L

o
1

Figure 1: CPU utilization vs login rate
Although slow rate denial of service attacks are not easily detectable by intrusion
detection systems and next generation firewalls [52], the nature of our considered denial
of service based on password hashing has a weak point that defenders can take
advantage of, to withstand websites against this attack. In particular, by using a
mechanism called rate-limit (aka throttle), a website can block the usernames related to
the incorrect logins, for a specific time period when a predefined threshold of failed
consecutive attempts is reached. In this way, attackers cannot continue performing the
denial of service for a long time period, since eventually all the usernames under the
possession of the attacker will be blocked and the related login attempts will be
discarded. Another beneficial characteristic of this solution lies to the fact that the rate
limit can be applied at the application layer. As a matter of fact, there are many ready
to use free CMS plugins, (such as [53] for WordPress) or a middleware for web
application frameworks (such as [54] for CakePHP) that an administrator/developer can

consider to use.

48

Observation 13: It is imperative to employ rate-limit in websites to mitigate denial of
service attacks based on concurrent login attempts. The rate limit of login attempts is
an effective and easy to deploy security mechanism available in many CMS and web
applications frameworks. NIST guidelines consider as highly important to enforce rate

limits and recommend maximum 100 failures account [30].

In the next two experiments we will investigate if password length and iterations can
cause denial of service attacks even for very slow rates. More specifically, Figure 2
shows the CPU utilization versus the password length for the same hash functions and
iterations number as in the previous experiment. The rate of attempts is equal to 1
request per second. The first and most important finding is that SHA512 with 65536
iterations (i.e., Drupal default settings) is vulnerable to denial of service attacks, since
the CPU utilization reaches 100% for password length equal to 6000. MD5 has also an
increasing behavior but reaches almost 15% CPU utilization for password length equal
to 10.000. This happens because MD5 and SHA512 do not have a maximum acceptable
password length. On the contrary, BCRYPT has a constant CPU utilization independent
from the password length, because the maximum password length for BCRYPT is 72
characters. Lastly, although SCRYPT does not have a password length limitation, its’
CPU utilization does not change significantly, possibly due to its fast runtime on CPUs
(see Table 10). Based on the above results, we infer that CMS and application
frameworks should set by default a maximum acceptable password length policy to
avoid denial of service with very large passwords. We discovered that WordPress by
default limits to 4096 characters, while Drupal limits even more the password length to

128 characters.

Observation 14: All websites that use SHA1, SHA256, SHA512 or PBKDF2 with very
high number of iterations should accordingly limit the maximum password length
similarly to WordPress and Drupal to avoid falling victim of denial of service. On the
other hand, BCRYPT and SCRYPT are not susceptible to denial of service with large

passwords.

49

100%
80%

60% —e— MD5, /=8192, rate=1

8

5

= —+—BCRYPT, /=1024, rate=1

;% —0— 8HA512, 1=65536, rate=1
o 40%+ —=— SCRYPT, /=16384, rate=1
o

o

&}

20%
0% 1 T T T T
10 1000 5000 6000 10000
pwd_length

Figure 2: CPU utilization vs password length
Finally, Figure 3 shows the CPU utilization as a function of iterations. In this
experiment, we use a small password length and slow login rate, equal to 10-character
and 1 request/sec respectively. From Figure 3 we can observe that in all cases the CPU
utilization increases with iterations. However, increasing iterations we also increase the
resistance of passwords against guessing attacks. In other words, the iterations regulate
an inherent tradeoff between security and performance. In particular, as the number of
iterations increases, on the one hand the password hashes are more resistant to guessing
attacks (security), but on the other hand CPU utilization is increased (performance).
Figure 3 depicts also that BCRYPT is vulnerable to denial of service, since it reaches
100% CPU utilization with 32768 iterations, while SCRYPT reaches only 25% CPU
utilization for 65536 iterations. At the same time, the runtime for SCRYPT is lower
than 1 second in typical server machine (see Table 10), which makes it suitable for
interactive logins, due to its small authentication delay. Subsequently, we can conclude

to the following observation:

Observation 15: Compared to BCRYPT, SCRYPT is more scalable in the sense that the
number of iterations can be increased for password security without introducing denial
of service conditions and login delays provided that the web server has enough physical

memory (>4 GB).

50

1004

@
=]
|

—e— MD5, pwd_length=10, rate=1

—4— BCRYPT, pwd_length=10, rate=1
—o— 8HA512, pwd_length=10, rate=1
—s— SCRYPT, pwd_length=10, rate=1

CPU Utilization (%)

B 3 3
1 2 1 A 1
\

o

T T T T T
1 4096 8192 16384 32768 65536
Iterations

Figure 3: CPU utilization vs iterations
2.7.Recommendations on Password hashing
In light of our analysis, this section provides recommendations and alternative solutions

to enhance robustness of passwords against guessing attacks.

Update NIST recommendations. As mentioned previously, NIST recommends the
use of PBKDF2 with 10.000 iterations minimum. Based our observations, we believe
that NIST guidelines should be updated to replace PBKDF2 with a MHF, which is

adequately audited and proved that it is robust against attacks.

Use of secure default settings. One of the most influential insights from the behavioral
sciences 1s that whatever is in the “default” position generally persist. Thus, CMS
developers should shift from an “opt-in” to an “opt-out” policy with stronger security
configurations. Web application frameworks should also follow this practice and avoid
assuming that developers are able to select secure and appropriate hashing schemes

(e.g., use of salt, password policy, etc.).

Upgrade legacy hash functions. Regarding legacy hash functions, it is a fact that many
websites have remained with outdated hash functions such as MD5 or SHAL. The
problem that hinders adoption of a new hash function is the possible frustration to the
users of the website, because they will be forced to register once again to provide a new
password for the new hash function [55]. We argue that there are two possible ways to
upgrade a hash function without the need of a new registration. The first solution is to
keep two tables side by side one with the old hash function (e.g., MD5) and another
table for the new hash function. When a user logs in for the first time after the addition
of the new hash function, the website will first verify the legacy hash (e.g., MD5) and

then store the new hash (derived from the new hash function). When all the new hashes

51

have been calculated by all users, then the website can delete the old table with the
MD5 hashes. This solution is feasible only for a small number of users, otherwise it
could take an extremely long time to achieve the migration to the new hash function.
The second solution is called layered hashing scheme and it has been adopted by
Facebook [56] (see Figure 4). The idea is to use multiple hashes one after the other.
That is, the output of a hash function becomes input for another hash function. In this
way, a website can update a hash function at any time simply by adding a new layer of
a hash function, eliminating the need to maintain two separate tables and wait the users

to log in first. In the case of Facebook, the layered hashing scheme is as follows:

1. H = md5(pwd) (the legacy hash function)

2. H = hmacsha1(H, K1, salt) (K1 is a secret

3. H = Cryptoservice::hmac(H, K2) (K2 is a secret key stored in the cryptoservice)

4. H = scrypt(H, salt) (the new key hash function. Depending on the implementation SCRYPT output
length can be several bytes)

5. H = hmacshazse(H, K3, salt) (this hash function is used to limit the output length to 256 bits)

Figure 4: Layered Hashing scheme of Facebook

Note that in step 3, the Cryptoservice::hmac(H, K) refers to the computation of a hash
value by an external service (see below for analysis) using a keyed HMAC function
(this is known as distributed hashing — see below). In the example of Facebook, the
output of the legacy MDS5 (i.e., step 1) is being used as an input to multiple hash function
including a HMACsha1 in step2, another HMAC value (with unknown hash function)
in a remote cryptoservice (i.e., step 3), an SCRYPT (i.e., step 4), and finally a
HMAC:shazss (i.€., step 5). Therefore, using this layered approach, a hash function can

be updated without causing disruptions to the normal operation of the website.

Distributed hashing. A solution which is orthogonal to the actual hash function that a
website uses and can substantially protect against offline password guessing attacks is
named distributed hashing. The main idea of this solution lies in the delegation of the
hash value computation to an external service. More specifically, a hashing scheme
which is composed of multiple hash functions as the one presented previously in Figure
4 can offload the computation of an intermediate hash calculation to a remote crypto
service (aka crypto as a service) and send back the hashed value back to the web
application to continue the calculation of the hash value. Note that the hash calculation
in the cryptoservice is based on a keyed HMAC function, using a secret key, which is

stored in the cryptoservice (see step 3 in Figure 4). In this way, even if an attacker is

52

able to compromise the database of a web platform, in order to perform the guesses, he
should necessarily request the cryptoservice to obtain the intermediate hash value, since
the attacker does not possess the secret key for the HMAC function. In this way, the
offline guessing attack becomes an online attack, which means that the cryptoservice
can detect anomalies (i.e., a spike due to attempts of the attacker) and throttle
appropriately the traffic (thus reducing the number of attempts an attacker can perform).
Of note, recently a new research area has emerged [57] [58] [59] where the aim is to
enhance the cryptographic primitives used in distributed hashing schemes to eliminate

possible attacks against crypto services.

Federation and FIDO. Moreover, websites can opt for federated authentication
solution using OpenlID Connect protocol. In this way, there is no need for websites to
maintain a user database including passwords, due to the delegation of authentication
to established services such as Google and Facebook. On the users’ side, good security
practices for selecting passwords are still relevant. Users should select high entropy
long passwords and avoid reusing passwords across multiple websites. What is more,
passwords managers and two-factor authentication are traditional yet effective
measures to resist against password cracking. Also, the emerging FIDO protocol [60],
which is based on device-centric authentication, aims to eliminate the use of passwords

using public key cryptography.

Server relief. Regarding denial of service attacks that take advantage of intensive hash
functions to overload web servers, these can be mitigated by the use of a relatively new
mechanism named server relief. As a matter of fact, Argon2 has adopted this solution
to facilitate web servers to withstand against denial of service attacks. The rationale of
server relief mechanism is to allow the server to carry out the majority of computational
burden on the client. That is, instead of doing the entirety of the computation on the
server, the client does the most demanding - in terms of computation - parts and then
the client sends the intermediate values to the server, which calculates the final hash
value. Evidently, all intermediate values on the client side should not leak any
information for the actual password. An overview of various server relief solutions

highlighting advantages and drawbacks can be found in [61].

53

3. Overcoming the limitation of passwords

3.1.Strong authentication with Fast 1Dentity Online

3.1.1. Background

3.1.1.1. Related Work

The FIDO security reference [60] outlines a list of assets that must be protected
against malicious behavior and provides a limited set of security requirements with the
goal of protecting these assets. It is important to point out that these requirements are
optional and vendors receiving FIDO certification are not obliged to implement them.
A variety of vendors such as Samsung, LG, Qualcomm, and Huawei [62] have already
received FIDO certification, however, their implementations are proprietary, and,
therefore, not open to 3rd party evaluation. Per FIDO specifications, the critical assets
of the UAF protocol are the private key of the authentication key pair, the private key
of the UAF authenticator attestation key pair, and the UAF authenticator attestation
authority private key [63]. Furthermore, the UAF protocol specifications incorporate
the following (optional) security requirements: the authentication keys must be securely
stored within a UAF authenticator and thus protected against any misuse, users must
authenticate themselves to the UAF authenticator before the authentication keys are
accessed, the UAF authenticators may support authenticator attestation using a shared
attestation certificate, and a UAF authenticator may implement a secure display
mechanism (also referred as transaction confirmation mechanism), which can be used
by the UAF client for displaying transaction data to the user. Therefore, the UAF
specifications do not incorporate any mechanisms that safeguard the cryptographic
material stored in the UAF authenticators or protect against attacks that may target the
UAF client. Instead, the responsibility for the design and implementation of any

security measures that protect these critical entities is passed on to the vendors.

One solution to address the security requirements of the UAF specifications and provide
a secure operational environment for the UAF authenticators, is the incorporation of
trusted computing platform technologies [64]. The trusted computing platform
constitutes of specialized hardware that provides a variety of services, such as secure
input/output, device authentication, integrity measurement, sealed storage, remote
attestation, cryptographic acceleration, protected execution, root of trust, and digital
rights management. Two prevalent platforms for trusted computing currently exist [64],
the Trusted Platform Module (TPM) [65], which is based on the specifications created

54

by the Trusted Computing Group, and the TrustZone (TZ) platform [66], created by the
ARM corporation. The TPM is a co-processor, which provides basic cryptographic
capabilities like random number generation, hashing, protected storage of sensitive data
(e.g. secret keys), asymmetric encryption, as well as generation of signatures. The TPM
platform presents some significant limitations [64]: (i) the need for a separate module
increases the cost of a device; (ii) it cannot be deployed on legacy devices; (iii) it does
not protect against runtime attacks; (iv) it relies on the assumption that a TPM cannot
be tampered; (v) the physical size and energy consumption requirements make it an
unsuitable solution for mobile and embedded devices; (vi) in case of a TPM
compromise, the hardware module must be physically replaced; and (vii) the supported
cryptographic algorithms have been found to pose security concerns (i.e., SHA-1), and

are not well suited for resource restricted devices (i.e., RSA).

The TrustZone platform, is part of ARM's processor cores and system on chip (SoC)
reference architecture. The associated hardware is part of the SoC silicon, and thus, it
does not require any additional hardware. The primary objective of TrustZone is to
establish a hardware-enforced security environment providing code isolation, that is, a
clear separation between trusted software, which is granted access to sensitive data like
secret keys, and other parts of the embedded software. To achieve this, the TrustZone
platform provides two virtual processing cores with different privileges and a strictly
controlled communication interface, enabling the creation of two distinct execution
environments, encapsulated by hardware. Nevertheless, to the best of our knowledge,
Samsung is the only certified vendor that implements a UAF authenticator using the
TrustZone platform [67]. Furthermore, this approach only protects the UAF
authenticator, while the UAF client is still susceptible to a variety of attacks. Finally,
extensive literature has shown that the TrustZone platform itself is not immune to
weakness and vulnerabilities [68] [69] [70] [71].

3.1.1.2. FIDO UAF protocol operations
The UAF protocol (see Figure 5) encompasses three major operations, namely,
registration, authentication, and deregistration. During the registration operation, the
UAF protocol allows a user to register to a relying party using one or more UAF
authenticators. Once registration is complete, the user can then invoke the
authentication operation, in which the relying party prompts for a user authentication

using the UAF authenticator previously used during the registration operation. Finally,

55

in the deregistration operation, the relying party can trigger the deletion of the
authentication key material and remove the user from its list of authenticated users.

(- R (N
User device Relying party

Web

User agent application
UAF protocol
¢ >
Registration - ~
UAF client Authentication
UAF server

UAF authenticators

Private keys
Public keys

L . /
\: J/ N J

Figure 5: The FIDO UAF protocol

The UAF registration operation. The registration operation is initiated when a user
requests a registration to a relying party, either through a compatible application or
through a browser. The relying party replies to the registration request by transmitting
a registration message with the following parameters: the ApplID, the authenticator
policy, the server generated challenge, and the username to the UAF client residing in
the user’s device (illustrated in Figure 6). The AppID parameter is used by the UAF
client to determine if the calling application (or website) is authorized to use the UAF
protocol and it is associated with a key pair by the UAF authenticator (during key
generation), so that access to the generated key pair is limited to its respective
application. The authenticator policy lists the type of UAF authenticators required by
the relying party, while the server generated challenge is a random nonce value used to
protect against replay attacks. Finally, the username parameter is used by the UAF
authenticator to distinguish key pairs that belong to the same application (or website),
but to different users.

Once the UAF client receives the registration message from the relying party, it first
identifies the calling app (or website) and then determines (based on the AppID
parameter) whether the associated application is trusted and allowed to proceed with a
registration request. To accomplish this, the UAF client queries the relying party for

the trusted facet list (i.e., a list of all the approved entities related to the calling app)

56

and, based on this list, decides whether registration will proceed or not. For example, if
the registration request was initiated by an application, then the trusted facet list will
contain a signature of the calling application that the UAF client can use to verify the
app. If, on the other hand, the registration was initiated by a website, then the trusted
facet list will contain all the associated and approved domain names. Subsequently, the
UAF client will check the authenticator policy parameter and generate a key registration
request to the set of UAF authenticator(s) mandatory by the policy. If the required UAF
authenticators are not present in the user’s device, then the registration operation will

be canceled.

The UAF client communicates with the UAF authenticator(s) using the authenticator
specific module (ASM), a software associated with a UAF authenticator that provides
a uniform interface between the hardware and the UAF client software. At this stage,
the UAF client performs the following operations: it first calls the UAF authenticator
in order to compute the final challenge parameter (FCP), which is a hash of the AppID
and the server challenge. Then, it generates the KHAccessToken, which is an access
control mechanism for protecting an authenticator's UAF credentials from unauthorized
use. It is created by ASM by mixing various sources of information together. Typically,
KHAccessToken contains the following four data items: ApplD, PersonalD,
ASMToken and CallerID. The ApplID is provided by the relying party and it is
contained within every UAF message. The PersonalD is obtained by ASM from the
operating system, and, typically, a different PersonalD is assigned to every user
account. The ASMToken is a random generated secret which is maintained and
protected by ASM. In a typical implementation ASM will randomly generate an
ASMToken when it is first executed and will store this secret until it is uninstalled.
CallerID is the calling UAF client's platform assigned ID. Once the FCP and the
KHAccessToken are computed, the UAF client will send the key registration request to
the UAF authenticator including the FCP, the KHAccessToken, and the username

parameter.

Following the reception of a key registration request by a UAF authenticator, the later
will first prompt the user for authentication, and, then, generate a new key pair
(Vauth.pub, Uauth.priv), store it on its secure storage, and associate it with the received
username and KHAccessToken. Subsequently, the UAF authenticator will create the

key registration data (KRD) object containing the FCP, the newly generated user public

57

key (Uauth.pub), and the authenticator’s attestation ID (AAID), which is a unique
identifier assigned to a model, class or batch of UAF authenticators, and it is used by
the relying party to identify a UAF authenticator and attest its legitimacy. Once the
KRD is generated, the UAF authenticator will sign it using its attestation private key
and return to the UAF client a key registration reply (which the later forwards to the
relying party) that encompasses: the signed KRD, the AAID, Uauth.pub, and its
attestation certificate (Certattest). Upon the reception of the key registration reply by
the relying party, the later cryptographically verifies the KRD object, uses the AAID to
identify if the UAF authenticator is a legitimate authenticator with a valid (i.e.,
unrevoked) attestation certificate, and, finally, stores the Uauth.pub key in a database
for the purposes of user authentication in any subsequent authentication requests.

UAF authenticator FIDO client Relying server

Registration request -

Registration message:
Username, policy

Key registration request: <
Y reg stralion req AppID, challenge

Username, KHAccessToken
Generate: |¢ .
Uauth,,, hash(AppID, challenge)

Uauthg,,

Key registration reply:

Aaid, Certaes, Uauthys, > Key registration reply:
Sig{aaid, hash(ApplID, challenge), Uauth,s} | Aa);d gert‘.m. Uauthi:..

