

University of Piraeus

Department of Digital Systems

Postgraduate Programme

“Techno-economic Management & Security of Digital Systems”

Master’s Thesis

 SECURITY EVALUATION OF ANDROID

KEYSTORE

Georgios Kasagiannis

MTE/1515, kasagiannis@ssl-unipi.gr

Under the supervision of:

Dr Christoforos Dadoyan, dadoyan@unipi.gr

Piraeus 26/2/2018

mailto:kasagiannis@ssl-unipi.gr
mailto:dadoyan@unipi.gr

Georgios Kasagiannis

ii

I would like to thank the Professors of this MSc because I learned a great deal about all

forms of security and how wide an attack-surface can be, but also how human factor

and human nature can be of use or can be exploited. Maybe the biggest lesson I’ve

learned is that any system that is based on humans can be exploited even with not much

effort if you really want it. I would like to thank Vicky & Stathis for all the kinds of

help they gave me for this thesis, Geralt, and also my academic friends that helped me

through the semesters.

Last but foremost, I would like to thank the fellow students who not only did not help

my team through the projects, but they “took care only of them”... Maybe they taught

and trained me the most!

The more I learn, the less I know...

Security Evaluation of Android Keystore

iii

Table of Contents
Table of Contents .. iii
Table of Figures ... iv
Table of Tables .. v

Abstract .. vi
1. Introduction .. 1

1.1 Foreword .. 1
1.1.1 What is Android (1)? ... 1
1.1.2 What is computer security and how important is it in the 21th century? 1
1.1.3 Mobile Platform Security .. 2

1.2 Subject of Thesis .. 3

1.3 Chapter Reference .. 5

2. Background .. 6
2.1 Cryptography ... 6

2.1.1 Symmetric Cryptography .. 7
2.1.2 Asymmetric Cryptography .. 7

2.2 Trusted Execution Environment .. 9

2.2.1 ARM TrustZone® .. 11
2.3 Android .. 18

3. Android Keystore ... 21
3.1 APIs for Key storage .. 21

3.2 Methodology .. 23
3.2.1 Criteria .. 23

3.2.2 Evaluation ... 25

4. Experiment ... 29
4.1 Android KeyStore test using TEE on Qualcomm devices 30

4.1.1 Evaluation in Android 5.0 ... 32
4.1.2 Evaluation in Android 6.0.1 .. 34

4.1.3 Evaluation in Android 7.1.2 .. 36
4.2 Android KeyStore using software-based Keymaster ... 38

4.2.1 Evaluation in Android 5.0 ... 40
4.2.2 Evaluation in Android 6.0 ... 42
4.2.3 Evaluation in Android 7.0 ... 44

5. Future Work & Conclusions ... 46

References ... 47

Appendix A - Acronyms ... 49

Appendix B – Source Code .. 50
Appendix C - Thesis presentation Error! Bookmark not defined.

Georgios Kasagiannis

iv

Table of Figures

Figure 1: AXI-bus diagram .. 13
Figure 2: NS Bit functionality normal world ... 14
Figure 3: NS Bit functionality secure world .. 14

Figure 4: Arm Trusted Firmware ... 15
Figure 5: ARM Trusted Firmware Architecture ... 16
Figure 6: TrustZone boot procedure .. 17
Figure 7: The separation of the hardware by TrustZone in two worlds. 17
Figure 8: Schematic overview of the attacker models ... 25

Figure 9: Per use key authentication .. 28

Figure 10: Legit app and Rogue app installed ... 29

Figure 11: Forcibly inserting bouncycastle library to keystore-decryptor 30
Figure 12: Copying key files with other UID .. 31
Figure 13: 5HW key generation and validation of signature 32
Figure 14: 5HW Finding UID of rogue and legit apps .. 33
Figure 15: 5HW Copy key files and change ownership .. 33

Figure 16: 5HW rogue app parsing key of legit app .. 34
Figure 17: 5HW using keystore-decryptor .. 34
Figure 18: 6HW key generation and validation of signature 35
Figure 19: 6HW Copy key files and change ownership .. 35

Figure 20: 6HW rogue app parsing key of legit app .. 36
Figure 21: 7HW key generation and validation of signature 36

Figure 22: 7HW Copy key files and change ownership .. 37
Figure 23: 7HW rogue app parsing key of legit app .. 37

Figure 24: Android Studio downloading SDKs ... 39
Figure 25: Creating the AVDs .. 40
Figure 26: 5SW Copy key files and change ownership ... 41

Figure 27: 5SW rogue app parsing key of legit app .. 41
Figure 28: 5SW using keystore-decryptor ... 42

Figure 29: 6SW key generation and validation of signature .. 42
Figure 30: 6SW Copy key files and change ownership ... 43
Figure 31: 6SW rogue app parsing key of legit app .. 43
Figure 32: 7SW key generation and validation of signature .. 44

Figure 33: 7SW Copy key files and change ownership ... 44

Figure 34: 6SW rogue app parsing key of legit app .. 45

Security Evaluation of Android Keystore

v

Table of Tables

Table 1: Chapter reference ... 5
Table 2: Generating an RSA key pair .. 26
Table 3: Symmetric Key generation .. 27

Georgios Kasagiannis

vi

Abstract

This thesis was prepared in such a way that anyone – with basic Android and Security

knowledge – can understand the problems around the key storage module of Android

OS called Android Keystore. Keystore is the secure way of Android for storing the

sensitive data of Applications.

Most of the use cases are examined – regarding the application of Android Keystore –

on AVDs (android Virtual Devices), but a physical machine (Nexus 5) is included as

well, with or without TEE (Trusted Execution Environment), for Android versions 5, 6

and 7. The contents and areas included in this thesis are as follows:

Chapter one is the introduction chapter. The reader gets familiar with the subjects that

this thesis explores, mainly the security in Android Apps.

In the second chapter, Security background is analyzed for the reader to understand this

thesis.

