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Abstract 

Modern devices can carry out potentially dangerous actions, such as storing corporate 

and personal data, performing electronic transactions, accessing health data, and many 

more. All these actions introduce the ability to securely access increasingly personal 

information, which, in fact, raises the problem of user authentication. The usage of 

passwords introduces critical security issues due to their predictability, while tokens are 

not resistant to malware attacks, such as key loggers and memory scrapers. 

These issues can only be addressed by holistically investigating the problem of user 

authentication. The security of online accounts is drastically affected by the password 

predictability, as well as the parameters for password storage. Therefore, we propose a 

mathematical model, based on the parameters that influence password security. The 

main goal is to discover the cost of password guessing. Moreover, an extended survey 

of the default password storage parameters indicates that a significant percentage of 

websites use insecure password hashing. We have proved that the cost of password 

guessing can be a measure of defense to password guessing attacks.  

Apart from password storage, the security of user accounts relies on the protocols used 

for authentication, as well as the feasibility of obtaining the user credentials via 

malware. As a result, we explore the security of FIDO authentication framework, which 

replaces passwords with biometric modalities. The result of the analysis is a list of 

vulnerabilities that may be exploited by an attacker to compromise the authenticity, 

privacy, availability, and integrity of the FIDO. Moreover, as recent research has 

shown, authentication credentials and cryptographic keys remain in the volatile 

memory and can be easily extracted by malware. Therefore, we present safeguards 

that can be applied to the software level, either from the operating system or the 

applications, to erase data in the volatile memory from running and terminated 

applications. 

Lastly, with continuous authentication, users are continually authenticated via a 

“score”, which measures the certainty that the account owner is using a service or 

application. Therefore, we propose gaithashing, which is a secure two-factor 

authentication scheme based on the gait modality. The proposed scheme eliminates the 

noise and distortions caused by different silhouette types and achieves to authenticate 

a user independently of his/her silhouette. Lastly, this thesis proposes a novel technique 

to detect malicious actions using machine learning. This has been applied in the context 

of Ad hoc networks, where a new critical attack parameter has been identified. This 

parameter can be used to quantify the relation between AODV’s sequence number 

parameter and the performance of blackhole attacks. 

  



 

 

  



 

 

Περίληψη 

Οι σύγχρονες συσκευές μπορούν να πραγματοποιούν δυνητικά επικίνδυνες ενέργειες, 

όπως η αποθήκευση εταιρικών και προσωπικών δεδομένων, η εκτέλεση ηλεκτρονικών 

συναλλαγών, η πρόσβαση σε δεδομένα υγείας και πολλά άλλα. Όλες αυτές οι ενέργειες 

επιτρέπουν την ασφαλή πρόσβαση σε ευαίσθητες πληροφορίες, γεγονός που διεγείρει 

το πρόβλημα επαλήθευσης χρήστη. Η χρήση των κωδικών πρόσβασης εισάγει κρίσιμα 

ζητήματα ασφαλείας, ενώ η αυθεντικοποίηση δύο παραγόντων δεν είναι ανθεκτική σε 

επιθέσεις κακόβουλου λογισμικού. 

Αυτά τα προβλήματα μπορούν να αντιμετωπιστούν μόνο με ολιστική διερεύνηση του 

προβλήματος της πιστοποίησης ταυτότητας χρήστη. Η ασφάλεια των online 

λογαριασμών επηρεάζεται δραστικά από την προβλεψιμότητα των κωδικών 

πρόσβασης, καθώς και από τον τρόπο αποθήκευσης τους. Ως εκ τούτου, προτείνουμε 

ένα μαθηματικό μοντέλο βασισμένο στις παραμέτρους που επηρεάζουν την ασφάλεια 

των κωδικών πρόσβασης. Ο σκοπός είναι ο υπολογισμός του κόστους επιθέσεων 

password guessing. Επιπλέον, πραγματοποιούμε μια ενδελεχή έρευνα των παραμέτρων 

προεπιλεγμένης αποθήκευσης κωδικού πρόσβασης που δείχνει ότι ένα σημαντικό 

ποσοστό των ιστότοπων χρησιμοποιούν μη ασφαλείς τρόπους αποθήκευσης κωδικών 

πρόσβασης. Έχουμε αποδείξει πως το κόστος των password guessing επιθέσεων μπορεί 

να είναι ένας τρόπος άμυνας απέναντι σε αυτές. 

Εκτός από την αποθήκευση των κωδικών πρόσβασης, η ασφάλεια των λογαριασμών 

χρηστών βασίζεται στα πρωτόκολλα που χρησιμοποιούνται για τον έλεγχο ταυτότητας, 

καθώς και στη δυνατότητα διαρροής τους μέσω κακόβουλου λογισμικού. Επομένως, 

εξετάζουμε την ασφάλεια του πλαισίου ελέγχου ταυτότητας FIDO, το οποίο 

αντικαθιστά τους κωδικούς πρόσβασης με βιομετρικά χαρακτηριστικά. Το αποτέλεσμα 

της ανάλυσης είναι μια λίστα ευπαθειών που μπορεί να εκμεταλλευτεί ένας εισβολέας 

για να θέσει σε κίνδυνο την αυθεντικότητα, την ιδιωτικότητα, τη διαθεσιμότητα και 

την ακεραιότητα του FIDO. Επιπλέον, καθώς πρόσφατες έρευνες έχουν δείξει ότι τα 

πιστοποιητικά ελέγχου ταυτότητας και τα κρυπτογραφικά κλειδιά παραμένουν και 

μπορούν να διαρρεύσουν μέσω της πτητικής μνήμης, παρουσιάζουμε τεχνικές που 

μπορούν να εφαρμοστούν σε επίπεδο λογισμικού, είτε από το λειτουργικό σύστημα 

είτε από τις εφαρμογές, με σκοπό την διαγραφή των κωδικών πρόσβασης από την 

πτητική μνήμη. 

Τέλος, με την χρήση της συνεχούς αυθεντικοποίησης, οι χρήστες επαληθεύονται 

συνεχώς μέσω μίας μέτρησης, η οποία μετρά τη βεβαιότητα ότι ο κάτοχος του 

λογαριασμού χρησιμοποιεί είτε την υπηρεσία ή την εφαρμογή. Ως εκ τούτου, 

προτείνουμε ένα ασφαλές σύστημα ταυτοποίησης δύο φάσεων, το οποίο εφεξής θα 

αναφέρετε ως gaithashing, βασισμένο στη μέθοδο βάδισης. Το προτεινόμενο σχήμα 

εξαλείφει το θόρυβο και τις παραμορφώσεις που προκαλούνται από διαφορετικούς 

τύπους σιλουέτας του χρήστη και επιτυγχάνει την εξακρίβωση της ταυτότητας του 

ανεξάρτητα από τη σιλουέτα του. Τέλος, αυτή η διατριβή προτείνει μια νέα τεχνική για 

την ανίχνευση κακόβουλων ενεργειών που βασίζεται στην μηχανική μάθηση. Αυτή 

εφαρμόστηκε στο πλαίσιο των δικτύων ad hoc, όπου ορίστηκε μια νέα παράμετρος, η 

οποία ποσοτικοποιεί τη σχέση μεταξύ των αριθμών ακολουθίας του AODV και της 

απόδοσης επιθέσεων τύπου blackhole.  
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1. Introduction 

Modern devices can carry out potentially dangerous actions, such as storing corporate 

and personal data, performing electronic transactions, accessing health data, etc. All 

these actions introduce the ability to securely access increasingly personal information, 

which in fact raises the problem of user authentication. Currently, user authentication 

and access control are mainly carried out based on the usage of passwords or tokens. 

However, these mechanisms present fundamental limitations in terms of both security 

and usability. On the one hand, short length passwords are usually of low entropy, 

which means that an attacker may guess them, while lengthy passwords are difficult to 

remember. This results in the reuse of a password or the creation similar passwords for 

each service, which increases significantly the risk of a password to be broken and the 

associated services to be compromised. On the other hand, tokens can be easily stolen, 

while they are not resistant to malware attacks, such as key loggers and memory 

scrapers. 

User authentication is the process of determining whether someone is, in fact, who he 

declares to be. This is usually performed by checking if a user's credentials match the 

credentials in a database of authorized users. Several corporates [1] have become 

victims of security breaches, resulting in the disclosure of billions of stored user 

passwords. One of the most significant data breaches during 2016 disclosed a database 

containing 1 billion users’ authentication details [2], and was put on sale for 300.000 

dollars [3], while one of the biggest data breaches during 2017 included 145.5 million 

users’ details. Hackers take advantage of the computing power of graphics processing 

units (GPU) and specialized hardware to crack the users’ passwords. Although the price 

of top tier graphics cards is relatively high (e.g., 2999$ for an NVIDIA TITAN V [4]), 

hackers can also rent cloud infrastructure including dedicated GPUs for a monthly or 

pay-as-you-go price (e.g. Google rents a GPU for maximum 2.55$ per hour [5]), 

making password guessing attacks easier and faster to perform. 

Apart from password guessing attacks, that target passwords originating from an online 

database, users are also threatened from malware that can steal their authentication 

credentials in real time. Recent research has shown that authentication credentials and 

cryptographic keys remain in the volatile memory and can be easily extracted [2]. 

For this reason, the volatile memory has become a prime target for malicious 

software. As a matter of fact, a new malware category has emerged named as 
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memory scrapers, which specifically target the volatile memory, to steal sensitive 

information, such as credit card numbers [5]. To achieve this, memory scrapers use 

regular expression matches, to harvest credit card data from the volatile memory, and 

then the collected data are sent to a malicious server. The first known memory scraper, 

named StarDust targeted point of sale terminals and compromised nearly 20.000 credit 

cards in the US [7]. 

1.1. Research Contribution and structure 
The first part of this work (see section 2) focuses on studying the security of the 

currently used methodologies for user authentication. This is performed by proposing 

a mathematical model, based on the parameters that influence password security, for 

estimating the cost of brute force and dictionary password guessing attacks. By 

performing an extended survey on the hashing performance of graphics processing 

units, we applied the proposed model to the most commonly used CMSs and web 

application frameworks to investigate whether they offer secure password hashing. 

Although, the first observations of the first part showed that a significant percentage of 

websites use insecure password hashing, we proved that the cost of password guessing 

can be a measure of defense to password guessing attacks. 

The second part of this work (see section 3) investigates already existing solutions that 

offer advantages over traditional authentication mechanisms. Therefore, we explore the 

FIDO UAF protocol by comprehensively analyzing the client-side operation, including 

any associated security measures proposed by the UAF protocol specifications. The 

critical functionality of the UAF protocol typically operates in a consumer platform 

such as a mobile device, which is susceptible to a variety of attacks such as malware 

and viruses. Based on a comprehensive security analysis, we have identified several 

vulnerabilities that may be exploited by an attacker to compromise the authenticity, 

privacy, availability, and integrity of the UAF protocol. Although FIDO increases the 

users’ security by abolishing the use of passwords, disclosure attacks can also target the 

users’ personal computer, Thus, we investigate safeguards that can be applied at the 

software level, either from the operating system or the applications, to zeroize data in 

the volatile memory. Experimental results showed that Windows kernel zeroizes data 

after a process termination, while the Linux kernel does not. Moreover, by comparing 

software functions in C/C++ programming language and built in Windows functions, 
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we have concluded that only Windows provides a specific function, named 

SecureZeroMemory, that can reliably zeroize volatile memory data. 

Lastly, the third part of this work (see section 4) focuses on proposing novel solutions 

and methodologies for continuous authentication and detection of malicious actions. 

The first solution, named gaithashing, is a two-factor authentication that interpolates 

between the security features of biohash and the recognition capabilities of gait features 

to provide a high accuracy and secure authentication system. A novel characteristic of 

gaithashing is that it enrolls three different human silhouettes types. By selecting 

appropriate weight values, the proposed scheme eliminates the noise and distortions 

caused by different silhouette types and achieves to authenticate a user independently 

of his/her silhouette. The second solution focuses on the detection of malicious actions. 

This has been performed in the context of Ad hoc networks, and one of the simplest yet 

effective attack that targets the AODV routing protocol. Particularly, a comprehensive 

analysis of the blackhole attack is conducted focusing not only on the effects of the 

attack, but also on the exploitation of the route discovery process. As a result, a new 

critical attack parameter is identified (i.e., blackhole intensity), which quantifies the 

relation between AODV’s sequence number parameter and the performance of 

blackhole attacks. 
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2. Password based authentication: A deficient approach 

2.1.  Background 

2.1.1. Password guessing attacks 

Password guessing (also known as password cracking) is an attack in which an 

adversary attempts to guess the users’ password. We distinguish two password guessing 

attack categories: i) Online and ii) Offline. In online attacks, an attacker can try to login 

to a website by selecting frequently used passwords. After several unsuccessful 

attempts, the IP address or the username that the attacker is trying to login can be 

locked. On the other hand, in an offline attack, the scenario is that an attacker has in her 

possession a database of users’ password hash values and she can attempt to crack each 

user’s password offline by comparing the hashes of likely password guesses with the 

stolen hash value. Because the attacker can check each guess offline it is no longer 

possible to lockout the adversary after several incorrect guesses. Subsequently, in this 

thesis we consider offline attacks.  

Moreover, we can classify password guessing attacks to three categories: i) brute 

force ii) dictionary and iii) rainbow tables. In a brute force attack, the adversary tries 

every possible password combination considering two parameters; a) the password 

length; and b) the character set. On the other hand, in a dictionary attack, the adversary 

uses passwords from a list, which are likely to be used as passwords by users. There are 

four types of dictionary attacks: i) pure ii) Probabilistic Context Free Grammar (PCFG) 

based [6], iii) Markov model based [7] and iv) mangling rules [8]. In the pure dictionary, 

the attacker simply uses a set of predefined words as candidate passwords. In the second 

type, PCFG theories are used to construct a dictionary containing modified passwords 

with assigned probabilities. In the third type, Markov-based models are applied to 

create candidate passwords based on the probability distribution over sequences of 

characters. In the fourth type (i.e., mangling rules), the attacker creates password 

variations from a dictionary by applying various modifications rules, such as “add the 

symbol ! at the end of the password”. Finally, the third category of guessing attacks is 

rainbow tables, in which the attacker uses a precomputed list to reverse the hash value. 

In this thesis, the term password guessing (or cracking), unless stated otherwise, refers 

specifically to brute force and dictionary attacks but not rainbow tables. Moreover, from 

the four types of dictionary attacks we exclude mangling rules as these are specific to 

each cracking tool. 
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2.1.2. Hardware based password guessing 

An attack scales linearly with invested resources, mainly cost of the equipment and 

energy consumption, and thus we have to take their influence into account. General 

purpose computing on GPUs can boost the computation performance, since the multiple 

GPU processing cores can be used in parallel for high-power calculations. Typically, a 

GPU consists of hundreds of computing cores grouped into computing clusters sharing 

the same memory bus. Due to this architecture, GPUs are specialized in Single 

Instruction, Multiple Data (SIMD) computations [9], which refer to the simultaneous 

execution of the same instruction on multiple processors with different input data for 

each processor (i.e., parallel computing). Consequently, GPUs can accelerate password 

guessing, since the same hashing scheme (i.e., the same instruction) can be executed 

simultaneously by hundreds of computing cores with different passwords as input. In 

[10], the authors measured the performance of the password guessing functions, where 

it was observed that the time required for password guessing decreased by 97% with 

GPU acceleration, compared with the time required using only CPU. 

Apart from GPUs, special purpose hardware such as field-programmable gate arrays 

(FPGAs) and more recently application-specific integrated circuits (ASICs) have been 

utilized to yield even higher hashrate values. Generally speaking, equipment cost is in 

favor of the graphic cards, as GPUs are a consumer product that is sold in large 

quantities. Also, older versions usually receive a discount, making them more cost-

effective. Interestingly, FPGA vendors use a different strategy: with the release of a 

new product line, the price of the old family stays roughly unchanged, while the new 

version is offered with a small discount to make the consumers switch away from the 

abandoned hardware platform. In this thesis, we will consider GPUs as the hardware 

platform of password guessing attacks. 

2.1.3. CMS and web application frameworks 

Nowadays, the majority of websites originate either from CMS or web applications 

frameworks. CMS are intended to be plug and play solutions and their main aim is to 

allow non-developers to deploy websites. CMS play an important role in the Internet. 

According to [11], 52.3% of websites in the Internet are based on CMS. Table 1 shows 

statistics of CMS usage among all websites in the Internet and among all CMS [11]. In 

particular, first comes the popular WordPress with a whopping 31.3% usage among all 
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websites in the Internet, while 59.8% usage among CMS. Second is Joomla with a 3.1 

percentage usage among all websites in the internet, while Drupal is third with 2%. 

CMS Market share among all 

websites in the Internet 

Market share 

among CMS 

WordPress 31.3% 59.8% 

Joomla 3.1% 6. 0% 

Drupal 2.0% 3.9% 

Magento 1.1% 2.1% 

PrestaShop 0.7% 1.4% 

TYPO3 0.7% 1.4% 

OpenCart 0.4% 0.8% 

Table 1: Popular CMS usage statistics 

On the other hand, web application frameworks are utilized by developers and aim at 

supporting the development of rich web applications by providing a standard way to 

build and deploy web applications. For web application frameworks, we could not find 

a reliable source of statistics regarding their market share in the Internet. Considering 

that many frameworks share the same programming language, it is difficult to 

determine which specific framework a website uses. Therefore, we used statistics from 

GitHub to discover the most popular open source frameworks [12]. Table 2 shows the 

number of stars that each web application framework has which can be considered as a 

popularity metric among web developers. Laravel which uses PHP has the largest 

number of stars, which is 44.465. The second most popular framework, Ruby on Rails, 

is based on Ruby with 40.263 stars, while MeteorJS, based on Javascipt, has 40.068 

stars. Note that from Table 2 ASP.NET is excluded, since GitHub is used only open-

source projects. 

Web application 

framework 

Programming Language # of stars on GitHub 

Laravel PHP 44.465 

Ruby on Rails Ruby 40.263 

MeteorJS Javascript 40.068 

ExpressJS Javascript 39.333 

Flask Python 37.515 

Django Python 35.230 

SailsJS Javascript 19.350 

Table 2: Popular web application frameworks based on GitHub 

2.1.4. Related Work 

The related work has studied extensively the area of password security from various 

scopes, including: i) password guessing attacks in leaked databases, and, ii) analysis of 

password complexity. Here we present only the most recent and relevant works. 

Regarding the first category, which is password guessing, the main metric which is used 
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by the related work to estimate the attack efficiency is called effectiveness. In essence, 

effectiveness is the fraction of passwords that will be correctly cracked after an attack. 

The authors in [6] have used the PCFG technique, which uses grammar theories to 

construct a dictionary containing passwords in a decreasing probability order and 

succeeded in cracking 28% - 129% more passwords in comparison to John the Ripper 

(JtR) [13]. In [14], the authors analyzed the Rock you [15] database to identify regular 

expressions that were used to create candidate passwords. The numerical results 

showed that the proposed method cracks 14% - 239% more passwords in comparison 

with JtR. 

Towards this direction, the work in [16] performs an analysis of Chinese web passwords 

by using the PCFG and Markov-based model, which create candidate passwords 

phonetically relevant to the words included in a dictionary. The authors succeeded in 

increasing password cracking efficiency by 48% and 4.7%, respectively, for each 

technique. In [17], the authors proposed a tool named OMEN, which was compared in 

password guessing with the PCFG and the Markov-based techniques. The recorded 

effectiveness was higher by 20% and 40% in comparison to PCFG and Markov-based 

techniques respectively. Moreover, [18] performed an empirical analysis on passwords 

and compared the effectiveness of dictionary password guessing attacks to this of the 

PCFG and Markov-based techniques. The PCFG method managed to crack 40-50% of 

the passwords, while 61.90% of passwords were cracked using the Markov-based 

methodology with 850 million guesses. 

The second category of the related work is password complexity analysis. More 

specifically, the work in [19] performs a password analysis of the RockYou leaked 

database consisting of cleartext passwords. The results pinpointed that most of the 

passwords are not secure enough to withstand password guessing attacks. In fact, 30% 

of the users chose passwords whose length is equal or below six characters, and 60% 

of the users use the limited alpha-numeric set to form their passwords, while the most 

commonly used password was “123456”. Reports from the Keeper password manager 

[20] show that, even in 2016, the users’ passwords are still predictable, since the most 

common recorded passwords include “123456”, “qwerty” and “111111”. Ιn [21], the 

authors performed interviews with several different groups (i.e., students, ICT 

specialists, etc.) regarding their password habits. They discovered that 50% of the 

respondents use less than 4 different passwords for all their services. Moreover, in all 
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groups more than 50% of the respondents use passwords shorter than nine characters 

and most of the passwords still consisted of letters and characters. 

2.2. Password hashing schemes 

A hashing scheme takes as an input a plaintext password and transforms it into a hash 

value considering three parameters: i) hash function; ii) iterations; iii) salt. More 

specifically, the core parameter of a hashing scheme is the employed hash function, 

such as MD5. The iterations parameter is optional and specifies the number of 

consecutive executions of the employed hash function to compute the hash value. For 

example, if a hashing scheme uses the MD5 hash function and the number of iterations 

is 100, then it will conduct 100 consecutive executions of MD5 to compute the 

password hash. The number of iterations can be adjusted so that the computation of the 

hash value takes an arbitrarily large amount of computing time (also known as key 

stretching). In this way, iterations are used to slow down password guessing attacks. 

Regarding the last parameter, the salt is also optional, and it is a random string which 

together with the password are the inputs to the hash function to produce the hash value. 

Using random salts, rainbow tables become ineffective. That is, an attacker won’t know 

in advance what the salt value is and therefore he/she cannot pre-compute a rainbow 

table. 

There are numerous functions used for password hashing including: MD5 [22], SHA1 

[23], SHA256 - SHA512 [24], PBKDF2 [25], BCRYPT [26], SCRYPT [27] and 

Argon2 [28]. The first four hash functions (i.e., MD5, SHA1, SHA256, SHA512) do 

not require the use of a salt by default. Thus, a separate function should be used to 

generate a salt for the hashing scheme. On the other hand, the rest of the hash functions 

internally generate and use a random salt during hash calculation.  

As we mentioned previously, the iterations parameter specifies the number of 

consecutive executions of the employed hash function, increasing the computation time 

to compute the hash value. For this reason, PBKDF2, BCRYPT, SCRYPT and Argon2 

hash functions use iterations by default. More specifically, PBKDF2 is the simplest 

function, since it iterates the employed hash function, usually SHA256 or SHA512. On 

the other hand, BCRYPT, which is based on the blowfish encryption algorithm, uses 

iterations only in the Blowfish key setup function using the salt and password 

parameters as inputs. For PBKDF2 and BCRYPT, memory usage is not tunable 
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separately (i.e., it is fixed for a given amount of CPU time). On the other hand, SCRYPT 

and Argon2 belong to a special category of hash functions named as memory hard 

functions (MHF), which are designed to use an arbitrary large and tunable amount of 

memory compared to PBKDF2 and BCRYPT making the size and the cost of a 

hardware implementation of these hash functions much more expensive, and therefore, 

limiting the amount of parallelism an attacker can use. Similar to BCRYPT, both 

SCRYPT and Argon2 use iterations in specific parts of the algorithm. SCRYPT was 

one of the first proposed MHF [27] and recently in 2016, the SCRYPT algorithm was 

published by IETF as a standard (RFC 7914) [29]. It is important to mention that for 

BCRYPT and SCRYPT, the literature uses the term cost factor [26], [27] instead of 

iterations (specifically for SCRYPT it is called CPU/Memory cost factor). In the rest 

of this thesis we will explicitly use the term iterations instead of cost factor. Apart from 

iterations, SCRYPT and Argon2 include several parameters that can be used to adjust 

the memory requirements for hash value computation. We will specifically focus on the 

iterations parameter. 

Regarding the exact value of iterations for the above hash functions, NIST guidelines 

recommend PBKDF2 with minimum 10.000 iterations [30], while the author of 

SCRYPT recommends 16384 iterations [27]. On the other hand, there is no official 

recommendation for BCRYPT and Argon2. We have only discovered that PHP 

programming language by default uses BCRYPT with 1024 iterations [31]. 

As mentioned in section 2.1.2, password guessing attacks greatly benefit from multiple 

processing cores, especially for hashing schemes that can be executed in parallel. MD5, 

SHA1, SHA256, SHA512 hash functions can be executed in parallel on multi-processor 

systems, fact that increases significantly the efficiency of password guessing attacks. 