Sig{aaid, hash(ApplID, challenge), Uauthmf

Attest response,
store user’s Uauth,,,

Figure 6: The UAF registration operation
The UAF authentication operation. The authentication operation (illustrated in
Figure 7) is initiated when a user requests a service that requires authentication to a
relying party, either through a compatible application or through a browser (in a similar
fashion with the registration operation outlined above). The relying party replies to the
authentication request by transmitting an authentication message with the following
parameters: the AppID, the authenticator policy, and a server generated challenge, to
the UAF client residing in the user’s device. The UAF client receiving the
authentication request, first identifies the calling app (or website) and then determines
(based on the ApplD parameter) whether the associated application is trusted and
allowed to proceed with the authentication request. Subsequently, the UAF client
checks the authenticator policy parameter and sends a key authentication request to the

set of UAF authenticator(s) mandatory by the policy. If the required UAF authenticators

58

are not present in the user’s device, then the authentication operation will be canceled.
Using ASM, the UAF client performs the following operations: it first calls the UAF
authenticator in order to compute the FCP, which is a hash of the AppID and the server
challenge. Then, it retrieves the KHAccessToken, and finally, sends the key
authentication request to the UAF authenticator(s) including the FCP and the
KHAccessToken.

Following the reception of a key authentication request by a UAF authenticator, the
later will first check if the UAF client is authorized to request an authentication for that
particular user key, based on KHAccessToken. If the UAF client is authorized, then the
UAF authenticator will prompt the user for authentication, and, then, retrieve the
associated Uauth.priv from its secure key storage. Subsequently, the UAF authenticator
will create the SignedData object containing the FCP, a newly generated nonce, and a
Sign Counter (cntr). The cntr variable is a monotonically increasing counter,
incremented on every sign request performed by the UAF authenticator for a particular
user key pair. This value is then used by the relaying party to detect cloned
authenticators. Once the SignedData object is generated, the UAF authenticator will
sign it using the Uauth.priv key and return to the UAF client a key authentication reply
(which the later forwards to the relying party) that encompasses: the signed object
SignedData, the FCP, the nonce n, and the counter cntr. Finally, upon the reception of
the key authentication reply by the relying party, the later first retrieves Uauth.pub from
its database, cryptographically verifies the signedData object, and stores the value of
the cntr counter. If the verification of the SignedData object succeeds, then the user is

successfully authenticated.

UAF authenticator FIDO client Relying server
Authentication request
Authentication message:
5 policy
Verify KHAccessToken Key authentication request: AppID, challenge
Retrieve Uauth,, . KHAccessToken
Increment cntr M hash(AppID, challenge)

Generate:
nonce n
Sign FCP, n, cntr

Key authentication reply:
Aaid, n, cntr,

Sigaaid, hash(AppID, challenge), n, cntr]| Key authentication reply:
Aaid, n, cntr,

Sig{aaid, hash(AppID, challenge), n, cntr'T

Verify response,
lookup user's Uauth,,,

Figure 7: The UAF authentication operation

59

3.1.2. Security analysis
UAF authenticator vulnerabilities. The first and most apparent attack vector of the

UAF protocol is the authentication keys. Therefore, an attacker may attempt to (directly
or indirectly) gain unprivileged access to these keys. As we previously mentioned, the
responsibility of storing the authentication keys lies with the UAF authenticator and
based on the UAF protocol security requirements, the UAF authenticator utilises some
form of secure/privileged storage. However, it has been shown in the literature that such
types of key storage solutions can still be compromised [72]. UAF authenticators
typically rely on trusted computing platforms for the storage of cryptographic material.
Cooijmans et al [69] have shown that on several widely adopted trusted computing
platforms, an attacker with privileged rights can gain the ability of using encrypted
credentials by moving them to a different directory, which designates a malicious
application as the owner of the credentials. Finally, an attacker may also attempt to
indirectly gain access to the authentication keys, by fully compromising the UAF
authenticator(s). Based on the literature, an attacker can gain full access to a trusted
computing platform by performing an integrated circuit attack (i.e., ICA) [68]. One
limitation of this attack is the requirement to have physical access to the user’s device.
However, once the attack is performed, the attacker can then create a cloned UAF

authenticator, alleviating any further need for the original user’s device.

When utilizing a cloned UAF authenticator, an attacker must then evade the security
mechanisms of the UAF protocol, implemented on the purpose of identifying such
malicious behavior. Recall that the UAF protocol incorporates two security
mechanisms that safeguard the operation of the UAF authenticator: (i) an attestation
mechanism, in which the UAF authenticator must prove its legitimacy by providing an
attestation signature during the registration process and (ii) a sign counter (cntr)
mechanism, which is a monotonically increasing counter, incremented on every sign
request performed by the UAF authenticator for a particular user key pair and used by

the relaying party to detect cloned UAF authenticators.

Regarding the attestation mechanism, we have identified three approaches that can be
used by an attacker to circumvent detection. In the first method, an attacker may utilize
the extracted attestation key from the compromised UAF authenticator and perform
registration requests to relying parties, impersonating the legitimate user. Since the

attestation keys for each UAF authenticator are not unique (i.e., a group of UAF

60

authenticators share the same attestation key pair), the malicious behavior cannot be
easily detected by the relying party. If, however, the attestation keys are revoked by the
device’s vendor, then there is a risk of detection by the relying party. A second method
that can be used by an attacker when employing a cloned authenticator is to avoid the
attestation mechanism all together. This can be achieved by exploiting a limitation in
the attestation process. Recall that the attestation process takes place only during the
registration operation. Therefore, an attacker may allow the legitimate UAF
authenticator to perform the registration process, and, subsequently, without the users’
knowledge, use the cloned authenticator to authenticate itself to the relying party,
masquerading as the legitimate user. Finally, an attacker may use the cloned UAF
authenticator temporarily to collect personal information related to the legitimate user,
and, then, register at other relying parties using a different, non-cloned UAF
authenticator. Subsequently, since the attestation procedure takes place at a non-cloned
authenticator, there is no risk of revocation, while the attacker retains the ability to

impersonate the legitimate user to any relying party.

On the other hand, the second security measure proposed by the UAF specifications
(i.e., sign counter), can be circumvented by an attacker, if the later actively attempts to
perform an authentication operation immediately after the completion of cloning a UAF
authenticator. Recall from that during the authentication operation, a relying party will
assume a UAF authenticator is legitimate if the sign counter encapsulated in the key
authentication reply is equal to the sign counter maintained by the relying party
incremented by one. Therefore, a race condition evolves between the legitimate and the
cloned UAF authenticator, since only the UAF authenticator that manages to perform
an authentication request first, will be considered legitimate by the relying party (while
the second authenticator will attempt to authenticate using an older value of the sign
counter). Thus, an attacker can circumvent this security measure by performing an
authentication request to the relying party as soon as the UAF authenticator is cloned,

maximizing his chances of winning the race condition.

UAF client vulnerabilities. The second critical entity of the UAF protocol that resides
at a user’s device is the UAF client. Recall that the UAF client acts as an intermediator
between the relying party on one hand and the UAF authenticator on the other and it is
responsible for most of UAF’s protocol operations, short of generating the encryption

keys or performing cryptographic operations. Furthermore, the UAF client is

61

implemented entirely in software, making it an ideal candidate for software attacks.
Even more importantly, the UAF protocol does not incorporate any security measures
that safeguard the UAF client from attacks or verifies that a user’s device operates a
legitimate version of the client. The UAF protocol specifications propose the execution
of the UAF client in a “privileged” environment, however, since the client is typically
embedded within a browser either fully or as a plug-in, it is de-facto implemented as a

normal application.

The simplest method of delivering a malicious UAF client to a user’s device is by
deceiving the user to install the application voluntarily. Common delivery methods
include attachments in e-mails or browsing a malicious website that installs software
after the user clicks on a pop-up. Other methods of compromising a UAF client is
through malicious software residing at the user’s device (such as a virus, worm. trojan,
or root kit) or by exploiting an operating system vulnerability. The latter enables the
execution of a plethora of attacks such as spoofing of inter-process communication,
privilege escalation, return-oriented programming, or code injection attacks. For
example, in a variety of sources such as [73] [74] [75], the authors demonstrate
methodologies for accomplishing privilege escalation in the android operating system,
one of the most widely used platforms, which includes a variety of privilege protection
mechanisms, such as application specific sandboxing and Mandatory Access Control
(MAC) policies. Furthermore, in the most recent versions of android, privilege
escalation is typically achieved using system less root [74], which is the process of
gaining escalated privileges without any modification to the system partition, thus
evading detection by any security mechanisms that validate an operation system
through a checksum of its system partition (i.e., a common security mechanism used by

most of the trusted computing platforms).

3.1.3. Threat analysis
Critical assets related to the UAF protocols’ secure operation. The UAF

specifications [76] provide a limited list of assets that must be protected in an
implementation of the UAF protocol. These assets include the private key of the
authentication key pair, the private key of the UAF authenticator attestation key pair,
and the UAF authenticator attestation authority private key. However, an attacker may
also target several other assets that are either part of the UAF protocol, or they are

integral in its secure operation. In particular, an attacker may either target the UAF

62

authenticator(s) or the UAF client that are present in a legitimate users’ device.
Furthermore, an attacker may indirectly compromise the secure operation of the UAF
protocol by exploiting existing vulnerabilities (i) at the underlying operating system in
which the UAF protocol is executed, or (ii) at the trusted computing platform (typically
the TrustZone platform), used for the hardware-assisted protection of the encryption

keys and the operation of the UAF authenticator(s).

Threat evaluation. Based on the security analysis, the private keys stored in the UAF
authenticator, namely the attestation private key and the authentication private keys
pose a critical attack vector of the UAF protocol. Recall from that these keys are used
by the UAF authenticator to sign registration and authentication replies, respectively.
On the other hand, the relying party uses these signed replies to authenticate the UAF
authenticator and verify its legitimacy. Therefore, if an attacker compromises the
attestation private key, he would then be capable of impersonating the legitimate user
by registering to other relying parties on the users’ behalf, without the latter’s consent
(including fraudulent relaying parties). In order to have access to the authentication
keys associated with the malicious registrations and to avoid detection by the user, the
attacker will have to import the attestation private key to a cloned and silent
authenticator, i.e., an authenticator that appears to have been manufactured by the same
vendor as the legitimate one and does not prompt the user for any action during the
registration and authentication operations of the UAF protocol. On the other hand, if
the attacker compromises one or more authentication private keys, he would then be
capable of impersonating the legitimate user by authenticating as the user to relying
parties. The attacker is limited, however, to relying parties that the legitimate user has
already registered. Nevertheless, once authenticated, the attacker can then collect
personal data related to the legitimate user and stored at the relying party, as well as

perform transactions with the relaying party without the users’ consent.

An attacker may also attempt to indirectly gain access to the attestation and
authentication keys, by fully compromising the UAF authenticator(s) residing at the
device of a legitimate user. This can be accomplished in the following ways: the user
unwillingly installs a malicious authenticator to his/her device, the attacker
compromises the UAF authenticator by targeting the UAF authenticators’ underlying
trusted computing platform, and, the attacker gains physical access to the device and

either installs a malicious authenticator, or tampers with the legitimate UAF

63

authenticator(s) installed on the device. As a result, any subsequent registration and
authentication requests will be captured by the malicious authenticator, enabling the
attacker to impersonate the legitimate user, collect personal data, and perform
transactions on the users’ behalf, similarly to the cloned authenticator threat we
analyzed previously. Furthermore, the attacker can also extract the attestation and
authentication keys, to create a cloned authenticator that resides outside the device of
the user.

The UAF client signifies another critical attack vector identified in the security
evaluation. An attacker may attempt to compromise the UAF client by exploiting one
or more of the following vulnerabilities: gaining physical access to the user’s device
and manually installing a malicious client, deceiving the user to install the malicious
client voluntarily, using other malicious software residing at the user’s device (such as
a virus, worm. trojan, or root kit) to install the malicious client, or by exploiting an
operating system vulnerability. Having successfully compromised the UAF client, an
attacker is then capable of launching several additional attacks against the UAF
protocol, such as: allowing itself or other malicious applications to perform
registration/authentication operations without the user’s consent, enforce the use of the
weakest/less secure UAF authenticator during a legitimate registration process, direct a
user to a fake or malicious relying party, and defeat the user consent, transaction
confirmation, and trusted facet list security measures of the UAF protocol. During the
registration operation, the UAF client is responsible for initiating registration requests,
determining if applications (or websites) are authorized to use the UAF protocol,
present a Ul to the user, and directing the relying party challenge to the UAF
authenticator based on the authenticator policy transmitted by the relying party (i.e.,
based on the trusted facet list). Since the UAF client is the only entity responsible for
assessing the trusted facet list, it can allow the registration operation for any website,
or from any application, regardless of what is enforced by the trusted facet list security
measure. Therefore, the user may unwillingly be redirected to a malicious relying party
masqueraded as a legitimate one, so that personal/valuable information can be phished
by an attacker. Furthermore, as we mentioned previously, it is the UAF client’s
responsibility for presenting a Ul to the user, and, therefore, even if the user’s device
incorporates a transaction confirmation security mechanism, the confirmation will

always be true, since the mechanism validates if the information provided to the user is

64

tampered/modified/spoofed after leaving the UAF client, and not if the later modified
the displayed content. Finally, a malicious UAF client may forward a relying party
challenge to the weakest UAF authenticator (preferably one with a low entropy secret).
Subsequently, during authentication, the attacker could attempt to discover the secret

and access the user’s account without the legitimate users’ consent.

Asset Threat Consequences
Attestation private | Attacker gains access | Impersonate user, create a clone
key to the attestation keys | authenticator
Authentication Attacker gains access | Impersonate user, capture user
private key to the authentication | data

keys
UAF authenticator | User installs a | Impersonate user, capture user
malicious data, register the user to a
authenticator fraudulent replaying party
TrustZone, UAF | Attacker compromises | Create cloned authenticator,
authenticator the trusted computing | impersonate user, compromise the
platform UAF authenticator
UAF client, UAF | Attacker gains | Create cloned authenticator,
authenticator, physical access to a | impersonate user, compromise the
TrustZone user’s device UAF authenticator, install

malicious UAF client

UAF authenticator | Attacker employs a | Impersonate user, capture user
cloned authenticator data, register the user to a
fraudulent relaying party

UAF client User installs a | Register to a fraudulent relaying
malicious client party, phishing — lead to malicious
websites, downgrade

authentication policy, capture user
data, circumvent transaction
confirmation security mechanism,
allow malicious apps to
register/impersonate the user
Operating system Attacker can execute | Compromise the UAF client
privileged code at the
user’s device

Table 13: Threats related to the UAF protocol and their associated consequences

3.1.4. Results and discussion
The UAF protocol provides several important advantages over traditional

authentication mechanisms, such as strong authentication and a simplified registration
and authentication procedure. However, the UAF protocol also transfers user
authentication operations from the server-side to the client-side. Therefore, the critical
functionality of the UAF protocol typically operates in a consumer platform such as a
mobile device, which is susceptible to a variety of attacks such as malware and viruses,
its users deploy unsupervised software, and the deployed operating systems may be
susceptible to several vulnerabilities. As a part of this thesis, we have provided a

comprehensive security analysis of the UAF protocol and have identified several

65

vulnerabilities that may be exploited by an attacker to compromise the authenticity,
privacy, availability, and integrity of the UAF protocol. More specifically, we have
investigated methods of attacking the two entities of the UAF protocol residing at a
user’s device, namely, the UAF authenticator and the UAF client, including the ability
of an attacker to gain unprivileged access to the cryptographic material stored within
the UAF authenticator and highjack either the of these two entities. Furthermore, we
have investigated and identified how an attacker can circumvent the security measures
provided by the UAF protocol, including the authenticator attestation mechanism, the

transaction confirmation mechanism, the trusted facet list, and the sign counter.

3.2.Real-time protection of user authentication credentials

3.2.1. Related work
Regarding the retrieval of sensitive information in the volatile memory, Darren et al.
tried to recover data remnants from cloud storage applications including Dropbox
[77], Skydrive [78], and Google Drive [79]. Similarly, in [80] the authors investigate
the volatile memory of cloud services applications, such as Amazon S3, Dropbox,
Google Docs and Evernote. In all the aforementioned publications, several artifacts
were recovered such as authentication credentials, visited URLs, filenames and
hashes. Apart from personal computers, sensitive information was also recovered from
the volatile memory of Android devices using two different methods. More
specifically, in the first method [81] the authors used the Linux Memory Extractor
(LiME) kernel module [82] and a physical Samsung i9000 phone to dump the Android
memory, whereas in the second technique [83] the Android emulator was used
alongside with Dalvik Debug Monitor Server (DDMS) to acquire the memory data.
In both cases, critical and secure applications, such as mobile banking and password
managers, were examined and authentication credentials were recovered in plain text

from the dumped memory.

Regarding memory encryption, the proposed solutions can be further classified into
two categories: software- based and hardware-based. For software-based solutions, in
[84], the authors propose a modified secure memory bus controlled by the OS, in
which the encryption key is generated each time the system boots up. Peterson, in
[85], modified the virtual memory manager of the Linux 2.6.24 kernel and partitioned
the volatile memory into a plaintext and an encrypted segment. However, [86] shows

that the memory maps, should be maintained in the plaintext segment; thus pointing

66

the addresses to where the encrypted volatile data are stored. The second category of
the proposed solutions for memory encryption is based on hardware modifications.
In particular, several publications [87] [88] [89] [90] [91] [92] [93] for single processor
systems propose the addition of an encryption unit to cipher and decipher data from
and to the volatile memory. Moreover, for multi-processor systems, [94] proposes a
shared bus, containing a crypto engine, to coordinate and secure traffic between
processors, while [95] [96] proposed the use of sequence numbers for the
coordination between different processors. Lastly, in [97], the authors propose SecBus,

a cryptographic coprocessor between the volatile memory and the main processor.

The main limitation of the proposed memory encryption solutions has to do with
the fact that hardware-based solutions require extensive changes in the current
computer architecture, while the software-based solutions require modifications at
the OS kernel. In contrast to the relevant works, in this thesis we investigate if the
latest OS versions (Windows and Linux) provide built-in data zeroization methods
as well as whether C/C++ developers can use existing software libraries and methods

in order to perform data zeroization in their applications.

3.2.2. Software level protection

3.2.2.1. Operating System level protection
Memory management is the procedure of administering the volatile memory at the
system level. This is performed by the kernel of the Operating System (OS) with the
support of a part of the central processing unit, named memory management unit.
Allocation and deallocation requests are used in order to grant or revoke memory blocks
to applications. Allocation is the procedure in which memory blocks are granted to
applications and are then used by them for handling the necessary data for their
functionalities. On the other hand, deallocation is the procedure in which the
applications free the memory blocks they do not longer need, making them available
for other running or starting applications. It is important to note that the OS does not
modify the allocated memory blocks, since this action could cause the running
applications to crash. Subsequently, during the applications’ runtime, only the

applications themselves are accountable of modifying their allocated memory blocks.