The third chapter is focused on the theoretical approach of Android Keystore

vulnerability.

Chapter four presents the proof of concept for the Android Keystore vulnerability.

Chapter five focus on future work that will be done concerning this vulnerability and

conclusions.

The whole project was executed on 3 AVDs and 1 physical machine with the following

Android versions:

 Android 5 Lollipop

 Android 6 Marshmallow

 Android 7 Nougat

Security Evaluation of Android Keystore

1

1. Introduction

1.1 Foreword

This is an introduction in definitions, facts and paradigms.

1.1.1 What is Android (1)?

Android is a mobile operating system developed by Google, based on a modified

version of the Linux (2) kernel and other open source software and designed primarily

for touchscreen mobile devices such as smartphones and tablets. In addition, Google

has further developed Android TV for televisions, Android Auto for cars, and Android

Wear for wrist watches, each with a specialized user interface. Variants of Android are

also used on game consoles, digital cameras, PCs and other electronics.

Android's default user interface is mainly based on direct manipulation, using touch

inputs that loosely correspond to real-world actions, like swiping, tapping, pinching,

and reverse pinching to manipulate on-screen objects, along with a virtual keyboard.

Applications ("apps"), which extend the functionality of devices, are written using the

Android software development kit (SDK) and, often, the Java programming language.

Java may be combined with C/C++, together with a choice of non-default runtimes that

allow better C++ support

1.1.2 What is computer security and how important is it in the 21th century?

Information security (3) means protecting information and information systems from

unauthorized access, use, disclosure, disruption, modification, perusal, inspection,

recording or destruction.

Governments, military, corporations, financial institutions, hospitals, and private

businesses amass a great deal of confidential information about their employees,

customers, products, research, and financial status. Most of this information is now

collected, processed and stored on electronic computers and transmitted across

networks to other computers. Should confidential information about a business’

customers or finances or new product line fall into the hands of a competitor, such a

breach of security could lead to lost business, law suits or even bankruptcy of the

business. Protecting confidential information is a business requirement, and in many

cases also an ethical and legal requirement.

For the individual, information security has a significant effect on privacy, which is

viewed very differently in different cultures. Information security is the ongoing

process of exercising due care and due diligence to protect information, and information

systems, from unauthorized access, use, disclosure, destruction, modification, or

disruption or distribution. The never ending process of information security involves

ongoing training, assessment, protection, monitoring & detection, incident response &

repair, documentation, and review. This makes information security an indispensable

part of all the business operations across different domains.

Georgios Kasagiannis

2

1.1.3 Mobile Platform Security

The usage of smartphones has grown beyond imagination, in U.S.A. the percentage of

smartphone adult users was 35% and nowadays has become 77%1. Also according to

Newzoo's Global Mobile Market Report, globally the smartphone penetration has

reached 50% for 20172 and the number of smartphone users for 2018 is 2,5 billion

people. Looking at the numbers we realize how important Security can be for

smartphones and the owners of the devices.

Most companies sell or give as freeware Android Applications either as a product that

earn profit (paid Applications), or as a tool to be used for their business model (mostly

free applications, web-banking etc). Also, most applications have sensitive data stored

inside the device that hosts them, data that users create or data that are needed for their

functionalities. This fact has caught the attention of malicious individuals or even

criminals who started creating malware for the mobile platforms. There are several

attacks that have happened through the short life of smartphones, most have to do with

malware and software, but there are also hardware, communication, network attacks

and even high tech physics has play some role into forming attack models.

There has been a lot of research about rogue Apps inside Google Play Store, Google

has blocked over 700.000 rogue apps in 20173 and many “legitimate” apps found to be

malware from researchers at the same year4. Another one called Juice Jacking is a

physical or hardware vulnerability specific to mobile platforms. Mobile ransomware is

a type of malware that locks users out of their mobile devices in a pay-to-unlock-your-

device ploy, it has grown by leaps and bounds as a threat category since 2014 (4).

Utilizing the dual purpose of the USB charge port, many devices have been susceptible

to having data exfiltrated from, or malware installed onto a mobile device by utilizing

malicious charging kiosks set up in public places or hidden in normal charge adapters

(5). SMS and MMS attacks have been unleased, in December 2012 the Eurograbber

SMS trojan intercepted SMS messages on Android phones containing Transaction

Authentication Numbers (TAN), also Stagefright5, a group of software bugs that affect

versions 2.2 ("Froyo") and newer of the Android operating system. The name is taken

from the affected library, which among other things, is used to unpack MMS messages.

Exploitation of these bugs allows an attacker to perform arbitrary operations on the

victim's device through remote code execution and privilege escalation. In 2015,

researchers at the French government agency Agence nationale de la sécurité des

systèmes d'information (ANSSI) demonstrated the capability to trigger the voice

interface of certain smartphones remotely by using "specific electromagnetic

waveforms". The exploit took advantage of antenna-properties of headphone wires

1 http://www.pewinternet.org/fact-sheet/mobile/
2 https://en.wikipedia.org/wiki/List_of_countries_by_smartphone_penetration#2017_rankings
3 https://www.theinquirer.net/inquirer/news/3025746/google-play-blocked-700-000-rogue-apps-in-2017
4https://www.scmagazineuk.com/spyware-found-in-more-than-1000-apps-in-google-play-

store/article/681506/
5 http://blog.zimperium.com/how-to-protect-from-stagefright-vulnerability/

Security Evaluation of Android Keystore

3

while plugged into the audio-output jacks of the vulnerable smartphones and effectively

spoofed audio input to inject commands via the audio interface6.

In a more general aspect there are three major types of threats (6):

 Data Theft smartphones are devices for data management, and may contain

sensitive data like credit card numbers, authentication information, private

information, activity logs (calendar, call logs).

 Identity Theft smartphones are highly customizable, so the device or its contents

can easily be associated with a specific person. For example, every mobile device

can transmit information related to the owner of the mobile phone contract and an

attacker may want to steal the identity of the owner of a smartphone to commit

other offenses.