Moreover, several weaknesses of PBKDF2 [32] allow efficient implementations with 

very little use of RAM, which makes brute-force attacks to PBKDF2 using FPGAs 

relatively cheap. Also, the work in [33] achieved a great optimization in running 

PBKDF2 on GPU hardware.  

On the other hand, BCRYPT, due to its pseudorandom access to memory makes 

difficult to cache data into the GPU’s internal memory [34]. Subsequently, BCRYPT 

implementations on GPUs use the external memory, thus spending more time 

transferring operands to and from the GPU. Thus, compared to PBKDF2, BCRYPT is 

less parallelizable and more resistant to password guessing attacks [27]. However, 
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recent works such as [35] [36] have presented BCRYPT implementations that achieve 

a high level of parallelization in embedded hardware devices. Finally, MHF such as 

SCRYPT and Argon2 are specially designed to withstand against hardware-equipped 

adversaries. MHF bound the memory amount and the memory bandwidth, limiting in 

this way the level of parallelism that an attacker can achieve. While a practical attack 

for SCRYPT has not been demonstrated yet, new MHF were proposed in the password 

hashing competition in 2014 [37] in which Argon2 was the winner. 

2.3. A mathematical model for cost estimation of password guessing 

attacks. 

In this section we propose a cost analysis framework for password guessing attacks. 

The rationale is to first compute the number of hashes, that will be performed 

throughout password guessing attacks, and secondly to estimate their effectiveness (i.e., 

percentage of successfully guessed passwords). By utilizing these two values, the cost 

of password guessing attacks is defined as the average number of hashes required to 

successfully crack a password hash. Lastly, the cost can be transformed into the average 

time required to crack a password hash. It is important to mention that the aim here is 

not to derive new mathematical models for password cracking, which has been already 

done in the previous works extensively (see section 2.1.4). Instead, our aim is to 

formulate a simple framework that will allow us to perform a security comparison and 

evaluation between the various CMS and application frameworks by quantifying the 

cost of password cracking. 

2.3.1. Mathematical parameters 

This section elaborates on the parameters of the proposed framework for the cost 

estimation of password guessing attacks. These parameters are as follows: 

• Iterations (I): The iterations parameter represents the number of consecutive 

executions of a hash function to compute the password hash. For example, a 

hashing scheme of 500 SHA1 iterations requires 500 consecutive executions of 

SHA1 to compute the hashing result. Note that this value is relevant only for 

iterations of MD5, SHA1, SHA256, SHA512 hash functions. On the other hand, 

PBKDF2, BCRYPT, SCRYPT and Argon2 that use iterations as an internal 

parameter, the parameter Ι is not considered (i.e., I=1). 
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• Database passwords (D): This parameter indicates the number of password 

hashes in the database. 

• Salt (S): This parameter indicates the number of salts in the database. We will 

assume that each password has a unique salt, therefore the number of database 

passwords D is equal to number of salts S. On the other hand, if the database 

does not use salt, then the parameter S is not considered (i.e., S=1). 

• Hashrate (Hr): It is the number of calculated hash values per second. 

• Password length (pwd_length): This parameter is the length of the target 

passwords that an attacker desires to crack in a brute force attack. We also define 

as pwd_lengthmin the minimum and pwd_lengthmax, the maximum password 

length that the attacker aims to crack. 

• Charset (C): The charset is the second attacking parameter of brute force 

password guessing attacks. The value of charset depicts the number of unique 

characters of the different sets that are used for the composition of a password 

(see Table 3) 

• Attempts in a dictionary attack (attempts): It is the number of candidate 

passwords that an attacker will attempt to crack the passwords. This parameter 

is relevant only for a dictionary attack. 

• Effectiveness (EBF or EDC): The effectiveness of a password guessing attack is 

the percentage of password hashes in a database that will be cracked after the 

completion of the attack. The effectiveness of the brute force attack is denoted 

as EBF, while for the dictionary attack is noted as EDC. 

Type of character set Charset (C) value 

Numeric 10 

Lowercase 26 

Uppercase 26 

Loweralphanumeric or 

Upperalphanumeric 

36 

Mixedcase 52 

Mixedalphanumeric 62 

Special 94 

Table 3: Charset value for different types of character sets 

2.3.2. Effectiveness: Brute Force password guessing attacks 

To compute the effectiveness of a brute force attack EBF, we define the parameter 

Ppwd_length as the percentage of passwords that have a specific length and the parameter 

PC,pwd_length, as the percentage of passwords to have a specific length and charset C. For 
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instance, for pwd_length=8, then Ppwd_length represents the percentages of 8-character 

passwords, while for charset C=10 (see Table 3) and pwd_length=4, then PC,pwd_length is 

the percentage of numerical passwords with 4 digit numbers. Recall also from section 

2.3.1, that pwd_lengthmin and pwd_lengthmax, is the minimum and maximum password 

length respectively that the attacker aims to crack. Based on the above, the EBF value 

can be estimated as shown in equation (9). 

 𝑬𝑩𝑭 = ∑ 𝑷𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉 · 𝑷𝑪,𝒑𝒘𝒅_𝒍𝒆𝒏𝒕𝒈𝒉

𝒑𝒘𝒅_𝒍𝒆𝒈𝒏𝒕𝒉𝒎𝒂𝒙

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

 (9) 

To the best of our knowledge there is no work that has calculated the Ppwd_length and the 

PC,pwd_length values. To this end, we perform an empirical analysis of passwords, in order 

to derive numerical values for Ppwd_length and PC,pwd_length. More specifically, we have 

gathered a large collection of leaked password datasets from various online services 

across multiple years (from 2006 to 2017). The total number of collected passwords is 

254.38 million passwords from 12 datasets. Note that these datasets are public and can 

be found in the Internet in various blogs and forums. It is also important to mention that 

we have collected leaked datasets that include only plaintext passwords. This is a key 

factor to avoid biasing results, since in this way we guarantee that all passwords are 

included in our statistical analysis. On the contrary, if we had used datasets that include 

cracked passwords, then we would have performed a statistical analysis only with 

passwords that have been guessed biasing the results. We verified that the considered 

databases are composed of plaintext passwords using a two-step procedure: i) by 

checking that the length of the passwords in the datasets do not match the length of a 

hash value (e.g., an MD5 hash has always a fixed output of 16 bytes), and ii) by 

performing a cross check with a historical record of leaked passwords available as a 

public service [38]. Considering that the processed usernames and passwords are in 

plaintext form, we do not reference their source, since many of these accounts may be 

still active.  

In Table 4, we classify the breached websites into various categories (9 in total) based 

on their content or service they provide. We observe that the associated user accounts 

of these websites are diverse in the sense that they are created from non-technical users 

(e.g. Mate1 was an online dating platform) to web developers (e.g. 000webhost is a web 

hosting platform for PHP/MySQL websites). Moreover, the breached websites offer 

their services globally, except for Auction-warehouse which explicitly requires their 
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users to be US citizens. Therefore, we believe that the collected datasets represent a 

diverse and generic set of passwords. 

Dataset # Website Category Number of Passwords 

1 000webhost Web hosting 15.311.565 

2 1394store e-shop 20.649 

3 Auction-warehouse Auctions 26.616 

4 Clixsense Advertisemts 2.222.542 

5 Mail.ru 
 

email 4.664.479 

6 Mate1 Social 27.403.959 

7 Neopets Gaming 68.743.269 

8 Rockyou Social 32.625.471 

9 Tuscl Adult 38.599 

10 VKontakte Social  100.544.934 

11 Yahoo voices Publishing 453.837 

12 Youporn Adult 2.325.492 

Table 4: Categories and number of leaked passwords 

The numerical values of the password analysis are shown in Table 5. Note that the 

presented values are averages of the password length and character set distributions 

from each one of the considered databases. For the character set distributions we 

classify the passwords based on the following categorization: i) numeric: only numbers 

(e.g., 1234567890); ii) lowercase: only lowercase Latin alphabet characters (e.g. 

password); iii) uppercase: only uppercase Latin alphabet characters (e.g., 

PASSWORD); iv) mixedcase: uppercase + lowercase (e.g., PassworD); v) 

loweralphanumeric: lowercase + numeric (e.g., passw0rd); vi) upperalphanumeric: 

uppercase + numeric (e.g., PASSW0RD); vii) mixedalphanumeric: mixedcase + 

numeric (e.g., Passw0rD); and viii) special: passwords that contains at least one special 

character (e.g., P@ssw0rD). 

Table 5 can be used to derive the Ppwd_length and PC,pwd_length values and consequently the 

effectiveness EBF of brute force attacks. To exemplify, consider an attack targeting 7 to 

8-character lowercase passwords (i.e., pwd_length=8 and C=26). In this case, Ppwd_length 

equals to 20.68%, and PC,pwd_length equals to 30.36%, while pwd_lengthmin=7 and 

pwd_lengthmax=8. Thus, using equation (9), the effectiveness for a brute force attack 

EBF is equal to 12.16%. 
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Table 5: Values for password length as a function of character set distributions 

2.3.3. Cost analysis: Brute Force password guessing attacks 

In this section, we elaborate on the cost estimation of brute force password guessing 

attacks. The first step of the cost estimation is to compute the average number of hashes 

that will be performed during a brute force password guessing attack, defined as 

hashesBF. To achieve this, we need to calculate the number of candidate passwords, by 

leveraging the charset and the pwd_length parameters. The usage of a unique salt per 

password affects the hashesBF value, since the guessing attempts performed during a 

brute force attack, will be a multiplication of all the candidate passwords by the total 

number of salts. Lastly, the hashesBF is affected by the usage of iterations, since a 

guessing attempt requires iterations consecutive hash executions. 

Based on the above, it can be deduced that the hashesBF value can be estimated by using 

equation (1). Τhe hashesBF value is analogous to both the iterations I and to the number 

of salts (i.e. S). In addition, hashesBF value is analogous to the sum of all candidate 

passwords (i.e. Ci), considering specific charset and password length values. That is,  

 

𝑯𝒂𝒔𝒉𝒆𝒔𝑩𝑭 = 𝒂 · 𝑰 · 𝑺 · ∑ 𝑪𝒊

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒂𝒙

𝒊=𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

  (1) 

Note that the parameter 𝑎 is a real number, where 𝑎 ∈ (0,1]. The parameter 𝑎 is defined 

as the attack success factor and is related to the probability to successfully crack all 

hashed passwords at the end of the attack. In the worst-case scenario for the attacker, 

the value of 𝑎 is equal to 1. In this case, the attack will cover all the candidate 

passwords. To better understand the role of the parameter 𝑎, we consider the following 

example. Assume a brute force attack in which the attacker aims to crack numeric 

passwords (i.e., C=10 from Table 3) of minimum length 4 and maximum length 5 (i.e., 
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pwd_lengthmin = 4, pwd_lengthmax = 5), for a hashing scheme that uses 100 iterations 

(I=100). The number of the hashed passwords is D=100. This means that the salt S is 

also equal to 100 (i.e., one salt per password). All the candidate 4-character numeric 

passwords are 104, while the 5-character are 105, summing to a total number of 1.1 105 

passwords. If we assume the worst-case scenario for the attacker (i.e., 𝑎=1), then by 

multiplying the number of candidate passwords with the iterations and the number of 

salts, the value of hashesBF will be 1.1·109. This means that the attacker for each 

password (with its related salt) will cover all candidate passwords. On the other hand, 

in the average case we have 𝛼 = 1 2⁄  and in this case the attacker will cover half of 

candidate passwords (i.e., 𝐻𝑎𝑠ℎ𝑒𝑠𝐵𝐹 =
1.1·109

2
). 

The second step of this analysis is to estimate the number of target password hashes 

that will be cracked by a brute force attack, defined as cracked_passBF. This can be 

achieved by leveraging the effectiveness parameter EBF (see section 2.3.2), which 

defines the percentage of password hashes that will be successfully cracked by the 

attack. Therefore, using EBF, we can calculate the cracked_passBF by multiplying the 

EBF with the number of password hashes in the database D, as shown in equation (2). 

 𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑩𝑭 = 𝑫 · 𝑬𝑩𝑭 (2) 

Having calculated the hashesBF and the cracked_passBF, we can calculate the cost of 

password guessing for the brute force attack, (defined as costBF). The cost costBF 

represents the average number of hashes that will be performed during the attack to 

crack a password hash in the database. To calculate costBF we use the following 

equation. 

 𝒄𝒐𝒔𝒕𝑩𝑭 =
𝒉𝒂𝒔𝒉𝒆𝒔𝑩𝑭

𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑩𝑭 
   

By replacing the hashesBF with equation (1) and cracked_passBF with equation (2), the 

final form of costBF can be derived as follows: 

 𝒄𝒐𝒔𝒕𝑩𝑭 =
𝒂 · 𝑰 · 𝑺

𝑫 · 𝑬𝑩𝑭

· ∑ 𝑪𝒊

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒂𝒙

𝒊=𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

  (3) 

Lastly, the costBF can be translated into the average time required to crack a password 

hash in the database D, (defined as cost_timeBF) using the hashrate (i.e. Hr) parameter, 

as shown in equation (4). 

 𝒄𝒐𝒔𝒕_𝒕𝒊𝒎𝒆𝑩𝑭 =
𝒄𝒐𝒔𝒕𝑩𝑭

𝑯𝒓 
 (4) 
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2.3.4. Effectiveness: Dictionary password guessing attacks 

In this section, we analyze the effectiveness EDC (see section 2.3.1) for three types of 

dictionary attacks: i) pure ii) Markov model and iii) PCFG. These values are obtained 

from the related work. For pure dictionary attacks, we use the EDC and the attempts 

parameter values from [18] (see Table 6). The authors of this work used dictionaries 

with English, Italian and Finish lowercase words and executed pure dictionary attacks 

against two databases DB1 and DB2 respectively, recording effectiveness EDC values 

24.79% and 26.02% respectively. Note that the DB1 included hashed passwords leaked 

from an Italian messaging server, while DB2 consisted of hashed passwords from 

Finnish speaking forums. 

Dictionary attempts EDC DB1 EDC DB2 

English, Italian 

and Finnish words  
1.45·103 24.79% 26.02% 

Table 6: Effectiveness values for pure dictionary password guessing attacks (values were taken 

from [18]) 

Moreover, we have obtained the EDC values based on Markov model and PCFG as 

derived from [18] (see Table 7). The EDC for the PCFG model ranges from 41.50% for 

1.45 million guessing attempts to 49.36% for 145 million guessing attempts. On the 

other hand, the Markov model is more efficient, since its EDC values are greater than 

the ones of PCFG. Particularly, by leveraging the Markov model, 53.49% of the 

passwords can be cracked with 149 million attempts, while this value can be increased 

to 99.70% for 1040 guessing attempts.  

Model attempts EDC 

PCFG 1.45·106 41.50% 

PCFG 41·106 46.33% 

PCFG 145·106 49.36% 

Markov ~149·106 53.49% 

Markov ~156·106 54.58% 

Markov ~850·106 61.90% 

Markov ~7·1016 91.44% 

Markov ~1040 99.70% 

Table 7: Effectiveness values for dictionary password guessing using PCFG or Markov models (values 

were taken from [18]) 

2.3.5. Cost analysis: Dictionary password guessing attacks 

In this section, we elaborate on the cost estimation of dictionary password guessing 

attacks. The first step of the cost estimation is to compute the number of hashes that 
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will be performed during an attack, defined as hashesDC. The hashesDC value can be 

estimated by multiplying the iterations I with the salt S and with the number of guessing 

attempts (i.e., attempts). Thus, hashesDC can be estimated as follows: 

 𝒉𝒂𝒔𝒉𝒆𝒔𝑫𝑪 = 𝒂 · 𝑰 · 𝑺 · 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔 (5) 

As in the brute force attack, the parameter 𝑎 is the attack success factor. The next step 

for the cost estimation is to compute the number of password hashes that will be cracked 

after the completion of a dictionary password guessing attack, defined as 

cracked_passDC. The value of cracked_passDC relies on the effectiveness EDC of the 

dictionary attacks. Note that the EDC value relies on the actual method of dictionary 

attack (e.g., pure, PCFG or Markov model). Using EDC, the estimated number of the 

cracked passwords can be computed as follows:  

 𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑫𝑪 = 𝑫 · 𝑬𝑫𝑪 (6) 

Having calculated the hashesDC, and the cracked_passDC, the last step is to estimate the 

average hashes that will be performed until a successful password crack, defined as 

costDC. To achieve this, we divide hashesDC by cracked_passDC. 

 𝒄𝒐𝒔𝒕𝑫𝑪 =
𝒉𝒂𝒔𝒉𝒆𝒔𝑫𝑪

𝒄𝒓𝒂𝒄𝒌𝒆𝒅𝒑𝒂𝒔𝒔𝑫𝑪

  

Next, we can use equations (5) and (6), to derive the final form of costDC. 

 𝒄𝒐𝒔𝒕𝑫𝑪 =
𝒂 · 𝑰 · 𝑺 · 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔

𝑫 · 𝑬𝑫𝑪

 (7) 

Finally, to convert costDC into the average time required until a successful password 

crack in the database D, cost_timeDC, we need to divide costDC by the hashrate (i.e. Hr), 

as shown in equation (8). 

 𝒄𝒐𝒔𝒕_𝒕𝒊𝒎𝒆𝑫𝑪 =
𝒄𝒐𝒔𝒕𝑫𝑪

𝑯𝒓 
 (8) 

 

2.4.  Password hashing scheme evaluation 

This section evaluates the default hashing schemes used by CMS and web application 

frameworks based on the following parameters: i) hash function; ii) iterations; iii) usage 

of salt, and iv) minimum acceptable pwd_length. In total, we have examined 49 

commonly used CMS and 47 popular web application frameworks. Table 8 shows the 

considered CMS classified into 7 categories: i) 13 CMS are included in the generic 

category, which represents CMS that allow the development of websites with various 
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functionalities that focus on the content (e.g. blog, news web site), ii) 9 for forums, iii) 

5 for ecommerce, iv) 7 for Enterprise Resource Planning (ERP) and Customer 

Relationship Management (CRM), v) 2 for coding and bug tracking, vi) 2 for project 

management, and vii) 11 are classified as “Other”, which do not belong to any of the 

above categories. 

Based on the results of Table 8 which depicts the default hashing schemes of the 

investigated CMS, we can observe that 26.53% of the CMS including osCommerce, 

SuiteCRM, WordPress, X3cms, SugarCRM, CMS Made simple, Mantisbt, Simple 

Machines, miniBB, Phorum, MyBB, Observium, and Composr use the outdated hash 

function MD5. MD5 is highly parallelizable and we will analyze in section 2.5.1, it is 

the fastest among all hash functions that can be executed in GPUs. Regarding the 

remaining hash functions of the CMS, GetSimple CMS, Redmine, Collabtive, PunBB, 

Pligg, and Omeka (i.e. 12.24%) use the SHA1 hash function, which similar to MD5 is 

highly parallelizable on GPUs. Drupal, EspoCRM, PhreeBooks, Odoo, ImpressCMS, 

Magento, Bugzilla, TYPO3 CMS, Mediawiki, and PhpList (i.e. 20.41%) use either 

SHA256/SHA512 or PBKDF2. These hash functions are also parallelizable, thus 

increasing the effectiveness of password guessing attacks. Lastly, Joomla, Zurmo, 

OrangeHRM, SilverStripe, Elgg, XOOPS, e107, NodeBB, Concrete5, phpBB, Vanilla 

Forums, Ushahidi, Lime Survey, Mahara, Mibew, vBulletin, OpenCart, PrestaShop, 

and Moodle (i.e. 40.82%) use the BCRYPT hash function. As we mentioned in section 

2.2, BCRYPT is more secure than the rest of the hashing schemes, since it more difficult 

to be parallelized in GPU hardware. Based on the above we can conclude to the 

following observation: 

Observation 1: A whopping number (i.e., 59.18%) of CMS use default hashing schemes 

that can be highly parallelized with GPU hardware, making password guessing attacks 

easier. Indicatively, the popular CMS WordPress uses by default MD5. On the other 

hand, 40.82% of the CMS use BCRYPT by default including Joomla. 

Another observation which is related to the usage of the hashing schemes is the 

following: 

Observation 2: No CMS has adopted SCRYPT, Argon2 or any other MHF yet. 

Observation 2 may come as no surprise if we consider that the PHP programming 

language that all the CMS are based on, has no official SCRYPT implementation. This 
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means that in case an administrator of a CMS wants to use SCRYPT, he/she should rely 

on a third party or custom implementation of SCYPT. However, using non-official 

implementations is considered an insecure practice, as they may include backdoors 

[39], [40] or insecure code [41]. On the other hand, Argon2 was included recently (late 

2017) in PHP v7.2 and compared to SCRYPT it can be more easily adopted in a CMS. 

However, Argon2 is a relatively new hash function and the audits are too scarce to draw 

safe conclusions about its security properties. Finally, a common reason that hinders 

the adoption of both SCRYPT and Argon2 is related to the fact that the transition to a 

new hashing scheme of an already deployed website can lead to downtimes or it may 

require once again the registration of its users with a new (or the same) password. 

Therefore, for backwards compatibility reasons website administrators avoid to modify 

hashing schemes and choose to remain with legacy hash functions. A case in point is 

the CMS named Phorum; it still uses the MD5 as the default hashing scheme (see Table 

8), despite the fact that there is a request in the official development repository of 

Phorum to change MD5 to a stronger hash function [42]. After a discussion between 

users and the development team (see [42]), the main developer opposes to this change, 

because the developers of Phorum CMS are considered how existing installations are 

going to update to the new hash function. Thus, they decide not to proceed with any 

modification to the hash function leaving MD5 as the main hash function. Another 

similar discussion takes place for Magento CMS [43], which is an e-commerce platform 

and still uses SHA256. 

 

Table 8: The default hashing scheme parameters of the investigated open source CMS 
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Regarding the usage of salt, the most important finding is that 14,29% of the targeted 

CMS, and specifically X3cms, GetSimple CMS, miniBB, Phorum, MantisBT, 

Collabtive, and phpList do not use salt in their hashing scheme (see Table 8), which 

renders password hashes vulnerable to rainbow table attacks. The fact that salt is 

missing in these CMS implies that users with the same plaintext passwords will also 

share the same password hash. Another important finding is that 36.73% of the tested 

CMS do not use iterations in their password hashing scheme (i.e., the iterations value 

is 1). Also, the rest of the CMS that use iterations use an arbitrary number of iterations. 

For instance, for BCRYPT we observe that there are CMS that use 256, 1024, or 4096 

iterations, while for PBKDF2 we observe 10000, 12000, or 30000. These variations 

stem from the fact that BCRYPT does not have official recommendations for its 

iterations, while NIST proposes a minimum of 10.000 iterations for PBKDF2. Based 

on the above, we can conclude to the following observation: 

Observation 3: Password hashes created by 14.29% of the CMS are vulnerable to 

guessing attacks based on rainbow tables, since the relevant CMS do not use salt in 

their hashing scheme. Also, 36.73% of the CMS do not use iterations, which makes 

them even more vulnerable to password guessing attacks. On the other hand, the rest 

of the CMS that use iterations, select the number of iterations inconsistently and 

arbitrarily. 

The last parameter to be analyzed is the minimum acceptable password length. 

Although this parameter does not affect the execution time of a hashing scheme, 

password hashes created from small passwords are more likely to be cracked. From the 

analysis of Table 8 it is observed that only 12.24% of the CMS (i.e., e107, Typo3 CMS, 

Bugzilla, Redmine, Phplist, and Moodle) enforce passwords of 8 characters length or 

greater. On the other hand, 6.12% require passwords with a minimum length of 7 

characters, 14.29% of 6 characters, 20.41% of 5 characters and 8.16% of 4 characters. 

However, the most important remark is that 38.78% (i.e. Drupal, SuiteCRM, 

WordPress, SugarCRM, EspoCRM, GetSimple CMS, CMS Made simple, Odoo, 

Mantisbt, Collabtive, Vanilla Forums, Observium, Lime Survey, MediaWiki, Phorum, 

vBulletin, Mibew, and Composr) of the CMS do not check the password length during 

the registration process, since we were able to create single character passwords. Based 

on the above, we can conclude to the following observation: 
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Observation 4: 38.78% of the CMS do not enforce minimum password length policy, 

which may result in users selecting weak passwords. Notably, WordPress and Drupal 

belong to this category of CMS that allow a single character password. This 

observation, alongside with the fact that many CMS use parallelizable hash functions 

makes password cracking even more effective. 