In order to find out whether the OS performs data zeroization, we developed a testing
application written in C programming language (see Figure 8), that holds a secret

value in a variable named as password. The aim of the experiments was to investigate

67

how many instances of the password variable can be extracted from the volatile
memory. More specifically, as shown in Figure 8, the testing application defines the
password variable at line 3, which is an array of type char and size length. Moreover,
the stdin (e.g. keyboard input) is used to fill in the array of the password variable. For
the experiments, three types of memory dumps were considered which are: A)
Process: This memory dump includes only the memory blocks that are allocated to
the executable of Figure 8. B) All- Processes: This memory dump includes memory
blocks allocated to all running user-mode processes in the OS. In this way we can find
out whether the password variable of Figure 8 can be extracted from other user-
mode running processes; C) System: This memory dump contains the entire volatile
memory including memory allocated not only to user-mode processes but also to the OS
kernel, drivers, unallocated blocks. The technical methodology that we followed in
order to obtain the memory dumps is as follows. To perform a Process dump in Linux,
the GNU debugger (i.e. GDB) was used to dump the memory blocks of a process based
on its PID. Similarly, the All-processes dump was performed using a script that feeds
GDB with all the running PIDs. The same methodology was followed in Windows. In
particular, we used the Windows Powershell in order to list all the running PIDs and
feed them to ProcDump [98] (i.e., a Windows utility which performs memory dumps of
running processes). It is important to note that all the aforementioned memory dumps,
were executed using root privileges both in Linux and Windows. To perform System
dump, we used virtual machines, in order to dump the entire volatile memory of the

system in an easy manner.

First testing application

01l: void main () {

02: static int length;

03: char password[length];

04: fgets (password, length * sizeof (char), stdin);
05: sleep(120);

06: } //suspend for 120 seconds

Figure 8: First testing application used to discover the total number of instances of the password
variable in the volatile memory

Moreover, two scenarios were considered. In the first scenario named as “Running
process” we performed memory dumps (all three types) while the process of the
executable was running. This was achieved during the sleep function (see line 5 of

Figure 8), where the execution of the process was suspended, and we were able to

68

recover the memory dump. In the second scenario named as “After termination”, we

performed the

Operating System
Memory Ubuntu Linux Windows 7/10
Dump Running After Running After
Process termination Process termination
Process 1 Not Applicable 3 Not Applicable
All-Processes 1 1 3 0
System 9 2 5 0

Table 14: Number of instances of the password variable
memory dumps immediately after the termination of the executable. Evidently, in this
scenario, we performed only All- processes and System memory dumps, since
Process dump cannot be performed after the termination of the executable. The
experiments were conducted in Windows 7 and 10 and Ubuntu Linux 14.04, fully
updated as of 15th of April 2016. In both versions of Windows, the compiler of
Microsoft Visual Studio 2015 suite was used, while in Ubuntu Linux we used the

latest version of the GCC compiler (i.e., v5.3).

The results of the experiments are summarized in Table 14. We can observe that in
the “Running process” scenario in all three memory dump types for both Linux and
Windows OS we were able to recover the value of the password variable. It is
interesting to notice that in the All-processes memory dump type, the number of the
instances of the password variable were the same as in the Process memory dump
type (i.e., 1 time in Linux and 3 times in Windows). This means that apart from the
process itself of the testing application (see Figure 8), the other processes running in
the system did not use the password variable. We can also observe that in the System
memory dump, the number of recovered password instances increased (i.e., 9 times in
Linux and 5 times in Windows). This result means that i) apart from the process of the
testing application itself, the OS kernel stores also the value of the password variable

and ii) the OS kernels stores in multiple memory regions the value of the password.

Regarding the results of the “After termination” scenario, we can observe an
interesting outcome: for both All-processes and System dumps in Linux we were able
of recovering the password variable (1 and 2 times respectively). On the other hand,

in Windows we were not able to recover it. This result means that Windows kernel

69

zeroize the deallocated blocks of a process immediately after its termination. On the
other hand, the Linux kernel follows a different approach. That is, instead of zeroizing
the deallocated memory blocks of a terminating process, it zeroizes the memory blocks
right before their allocation [99]. Thus, in Linux, a malicious software that has access
to the entire system memory can extract potentially sensitive information (such as
authentication credentials) even from applications that were terminated, in case the
related deallocated blocks have not been allocated to a new process. On the contrary,
in Windows, a malicious software can extract information only from the memory blocks

of running applications.

The above observation implies that Windows is more secure than Linux to memory
disclosure attacks. To overcome this issue, we have identified that there is a Linux
kernel patch, named as GRsecurity, which provide several security enhancements
for the Linux kernel [100]. One of these enhancements enables the Linux kernel to
zeroize the deallocated memory blocks after process termination by compiling the
Linux kernel with the PAX_MEMORY_SANITIZE option that the GRsecurity provides.
To this end, we repeated the experiments (using the testing application of Figure 8)
in Ubuntu 14.04 compiled with a kernel that has GRSecurity installed and the
PAX_MEMORY_SANITIZE option enabled. We observed that this time we were not
able of recovering instances of the password variable after the process termination.
Based on the above discussion, we propose the use of GRsecurity (with the
PAX_MEMORY_SANITIZE option enabled), in order to minimize information

disclosure in volatile memory.

Despite the fact that GRsecurity may enable the kernel to perform data zeroization, it
is not widely adopted in Linux Distributions. Even those that offer a GRsecurity patched
kernel by default, many of them have not enabled the PAX_MEMORY _SANITIZE
option. In total, we found six Linux distributions [101] [102] [103] [104] [105] [106]
that come with a GRsecuity patched kernel and only three of them have the
PAX_MEMORY_SANITIZE option enabled.

3.2.2.2. Source code level protection
The previous results show that OS zeroize data only after the termination of the
running process which means that during the runtime of a process, sensitive
information can be extracted in its allocated memory blocks. In this section, we

investigate functions and methods that developers can use in order to zeroize memory

70

blocks during the runtime of their applications. We focus on C/C++ programming
language, since it provides low-level memory manipulation. All experiments carried

out in this section perform Process dump in a “Running-process” scenario.

First, we investigate for Windows OS, if there are special functions that can be used
in order to zeroize data. More specifically, by including the windows.h header file in
a C/C++ source code, a developer has the ability of using the macro
SecureZeroMemory, which calls the function RtlSecureZeroMemory that guarantees
to zeroize memory blocks, even if it is not subsequently written or accessed by the
code [107]. We repeated the experiments performed in the previous section (i.e., as
mentioned previously only Process dump in the “Running process” scenario) using
the same testing application with the difference that at the end of the code we called
the SecureZeroMemory macro. We observed that indeed the macro
SecureZeroMemoy replaced the contents of the password variable with zeroes. Thus,
in Windows, developers should use the macro SecureZeroMemory to ensure that the

memory blocks of their applications are zeroized.

On the other hand, for Linux OS, there is no similar C function that can be used to
zeroize data in the volatile memory. To this end, we have used the function memset
of the C programming language to manually try to zeroize memory blocks allocated
to a process. In particular, we have used the testing application of Figure 9, which is
identical to the code of Figure 8, with the difference that Figure 9 includes in line 5,
the command memset(password, ‘0’°, length). This command writes in the memory
block, which is allocated for the value of the password variable, the O character as
many times as indicated by the value of the length variable. This will result in the
zeroization of the data of the array password. We repeated the experiments of the
previous section and we observed that the memset function was not operating as we
expected, since the value of the password variable was detected in the process dumps.
After investigation, we identified that the memset function was not being called due
to code optimization. The latter is the process in which a compiler tries to improve the
generated executable code by making it consume fewer resources, such as CPU and
Memory. This is performed by several techniques. One of these methods is to avoid
compiling specific code which is not necessary for the execution flow. For this
reason, inour experiments, the compiler skipped the calling of the memset function,

because the new value of the password variable (i.e., the zeroized data) is not used

71

after the memset function. Note that although the executable of Figure 9 was compiled
using GCC without optimization flags, the GCC compiler did perform optimization
and did not include the memset function in the executable.

Second testing application

01: void main() {

02: static int length;

03: char password[length];

04: fgets(password, length * sizeof(char), stdin);
05: memset (password, ‘0’, length);

06: sleep(120); //suspend for 120 seconds

07: 1}

Figure 9: Second testing application used to discover the total number of instances of the passwrod
variable ni the volatile memory

The above results raise the following question: “is it feasible to avoid optimization
caused by the GCC compiler, in order to ensure that the memset function will be
executed”? To answer this question we tried two different methods. In the first
method we used the function memset_s. The latter has the same functionality as
memset. The main difference between those two functions is that the memset_s
cannot be optimized out by the compilers [108]. However, memset_s is included only
in the currently last version of the standard of the C programming language (i.e., C11
[109]) in Annex K. Unfortunately, Annex K is not mandatory in C11, while GCC
compiler (i.e., v5.3) has not implemented the Annex K, and thus the developers have

no way to use the memset_s function.

The second method that we attempted in order to avoid bypassing optimization was
to write a testing application similar to the one described in [110] (see Figure 10),
which uses a function pointer of type volatile named memset_volatile, as defined at
line 1. The declaration of a variable as volatile instructs the compiler not to optimize
out functions that access the variable. This is due to the fact the volatile type is
used mainly for buffers in communication with hardware devices or other applications.
Based on this observation, we defined the function pointer named memset_volatile
pointing to the function memset at line 1. At line 4, a pointer named password_heap
is defined, which points to a block of memory of size length*sizeof(char). This block
of memory is allocated using the malloc function, which is used for dynamic memory
allocation during the application execution. In line 5, the user enters his password,
and in line 6, the memory block allocated at line 4 is freed with the free command.

It should be noted that the free command does not zeroize the data of the memory

72

block it deallocates. Consequently, we used the memset_volatile function pointer to
indirectly call the memset function. We repeated the experiments once again, using
all the available optimization flags of the GCC compiler. In all cases we observed
that the GCC compiler did not optimize the call to the memset function. Although the
experiments showed that the data type volatile in C/C++ programing language
prevents the optimization caused by the compilers, it should be noted that GCC
compiler can arbitrary perform optimization even in volatile data types as mentioned
in [111]. In any case, volatile function pointers can be used to increase the chances

that the memset function will not be optimized out during compilation.

Second testing application

01l: void *(*volatile memset volatile) (void *, int, size t) = memset;
02: void sensitive function() {

03: static int length;

04: char *password heap = malloc(length * sizeof(char));

05: fgets(password heap, n, stdin);

06: memset volatile(password heap, 0, n * sizeof(char));

07: free (password)

08: sleep(120); //suspend for 120 seconds

09: }

Figure 10: Third testing application used to discover the total number of instances of the passwrod
variable in the volatile memory

3.2.3. Results and discussion
The real-time user security is significant, as authentication credentials can be stolen in

real-time. Therefore, this thesis investigates security measures that can be applied at
the OS and the source code level to protect sensitive information in volatile memory
from disclosure attacks. Based on the experimental analysis, it was observed that
Windows delete the data from deallocated memory blocks, while Linux does not. This
can be solved using the GRsecurity Linux kernel patch that enables the zeroization of
deallocated memory blocks, using the PAX_MEMORY_SANITIZE option during the
kernel compilation. At the source code level, the Windows developers may use the
SecureZeroMemory function for manually modifying volatile memory data without
facing any optimization issues. In Linux, we propose the use of volatile function
pointers to ensure that the call to memset will not be optimized out. Lastly, the
experiments performed in web browsers show that in most cases it was feasible to
recover user authentication credentials from all the web browsers except when the

user has closed the tab that used to access the website.

73

4. Continuous authentication and detection of malicious
actions

4.1. Continuous authentication using biometric modalities

4.1.1. Security and performance of Biometric based authentication
Protection schemes for biometric templates can be categorized as follows: a) biometric
cryptosystems, and b) cancelable biometrics. Biometric cryptosystems are designed to
securely bind a key to a biometric feature or generate a key from a biometric feature.
On the other hand, cancelable biometrics consists of intentional, repeatable distortions
of biometric features, based on one-way transforms, where the comparison of biometric
templates takes place in the transformed domain. A comprehensive overview of
biometric template protection schemes is presented in [112]. One of the most widely
used cancellable biometrics algorithm is biohash and its variations [113], [114]. The
one-way transformation of biohash is based on random projections [115]. The
mathematical properties of random projections ensure the security of the protected
template, while at the same time the authentication performance is not deteriorated. For
this reason, the proposed scheme adopts a simple variation of biohash to secure the
extracted gait features.

As mentioned previously, biometric systems include two procedures: a) enroliment and
b) authentication. During enrollment, biometric features are extracted from a user of
the system to form its biometric template, which is stored in a database or token. During
authentication, the system extracts the considered biometric features of a user and
creates a new biometric template, which is compared against the enrolled one for user’s
acceptance or rejection. Due to the intrinsic noise of biometric features, the
authentication and enrollment template cannot perfectly match. For this reason,
biometrics systems compare the distance ((i.e., Euclidean, Hamming, or any other
metric) between the enrolled and authentication template of a user against a
predetermined threshold. If the distance is lower than the threshold value, then the user
is successfully authenticated; otherwise he/she is rejected.

The performance of a biometric system can be estimated and quantified using the
following two metrics: i) false acceptance rate (FAR) and ii) false rejection rate (FRR).
FAR represents the probability that an authentication system will incorrectly accept an

authentication attempt by an impostor (i.e., a non-valid user that does not have an

74

enrolled biometric template in the system); whereas FRR represents the probability that
the system will incorrectly reject an authentication attempt by a genuine user (i.e., a
valid and registered user of the system with an enrolled biometric template). As we
analyze below, the exact value of FAR and FRR depend on the predetermined threshold
value of the system. Another important metric that can be used to evaluate the
authentication performance of a biometric system, is the Equal Error Rate (EER). The
latter is the rate at which both acceptance and rejection errors are equal (i.e.,
EER=FAR=FRR). It is evident that the lower the value of EER is, the higher the

accuracy of the biometric system.

Threshold

Genuine
Distribution

Impostor
Distribution

Percentage

FAR

Distance

Figure 11: Genuine and impostor distributions as a function of distance between enrollment and
authentication templates

To gain better understanding of the FAR, FRR and EER metrics, Figure 11 plots
genuine and impostor distributions of a generic biometric system as a function of the
distance between the enrolled and authentication templates. As expected, genuine users
have small distances, while impostors have high distances. We can also observe that
the two distribution curves have an overlapping area. This means that in this
overlapping area the system cannot distinguish genuine users from impostors.
Moreover, as shown in Figure 11, the threshold value is set at the intersection point of
the two curves. The threshold value divides the overlapping area into two sub-areas.
The left sub-area represents the FAR, while the right sub-area represents the FRR. The
intersection point of the two curves defines the EER value (see Figure 11), since at this
point the FAR and FRR are equal (i.e., EER=FAR=FRR). Moreover, it is evident that
a biometric system presents optimum results (i.e., FAR and FRR equal to 0) when the
genuine and impostor curves do not overall at all. On the other hand, as the overlapping
area between the genuine and impostor curves increases, then the authentication

performance is deteriorated.

75

4.1.2. Related Work
Over the last years, several studies have been performed to consider gait signatures, by
using shape analysis and extracting features from the silhouette of the human body.
Here, we provide a brief overview of the most recent works in this area. In [116], the
authors pinpoint that temporal information is critical to the performance of gait
recognition. To address this, they propose a novel temporal template, named chrono-
gait image (CGl) in order to retain temporal information in a gait sequence. Moreover,
the authors of [117] argue that the change of viewing angle of the sensor causes
significant distortion to the extracted features. Based on this observation, they
formulate a new patch distribution feature (PDF) to address this issue. The same
viewing angle problem is addressed in [118]. The authors propose a transformation
framework of the walking silhouettes to normalize gaits from arbitrary views. In [119],
the proposed method is based on the idea that the problem of human gait recognition
can be transformed from the spatiotemporal into the spatial domain, specifically, the
2D image domain. This is achieved by representing a sample of a human gait as a still

image.

Towards this direction, [120] argues that variations of walking speed may lead to
significant changes of human walking patterns. Based on this observation, a differential
composition model (DCM) is proposed that differentiates the effects caused by walking
speed changes on various human body parts; while at the same time it balances the
different discriminabilities of each body part on the overall gait similarity
measurements. In [121], the concept of the gait energy image (GEI) is extended from
2D to 3D images, creating gait energy volume (GEV). The obtained numerical results
show that the GEV performance is improved, compared to the GEI baseline and fused
multi-view GEI approaches. Next, in [122] the authors instead of using human
silhouette images from moving picture, they apply 3D point clouds data of human body
obtained from stereo camera, which has the scale-invariant property. In this way, they
achieve significant performance improvement in terms of gait recognition. In [123], the
authors propose a multi-view, multi-stance gait identification method, using unified
multi-view population hidden Markov models, in which all the models share the same
transition probabilities. Hence, the gait dynamics in each view can be normalized into
fixed-length stances by Viterbi decoding. [124] provides an extensive overview of the

methods used for accelerometer-based gait analysis, using mobile devices. In [125], the

76

extraction of distinguishable gait features is proposed using the radial integration
transform (RIT), the circular integration transform (CIT), and the weighted Krawtchouk
moments. In our proposed scheme, we use the CIT and RIT transformations for gait

feature extraction, due to their excellent recognition capabilities

On the other hand, the related work in protection schemes for gait features is rather
limited. In [126], the authors propose an authentication system that protects gait
features using biometric cryptosystems. Gait features are extracted using an
accelerometer attached to the user’s body. Experimental results show that the proposed
scheme achieves small EER values, only, for small key sizes. Thus, high accuracy is
achieved without providing an adequate level of security. Finally, in [127], the authors
propose a template protection scheme for gait features, based on channel coding (i.e.,
LDPC codes). Their approach achieves EER=6% for straight silhouette types, but 20%
and 30% for bag and coat types respectively.

A common limitation of the majority of the literature is that it focuses, only, on the
extraction and not on the protection of the gait features. On the contrary, as a part of
this thesis we propose and integrate feature extraction and protection into one system,
providing a complete solution for biometric authentication based on gait features.
Moreover, the previous works [127] and [126] that attempt to secure gait features, fail
to achieve an optimum tradeoff between security and performance. On the hand, by
interpolating between the security of biohash and the recognition capabilities of gait
features, we achieve to outperform existing solutions, without undermining the
provided security. Finally, it is important to mention that biohash has been successfully
applied to various biometric features including fingerprints [113] [128], face [129]
[130], signatures [114], palmprints and palm veins [131] [132], but to the best of our
knowledge it has not been applied to gait features.

4.1.3. Continuous authentication using the gait modality
4.1.3.1. Feature Extraction
For the extraction of gait features, this part considers three different types of human
silhouettes: 1) straight (i.e., the user wears trousers, blouse and shoes), 2) coat (similar
to straight silhouette, but the user also wears a coat), and, 3) bag (similar to straight
silhouette, but the user carries also a briefcase). It is worth noting that although the
current work considers only the above three types of silhouettes, the proposed

authentication system can be easily extended to take into account other types of

77

silhouettes (e.g., the user wears a hat) or various combinations (e.g., a user wearing a

coat and a hat).