 Availability Prevention attacking a smartphone can limit access to it and deprive

the owner of its use.

The types of threats for the smartphone industries are basically the following (7):

 Botnets attackers infect multiple machines with malware that victims generally

acquire via e-mail attachments or from compromised applications or websites. The

malware then gives hackers remote control of "zombie" devices, which can then

be instructed to perform harmful acts.

 Malicious applications hackers upload malicious programs or games to third-party

smartphone application marketplaces. The programs steal personal information and

open backdoor communication channels to install additional applications and cause

other problems.

 Malicious links on social networks an effective way to spread malware where

hackers can place Trojans, spyware, and backdoors.

 Spyware hackers use this to hijack phones, allowing them to hear calls, see text

messages and e-mails as well as track someone's location through GPS updates

All these made the manufacturers of smartphones and mobile software developers to

try and secure platforms and apps. In every Android or Apple iOS version update, new

security fixes or features are integrated in order for the systems and their users to be

more secure. Also this led companies to create awareness to their employers but also to

the users of the smartphones and mobile applications. Alpha Bank, a Greek Bank after

logging to the web banking application, a pop up message appears stating that the bank

will never ask for user credentials, and informing the users for various security matters,

giving instructions and tips for things to do or don’t do, or even a maintenance schedule.

1.2 Subject of Thesis

6 https://www.wired.com/2015/10/this-radio-trick-silently-hacks-siri-from-16-feet-away/

Georgios Kasagiannis

4

Two are the main subjects of this thesis, Secure Computation and Secure Key Storage

(SKS). Key Storage is not like a key management system (KMS). KMS also known as

a cryptographic key management system (CKMS), is an integrated approach for

generating, distributing and managing cryptographic keys for devices and applications.

Compared to the term key management, a KMS is tailored to specific use-cases such as

secure software update or machine-to-machine communication. In a holistic approach,

it covers all aspects of security - from the secure generation of keys over the secure

exchange of keys up to secure key handling and storage on the client. Thus, a KMS

includes the backend functionality for key generation, distribution, and replacement as

well as the client functionality for injecting keys, storing and managing keys on devices.

SKS only stores keys securely. SKS, functionalities provided by CKMS and the other

aspects of a secure execution environment provided inside a device make the “Secure

Computation”.

Inside this secure environment trusted apps can run and handle sensitive operations

such as asking for a PIN-code or running a specific cryptographic algorithm. In order

to make computation faster but also more secure different solutions were provided by

the manufacturers. One commonly used solution for secure computation and secure key

storage is the Secure Element. This is a smart card like tamper resistant platform that

can be embedded in systems as a chip or integrated in SIM cards. Other solutions

concern embedded chips on top of smartphone motherboards either inside the main

CPU chip.

As far as concerning the last category, Arm, has provided a solution called Arm

TrustZone. ARM architecture processors are used almost by all modern smartphones

regardless the mobile OS. As ARM states to their website7, Arm TrustZone technology

is a System on Chip (SoC) and CPU system-wide approach to security. TrustZone is

hardware-based security built into SoCs by semiconductor chip designers who want to

provide secure end points and a device root of trust. The family of TrustZone

technologies added to ARMv6 processors and greater, such as ARM11, CortexA8, CortexA9 and

CortexA15. It can be integrated into any Arm Cortex-A and the latest Cortex-M23 and

Cortex-M33 based systems, from the smallest of microcontrollers, with TrustZone for

Cortex-M processors, to high-performance applications processors, with TrustZone

technology for Cortex-A processors.

ARM TrustZone Technology provides the basis for a Trusted Execution Environment

(TEE). The TrustZone hardware features, together with some software, ensure that

resources from the secure world and some specific devices cannot be accessed from the

normal world. The TEE offers secure computation (and as a consequence also secure

key storage). However, a TEE also provides a way to securely communicate with a user

as we will see in section 2.2. This is not possible for a secure element.

This thesis though will not emphasize much to different technologies providing TEE

and SKS like Tim Cooijmans, but using the knowledge from this paper (8) and his thesis

7 https://www.arm.com/products/security-on-arm/trustzone

Security Evaluation of Android Keystore

5

(9) we will examine the use cases for ARM Trust Zone for hardware solution and

Android Secure functionalities for software solution, for devices without hardware

support for Android versions 5, 6 and 7 and check if it the Key Storage solution

provided by Android (Android Key Store) is vulnerable like in previous version.

1.3 Chapter Reference

Table 1: Chapter reference

Chapter

Number

Title

1 Introduction

2 Background

3 Android Keystore

4 Experiment

5 Future Work & Conclusions

 Bibliography

Appendix A Acronyms

Appendix B Source Code

Back to contents

Georgios Kasagiannis

6

2. Background

In this chapter will be presented and analyzed the basics of what someone needs to

know to comprehend the subject of the current thesis. In Section 2.1 an introduction in

cryptography and its primitives is taking place, where the reader understands what

cryptographic keys are and what are they needed for. Section 2.2 describes the

principles of a Trusted Execution Environment and the requirements which needed to

exist in order for an Execution Environment to be a trusted one. Also the ARM

TrustZone technology and the functionalities of the Operating System related to it are

discussed. Android OS will be covered in Section 2.3 and its security features, for the

reason that this thesis is concerned with mobile devices running Android OS.

2.1 Cryptography

Here a short introduction about cryptography is going to take place, but very shallow

in order to cover only what is needed. We will focus on what cryptography is, where

and why is needed but not so much on how it works. In this Section we will present

only some kinds of algorithms which are the asymmetric and the symmetric ones. Also

some of the uses of these algorithms will be referred to better realize the real life usage

of them in digital systems. So what is Cryptography?