Driven by the above observations, we can conclude that the majority of CMS offer 

weak hashing schemes in the default settings. A prime example is Phorum; it uses 

MD5 without iterations and salt, while it allows even 1-character length passwords 

(seeTable 8). Of note, the majority of the considered CMS allow modifications to the 

default settings. For instance, there is a plugin for WordPress that allows to easily 

change the default MD5 to BCRYPT for password hashing. However, CMS are 

characterized as “plug and play” solutions. In particular, their main goal is to allow 

even non-developers to easily deploy websites. This fact makes it less probable that 

CMS administrators will ever try to modify the default configurations. What is more, 

this argument is also strengthened by the fact that in general individuals tend to remain 

at the default assignment (also known as default effect [44]). Based on the above, a 

more generic observation can be extracted as follows: 

Observation 5: CMS follow an opt-in policy for security configurations. That is, by 

default they do not provide the most secure hashing schemes, but they allow the 

modification to more secure schemes. However, considering that CMS administrators 

may not be developers and do not have the appropriate security expertise, we argue 

that most CMS are deployed in the Internet with the default security settings including 

the hashing scheme. 

The second part of this section examines the default hashing schemes of the most 

commonly used web application frameworks. As we mentioned in section 2.1.3, a key 

difference between CMS and web application frameworks is that the latter require 

programming knowledge and they are utilized by web developers, while the former 

(i.e., CMS) does not require coding knowledge, since it is based on installable modules. 

Table 9 shows the investigated web application frameworks classified into 5 categories, 

based on the programming language for web application development. More 

specifically, we investigated i) 10 frameworks which rely on PHP, ii) 14 that are based 

on Python, iii) 11 that use Ruby on Rails, and iv) 11 based on Javascript. ASP.NET is 

the last framework we explored, and we categorized it as “Other”, since it supports 
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development in several programming languages. The default hashing schemes of the 

investigated web application frameworks are depicted in Table 9. An important 

observation that can be derived is that 48.94% of the web application frameworks do 

not offer a default password hashing scheme, which might lead to improper password 

hashing. Moreover, the Kohana PHP framework uses the same salt value for all stored 

passwords, thus they are vulnerable to rainbow table attacks. Another significant 

finding is that Kohana, Django, CherryPy, Bottle, ExpressJS, MeanJS, MernJS, nodeJS, 

AllcountJS, Cuba, and ASP.NET (i.e. 23.40%) use parallelizable hash functions (i.e., 

MD5, SHA1, SHA256, SHA512 and PBKDF2), while Kohana, CherryPy, Bottle, 

AllcountJS, Cuba, and ASP.NET (i.e. 12.77%) use only 1 iteration of the employed 

hash function. On the other hand, Laravel 5.4, Codeigniter 3.1.4, CakePHP 3.3, Zend 

framework3, Yii 2, Phalcon 3.0.4, Aura PHP, Lithium, MeteorJS, SailsJS, FathersJS, 

Derby, and Ruby on Rails, which stand for 27.66% use the BCRYPT hash function by 

default. Based on the above we can conclude to the following observation: 

Observation 6: 23.40% of the web application frameworks opt for weak (i.e., 

parallelizable) hash functions, while 12.77% of them do not use iterations. What is 

more, only 27.66% use the BCRYPT hash function by default. Similar to CMS and 

observation 2, SCRYPT and Argon2 are absent from the default settings. 

Moreover, from Table 9, we can notice that: 

Observation 7: 48.94% of the investigated web application frameworks do not offer a 

default password hashing scheme, which might lead to the selection of a weak password 

hashing scheme in web applications. 

The underlying assumption of observation 7 lies to the fact that developers are expected 

to have the knowledge of selecting appropriate hash functions and configure securely 

the hashing scheme of the websites they develop using salts. In a recent work [45], web 

developers were given the task to store passwords for authentication in a website. 

Among the many key insights of this work, the most important ones were: i) many 

developers stored the passwords in plaintext; ii) most of the developers focused on the 

functionality and only added security as an afterthought; iii) even participants who 

attempted to store passwords security often did it insecurely, because they used 

outdated methods (e.g., they used MD5 without even iterations) as security is a fast 

moving field; iv) different standards and security recommendations made it difficult for 
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developers to decide what is the right course of actions. Therefore, all the above 

observations imply that there is a lack of adequate security knowledge even by 

developers, and simply assuming that they will select a secure password storage scheme 

is a dangerous misconception. Hence, it would be beneficial for web applications 

frameworks to offer secure default hashing schemes. 

 

Table 9: The default hashing scheme parameters of the investigated web application frameworks 

2.5. Cost of password cracking 

2.5.1. Hashrates 

First, we derive hashrate values using a popular GPU-based password cracking tool 

named Hashcat [46]. Due to its’ popularity, there are numerous benchmarks available 

on the Internet that calculate the hashrate of various GPU models. However, due to the 

fact that we were not able to find up to date benchmarks (i.e., the most recent ones were 

of 2014) we opted for our own benchmarks. To this end, we derived hashrate values 

(see Table 10) of various hash functions and iterations using the GeForce GTX 1070 

[47], which was NVIDIA’s second-best GPU model of 2016. As expected the hash 

functions MD5, SHA1, SHA256 and SHA512 exhibit high performance in the sense 

that GPUs can compute several hashes per second. PBKDF2 slows downs the 

computations due to the iterations used. Regarding BCRYPT and SCRYPT, we observe 
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that BCRYPT has the slowest performance for number of iterations up to 16384 

iterations, but for higher values, SCRYPT is slower than BCRYPT.  

Along with GPU based hashrates, it is imperative to derive the runtime of a hash value 

calculation in a typical Web Server machine. The reason for this calculation is that the 

number of iterations should not be set too high; otherwise the calculation of a hash 

value can be significantly delayed, disrupting the normal operation of the website. That 

is, authentication delays (due to the multiple iterations for a hash calculation) can 

frustrate users that are trying to login, especially if they have to provide multiple times 

their password, because they provided an erroneous input. As mentioned in [48], [49], 

authentication delays higher than 1 second are not acceptable by many internet users. 

As a side note, for an offline environment (i.e., disk encryption), higher numbers of 

iterations can be used (e.g., for key generation from low entropy passwords). To this 

end, we have used a typical server setup, an Intel Xeon E5-2640 v2 CPU with 4 GB 

RAM to estimate the runtime of the hash functions for various iterations (see Table 10). 

We observe that in almost all considered iterations values, the runtime of the hash 

functions does not exceed the upper limit of one second, except for BCRYPT for 32678 

and 65536 iterations, which the runtime is 2.72 sec and 5.45 seconds respectively. 

2.5.2. Comparative analysis 

Here we use our cost analysis model that we presented in section 2.3 to perform a 

comparative analysis of the cost time between different CMS and web application 

frameworks. To derive numerical results for the cost time we consider the values from 

section 2.5.1 for the hashrates, as well as sections 2.3.2 and 2.3.4 for brute force and 

dictionary effectiveness. We also consider the worst-case scenario for the attacker, 

which means that the attack success factor 𝑎 is equal to 1 (see section 2.3.3). Table 11 

summarizes the numerical results. The comparison is performed using five (5) different 

groups. Group 1 compares the cost time for a brute force attack (i.e., cost_timeBF) 

between a CMS that does not enforce a password policy by default and a CMS which 

applies a password policy. 

From the investigated CMS we identified that the majority of the CMS do not enforce 

a password policy by default, except for Magento CMS. To this end, in group 1 we 

include  
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Hash function (iterations) 
Hashrate (H/s)  

(NVIDIA GTX1070) 

Runtime (sec) 

(Intel Xeon E5-2640 v2) 

MD5 (1) 21,359,700,000.00 1.06·10-6 

SHA1 (1) 7,043,888,888.00 1.37·10-6 

SHA256 (1) 2,536,500,000.00 1.75·10-6 

SHA512 (1) 844,100,000.00 1.95·10-6 

BCRYPT (1024) 358.00 8.68·10-6 

BCRYPT (8192) 44.75 6.85·10-5 

BCRYPT (16384) 22.00 6.8·10-1 

BCRYPT (32768) 11.00 2.72 

BCRYPT (65536) 5.00 5.45 

PBKDF2SHA256 (8192) 121,375.00 1.09·10-2 

PBKDF2SHA256 (16384) 60,574.00 3.92·10-2 

PBKDF2SHA256 (32768) 30,271.50 7.67·10-2 

PBKDF2SHA256 (65536) 15243.50 1.57·10-1 

PBKDF2SHA256 (131072) 7,587.00 3.04 10-1 

PBKDF2SHA256 (262144) 3,797.00 6.16·10-1 

PBKDF2SHA512 (8192) 43,631.00 2.61·10-2 

PBKDF2SHA512 (16384) 22,174.00 5.23·10-2 

PBKDF2SHA512 (32768) 10,895.25 1.03·10-1 

PBKDF2SHA512 (65536) 5487.00 2.06·10-1 

PBKDF2SHA512 (131072) 2,752.00 4.12·10-1 

PBKDF2SHA512 (262144) 1,388.00 8.22·10-1 

SCRYPT (8192) 122.00 2.75·10-2 

SCRYPT (16384)  34.00 5.24·10-2 

SCRYPT (32768) 9.00 1.06·10-1 

SCRYPT (65536) 2.00 2.16·10-1 

SCRYPT (131072) 0.3 4.35·10-1 

SCRYPT (262144) 0.012 8.71·10-1 

Table 10: Hashrates and runtime values 

for the comparison a CMS named EspoCRM (which does not have a password policy) 

to Magento CMS (which by default uses a password policy). In particular, Magento 

policy accepts passwords that are composed from at least 3 different charsets (i.e., 

numeric, lowercase, uppercase, special). Thus, for this comparison, we estimate the cost 

time of a brute force attack cost_timeBF for 8-character length mixedalphanumeric 

passwords for Magento (due to the password policy), and 8-character length lowercase 

passwords for EspoCRM (due to the absence of a password policy). Using equation (4) 

in section 2.3.3 and the input values derived in section 2.3.2 we calculate that for 

EspoCRM the cost_timeBF is equal to 3940 seconds, while for Magento is 8708036 

seconds, which is a whopping 220.916% increase. This can be justified by the fact that 

password charset C of Magento is 62 (mixedalphanumeric – see Table 3) which greatly 

increases the required number of hashes for the brute force attack. 
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Observation 8: A simple password policy such as the one of Magento, can have a 

drastic effect on the effort of the attacker to perform password guessing. Unfortunately, 

the majority of CMS and web application frameworks do not enforce the use of 

password policies, not even in the password length. 

Group 2 compares a CMS (i.e., Mibew) that uses BCRYPT with its lowest number of 

iterations (i.e., 2) among all CMS and web application frameworks as shown in Table 

8, with a web application framework (i.e., Flask) that uses PBKDF2, which is the 

highest number of iterations (50.000 iterations) among all CMS and web application 

frameworks. The attack is brute force and since no password policy is enforced in these 

CMS, we select 8-character numeric passwords. The numerical results (see Table 11) 

show that even the lowest iterations of BCRYPT have significantly higher cost time 

(i.e., 2499488 seconds) compared to the highest iterations of PBKDF2 (i.e., 181814 

seconds). This is due to the fact that BCRYPT reduces the level of parallelism [26]. As 

we mentioned in section 2.2, NIST guidelines [30] recommend PBKDF2 for hashing 

passwords with a minimum number of 10.000 iterations. Given our results, we argue 

that this recommendation is not adequate to withstand against offline passwords attacks. 

Observation 9. BCRYPT even only with 256 iterations provide significant 

improvements in terms of security over PBKDF2 with 50.000 iterations. Thus, we argue 

that not only the minimum recommended iterations of PBKDF2 by NIST is too low (i.e., 

10.000), but also the recommended hash function itself (i.e., PBKDF2) is not resistant 

to password guessing. 

Group 3 investigates the effect of iterations for BCRYPT on the cost time in a dictionary 

attack. For this reason, we selected OpenCart, which uses 1024 iterations, and Zend 

framework, which uses the highest number of BCRYPT iterations among all CMS and 

web application frameworks (i.e. 16384). In this group, the derived numerical results 

of cost time are based on a dictionary attack. Specifically, we select a dictionary attack 

based on PCFG with 1.45·106 attempts and EDC=41.5% (see first row of Table 7). As 

observed, an attacker needs 17302 seconds to guess a password for OpenCart (i.e., 1024 

BCRYPT iterations), while this value increases to 276836 seconds for Zend Framework 

(i.e., 16384 BCRYPT iterations), which is an 1500% increase. Considering that the 

runtime of BCRYPT for 16384 iterations on a server is 6.8·10-1 seconds (see Table 10), 
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which is lower than the login delay threshold of one second (see section 2.5.1), 

OpenCart (and all other CMS using BCRYPT) can increase the value of iteration. 

Observation 10. Most CMS uses 1024 iterations for BCRYPT. This is attributed to the 

fact that the PHP programming language which all the CMS are based on, uses 1024 

BCRYPT iterations by default. We argue that PHP can increase the default number of 

BCRYPT iterations (e.g., 16384) without imposing significant delays in the login 

procedure. 

Group 4 aims at investigating the cost time of MHFs compared to BCRYPT. For this 

reason, we opt for phpBB which uses BCRYPT with 1024 iterations and a hypothetical 

website utilizing SCRYPT with 16384 iterations. Note that the recommended value of 

SCRYPT [27] is 16384. We select a dictionary attack based on PCFG using 

EDC=41.5%. From numerical results we can deduce that the SCRYPT hash function 

increases the robustness of password hashing schemes, considering that an attacker 

needs 31376 seconds to crack a password. Moreover, the runtime of SCRYPT on 

servers is negligible, since it equals to 5.24·10-2
 seconds for 16384 iterations (see Table 

10). From group 4 results, we can conclude to the following: 

Observation 11. As a long-term solution, we suggest CMS to upgrade their default hash 

function to a MHF, such as SCRYPT, which is resistant to password cracking and does 

not add login delays. Also NIST guidelines should replace PBDKF2 with a MHF. On a 

positive note recent 2017 NIST guidelines do suggest (but not impose) the use of MHF. 

Finally, group 5 aims at comparing the three most popular CMS namely WordPress, 

Joomla, and Drupal. WordPress, which is the most commonly used CMS, uses the weak 

MD5 hash function with 8192 iterations, while Drupal uses 65536 iterations of the 

highly parallelizable SHA512 hash function. On the contrary, Joomla uses BCRYPT 

with the PHP’s default iteration value (i.e. 1024). As observed, a dictionary attack with 

EDC=41.5% can crack a WordPress password in 2.4 seconds, while this value increases 

to 481 seconds for Drupal. The low level of parallelization of BCRYPT, has a 

significant impact on the cost_timeDC considering that an attacker needs 17302 seconds 

to crack a Joomla password hash. To conclude, the most secure CMS is Joomla, 

followed by Drupal, while WordPress is the most vulnerable to offline password 

guessing attacks despite it is the most widely used CMS. 



46 

 

 

Table 11: Numerical results of the cost time for various CMS and web application frameworks. 

2.6.  Misuse of password hashing schemes for denial of service 

attacks 

In this section we investigate whether hashing schemes can be misused to lead to denial 

of service attacks to web applications. The rationale behind the experiments was that 

resource intensive configurations of hashing schemes (e.g., high number of iterations) 

can deplete the CPU resources of the web server and eventually result in denial of 

service conditions. To this end, we deployed a custom version of the popular WordPress 

CMS using the Apache web server. We implemented a plugin for WordPress with 

which we can easily modify and configure all the parameters of the hashing scheme, 

such as the hash function, the number of iterations, etc. (see below for the parameter 

values of the hashing schemes). Finally, we wrote a script that performs multiple login 

requests with a registered username and random password values, forcing WordPress 

to hash and verify them. On the web server, we measured the CPU utilization using 

htop toolkit [50]. Regarding the hardware setup, we used an Intel Xeon E5-2640 v2 

CPU and 4 GB memory running Ubuntu server 18.04, Apache 2.4.29 and PHP 7.2. 

As shown in Table 12, the parameters of the experiment were: i) the hash function, ii) 

iterations, iii) password length and iv) rate (login requests per second). More 

specifically, we examined hash functions that are used. Particularly, we considered the 

following hash functions, which are the default ones for the 3 most popular CMS (i.e., 

WordPress, Joomla, Drupal). That is, we examined: i) MD5 as it is the default one used 

by WordPress, ii) SHA512 which is the default one of Drupal, and iii) BCRYPT used 

by Joomla. Apart from the above hash functions we also included in the experiments 

SCRYPT, which is a memory hard function as discussed in section 2.2. Moreover, the 
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iterations value ranges from 1 to 65536 (216), while the password length ranges from 

10 to 10000 characters. Lastly, the rate of the login requests per second of users varies 

from 1 to 30 requests per second. 

Parameter Values 

Hash function 
MD5, SHA512, BCRYPT, 

SCRYPT 

Iterations (I) 
1, 1024, 4096, 8192, 16384, 

32768, 65536 

Password length (pwd_length) 10, 1000, 5000, 10000 

Rate (login requests per second) 1, 5, 10, 15, 20, 25, 30 

Table 12: Parameters of the hashing schemes. 

Figure 1 shows the CPU utilization as a function of the login rate for the MD5, SHA512, 

BCRYPT, and SCRYPT hash functions. In this experiment, we have used the default 

iteration values of the hash functions as they employed in the popular CMS. That is, we 

use: i) MD5 with 8192 iterations, as this is the default setting in WordPress, ii) 

BCRYPT with 1024 iterations, which is the default setting of Joomla iii) SHA512 with 

65536 iterations, which is the default setting of Drupal. Moreover, to include also a 

MHF in the experiments, we use SCRYPT with 16384 iterations, as recommended in 

its specifications [27]. As it is observed, in all cases the increase of the CPU utilization 

is almost linear as the login rate increases. It is important to note that BCRYPT (i.e. 

Joomla), and SHA512 (i.e. Drupal) with their default settings could cause the CPU 

utilization to increase to 100% for rate equal to 20 and 25 requests respectively. By 

maintaining such CPU load, the web server cannot cope with the required login 

attempts, thus keeping occupied all the available Apache connections. This results in a 

denial of service at the application layer, since the web server cannot respond to new 

requests. A significant remark is that denial of service attacks realized even with 20-25 

login requests per second, are not easily detectable by firewalls, if the logins are 

performed from different IPs (i.e., distributed denial of service). On the other hand, 

SCRYPT reaches 80% for rate equal to 30 requests per second. It is important to 

mention that during the experiments we observed that when CPU utilization reached 

80%, the website was responsive, but its pages were loading after a significant delay 

(i.e., 10-15 seconds). Therefore, although SCRYPT did not reach 100% CPU 

utilization, it was still capable of clogging the web server. On the other hand, Figure 1 

suggests that MD5 cannot deplete the CPU resources as its increase rate is very slow 
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and does not exceed 30% CPU utilization. Based on the above, we can conclude to the 

following observation: 

Observation 12: Slow rate denial of service attacks against websites that use hash 

functions with iterations are feasible (except for MD5). BCRYPT with 1024 iterations 

can reach 100% CPU utilization, even for login rate equal to 20 requests per second. 

This result is alarming considering that distributed denial of service attacks originated 

by botnets can far exceed the rates of our experiments. As mentioned in [51] the 

majority of the distributed denial of service attacks in 2017 was performed using 100 

to 1000 requests per second. 

 

Figure 1: CPU utilization vs login rate 

Although slow rate denial of service attacks are not easily detectable by intrusion 

detection systems and next generation firewalls [52], the nature of our considered denial 

of service based on password hashing has a weak point that defenders can take 

advantage of, to withstand websites against this attack. In particular, by using a 

mechanism called rate-limit (aka throttle), a website can block the usernames related to 

the incorrect logins, for a specific time period when a predefined threshold of failed 

consecutive attempts is reached. In this way, attackers cannot continue performing the 

denial of service for a long time period, since eventually all the usernames under the 

possession of the attacker will be blocked and the related login attempts will be 

discarded. Another beneficial characteristic of this solution lies to the fact that the rate 

limit can be applied at the application layer. As a matter of fact, there are many ready 

to use free CMS plugins, (such as [53] for WordPress) or a middleware for web 

application frameworks (such as [54] for CakePHP) that an administrator/developer can 

consider to use. 
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Observation 13: It is imperative to employ rate-limit in websites to mitigate denial of 

service attacks based on concurrent login attempts. The rate limit of login attempts is 

an effective and easy to deploy security mechanism available in many CMS and web 

applications frameworks. NIST guidelines consider as highly important to enforce rate 

limits and recommend maximum 100 failures account [30]. 

In the next two experiments we will investigate if password length and iterations can 

cause denial of service attacks even for very slow rates. More specifically, Figure 2 

shows the CPU utilization versus the password length for the same hash functions and 

iterations number as in the previous experiment. The rate of attempts is equal to 1 

request per second. The first and most important finding is that SHA512 with 65536 

iterations (i.e., Drupal default settings) is vulnerable to denial of service attacks, since 

the CPU utilization reaches 100% for password length equal to 6000. MD5 has also an 

increasing behavior but reaches almost 15% CPU utilization for password length equal 

to 10.000. This happens because MD5 and SHA512 do not have a maximum acceptable 

password length. On the contrary, BCRYPT has a constant CPU utilization independent 

from the password length, because the maximum password length for BCRYPT is 72 

characters. Lastly, although SCRYPT does not have a password length limitation, its’ 

CPU utilization does not change significantly, possibly due to its fast runtime on CPUs 

(see Table 10). Based on the above results, we infer that CMS and application 

frameworks should set by default a maximum acceptable password length policy to 

avoid denial of service with very large passwords. We discovered that WordPress by 

default limits to 4096 characters, while Drupal limits even more the password length to 

128 characters.  

Observation 14: All websites that use SHA1, SHA256, SHA512 or PBKDF2 with very 

high number of iterations should accordingly limit the maximum password length 

similarly to WordPress and Drupal to avoid falling victim of denial of service. On the 

other hand, BCRYPT and SCRYPT are not susceptible to denial of service with large 

passwords. 
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Figure 2: CPU utilization vs password length 

Finally, Figure 3 shows the CPU utilization as a function of iterations. In this 

experiment, we use a small password length and slow login rate, equal to 10-character 

and 1 request/sec respectively. From Figure 3 we can observe that in all cases the CPU 

utilization increases with iterations. However, increasing iterations we also increase the 

resistance of passwords against guessing attacks. In other words, the iterations regulate 

an inherent tradeoff between security and performance. In particular, as the number of 

iterations increases, on the one hand the password hashes are more resistant to guessing 

attacks (security), but on the other hand CPU utilization is increased (performance). 

Figure 3 depicts also that BCRYPT is vulnerable to denial of service, since it reaches 

100% CPU utilization with 32768 iterations, while SCRYPT reaches only 25% CPU 

utilization for 65536 iterations. At the same time, the runtime for SCRYPT is lower 

than 1 second in typical server machine (see Table 10), which makes it suitable for 

interactive logins, due to its small authentication delay. Subsequently, we can conclude 

to the following observation: 

Observation 15: Compared to BCRYPT, SCRYPT is more scalable in the sense that the 

number of iterations can be increased for password security without introducing denial 

of service conditions and login delays provided that the web server has enough physical 

memory ( >4 GB). 
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Figure 3: CPU utilization vs iterations 

2.7. Recommendations on Password hashing 

In light of our analysis, this section provides recommendations and alternative solutions 

to enhance robustness of passwords against guessing attacks. 

Update NIST recommendations. As mentioned previously, NIST recommends the 

use of PBKDF2 with 10.000 iterations minimum. Based our observations, we believe 

that NIST guidelines should be updated to replace PBKDF2 with a MHF, which is 

adequately audited and proved that it is robust against attacks. 

Use of secure default settings. One of the most influential insights from the behavioral 

sciences is that whatever is in the “default” position generally persist. Thus, CMS 

developers should shift from an “opt-in” to an “opt-out” policy with stronger security 

configurations. Web application frameworks should also follow this practice and avoid 

assuming that developers are able to select secure and appropriate hashing schemes 

(e.g., use of salt, password policy, etc.). 

Upgrade legacy hash functions. Regarding legacy hash functions, it is a fact that many 

websites have remained with outdated hash functions such as MD5 or SHA1. The 

problem that hinders adoption of a new hash function is the possible frustration to the 

users of the website, because they will be forced to register once again to provide a new 

password for the new hash function [55]. We argue that there are two possible ways to 

upgrade a hash function without the need of a new registration. The first solution is to 

keep two tables side by side one with the old hash function (e.g., MD5) and another 

table for the new hash function. When a user logs in for the first time after the addition 

of the new hash function, the website will first verify the legacy hash (e.g., MD5) and 

then store the new hash (derived from the new hash function). When all the new hashes 
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have been calculated by all users, then the website can delete the old table with the 

MD5 hashes. This solution is feasible only for a small number of users, otherwise it 

could take an extremely long time to achieve the migration to the new hash function. 

The second solution is called layered hashing scheme and it has been adopted by 

Facebook [56] (see Figure 4). The idea is to use multiple hashes one after the other. 