The extraction of gait features is based on two feature-based algorithms: the RIT and
CIT transformations. These algorithms are selected due to their capability to represent
important shape characteristics [131]. That is, during human movement, there is a
considerably large diversity in the angles of lower parts of the body (e.g. arms, legs),
which vary among individuals. Both RIT and CIT transformations ensure that the
important dynamics of human shape are captured, thus enabling the correct
classification of individuals. Moreover, these algorithms are less sensitive to the

presence of noise on the silhouette image, compared to other schemes [131].

At this point, we provide a brief presentation of these transformations, where additional
details can be found in [125]. The first step in gait analysis is the extraction of the
walking subject's silhouette from the input image sequence. The normalized silhouettes
are defined as S; (x, y) where transformations are applied. More specifically, the RIT
transform of a function f(.,.) is defined as the integral of f(.,.) along a line starting
from the center of the silhouette(x,, y,), which forms angle 8 with the horizontal axis.

The discrete form of RIT, which computes the transform in steps of 46 is given by:

RIT(tA6) = %Zle(ga(xo + jAu = cos(t48),y, + jAu * sin(t46))),

where T =1, ..., T, Au and A6 are constant step sizes of distance u and angle 6, J is the
number of silhouette pixels that coincides with the line that has orientation 6 and are
positioned between the center of the silhouette and the end of the silhouette in that
direction, and T = 360°/46.

In a similar manner, CIT is defined as the integral of a function f(.,.) along a circle
curve h(p) with center (x,, yo) and radius p. The discrete form of the CIT transform is

given by:

CIT (kdp) = %Zle(g’c (xo + kAp = cos(tA8),y, + kAp * sin(t46))),

where k =1,..K,Ap and A6 are the constant step sizes of the radius and angle

variables, k4p is the radius of the smallest circle that encloses the binary silhouette

78

image S;, and T = 360°/46. The output of the CIT and RIT transformations are the

fixed-length vectors I, and I, Of size n; = 80 and n, = 120 respectively.

4.1.3.2. Biohashing

After the extraction of the gait features (using the CIT and RIT transformations), the
biohash algorithm is applied to secure them. The biohash algorithm is a two-factor
authentication scheme that identifies a user based on what he/she is (i.e., biometrics)
and what he/she has under his/her possession (i.e., token). In the context of our
proposed scheme, the biohash algorithm converts the gait feature vectors I'-;r and I,
to non-invertible bitstreams, using a token that the user possesses. Since the application
of biohash is similar to both CIT and RIT vectors, here we present the biohash algorithm
in a generic way. More specifically, we present the application of biohash to a vector I'
of size n, which is converted to a bitstream B. Biohash includes the following phases
[115]:

1. The token of the user generates a set of orthonormal pseudorandom vectors
{r,eR™i=1,..,n},
2. A vector Z of size n with elements z; is computed such as:
z; =(C|r;) €R,i ={1,..,n},

where (. |.) indicates the inner product operation. This procedure is also known

as random projection.
3. The mean value u and standard deviation o of z; are computed.

4. The final step is the binarization of z;. As shown in Table 15, first it divides the
real-space of z; into 8 segments. Next, each segment is mapped to a three bit digit
value b; € {0,1}3, so that two successive segments have only one bit difference
between them (see Table 16). In this way, it transforms the elements of vector
Z into a bitstream B = {b, b, ... b, } of 3n bits length.

79

Segment Zi bi
1 —0<z;<pu—30 000
2 u—3c<z;<u—20 | 001
3 u—20<zi<u—o 011
4 U—o<z;<u 010
5 usz,<u+ao 110
6 Uut+o<z;<u+2o 111
7 u+20<z;<u+30 | 101
8 U+30<z <+ 100

Table 15: Conversion of z; to bis

4.1.4. Initial experiments and observations

In this section we propose and evaluate experimentally two initial enrollment and
authentication schemes. As we analyze below, despite the fact that these two schemes
proved inadequate, due to their poor authentication performance, they provided useful
observations and insights that allowed us to fine-tune and design and optimal

enrollment and authentication scheme that is presented in section 4.1.5.

As we mentioned in section 4.1.3.1, we consider three types of gait features that are
extracted from three types of human silhouettes: i) straight Gstraight, ii) coat Geoat, and,
iii) bag Gnag. Thus, an important question that arises here is: Which one of the three
considered gait features the authentication system should enroll? To answer this
question, we consider the following two enrollment and authentication schemes each

of which encompasses a different technical approach:

1stscheme: Enrollment of one of the three considered gait feature vectors. The selection

of the specific silhouette type that will be used for enrollment is arbitrary.

2nd scheme: First, a feature-level fusion of all three gait feature vectors is performed.

Next, we enroll the single vector generated from the fusion.

In the sections below, we present and evaluate through experiments the two above

mentioned enrollment and authentication schemes.

4.1.4.1. 1%tscheme
In the first scheme, we enroll gait features that are extracted only from one of the three

considered types of human silhouettes. The specific gait feature that will be used for

80

enrollment is selected arbitrary. In this analysis, we consider gait features from a
straight human silhouette to be used for enrollment (note that the same procedure is
followed, if another type of human silhouette is selected for enrollment). In this case,
the CIT and RIT transformations are applied to extract the gait features from a straight

silhouette Gstraight. That is,

GaitVector it straight) = CIT_Transformation(Gsiraignet)),
GaitVector it straight) = RIT_Transformation(Gstral-ght).
Next, the biohash algorithm is applied to the two feature vectors (i.e., one for CIT and
one for RIT), in order to generate two different enroliment bitstreams, denoted Ebitsit,
straight) aNd EbitSit, straight), respectively, which are stored in the enrollment database. That
is:
EDbits it straight) = Biohash(GaitVector(Cit,stmight) ,Token),
EDitS(rit straigney = Biohash(GaitVector it seraigne) » Token).
In the authentication procedure, the silhouette G of the user can be one of the three

types (i.e., straight, coat, bag). First, the CIT and RIT transformation are applied to
extract two gait feature vectors (i.e., one from CIT and one from RIT) as follows:

GaitVector .y = CIT Transformation(G),
GaitVectory = RIT_Transformation(G).

Next, using the user’s token and the extracted feature vectors, biohash is applied to

generate two different authentication bitstreams Abitscity and Abitsiy. That is:

Abits cipy Biohash(GaitVector(cit) ,Token),

Abits i) = Biohash(GaitVector(rit) ,Token).

At this point, the hamming distance between the authentication and the enroliment
bitstreams is computed, separately for each transformation. Finally, the sum of the two

hamming distances is computed as follows:
FinalResult = HDistance(Ebits(citystmight), Abits i) +
HDistance(EDbits i straight) ADitS(rir))

Finally, a user is accepted if FinalResult is less than a predetermined threshold,

otherwise he/she is rejected.

81

4.1.4.2. 2"9scheme
In the second scheme, we apply feature-level fusion [133], in order to enroll gait
features from all the three considered human silhouettes. In particular, the CIT and RIT
transformations are applied to extract the gait features from the three considered human
silhouettes: i) straight, ii) coat, and, iii) bag. Next, we fuse the extracted feature vectors
to create two mean feature vectors GaitVector it fuseay and GaitVector(rit rusea)as

follows:

Gaitvecwr(cit,straight)+Gaitvecwr(cit,bag)+Gaitvecwr(cit,coat)

GaitVector it fused)= 3)

GaitVector it straight)rGaitVector iyt pqg)+GaitVector it coar)
3 .

GaitVector(rit,fused) =

Subsequently, biohash is applied to the two mean feature vectors, in order to generate
two different enrollment bitstreams denoted EDbitScit, fusiony and EDbitSgit, fusion),
respectively, which are stored in the enrollment database. The computation of the

enrollment bitstreams is performed as follows:
EDits cit, fusiony = BioHash(GaitVector it fused));
Ebits it fusiony = BioHash (GaitVector(ritlfused)).

Similarly to the first scheme, in the authentication procedure, the silhouette G of
the user can be one of the three types that were captured in the enrollment procedure
(i.e., straight, coat, bag). First, the CIT and RIT transformations are applied to extract
two gait feature vectors (i.e., one from CIT and one from RIT). As previously, using
the user’s token and the gait features vectors, biohash is applied to generate two
different authentication bitstreams Abitsciy and Abitsiy. Next, the hamming distance
between the authentication and the enrollment bitstreams is computed, separately, for
each transformation. After that, the final score named FinalResult is computed, which

is the sum of the two previously computed hamming distances. That is:
FinalResult = HDistance(Ebits(cit,fusion), Abits(a-t)) +
HDistance(Ebits(rit‘fusion), Abits(m))

4.1.4.3. Experiments and numerical results
In this section, we evaluate the authentication performance of the two enrollment and
authentication schemes. To this end, we have implemented in C++ programming

language the following software modules: i) the CIT and RIT transformation

82

algorithms, ii) the biohash algorithm, and iii) the above two enrollment and
authentication schemes. In the carried out experiments, we captured silhouettes of 75
subjects (i.e., users). Three different human silhouette categories were considered: a)
straight, b) coat, and, c) bag. The relative position of the camera and the subject was
vertical. Thus, the angle of the direction of the camera and the face of the subject was

90 degrees.

The evaluation of the two schemes is performed by computing the genuine and
impostor distributions. More specifically, to investigate the authentication performance
of the proposed scheme, we classify the users as: a) genuine and b) impostors. Let user
A be a genuine user with a token denoted as TRNa, while his/her biometric data is
denoted as GAITa. Assume now that an impostor has his/her own biometric data
GAlTimpostor and his/her own token TRNimpostor. The goal of the impostor is to be
authenticated as user A. We identify three different attack scenarios for the impostor:
1) a type 1 impostor uses his own biometric data GAIT impostor and his own TRNimpostor;
ii) a type 2 impostor has stolen and uses user’s A token TRNa but uses his/her own
biometric data GAITimpostor; and iii) a type 3 impostor has stolen and uses the biometric
data of user A GAITa and uses his/her own TRNimpostor. IMmpostors of type 1 are weaker
(in terms of probability of successful authentication as genuine users) than impostors
of type 2 and 3, since they do not possess any authentication credential (token or gait
features). It is evident that in case that an impostor possesses both gait features and the

token of a valid user, then he/she can be successfully authenticated as a genuine user.

Figure 12 shows the genuine and impostor distributions for the first scheme (recall
that the straight silhouette has been selected to enroll gait features). Note that since the
genuine bag and coat distributions had exactly the same curves they are presented as
one curve named genuine bag/coat. The same applies also for type 1 and 3 impostors
distributions and, therefore, their curves are represented by a single one named type
1/3. Figure 12 shows that the type 1/3 impostors are clearly separated (i.e., no overlap)
from the genuine distributions, which means that the 1% scheme achieves
EER=FAR=FFR=0%. We also observe that the genuine straight distributions have a
very small overlap with type 2 impostors. We have estimated that the EER value for
type 2 impostors and genuine straight is equal to 9%. However, it can be deduced from
Figure 12 that genuine bag/coat distributions overlap greatly with type 2 impostor

distribution, which means that the system cannot distinguish them. As a matter of fact,

83

we have derived the EER value equal to 34% for type 2 impostors and genuine bag/coat,
which is considerably high and unacceptable.

It is worth noting that we repeated the experiments using this time gait features
extracted from a bag silhouette as enrollment. Again, the same distribution behavior
was observed with the difference that this time genuine bag distributions had a small
overlap with type 2 impostors, while straight/coat curves overlapped greatly with type
2 impostors. In this case, the Type 2 EER value was derived equal to 33%. Note that
similar results we observed using a coat silhouette as enrollment. From the above

analysis, we deduce the following observation:

—&— Genuine Straight
—e— Genuine Bag/Coat
—o— Type 1/3

12% 4 —=— Type 2

14%

10%

8%

6%

Percentage

4% -

29 [¥4 /\\
0% . = .

T T T T T T T T T 1
50 100 160 200 250 300
FinalResult

o

Figure 12: Distributions of the FinalResult values of the first scheme for genuine users and impostors.

Observation 16: Gait features that are extracted from the same user are similar only
when they are extracted from the same silhouette type. On the contrary, gait features
that are extracted from different silhouette types of the same user have great

differences.

The above observation indicates that if, for example, we use enrollment templates
generated from a straight silhouette type, then a valid user may be rejected if his/her
authentication templates are generated from bag or coat types. Similarly, if we use gait
features extracted from bag silhouette as enrollment template, then a valid user may be
rejected, if the silhouette type for authentication is straight or coat. This happens
because when the enrollment and authentication templates (i.e., gait features) are

generated from different silhouette types, the extracted gait vectors differ significantly,

84

due to distortions that are caused by the different captured silhouette type. The above

leads to the more generic observation:

Observation 17: If we use enrollment templates only from one silhouette type, then the

authentication performance is significantly deteriorated.

Figure 13 shows the genuine and impostor distributions for the second enrollment
and authentication scheme. First, we observed that all three genuine silhouette types
had exactly the same distribution curve. For this reason, Figure 13 shows one genuine
distribution curve that represents all silhouette types. It is observed again that the type
1/3 and genuine distributions are clearly separated and thus EER=FAR=FFR=0% is
achieved for these types of impostors. On the other hand, the type 2 impostor
distribution overlaps almost entirely with the genuine one, resulting in a very high EER
value equal to 45% for type 2 impostors. This means that if we use feature fusion at the
enrollment phase, the authentication performance is worse than the first scheme for all
silhouette types.

4.1.5. User registration and authentication using the gait modality.
In this section, we describe the final enrollment and authentication scheme called
gaithashing that yields the best numerical results. Unlike the previous two schemes that
enroll only one feature gait vector (i.e., from a specific type of silhouette or fused),
gaithashing enrolls separately gait feature vectors from all the three considered human
silhouette types. Moreover, in the authentication process of gaithashing, the new
extracted gait features are fused with each one of the enrollment templates, using
weighted sums. By selecting appropriate weight values, gaithashing performs
comparison between gait features of the same silhouette type, in order to increase the

authentication performance and avoid the pitfalls of the previously mentioned schemes.
From the above analysis, we deduce the following observation:

Observation 18: Feature-level fusion has adverse impact on the authentication

performance.

More specifically, as shown in Figure 14, the first step of the enrollment procedure in
gaithashing is to capture the aforementioned three distinct silhouettes of the user: a)
straight Gstraight, b) coat Geoat, and, iii) bag Grag. Next, the CIT and RIT transformations

are applied, separately, to each one of the three silhouettes of the user to extract the gait

85

7%
6% -

5% —

Percentage

1% S

8%

4% —
3%

2% -

0%

0 50

T T T
100 150

FinalResult

T
200

T T 1
250 300

Figure 13: Distributions of the FinalResult values of the second scheme for genuine users and

Step |

<|—> CIT

RIT

Gistraight

Gbag

Gicoat

j CIT

RIT

4|—> CIT
_|—> RIT

impostors.

|
—_

Token <%

S

—

e

Token J»

S

—_—

Step 2

Biohash

Biohash

Biohash

Biohash

Biohash

Biohash

—» Lbits(cilstraight)

——— Ebits(rit,straight)

——» Ebits(cit,bag)

—» Ebits(ritbag)

——> Ebits(cit,coat)

——» Ebits(rit,coat)

Figure 14: Gaithashing enrollment procedure

86

Algorithm 1: Enrollment Algorithm

Input: Three gait silhouettes (Gstraight, Gbag, Geoat), TOken

Output: Six enrollment Bitstreams (EbitS(itstraight), EDItS(citbag), EDitS(citcoay, EDitS(ritstraight), EDItSitbag)
EbitS(it,coat)

1. Categories={straight,bag,coat}

2. for i in Categories do

3. GaitVector ., ;y = CIT Transformation(G));

4. GaitVector ;) = RIT_Transformation(G;));
5. Ebits (i) = Biohash(GaitVector(Cit,i) ,Token);

6. Ebits (it) = Biohash(GaitVector(n-t_i) ,Token);
7. end

Figure 15: Gaithashing enroliment algorithm
features. In this way, in total, six different gait features are extracted: three from the
CIT transformation and three from RIT. In the second step, biohash is applied to each
one of the six gait features using the token of the user, generating six different
enrollment bitstreams. That is, three enrollment bitstreams for the CIT transformation
EDitScitstraight)y, EDItS(citbag), EDItS(citcoaty, and three enrollment bitstreams for RIT
EDbitSrit straight), EDItS(rit,pag), EDItS(rit,coat), Which are stored in the enrollment database. The

algorithm of the enrollment procedure is presented in Figure 15.

The authentication procedure includes four distinct steps. Note that in the authentication
procedure, the silhouette G of the user can be one of the three types that were captured
in the enrollment procedure (i.e., straight, coat, bag). In the first step, the CIT and RIT
transformation are applied to extract two different gait features (i.e., one from CIT and
one from RIT). In the second step, using the user’s token and the extracted features,
biohash is applied to generate two different authentication bitstreams Abitsity and
Abitsgiy. During the third step, the authentication and the enrollment bitstreams are
compared and fused, separately, for each transformation to produce the intermediate
scores CitSum and RitSum (i.e., first-level fusion as shown in Figure 16). Finally, in
the fourth step, the CitSum and RitSum are fused (i.e., second-level fusion as shown in
Figure 16) to generate the final score named as FinalResult. At this point, the user is
accepted if FinalResult is less than a predetermined threshold; otherwise he/she is
rejected. As mentioned below, the first and second level fusions are based on weighted
sums. The exact values of the employed weights as well as the predetermined threshold
are derived experimentally (see section 4.1.6), maximizing the authentication

performance.

87

Step 1 Step 2 Step 3 ‘ Step 4

S <4 crr —‘ﬁ Biohash &; I'hreshold
First-level

CilSum
“bitsieit.struight) Fusion
) 4
<hils(e at)
>

Silhouette G Token o7 Second:level FinalResult or Reject
=3 Second-leve
N Decision

Fusion
Libitsgritstraight) —
—_—
Ebits{sitbag
—Ebitsiducoa | prinst-level

— Tusion ‘g
2 RitSum
e RIT —J‘ Biohash ~ — Abitsirin >

Accepl

Figure 16: Gaithashing authentication procedure

First-level fusion

The first-level fusion module is invoked in the authentication procedure, right after the
generation of the authentication bitstreams. This module calculates the hamming
distances between each authentication and enrollment bitstream of the user. Note that
the hamming distance represents the number of different bits between two bitstreams.
In total, three hamming distances are computed for each transformation (CIT and RIT)

as follows:

Score it straight) = HDistance(Ebits(cit,stmight), Abits(cit)),
Score it pag) = HDistance(Ebits(a-tlbag), Abits(a-t)),
Scorecit,coat) = HDistance(Ebits(cit,wat), Abits(cit)).

and

Score(i straighty = HDistance(Ebits i seraigney APits(rir)),
Scorewitpag) = HDistance(Ebits(ritlbag), Abits(n-t)),
Scorerit,coary = HDistance (EDitS it coat), ADItS(rir))-

A small hamming distance value between the authentication and enrollment bitstreams
means that the compared bitstreams are similar. On the contrary, a high hamming
distance value means that the compared bitstreams are different and they do not share

similarities.