It is a method of using advanced mathematical principles in storing and transmitting

data in a particular form so that only those whom it is intended can read and process

them. More generally, cryptography is about constructing and analyzing protocols that

prevent third parties or the public from reading private messages; various aspects in

information security such as data confidentiality, data integrity, authentication, and non-

repudiation are central to modern cryptography (10). Modern cryptography exists at the

intersection of the disciplines of mathematics, computer science, electrical engineering,

communication science, and physics.

 Encryption: It is the process of locking up information using cryptography.

Information that has been locked this way is encrypted.

 Decryption: The process of unlocking the encrypted information using

cryptographic techniques.

 Key: A secret like a password used to encrypt and decrypt information. There are

a few different types of keys used in cryptography.

 Digital Signature: A digital signature gives the receiver reason to believe the

message was sent by the claimed sender. Digital seals and signatures are equivalent

to handwritten signatures and stamped seals.

 Public Key Certificate: Also known as a digital certificate or identity certificate, is

an electronic document used to prove the ownership of a public key. The certificate

includes information about the key, information about the identity of its owner, and

the digital signature of an entity that has verified the certificate's contents8.

8 https://en.wikipedia.org/wiki/Public_key_certificate

Security Evaluation of Android Keystore

7

2.1.1 Symmetric Cryptography

Symmetric-key cryptography refers to encryption methods in which both the sender

and receiver share the same key. This is the simplest kind of encryption, it is an old and

best-known technique. It uses a secret key that can either be a number, a word or a string

of random letters. Also the key can be blended with the plain text of a message in certain

ways to change the result of a hashing algorithm. This technique is known as Message

Authentication Code (MAC) and it protects both a message’s integrity and authenticity

by allowing verifiers (who also possess the secret key) to detect any changes to the

message content.

Why symmetric key ciphers are valuable (11):

 It is relatively inexpensive to produce a strong key for these ciphers.

 The keys tend to be much smaller for the level of protection they afford.

 The algorithms are relatively inexpensive to process.

Therefore, implementing symmetric cryptography (particularly with hardware) can be

highly effective because you do not experience any significant time delay as a result of

the encryption and decryption. The sender and the recipient should know the secret key

that is used to encrypt and decrypt all the messages because data encrypted with one

symmetric key cannot be decrypted with any other symmetric key. Therefore, as long

as the symmetric key is kept secret by the two parties using it to encrypt

communications, each party can be sure that it is communicating with the other as long

as the decrypted messages continue to make sense.

The main disadvantage of the symmetric key encryption is that all parties involved have

to exchange the key used to encrypt the data before they can decrypt it.

Some examples of Symmetric Encryption Algorithms are Blowfish, AES, RC4, DES,

3DES, RC5, and RC6. DES was published as a standard in 1977 (12). It originally used

a 56-bit key. In 2006 a DES key could be broken in 9 days for under 9000 euro (13).

The most widely modern used symmetric algorithm is AES-128, AES-192, and AES-

256.

2.1.2 Asymmetric Cryptography

Asymmetric Cryptography or else Public Key Encryption is called asymmetric because

it’s functionality is based on two different keys of different length, called a key-pair one

public and one private, which are impossible to derive one from another. The user

cannot encrypt and decrypt the payload-message with the same key. If you use the

private key for encryption you have to use the public key from the pair for decryption.

This kind of cryptography maybe is the most significant evolvement in coding theory

in the last 3000 years of its history but either way it does not replace conventional

cryptography it just supplement it.

The two keys are used as described below:

 Public Key, is known to everyone and anyone can have it. It is being used to encrypt

or decrypt messages and digital signature verification.

 Private Key, is known only to the owner and is being used for message encryption

or decryption and digital signature creation.

Georgios Kasagiannis

8

For this reason the private key is binded together with the identity of the owner by a

trusted third party, a Certificate Authority (CA). The CA checks the identity of the

owner of a key pair with procedures to certify that he is the one that he claims to be,

then the CA signs (we will see how later) a certificate that confirms that this certain

person or entity has a certain private key. In Transport Layer Security (TLS) a

certificate's subject is typically a computer or other device, though TLS certificates may

identify organizations or individuals in addition to their core role in identifying devices.

TLS, sometimes called by its older name Secure Sockets Layer (SSL), is notable for

being a part of HTTPS, a protocol for securely browsing the web. The key generation

is done by special mathematical functions that take as input a big random number. The

more entropy exists in the random number the merrier secure are the keys.

Now let’s see the classic Bob-Alice example... When Bob needs to communicate with

Alice securely he sends an encrypted message with Alice’s public key which is given

as input to the asymmetric algorithm together with the message. The only way for

someone to read the message is to use Alice’s private key that was generated together

with the public key as a key pair, that only Alice should possess it (else anyone can read

the message). This gives Bob (and Alice of course) the assurance that only Alice can

read his message providing confidentiality. If Bob cannot meet with Alice to take the

public key from her, then this schema is not going to happen. However if Bob may take

the public key of Alice from a third party let’s say Eve, he must be sure for the

authenticity of the public key in a way that the key belongs to Alice and not to Eve or

someone else, because if it is used for encryption the other end could read the message

if he has access to it. Here comes the CA to play its part... CA holds the public key of

both and when Bob and Alice need to communicate they exchange their certificates

which basically are their public keys and IDs encrypted with the private key of the CA.

By knowing the public key of CA Bob can decrypt the certificate and verify that the

key is Alice’s or not. For confidentiality but also authentication, but with the condition

that they have exchanged their public keys securely, Bob should first encrypt the

message with his private key and then encrypt again the generated cipher with Alice’s

public key so that Bob will be sure that only Alice can read his message but also Alice

will be sure that Bob sent the message. With this way they can then exchange a

symmetric key and use only that for their communication which is a lot faster. This

symmetric key is also called session key.

It is time we see how signatures are generated. Let’s say that the key owner, Bob, wants

to prove that a certain message was sent by him. Bob has to create the hash of the

message generated by a hash function and encrypt it with his private key. This quantity

is the so called digital signature. He then sends the signature together with the message

and the recipient, Alice, then decrypts the encrypted hash (signature) with Bob’s public

key and compares it with the hash of the message. If the signature is valid Alice knows

that it was signed by Bob and if the hashes are equal then she knows that the message

is unchanged. This provides integrity and authenticity. If Alice can prove that only Bob

has this private key then he cannot deny that he signed the message providing non-

repudiation.