That is, the output of a hash function becomes input for another hash function. In this 

way, a website can update a hash function at any time simply by adding a new layer of 

a hash function, eliminating the need to maintain two separate tables and wait the users 

to log in first. In the case of Facebook, the layered hashing scheme is as follows:  

1. H = md5(pwd) (the legacy hash function) 

2. H = hmacsha1(H, K1, salt) (K1 is a secret 

3. H = Cryptoservice::hmac(H, K2) (K2 is a secret key stored in the cryptoservice) 

4. H = scrypt(H, salt) (the new key hash function. Depending on the implementation SCRYPT output 

length can be several bytes) 

5. H = hmacsha256(H, K3, salt) (this hash function is used to limit the output length to 256 bits) 

Figure 4: Layered Hashing scheme of Facebook 

Note that in step 3, the Cryptoservice::hmac(H, K) refers to the computation of a hash 

value by an external service (see below for analysis) using a keyed HMAC function 

(this is known as distributed hashing – see below). In the example of Facebook, the 

output of the legacy MD5 (i.e., step 1) is being used as an input to multiple hash function 

including a HMACSHA1 in step2, another HMAC value (with unknown hash function) 

in a remote cryptoservice (i.e., step 3), an SCRYPT (i.e., step 4), and finally a 

HMACsha256 (i.e., step 5). Therefore, using this layered approach, a hash function can 

be updated without causing disruptions to the normal operation of the website. 

Distributed hashing. A solution which is orthogonal to the actual hash function that a 

website uses and can substantially protect against offline password guessing attacks is 

named distributed hashing. The main idea of this solution lies in the delegation of the 

hash value computation to an external service. More specifically, a hashing scheme 

which is composed of multiple hash functions as the one presented previously in Figure 

4 can offload the computation of an intermediate hash calculation to a remote crypto 

service (aka crypto as a service) and send back the hashed value back to the web 

application to continue the calculation of the hash value. Note that the hash calculation 

in the cryptoservice is based on a keyed HMAC function, using a secret key, which is 

stored in the cryptoservice (see step 3 in Figure 4). In this way, even if an attacker is 
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able to compromise the database of a web platform, in order to perform the guesses, he 

should necessarily request the cryptoservice to obtain the intermediate hash value, since 

the attacker does not possess the secret key for the HMAC function. In this way, the 

offline guessing attack becomes an online attack, which means that the cryptoservice 

can detect anomalies (i.e., a spike due to attempts of the attacker) and throttle 

appropriately the traffic (thus reducing the number of attempts an attacker can perform). 

Of note, recently a new research area has emerged [57] [58] [59] where the aim is to 

enhance the cryptographic primitives used in distributed hashing schemes to eliminate 

possible attacks against crypto services. 

Federation and FIDO. Moreover, websites can opt for federated authentication 

solution using OpenID Connect protocol. In this way, there is no need for websites to 

maintain a user database including passwords, due to the delegation of authentication 

to established services such as Google and Facebook. On the users’ side, good security 

practices for selecting passwords are still relevant. Users should select high entropy 

long passwords and avoid reusing passwords across multiple websites. What is more, 

passwords managers and two-factor authentication are traditional yet effective 

measures to resist against password cracking. Also, the emerging FIDO protocol [60], 

which is based on device-centric authentication, aims to eliminate the use of passwords 

using public key cryptography. 

Server relief. Regarding denial of service attacks that take advantage of intensive hash 

functions to overload web servers, these can be mitigated by the use of a relatively new 

mechanism named server relief. As a matter of fact, Argon2 has adopted this solution 

to facilitate web servers to withstand against denial of service attacks. The rationale of 

server relief mechanism is to allow the server to carry out the majority of computational 

burden on the client. That is, instead of doing the entirety of the computation on the 

server, the client does the most demanding - in terms of computation - parts and then 

the client sends the intermediate values to the server, which calculates the final hash 

value. Evidently, all intermediate values on the client side should not leak any 

information for the actual password. An overview of various server relief solutions 

highlighting advantages and drawbacks can be found in [61]. 
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3. Overcoming the limitation of passwords 

3.1. Strong authentication with Fast IDentity Online  

3.1.1. Background 

3.1.1.1. Related Work 

The FIDO security reference [60] outlines a list of assets that must be protected 

against malicious behavior and provides a limited set of security requirements with the 

goal of protecting these assets. It is important to point out that these requirements are 

optional and vendors receiving FIDO certification are not obliged to implement them. 

A variety of vendors such as Samsung, LG, Qualcomm, and Huawei [62] have already 

received FIDO certification, however, their implementations are proprietary, and, 

therefore, not open to 3rd party evaluation. Per FIDO specifications, the critical assets 

of the UAF protocol are the private key of the authentication key pair, the private key 

of the UAF authenticator attestation key pair, and the UAF authenticator attestation 

authority private key [63]. Furthermore, the UAF protocol specifications incorporate 

the following (optional) security requirements: the authentication keys must be securely 

stored within a UAF authenticator and thus protected against any misuse, users must 

authenticate themselves to the UAF authenticator before the authentication keys are 

accessed, the UAF authenticators may support authenticator attestation using a shared 

attestation certificate, and a UAF authenticator may implement a secure display 

mechanism (also referred as transaction confirmation mechanism), which can be used 

by the UAF client for displaying transaction data to the user. Therefore, the UAF 

specifications do not incorporate any mechanisms that safeguard the cryptographic 

material stored in the UAF authenticators or protect against attacks that may target the 

UAF client. Instead, the responsibility for the design and implementation of any 

security measures that protect these critical entities is passed on to the vendors. 

One solution to address the security requirements of the UAF specifications and provide 

a secure operational environment for the UAF authenticators, is the incorporation of 

trusted computing platform technologies [64]. The trusted computing platform 

constitutes of specialized hardware that provides a variety of services, such as secure 

input/output, device authentication, integrity measurement, sealed storage, remote 

attestation, cryptographic acceleration, protected execution, root of trust, and digital 

rights management. Two prevalent platforms for trusted computing currently exist [64], 

the Trusted Platform Module (TPM) [65], which is based on the specifications created 
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by the Trusted Computing Group, and the TrustZone (TZ) platform [66], created by the 

ARM corporation. The TPM is a co-processor, which provides basic cryptographic 

capabilities like random number generation, hashing, protected storage of sensitive data 

(e.g. secret keys), asymmetric encryption, as well as generation of signatures. The TPM 

platform presents some significant limitations [64]: (i) the need for a separate module 

increases the cost of a device; (ii) it cannot be deployed on legacy devices; (iii) it does 

not protect against runtime attacks; (iv) it relies on the assumption that a TPM cannot 

be tampered; (v) the physical size and energy consumption requirements make it an 

unsuitable solution for mobile and embedded devices; (vi) in case of a TPM 

compromise, the hardware module must be physically replaced; and (vii) the supported 

cryptographic algorithms have been found to pose security concerns (i.e., SHA-1), and 

are not well suited for resource restricted devices (i.e., RSA).  

The TrustZone platform, is part of ARM's processor cores and system on chip (SoC) 

reference architecture. The associated hardware is part of the SoC silicon, and thus, it 

does not require any additional hardware. The primary objective of TrustZone is to 

establish a hardware-enforced security environment providing code isolation, that is, a 

clear separation between trusted software, which is granted access to sensitive data like 

secret keys, and other parts of the embedded software. To achieve this, the TrustZone 

platform provides two virtual processing cores with different privileges and a strictly 

controlled communication interface, enabling the creation of two distinct execution 

environments, encapsulated by hardware. Nevertheless, to the best of our knowledge, 

Samsung is the only certified vendor that implements a UAF authenticator using the 

TrustZone platform [67]. Furthermore, this approach only protects the UAF 

authenticator, while the UAF client is still susceptible to a variety of attacks. Finally, 

extensive literature has shown that the TrustZone platform itself is not immune to 

weakness and vulnerabilities [68] [69] [70] [71]. 

3.1.1.2. FIDO UAF protocol operations 

The UAF protocol (see Figure 5) encompasses three major operations, namely, 

registration, authentication, and deregistration. During the registration operation, the 

UAF protocol allows a user to register to a relying party using one or more UAF 

authenticators. Once registration is complete, the user can then invoke the 

authentication operation, in which the relying party prompts for a user authentication 

using the UAF authenticator previously used during the registration operation. Finally, 
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in the deregistration operation, the relying party can trigger the deletion of the 

authentication key material and remove the user from its list of authenticated users. 

 

Figure 5: The FIDO UAF protocol 

The UAF registration operation. The registration operation is initiated when a user 

requests a registration to a relying party, either through a compatible application or 

through a browser. The relying party replies to the registration request by transmitting 

a registration message with the following parameters: the AppID, the authenticator 

policy, the server generated challenge, and the username to the UAF client residing in 

the user’s device (illustrated in Figure 6). The AppID parameter is used by the UAF 

client to determine if the calling application (or website) is authorized to use the UAF 

protocol and it is associated with a key pair by the UAF authenticator (during key 

generation), so that access to the generated key pair is limited to its respective 

application. The authenticator policy lists the type of UAF authenticators required by 

the relying party, while the server generated challenge is a random nonce value used to 

protect against replay attacks. Finally, the username parameter is used by the UAF 

authenticator to distinguish key pairs that belong to the same application (or website), 

but to different users. 

Once the UAF client receives the registration message from the relying party, it first 

identifies the calling app (or website) and then determines (based on the AppID 

parameter) whether the associated application is trusted and allowed to proceed with a 

registration request. To accomplish this, the UAF client queries the relying party for 

the trusted facet list (i.e., a list of all the approved entities related to the calling app) 
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and, based on this list, decides whether registration will proceed or not. For example, if 

the registration request was initiated by an application, then the trusted facet list will 

contain a signature of the calling application that the UAF client can use to verify the 

app. If, on the other hand, the registration was initiated by a website, then the trusted 

facet list will contain all the associated and approved domain names. Subsequently, the 

UAF client will check the authenticator policy parameter and generate a key registration 

request to the set of UAF authenticator(s) mandatory by the policy. If the required UAF 

authenticators are not present in the user’s device, then the registration operation will 

be canceled.  

The UAF client communicates with the UAF authenticator(s) using the authenticator 

specific module (ASM), a software associated with a UAF authenticator that provides 

a uniform interface between the hardware and the UAF client software. At this stage, 

the UAF client performs the following operations: it first calls the UAF authenticator 

in order to compute the final challenge parameter (FCP), which is a hash of the AppID 

and the server challenge. Then, it generates the KHAccessToken, which is an access 

control mechanism for protecting an authenticator's UAF credentials from unauthorized 

use. It is created by ASM by mixing various sources of information together. Typically, 

KHAccessToken contains the following four data items: AppID, PersonaID, 

ASMToken and CallerID. The AppID is provided by the relying party and it is 

contained within every UAF message. The PersonaID is obtained by ASM from the 

operating system, and, typically, a different PersonaID is assigned to every user 

account. The ASMToken is a random generated secret which is maintained and 

protected by ASM. In a typical implementation ASM will randomly generate an 

ASMToken when it is first executed and will store this secret until it is uninstalled. 

CallerID is the calling UAF client's platform assigned ID. Once the FCP and the 

KHAccessToken are computed, the UAF client will send the key registration request to 

the UAF authenticator including the FCP, the KHAccessToken, and the username 

parameter.  

Following the reception of a key registration request by a UAF authenticator, the later 

will first prompt the user for authentication, and, then, generate a new key pair 

(Uauth.pub, Uauth.priv), store it on its secure storage, and associate it with the received 

username and KHAccessToken. Subsequently, the UAF authenticator will create the 

key registration data (KRD) object containing the FCP, the newly generated user public 
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key (Uauth.pub), and the authenticator’s attestation ID (AAID), which is a unique 

identifier assigned to a model, class or batch of UAF authenticators, and it is used by 

the relying party to identify a UAF authenticator and attest its legitimacy. Once the 

KRD is generated, the UAF authenticator will sign it using its attestation private key 

and return to the UAF client a key registration reply (which the later forwards to the 

relying party) that encompasses: the signed KRD, the AAID, Uauth.pub, and its 

attestation certificate (Certattest). Upon the reception of the key registration reply by 

the relying party, the later cryptographically verifies the KRD object, uses the AAID to 

identify if the UAF authenticator is a legitimate authenticator with a valid (i.e., 

unrevoked) attestation certificate, and, finally, stores the Uauth.pub key in a database 

for the purposes of user authentication in any subsequent authentication requests. 

 

Figure 6: The UAF registration operation 

The UAF authentication operation. The authentication operation (illustrated in 

Figure 7) is initiated when a user requests a service that requires authentication to a 

relying party, either through a compatible application or through a browser (in a similar 

fashion with the registration operation outlined above). The relying party replies to the 

authentication request by transmitting an authentication message with the following 

parameters: the AppID, the authenticator policy, and a server generated challenge, to 

the UAF client residing in the user’s device. The UAF client receiving the 

authentication request, first identifies the calling app (or website) and then determines 

(based on the AppID parameter) whether the associated application is trusted and 

allowed to proceed with the authentication request. Subsequently, the UAF client 

checks the authenticator policy parameter and sends a key authentication request to the 

set of UAF authenticator(s) mandatory by the policy. If the required UAF authenticators 
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are not present in the user’s device, then the authentication operation will be canceled. 

Using ASM, the UAF client performs the following operations: it first calls the UAF 

authenticator in order to compute the FCP, which is a hash of the AppID and the server 

challenge. Then, it retrieves the KHAccessToken, and finally, sends the key 

authentication request to the UAF authenticator(s) including the FCP and the 

KHAccessToken.  

Following the reception of a key authentication request by a UAF authenticator, the 

later will first check if the UAF client is authorized to request an authentication for that 

particular user key, based on KHAccessToken. If the UAF client is authorized, then the 

UAF authenticator will prompt the user for authentication, and, then, retrieve the 

associated Uauth.priv from its secure key storage. Subsequently, the UAF authenticator 

will create the SignedData object containing the FCP, a newly generated nonce, and a 

Sign Counter (cntr). The cntr variable is a monotonically increasing counter, 

incremented on every sign request performed by the UAF authenticator for a particular 

user key pair. This value is then used by the relaying party to detect cloned 

authenticators. Once the SignedData object is generated, the UAF authenticator will 

sign it using the Uauth.priv key and return to the UAF client a key authentication reply 

(which the later forwards to the relying party) that encompasses: the signed object 

SignedData, the FCP, the nonce n, and the counter cntr. Finally, upon the reception of 

the key authentication reply by the relying party, the later first retrieves Uauth.pub from 

its database, cryptographically verifies the signedData object, and stores the value of 

the cntr counter. If the verification of the SignedData object succeeds, then the user is 

successfully authenticated. 

 

Figure 7: The UAF authentication operation 
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3.1.2. Security analysis 

UAF authenticator vulnerabilities. The first and most apparent attack vector of the 

UAF protocol is the authentication keys. Therefore, an attacker may attempt to (directly 

or indirectly) gain unprivileged access to these keys. As we previously mentioned, the 

responsibility of storing the authentication keys lies with the UAF authenticator and 

based on the UAF protocol security requirements, the UAF authenticator utilises some 

form of secure/privileged storage. However, it has been shown in the literature that such 

types of key storage solutions can still be compromised [72]. UAF authenticators 

typically rely on trusted computing platforms for the storage of cryptographic material. 

Cooijmans et al [69] have shown that on several widely adopted trusted computing 

platforms, an attacker with privileged rights can gain the ability of using encrypted 

credentials by moving them to a different directory, which designates a malicious 

application as the owner of the credentials. Finally, an attacker may also attempt to 

indirectly gain access to the authentication keys, by fully compromising the UAF 

authenticator(s). Based on the literature, an attacker can gain full access to a trusted 

computing platform by performing an integrated circuit attack (i.e., ICA) [68]. One 

limitation of this attack is the requirement to have physical access to the user’s device. 

However, once the attack is performed, the attacker can then create a cloned UAF 

authenticator, alleviating any further need for the original user’s device.  

When utilizing a cloned UAF authenticator, an attacker must then evade the security 

mechanisms of the UAF protocol, implemented on the purpose of identifying such 

malicious behavior. Recall that the UAF protocol incorporates two security 

mechanisms that safeguard the operation of the UAF authenticator: (i) an attestation 

mechanism, in which the UAF authenticator must prove its legitimacy by providing an 

attestation signature during the registration process and (ii) a sign counter (cntr) 

mechanism, which is a monotonically increasing counter, incremented on every sign 

request performed by the UAF authenticator for a particular user key pair and used by 

the relaying party to detect cloned UAF authenticators.  

Regarding the attestation mechanism, we have identified three approaches that can be 

used by an attacker to circumvent detection. In the first method, an attacker may utilize 

the extracted attestation key from the compromised UAF authenticator and perform 

registration requests to relying parties, impersonating the legitimate user. Since the 

attestation keys for each UAF authenticator are not unique (i.e., a group of UAF 
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authenticators share the same attestation key pair), the malicious behavior cannot be 

easily detected by the relying party. If, however, the attestation keys are revoked by the 

device’s vendor, then there is a risk of detection by the relying party. A second method 

that can be used by an attacker when employing a cloned authenticator is to avoid the 

attestation mechanism all together. This can be achieved by exploiting a limitation in 

the attestation process. Recall that the attestation process takes place only during the 

registration operation. Therefore, an attacker may allow the legitimate UAF 

authenticator to perform the registration process, and, subsequently, without the users’ 

knowledge, use the cloned authenticator to authenticate itself to the relying party, 

masquerading as the legitimate user. Finally, an attacker may use the cloned UAF 

authenticator temporarily to collect personal information related to the legitimate user, 

and, then, register at other relying parties using a different, non-cloned UAF 

authenticator. Subsequently, since the attestation procedure takes place at a non-cloned 

authenticator, there is no risk of revocation, while the attacker retains the ability to 

impersonate the legitimate user to any relying party.  

On the other hand, the second security measure proposed by the UAF specifications 

(i.e., sign counter), can be circumvented by an attacker, if the later actively attempts to 

perform an authentication operation immediately after the completion of cloning a UAF 

authenticator. Recall from that during the authentication operation, a relying party will 

assume a UAF authenticator is legitimate if the sign counter encapsulated in the key 

authentication reply is equal to the sign counter maintained by the relying party 

incremented by one. Therefore, a race condition evolves between the legitimate and the 

cloned UAF authenticator, since only the UAF authenticator that manages to perform 

an authentication request first, will be considered legitimate by the relying party (while 

the second authenticator will attempt to authenticate using an older value of the sign 

counter). Thus, an attacker can circumvent this security measure by performing an 

authentication request to the relying party as soon as the UAF authenticator is cloned, 

maximizing his chances of winning the race condition.  

UAF client vulnerabilities. The second critical entity of the UAF protocol that resides 

at a user’s device is the UAF client. Recall that the UAF client acts as an intermediator 

between the relying party on one hand and the UAF authenticator on the other and it is 

responsible for most of UAF’s protocol operations, short of generating the encryption 

keys or performing cryptographic operations. Furthermore, the UAF client is 
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implemented entirely in software, making it an ideal candidate for software attacks. 

Even more importantly, the UAF protocol does not incorporate any security measures 

that safeguard the UAF client from attacks or verifies that a user’s device operates a 

legitimate version of the client. The UAF protocol specifications propose the execution 

of the UAF client in a “privileged” environment, however, since the client is typically 

embedded within a browser either fully or as a plug-in, it is de-facto implemented as a 

normal application.  

The simplest method of delivering a malicious UAF client to a user’s device is by 

deceiving the user to install the application voluntarily. Common delivery methods 

include attachments in e-mails or browsing a malicious website that installs software 

after the user clicks on a pop-up. Other methods of compromising a UAF client is 

through malicious software residing at the user’s device (such as a virus, worm. trojan, 

or root kit) or by exploiting an operating system vulnerability. The latter enables the 

execution of a plethora of attacks such as spoofing of inter-process communication, 

privilege escalation, return-oriented programming, or code injection attacks. For 

example, in a variety of sources such as [73] [74] [75], the authors demonstrate 

methodologies for accomplishing privilege escalation in the android operating system, 

one of the most widely used platforms, which includes a variety of privilege protection 

mechanisms, such as application specific sandboxing and Mandatory Access Control 

(MAC) policies. Furthermore, in the most recent versions of android, privilege 

escalation is typically achieved using system less root [74], which is the process of 

gaining escalated privileges without any modification to the system partition, thus 

evading detection by any security mechanisms that validate an operation system 

through a checksum of its system partition (i.e., a common security mechanism used by 

most of the trusted computing platforms).  

3.1.3. Threat analysis 

Critical assets related to the UAF protocols’ secure operation. The UAF 

specifications [76] provide a limited list of assets that must be protected in an 

implementation of the UAF protocol. These assets include the private key of the 

authentication key pair, the private key of the UAF authenticator attestation key pair, 

and the UAF authenticator attestation authority private key. However, an attacker may 

also target several other assets that are either part of the UAF protocol, or they are 

integral in its secure operation. In particular, an attacker may either target the UAF 



63 

 

authenticator(s) or the UAF client that are present in a legitimate users’ device. 

Furthermore, an attacker may indirectly compromise the secure operation of the UAF 

protocol by exploiting existing vulnerabilities (i) at the underlying operating system in 

which the UAF protocol is executed, or (ii) at the trusted computing platform (typically 

the TrustZone platform), used for the hardware-assisted protection of the encryption 

keys and the operation of the UAF authenticator(s).  

Threat evaluation. Based on the security analysis, the private keys stored in the UAF 

authenticator, namely the attestation private key and the authentication private keys 

pose a critical attack vector of the UAF protocol. Recall from that these keys are used 

by the UAF authenticator to sign registration and authentication replies, respectively. 

On the other hand, the relying party uses these signed replies to authenticate the UAF 

authenticator and verify its legitimacy. Therefore, if an attacker compromises the 

attestation private key, he would then be capable of impersonating the legitimate user 

by registering to other relying parties on the users’ behalf, without the latter’s consent 

(including fraudulent relaying parties). In order to have access to the authentication 

keys associated with the malicious registrations and to avoid detection by the user, the 

attacker will have to import the attestation private key to a cloned and silent 

authenticator, i.e., an authenticator that appears to have been manufactured by the same 

vendor as the legitimate one and does not prompt the user for any action during the 

registration and authentication operations of the UAF protocol. On the other hand, if 

the attacker compromises one or more authentication private keys, he would then be 

capable of impersonating the legitimate user by authenticating as the user to relying 

parties. The attacker is limited, however, to relying parties that the legitimate user has 

already registered. Nevertheless, once authenticated, the attacker can then collect 

personal data related to the legitimate user and stored at the relying party, as well as 

perform transactions with the relaying party without the users’ consent.  

An attacker may also attempt to indirectly gain access to the attestation and 

authentication keys, by fully compromising the UAF authenticator(s) residing at the 

device of a legitimate user. This can be accomplished in the following ways: the user 

unwillingly installs a malicious authenticator to his/her device, the attacker 

compromises the UAF authenticator by targeting the UAF authenticators’ underlying 

trusted computing platform, and, the attacker gains physical access to the device and 

either installs a malicious authenticator, or tampers with the legitimate UAF 
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authenticator(s) installed on the device. As a result, any subsequent registration and 

authentication requests will be captured by the malicious authenticator, enabling the 

attacker to impersonate the legitimate user, collect personal data, and perform 

transactions on the users’ behalf, similarly to the cloned authenticator threat we 

analyzed previously. Furthermore, the attacker can also extract the attestation and 

authentication keys, to create a cloned authenticator that resides outside the device of 

the user.  

The UAF client signifies another critical attack vector identified in the security 

evaluation. An attacker may attempt to compromise the UAF client by exploiting one 

or more of the following vulnerabilities: gaining physical access to the user’s device 

and manually installing a malicious client, deceiving the user to install the malicious 

client voluntarily, using other malicious software residing at the user’s device (such as 

a virus, worm. trojan, or root kit) to install the malicious client, or by exploiting an 

operating system vulnerability. Having successfully compromised the UAF client, an 

attacker is then capable of launching several additional attacks against the UAF 

protocol, such as: allowing itself or other malicious applications to perform 

registration/authentication operations without the user’s consent, enforce the use of the 

weakest/less secure UAF authenticator during a legitimate registration process, direct a 

user to a fake or malicious relying party, and defeat the user consent, transaction 

confirmation, and trusted facet list security measures of the UAF protocol. During the 

registration operation, the UAF client is responsible for initiating registration requests, 

determining if applications (or websites) are authorized to use the UAF protocol, 

present a UI to the user, and directing the relying party challenge to the UAF 

authenticator based on the authenticator policy transmitted by the relying party (i.e., 

based on the trusted facet list). Since the UAF client is the only entity responsible for 

assessing the trusted facet list, it can allow the registration operation for any website, 

or from any application, regardless of what is enforced by the trusted facet list security 

measure. Therefore, the user may unwillingly be redirected to a malicious relying party 

masqueraded as a legitimate one, so that personal/valuable information can be phished 

by an attacker. Furthermore, as we mentioned previously, it is the UAF client’s 

responsibility for presenting a UI to the user, and, therefore, even if the user’s device 

incorporates a transaction confirmation security mechanism, the confirmation will 

always be true, since the mechanism validates if the information provided to the user is 
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tampered/modified/spoofed after leaving the UAF client, and not if the later modified 

the displayed content. Finally, a malicious UAF client may forward a relying party 

challenge to the weakest UAF authenticator (preferably one with a low entropy secret). 