Since the user’s silhouette type should match with one of the three enrollment types, it
is evident that one of the previously generated scores from the RIT transformation and

one from CIT have small hamming distance values (see observation 16), while the

88

remaining scores have high hamming distance. Let X1 be the minimum between the

three scores of CIT, that is,
Xl = Min(Score(cit,straight): Score(cit,bag)'Score(cit,coat))a

and Xz, X3 the remaining two scores. Similarly, we assign Y1 the minimum between

the three scores of RIT:
Yl = Min(score(rit,straight)» Score(rit,bag)'Score(rit,coat))a

and Y2, Y3 the remaining two scores. In essence, X1 and Y3 represent the hamming
distance between authentication and enrollment bitstreams of the same silhouette type,
while X2, X3 and Y2,Y3 represent the hamming distance between authentication and
enrollment bitstreams of different silhouette types. In other words, the values of Xz, X3
and Y2,Y3 are considered to be noise. At this point, the first-level fusion module fuses
the hamming distances of each transformation using weighted sums and generates two

intermediate scores, CitSum and RitSum such as:
CitSum = oy * X1 + 0y * X, + a3 * X3,
thSum = bl * Y1 + b2 *Yz +b3 *Y3,

where a4, a,, a3 and by, b,,b; are weight values such as oy > a,,a; and b; >
b,, bs,while it is @; + @, + @3 = 1 and b; + b, + b; = 1. Note that the impact of X1
and Y1 on the value of CitSum and RitSum respectively is greater than the other scores.
This happens because their corresponding weight values (i.e., a; and b,) are greater
than the other weight values. In this way, the noise introduced by X2, X3 and Y2,Y3 do

not affect, significantly, the value of CitSum and RitSum.
Second-level fusion and decision

In this step, first a final score (denoted as FinalResult) is computed by fusing the

CitSum and RitSum values, using weighted sums such as:

FinalResult = wy * CitSum + w, * RitSum,

where w;and w, are weights such as w; + w, = 1. Finally, the user is accepted or
rejected based on the following simple rule: If FinalResult is less than a predetermined
threshold, then the user is authenticated successfully; otherwise the user is rejected. The

algorithm of the authentication procedure is presented in Figure 17.

89

4.1.6. Performance evaluation
To evaluate the authentication performance of the proposed scheme, we have
implemented the two-level fusion and decision algorithm of gaithashing. The
parameters of the carried out experiments are the same as in section 4.3. That is, three
different human silhouette categories were considered: a) straight, b) coat, and, c) bag.
Moreover, we classify the users as: a) genuine and b) impostors. We identify three
different attack scenarios for the impostor: i) a type 1 impostor uses his own biometric
data and his/her own token; ii) a type 2 impostor has stolen and uses a valid token of a
genuine user but uses his/her own biometric data; and iii) a type 3 impostor has stolen

and uses the biometric data of a genuine user but uses his/her own token.

Algorithm 2: Authentication Algorithm

Input: An authentication gait silhouette (G), Six Enrollment Bitstreams,
Token, Threshold

Output: Acceptance or rejection of the user

1: Categories={straight, bag, coat}

: GaitVector.y = CIT Transformation(G);

: GaitVector(y = RIT Transformation(G);

: Abits(;y = Biohash(GaitVector . ,Token);

D Abitsgiy = Biohash(GaitVector(n-t) ,Token);

: for i in Categories do

: Scoret iy = HDistance (Ebits i), Abits(cit));

: Scoreq jy = HDistance (Ebits (. i), ADitS(rit));

9:end

10: Xy = Min(Scoreit straight)r SCOT€(cit pag)» SCOT€(cit coar)) aNA X2, X3 the
remaining two scores;

11:Y) = Min(Score it straig ht)r SCOT€(rit pag)r SCOTC(rit coary) @Nd Y2, Y3 the remaining
two scores;

12: CitSum = aq * X1 + ap * Xy + a3 * X3;

13: RitSum = by *Y; + by Y, + b3 * Y3;

14: FinalResult = wy * CitSum + w, * RitSum;

15: if FinalResult < Threshold then

16: User is accepted;

17: else

18: User is rejected;

19: end

00 ~NOoO OB WD

Figure 17: Gaithashing authentication algorithm

We have conducted two set of experiments. The aim of the first set is to derive the
distributions of the FinalResult values for both genuine users and impostors (all three
types). The FinalResult is the most important parameter in the proposed scheme, since
the authentication of a user is based on its value. By investigating the distribution of
FinalResult values, we gain insights for the behavior of the gaithashing scheme and
whether it can distinguish impostors from genuine users. In the second set of

experiments, the goal is to estimate the FAR, FRR and EER values. As mentioned

90

previously (see section 4.1.1), FAR represents the probability that the authentication
system will incorrectly accept an authentication attempt by an impostor, whereas FRR
represents the probability that the authentication system will incorrectly reject an
authentication attempt by a genuine user. This experiment allows us to estimate an

appropriate threshold value that can minimize both FAR and FRR, at the same time.

In the carried out experiments, the values of weights were set as follows:a; = b, =
0.5,a, = b, = 0.25, a3 = b; = 0.25(first-level fusion) and w; =0.4,w, = 0.6
(second-level fusion). As we analyze below, these values were selected after trying
various combinations and experiments, in order to achieve the best authentication

performance (i.e., minimize the EER value).

40% — -
—a— Genuine

—o— Type 1/3
—— Type 2

30%

20%

Percentage

10% —

| /‘s X\ P
0% — oo T T T T T 1 O/)vl T == !

FinalResult

Figure 18: Distributions of the FinalResult values of gaithashing for genuine users and three impostor
types

Figure 18 shows the distribution of the FinalResult values for both impostors 1, 2, 3
and genuine users. Note that the distributions of impostors type 1 and 3 were identical
and are presented in one curve. It is observed that the FinalResult values of type 1 and
type 3 impostors is considerably higher than the genuine. In fact, the highest value of
FinalResult for genuine users is 25, while the values of FinalResult for impostors type
1/3 begins at 110. As a result, the distribution curves of the genuine users and type 1/3
impostors do not overlap at all. This means that gaithashing can always distinguish
between impostors type 1/3 and genuine users. In other words, an impostor of type 1
and 3 cannot be authenticated as genuine user. For example, if we set the threshold

value equal to 60, then the FinalResult value for all genuine users is less than the

91

threshold value, while all impostors of type 1 and 3 have FinalResult value higher than
the threshold, which means that they will be rejected. On the other hand, we observe
that the type 2 impostor distribution marginally overlaps with the genuine one. The
intersection area of the two curves (i.e., genuine and impostor type 2 distribution)
begins for FinalResult equal to 10 and ends for FinalResult equal to 25. In this area,
gaithashing cannot distinguish between genuine users and type 2 impostors, since they
share the same FinalResult values. The above results indicate that depending on the
value of the selected threshold, an impostor type 2 may be authenticated, successfully,
as a genuine user or a genuine user may be rejected, incorrectly. For example, if we set
threshold equal to 10, then as shown in Figure 18, no impostor of type 2 will be
accepted. However, a small percentage of genuine users will be rejected, because their

FinalResult value is greater than the threshold.

To quantify and investigate further the authentication performance of gaithashing, we
have estimated the FAR and FRR values, as a function of threshold values (see Figure
19). As expected, the value of FRR decreases, as the threshold increases. On the other
hand, the values of FAR for the three impostors types increases as the threshold
increases. Thus, the value of the threshold regulates a tradeoff between FAR and FRR.
A small threshold value may minimize FAR, but the FRR may be very high. On the
contrary, a high threshold value may minimize FRR, but the value of FAR can be very
high. For this reason, we have to estimate the EER value (see section 4.1.1), where the
FAR and FRR are equal (i.e., EER=FAR=FRR). Evidently, the value of EER should be
as low as possible, since a low value of EER entails a low value of FAR and FRR. This
value can be easily estimated, since it is the intersection point of the FAR and FRR
curves. Thus, as shown in Figure 19, for impostors of type 2, the EER equals to 10.8%
which is obtained for threshold value equal to 14. This means that if we set the threshold
equal to 14, then for 100 authentication attempts, the proposed scheme presents in total
10 false rejections of a genuine user or false acceptance of a type 2 impostor. Moreover,
the EER for impostors of type 1/3 is equal to 0%, since the FRR and FAR curves do
not intersect. This means that gaithashing is able to always detect type 1/3 impostors.
Thus, we can deduce that the proposed scheme attains very high performance for all

impostor scenarios, while false alarms are kept to minimal.

92

1 —s— FRR Genuine
120% —o—FAR Type 1/3
—>—FAR Type 2
100%
80% |
Q
[=)]
8
& 60%
o
[}
o
40% EER
20% /
0% pot Bpmme e 0
0 20 40 60 80 100 120 140 160

Threshold

Figure 19: Gaithashing FRR-FAR values as functions of the threshold value

It is important to mention that the employed weight values for the first and second level
fusion play a key role in the performance of gaithashing. These were derived after a
fine tuning procedure in which we performed several trials in order to minimize the
EER value. More specifically, Table 16 shows various weight values that we tested and
the corresponding EER value for impostors of type 2 (note that the EER value for
impostors type 1/3 was equal to 0% independently of weight values). Recall that oy >
oy, a3 and by > b,, bs, whileitisoy + a, + a3 =1, by + b, + by =1 and wy+w, =
1. First, we randomly selected weights values for the first-level fusion, while the
weights for the second level fusion were constant and equal to w; = w, = 0.5.
Initially, we tested the following weight values: o; = 0.5, a, = a3 = 0.25 and b; =
0.5, b, = by = 0.25, (1* trial). Numerical results showed that gaithashing achieved
EER=11.4%. Next, in the 2" trial we increased the values of a, (i.e., a; = 0.6) and b,
(i.e., b; = 0.6) and we observed that the EER value increased (i.e., EER=13.2%),
which was not acceptable. In the third trial we increased only the value of o; (i.e., a; =
0.6), while b; was equal to its initial value (i.e., b; = 0.5). Again, we observed that the
value of EER was higher compared to the first trial (i.e., EER=12.5%). In the fourth
trial, we reduced o4 (i.e., a; = 0.4) and b, (i.e., b; = 0.4). We observed that the value
of EER did not modified, significantly, but it was higher than the first trial (i.e.,
EER=13.2%).

93

Trials o4 oy, 03 b, b,, b; wy w, EER
1 0.5 0.25 0.5 0.25 0.5 0.5 11.4%
2 0.6 0.2 0.6 0.2 0.5 0.5 13.2%
3 0.6 0.2 0.5 0.25 0.5 0.5 12.5%
4 0.4 0.3 0.4 0.3 0.5 0.5 13.2%
5 0.5 0.25 0.5 0.25 0.6 0.4 11.6%
6 0.5 0.25 0.5 0.25 0.4 0.6 10.8%

Table 16: Gaithashing tested weight values and corresponding EER of type 2 impostors
Next, we modified the weight values of the second level fusion w; and w,, while the
weight values of the first-level fusion are constant and equal to the first trial. As shown
in Table 16, in the 5™ trial we assigned w,; = 0.6 and w, = 0.4 and observed that the
value of EER was not significantly modified, compared to the first trial (i.e.,
EER=11.6%). In the 6" trial, we selected w; = 0.4and w, = 0.6. This time we
observed that the value of EER was decreased, compared to the first trial and it was
equal to 10.8%. Although we performed several other trials, the value of EER was not
reduced further. Thus, we concluded that the weight values of the sixth trial should be

selected in order to achieve the minimum EER value (i.e., EER=10.8%).

Apart from the aforementioned experiments, it is important to mention that we tried to
further improve the EER value of gaithashing for type 2 impostors, using decision based
fusion. In particular, we have implemented a scheme that performs two-level fusion.
The first-level fusion is identical with gaithashing. That is, the hamming distances
between each authentication and enrollment bitstreams of the subject are calculated and
the CitSum and RitSum are derived using weights. In the second-level fusion, the
CitSum and RitSum values are compared to two pre-defined thresholds (i.e.,
Threshold.;; and Threshold,;; respectively) to derive a binary decision (i.e., TRUE or
FALSE). That is:

TRUE,if CitSum < Threshold;;

CitAuth = {FALSE' if CitSum = Threhold

TRUE,if RitSum < Threshold,;;

RitAuth = {FALSE, if RitSum = Threhold,;

The final result denoted as FinalAuth is calculated by performing a decision-level
fusion using the AND or OR logical rules. In particular, using the OR logical rule, a

user is successfully authenticated if either the CitAuth or RitAuth value is TRUE,

94

whereas using the AND rule, both CitAuth and RitAuth values should be TRUE. To
obtain numerical results (i.e., EER), we tested various values for the Threshold;; and
Threshold,;;. The lowest EER values that we achieved for type 2 impostors were equal
to 48% and 19% for the OR and rules respectively. On the other hand, as we mentioned
previously gaitashing achieved EER =10.8%. Thus, it is evident that the decision based
fusion approach does not improve the EER of gaithashing and as a matter of fact, it

deteriorates the authentication performance [134].

To summarize, the EER values of the three proposed schemes are shown in Table 17.
We conclude that all schemes achieve 0% EER for both Type 1 and 3 impostors.
However, for type 2 impostors, we obtained EER = 34% for straight silhouette
enrollment, as well as 27% and 32% for coat and bag enrollment respectively.
Moreover, in the second scheme the EER was equal to 45%. However, the third scheme
achieves EER = 10.8%, which is a significant improvement over the previous two
schemes. This result means that for every 100 authentication attempts, the third scheme
has in average 10 false acceptances of type 2 impostors and 10 false rejections of

genuine users.

Apart from the fusion techniques, there are some other methods that could possibly

improve the authentication performance of the system. In particular:

a) Use of multiple feature extraction algorithms: Apart from CIT and RIT
transformation algorithms, we can extract gait features using other feature extraction

algorithms proposed

39 scheme
Impostors type 1%t scheme 2" scheme] .
(Gaithashing)
Type l 0% 0% 0%
34% straight enrollment
Type 2 27% coat enrollment 45% 10.8%
32% bag enrollment
Type 3 0% 0% 0%

Table 17: EER values of the three proposed schemes
in the literature (such as the ones presented in [120] and [119]). As a matter of fact, we
can use multiple extraction algorithms to extract multiple gait features for the same
user. Since different algorithms capture different characteristics of a human silhouette,

we can enroll all extracted features and perform a feature-level fusion, in order to

95

improve the authentication performance. The negative side effect of this approach is
that it increases the overall complexity as well as the processing and storage overhead,
due to the extraction and enrollment of several gait features for each user.

b) Use of multi-modal biometrics: The ISO/IEC standards propose the use of multiple
biometric features (i.e., also named as multi-modal biometrics), in order to overcome
the limitations imposed by uni-modal biometric systems [134]. In general, multi-modal
biometric systems are considered to be more reliable and robust to attacks [135], since
an impostor should compromise two or more biometric features of a genuine user. In
the proposed gaithashing system, gait features can be combined with face or iris or any
other biometric modality to create a feature vector for the user. The downside of this
approach is that the proposed system will inherit the usability issues of the other
biometric modalities. That is, gait is the only biometric modality that provides
unconstructive access control and authentication at-a-distance. All other biometric
modalities (including fingerprints, iris, face) have several usability issues (see section
4.1.6). Therefore, on the one, hand multimodal biometrics may improve the EER

results, but on the other hand it will reduce the usability of the system.

c) Use of multiple sensors: Another improvement in the authentication performance
may be achieved by using multiple sensors. That is, we can use different cameras to
capture the human silhouette of a user and obtain multiple gait features (each one
derived from a different camera) that can be used for enroliment. However, we have to
notice that the use of multiple cameras may cause deployment issues and increase the

overall cost.
4.1.7. Results and discussion

Section 4.1 of this thesis proposed gaithashing, a two-factor authentication scheme that
secures gait features in an efficient manner. The proposed scheme combines the security
features of biohash and the recognition capabilities of gait features to provide a high
accuracy authentication system. In gaithashing, a user is authenticated only if he/she
possesses a valid token and a valid gait feature. The performance of the gaithashing
scheme is evaluated by carrying out two sets of experiments. The obtained numerical
results and the carried out evaluation allow us to derive the following generic

observations:

96

Gaithashing achieves EER=0% for type 1 and 3 impostors (i.e., type 1 impostor
uses his/her own gait features and his/her own token, while type 3 impostors use
compromised gait features and they own token for authentication). This means
that the proposed scheme always detects type 1 and 3 impostors.

It achieves very high accuracy (EER=10.8%) for type 2 impostors (i.e., an
impostor that uses a compromised token and his/her own gait features for
authentication).

Gaithashing addresses the distortions caused when the subject wears a coat or
holds a bag, by enrolling three different types of human silhouettes (i.e., straight,
coat, bag). The proposed scheme can be easily extended to take into account
other types of human silhouettes (e.g., a user wearing a hat).

The proposed scheme secures gait features by converting them to non-invertible
bitstreams using the biohash algorithm and a user's token.

Gaithashing provides unlinkability and easy revocability of the gait templates,

simply by replacing the user's token with a new one.

4.2. Detection of malicious actions using machine learning

4.2.1. Background

4.2.1.1. Routing in mesh networks

AODV is an on demand routing protocol, which maintains routes as long they are

needed by source nodes. It is scalable and offers low processing, memory, and

communication overheads to the underlying network. It utilizes three control messages

to achieve route discovery: route request (RREQ), route reply (RREP), and route error

(RERR). It also provides an optional fourth control message (i.e., Hello message),

which is used for preserving connectivity between neighboring nodes. Each node

maintains a list of previously established routing paths in a routing table. Each entry in

this table stores routing information to a destination node in the network. The most

essential fields of a routing table entry are:

Destination IP address (dst): the IP address of the destination node.

Destination SQN (denoted as SQNast node entry): this is the latest SQN of the
destination node of the entry. This field can be updated during the route
discovery process. The destination SQN is a measure of the freshness of the

routing information in the related entry.

97

e Hop count (hop_count): represents the current distance to the destination node
of the entry.
e Next hop node (next_hop): all packets sent to the destination node of the entry

should be forwarded through this node.

When a source node S wishes to transmit a data packet to some destination D for which
it does not possess a route, it initiates a route discovery process by first incrementing
its own SQN by one, and, subsequently, broadcasting a RREQ message that includes
the: source IP address, source SQN, destination IP address, destination SQN, RREQ id,
and hop count field. The value of the destination SQN in the RREQ message (the values
of destination SQNs in the AODV messages are denoted as SQNast node) i taken from
the related routing table entry of the source node for the specific destination that wishes
to discover a route. The intermediate node that receive the RREQ first create a routing
table entry for the source node S. Then, it checks the routing table for a route to the
destination node D. If it possesses a fresh route to the destination (i.e., the
SQNast_node_entry in its corresponding routing table entry is greater than or equal to the
SQNast_node included in the RREQ message), then it responds to the source node with a
route reply (RREP) that includes: the hop count to the destination, the destination IP
address, the destination SQN, and the source IP address (i.e., the address of the node
that initiated the route request). The value of the destination SQN (i.e., SQNadst node) IS
taken from the stored in the intermediate nodes’ routing table. Otherwise, (i.e., if the
SQNdst_node_entry in the intermediate nodes’ routing table entry is less than the SQNast_node
included in the RREQ message or there is no route to the destination at all), then the
intermediate node increments the hop count field by one and forwards the RREQ to its

neighbors.