Hash functions are publicly known and can be executed by anyone. If the tiniest part of

the input-message changes (a single bit) it has to assure that the output will change

dramatically. The size of the output (hash) is fixed, as a result messages that have bigger

Security Evaluation of Android Keystore

9

complexity than the hash can have the same output. Depending on the hash function

and the output length though it is infeasible to find a message that will have the same

hash with another message.

In general the best practice for using key pairs, is to have one for every job you need to

do. One pair for encryption, one pair for authentication and one for signature

generation. As we examined above encryption and decryption operations are user also

for signature generation. For encryption we use the public key, for decryption the

private key. For signature generation we use the private key and for signature

verification the public key. If the key owner is convinced to encrypt for you hash of a

forged message he unintentionally signs a forged message. So if he used other key for

encryption and other for signing the recipient would realize that something is not good

because the public key for signing would not decrypt the hash which was encrypted

with the private key for message encryption

There are lot of public key encryption algorithms that are used for signature generation

and encryption. RSA (Rivest–Shamir–Adleman) is one of the first public-key

cryptosystems and is widely used for secure data transmission. In such a cryptosystem,

the encryption key is public and it is different from the decryption key which is kept

secret (private). In RSA, this asymmetry is based on the practical difficulty of the

factorization of the product of two large prime numbers, the "factoring problem". To be

secure RSA key pairs with 3072bits length are recommended9 by BIS (Bundesamt fur

Sicherheit in der Informationstechnik, the German Federal Office for Information

Security) (14).

Another algorithm for signatures based on Elliptic Curve Cryptography (ECC) is

Elliptic Curve Digital Signature Algorithm (ECDSA). It is more efficient than RSA and

uses smaller key length and is also supported by OpenSSL library. For example as we

stated above the minimum length for an RSA key is 2048 bit but the “equivalent” key

length for ECDSA is 256bits. This is a factor 8 smaller, however this is only an

estimation.

2.2 Trusted Execution Environment

In July 2010 GlobalPlatform first announced their own standardization of the TEE. In

according to GlobalPlatform the TEE is a secure area of the main processor in a smart

phone (or any connected device)10. It ensures that sensitive data is stored, processed

and protected in an isolated, trusted environment. The TEE's ability to offer isolated

safe execution of authorized security software, known as 'trusted applications', enables

it to provide end-to-end security by enforcing protected execution of authenticated

code, confidentiality, authenticity, privacy, system integrity and data access rights.

Comparative to other security environments on the device, the TEE also offers high

processing speeds and a large amount of accessible memory.

9 A minimum length of 2048-bit may remain in use until end 2021.
10 https://www.globalplatform.org/mediaguidetee.asp#_Toc419214135

Georgios Kasagiannis

10

There are two main components of platform security:

 Trusted Execution Environment

 Trusted Platform Module

They work in tandem; one is not designed as a replacement of the other. As an analogy,

TEE is the bulletproof safe, while TPM is the 128-digit combination lock for the safe.

Both are needed to ensure the safe is protected.

The TEE offers a level of protection against attacks that have been generated in the

Rich OS environment. It assists in the control of access rights and houses sensitive

applications, which need to be isolated from the Rich OS. For example, the TEE is the

ideal environment for content providers offering a video for a limited period of time, as

premium content (e.g. HD video) must be secured so that it cannot be shared for free.

Vasudevan et al. provide a number of requirements that are needed to ensure a Trusted

Execution Environment (15):

 Isolated execution: TEE should allow applications to be run in isolation from other

applications. This ensures that malicious applications can not access or modify the

code or data of an application while it is running.

 Secure storage: Secure storage of data should be provided to protect the secrecy

and integrity of the binaries that represent the applications while they are not

running. The same security properties should also be guaranteed for the application

data. Note that application data can be even more sensitive than the binaries as

passwords and secret keys may be stored in the application data.

 Remote attestation: For a service to verify that it is actually talking to the software

on the device it intends to talk to the principle of remote attestation is invented. It

allows parties communicating with the secure execution environment to check the

authenticity of the software and/or hardware that implements the TEE.

 Secure provisioning: It should be possible to send data to a specific software

module operating in the execution environment of a specific device while

guaranteeing the integrity and secrecy of the data being communicated.

 Trusted path: It should be possible for the execution environment to communicate

with the outside world and to receive communication from the outside world while

guaranteeing the authenticity of the communicated data and optionally also the

secrecy and availability. This should allow on one hand a party, either human or

non-human, to verify that the communicated data originates from the execution

environment. On the other hand the technology should ensure that data from

peripherals received by the environment is authentic.

Some of the interfaces to communicate to the user can be used by both the secure and

non-secure world. For example the secure world and the non-secure world can both

control the display in TrustZone-enabled processors. This makes it hard for the user to

verify that he is interacting with an application in the TEE. To solve this the TEE has

to provide local attestation. Local attestation should enable a user to check that they are

in fact interacting with the TEE. An example solution is the Secure Mode Indicator

patented by Texas Instruments. This solution provides the user a LED that is hardware

controlled and that is only lighted when the secure world is running.

Security Evaluation of Android Keystore

11

Arguments were made that TPM is not necessary if the TEE is robust. Some vendors

have chosen not to use external TPM and store the keys and protected data in a TEE-

only addressable area. TEE can help with Binding and Sealing. ISO standards suggest

using a full-fledged TPM. External TPM could be very useful in coordinating between

several masters and other complex systems. On the other hand, solutions that only rely

on TPM are very vulnerable for execution and boot attacks. It is easy to override the

application run states and circumvent TPM.