Subsequently, during authentication, the attacker could attempt to discover the secret 

and access the user’s account without the legitimate users’ consent. 

Asset Threat Consequences 

Attestation private 

key 

Attacker gains access 

to the attestation keys 

Impersonate user, create a clone 

authenticator 

Authentication 

private key 

Attacker gains access 

to the authentication 

keys 

Impersonate user, capture user 

data 

UAF authenticator User installs a 

malicious 

authenticator 

Impersonate user, capture user 

data, register the user to a 

fraudulent replaying party 

TrustZone, UAF 

authenticator 

Attacker compromises 

the trusted computing 

platform 

Create cloned authenticator, 

impersonate user, compromise the 

UAF authenticator 

UAF client, UAF 

authenticator, 

TrustZone 

Attacker gains 

physical access to a 

user’s device 

Create cloned authenticator, 

impersonate user, compromise the 

UAF authenticator, install 

malicious UAF client 

UAF authenticator Attacker employs a 

cloned authenticator 

Impersonate user, capture user 

data, register the user to a 

fraudulent relaying party 

UAF client User installs a 

malicious client 

Register to a fraudulent relaying 

party, phishing – lead to malicious 

websites, downgrade 

authentication policy, capture user 

data, circumvent transaction 

confirmation security mechanism, 

allow malicious apps to 

register/impersonate the user 

Operating system Attacker can execute 

privileged code at the 

user’s device 

Compromise the UAF client 

Table 13: Threats related to the UAF protocol and their associated consequences 

3.1.4. Results and discussion 

The UAF protocol provides several important advantages over traditional 

authentication mechanisms, such as strong authentication and a simplified registration 

and authentication procedure. However, the UAF protocol also transfers user 

authentication operations from the server-side to the client-side. Therefore, the critical 

functionality of the UAF protocol typically operates in a consumer platform such as a 

mobile device, which is susceptible to a variety of attacks such as malware and viruses, 

its users deploy unsupervised software, and the deployed operating systems may be 

susceptible to several vulnerabilities. As a part of this thesis, we have provided a 

comprehensive security analysis of the UAF protocol and have identified several 
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vulnerabilities that may be exploited by an attacker to compromise the authenticity, 

privacy, availability, and integrity of the UAF protocol. More specifically, we have 

investigated methods of attacking the two entities of the UAF protocol residing at a 

user’s device, namely, the UAF authenticator and the UAF client, including the ability 

of an attacker to gain unprivileged access to the cryptographic material stored within 

the UAF authenticator and highjack either the of these two entities. Furthermore, we 

have investigated and identified how an attacker can circumvent the security measures 

provided by the UAF protocol, including the authenticator attestation mechanism, the 

transaction confirmation mechanism, the trusted facet list, and the sign counter. 

3.2. Real-time protection of user authentication credentials 

3.2.1. Related work 

Regarding the retrieval of sensitive information in the volatile memory, Darren et al. 

tried to recover data remnants from cloud storage applications including Dropbox 

[77], Skydrive [78], and Google Drive [79]. Similarly, in [80] the authors investigate 

the volatile memory of cloud services applications, such as Amazon S3, Dropbox, 

Google Docs and Evernote. In all the aforementioned publications, several artifacts 

were recovered such as authentication credentials, visited URLs, filenames and 

hashes. Apart from personal computers, sensitive information was also recovered from 

the volatile memory of Android devices using two different methods. More 

specifically, in the first method [81] the authors used the Linux Memory Extractor 

(LiME) kernel module [82] and a physical Samsung i9000 phone to dump the Android 

memory, whereas in the second technique [83] the Android emulator was used 

alongside with Dalvik Debug Monitor Server (DDMS) to acquire the memory data. 

In both cases, critical and secure applications, such as mobile banking and password 

managers, were examined and authentication credentials were recovered in plain text 

from the dumped memory. 

Regarding memory encryption, the proposed solutions can be further classified into 

two categories: software- based and hardware-based. For software-based solutions, in 

[84], the authors propose a modified secure memory bus controlled by the OS, in 

which the encryption key is generated each time the system boots up. Peterson, in 

[85], modified the virtual memory manager of the Linux 2.6.24 kernel and partitioned 

the volatile memory into a plaintext and an encrypted segment. However, [86] shows 

that the memory maps, should be maintained in the plaintext segment; thus pointing 



67 

 

the addresses to where the encrypted volatile data are stored. The second category of 

the proposed solutions for memory encryption is based on hardware modifications. 

In particular, several publications [87] [88] [89] [90] [91] [92] [93] for single processor 

systems propose the addition of an encryption unit to cipher and decipher data from 

and to the volatile memory. Moreover, for multi-processor systems, [94] proposes a 

shared bus, containing a crypto engine, to coordinate and secure traffic between 

processors, while [95] [96] proposed the use of sequence numbers for the 

coordination between different processors. Lastly, in [97], the authors propose SecBus, 

a cryptographic coprocessor between the volatile memory and the main processor. 

The main limitation of the proposed memory encryption solutions has to do with 

the fact that hardware-based solutions require extensive changes in the current 

computer architecture, while the software-based solutions require modifications at 

the OS kernel. In contrast to the relevant works, in this thesis we investigate if the 

latest OS versions (Windows and Linux) provide built-in data zeroization methods 

as well as whether C/C++ developers can use existing software libraries and methods 

in order to perform data zeroization in their applications. 

3.2.2. Software level protection 

3.2.2.1. Operating System level protection 

Memory management is the procedure of administering the volatile memory at the 

system level. This is performed by the kernel of the Operating System (OS) with the 

support of a part of the central processing unit, named memory management unit. 

Allocation and deallocation requests are used in order to grant or revoke memory blocks 

to applications. Allocation is the procedure in which memory blocks are granted to 

applications and are then used by them for handling the necessary data for their 

functionalities. On the other hand, deallocation is the procedure in which the 

applications free the memory blocks they do not longer need, making them available 

for other running or starting applications. It is important to note that the OS does not 

modify the allocated memory blocks, since this action could cause the running 

applications to crash. Subsequently, during the applications’ runtime, only the 

applications themselves are accountable of modifying their allocated memory blocks. 

In order to find out whether the OS performs data zeroization, we developed a testing 

application written in C programming language (see Figure 8), that holds a secret 

value in a variable named as password. The aim of the experiments was to investigate 
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how many instances of the password variable can be extracted from the volatile 

memory. More specifically, as shown in Figure 8, the testing application defines the 

password variable at line 3, which is an array of type char and size length. Moreover, 

the stdin (e.g. keyboard input) is used to fill in the array of the password variable. For 

the experiments, three types of memory dumps were considered which are: A) 

Process: This memory dump includes only the memory blocks that are allocated to 

the executable of Figure 8. B) All- Processes: This memory dump includes memory 

blocks allocated to all running user-mode processes in the OS. In this way we can find 

out whether the password variable of Figure 8 can be extracted from other user-

mode running processes; C) System: This memory dump contains the entire volatile 

memory including memory allocated not only to user-mode processes but also to the OS 

kernel, drivers, unallocated blocks. The technical methodology that we followed in 

order to obtain the memory dumps is as follows. To perform a Process dump in Linux, 

the GNU debugger (i.e. GDB) was used to dump the memory blocks of a process based 

on its PID. Similarly, the All-processes dump was performed using a script that feeds 

GDB with all the running PIDs. The same methodology was followed in Windows. In 

particular, we used the Windows Powershell in order to list all the running PIDs and 

feed them to ProcDump [98] (i.e., a Windows utility which performs memory dumps of 

running processes). It is important to note that all the aforementioned memory dumps, 

were executed using root privileges both in Linux and Windows. To perform System 

dump, we used virtual machines, in order to dump the entire volatile memory of the 

system in an easy manner. 

First testing application 

01: void main() { 

02:   static int length; 

03:   char password[length]; 

04:   fgets(password, length * sizeof(char), stdin); 

05:   sleep(120); 

06: } //suspend for 120 seconds  

Figure 8: First testing application used to discover the total number of instances of the password 

variable in the volatile memory 

Moreover, two scenarios were considered. In the first scenario named as “Running 

process” we performed memory dumps (all three types) while the process of the 

executable was running. This was achieved during the sleep function (see line 5 of 

Figure 8), where the execution of the process was suspended, and we were able to 
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recover the memory dump. In the second scenario named as “After termination”, we 

performed the 

Memory 

Dump 

Operating System 

Ubuntu Linux Windows 7/10 

Running 

Process 

After 

termination 

Running 

Process 

After 

termination 

Process 1 Not Applicable 3 Not Applicable 

All-Processes 1 1 3 0 

System 9 2 5 0 

Table 14: Number of instances of the password variable 

memory dumps immediately after the termination of the executable. Evidently, in this 

scenario, we performed only All- processes and System memory dumps, since 

Process dump cannot be performed after the termination of the executable. The 

experiments were conducted in Windows 7 and 10 and Ubuntu Linux 14.04, fully 

updated as of 15th of April 2016. In both versions of Windows, the compiler of 

Microsoft Visual Studio 2015 suite was used, while in Ubuntu Linux we used the 

latest version of the GCC compiler (i.e., v5.3). 

The results of the experiments are summarized in Table 14. We can observe that in 

the “Running process” scenario in all three memory dump types for both Linux and 

Windows OS we were able to recover the value of the password variable. It is 

interesting to notice that in the All-processes memory dump type, the number of the 

instances of the password variable were the same as in the Process memory dump 

type (i.e., 1 time in Linux and 3 times in Windows). This means that apart from the 

process itself of the testing application (see Figure 8), the other processes running in 

the system did not use the password variable. We can also observe that in the System 

memory dump, the number of recovered password instances increased (i.e., 9 times in 

Linux and 5 times in Windows). This result means that i) apart from the process of the 

testing application itself, the OS kernel stores also the value of the password variable 

and ii) the OS kernels stores in multiple memory regions the value of the password. 

Regarding the results of the “After termination” scenario, we can observe an 

interesting outcome: for both All-processes and System dumps in Linux we were able 

of recovering the password variable (1 and 2 times respectively). On the other hand, 

in Windows we were not able to recover it. This result means that Windows kernel 
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zeroize the deallocated blocks of a process immediately after its termination. On the 

other hand, the Linux kernel follows a different approach. That is, instead of zeroizing 

the deallocated memory blocks of a terminating process, it zeroizes the memory blocks 

right before their allocation [99]. Thus, in Linux, a malicious software that has access 

to the entire system memory can extract potentially sensitive information (such as 

authentication credentials) even from applications that were terminated, in case the 

related deallocated blocks have not been allocated to a new process. On the contrary, 

in Windows, a malicious software can extract information only from the memory blocks 

of running applications. 

The above observation implies that Windows is more secure than Linux to memory 

disclosure attacks. To overcome this issue, we have identified that there is a Linux 

kernel patch, named as GRsecurity, which provide several security enhancements 

for the Linux kernel [100]. One of these enhancements enables the Linux kernel to 

zeroize the deallocated memory blocks after process termination by compiling the 

Linux kernel with the PAX_MEMORY_SANITIZE option that the GRsecurity provides. 

To this end, we repeated the experiments (using the testing application of Figure 8) 

in Ubuntu 14.04 compiled with a kernel that has GRSecurity installed and the 

PAX_MEMORY_SANITIZE option enabled. We observed that this time we were not 

able of recovering instances of the password variable after the process termination. 

Based on the above discussion, we propose the use of GRsecurity (with the 

PAX_MEMORY_SANITIZE option enabled), in order to minimize information 

disclosure in volatile memory. 

Despite the fact that GRsecurity may enable the kernel to perform data zeroization, it 

is not widely adopted in Linux Distributions. Even those that offer a GRsecurity patched 

kernel by default, many of them have not enabled the PAX_MEMORY_SANITIZE 

option. In total, we found six Linux distributions [101] [102] [103] [104] [105] [106] 

that come with a GRsecuity patched kernel and only three of them have the 

PAX_MEMORY_SANITIZE option enabled. 

3.2.2.2. Source code level protection 

The previous results show that OS zeroize data only after the termination of the 

running process which means that during the runtime of a process, sensitive 

information can be extracted in its allocated memory blocks. In this section, we 

investigate functions and methods that developers can use in order to zeroize memory 
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blocks during the runtime of their applications. We focus on C/C++ programming 

language, since it provides low-level memory manipulation. All experiments carried 

out in this section perform Process dump in a “Running-process” scenario. 

First, we investigate for Windows OS, if there are special functions that can be used 

in order to zeroize data. More specifically, by including the windows.h header file in 

a C/C++ source code, a developer has the ability of using the macro 

SecureZeroMemory, which calls the function RtlSecureZeroMemory that guarantees 

to zeroize memory blocks, even if it is not subsequently written or accessed by the 

code [107]. We repeated the experiments performed in the previous section (i.e., as 

mentioned previously only Process dump in the “Running process” scenario) using 

the same testing application with the difference that at the end of the code we called 

the SecureZeroMemory macro. We observed that indeed the macro 

SecureZeroMemoy replaced the contents of the password variable with zeroes. Thus, 

in Windows, developers should use the macro SecureZeroMemory to ensure that the 

memory blocks of their applications are zeroized. 

On the other hand, for Linux OS, there is no similar C function that can be used to 

zeroize data in the volatile memory. To this end, we have used the function memset 

of the C programming language to manually try to zeroize memory blocks allocated 

to a process. In particular, we have used the testing application of Figure 9, which is 

identical to the code of Figure 8, with the difference that Figure 9 includes in line 5, 

the command memset(password, ‘0’, length). This command writes in the memory 

block, which is allocated for the value of the password variable, the 0 character as 

many times as indicated by the value of the length variable. This will result in the 

zeroization of the data of the array password. We repeated the experiments of the 

previous section and we observed that the memset function was not operating as we 

expected, since the value of the password variable was detected in the process dumps. 

After investigation, we identified that the memset function was not being called due 

to code optimization. The latter is the process in which a compiler tries to improve the 

generated executable code by making it consume fewer resources, such as CPU and 

Memory. This is performed by several techniques. One of these methods is to avoid 

compiling specific code which is not necessary for the execution flow. For this 

reason, in our experiments, the compiler skipped the calling of the memset function, 

because the new value of the password variable (i.e., the zeroized data) is not used 
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after the memset function. Note that although the executable of Figure 9 was compiled 

using GCC without optimization flags, the GCC compiler did perform optimization 

and did not include the memset function in the executable. 

Second testing application 

01: void main() { 

02:   static int length; 

03:   char password[length]; 

04:   fgets(password, length * sizeof(char), stdin); 

05:   memset(password, ‘0’, length); 

06:   sleep(120); //suspend for 120 seconds 

07: }  

Figure 9: Second testing application used to discover the total number of instances of the passwrod 

variable ni the volatile memory 

The above results raise the following question: “is it feasible to avoid optimization 

caused by the GCC compiler, in order to ensure that the memset function will be 

executed”? To answer this question we tried two different methods. In the first 

method we used the function memset_s. The latter has the same functionality as 

memset. The main difference between those two functions is that the memset_s 

cannot be optimized out by the compilers [108]. However, memset_s is included only 

in the currently last version of the standard of the C programming language (i.e., C11 

[109]) in Annex K. Unfortunately, Annex K is not mandatory in C11, while GCC 

compiler (i.e., v5.3) has not implemented the Annex K, and thus the developers have 

no way to use the memset_s function. 

The second method that we attempted in order to avoid bypassing optimization was 

to write a testing application similar to the one described in [110] (see Figure 10), 

which uses a function pointer of type volatile named memset_volatile, as defined at 

line 1. The declaration of a variable as volatile instructs the compiler not to optimize 

out functions that access the variable. This is due to the fact the volatile type is 

used mainly for buffers in communication with hardware devices or other applications. 

Based on this observation, we defined the function pointer named memset_volatile 

pointing to the function memset at line 1. At line 4, a pointer named password_heap 

is defined, which points to a block of memory of size length*sizeof(char). This block 

of memory is allocated using the malloc function, which is used for dynamic memory 

allocation during the application execution. In line 5, the user enters his password, 

and in line 6, the memory block allocated at line 4 is freed with the free command. 

It should be noted that the free command does not zeroize the data of the memory 
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block it deallocates. Consequently, we used the memset_volatile function pointer to 

indirectly call the memset function. We repeated the experiments once again, using 

all the available optimization flags of the GCC compiler. In all cases we observed 

that the GCC compiler did not optimize the call to the memset function. Although the 

experiments showed that the data type volatile in C/C++ programing language 

prevents the optimization caused by the compilers, it should be noted that GCC 

compiler can arbitrary perform optimization even in volatile data types as mentioned 

in [111]. In any case, volatile function pointers can be used to increase the chances 

that the memset function will not be optimized out during compilation. 

Second testing application 

01: void *(*volatile memset_volatile)(void *, int, size_t) = memset; 

02: void sensitive_function() { 

03:   static int length; 

04:   char *password_heap = malloc(length * sizeof(char)); 

05:   fgets(password_heap, n, stdin); 

06:   memset_volatile(password_heap, 0, n * sizeof(char)); 

07:   free(password) 

08:   sleep(120); //suspend for 120 seconds 

09: }  

Figure 10: Third testing application used to discover the total number of instances of the passwrod 

variable in the volatile memory 

3.2.3. Results and discussion 

The real-time user security is significant, as authentication credentials can be stolen in 

real-time. Therefore, this thesis investigates security measures that can be applied at 

the OS and the source code level to protect sensitive information in volatile memory 

from disclosure attacks. Based on the experimental analysis, it was observed that 

Windows delete the data from deallocated memory blocks, while Linux does not. This 

can be solved using the GRsecurity Linux kernel patch that enables the zeroization of 

deallocated memory blocks, using the PAX_MEMORY_SANITIZE option during the 

kernel compilation. At the source code level, the Windows developers may use the 

SecureZeroMemory function for manually modifying volatile memory data without 

facing any optimization issues. In Linux, we propose the use of volatile function 

pointers to ensure that the call to memset will not be optimized out. Lastly, the 

experiments performed in web browsers show that in most cases it was feasible to 

recover user authentication credentials from all the web browsers except when the 

user has closed the tab that used to access the website. 
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4. Continuous authentication and detection of malicious 

actions 

4.1.  Continuous authentication using biometric modalities 

4.1.1. Security and performance of Biometric based authentication 

Protection schemes for biometric templates can be categorized as follows: a) biometric 

cryptosystems, and b) cancelable biometrics. Biometric cryptosystems are designed to 

securely bind a key to a biometric feature or generate a key from a biometric feature. 

On the other hand, cancelable biometrics consists of intentional, repeatable distortions 

of biometric features, based on one-way transforms, where the comparison of biometric 

templates takes place in the transformed domain. A comprehensive overview of 

biometric template protection schemes is presented in [112]. One of the most widely 

used cancellable biometrics algorithm is biohash and its variations [113], [114]. The 

one-way transformation of biohash is based on random projections [115]. The 

mathematical properties of random projections ensure the security of the protected 

template, while at the same time the authentication performance is not deteriorated. For 

this reason, the proposed scheme adopts a simple variation of biohash to secure the 

extracted gait features.  

As mentioned previously, biometric systems include two procedures: a) enrollment and 

b) authentication. During enrollment, biometric features are extracted from a user of 

the system to form its biometric template, which is stored in a database or token. During 

authentication, the system extracts the considered biometric features of a user and 

creates a new biometric template, which is compared against the enrolled one for user’s 

acceptance or rejection. Due to the intrinsic noise of biometric features, the 

authentication and enrollment template cannot perfectly match. For this reason, 

biometrics systems compare the distance ((i.e., Euclidean, Hamming, or any other 

metric) between the enrolled and authentication template of a user against a 

predetermined threshold. If the distance is lower than the threshold value, then the user 

is successfully authenticated; otherwise he/she is rejected. 

The performance of a biometric system can be estimated and quantified using the 

following two metrics: i) false acceptance rate (FAR) and ii) false rejection rate (FRR). 

FAR represents the probability that an authentication system will incorrectly accept an 

authentication attempt by an impostor (i.e., a non-valid user that does not have an 
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enrolled biometric template in the system); whereas FRR represents the probability that 

the system will incorrectly reject an authentication attempt by a genuine user (i.e., a 

valid and registered user of the system with an enrolled biometric template). As we 

analyze below, the exact value of FAR and FRR depend on the predetermined threshold 

value of the system. Another important metric that can be used to evaluate the 

authentication performance of a biometric system, is the Equal Error Rate (EER). The 

latter is the rate at which both acceptance and rejection errors are equal (i.e., 

EER=FAR=FRR). It is evident that the lower the value of EER is, the higher the 

accuracy of the biometric system. 

 

Figure 11: Genuine and impostor distributions as a function of distance between enrollment and 

authentication templates 

To gain better understanding of the FAR, FRR and EER metrics, Figure 11 plots 

genuine and impostor distributions of a generic biometric system as a function of the 

distance between the enrolled and authentication templates. As expected, genuine users 

have small distances, while impostors have high distances. We can also observe that 

the two distribution curves have an overlapping area. This means that in this 

overlapping area the system cannot distinguish genuine users from impostors. 

Moreover, as shown in Figure 11, the threshold value is set at the intersection point of 

the two curves. The threshold value divides the overlapping area into two sub-areas. 

The left sub-area represents the FAR, while the right sub-area represents the FRR. The 

intersection point of the two curves defines the EER value (see Figure 11), since at this 

point the FAR and FRR are equal (i.e., EER=FAR=FRR). Moreover, it is evident that 

a biometric system presents optimum results (i.e., FAR and FRR equal to 0) when the 

genuine and impostor curves do not overall at all. On the other hand, as the overlapping 

area between the genuine and impostor curves increases, then the authentication 

performance is deteriorated.  
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4.1.2. Related Work 

Over the last years, several studies have been performed to consider gait signatures, by 

using shape analysis and extracting features from the silhouette of the human body. 

Here, we provide a brief overview of the most recent works in this area. In [116], the 

authors pinpoint that temporal information is critical to the performance of gait 

recognition. To address this, they propose a novel temporal template, named chrono-

gait image (CGI) in order to retain temporal information in a gait sequence. Moreover, 

the authors of [117] argue that the change of viewing angle of the sensor causes 

significant distortion to the extracted features. Based on this observation, they 

formulate a new patch distribution feature (PDF) to address this issue. The same 

viewing angle problem is addressed in [118]. The authors propose a transformation 

framework of the walking silhouettes to normalize gaits from arbitrary views. In [119], 

the proposed method is based on the idea that the problem of human gait recognition 

can be transformed from the spatiotemporal into the spatial domain, specifically, the 

2D image domain. This is achieved by representing a sample of a human gait as a still 

image. 

Towards this direction, [120] argues that variations of walking speed may lead to 

significant changes of human walking patterns. Based on this observation, a differential 

composition model (DCM) is proposed that differentiates the effects caused by walking 

speed changes on various human body parts; while at the same time it balances the 

different discriminabilities of each body part on the overall gait similarity 

measurements. In [121], the concept of the gait energy image (GEI) is extended from 

2D to 3D images, creating gait energy volume (GEV). The obtained numerical results 

show that the GEV performance is improved, compared to the GEI baseline and fused 

multi-view GEI approaches. Next, in [122] the authors instead of using human 

silhouette images from moving picture, they apply 3D point clouds data of human body 

obtained from stereo camera, which has the scale-invariant property. In this way, they 

achieve significant performance improvement in terms of gait recognition. In [123], the 

authors propose a multi-view, multi-stance gait identification method, using unified 

multi-view population hidden Markov models, in which all the models share the same 

transition probabilities. Hence, the gait dynamics in each view can be normalized into 

fixed-length stances by Viterbi decoding. [124] provides an extensive overview of the 

methods used for accelerometer-based gait analysis, using mobile devices. In [125], the 
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extraction of distinguishable gait features is proposed using the radial integration 

transform (RIT), the circular integration transform (CIT), and the weighted Krawtchouk 

moments. In our proposed scheme, we use the CIT and RIT transformations for gait 

feature extraction, due to their excellent recognition capabilities  

On the other hand, the related work in protection schemes for gait features is rather 

limited. In [126], the authors propose an authentication system that protects gait 

features using biometric cryptosystems. Gait features are extracted using an 

accelerometer attached to the user’s body. Experimental results show that the proposed 

scheme achieves small EER values, only, for small key sizes. Thus, high accuracy is 

achieved without providing an adequate level of security. Finally, in [127], the authors 

propose a template protection scheme for gait features, based on channel coding (i.e., 

LDPC codes). Their approach achieves EER=6% for straight silhouette types, but 20% 

and 30% for bag and coat types respectively. 