If none of the intermediate nodes possesses a fresh route to the destination, then the
RREQ eventually reaches the destination node. In this case, the destination node
increases its own SQN by one (if the incremented value equals the value in the RREQ
message) and then sends a RREP message to the source node S that contains the: source
IP address, destination IP address, destination SQN, and hop count field. The
destination SQN (i.e., SQNast node) in the RREP message is equal to the value of the
destination node’s own SQN. Intermediate nodes receiving the RREP update their
routing tables, only, if the destination SQNast_node in the message is higher from the

stored value in their routing tables (i.e., SQNast node_entry), OF the destination SQNs are

98

equal, but the hop count field in the RREP is smaller than the stored value. If multiple
RREP messages reach the source node (i.e., this may occur when several intermediate
nodes have a routing path to the destination node), it accepts the RREP with the highest
destination SQN value or, in case these values are equal, the RREP with the smallest
number of hops to the destination. If a link breaks, an intermediate node initiates a local
repair mechanism attempting to discover a new route to the destination, by transmitting
a RREQ message. If the repair mechanism fails to discover a route, the node generates
a RERR message that includes the IP addresses and the last known destination SQNs
of the unreachable destinations, informing the receiving nodes that they should restart

the routing discovery process, if they want to communicate with them.

4.2.1.2. Blackhole attack: Acting as a sinkhole for all network traffic
The blackhole attack is a type of denial-of-service attack in which a malicious node
falsely claims to possess a fresh route to the destination, in order to attract network
traffic, and, subsequently, drops all data packets that are forwarded to it. In a more
advanced variation of the attack, the malicious node may even selectively drop a
percentage of packets (instead of all), in order to avoid detection. This variation is often
referred as greyhole attack [136]. The implementation of the attack can be achieved in
two ways, which we refer as "reactive"” and "proactive”. In the "reactive" version of the
attack, a malicious node awaits for RREQ messages. When it receives an RREQ, then
it responds to the source node with a spurious RREP message that includes a fake
destination SQN (i.e., SQNmaiicious) O an arbitrarily high value. Upon receiving the fake
RREP message, the source node compares the SQNmaiicious Value with the SQN values
of any other received RREP messages, and, since SQNmalicious has the highest value; the
source node selects the malicious node as its path to the destination. Subsequently, the

source node begins the transmission of data through the malicious node.

In the "proactive" version of the attack, a malicious node actively generates fake RREQ
messages, masquerading as an intermediate node forwarding a RREQ message. First,
it selects a random source and destination address and then, it generates and transmits
a RREQ message that includes a fake source SQN of arbitrarily high value. Upon
receiving the fake RREQ message, intermediate nodes add the malicious node as a path
to the destination. Subsequently, when they have data to transmit to the destination,
they select the malicious node as a path to the destination. The "proactive™ version of

the attack can yield more captured traffic for the malicious node, since: (i) the later does

99

not have to wait for RREQ messages in order to advertise its spurious path to the
destination; and (ii) it enables the malicious node to actively advertise a path to any
destination, contrary to the "reactive™ version of the attack, where the malicious node

is limited to the destinations from which a RREQ message is received.

On the other hand, detecting the "proactive" version of the attack can be implemented
using a simple mechanism that takes advantage of the AODV operation. This detection
mechanism should run in every node and simply check if a received RREQ message
was actually generated and transmitted by the host node itself. In particular, according
to the AODV protocol specifications, when a node on the network receives a RREQ
message, it compares the source IP address and RREQ id with any values stored in its
buffer, in order to avoid processing RREQ messages that have already been processed
or that have been transmitted by itself [137]. If no matching values are found (i.e., the
RREQ message is new to the host node) then the detection mechanism checks if the
source IP address on the RREQ message matches the IP address of the host node. If the
two IP address values match, then the RREQ message has been generated by a
malicious node (even though the host node is listed as the source in the RREQ message's
header) and, thus, a “proactive” blackhole attack has been detected. Consequently, as
we have shown, the “proactive” version of the attack can be detected by intelligently
performing only one additional comparison by the detection mechanism, thus inducing
insignificant computational overhead to the host node. For this reason, throughout the

remainder of this section, we focus on the "reactive" version of the blackhole attack.

To better understand the functionality of a "reactive"” blackhole attack, we provide a
numerical example that presents all of the steps taken by a malicious node. Figure 20
shows a network of six nodes. Node S denotes the source node, node D the destination
node, nodes 1, Iz, I3 are intermediate nodes; while node M is the malicious node
performing a blackhole attack. When node S wants to transmit data to the destination,
it first checks for a valid route to its routing table. Since no such route exists, node S
generates a RREQ message (with parameters dst = D, SQNust_node = 0) and transmits it
to its neighboring nodes I and I», (see Figure 20, step a). These nodes do not possess a
route to the destination yet either, so the RREQ message is subsequently forwarded,

and, finally, it reaches both the malicious node M and the destination node D.

Upon the reception of the RREQ message, the malicious node M, generates a RREP

message (even though it does not possess a route to the destination node D), using as a

100

destination SQNust_node (Which is denoted as SQNmaiicious) an arbitrarily high value, 1000
in our example, as well as a fake hop_count = 1, and transmits the message to the next
hop (i.e., node 1) towards the source node S (see Figure 20, step b). The intermediate
node 11 that receives the RREP message generated by the malicious node M; creates a
new route table entry for the destination, in which it stores the destination address (dst),
next_hop, hop_count incremented by one, and the fake SQNmaiicious Value from the
RREP message to its SQNast node_entry field. Subsequently, it updates the received RREP
message with the incremented hop_count and with the next_hop field set equal to its
own address. Finally, it forwards the RREP message towards the source node S. When
the source node S receives the RREP message, it creates a new route table entry for the
destination, in which it stores the destination address (dst), next_hop, hop_count
incremented by one, and the fake SQNmaiicious Value from the RREP message to the
SQNast_node_entry Field.

a . Node M
[RREQ(dSt: SQNdstinodeiemry:O)] SLED a b c
b hop _count - 1 1
< [RREP(dSt, SONmaroome=1000. SQNgs; node_entyy| - |1000] 1000

hop_count=1,next_hop=M)]
M
[

[data packet]

A 4

Node D
Node |, step a|b|c
Step a b c SON:Ist_n::Is_Em_—y 0 0 0
dst - D D
next_hop - M M
hop_count - 2 2
SQN::Ist_n::IE_EntT ~ 1000(1000

a .
[RREQ(dSt: SQNdsLnodeiemry:O)]

ey < b
[RREP(dst, SQNst node_entry=0,
hop_count=1,next_hop=l3)]
Mode S Node I, Node |5

step a b c step a b [step a b C
dst D D D dst D D dst D D
next_hop - Iy 4 next_hop D la next_hop D D
hop_count - 3 3 hop_count - 2 2 hop_count - 1 1
SQNgy; node enty| 0 |1000]1000 SQN4: nose eny] 0 | 0 | 0O SQNest noge enty] 0 | 0 | O

Figure 20: The "reactive" blackhole attack (step a: route request, step b: route reply, step c: data
transmission)

101

On the other hand, the destination node D generates a RREP message (with parameters
SQNst_node = 0, hop_count = 0) and transmits it to the next hop (i.e., node I3) towards
the source node S (see Figure 20, step b). Each of the intermediate nodes (i.e., I3 and
I2) that receive the RREP message generated by the destination node D, create a new
route table entry for the destination, in which they store the destination address (dst),
next_hop, hop_count incremented by one, and SQNast node Value from the RREP
message. Subsequently, they update the received RREP message with the incremented
hop_count and with the next_hop field set equal to their own address. Finally, they
forward the RREP message towards the source node S. When the source node S
receives the RREP message generated by the destination node D, it compares the SQN
value between the entry stored in the route table (i.e., SQNadst node_entry) and the value in
the RREP message (i.e., SQNast node) and, since the later contains a lower value, the

RREP message is discarded.

Once the route discovery process is completed, the source node S looks up its route
table for the next_hop node of destination D (i.e., node I1) and transmits a data packet
to it (see Figure 20, step c). Subsequently, node |1 receives the data packet and checks
if the packet is addressed for itself. Since the data packet destination field indicates that
the message's destination is node D, node 11 looks up its route table for the next_hop
node of destination D (i.e., node M) and forwards the data packet to it. Finally, once
the malicious node M receives the data packet, it can perform one of the two possible
actions: it either (i) arbitrarily drops the data packet, or (ii) selectively drops the packet

based on a percentage of target packet drops.

4.2.1.3. Related Work
The blackhole attack has been repeatedly analyzed in the literature. In [138], the authors

provide an overview of routing attacks that target MANETS, including the blackhole
attack. Furthermore, the authors survey several detection mechanisms that attempt to
address blackhole attacks and outline their strengths and weaknesses. [139], [140], and
[141], have conducted a comprehensive set of simulations that illustrate the effects of
a blackhole attack to the AODV routing protocol. In particular, the authors focus on the
second part of the attack (i.e., packet drop) and evaluate its impact to the packet delivery
rate of the network, the end-to-end delay, as well as the throughput, under various
mobility scenarios. However, none of these works provide any insights regarding the

first step of the attack, the related routing parameters that are exploited by a malicious

102

node, or how these parameters affect the attack itself (i.e., such as the percentage of

routes won by a malicious node).

A variety of detection mechanisms for blackhole attacks in AODV also exists in the
literature and even though we provide an evaluation of the most recently proposed
solutions, a comprehensive analysis of all the related literature requires an extensive
review, which is outside the scope of this thesis. In [142], a distributed cooperative
mechanism (DCM) is proposed to resolve blackhole attacks, by monitoring data packets
transmitted by neighboring nodes. If a node has not routed any data packets during a
fixed time-threshold, then the monitoring node will transmit a “test packet” through the
suspicious node, destined for another cooperating detection node. If the later receives
the “test packet,” then the suspicious node is legitimate; otherwise, it is considered
malicious. The primary disadvantage of this scheme is that malicious nodes may
attempt to exploit this mechanism, by analyzing the duration of time before a malicious
node is detected (i.e., estimate the threshold value), and subsequently, the routing of at

least one packet within this time-frame (i.e., selective drop).

To address the limitation of [142], [143]proposes the use of a dynamically updated
normal profile. In this scheme, the normal profile is updated dynamically, using
monitored data collected during a period of time in which no malicious behavior was
detected. It utilizes a support vector machine classifier (SVM) for detecting an attack
by monitoring the delay between data transmissions. Although the use of dynamic
profiles may reduce the rate of false positives in volatile networks; on the other hand,
by relying on data transmissions for detection, attacks in which data packets are

selectively dropped, remain undetected.

In [144], the authors propose a mechanism to detect blackhole attacks by checking if
the SQN of a RREP message is higher than a dynamic threshold value, which is an
indication of a blackhole attack. The value of the threshold is updated by calculating
the difference between the SQNs of the RREP message and the average of the
previously received SQNs. However, in case of high mobility, the exchanged routing
information is greatly increased (i.e., caused by link breakages), resulting in an
unexpected increase in the SQNs of control packets, and thus, leading to considerably
high false alarms. Moreover, the proposed solution requires many significant
modifications to the AODV protocol.

103

In [145], the authors propose a reputation scheme called Prevention of Cooperative
Black-Hole Attacks (i.e., PCBHA). In this scheme, each node maintains reputation
scores for the other nodes of the network and when a route is required, the source node
selects the route that includes intermediate nodes with the highest reputation scores.
The carried out simulation results show that the performance of the AODV protocol is
not deteriorated, considerably, using the proposed solution. However, the reputation
information exchanged between nodes results in additional communication overhead
and the proposed scheme is vulnerable to byzantine attacks, since a colluding group of
malicious nodes may exploit the proposed scheme by providing fake reputation values
that are high.

A modified version of AODV, referred as the Gratuitous-AODV (i.e., GAODV), has
been proposed in [146], in order to address the issue of blackhole attacks. In GAODV,
when a source node receives a RREP from an intermediate node, it sends a verification
message to the destination node. The latter should also provide an acknowledgment
message to the source node. If the source node does not receive the acknowledgment,
then the intermediate node is considered malicious and thus, the advertised routing path
is not used. However, the functionality of GAODV requires extensive modifications to
the original AODV protocol, raising compatibility issues and it introduces considerable

delay in the route discovery process.

Finally, in [147], the authors propose a detection mechanism called the Anti-Blackhole
Mechanism (i.e., ABM), which captures both RREQ and their corresponding RREP
messages and, subsequently, estimates the difference between the two. When this
difference exceeds a predefined threshold, an alarm is raised informing all nodes on the
network to cooperatively isolate the malicious node. ABM requires each node to run in
promiscuous mode in order to capture, store, and, subsequently, process the RREQ and
RREP messages within their radio range. Consequently, monitoring nodes are hindered
with computational and storage overheads, as well as increased energy consumption.
In addition, during the collection of captured traffic, malicious activities are not
detected (i.e., non-real-time detection). The functionality of ABM also requires the
operation of a modified version of the AODV protocol (i.e., MAODV), raising
compatibility issues with the AODV protocol.

In summary, existing detection mechanisms are limited in the sense that their

deployment requires significant modifications to the AODV protocol [146] [147], while

104

some of the proposed solutions add considerable performance delays and
communication overheads [142] [145] [146]. Even more importantly, the majority of
these mechanisms attempt to resolve if a blackhole attack takes place, based only on
the second step of the attack (i.e., packet drop) [142] [143] [145] [146]. Thus, they do
not completely mitigate the attack (since detection can only be achieved after the
malicious node wins the route discovery process), and they are effective, only, when
the malicious node indiscriminately drops all of the forwarded traffic. On the other
hand, our proposed detection mechanism is capable of detecting a blackhole attack
during its first step (i.e., during the exploitation of the route discovery process), limiting
the ability of a malicious node to drop packets, and thus, induce damage onto the
network. Furthermore, by disassociating the detection of an attack from packet drop
monitoring, the proposed detection mechanism is capable of detecting not only the
blackhole attack but also the greyhole, in which a malicious node selectively drops
packets, in order to avoid detection, in which a malicious node might selectively drop
packets, in order to avoid detection. Finally, the proposed mechanism alleviates any
associated communication overheads and does not require any modifications to the

existing AODV routing protocol.

4.2.2. Blackhole attack intensity

In a blackhole attack, the objective of a malicious node is to attract as much traffic as
possible, in order to maximize the number of packets that can be dropped, when
legitimate source nodes transmit data. This is achieved during the first step of the attack,
in which the malicious node provides a fake SQN (i.e., denoted as SQNmaiicious) greater
than all other SQN values provided by legitimate nodes, and, thus, wins all the received
route requests. This can be clearly seen in the example of section 4.2.1.2; at step b.
Furthermore, the parameter SQNmaiicious affects not only the source node that initiated
the route request, but also all intermediate nodes (such as node I in the example) that
stored this parameter in their routing tables. However, the malicious node cannot
discern what the current values are for the SQNs of other nodes. Thus, it must increment
the SQN with a value high enough, to overcome legitimate nodes competing for the
route discovery process (i.e., nodes I> and Iz in the example). We define this increment
as the blackhole intensity parameter or parameter L for short. Let SQNmalicious b€ equal
to the destination SQN in the RREP message (i.e., SQNast_node), incremented by a value
L. That is,

105

SQNmaticious = SQNdst_node +L,L=0 (l)

Evidently, the value of the destination SQNgs; noge IN the RREP message will be
selected by the attacker so that to be the highest between the destination SQN received
in the RREQ message and the one stored in its routing table (if it has a stored one). In
the example presented in section 4.2.1.2, the malicious node increments SQNst_node DY
a blackhole intensity parameter value equal to 1000. The blackhole intensity parameter
plays a crucial role to the success of the attack, because it determines whether or not
the malicious node will win a route request, and thus, attract traffic. However, there is
no indication as to what values this parameter should hold, and how this affects the
outcome of the attack. For example, if the malicious node selects a relatively "small”
value for L, then the malicious node might not win all of the route requests. This result
might be further exacerbated under different network conditions. In particular, a higher
number of traffic will lead to higher SQN values for competing legitimate nodes, and
thus, even less route request wins for the malicious node. On the other hand, selecting
a relatively "high" value for L may be counterproductive, because after some threshold,
the malicious node will be wining all of the received route requests, and thus, higher
values of L yield no further benefit. Moreover, since our goal is to utilize SQNs for
detection, there is an additional incentive for the attacker to use the lowest values of L
possible, in order to hinder the ability of a detection mechanism to distinguish its
malicious activity. In order to accurately quantify the impact of the blackhole intensity
parameter, we have conducted a comprehensive set of simulations that are presented in

the following section.

4.2.3. Using machine learning to detect malicious actions
In this section, we analyze and evaluate a novel blackhole detection mechanism that is
capable of detecting blackhole attacks during their first step. Particularly, we provide
an architectural overview of the proposed detection mechanism, we identify the
computational overhead associated with the operation of the proposed mechanism, and
we comparatively evaluate the performance of the proposed mechanism through an
extensive set of simulations. The proposed mechanism uses a non-parametric version
of the Cumulative Sum (CUSUM) test [148], with the goal of detecting abrupt changes
in the normal behavior of SQNs, caused by the occurrence of blackhole attacks. Two
variants of this mechanism are presented, depending on the type of threshold used (i.e.,
static or dynamic). The CUSUM test is a suitable solution for infrastructure-less

106

networks, since, it does not impose significant computational overheads [149] [150],
meaning that the performance of the AODV protocol is not deteriorated. Moreover, it
IS insensitive to traffic patterns with unknown distribution, making the detection
mechanism generally applicable, regardless of the employed application-layer
protocols. Another advantage of using the CUSUM test is related to the fact that, given
an appropriate threshold value, it detects the attack at the earliest possible time while
maintaining a low percentage of false positives. It is evident that a fast detection
mitigates the impact of blackhole attacks, because it limits the ability of an attacker to

drop packets.
Architecture of the proposed detection mechanism

In the proposed scheme, each network node executes an instance of the detection
mechanism, which relies solely on local audit data (i.e., there is no cooperation between
nodes). Each of these instances, can be implemented at the application or routing layer
of a device, alleviating the need for any AODV protocol modifications. During their
execution, they passively monitor the SQN parameter values stored in the nodes’
routing table, and, at predefined time intervals, run the CUSUM test, in order to
determine if a blackhole attack takes place. More specifically, in case of a Linux based
device, we have identified three different implementation options [151], [152]: i)
sniffing, in which the node will promiscuously sniff all incoming packets on a network
interface (the code to perform sniffing is built into the kernel and is available to user-
space programs by using the Packet Capture Library (libpcap)); ii) kernel
modifications, using either patches (low portability — low complexity solution) or
recompilation of the whole kernel (high portability — high complexity solution); iii)
Netfilter, which is a packet filtering framework implemented as a set of hooks at well-
defined places in the Linux TCP/IP networking stack. The CUSUM test is a change
point detection algorithm, which evaluates the statistical distribution of SQNs prior to
change and after, and subsequently, raises an alarm if the difference between the two
exceeds some threshold. The later can be either dynamic (i.e., dynamic threshold
CUSUM) or static (i.e., standard CUSUM). In this analysis, both threshold variants are
elaborated, and, subsequently, the most suitable threshold mechanism is selected, by
comparatively evaluating the detection accuracy and the rate of false positives between
the two. The detection mechanism calculates the statistical distribution of SQNs based

on the monitoring feature SQNiotal rate i(t) (See eq. 2). Formally, for some node i

107

executing an instance of the detection mechanism, we define this monitoring feature as

the rate of increase for the sum of the SQNs included in the node’s i routing table:

(Z?:l SQNrouting_table_i_j (t)) + SQNi(t) (2),
t

SQNtotal_rate_i (t) =

where SQNrouting_table_i_j(t) IS the SQN value at time t of node j stored in the routing table
of node i. K is the total number of entries in the routing table of node i, while SQNi;(t)

is the value of SQN of node i at time t.