2.2.1 ARM TrustZone®

ARM TrustZone technology has been around for almost a decade. It was introduced at

a time when the controversial discussion about trusted platform-modules (TPM) on x86

platforms was in full swing (TCPA, Palladium). Similar to how TPM chips were meant

to magically make PCs "trustworthy", TrustZone aimed at establishing trust in ARM-

based platforms. In contrast to TPMs, which were designed as fixed-function devices

with a predefined feature set, TrustZone represented a much more flexible approach by

leveraging the CPU as a freely programmable trusted platform module. To do that,

ARM introduced a special CPU mode called "secure mode" in addition to the regular

normal mode, thereby establishing the notions of a "secure world" and a "normal

world". The distinction between both worlds is completely orthogonal to the normal

ring protection between user-level and kernel-level code and hidden from the operating

system running in the normal world. Furthermore, it is not limited to the CPU but

propagated over the system bus to peripheral devices and memory controllers. This way,

such an ARM-based platform effectively becomes a kind of split personality. When

secure mode is active, the software running on the CPU has a different view on the

whole system than software running in non-secure mode. This way, system functions,

in particular security functions and cryptographic credentials, can be hidden from the

normal world. It goes without saying that this concept is vastly more flexible than TPM

chips because the functionality of the secure world is defined by system software

instead of being hard-wired.

These worlds are achieved by separating both software and hardware resources (16):

 All memory in the system is separated. This includes the system's RAM but also

the registers of the CPUs. The RAM is split into two separate virtual memory

spaces. One for the secure world and one for the normal world. This means that the

normal world cannot access the memory used by the secure world. The persistent

memory (such as ash memory) can be separated by using encryption.

 A dedicated cryptoprocessor and memory for storing keys can only be made

accessible by the secure world. This prevents the normal world from accessing

sensitive key material.

 The display controller can use both a section of the memory of the normal world

and a section of the secure world as display buffer. This dual buffer setup allows

the secure world to communicate information to the user without interference from

the normal world. As the display buffer for the secure world is located in the secure

world memory, the normal world applications cannot access it.

To ensure the requirements discussed to build a Trusted Execution Environment a

concept called secure boot is normally used. This process verifies the integrity of the

contents of the storage that contains the operating system and checks that the operating

Georgios Kasagiannis

12

system is issued by the device manufacturer by checking its signature. This prevents

attackers from modifying or changing the operating system.

All these arise questions such as: Does TrustZone provide mechanisms for secure

booting and secure storage? Isn't it a kind of virtualization technology? If yes, isn't it

superseded by ARM's virtualization extensions? How does it work? Is it important to

consider it when developing an operating system (17)?

How does it work

TrustZone technology is programmed into the hardware, enabling the protection of

memory and peripherals. Since security is designed into the hardware, TrustZone

avoids security vulnerabilities caused by proprietary, non-portable solutions outside the

core. Security can be maintained as an inherent feature of the device, without degrading

system performance, enabling device manufacturers to build security applications, such

as DRM or mobile payment as protected applications that run on the secure kernel.

With TrustZone, user space applications operate in "normal" mode. The kernel runs

"system" mode. The trusted kernel operates in "monitor" mode. Because of this

architecture, even a "rooted" application cannot access protected regions within the

trusted kernel. Any component can be designated as part of the trusted infrastructure,

from regions of the PCI-E address space to NAND memory. Overall, TrustZone offers

a secure and easy-to-implement trusted computing solution for device manufacturers,

without requiring additional hardware.

One of the main hardware features of TrustZone technology is the Security bit on the

communication bus (18). The ARM processor has a communication bus called the AXI-

bus that is used by the main processor to communicate with peripherals (see figure

below). These peripherals are located in the same package or chip based on the SoC

architecture. The security bit is added to this bus to communicate to the peripherals

whether the transaction they are receiving is either from the secure world or the normal

world. All peripherals should check the security status of the transaction and ensure that

they do not leak any sensitive information.

Security Evaluation of Android Keystore

13

Figure 1: AXI-bus diagram

Another aspect of the TrustZone hardware is the separation of the two worlds in the

processor itself. This is indicated by the NS -bit (Non-Secure-bit) in the Secure

Configuration Register (SCR) of the processor. This bit can only be set in the Secure

mode. When the NS-bit is 0 the processor is operating in secure world and when it is 1

the processor is operating in normal world. Two operating systems can run alongside

each other using this architecture: One in the secure world and one in the normal world.

As a result a special form of virtualization is created: There are two virtual

environments that include virtual processors and virtual resources. Access to those

virtual resources can be limited depending on the security status of the processor. The

value of the NS-bit is used to signal the security status of communications on the AXI

bus. This is in turn used by the peripheral to decide if it should act on a certain

transaction.

Figure 2: NS Bit functionality normal world below illustrates the concept of the two

worlds. The normal world is active (non-secure bit is set), the OS running on the

platform can only access a subset of the physical resources.

Georgios Kasagiannis

14

Figure 2: NS Bit functionality normal world

When a world switch takes place, the secure world comes into effect. The system

software running in the secure world can access the devices hidden from the normal

world. In Figure 2 below we can see clearly the switch to the secure world with NS Bit

0, but also the different areas of memory that are being used.

Figure 3: NS Bit functionality secure world

A special state is created in the secure world to facilitate switching between the worlds.

This state is called the monitor mode. The normal world can start this monitor mode by

calling the Secure Monitor Call (SMC) instruction. Hardware exceptions such as

interrupts can also cause a switch to the secure world. When such switch due to the

SMC instruction or exceptions happens the monitor mode of the secure world is

enabled. The monitor mode ensures that the state of the world it is leaving is saved and

Security Evaluation of Android Keystore

15

the state of the world it is entering is restored (16). State data includes all processor

registers and optionally additional information depending on the peripherals in the SoC

(16).

TrustZone software provides a minimal secure kernel which can be run in parallel with

a more fully featured high-level OS-such as Linux, Android, or BSD-on the same core.