A common limitation of the majority of the literature is that it focuses, only, on the 

extraction and not on the protection of the gait features. On the contrary, as a part of 

this thesis we propose and integrate feature extraction and protection into one system, 

providing a complete solution for biometric authentication based on gait features. 

Moreover, the previous works [127] and [126] that attempt to secure gait features, fail 

to achieve an optimum tradeoff between security and performance. On the hand, by 

interpolating between the security of biohash and the recognition capabilities of gait 

features, we achieve to outperform existing solutions, without undermining the 

provided security. Finally, it is important to mention that biohash has been successfully 

applied to various biometric features including fingerprints [113] [128], face [129] 

[130], signatures [114], palmprints and palm veins [131] [132], but to the best of our 

knowledge it has not been applied to gait features.  

4.1.3. Continuous authentication using the gait modality 

4.1.3.1. Feature Extraction 

For the extraction of gait features, this part considers three different types of human 

silhouettes: 1) straight (i.e., the user wears trousers, blouse and shoes), 2) coat (similar 

to straight silhouette, but the user also wears a coat), and, 3) bag (similar to straight 

silhouette, but the user carries also a briefcase). It is worth noting that although the 

current work considers only the above three types of silhouettes, the proposed 

authentication system can be easily extended to take into account other types of 
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silhouettes (e.g., the user wears a hat) or various combinations (e.g., a user wearing a 

coat and a hat).  

The extraction of gait features is based on two feature-based algorithms: the RIT and 

CIT transformations. These algorithms are selected due to their capability to represent 

important shape characteristics [131]. That is, during human movement, there is a 

considerably large diversity in the angles of lower parts of the body (e.g. arms, legs), 

which vary among individuals. Both RIT and CIT transformations ensure that the 

important dynamics of human shape are captured, thus enabling the correct 

classification of individuals. Moreover, these algorithms are less sensitive to the 

presence of noise on the silhouette image, compared to other schemes [131].  

At this point, we provide a brief presentation of these transformations, where additional 

details can be found in [125]. The first step in gait analysis is the extraction of the 

walking subject's silhouette from the input image sequence. The normalized silhouettes 

are defined as 𝑆̃𝐺(𝑥, 𝑦) where transformations are applied. More specifically, the RIT 

transform of a function 𝑓(. , . ) is defined as the integral of 𝑓(. , . ) along a line starting 

from the center of the silhouette(𝑥0, 𝑦0), which forms angle 𝜃 with the horizontal axis. 

The discrete form of RIT, which computes the transform in steps of 𝛥𝜃 is given by: 

𝑅𝐼𝑇(𝑡𝛥𝜃) =
1

𝐽
∑ (𝑆̃𝐺(𝑥0 + 𝑗𝛥𝑢 ∗ cos(𝑡𝛥𝜃) , 𝑦0 + 𝑗𝛥𝑢 ∗ sin (𝑡𝛥𝜃)))𝐽

𝑗=1 , 

where 𝜏 = 1, … , 𝛵, 𝛥𝑢 and 𝛥𝜃 are constant step sizes of distance 𝑢 and angle 𝜃, 𝐽 is the 

number of silhouette pixels that coincides with the line that has orientation 𝜃 and are 

positioned between the center of the silhouette and the end of the silhouette in that 

direction, and 𝑇 = 360∘/𝛥𝜃. 

In a similar manner, CIT is defined as the integral of a function 𝑓(. , . ) along a circle 

curve ℎ(𝜌) with center (𝑥0, 𝑦0) and radius 𝜌. The discrete form of the CIT transform is 

given by: 

𝐶𝐼𝑇(𝑘𝛥𝜌) =
1

𝑇
∑ (𝑆̃𝐺(𝑥0 + 𝑘𝛥𝜌 ∗ cos(𝑡𝛥𝜃) , 𝑦0 + 𝑘𝛥𝜌 ∗ sin (𝑡𝛥𝜃)))𝑇

𝑡=1 , 

where 𝑘 = 1, … 𝐾, 𝛥𝜌 and 𝛥𝜃 are the constant step sizes of the radius and angle 

variables, 𝑘𝛥𝜌 is the radius of the smallest circle that encloses the binary silhouette 
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image 𝑆̃𝐺, and 𝑇 = 360∘/𝛥𝜃. The output of the CIT and RIT transformations are the 

fixed-length vectors 𝛤𝐶𝐼𝑇 and 𝛤𝑅𝐼𝑇 of size 𝑛1 = 80 and 𝑛2 = 120 respectively. 

4.1.3.2. Biohashing 

After the extraction of the gait features (using the CIT and RIT transformations), the 

biohash algorithm is applied to secure them. The biohash algorithm is a two-factor 

authentication scheme that identifies a user based on what he/she is (i.e., biometrics) 

and what he/she has under his/her possession (i.e., token). In the context of our 

proposed scheme, the biohash algorithm converts the gait feature vectors 𝛤𝐶𝐼𝑇 and 𝛤𝑅𝐼𝑇 

to non-invertible bitstreams, using a token that the user possesses. Since the application 

of biohash is similar to both CIT and RIT vectors, here we present the biohash algorithm 

in a generic way. More specifically, we present the application of biohash to a vector 𝛤 

of size 𝑛, which is converted to a bitstream 𝐵. Biohash includes the following phases 

[115]: 

1. The token of the user generates a set of orthonormal pseudorandom vectors 

{𝑟𝑖 ∈ 𝑅𝑛|𝑖 = 1, … , 𝑛}, 

2. A vector Z of size n with elements 𝑧𝑖 is computed such as: 

𝑧𝑖 = 〈𝛤|𝑟𝑖〉 ∈ 𝑅, 𝑖 = {1, … , 𝑛}, 

where ⟨. |. ⟩ indicates the inner product operation. This procedure is also known 

as random projection. 

3. The mean value 𝜇 and standard deviation 𝜎 of 𝑧𝑖 are computed. 

4. The final step is the binarization of 𝑧𝑖. As shown in Table 15, first it divides the 

real-space of 𝑧𝑖 into 8 segments. Next, each segment is mapped to a three bit digit 

value 𝑏𝑖 ∈ {0,1}3, so that two successive segments have only one bit difference 

between them (see Table 16). In this way, it transforms the elements of vector 

𝑍 into a bitstream 𝐵 = {𝑏1𝑏2 … 𝑏𝑛} of 3𝑛 bits length. 
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Segment zi bi 

1 −∞ ≤ 𝑧𝑖 < 𝜇 − 3𝜎 000 

2 𝜇 − 3𝜎 ≤ 𝑧𝑖 < 𝜇 − 2𝜎 001 

3 𝜇−2𝜎 ≤ 𝑧𝑖 < 𝜇 − 𝜎 011 

4 𝜇 − 𝜎 ≤ 𝑧𝑖 < 𝜇 010 

5 𝜇 ≤ 𝑧𝑖 < 𝜇 + 𝜎 110 

6 𝜇 + 𝜎 ≤ 𝑧𝑖 < 𝜇 + 2𝜎 111 

7 𝜇 + 2𝜎 ≤ 𝑧𝑖 < 𝜇 + 3𝜎 101 

8 𝜇 + 3𝜎 ≤ 𝑧𝑖 < +∞ 100 

Table 15: Conversion of zi to bis 

4.1.4. Initial experiments and observations 

In this section we propose and evaluate experimentally two initial enrollment and 

authentication schemes. As we analyze below, despite the fact that these two schemes 

proved inadequate, due to their poor authentication performance, they provided useful 

observations and insights that allowed us to fine-tune and design and optimal 

enrollment and authentication scheme that is presented in section 4.1.5. 

As we mentioned in section 4.1.3.1, we consider three types of gait features that are 

extracted from three types of human silhouettes: i) straight Gstraight, ii) coat Gcoat, and, 

iii) bag Gbag. Thus, an important question that arises here is: Which one of the three 

considered gait features the authentication system should enroll? To answer this 

question, we consider the following two enrollment and authentication schemes each 

of which encompasses a different technical approach: 

1st scheme: Enrollment of one of the three considered gait feature vectors. The selection 

of the specific silhouette type that will be used for enrollment is arbitrary. 

2nd scheme: First, a feature-level fusion of all three gait feature vectors is performed. 

Next, we enroll the single vector generated from the fusion. 

In the sections below, we present and evaluate through experiments the two above 

mentioned enrollment and authentication schemes. 

4.1.4.1. 1st scheme 

In the first scheme, we enroll gait features that are extracted only from one of the three 

considered types of human silhouettes. The specific gait feature that will be used for 
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enrollment is selected arbitrary. In this analysis, we consider gait features from a 

straight human silhouette to be used for enrollment (note that the same procedure is 

followed, if another type of human silhouette is selected for enrollment). In this case, 

the CIT and RIT transformations are applied to extract the gait features from a straight 

silhouette Gstraight. That is,  

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐶𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)), 

 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝑅𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡). 

Next, the biohash algorithm is applied to the two feature vectors (i.e., one for CIT and 

one for RIT), in order to generate two different enrollment bitstreams, denoted Ebits(cit, 

straight) and Ebits(rit, straight), respectively, which are stored in the enrollment database. That 

is: 

𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) , 𝑇𝑜𝑘𝑒𝑛), 

𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) , 𝑇𝑜𝑘𝑒𝑛). 

In the authentication procedure, the silhouette G of the user can be one of the three 

types (i.e., straight, coat, bag). First, the CIT and RIT transformation are applied to 

extract two gait feature vectors (i.e., one from CIT and one from RIT) as follows: 

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡) = 𝐶𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺), 

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡) = 𝑅𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺). 

Next, using the user’s token and the extracted feature vectors, biohash is applied to 

generate two different authentication bitstreams Abits(cit) and Abits(rit). That is: 

𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡) =  𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡) , 𝑇𝑜𝑘𝑒𝑛), 

𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡) =  𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡) , 𝑇𝑜𝑘𝑒𝑛). 

At this point, the hamming distance between the authentication and the enrollment 

bitstreams is computed, separately for each transformation. Finally, the sum of the two 

hamming distances is computed as follows: 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡),  𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡))  + 

              𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡),  𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡)) 

Finally, a user is accepted if FinalResult is less than a predetermined threshold, 

otherwise he/she is rejected. 
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4.1.4.2. 2nd scheme 

In the second scheme, we apply feature-level fusion [133], in order to enroll gait 

features from all the three considered human silhouettes. In particular, the CIT and RIT 

transformations are applied to extract the gait features from the three considered human 

silhouettes: i) straight, ii) coat, and, iii) bag. Next, we fuse the extracted feature vectors 

to create two mean feature vectors 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑓𝑢𝑠𝑒𝑑) and 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)as 

follows: 

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)=
𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)+𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑏𝑎𝑔)+𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑐𝑜𝑎𝑡)

3
 , 

𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)=
𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)+𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑏𝑎𝑔)+𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑐𝑜𝑎𝑡)

3
 . 

Subsequently, biohash is applied to the two mean feature vectors, in order to generate 

two different enrollment bitstreams denoted Ebits(cit, fusion) and Ebits(rit, fusion), 

respectively, which are stored in the enrollment database. The computation of the 

enrollment bitstreams is performed as follows: 

𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑓𝑢𝑠𝑖𝑜𝑛) = 𝐵𝑖𝑜𝐻𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)), 

𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑓𝑢𝑠𝑖𝑜𝑛) = 𝐵𝑖𝑜𝐻𝑎𝑠ℎ (𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡,𝑓𝑢𝑠𝑒𝑑)). 

Similarly to the first scheme, in the authentication procedure, the silhouette G of 

the user can be one of the three types that were captured in the enrollment procedure 

(i.e., straight, coat, bag). First, the CIT and RIT transformations are applied to extract 

two gait feature vectors (i.e., one from CIT and one from RIT). As previously, using 

the user’s token and the gait features vectors, biohash is applied to generate two 

different authentication bitstreams Abits(cit) and Abits(rit). Next, the hamming distance 

between the authentication and the enrollment bitstreams is computed, separately, for 

each transformation. After that, the final score named FinalResult is computed, which 

is the sum of the two previously computed hamming distances. That is: 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑓𝑢𝑠𝑖𝑜𝑛),  𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)) + 

                𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑓𝑢𝑠𝑖𝑜𝑛),  𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡)) 

4.1.4.3. Experiments and numerical results 

In this section, we evaluate the authentication performance of the two enrollment and 

authentication schemes. To this end, we have implemented in C++ programming 

language the following software modules: i) the CIT and RIT transformation 
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algorithms, ii) the biohash algorithm, and iii) the above two enrollment and 

authentication schemes. In the carried out experiments, we captured silhouettes of 75 

subjects (i.e., users). Three different human silhouette categories were considered: a) 

straight, b) coat, and, c) bag. The relative position of the camera and the subject was 

vertical. Thus, the angle of the direction of the camera and the face of the subject was 

90 degrees. 

The evaluation of the two schemes is performed by computing the genuine and 

impostor distributions. More specifically, to investigate the authentication performance 

of the proposed scheme, we classify the users as: a) genuine and b) impostors. Let user 

A be a genuine user with a token denoted as TRNA, while his/her biometric data is 

denoted as GAITA. Assume now that an impostor has his/her own biometric data 

GAITimpostor and his/her own token TRNimpostor. The goal of the impostor is to be 

authenticated as user A. We identify three different attack scenarios for the impostor: 

i) a type 1 impostor uses his own biometric data GAIT impostor and his own TRNimpostor; 

ii) a type 2 impostor has stolen and uses user’s A token TRNA but uses his/her own 

biometric data GAITimpostor; and iii) a type 3 impostor has stolen and uses the biometric 

data of user A GAITA and uses his/her own TRNimpostor. Impostors of type 1 are weaker 

(in terms of probability of successful authentication as genuine users) than impostors 

of type 2 and 3, since they do not possess any authentication credential (token or gait 

features). It is evident that in case that an impostor possesses both gait features and the 

token of a valid user, then he/she can be successfully authenticated as a genuine user. 

Figure 12 shows the genuine and impostor distributions for the first scheme (recall 

that the straight silhouette has been selected to enroll gait features). Note that since the 

genuine bag and coat distributions had exactly the same curves they are presented as 

one curve named genuine bag/coat. The same applies also for type 1 and 3 impostors 

distributions and, therefore, their curves are represented by a single one named type 

1/3. Figure 12 shows that the type 1/3 impostors are clearly separated (i.e., no overlap) 

from the genuine distributions, which means that the 1st scheme achieves 

EER=FAR=FFR=0%. We also observe that the genuine straight distributions have a 

very small overlap with type 2 impostors. We have estimated that the EER value for 

type 2 impostors and genuine straight is equal to 9%. However, it can be deduced from 

Figure 12 that genuine bag/coat distributions overlap greatly with type 2 impostor 

distribution, which means that the system cannot distinguish them. As a matter of fact, 
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we have derived the EER value equal to 34% for type 2 impostors and genuine bag/coat, 

which is considerably high and unacceptable.  

It is worth noting that we repeated the experiments using this time gait features 

extracted from a bag silhouette as enrollment. Again, the same distribution behavior 

was observed with the difference that this time genuine bag distributions had a small 

overlap with type 2 impostors, while straight/coat curves overlapped greatly with type 

2 impostors. In this case, the Type 2 EER value was derived equal to 33%. Note that 

similar results we observed using a coat silhouette as enrollment. From the above 

analysis, we deduce the following observation: 

 

Figure 12: Distributions of the FinalResult values of the first scheme for genuine users and impostors. 

Observation 16: Gait features that are extracted from the same user are similar only 

when they are extracted from the same silhouette type. On the contrary, gait features 

that are extracted from different silhouette types of the same user have great 

differences. 

The above observation indicates that if, for example, we use enrollment templates 

generated from a straight silhouette type, then a valid user may be rejected if his/her 

authentication templates are generated from bag or coat types. Similarly, if we use gait 

features extracted from bag silhouette as enrollment template, then a valid user may be 

rejected, if the silhouette type for authentication is straight or coat. This happens 

because when the enrollment and authentication templates (i.e., gait features) are 

generated from different silhouette types, the extracted gait vectors differ significantly, 
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due to distortions that are caused by the different captured silhouette type. The above 

leads to the more generic observation: 

Observation 17: If we use enrollment templates only from one silhouette type, then the 

authentication performance is significantly deteriorated. 

Figure 13 shows the genuine and impostor distributions for the second enrollment 

and authentication scheme. First, we observed that all three genuine silhouette types 

had exactly the same distribution curve. For this reason, Figure 13 shows one genuine 

distribution curve that represents all silhouette types. It is observed again that the type 

1/3 and genuine distributions are clearly separated and thus EER=FAR=FFR=0% is 

achieved for these types of impostors. On the other hand, the type 2 impostor 

distribution overlaps almost entirely with the genuine one, resulting in a very high EER 

value equal to 45% for type 2 impostors. This means that if we use feature fusion at the 

enrollment phase, the authentication performance is worse than the first scheme for all 

silhouette types. 

4.1.5. User registration and authentication using the gait modality. 

In this section, we describe the final enrollment and authentication scheme called 

gaithashing that yields the best numerical results. Unlike the previous two schemes that 

enroll only one feature gait vector (i.e., from a specific type of silhouette or fused), 

gaithashing enrolls separately gait feature vectors from all the three considered human 

silhouette types. Moreover, in the authentication process of gaithashing, the new 

extracted gait features are fused with each one of the enrollment templates, using 

weighted sums. By selecting appropriate weight values, gaithashing performs 

comparison between gait features of the same silhouette type, in order to increase the 

authentication performance and avoid the pitfalls of the previously mentioned schemes. 

From the above analysis, we deduce the following observation:  

Observation 18: Feature-level fusion has adverse impact on the authentication 

performance. 

More specifically, as shown in Figure 14, the first step of the enrollment procedure in 

gaithashing is to capture the aforementioned three distinct silhouettes of the user: a) 

straight Gstraight, b) coat Gcoat, and, iii) bag Gbag. Next, the CIT and RIT transformations 

are applied, separately, to each one of the three silhouettes of the user to extract the gait 
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Figure 13: Distributions of the FinalResult values of the second scheme for genuine users and 

impostors. 

 

Figure 14: Gaithashing enrollment procedure 
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Algorithm 1: Enrollment Algorithm 

Input: Three gait silhouettes (Gstraight, Gbag, Gcoat), Token 

Output: Six enrollment Bitstreams (Ebits(cit,straight), Ebits(cit,bag), Ebits(cit,coat), Ebits(rit,straight), Ebits(rit,bag) , 

Ebits(rit,coat)) 

1. Categories={straight,bag,coat} 

2. for i in Categories do 

3. 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡 ,𝑖) = 𝐶𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺(𝑖)); 

4. 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡 ,𝑖) = 𝑅𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺(𝑖)); 

5. 𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡 ,𝑖) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡 ,𝑖) , 𝑇𝑜𝑘𝑒𝑛);  

6. 𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡 ,𝑖) = 𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡 ,𝑖) , 𝑇𝑜𝑘𝑒𝑛);  

7. end  

Figure 15: Gaithashing enrollment algorithm 

features. In this way, in total, six different gait features are extracted: three from the 

CIT transformation and three from RIT. In the second step, biohash is applied to each 

one of the six gait features using the token of the user, generating six different 

enrollment bitstreams. That is, three enrollment bitstreams for the CIT transformation 

Ebits(cit,straight), Ebits(cit,bag), Ebits(cit,coat), and three enrollment bitstreams for RIT 

Ebits(rit,straight), Ebits(rit,bag), Ebits(rit,coat), which are stored in the enrollment database. The 

algorithm of the enrollment procedure is presented in Figure 15. 

The authentication procedure includes four distinct steps. Note that in the authentication 

procedure, the silhouette G of the user can be one of the three types that were captured 

in the enrollment procedure (i.e., straight, coat, bag). In the first step, the CIT and RIT 

transformation are applied to extract two different gait features (i.e., one from CIT and 

one from RIT). In the second step, using the user’s token and the extracted features, 

biohash is applied to generate two different authentication bitstreams Abits(cit) and 

Abits(rit). During the third step, the authentication and the enrollment bitstreams are 

compared and fused, separately, for each transformation to produce the intermediate 

scores CitSum and RitSum (i.e., first-level fusion as shown in Figure 16). Finally, in 

the fourth step, the CitSum and RitSum are fused (i.e., second-level fusion as shown in 

Figure 16) to generate the final score named as FinalResult. At this point, the user is 

accepted if FinalResult is less than a predetermined threshold; otherwise he/she is 

rejected. As mentioned below, the first and second level fusions are based on weighted 

sums. The exact values of the employed weights as well as the predetermined threshold 

are derived experimentally (see section 4.1.6), maximizing the authentication 

performance. 
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Figure 16: Gaithashing authentication procedure 

First-level fusion  

The first-level fusion module is invoked in the authentication procedure, right after the 

generation of the authentication bitstreams. This module calculates the hamming 

distances between each authentication and enrollment bitstream of the user. Note that 

the hamming distance represents the number of different bits between two bitstreams. 

In total, three hamming distances are computed for each transformation (CIT and RIT) 

as follows: 

𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡),  𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)), 

𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑏𝑎𝑔) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑏𝑎𝑔),  𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)), 

𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑐𝑜𝑎𝑡) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡,𝑐𝑜𝑎𝑡),  𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡)). 

and 

𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡),  𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡)), 

𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑏𝑎𝑔) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑏𝑎𝑔),  𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡)), 

𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑐𝑜𝑎𝑡) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡,𝑐𝑜𝑎𝑡),  𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡)). 

A small hamming distance value between the authentication and enrollment bitstreams 

means that the compared bitstreams are similar. On the contrary, a high hamming 

distance value means that the compared bitstreams are different and they do not share 

similarities.  

Since the user’s silhouette type should match with one of the three enrollment types, it 

is evident that one of the previously generated scores from the RIT transformation and 

one from CIT have small hamming distance values (see observation 16), while the 
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remaining scores have high hamming distance. Let X1 be the minimum between the 

three scores of CIT, that is, 

𝑋1 = 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡),  𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑏𝑎𝑔), 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡,𝑐𝑜𝑎𝑡)), 

and X2, X3 the remaining two scores. Similarly, we assign Y1 the minimum between 

the three scores of RIT: 

𝑌1 = 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡),  𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑏𝑎𝑔), 𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡,𝑐𝑜𝑎𝑡)), 

and Y2, Y3 the remaining two scores. In essence, X1 and Y1 represent the hamming 

distance between authentication and enrollment bitstreams of the same silhouette type, 

while X2, X3 and Y2,Y3 represent the hamming distance between authentication and 

enrollment bitstreams of different silhouette types. In other words, the values of X2, X3 

and Y2,Y3 are considered to be noise. At this point, the first-level fusion module fuses 

the hamming distances of each transformation using weighted sums and generates two 

intermediate scores, CitSum and RitSum such as: 

𝐶𝑖𝑡𝑆𝑢𝑚 =  α1 ∗ Χ1 + α2 ∗ Χ2 + α3 ∗ Χ3, 

𝑅𝑖𝑡𝑆𝑢𝑚 =  b1 ∗ Y1 + b2 ∗ Y2 + b3 ∗ Y3, 

where α1, α2, α3 and b1, b2, b3 are weight values such as α1 > α2, α3 and b1 >

b2, b3,while it is 𝛼1 + 𝛼2 + 𝛼3 = 1 and b1 + b2 + b3 = 1. Note that the impact of X1 

and Y1 on the value of CitSum and RitSum respectively is greater than the other scores. 

This happens because their corresponding weight values (i.e., α1 and b1) are greater 

than the other weight values. In this way, the noise introduced by X2, X3 and Y2,Y3 do 

not affect, significantly, the value of CitSum and RitSum. 