At network initialisation, the CUSUM algorithm requires an initial statistical
distribution of SQNs to compare to. As a result, two phases are incorporated into the
detection mechanism, a training phase and a normal phase. We assume that during
training, no attack takes place (i.e., training can be performed in a controlled
environment), while during the normal phase, any node on the network can perform a
blackhole attack. Furthermore, in both phases, the CUSUM algorithm is executed at a
predefined, time interval. Since the detection of an attack requires the execution of the
CUSUM algorithm, this time interval represents the detection time of the proposed
mechanism. Therefore, it would seem practical to keep the time interval at the lowest
possible value so that attacks are resolved quickly. However, this interval has an
associated tradeoff: lower values produce more frequent executions of the detection
mechanism, and, consequently, higher induced overhead. Larger values, on the other
hand, may lead to: (a) the calibration of an outdated threshold value, resulting in a
higher percentage of false positives, and (b) a greater percentage of packets dropped by
the malicious node. Thus, the most optimal time interval is the largest possible value
that produces the least amount of false positives and packets dropped. In through

simulations, we identify the most optimal time interval value.
Training phase

During the training phase, at each time interval, the CUSUM algorithm first calculates
a random sequence Xn which we define as the difference between two successive

sampling values of the monitoring feature SQNiotal_rate i(t). That is,
Xn = SQNtotal_rate_i (Tl) - SQNtotal_rate_i (Tl - 1)'X0 =0 (3)

Next, the CUSUM test transforms X, to another random sequence Z, such as:

108

Z,=X,—C,C€ER 4,

where C is a constant variable that is equal to the upper bound of the mean value E[Xx].
The CUSUM algorithm also requires the calculation of a random sequence Yn that
represents the cumulative sum of the positive values of Z,. Y, is defined as the

maximum value between zero and Yn-1 + Zn. That is:

Y,, = max(0,Y,_; + Z,,), wheren € Nand Y, = 0 (5).

The value of the threshold N is computed at the end of the training phase by each node.

Its value is equal to the mean value of the n samples of X,. That is,

N = E[X,] (6).

The selection of threshold N regulates the following intrinsic tradeoff: having a
relatively “small” threshold may lead to a high percentage of false positives, since even
legitimate increases in the statistical distribution of SQNs will lead to false alarms,
while, on the other hand, having a relatively “high” threshold may lead to false
negatives, since increments to the SQN by a malicious node may not exceed the
threshold, and, therefore, the attack will not be detected. We have based the selection
of threshold N on previous literature [153] [154], in which it yielded the most optimal
results in terms of false positives/negatives.

Normal phase

During the normal phase, at each time interval, the CUSUM algorithm calculates all
three random sequences X, Zn, Yn. It then uses the random sequence Y, and the
threshold N to detect blackhole attacks. In particular, the detection is based on the
following simple rule: if at any time interval n, the random sequence Y, exceeds the
threshold N (i.e., Yn > N), then a blackhole attack is detected and an alarm is raised to
inform other nodes on the network. Finally, in the dynamic threshold variant of
CUSUM, for each time interval in which an attack is not detected, the threshold N is
also recalculated, to a value equal to the mean of Xn, Xn.1 (7). Figure 21 summarises
the operation of the CUSUM algorithm during both phases.

109

N = E[Xp, Xn_1] (7).

CUSUM Algorithm

Inputl: K // Number of routing table entries

Input2: is dynamic // Boolean indicating the type of CUSUM (if TRUE
then CUSUM is dynamic)

0l: set Y 0=0, n=1;

02: while Training

03: compute X,,C,Zn;

04: if ¥ (n-1)+72,>0 then
05: Y=Y (n-1)+Zn;

06: else

07: Y.=0;

07: compute N;
09: while Detection

10: compute X,,C,Zn;

11: if Y@-1y+Z2:.>0 then
12: Y=Y (n-1)+Zn;

13: else

14: Yn=o;

15: if Y, >N then

16: raise an alarm
17: else

18: if is dynamic = TRUE then
19: compute N;
20: n=n+1;

Figure 21: Pseudocode of the CUSUM algorithm
4.2.4. Results and discussion
Section 4.2 of this thesis provided a comprehensive analysis of the blackhole attack,
identified a new critical attack parameter (i.e., blackhole intensity), and evaluated the
impact of that parameter to the performance of the attack, through an extensive set of
simulations. Based on the results of the simulations, we identified a quantitative relation
between SQNSs and blackhole attacks. This outcome led to the proposal of a novel
detection mechanism, which utilizes a dynamic threshold cumulative sum (CUSUM)

test to detect abrupt changes in the normal behavior of SQNs.

110

5. Conclusions

In this thesis, we have addressed the problem of user authentication in online services
by holistically investigating the users’ security both on server and client side.
Particularly, we examined the security of online user accounts by proposing a
framework that allows us to quantify the cost time of password guessing both for brute
force and dictionary attacks. We also identified the default hashing schemes of various
CMS and web applications frameworks and concluded that the majority of CMS and
web applications frameworks do not offer secure default settings for password storage.
Next, we applied our cost analysis framework to the default settings, in order to perform
a comparative security analysis between the various CMS and web applications
frameworks. Finally, we provided a set of best practices and alternative solutions to
enhance the security of password storage. Based on our analysis we advocate that
password hashing standards should be updated to require and not merely suggest the

use of new secure functions, such as memory hard hash functions.

Knowing that passwords are one of the weakest links in user security, this thesis
investigates the security of FIDO UAF protocol, which provides strong authentication
and a simplified registration and authentication procedure. However, the critical
functionality of the UAF protocol typically operates in a consumer platform such as a
mobile device, which is susceptible to a variety of attacks such as malware and viruses.
Based on a comprehensive security analysis, we have identified several vulnerabilities
that may be exploited by an attacker in order to compromise the authenticity, privacy,
availability, and integrity of the UAF protocol. Regarding volatile memory protection,
we have also investigated techniques that can be applied at the software level either
form the OS or the applications to protect the user’s passwords in the volatile memory.
Particularly, we discovered that Windows use built-in safeguards to protect against
memory disclosure attacks by deleting the volatile memory contents after the
termination of a process. It is important to note that most Linux distributions do not
have such safeguards. Lastly, we proposed software functions and techniques in C/C++
programming language that can be used by developers to protect the data in the volatile

memory of their applications.

Lastly, this thesis proposes two solutions for continuous authentication and detection
of malicious actions via the use of biometrics and machine learning. The first,

gaithashing, is a two-factor authentication scheme that secures gait features in an

111

efficient manner. The performance of the gaithashing scheme achieves EER=0% for
type 1 and 3 impostors (i.e., type 1 impostor uses his/her own gait features and his/her
own token, while type 3 impostors use compromised gait features and they own token
for authentication). It also achieves very high accuracy (EER=10.8%) for type 2
impostors (i.e., an impostor that uses a compromised token and his/her own gait features
for authentication). The second, performs a comprehensive analysis of the blackhole
attack. As aresult, a new critical attack parameter is identified (i.e., blackhole intensity),
which quantifies the relation between AODV’s sequence number parameter and the

performance of blackhole attacks.

5.1.Publications
The contribution of this thesis can be found in the following per-reviewed conference
proceedings and journals.

5.1.1. Journal Articles

e Christoforos Ntantogian, Stefanos Malliaros, Christos Xenakis, "Gaithashing: a
two-factor authentication scheme based on gait features,” Computers &
Security, Elsevier Science, Vol. 52, Issue 1, pp: 17-32, July. 2015.

e Christoforos Panos, Christoforos Ntantogian, Stefanos Malliaros, Christos
Xenakis, "Analyzing, quantifying, and detecting the blackhole attack in
infrastructure-less networks," Computer Networks, Elsevier Science, Vol. 113,
Issue 1, pp: 94-110, February 2017.

e Christoforos Ntantogian, Stefanos Malliaros, Christos Xenakis, " Evaluation of
Password Hashing Schemes in Open Source Web Platforms"”, Computer &
Security, Elsevier Science, [Under review]

5.1.2. Conference/Workshop Publications

e Stefanos Malliaros, Christoforos Ntantogian, Christos Xenakis, " Protecting
sensitive information in the volatile memory from disclosure attacks, " In Proc.
11th International Conference on Availability, Reliability and Security (ARES
2016), Salzburg, Austria, August 2016.

e Christoforos Panos, Stefanos Malliaros, Christoforos Ntantogian, Angeliki
Panou, Christos Xenakis, " A Security Evaluation of FIDO’s UAF Protocol in
Mobile and Embedded Devices, " In Proc. Towards a Smart and Secure Future
Internet: 28th International Tyrrhenian Workshop (TIWDC), Palermo, Italy,
Sept. 2017.

112

References

[1]

[2]

(3]

[4]

(5]
(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

"World's Biggest Data Breaches," [Online]. Available:
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-
hacks/. [Accessed May 2018].

G. Vindu and N. Perlorth, "Yahoo Says 1 Billion User Accounts Were Hacked," New
York Times, 14 December 2016. [Online]. Available:
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html. [Accessed April
2018].

A. Ghoshal, "Yahoo’s billion-user database reportedly sold on the Dark Web for just
$300,000," The next web, January 2017. [Online]. Available:
https://thenextweb.com/security/2016/12/16/yahoos-billion-user-database-reportedly-
sold-on-the-dark-web-for-just-300000/#.tnw_7j40qioP. [Accessed April 2018].

"GEFORCE NVidia TITAN V" NVIDIA, [Online]. Auvailable:
https://www.nvidia.com/en-us/titan/titan-v/. [Accessed 8 May 2018].

"Google," [Online]. Available: https://cloud.google.com/gpu/. [Accessed 7 May 2018].

M. Weir, S. Aggrawal and B. d. Medeiros, "Password Cracking Using Probabilistic
Context-Free Grammars," in 30th IEEE Symposium on Security and Privacy, 20009.

A. Narayanan and V. Shmatikov, "Fast Dictionary Attacks on Passwords Using Time-
Space Tradeoff,” in Proceedings of the 12th ACM Conference on Computer and
Communications Security, Virgina, 2005.

S. Marechal, "Automatic mangling rules generation,” December 2012. [Onlinge].
Available: http://www.openwall.com/presentations/Passwords12-Mangling-Rules-
Generation/Passwords12-Mangling-Rules-Generation.pdf. [Accessed 8 May 2018].

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk and W.-M. W. Hwu,
"Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA," in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, New York, 2008.

T. Murakami, R. Kasahara and T. Saito, " An implementation and its evaluation of
password cracking tool parallelized on GPGPU," in 10th International Symposium on
Communications and Information Technologies, Tokyo, 2010.

"Usage of content management systems for websites," W3Techs, [Online]. Available:
https://w3techs.com/technologies/overview/content_management/all. [Accessed July
2018].

"Github: Web application frameworks," [Online]. Available:
https://github.com/showcases/web-application-frameworks?s=stars. [Accessed July
2018].

"http://www.openwall.com/john/," Openwall, [Online]. Available:
http://www.openwall.com/john/. [Accessed April 2018].

113

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

E. I. Tatli, "Cracking More Password Hashes With Patterns," IEEE Transactions on
Information Forensics and Security, vol. 10, no. 8, pp. 1656-1665, 2015.

"Passwords," Skullsecurity, [Online]. Available:
https://wiki.skullsecurity.org/Passwords. [Accessed April 2018].

W. Han, Z. Li, L. Yuan and W. Xu, "Regional Patterns and Vulnerability Analysis,"
IEEE Transactions on Information Forensics and Security, vol. 11, no. 2, pp. 258-272,
2016.

M. Diirmuth, F. Angelstorf, C. Castelluccia, D. Perito and A. Chaabane, "OMEN: Faster
Password Guessing Using an Ordered Markov Enumerator,” International Symposium
on Engineering Secure Software and Systems, pp. 119-132, 2015.

M. D. Amico, P. Michiardi and Y. Roudier, "Password Strength: An Empirical
Analysis," in Proceedings of the 29th conference on Information communications
(INFOCOM 2010), 2010.

"The Imperva Application Defense Center (ADC) - Consumer Pasword Worst
Practices," [Online]. Available:
https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf.
[Accessed Apr 2018].

C. McGoogan, "The world's most common passwords revealed: Are you using them?,"
The Telegraph, January 2017. [Online]. Available:
http://www.telegraph.co.uk/technology/2017/01/16/worlds-common-passwords-
revealed-using/. [Accessed May 2018].

B. Lorenz, K. Kikkas and A. Klooster, "The Four Most-Used Passwords Are Love, Sex,
Secret, and God": Password Security and Training in Different User Groups," in Human
Aspects of Information Security, Privacy, and Trust: First International Conference, Las
Vegas, Springer Berlin Heidelberg, 2013, pp. 276-283.

R. Rivest, "The MD5 Message-Digest Algorithm," Apr. 1992. [Online]. Available:
https://www.ietf.org/rfc/rfc1321.txt. [Accessed June 2018].

D. Eastlake, "US Secure Hash Algorithm 1 (SHAL)," Sept 2001. [Online]. Available:
https://tools.ietf.org/html/rfc3174. [Accessed June 2018].

D. Eastlake, "US Secure Hash Algorithms (SHA and HMAC-SHA)," Jul 2006. [Online].
Available: https://tools.ietf.org/html/rfc4634. [Accessed 2 Sept 2007].

B. Kaliski, "PKCS #5: Password-Based Cryptography Specification Version 2.0," RSA
Laboratories, Sept 2000. [Online]. Available: https://tools.ietf.org/html/rfc2898.
[Accessed 3 Sept 217].

N. Provos and D. Maziéres, "A Future-Adaptable Password Scheme," in Proceedings of
the FREENIX Track: 1999 USENIX Annual Technical Conference, 1999.

C. Percival, "Stronger Key Derivation via Sequential Memory-Hard Functions,” 20009.
[Online]. Available: https://www.tarsnap.com/scrypt/scrypt.pdf. [Accessed April 2018].

114

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Biryukov, D. Dinu and D. Khovratovich, "Technical Report: Argon and argon2:
password hashing scheme,” 2015. [Online]. Awvailable: https://password-
hashing.net/submissions/specs/Argon-v2.pdf..

I. E. T. F. (IETF), "RFC 7914: The scrypt Password-Based Key Derivation Function,"
August 2016. [Online]. Available: https://tools.ietf.org/html/rfc7914.

"NIST Special Publication 800-63B: Digital Identity Guidelines Authentication and
Lifecycle Management," June 2017. [Online]. [Accessed July 2018].

"PHP - password_hash()," [Online]. Available:
http://php.net/manual/en/function.password-hash.php. [Accessed July 2018].

A. Visconti, S. Bossi, H. Ragab and A. Calo, "On the weaknesses of PBKDF2," in
International Conference on Cryptology and Network Security (CANS 2015),
Marrakesh, Morocco, 2015.

A. Ruddick and J. Yan, "Acceleration Attacks on PBKDF2: Or, What Is inside the
Black-Box of oclHashcat?,” in 10th USENIX Workshop on Offensive Technologies,
2016.

"bcrypt on GPU,” Openwall community wiki, [Online]. Available:
http://openwall.info/wiki/john/GPU/bcrypt. [Accessed May 2018].

F. Wiemer and R. Zimmermann, "High-speed implementation of bcrypt password
search using special-purpose hardware,” in International Conference on
ReConFigurable Computing and FPGAs, 2014.

K. Malvoni, S. Designer and J. Knezovic, "Are Your Passwords Safe: Energy-Efficient
Berypt Cracking with Low-Cost Parallel Hardware," in 8th USENIX Workshop on
Offensive Technologies, 2014.

"Password Hashing Competition," [Online]. Available: https://password-hashing.net.
"Vigilante.pw," [Online]. Available: https://vigilante.pw/.

P. Pierluigi, "Lenovo spotted and fixed a backdoor in RackSwitch and BladeCenter
networking switches," SecurityAffairs.co, [Online]. Available:
https://securityaffairs.co/wordpress/67729/hacking/lenovo-backdoor-networking-
switches.html. [Accessed July 2018].

L. Armasu , "Backdoors Keep Appearing In Cisco's Routers,” Tom's Hardware,
[Online]. Available: https://www.tomshardware.com/news/cisco-backdoor-hardcoded-
accounts-software,37480.html. [Accessed July 2018].

T. McLean, "Critical vulnerabilities in JSON Web Token libraries,"” AuthO.com,
[Online]. Available: https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-
libraries/. [Accessed July 2018].

"Phorum - Improving md5 password storage security,” [Online]. Awvailable:
https://www.phorum.org/phorum5/read.php?14,155691,155691. [Accessed June 2018].

115

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

"Magento - Use native PHP Password API" [Online]. Available:
https://github.com/magento/magento2/issues/992. [Accessed July 2018].

B. P. Knijnenburg, A. Kobsa and H. Jin, "Counteracting the Negative Effect of Form
Auto-completion on the Privacy Calculus,” in AIS Electronic Library (AlSeL), 2013.

A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand and M. Smith, "Why
Do Developers Get Password Storage Wrong?: A Qualitative Usability Study,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017.

"Hashcat,” [Online]. Available: https://hashcat.net/hashcat. [Accessed June 2018].

"GeForce 1070 / 1070 Ti,” [Online]. Available: https://www.nvidia.com/en-
us/geforce/products/10series/geforce-gtx-1070-ti/.

J. Blocki, B. Harsha and S. Zhou, "On the Economics of Offline Password Cracking,"
in IEEE Symposium on Security and Privacy (SP), 2018.

G. Rempel, "'Defining Standards for Web Page Performance in Business Applications,"
in Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering ICPE '15, 2015.

"march 2018 Web server Survey,” Netcraft, [Online]. Available:
https://news.netcraft.com/archives/2018/03/27/march-2018-web-server-survey.html.

"Global DDOS Threat Landscape Q4 2017, Incapsula, [Online]. Available:
https://www.incapsula.com/ddos-report/ddos-report-q4-2017.html. [Accessed July
2018].

K. Ronen, "Why Low & Slow DDoS Application Attacks are Difficult to Mitigate,"
[Online]. Available: https://blog.radware.com/security/2013/06/why-low-slow-
ddosattacks-are-difficult-to-mitigate/. [Accessed July 2018].