It also provides drivers for the normal, rich OS (normal world) to communicate with

the secure OS (secure world).

Figure 4: Arm Trusted Firmware

TrustZone software uses ARM TrustZone security extensions to completely protect the

secure OS and any secure peripherals from code running in the normal world. It

includes a secure monitor that switches between the secure and the normal world, and

an example secure first-stage bootloader. Systems with a separate ARM processor

dedicated for security can use the TrustZone software multicore, running the secure

kernel on its own CPU.

Processors can have multiple processor cores to allow multiprocessing. This may

present additional difficulties to ensure that all data is kept safe between context

switches. To simplify the switching, the secure world can be fixed to a single core or a

certain number of cores. Note that, in contrast to dedicated security processors, the

TrustZone hardware does not by default include tamper protection [9]. Since ARM only

sells the designs to create the processors and does not make the chip itself

manufacturers may include additional hardware features to offer better tamper

resistance. Also note that while TrustZone provides hardware-based security features,

the security of the whole system is also depending on some software features such as

the sanity of the switching between the secure and normal world implemented in the

Georgios Kasagiannis

16

monitor mode. A bad implementation could leak the register values that may contain

sensitive information.

Figure 5: ARM Trusted Firmware Architecture

When an ARM processor with TrustZone support boots it starts by executing an

application that is programmed in the on-chip-ROM in the secure world. This

application is called the bootrom. The bootrom can be fixed by the processor

manufacturer at design-time using a Masked ROM or by the customer of the

manufacturer (the manufacturer of the system that incorporates the processor) by using

write-locked ash. A public key is programmed in to the SoC using One-Time-

Programmable (OTP) memory. This memory can only be written once. This is often

achieved by burning fuses on the chip.

A TrustZone compatible bootloader starts the OS that runs in secure world. When it

boots is starts the normal world OS. The use case of this procedure is described below.

Security Evaluation of Android Keystore

17

Figure 6: TrustZone boot procedure

However, hardware features such as the impossibility of the normal world to access the

memory of the secure world allow this functionality to be implemented. To allow

multiple applications to be run in the secure world a secure world operating system

(secure world OS) has to be implemented. We consider the secure world OS as the

software that provides the TEE: It provides an execution environment for applications

to run in. As discussed previously, applications running in the TEE are called trustlets.

The secure world OS schedules resources between both the trustlets running in the

secure world and the operating system running in the normal world. The secure world

OS should handle both context switches (between trustlets in the secure world and

between the secure and normal world). It should also ensure that no data is leaked

during the context switches. Note that if an untrusted user is allowed to run trustlets in

the TEE, also the security of context switches between trustlets in the TEE should not

leak any information. Even if all trustlets are created by the same issuer this is still a

good property to ensure. The separation between the two worlds each with its operating

system is pictured in Figure 6.

Figure 7: The separation of the hardware by TrustZone in two worlds.

Georgios Kasagiannis

18

A secure world OS is sometimes seen as a hypervisor. A term that is generally associated

with running virtual machines; running multiple operating systems in their own

environment on the same hardware. While the separation by TrustZone also provides

two operating systems running in their own environment on the same hardware, the

actual architecture is different. In the case of virtualization the hypervisor provides

virtual hardware on which the (unlimited number of) operating systems run. The

hypervisor sits in between the virtual hardware and the real hardware. In the case of

TrustZone technology both the secure world OS and the OS running in the normal world

can directly communicate with the hardware. However, some parts of the hardware are

only accessible by the secure world. In principle there is no limit to the complexity and

functionality of the secure world OS running in the secure world. Also, to reduce the

attack-surface, the functionality is usually limited. There is only a small number of open

source implementations of TrustZone compatible secure world OSes available (19) but

ARM has opensourced the ARM Trusted Firmware11.

2.3 Android

Initially developed by Android Inc., which Google bought in 2005, Android was

unveiled in 2007, with the first commercial Android device launched in September

2008. The operating system has since gone through multiple major releases, with the

current version being 8.1 "Oreo", released in December 2017. It is based on a LTS

Linux Kernel and since 2017 version 3.18 or 4.4 are used.

Android has been the best-selling OS worldwide on smartphones since 2011 and on

tablets since 2013. As of May 2017, it has over two billion monthly active users, the

largest installed base of any operating system, and as of 2017, the Google Play store

features over 3.5 million apps12. Applications are written using Android SDK and Java.

Java may be combined with C/C++. Also the Go language is supported an in May of

2017, Google announced support for Kotlin. Android SDK includes a lot of libraries

and tools such as emulators, documentations, tutorials and sample code. The primary

IDE since 2014 is Google’s Android Studio witch has integrate all the tools mentioned

above in its GUI. Numbers of Android developers have grown big last years, building

apps for almost everything which can be acquired by Android users from Google Play

Store, or unofficial sources.

Source code of Android is available after the release of each version in AOSP, an open

source initiative by Google. The AOSP code can be found mainly on Nexus and Pixel

series of devices. Many OEMs customize and adapt the AOSP code to run on their

hardware based on their needs and their peripheral devices. As a result most Android

devices ship with a combination of open source and closed source software.

11 https://github.com/ARM-software/arm-trusted-firmware
12 https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-

store/

Security Evaluation of Android Keystore

19

The directory layout of the file system for Android is somewhat different from a

usual Linux operating system:

 /data is used to store the data of all applications and services running on the

operating system in.

 /data/data is the location for applications to store their data. Each application gets

its own directory that is named using the application identifier

(com.company.example).

 /sdcard is the location where the SD-card (if present in the system) is mounted.

The internal storage is limited but faster on older Android devices so developers

had to choose whether the stored the data internally or on the SD-card. Most recent

Android devices have larger internal ash storage so they do not need a SD-card

anymore. On systems that have internal ash storage and no SD-card slot the

/sdcard path is symlinked to /storage/emulated/legacy.