Second-level fusion and decision  

In this step, first a final score (denoted as FinalResult) is computed by fusing the 

CitSum and RitSum values, using weighted sums such as: 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 = w1 ∗ 𝐶𝑖𝑡𝑆𝑢𝑚 +  w2 ∗ 𝑅𝑖𝑡𝑆𝑢𝑚, 

where w1and w2 are weights such as w1 + w2 = 1. Finally, the user is accepted or 

rejected based on the following simple rule: If FinalResult is less than a predetermined 

threshold, then the user is authenticated successfully; otherwise the user is rejected. The 

algorithm of the authentication procedure is presented in Figure 17. 
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4.1.6. Performance evaluation 

To evaluate the authentication performance of the proposed scheme, we have 

implemented the two-level fusion and decision algorithm of gaithashing. The 

parameters of the carried out experiments are the same as in section 4.3. That is, three 

different human silhouette categories were considered: a) straight, b) coat, and, c) bag. 

Moreover, we classify the users as: a) genuine and b) impostors. We identify three 

different attack scenarios for the impostor: i) a type 1 impostor uses his own biometric 

data and his/her own token; ii) a type 2 impostor has stolen and uses a valid token of a 

genuine user but uses his/her own biometric data; and iii) a type 3 impostor has stolen 

and uses the biometric data of a genuine user but uses his/her own token.  

Algorithm 2: Authentication Algorithm 

Input: An authentication gait silhouette (G), Six Enrollment Bitstreams,  

 Token, Threshold 

Output: Acceptance or rejection of the user 

1: Categories={straight, bag, coat} 

2: 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡 ) = 𝐶𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺); 

3: 𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡 ) = 𝑅𝐼𝑇_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐺); 

4: 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡 ) =  𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑐𝑖𝑡 ) , 𝑇𝑜𝑘𝑒𝑛); 

5: 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡 ) =  𝐵𝑖𝑜ℎ𝑎𝑠ℎ(𝐺𝑎𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑖𝑡 ) , 𝑇𝑜𝑘𝑒𝑛); 

6: for i in Categories do 

7: 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡 ,𝑖) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑐𝑖𝑡 ,𝑖), 𝐴𝑏𝑖𝑡𝑠(𝑐𝑖𝑡 )); 

8: 𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡 ,𝑖) = 𝐻𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑏𝑖𝑡𝑠(𝑟𝑖𝑡 ,𝑖), 𝐴𝑏𝑖𝑡𝑠(𝑟𝑖𝑡 )); 

9: end 

10: 𝑋1 = 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡 ,𝑠𝑡𝑟 𝑎𝑖𝑔ℎ𝑡),  𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡 ,𝑏𝑎𝑔 ), 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖𝑡 ,𝑐𝑜𝑎𝑡 ))  and X2, X3 the 

remaining two scores; 

11: 𝑌1 = 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡 ,𝑠𝑡𝑟𝑎𝑖𝑔 ℎ𝑡),  𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡 ,𝑏𝑎𝑔 ), 𝑆𝑐𝑜𝑟𝑒(𝑟𝑖𝑡 ,𝑐𝑜𝑎𝑡 )) and Y2, Y3 the remaining 

two scores; 

12: 𝐶𝑖𝑡𝑆𝑢𝑚 =  𝛼1 ∗ 𝛸1 + 𝛼2 ∗ 𝛸2 + 𝛼3 ∗ 𝛸3; 

13: 𝑅𝑖𝑡𝑆𝑢𝑚 =  𝑏1 ∗ 𝑌1 + 𝑏2 ∗ 𝑌2 + 𝑏3 ∗ 𝑌3; 

14: 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑤1 ∗ 𝐶𝑖𝑡𝑆𝑢𝑚 + 𝑤2 ∗ 𝑅𝑖𝑡𝑆𝑢𝑚; 

15: if 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 

16: User is accepted; 

17: else 

18: User is rejected; 

19: end  

Figure 17: Gaithashing authentication algorithm 

We have conducted two set of experiments. The aim of the first set is to derive the 

distributions of the FinalResult values for both genuine users and impostors (all three 

types). The FinalResult is the most important parameter in the proposed scheme, since 

the authentication of a user is based on its value. By investigating the distribution of 

FinalResult values, we gain insights for the behavior of the gaithashing scheme and 

whether it can distinguish impostors from genuine users. In the second set of 

experiments, the goal is to estimate the FAR, FRR and EER values. As mentioned 
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previously (see section 4.1.1), FAR represents the probability that the authentication 

system will incorrectly accept an authentication attempt by an impostor, whereas FRR 

represents the probability that the authentication system will incorrectly reject an 

authentication attempt by a genuine user. This experiment allows us to estimate an 

appropriate threshold value that can minimize both FAR and FRR, at the same time. 

In the carried out experiments, the values of weights were set as follows:α1 = b1 =

0.5, α2 = b2 = 0.25, α3 = b3 = 0.25(first-level fusion) and w1 = 0.4 , w2 = 0.6 

(second-level fusion). As we analyze below, these values were selected after trying 

various combinations and experiments, in order to achieve the best authentication 

performance (i.e., minimize the EER value). 

 

Figure 18: Distributions of the FinalResult values of gaithashing for genuine users and three impostor 

types 

Figure 18 shows the distribution of the FinalResult values for both impostors 1, 2, 3 

and genuine users. Note that the distributions of impostors type 1 and 3 were identical 

and are presented in one curve. It is observed that the FinalResult values of type 1 and 

type 3 impostors is considerably higher than the genuine. In fact, the highest value of 

FinalResult for genuine users is 25, while the values of FinalResult for impostors type 

1/3 begins at 110. As a result, the distribution curves of the genuine users and type 1/3 

impostors do not overlap at all. This means that gaithashing can always distinguish 

between impostors type 1/3 and genuine users. In other words, an impostor of type 1 

and 3 cannot be authenticated as genuine user. For example, if we set the threshold 

value equal to 60, then the FinalResult value for all genuine users is less than the 



92 

 

threshold value, while all impostors of type 1 and 3 have FinalResult value higher than 

the threshold, which means that they will be rejected. On the other hand, we observe 

that the type 2 impostor distribution marginally overlaps with the genuine one. The 

intersection area of the two curves (i.e., genuine and impostor type 2 distribution) 

begins for FinalResult equal to 10 and ends for FinalResult equal to 25. In this area, 

gaithashing cannot distinguish between genuine users and type 2 impostors, since they 

share the same FinalResult values. The above results indicate that depending on the 

value of the selected threshold, an impostor type 2 may be authenticated, successfully, 

as a genuine user or a genuine user may be rejected, incorrectly. For example, if we set 

threshold equal to 10, then as shown in Figure 18, no impostor of type 2 will be 

accepted. However, a small percentage of genuine users will be rejected, because their 

FinalResult value is greater than the threshold. 

To quantify and investigate further the authentication performance of gaithashing, we 

have estimated the FAR and FRR values, as a function of threshold values (see Figure 

19). As expected, the value of FRR decreases, as the threshold increases. On the other 

hand, the values of FAR for the three impostors types increases as the threshold 

increases. Thus, the value of the threshold regulates a tradeoff between FAR and FRR. 

A small threshold value may minimize FAR, but the FRR may be very high. On the 

contrary, a high threshold value may minimize FRR, but the value of FAR can be very 

high. For this reason, we have to estimate the EER value (see section 4.1.1), where the 

FAR and FRR are equal (i.e., EER=FAR=FRR). Evidently, the value of EER should be 

as low as possible, since a low value of EER entails a low value of FAR and FRR. This 

value can be easily estimated, since it is the intersection point of the FAR and FRR 

curves. Thus, as shown in Figure 19, for impostors of type 2, the EER equals to 10.8% 

which is obtained for threshold value equal to 14. This means that if we set the threshold 

equal to 14, then for 100 authentication attempts, the proposed scheme presents in total 

10 false rejections of a genuine user or false acceptance of a type 2 impostor. Moreover, 

the EER for impostors of type 1/3 is equal to 0%, since the FRR and FAR curves do 

not intersect. This means that gaithashing is able to always detect type 1/3 impostors. 

Thus, we can deduce that the proposed scheme attains very high performance for all 

impostor scenarios, while false alarms are kept to minimal. 
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Figure 19: Gaithashing FRR-FAR values as functions of the threshold value 

It is important to mention that the employed weight values for the first and second level 

fusion play a key role in the performance of gaithashing. These were derived after a 

fine tuning procedure in which we performed several trials in order to minimize the 

EER value. More specifically, Table 16 shows various weight values that we tested and 

the corresponding EER value for impostors of type 2 (note that the EER value for 

impostors type 1/3 was equal to 0% independently of weight values). Recall that α1 >

α2, α3 and b1 > b2, b3, while it is α1 + α2 + α3 = 1, b1 + b2 + b3 = 1 and w1+w2 =

1. First, we randomly selected weights values for the first-level fusion, while the 

weights for the second level fusion were constant and equal to w1 = w2 = 0.5. 

Initially, we tested the following weight values: α1 = 0.5, α2 = α3 = 0.25 and b1 =

0.5, b2 = b3 = 0.25, (1st trial). Numerical results showed that gaithashing achieved 

EER=11.4%. Next, in the 2nd trial we increased the values of α1 (i.e., α1 = 0.6) and b1 

(i.e., b1 = 0.6) and we observed that the EER value increased (i.e., EER=13.2%), 

which was not acceptable. In the third trial we increased only the value of α1 (i.e., α1 =

0.6), while b1 was equal to its initial value (i.e., b1 = 0.5). Again, we observed that the 

value of EER was higher compared to the first trial (i.e., EER=12.5%). In the fourth 

trial, we reduced α1 (i.e., α1 = 0.4) and b1 (i.e., b1 = 0.4). We observed that the value 

of EER did not modified, significantly, but it was higher than the first trial (i.e., 

EER=13.2%). 
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Trials 𝛂𝟏 𝛂𝟐 , 𝛂𝟑 𝐛𝟏 𝐛𝟐, 𝐛𝟑 𝐰𝟏 𝐰𝟐 EER 

1 0.5 0.25 0.5 0.25 0.5 0.5 11.4% 

2 0.6 0.2 0.6 0.2 0.5 0.5 13.2% 

3 0.6 0.2 0.5 0.25 0.5 0.5 12.5% 

4 0.4 0.3 0.4 0.3 0.5 0.5 13.2% 

5 0.5 0.25 0.5 0.25 0.6 0.4 11.6% 

6 0.5 0.25 0.5 0.25 0.4 0.6 10.8% 

Table 16: Gaithashing tested weight values and corresponding EER of type 2 impostors 

Next, we modified the weight values of the second level fusion w1 and w2, while the 

weight values of the first-level fusion are constant and equal to the first trial. As shown 

in Table 16, in the 5th trial we assigned w1 = 0.6 and w2 = 0.4 and observed that the 

value of EER was not significantly modified, compared to the first trial (i.e., 

EER=11.6%). In the 6th trial, we selected w1 = 0.4 and w2 = 0.6. This time we 

observed that the value of EER was decreased, compared to the first trial and it was 

equal to 10.8%. Although we performed several other trials, the value of EER was not 

reduced further. Thus, we concluded that the weight values of the sixth trial should be 

selected in order to achieve the minimum EER value (i.e., EER=10.8%).  

Apart from the aforementioned experiments, it is important to mention that we tried to 

further improve the EER value of gaithashing for type 2 impostors, using decision based 

fusion. In particular, we have implemented a scheme that performs two-level fusion. 

The first-level fusion is identical with gaithashing. That is, the hamming distances 

between each authentication and enrollment bitstreams of the subject are calculated and 

the CitSum and RitSum are derived using weights. In the second-level fusion, the 

CitSum and RitSum values are compared to two pre-defined thresholds (i.e., 

Thresholdcit and Thresholdrit respectively) to derive a binary decision (i.e., TRUE or 

FALSE). That is: 

𝐶𝑖𝑡𝐴𝑢𝑡ℎ = {
𝑇𝑅𝑈𝐸, 𝑖𝑓 𝐶𝑖𝑡𝑆𝑢𝑚 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑖𝑡

𝐹𝐴𝐿𝑆𝐸, 𝑖𝑓 𝐶𝑖𝑡𝑆𝑢𝑚 ≥ 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑𝑐𝑖𝑡
  

𝑅𝑖𝑡𝐴𝑢𝑡ℎ = {
𝑇𝑅𝑈𝐸, 𝑖𝑓 𝑅𝑖𝑡𝑆𝑢𝑚 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑟𝑖𝑡

𝐹𝐴𝐿𝑆𝐸, 𝑖𝑓 𝑅𝑖𝑡𝑆𝑢𝑚 ≥ 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑𝑟𝑖𝑡
 

The final result denoted as FinalAuth is calculated by performing a decision-level 

fusion using the AND or OR logical rules. In particular, using the OR logical rule, a 

user is successfully authenticated if either the CitAuth or RitAuth value is TRUE, 
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whereas using the AND rule, both CitAuth and RitAuth values should be TRUE. To 

obtain numerical results (i.e., EER), we tested various values for the Thresholdcit and 

Thresholdrit. The lowest EER values that we achieved for type 2 impostors were equal 

to 48% and 19% for the OR and rules respectively. On the other hand, as we mentioned 

previously gaitashing achieved EER =10.8%. Thus, it is evident that the decision based 

fusion approach does not improve the EER of gaithashing and as a matter of fact, it 

deteriorates the authentication performance [134]. 

To summarize, the EER values of the three proposed schemes are shown in Table 17. 

We conclude that all schemes achieve 0% EER for both Type 1 and 3 impostors. 

However, for type 2 impostors, we obtained EER = 34% for straight silhouette 

enrollment, as well as 27% and 32% for coat and bag enrollment respectively. 

Moreover, in the second scheme the EER was equal to 45%. However, the third scheme 

achieves EER = 10.8%, which is a significant improvement over the previous two 

schemes. This result means that for every 100 authentication attempts, the third scheme 

has in average 10 false acceptances of type 2 impostors and 10 false rejections of 

genuine users.  

Apart from the fusion techniques, there are some other methods that could possibly 

improve the authentication performance of the system. In particular: 

a) Use of multiple feature extraction algorithms: Apart from CIT and RIT 

transformation algorithms, we can extract gait features using other feature extraction 

algorithms proposed 

Impostors type 1st scheme 2nd scheme 
3rd scheme 

(Gaithashing) 

Type 1 0% 0% 0% 

Type 2 

34% straight enrollment 

27% coat enrollment 

32% bag enrollment 

45% 10.8% 

Type 3 0% 0% 0% 

Table 17: EER values of the three proposed schemes 

in the literature (such as the ones presented in [120] and [119]). As a matter of fact, we 

can use multiple extraction algorithms to extract multiple gait features for the same 

user. Since different algorithms capture different characteristics of a human silhouette, 

we can enroll all extracted features and perform a feature-level fusion, in order to 
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improve the authentication performance. The negative side effect of this approach is 

that it increases the overall complexity as well as the processing and storage overhead, 

due to the extraction and enrollment of several gait features for each user. 

b) Use of multi-modal biometrics: The ISO/IEC standards propose the use of multiple 

biometric features (i.e., also named as multi-modal biometrics), in order to overcome 

the limitations imposed by uni-modal biometric systems [134]. In general, multi-modal 

biometric systems are considered to be more reliable and robust to attacks [135], since 

an impostor should compromise two or more biometric features of a genuine user. In 

the proposed gaithashing system, gait features can be combined with face or iris or any 

other biometric modality to create a feature vector for the user. The downside of this 

approach is that the proposed system will inherit the usability issues of the other 

biometric modalities. That is, gait is the only biometric modality that provides 

unconstructive access control and authentication at-a-distance. All other biometric 

modalities (including fingerprints, iris, face) have several usability issues (see section 

4.1.6). Therefore, on the one, hand multimodal biometrics may improve the EER 

results, but on the other hand it will reduce the usability of the system.  

c) Use of multiple sensors: Another improvement in the authentication performance 

may be achieved by using multiple sensors. That is, we can use different cameras to 

capture the human silhouette of a user and obtain multiple gait features (each one 

derived from a different camera) that can be used for enrollment. However, we have to 

notice that the use of multiple cameras may cause deployment issues and increase the 

overall cost. 

4.1.7. Results and discussion 

Section 4.1 of this thesis proposed gaithashing, a two-factor authentication scheme that 

secures gait features in an efficient manner. The proposed scheme combines the security 

features of biohash and the recognition capabilities of gait features to provide a high 

accuracy authentication system. In gaithashing, a user is authenticated only if he/she 

possesses a valid token and a valid gait feature. The performance of the gaithashing 

scheme is evaluated by carrying out two sets of experiments. The obtained numerical 

results and the carried out evaluation allow us to derive the following generic 

observations: 
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• Gaithashing achieves EER=0% for type 1 and 3 impostors (i.e., type 1 impostor 

uses his/her own gait features and his/her own token, while type 3 impostors use 

compromised gait features and they own token for authentication). This means 

that the proposed scheme always detects type 1 and 3 impostors. 

• It achieves very high accuracy (EER=10.8%) for type 2 impostors (i.e., an 

impostor that uses a compromised token and his/her own gait features for 

authentication).  

• Gaithashing addresses the distortions caused when the subject wears a coat or 

holds a bag, by enrolling three different types of human silhouettes (i.e., straight, 

coat, bag). The proposed scheme can be easily extended to take into account 

other types of human silhouettes (e.g., a user wearing a hat). 

• The proposed scheme secures gait features by converting them to non-invertible 

bitstreams using the biohash algorithm and a user's token.  

• Gaithashing provides unlinkability and easy revocability of the gait templates, 

simply by replacing the user's token with a new one. 

4.2.  Detection of malicious actions using machine learning 

4.2.1. Background 

4.2.1.1. Routing in mesh networks 

AODV is an on demand routing protocol, which maintains routes as long they are 

needed by source nodes. It is scalable and offers low processing, memory, and 

communication overheads to the underlying network. It utilizes three control messages 

to achieve route discovery: route request (RREQ), route reply (RREP), and route error 

(RERR). It also provides an optional fourth control message (i.e., Hello message), 

which is used for preserving connectivity between neighboring nodes. Each node 

maintains a list of previously established routing paths in a routing table. Each entry in 

this table stores routing information to a destination node in the network. The most 

essential fields of a routing table entry are: 

• Destination IP address (dst): the IP address of the destination node.  

• Destination SQN (denoted as SQNdst_node_entry): this is the latest SQN of the 

destination node of the entry. This field can be updated during the route 

discovery process. The destination SQN is a measure of the freshness of the 

routing information in the related entry. 
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• Hop count (hop_count): represents the current distance to the destination node 

of the entry. 

• Next hop node (next_hop): all packets sent to the destination node of the entry 

should be forwarded through this node.  

When a source node S wishes to transmit a data packet to some destination D for which 

it does not possess a route, it initiates a route discovery process by first incrementing 

its own SQN by one, and, subsequently, broadcasting a RREQ message that includes 

the: source IP address, source SQN, destination IP address, destination SQN, RREQ id, 

and hop count field. The value of the destination SQN in the RREQ message (the values 

of destination SQNs in the AODV messages are denoted as SQNdst_node) is taken from 

the related routing table entry of the source node for the specific destination that wishes 

to discover a route. The intermediate node that receive the RREQ first create a routing 

table entry for the source node S. Then, it checks the routing table for a route to the 

destination node D. If it possesses a fresh route to the destination (i.e., the 

SQNdst_node_entry in its corresponding routing table entry is greater than or equal to the 

SQNdst_node included in the RREQ message), then it responds to the source node with a 

route reply (RREP) that includes: the hop count to the destination, the destination IP 

address, the destination SQN, and the source IP address (i.e., the address of the node 

that initiated the route request). The value of the destination SQN (i.e., SQNdst_node) is 

taken from the stored in the intermediate nodes’ routing table. Otherwise, (i.e., if the 

SQNdst_node_entry in the intermediate nodes’ routing table entry is less than the SQNdst_node 

included in the RREQ message or there is no route to the destination at all), then the 

intermediate node increments the hop count field by one and forwards the RREQ to its 

neighbors.  

If none of the intermediate nodes possesses a fresh route to the destination, then the 

RREQ eventually reaches the destination node. In this case, the destination node 

increases its own SQN by one (if the incremented value equals the value in the RREQ 

message) and then sends a RREP message to the source node S that contains the: source 

IP address, destination IP address, destination SQN, and hop count field. The 

destination SQN (i.e., SQNdst_node) in the RREP message is equal to the value of the 

destination node’s own SQN. Intermediate nodes receiving the RREP update their 

routing tables, only, if the destination SQNdst_node in the message is higher from the 

stored value in their routing tables (i.e., SQNdst_node_entry), or the destination SQNs are 
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equal, but the hop count field in the RREP is smaller than the stored value. If multiple 

RREP messages reach the source node (i.e., this may occur when several intermediate 

nodes have a routing path to the destination node), it accepts the RREP with the highest 

destination SQN value or, in case these values are equal, the RREP with the smallest 

number of hops to the destination. If a link breaks, an intermediate node initiates a local 

repair mechanism attempting to discover a new route to the destination, by transmitting 

a RREQ message. If the repair mechanism fails to discover a route, the node generates 

a RERR message that includes the IP addresses and the last known destination SQNs 

of the unreachable destinations, informing the receiving nodes that they should restart 

the routing discovery process, if they want to communicate with them.  

4.2.1.2. Blackhole attack: Acting as a sinkhole for all network traffic 

The blackhole attack is a type of denial-of-service attack in which a malicious node 

falsely claims to possess a fresh route to the destination, in order to attract network 

traffic, and, subsequently, drops all data packets that are forwarded to it. In a more 

advanced variation of the attack, the malicious node may even selectively drop a 

percentage of packets (instead of all), in order to avoid detection. This variation is often 

referred as greyhole attack [136]. The implementation of the attack can be achieved in 

two ways, which we refer as "reactive" and "proactive". In the "reactive" version of the 

attack, a malicious node awaits for RREQ messages. When it receives an RREQ, then 

it responds to the source node with a spurious RREP message that includes a fake 

destination SQN (i.e., SQNmalicious) of an arbitrarily high value. Upon receiving the fake 

RREP message, the source node compares the SQNmalicious value with the SQN values 

of any other received RREP messages, and, since SQNmalicious has the highest value; the 

source node selects the malicious node as its path to the destination. Subsequently, the 

source node begins the transmission of data through the malicious node.  

In the "proactive" version of the attack, a malicious node actively generates fake RREQ 

messages, masquerading as an intermediate node forwarding a RREQ message. First, 

it selects a random source and destination address and then, it generates and transmits 

a RREQ message that includes a fake source SQN of arbitrarily high value. Upon 

receiving the fake RREQ message, intermediate nodes add the malicious node as a path 

to the destination. Subsequently, when they have data to transmit to the destination, 

they select the malicious node as a path to the destination. The "proactive" version of 

the attack can yield more captured traffic for the malicious node, since: (i) the later does 
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not have to wait for RREQ messages in order to advertise its spurious path to the 

destination; and (ii) it enables the malicious node to actively advertise a path to any 

destination, contrary to the "reactive" version of the attack, where the malicious node 

is limited to the destinations from which a RREQ message is received.  

On the other hand, detecting the "proactive" version of the attack can be implemented 

using a simple mechanism that takes advantage of the AODV operation. This detection 

mechanism should run in every node and simply check if a received RREQ message 

was actually generated and transmitted by the host node itself. In particular, according 

to the AODV protocol specifications, when a node on the network receives a RREQ 

message, it compares the source IP address and RREQ id with any values stored in its 

buffer, in order to avoid processing RREQ messages that have already been processed 

or that have been transmitted by itself [137]. If no matching values are found (i.e., the 

RREQ message is new to the host node) then the detection mechanism checks if the 

source IP address on the RREQ message matches the IP address of the host node. If the 

two IP address values match, then the RREQ message has been generated by a 

malicious node (even though the host node is listed as the source in the RREQ message's 

header) and, thus, a “proactive” blackhole attack has been detected. Consequently, as 

we have shown, the “proactive” version of the attack can be detected by intelligently 

performing only one additional comparison by the detection mechanism, thus inducing 

insignificant computational overhead to the host node. For this reason, throughout the 

remainder of this section, we focus on the "reactive" version of the blackhole attack. 

To better understand the functionality of a "reactive" blackhole attack, we provide a 

numerical example that presents all of the steps taken by a malicious node. Figure 20 

shows a network of six nodes. Node S denotes the source node, node D the destination 

node, nodes I1, I2, I3 are intermediate nodes; while node M is the malicious node 

performing a blackhole attack. When node S wants to transmit data to the destination, 

it first checks for a valid route to its routing table. Since no such route exists, node S 

generates a RREQ message (with parameters dst = D, SQNdst_node = 0) and transmits it 

to its neighboring nodes I1 and I2, (see Figure 20, step a). These nodes do not possess a 

route to the destination yet either, so the RREQ message is subsequently forwarded, 

and, finally, it reaches both the malicious node M and the destination node D.  