Arshid, "WP Limit Login Attempts," [Online]. Available:
https://wordpress.org/plugins/wp-limit-login-attempts/. [Accessed June 2018].

"(APIl) Rate limiting requests in CakePHP 3," Github, [Online]. Available:
https://github.com/UseMuffin/Throttle. [Accessed May 2018].

B. Schneier, "Schneier on Security: Changing Passwords,” [Online]. Available:
https://www.schneier.com/blog/archives/2010/11/changing_passwo.html.

A. Muffett, "Facebook: Password Hashing & Authentication,” in Real World Crypto ,
2015.

J. Camenisch, A. Lysyanskaya and G. Neven, "Practical yet universally composable
two-server password-authenticated secret sharing,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012.

A. Everspaugh, R. Chatterjee, S. Scott, A. Juels and T. Ristenpart, "The pythia PRF
service,” in SEC'15 Proceedings of the 24th USENIX Conference on Security
Symposium, 2015.

116

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

R. F. Lai, C. Egger, D. Schroder and S. S. M. Chow, "Phoenix: Rebirth of a
Cryptographic Password-Hardening Service," in 26th USENIX Security Symposium
(USENIX Security 17), 2017.

"FIDO Alliance,” [Online]. Available: http://www.fidoalliance.org/specifications.
[Accessed July 2018].

S. Contini, "Online report: Method to Protect Passwords in Databases for Web,"
[Online]. Available: https://eprint.iacr.org/2015/387.pdf.

"FIDO Certified Products,” F.I.LD.O. Alliance,, [Online]. Awvailable:
https://fidoalliance.org/certification/fido-certified-products/. [Accessed June 2017].

"FIDO UAF Protocol Specification v1.1: FIDO Alliance Proposed Standard.," F.I.D.O.
Alliance. [Online]. [Accessed 2016].

C. Panos, C. Xenakis, P. Kotzias and |. Stavrakakis, "A specification-based intrusion
detection engine for infrastructure-less networks," Computer Communications, vol. 54,
no. C, pp. 67-83, 2014.

"TCPA main specification v. 1.2," Trusted Computing Platform Alliance, [Online].
Available: http://www.trustedcomputing.org.

J. Winter, "Trusted computing building blocks for embedded linux-based ARM
trustzone platforms,” in Proceedings of the 3rd ACM workshop on Scalable trusted
compu-ting, 2008.

"SAMSUNG SDS FIDO Server Solution V1.1 - Certification Report,” 2015. [Online].
Available: https://www.commoncriteriaportal.org/files/epfilessfKECS-CR-15-
73%20SAMSUNG%20SDS%20FID0%20Server%20Solution%20V1.1(eng).pdf.

C. Helrmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit and J. P. Peirfert,
"Breaking and entering through the silicon,” Computer and Communications Security
(CCS), pp. 733-744, 2013.

T. Cooijmans, J. Ruiter and E. Poll, "Analysis of secure key storage solutions on
Android,” in Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices. ACM, 2014,

S. Di, "Exploiting Trustzone on Android," in Black Hat US, 2015.

D. Rosenberg, "Qsee trustzone kernel integer over flow vulnerability,” in Black Hat
Conference, 2014.

T. Cooijmans, "Secure key storage and secure computation in Android,” Redboud
University, Nijmegen.

D. Lucas, A. Dmitrienko, A.-R. Sadeghi and M. Winandy , "Privilege escalation attacks
on android," in International Conference on Information Security, 2010.

P. C. Abhishek, "Student Research Abstract: Analysing the Vulnerability Exploitation
in Android with device-mapper-verity (dm-verity)," 2017. [Online].

117

(78]

[76]

[77]

[78]

[79]

(80]

[81]

(82]

(83]

(84]

[85]

(86]

[87]

(88]

(89]

D. Thom and M. Marse, "Subverting Android 6.0 fingerprint authentication,” 2016.
[Online].

F. Alliance, "FIDO security reference,” 2014. [Online]. Auvailable:
https://www.fidoalliance.org/specifications.

Q. Darren and R. C. Kim-Kwang, "Dropbox analysis: Data remnents on user machines,"
Digital Investigation, vol. 10, no. 1, pp. 3-19, 2013.

Q. Darren and R. C. Kim-Kwang, "Digital droplets: Microsoft SkyDrive forensic data
remnants,” Future Generation Computer Systems, vol. 29, no. 6, pp. 1378-1394, 2013.

Q. Darrem and R. C. Kim-Kwang, "Google Drive: Forensic analysis of data remnants,"
Journal of Network and Computer Applications, vol. 40, pp. 179-193, 2014.

C. Hyunji, P. Jungheum, L. Sangjin and K. Cheulhoon, "Digital forensic investigation
of cloud storage services," Digital Investigation, vol. 9, no. 2, pp. 81-95, 2012.

D. Apostolopoulos, G. Marinakis, C. Ntantogian and C. Xenakis, "Discovering
Authentication Credentials in Volatile memory of Android Mobile Devices," in 12th
IFIP conference on e-business, e-services, e-society (I3E 2013), 2013.

J. Sylve, A. Case, L. Marziale and G. G. Richard, "Acquisition and analysis of volatile
memory from android devices," Digital Investigation, vol. 8, pp. 175-184, 2012.

C. Ntantogian, D. Apostolopoulos, G. Marinakis and C. Xenakis, "Evaluating the
privacy of Android mobile applications udner forensic analysis," Computers & Security,
vol. 42, pp. 66-76, 2014.

X. Chen, R. Dick and A. Choudhary, "Operating System Controlled Processor-Memory
Bus Encryption," in Design, Automation and Test in Europe, 2008.

P. Peterson, "Technologies for Homeland Security (HST)," in 2010 IEEE International
Conference , 2010.

V. Nagarajan, R. Gupta and A. Krishnaswamy, "Compiler-assisted memory encryption
for embedded processors,” in HIPEAC'07 Proceedings of the 2nd international
conference on High performance embedded architectures and compilers, 2007.

Y. Chenyu, B. Rogers, D. Englender, D. Solihin and M. Prvulovic, "Improving Cost,
Performance, and Security of Memory Encryption and Authentication,” in Computer
Architecture ISCA '06, 2006.

H. Daeyoung, B. Luis, S. S. Lim and N. Dutt, "DynaPoMP: dynamic policy-driven
memory protection for SPM-based embedded systems," in Proceedings of WESS '11
Proceedings of the Workshop on Embedded Systems Security, 2011.

B. Rogers, Y. Solihin and M. Prvulovic, "Memory predecryption: Hiding the latency
overhead of memory encryption,” ACM SIGARCH Computer Architecture News, vol.
33, pp. 27-33, 2005.

118

[90] G. Duc and R. Keryell, "CryptoPage: An Efficient Secure Architecture with Memory
Encryption, Integrity and Information Leakage Protection,” in in Computer Security
Applications Conference ACSAC '06, 2006.

[91] D. Lie, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell and M. Horowitz, "Architectural
support for copy and tamper resistant software," in ASPLOS IX Proceedings of the ninth
international conference on Architectural support for programming languages and
operating systems, 2000.

[92] G. Suh,C. O'Donnell and S. Devadas, "Aegis: A Single-Chip Secure Processor," Design
& Test of Computers, vol. 24, no. 6, pp. 570-580, 2007.

[93] L. Guan, J. Lin, B. Luo, J. Jin and J. Wang, "Protecting Private Keys against Memory
Disclosure Attacks Using Hardware transactional memory," in Proceedings of the IEEE
Symposium on Security and Privacy, 2015.

[94] S. Chhabraand Y. Solihin, "i-NVMM: A secure non-volatile main memory system with
incremental encryption,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2011.

[95] Z.Youtao, G. Lan, Y. Jun, Z. Xiangyu and R. Gupta, "SENSS: security enhancement to
symmetric shared memory multiprocessors,” in 11th International Symposium on High-
Performance Computer Architecture, 2005. HPCA-11, 2005.

[96] S. Weigond, H. Lee, M. Ghosh and L. Chenghuai, "Architectural support for high speed
protection of memory integrity and confidentiality in multiprocessor systems,” in
roceedings. 13th International Conference on Parallel Architecture and Compilation
Techniques, PACT 2004, 2004.

[97] L. Su, S. Courcambeck, P. Guillemin, C. Schwarz and R. Pacalet, "SecBus: Operating
System controlled hierarchical page-based memory bus protection,” in Design,
Automation & Test in Europe Conference & Exhibition, DATE '09, 20009.

[98] M. Russinovich, "Windows Sysinternals, ProcDump v8.0," Technet, [Online].
Available: https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx.

[99] "The Linux Kernel Archives," [Online]. Available:
https://www.kernel.org/doc/gorman/html/understand/understand009.html.

[100] "GRSecurity,” [Online]. Available: http://grsecurity.net/.

[101] "Atomicorp Linux Distribution,” [Online]. Available: https://atomicorp.com/.
[102] "IPFire Linux Distribution," [Online]. Available: http://www.ipfire.org.

[103] "Alpine Linux Distribution,” [Online]. Available: http://www.alpinelinux.org.
[104] "Pentoo Linux Distribution,” [Online]. Available: http://www.pentoo.ch.

[105] "Hardened Linux Distribution," [Online]. Available:
http://hardenedlinux.sourceforge.net.

[106] "Subgraph OS Linux Distribution,” [Online]. Available: http://subgraph.com/sgos.

119

[107] "MSDN, RtlSecureZeroMemory routine,” Microsoft, [Online]. Available:
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff562768%28v=vs.85%29.aspx.

[108] J. Damato, "MSCO06-C. Beware of compiler optimizations”, Software Engineering
Institute - Carnegie Mellon University," [Online]. Available:
https://www.securecoding.cert.org/confluence/display/c/MSCO06-
C.+Beware+of+compiler+optimizations.

[109] T. Plum, "C11: The New C Standard,” [Online]. Available: http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2013/n3631.pdf.

[110] S. Guelton, "A glance at compiler internals: Keep my memset,” [Online]. Available:
http://blog.quarkslab.com/a-glance-at-compiler-internals-keep-my-memset.html.

[111] "Compiler optimization and the volatile keyword," ARMKEIL Microntroller Tools,
[Online]. Available:
http://www.keil.com/support/man/docs/armcc/armcc_chr1359124222941.htm.

[112] C. Rathgeb and A. Uhl, "A survey on biometric cryptosystems and cancelable
biometrics," EURASIP Journal on Information Security, pp. 1-25, 2011.

[113] A. T. B.Jin, D. N. C. Ling and A. Goh, "Biohashing: two factor authentication featuring
fingerprint data and tokenised random number," Pattern Recognition, vol. 37, no. 11, p.
22452255, 5117.

[114] A. Lumini and L. Nanni, "An improved biohashing for human authentication,” Pattern
Recognition, vol. 40, no. 3, p. 10571065, 2007.

[115] A. B. J. Teoh, W. Kuan and S. Lee, "Cancellable biometrics and annotations on
biohash," Pattern Recognition, vol. 41, no. 6, pp. 2034-2044, 2008.

[116] C. Wang, J. Zhang, L. Wang, J. Pu and X. Yuan, "Human identification using temporal
information preserving gait template,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 34, no. 11, pp. 2164-2176, 2012.

[117] H. Hu, "Multi-view gait recognition based on patch distribution feature and uncorrelated
multilinear sparse local discriminant canonical correlation analysis," IEEE Transactions
on Circuits and Systems for Video Technology, vol. 24, no. 4, pp. 617-630, 2014.

[118] W. Kusakunniran, Q. Wu, J. Zhang, Y. Ma and H. Li, "A new view-invariant feature for
cross-view gait recognition,” IEEE Transactions on Information Forensics and Security,
vol. 8, no. 10, pp. 1642-1653, 2013.

[119] M. Milovanovic, M. Minovic and D. Starcevic, "Walking in colors: Human gait
recognition using kinect and cbir," IEEE Multimedi, vol. 20, no. 4, pp. 28-36, 2013.

[120] W. Kusakunniran, Q. Wu, J. Zhang and H. Li, "Gait recognition across various walking
speeds using higher order shape configuration based on a differential composition
model," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 42, no. 6, pp. 1654-1668, 2012.

120

[121] S. Sivapalan, D. Chen, S. Denman, S. Sridharan and C. Fookes, "Gait energy volumes
and frontal gait recognition using depth images," in IEEE Intenational Joint Confernece
on Biometrics (1JCB '11), 2011.

[122] J. Ryu and S. Kamata, "Front view gait recognition using spherical space model with
human point clouds,” in 18th IEEE Intenational Conference on Image Processing
(ICIP), 2011.

[123] M. Hu, Y. Wang and Z. Zhang, "Multi-view multi-stance gait identification,” in 18th
IEEE International Conference on Image Processing (ICIP, 2011.

[124] M. Mcguire, "An overview of gait analysis and step detection in mobile computing
devices,"” in IRRR 4th International Confernece on Intelligent Networking and
Collaborative Systems (INCoS), 2012.

[125] D. loannidis, D. Tzovaras, |. G. Damousis, S. Argyropoulos and K. Moustakas, "Gait
recognition using compact feature extraction transforms and depth information,”" IEEE
Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 623-630, 2007.

[126] T. Hoang and D. Choi, "Secure and privacy enhanced gait authentication on smart
phone," Hindawi, The Scientific World Journal, 2014.

[127] S. Argyropoulos, D. Tzovaras, D. loannidis and M. Strintzis, "A channel coding
approach for human authentication from gait sequences," IEEE Transactions on
Information Forensics and Security, vol. 4, no. 3, pp. 428-440, 20009.

[128] N. Radha and S. Karthikeyan, "An evaluation of fingerprint security using non-
invertible bio-hash," International Journal of Network Security & Its Applications, vol.
3, no. 4, pp. 118-128, 2011.

[129] A. B. J. Teoh and D. C. L. Ngo, "Cancellable biometrics featuring with tokenised
random number," Pattern Recognition Letters, vol. 26, no. 10, pp. 1454-1460, 2005.

[130] A. T. B. Jin and T. Connie, "Remarks on biohashing based cancelable biometrics in
verification system," Neurocomputing, vol. 69, no. 16-18, pp. 2461-2464, 2006.

[131] T. Connie, A. Teoh, M. Goh and D. Ngo, "Palmhashing: a novel approach for dual-
factor authentication,” Pattern Analysis and Applications, vol. 7, no. 3, pp. 255-268,
2004.

[132] R. Fuksis, A. Kadikis and M. Greitans, "Biohashing and fusion of palmprint and palm
vein biometric data,” in IEEE International Conference on Hand-Based Biometrics
(ICHB), 2011.

[133] R. Arun and G. Rohin, "“Feature Level Fusion Using Hand and Face Biometrics," in
Proceedings of SPIE conference on Biometric Technology for Human Identification Il,
2005.

[134] "ISO/IEC TR:24722:2007 Information Technology - Biometrics - Multimodal and other
multibiometric fusion™.

121

[135] Z. Huang, Y. Liu, C. Li, M. Yang and L. Chen, "A robust face and ear based multimodal
biometric system using sparse representation,” Pattern Recognition, vol. 46, no. 8, pp.
2156-2168, 2013.

[136] P. V. L. Veeraraghavan, "Trust in mobile ad hoc networks," in Telecommunications and
Malaysia International Conference on Communications, 2007. ICT-MICC 2007, 2007.

[137] C. Perkins, E. Belding-Royer and S. Das, "Ad hoc On-Demand Distance Vector
(AODV) Routing," IETF RFC 3561, 2003.

[138] B. Kannhavong, H. Nakayama , Y. Nemoto , N. Kato and A. Jamalipour, "A survey of
routing attacks in mobile ad hoc networks,”" IEEE Wireless Communications, vol. 14,
no. 5, pp. 85-91, 2007.

[139] A. Bala, B. Munish and S. Jagpreet, "Performance analysis of MANET under blackhole
attack," in Networks and Communications, NETCOM'09, 2009.

[140] S. Sharma and R. Gupta, "Simulation study of blackhole attack in the mobile ad hoc
networks," Journal of Engineering Science and Technology, vol. 2, 20009.

[141] E. Barkhodia, S. Parulpreet and G. K. Walia, "Performance analysis of AODV using
HTTP traffic under Black Hole Attack in MANET," Comput. Sci. Eng. Int. J.(CSEIJ) 2,
vol. 3, 2012.

[142] Y. Chang Wu, W. Tung-Kuang, C. Rei Heng and C. Shun Chao, "A Distributed and
Cooperative Black Hole Node Detection and Elimination Mechanism for Ad Hoc
Networks," in Emerging Technologies in Knowledge Discovery and Data Mining,
Springer Berlin Heidelberg, 2007, pp. 538-549.

[143] J. F. Joseph , B. S. Lee , A. Das and B. C. Seet, "Cross-Layer Detection of Sinking
Behavior in Wireless Ad Hoc Networks Using SVM and FDA," IEEE Transactions on
Dependable and Secure Computing, vol. 8, no. 2, pp. 233-245, 2011.

[144] P. N. Raj, B. Prashant and B. Swadas, "Dpraodv: A Dynamic Learning System Against
Blackhole Attack in AODV Based Manet," in CoRR abs/0909.2371, 2009.

[145] D. LathaTamilselvan and V. Sankaranarayanan, "Prevention of Co-operative Black
Hole Attack in MANET," Journal of Networks, vol. 3, no. 5, pp. 13-20, 2008.

[146] S. K. Dhurandher, I. Woungang, R. Mathur and P. Khurana, "GAODV: A Modified
AODV against single and collaborative Black Hole attacks in MANETSs," in 27th
International Conference on Advanced Information Networking and Application
Workshops, 2013.

[147] M. Y. Su, "Prevention of selective blackhole attacks on mobile ad hoc networks through
intrusion detection systems,” Computer Communications, vol. 34, pp. 107-117, 2011.

[148] M. B. a. I. Nikiforov, Detection of Abrupt Changes: Theory and Application, 1993.

[149] B. B. a. B. Darkhovsky, Nonparametric Methods in Change-Point Problems, Kluwer
Academic Publishers, 1993.

122

[150] T. B. T. Y. C. W. Patrick P. C. Lee, "On the detection of signaling DoS attacks on
3G/WiMax wireless networks," Computer Networks, vol. 53, no. 15, pp. 2601-2616,
2009.

[151] R. K. T. P. Gupta, "Design Strategies for AODV Implementation in Linux,"
International Journal of Advanced Computer Science and Applications(IJACSA), vol.
1, no. 6, 2010.

[152] E. M. B.-R. lan D. Chakeres, "AODV Routing Protocol Implementation Design," in
Proceeding of IEEE 24th International Conference on Distributed Computing Systems
Workshops, 2004.

[153] P. L. C. a. R. K. Tao, "Proactively detecting distributed denial of service attacks using
source IP address monitoring," in International Conference on Research in Networking,
2004.

[154] V. a. P. F. Siris, "Application of anomaly detection algorithms for detecting SYN
flooding attacks," Computer communications, vol. 22, no. 9, pp. 1433-1442, 2006.

123