Upon the reception of the RREQ message, the malicious node M, generates a RREP 

message (even though it does not possess a route to the destination node D), using as a 
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destination SQNdst_node (which is denoted as SQNmalicious) an arbitrarily high value, 1000 

in our example, as well as a fake hop_count = 1, and transmits the message to the next 

hop (i.e., node I1) towards the source node S (see Figure 20, step b). The intermediate 

node I1 that receives the RREP message generated by the malicious node M; creates a 

new route table entry for the destination, in which it stores the destination address (dst), 

next_hop, hop_count incremented by one, and the fake SQNmalicious value from the 

RREP message to its SQNdst_node_entry field. Subsequently, it updates the received RREP 

message with the incremented hop_count and with the next_hop field set equal to its 

own address. Finally, it forwards the RREP message towards the source node S. When 

the source node S receives the RREP message, it creates a new route table entry for the 

destination, in which it stores the destination address (dst), next_hop, hop_count 

incremented by one, and the fake SQNmalicious value from the RREP message to the 

SQNdst_node_entry field.  

S

I1 M

I2 I3

D

[RREQ(dst, SQNdst_node_entry=0)]

a

[data packet]

c

[RREP(dst, SQNmalicious=1000, 

hop_count=1,next_hop=M)]

b

[RREP(dst, SQNdst_node_entry=0, 

hop_count=1,next_hop=I3)]

b

[RREQ(dst, SQNdst_node_entry=0)]

a

 

Figure 20: The "reactive" blackhole attack (step a: route request, step b: route reply, step c: data 

transmission) 
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On the other hand, the destination node D generates a RREP message (with parameters 

SQNdst_node = 0, hop_count = 0) and transmits it to the next hop (i.e., node I3) towards 

the source node S (see Figure 20, step b). Each of the intermediate nodes (i.e., I3 and 

I2) that receive the RREP message generated by the destination node D, create a new 

route table entry for the destination, in which they store the destination address (dst), 

next_hop, hop_count incremented by one, and SQNdst_node value from the RREP 

message. Subsequently, they update the received RREP message with the incremented 

hop_count and with the next_hop field set equal to their own address. Finally, they 

forward the RREP message towards the source node S. When the source node S 

receives the RREP message generated by the destination node D, it compares the SQN 

value between the entry stored in the route table (i.e., SQNdst_node_entry) and the value in 

the RREP message (i.e., SQNdst_node) and, since the later contains a lower value, the 

RREP message is discarded.  

Once the route discovery process is completed, the source node S looks up its route 

table for the next_hop node of destination D (i.e., node I1) and transmits a data packet 

to it (see Figure 20, step c). Subsequently, node I1 receives the data packet and checks 

if the packet is addressed for itself. Since the data packet destination field indicates that 

the message's destination is node D, node I1 looks up its route table for the next_hop 

node of destination D (i.e., node M) and forwards the data packet to it. Finally, once 

the malicious node M receives the data packet, it can perform one of the two possible 

actions: it either (i) arbitrarily drops the data packet, or (ii) selectively drops the packet 

based on a percentage of target packet drops.  

4.2.1.3. Related Work 

The blackhole attack has been repeatedly analyzed in the literature. In [138], the authors 

provide an overview of routing attacks that target MANETs, including the blackhole 

attack. Furthermore, the authors survey several detection mechanisms that attempt to 

address blackhole attacks and outline their strengths and weaknesses. [139], [140], and 

[141], have conducted a comprehensive set of simulations that illustrate the effects of 

a blackhole attack to the AODV routing protocol. In particular, the authors focus on the 

second part of the attack (i.e., packet drop) and evaluate its impact to the packet delivery 

rate of the network, the end-to-end delay, as well as the throughput, under various 

mobility scenarios. However, none of these works provide any insights regarding the 

first step of the attack, the related routing parameters that are exploited by a malicious 
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node, or how these parameters affect the attack itself (i.e., such as the percentage of 

routes won by a malicious node).  

A variety of detection mechanisms for blackhole attacks in AODV also exists in the 

literature and even though we provide an evaluation of the most recently proposed 

solutions, a comprehensive analysis of all the related literature requires an extensive 

review, which is outside the scope of this thesis. In [142], a distributed cooperative 

mechanism (DCM) is proposed to resolve blackhole attacks, by monitoring data packets 

transmitted by neighboring nodes. If a node has not routed any data packets during a 

fixed time-threshold, then the monitoring node will transmit a “test packet” through the 

suspicious node, destined for another cooperating detection node. If the later receives 

the “test packet,” then the suspicious node is legitimate; otherwise, it is considered 

malicious. The primary disadvantage of this scheme is that malicious nodes may 

attempt to exploit this mechanism, by analyzing the duration of time before a malicious 

node is detected (i.e., estimate the threshold value), and subsequently, the routing of at 

least one packet within this time-frame (i.e., selective drop).  

To address the limitation of [142], [143]proposes the use of a dynamically updated 

normal profile. In this scheme, the normal profile is updated dynamically, using 

monitored data collected during a period of time in which no malicious behavior was 

detected. It utilizes a support vector machine classifier (SVM) for detecting an attack 

by monitoring the delay between data transmissions. Although the use of dynamic 

profiles may reduce the rate of false positives in volatile networks; on the other hand, 

by relying on data transmissions for detection, attacks in which data packets are 

selectively dropped, remain undetected.  

In [144], the authors propose a mechanism to detect blackhole attacks by checking if 

the SQN of a RREP message is higher than a dynamic threshold value, which is an 

indication of a blackhole attack. The value of the threshold is updated by calculating 

the difference between the SQNs of the RREP message and the average of the 

previously received SQNs. However, in case of high mobility, the exchanged routing 

information is greatly increased (i.e., caused by link breakages), resulting in an 

unexpected increase in the SQNs of control packets, and thus, leading to considerably 

high false alarms. Moreover, the proposed solution requires many significant 

modifications to the AODV protocol. 
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In [145], the authors propose a reputation scheme called Prevention of Cooperative 

Black-Hole Attacks (i.e., PCBHA). In this scheme, each node maintains reputation 

scores for the other nodes of the network and when a route is required, the source node 

selects the route that includes intermediate nodes with the highest reputation scores. 

The carried out simulation results show that the performance of the AODV protocol is 

not deteriorated, considerably, using the proposed solution. However, the reputation 

information exchanged between nodes results in additional communication overhead 

and the proposed scheme is vulnerable to byzantine attacks, since a colluding group of 

malicious nodes may exploit the proposed scheme by providing fake reputation values 

that are high.  

A modified version of AODV, referred as the Gratuitous-AODV (i.e., GAODV), has 

been proposed in [146], in order to address the issue of blackhole attacks. In GAODV, 

when a source node receives a RREP from an intermediate node, it sends a verification 

message to the destination node. The latter should also provide an acknowledgment 

message to the source node. If the source node does not receive the acknowledgment, 

then the intermediate node is considered malicious and thus, the advertised routing path 

is not used. However, the functionality of GAODV requires extensive modifications to 

the original AODV protocol, raising compatibility issues and it introduces considerable 

delay in the route discovery process.  

Finally, in [147], the authors propose a detection mechanism called the Anti-Blackhole 

Mechanism (i.e., ABM), which captures both RREQ and their corresponding RREP 

messages and, subsequently, estimates the difference between the two. When this 

difference exceeds a predefined threshold, an alarm is raised informing all nodes on the 

network to cooperatively isolate the malicious node. ABM requires each node to run in 

promiscuous mode in order to capture, store, and, subsequently, process the RREQ and 

RREP messages within their radio range. Consequently, monitoring nodes are hindered 

with computational and storage overheads, as well as increased energy consumption. 

In addition, during the collection of captured traffic, malicious activities are not 

detected (i.e., non-real-time detection). The functionality of ABM also requires the 

operation of a modified version of the AODV protocol (i.e., MAODV), raising 

compatibility issues with the AODV protocol.  

In summary, existing detection mechanisms are limited in the sense that their 

deployment requires significant modifications to the AODV protocol [146] [147], while 
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some of the proposed solutions add considerable performance delays and 

communication overheads [142] [145] [146]. Even more importantly, the majority of 

these mechanisms attempt to resolve if a blackhole attack takes place, based only on 

the second step of the attack (i.e., packet drop) [142] [143] [145] [146]. Thus, they do 

not completely mitigate the attack (since detection can only be achieved after the 

malicious node wins the route discovery process), and they are effective, only, when 

the malicious node indiscriminately drops all of the forwarded traffic. On the other 

hand, our proposed detection mechanism is capable of detecting a blackhole attack 

during its first step (i.e., during the exploitation of the route discovery process), limiting 

the ability of a malicious node to drop packets, and thus, induce damage onto the 

network. Furthermore, by disassociating the detection of an attack from packet drop 

monitoring, the proposed detection mechanism is capable of detecting not only the 

blackhole attack but also the greyhole, in which a malicious node selectively drops 

packets, in order to avoid detection, in which a malicious node might selectively drop 

packets, in order to avoid detection. Finally, the proposed mechanism alleviates any 

associated communication overheads and does not require any modifications to the 

existing AODV routing protocol.  

4.2.2. Blackhole attack intensity 

In a blackhole attack, the objective of a malicious node is to attract as much traffic as 

possible, in order to maximize the number of packets that can be dropped, when 

legitimate source nodes transmit data. This is achieved during the first step of the attack, 

in which the malicious node provides a fake SQN (i.e., denoted as SQNmalicious) greater 

than all other SQN values provided by legitimate nodes, and, thus, wins all the received 

route requests. This can be clearly seen in the example of section 4.2.1.2; at step b. 

Furthermore, the parameter SQNmalicious affects not only the source node that initiated 

the route request, but also all intermediate nodes (such as node I1 in the example) that 

stored this parameter in their routing tables. However, the malicious node cannot 

discern what the current values are for the SQNs of other nodes. Thus, it must increment 

the SQN with a value high enough, to overcome legitimate nodes competing for the 

route discovery process (i.e., nodes I2 and I3 in the example). We define this increment 

as the blackhole intensity parameter or parameter L for short. Let SQNmalicious be equal 

to the destination SQN in the RREP message (i.e., SQNdst_node), incremented by a value 

L. That is,  
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𝑆𝑄𝑁𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 =  𝑆𝑄𝑁𝑑𝑠𝑡_𝑛𝑜𝑑𝑒 + 𝐿, 𝐿 ≥ 0 (1) 

Evidently, the value of the destination 𝑆𝑄𝑁𝑑𝑠𝑡_𝑛𝑜𝑑𝑒 in the RREP message will be 

selected by the attacker so that to be the highest between the destination SQN received 

in the RREQ message and the one stored in its routing table (if it has a stored one). In 

the example presented in section 4.2.1.2, the malicious node increments SQNdst_node by 

a blackhole intensity parameter value equal to 1000. The blackhole intensity parameter 

plays a crucial role to the success of the attack, because it determines whether or not 

the malicious node will win a route request, and thus, attract traffic. However, there is 

no indication as to what values this parameter should hold, and how this affects the 

outcome of the attack. For example, if the malicious node selects a relatively "small" 

value for L, then the malicious node might not win all of the route requests. This result 

might be further exacerbated under different network conditions. In particular, a higher 

number of traffic will lead to higher SQN values for competing legitimate nodes, and 

thus, even less route request wins for the malicious node. On the other hand, selecting 

a relatively "high" value for L may be counterproductive, because after some threshold, 

the malicious node will be wining all of the received route requests, and thus, higher 

values of L yield no further benefit. Moreover, since our goal is to utilize SQNs for 

detection, there is an additional incentive for the attacker to use the lowest values of L 

possible, in order to hinder the ability of a detection mechanism to distinguish its 

malicious activity. In order to accurately quantify the impact of the blackhole intensity 

parameter, we have conducted a comprehensive set of simulations that are presented in 

the following section.  

4.2.3. Using machine learning to detect malicious actions 

In this section, we analyze and evaluate a novel blackhole detection mechanism that is 

capable of detecting blackhole attacks during their first step. Particularly, we provide 

an architectural overview of the proposed detection mechanism, we identify the 

computational overhead associated with the operation of the proposed mechanism, and 

we comparatively evaluate the performance of the proposed mechanism through an 

extensive set of simulations. The proposed mechanism uses a non-parametric version 

of the Cumulative Sum (CUSUM) test [148], with the goal of detecting abrupt changes 

in the normal behavior of SQNs, caused by the occurrence of blackhole attacks. Two 

variants of this mechanism are presented, depending on the type of threshold used (i.e., 

static or dynamic). The CUSUM test is a suitable solution for infrastructure-less 
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networks, since, it does not impose significant computational overheads [149] [150], 

meaning that the performance of the AODV protocol is not deteriorated. Moreover, it 

is insensitive to traffic patterns with unknown distribution, making the detection 

mechanism generally applicable, regardless of the employed application-layer 

protocols. Another advantage of using the CUSUM test is related to the fact that, given 

an appropriate threshold value, it detects the attack at the earliest possible time while 

maintaining a low percentage of false positives. It is evident that a fast detection 

mitigates the impact of blackhole attacks, because it limits the ability of an attacker to 

drop packets.  

Architecture of the proposed detection mechanism 

In the proposed scheme, each network node executes an instance of the detection 

mechanism, which relies solely on local audit data (i.e., there is no cooperation between 

nodes). Each of these instances, can be implemented at the application or routing layer 

of a device, alleviating the need for any AODV protocol modifications. During their 

execution, they passively monitor the SQN parameter values stored in the nodes’ 

routing table, and, at predefined time intervals, run the CUSUM test, in order to 

determine if a blackhole attack takes place. More specifically, in case of a Linux based 

device, we have identified three different implementation options [151], [152]: i) 

sniffing, in which the node will promiscuously sniff all incoming packets on a network 

interface (the code to perform sniffing is built into the kernel and is available to user-

space programs by using the Packet Capture Library (libpcap)); ii) kernel 

modifications, using either patches (low portability – low complexity solution) or 

recompilation of the whole kernel (high portability – high complexity solution); iii) 

Netfilter, which is a packet filtering framework implemented as a set of hooks at well-

defined places in the Linux TCP/IP networking stack. The CUSUM test is a change 

point detection algorithm, which evaluates the statistical distribution of SQNs prior to 

change and after, and subsequently, raises an alarm if the difference between the two 

exceeds some threshold. The later can be either dynamic (i.e., dynamic threshold 

CUSUM) or static (i.e., standard CUSUM). In this analysis, both threshold variants are 

elaborated, and, subsequently, the most suitable threshold mechanism is selected, by 

comparatively evaluating the detection accuracy and the rate of false positives between 

the two. The detection mechanism calculates the statistical distribution of SQNs based 

on the monitoring feature SQNtotal_rate_i(t) (see eq. 2). Formally, for some node i 
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executing an instance of the detection mechanism, we define this monitoring feature as 

the rate of increase for the sum of the SQNs included in the node’s i routing table:  

 𝑆𝑄𝑁𝑡𝑜𝑡𝑎𝑙_𝑟𝑎𝑡𝑒_𝑖(𝑡) =
(∑ 𝑆𝑄𝑁𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑡𝑎𝑏𝑙𝑒_𝑖_𝑗(𝑡)𝐾

𝑗=1 ) + 𝑆𝑄𝑁𝑖(𝑡)

𝑡
 (2),  

where SQNrouting_table_i_j(t) is the SQN value at time t of node j stored in the routing table 

of node i. K is the total number of entries in the routing table of node i, while SQNi(t) 

is the value of SQN of node i at time t.  

At network initialisation, the CUSUM algorithm requires an initial statistical 

distribution of SQNs to compare to. As a result, two phases are incorporated into the 

detection mechanism, a training phase and a normal phase. We assume that during 

training, no attack takes place (i.e., training can be performed in a controlled 

environment), while during the normal phase, any node on the network can perform a 

blackhole attack. Furthermore, in both phases, the CUSUM algorithm is executed at a 

predefined, time interval. Since the detection of an attack requires the execution of the 

CUSUM algorithm, this time interval represents the detection time of the proposed 

mechanism. Therefore, it would seem practical to keep the time interval at the lowest 

possible value so that attacks are resolved quickly. However, this interval has an 

associated tradeoff: lower values produce more frequent executions of the detection 

mechanism, and, consequently, higher induced overhead. Larger values, on the other 

hand, may lead to: (a) the calibration of an outdated threshold value, resulting in a 

higher percentage of false positives, and (b) a greater percentage of packets dropped by 

the malicious node. Thus, the most optimal time interval is the largest possible value 

that produces the least amount of false positives and packets dropped. In through 

simulations, we identify the most optimal time interval value.  

Training phase 

During the training phase, at each time interval, the CUSUM algorithm first calculates 

a random sequence Xn which we define as the difference between two successive 

sampling values of the monitoring feature SQNtotal_rate_i(t). That is,  

 
𝑋𝑛 = 𝑆𝑄𝑁𝑡𝑜𝑡𝑎l_rate_i(𝑛) − 𝑆𝑄𝑁𝑡𝑜𝑡𝑎l_rate_i(𝑛 − 1), 𝑋0 = 0 (3).  

Next, the CUSUM test transforms Xn to another random sequence Zn such as: 
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 𝑍𝑛 = 𝑋𝑛 − 𝐶, 𝐶 ∈ 𝑅 (4), 

where C is a constant variable that is equal to the upper bound of the mean value E[Xn]. 

The CUSUM algorithm also requires the calculation of a random sequence Yn that 

represents the cumulative sum of the positive values of Zn. Yn is defined as the 

maximum value between zero and Yn-1 + Zn. That is:  

 𝑌𝑛 = 𝑚𝑎𝑥(0, 𝑌𝑛−1 + 𝑍𝑛), where 𝑛 ∈ 𝙽 and 𝑌0 = 0 (5). 

The value of the threshold N is computed at the end of the training phase by each node. 

Its value is equal to the mean value of the n samples of Xn. That is, 

𝑁 = 𝐸[𝑋𝑛] (6).  

The selection of threshold N regulates the following intrinsic tradeoff: having a 

relatively “small” threshold may lead to a high percentage of false positives, since even 

legitimate increases in the statistical distribution of SQNs will lead to false alarms, 

while, on the other hand, having a relatively “high” threshold may lead to false 

negatives, since increments to the SQN by a malicious node may not exceed the 

threshold, and, therefore, the attack will not be detected. We have based the selection 

of threshold N on previous literature [153] [154], in which it yielded the most optimal 

results in terms of false positives/negatives.  

Normal phase 

During the normal phase, at each time interval, the CUSUM algorithm calculates all 

three random sequences Xn, Zn, Yn. It then uses the random sequence Yn and the 

threshold N to detect blackhole attacks. In particular, the detection is based on the 

following simple rule: if at any time interval n, the random sequence Yn exceeds the 

threshold N (i.e., Yn > N), then a blackhole attack is detected and an alarm is raised to 

inform other nodes on the network. Finally, in the dynamic threshold variant of 

CUSUM, for each time interval in which an attack is not detected, the threshold N is 

also recalculated, to a value equal to the mean of Xn, Xn-1 (7). Figure 21 summarises 

the operation of the CUSUM algorithm during both phases.  
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𝑁 = 𝐸[𝑋𝑛, 𝑋𝑛−1] (7).  

CUSUM Algorithm 

Input1: K   // Number of routing table entries  

Input2: is_dynamic  // Boolean indicating the type of CUSUM (if TRUE 

then CUSUM is dynamic) 

01: set Y_0=0, n=1; 

02: while Training 

03:   compute Xn,C,Zn; 

04:   if Y_(n-1)+Zn>0 then 

05:     Yn=Y(n-1)+Zn; 

06:   else 

07:     Yn=0; 

07: compute N; 

09: while Detection 

10:   compute Xn,C,Zn; 

11:     if Y(n-1)+Zn>0 then 

12:       Yn=Y(n-1)+Zn; 

13:     else 

14:       Yn=0; 

15:     if Yn>N then 

16:       raise an alarm 

17:     else  

18:       if is_dynamic = TRUE then 

19:         compute N; 

20:   n=n+1;  

Figure 21: Pseudocode of the CUSUM algorithm 

4.2.4. Results and discussion 

Section 4.2 of this thesis provided a comprehensive analysis of the blackhole attack, 

identified a new critical attack parameter (i.e., blackhole intensity), and evaluated the 

impact of that parameter to the performance of the attack, through an extensive set of 

simulations. Based on the results of the simulations, we identified a quantitative relation 

between SQNs and blackhole attacks. This outcome led to the proposal of a novel 

detection mechanism, which utilizes a dynamic threshold cumulative sum (CUSUM) 

test to detect abrupt changes in the normal behavior of SQNs.  
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5. Conclusions 

In this thesis, we have addressed the problem of user authentication in online services 

by holistically investigating the users’ security both on server and client side. 

Particularly, we examined the security of online user accounts by proposing a 

framework that allows us to quantify the cost time of password guessing both for brute 

force and dictionary attacks. We also identified the default hashing schemes of various 

CMS and web applications frameworks and concluded that the majority of CMS and 

web applications frameworks do not offer secure default settings for password storage. 

Next, we applied our cost analysis framework to the default settings, in order to perform 

a comparative security analysis between the various CMS and web applications 

frameworks. Finally, we provided a set of best practices and alternative solutions to 

enhance the security of password storage. Based on our analysis we advocate that 

password hashing standards should be updated to require and not merely suggest the 

use of new secure functions, such as memory hard hash functions. 

Knowing that passwords are one of the weakest links in user security, this thesis 

investigates the security of FIDO UAF protocol, which provides strong authentication 

and a simplified registration and authentication procedure. However, the critical 

functionality of the UAF protocol typically operates in a consumer platform such as a 

mobile device, which is susceptible to a variety of attacks such as malware and viruses. 

Based on a comprehensive security analysis, we have identified several vulnerabilities 

that may be exploited by an attacker in order to compromise the authenticity, privacy, 

availability, and integrity of the UAF protocol. Regarding volatile memory protection, 

we have also investigated techniques that can be applied at the software level either 

form the OS or the applications to protect the user’s passwords in the volatile memory. 

Particularly, we discovered that Windows use built-in safeguards to protect against 

memory disclosure attacks by deleting the volatile memory contents after the 

termination of a process. It is important to note that most Linux distributions do not 

have such safeguards. Lastly, we proposed software functions and techniques in C/C++ 

programming language that can be used by developers to protect the data in the volatile 

memory of their applications. 

Lastly, this thesis proposes two solutions for continuous authentication and detection 

of malicious actions via the use of biometrics and machine learning. The first, 

gaithashing, is a two-factor authentication scheme that secures gait features in an 
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efficient manner. The performance of the gaithashing scheme achieves EER=0% for 

type 1 and 3 impostors (i.e., type 1 impostor uses his/her own gait features and his/her 

own token, while type 3 impostors use compromised gait features and they own token 

for authentication). It also achieves very high accuracy (EER=10.8%) for type 2 

impostors (i.e., an impostor that uses a compromised token and his/her own gait features 

for authentication). The second, performs a comprehensive analysis of the blackhole 

attack. As a result, a new critical attack parameter is identified (i.e., blackhole intensity), 

which quantifies the relation between AODV’s sequence number parameter and the 

performance of blackhole attacks. 

5.1. Publications 
The contribution of this thesis can be found in the following per-reviewed conference 

proceedings and journals. 

5.1.1. Journal Articles 

• Christoforos Ntantogian, Stefanos Malliaros, Christos Xenakis, "Gaithashing: a 

two-factor authentication scheme based on gait features," Computers & 

Security, Elsevier Science, Vol. 52, Issue 1, pp: 17-32, July. 2015. 

• Christoforos Panos, Christoforos Ntantogian, Stefanos Malliaros, Christos 

Xenakis, "Analyzing, quantifying, and detecting the blackhole attack in 

infrastructure-less networks," Computer Networks, Elsevier Science, Vol. 113, 

Issue 1, pp: 94-110, February 2017. 

• Christoforos Ntantogian, Stefanos Malliaros, Christos Xenakis, " Evaluation of 

Password Hashing Schemes in Open Source Web Platforms", Computer & 

Security, Elsevier Science, [Under review] 

5.1.2. Conference/Workshop Publications 

• Stefanos Malliaros, Christoforos Ntantogian, Christos Xenakis, " Protecting 

sensitive information in the volatile memory from disclosure attacks, " In Proc. 

11th International Conference on Availability, Reliability and Security (ARES 

2016), Salzburg, Austria, August 2016. 

• Christoforos Panos, Stefanos Malliaros, Christoforos Ntantogian, Angeliki 

Panou, Christos Xenakis, " A Security Evaluation of FIDO’s UAF Protocol in 

Mobile and Embedded Devices, " In Proc. Towards a Smart and Secure Future 

Internet: 28th International Tyrrhenian Workshop (TIWDC), Palermo, Italy, 

Sept. 2017. 
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