The (emulated) SD-card directory can be accessed over USB to write and read all les

from it. A number of directories in /sdcard are accessible by all applications such as

/sdcard/DCIM where pictures are stored and /sdcard/Music for storing Music. The

/sdcard/Android/data directory is where applications can store application speci c data

(like the /data/data directory). As with the internal application-data directory each

application gets its own directory that only can be read by that application. However,

all contents of the (emulated) SD-card can be read and modified over USB. This also

includes the application data that is stored in /sdcard/Android/data, so caution should

be used when storing data on /sdcard.

Applications have a file AndroidManifest.xml that describes the contents of the

application and the permissions that the applications requests. A user cannot deny a

single permission in AOSP Android 5 and older in the set of permissions requested by

the application. Some OEMs have implemented their own application permission

restriction to applications. Starting from version 6 the user can chose almost all

permissions that the application is allowed to have except if they are critical for the

functionality of the app. The requested permissions are showed before the application

is installed by the user or when an updated version of an application requests additional

permissions. After installation there is no way for a user the denial of certain

permissions other than un-installing the application in Android 5. As we mentioned

since Android 6 this has changed. A list of all permissions available can be found in the

Android API documentation13.

To control the access of the application to the file system, OS assigns automatically a

UID to each name of the application. This is different than normal Linux where each

user can run the applications under his UID. The mapping of UIDs and application

names can be found in /data/system/packages.list and its structure is like that:

13 http://developer.android.com/reference/android/Manifest.permission.html

http://developer.android.com/reference/android/Manifest.permission.html

Georgios Kasagiannis

20

<pkg_name> <UID> <user_installed> <directory> <type_of_app>

An example:

com.example.user.rogue.app 10081 1

/data/user/0/com.example.user.rogue_app default

We can clearly see that an application with package name com.example.user.rogue.app

(this is the app we are going to use in the next chapter) has UID 10081.

Android OS uses its special virtual machine called Dalvic14 as basis for the apps and

services. This virtual machine is based on Java resulting a number of Java APIs ported

to Android. The ported APIs can be found under java.* packages which provide support

for cryptographic operations through the java.security package. Additional

functionality is implemented in the android.security package. The API version is

indicated by API level. The rst Android release has API 1 and the latest one (Oreo 8.1)

has API level 27. An overview of Android versions associated with API levels can ve

found on the Android Developer web-page15

Back to contents

14 https://source.android.com/devices/tech/dalvik/index.html
15 https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels

Security Evaluation of Android Keystore

21

3. Android Keystore

In this Chapter the key storage solution provided by Android is going to be analyzed.

In Android 6.0 M the security scheme changed dramatically over L version giving user

more control over app permissions. Instead of granting all apps permissions when the

user installs them, Android prompts the user to choose only which permissions he

wants. It is also easy to revoke permissions even for apps designed for old versions.

Also the big news was the Android Keystore which made its debut with Android API

18. Chad Brubaker, a senior engineer working on Android security, states in Androids

website “Android has opened access to hardware security that used to be costly and

difficult to use. Now with Keystore, any developer can use the best available hardware

security features.” As a matter of fact if we check the AOSP page16 we will find out that

many bug-fixes and security issues are resolved as time passes. We shall see though in

Chapter 4 that this is not true if someone gains root or system privileges with even SE

Linux to not complain about anything…

3.1 APIs for Key storage

In Android API 1 developers where provided with cryptographic operations and key

storage. For this the java.security.KeyStore class which provided an inderface for key

storage. It only provided the interface to store the keys and also to get the instance of

the class. Each key store type is defined in a class that provides a

java.security.KeystoreSpi interface. The KeyStore class uses the methods of

KeystoreSpi interface which give the ability to developers to store keys.

There are multiple Key Store types given from Android API. The most knowns are the

Bouncy Castle key store which is a cryptographic library for Java and C#, and the

official Android Keystore. As we said above it was added to AOSP with API 18 and

since then it is inside all API versions.

This Keystore has a service created for it named KeyStore, communicating with it using

Inter Process Communication (IPC). The KeyStore service starts at boot time with the

OS. Manufacturers can develop drivers for their hardware that communicates with

KeyStore service, providing hardware based secure key storage. If no drivers are

detected or not compatible or no hardware for TEE, Android defaults to a software

implementation. The following variants of AndroidKeyStore will be evaluated:

 Software based: Not all Android devices support hardware-based key storage.

Some old Arm chips simple do not have TrustZone support and some device

manufacturers do not have the ability to create applications for the TEE. For this

reason Android developers created a software based KeyMaster trustlet that runs

in the TEE. If a device supports hardware based AndroidKeyStore though the

software based is not available.

16 https://android.googlesource.com/platform/system/security/

Georgios Kasagiannis

22

 Hardware based: Qualcomm created a closed source keymanager trustlet in the

TEE and driver for Android.

Note that while the AndroidKeyStore variants are called software-based and hardware-

based all solutions are of course based on both software and hardware. With software-

based and hardware-based we mean that hardware-based or only software-based

security features are used to protect the key store.

Besides the key store type a provider can be optionally defined for some classes. This

defines what library is used for cryptographic operations. The Spongy Castle library

uses this to interact with the Bouncy Castle key store type. When creating an instance

of the Bouncy Castle key store type Spongy Castle is defined as provider. Subsequently

keys compatible with the Spongy Castle library are provided. Note that not all

combinations of providers and key store types are supported, some key store types do

not support providers at all. This can be the case for key store types that only provide

an interface to manage the keys but do not provide the actual key material. An example

of this is the AndroidKeyStore key store type that can run its cryptographic operations

outside of application process on other hardware.

API level 14 added a new KeyChain class. This is a high-level API to provide

asymmetric key storage. In contrast to the KeyStore class the KeyChain class interacts

with the user using a graphical interface. For example the user can be asked confirm

key generation. When a private key is required for operation the user is also asked to

confirm. This class, however, also provides two interesting static methods. The

isKeyAlgorithmSupported(String algorithm) can be used to test if the device supports

a certain algorithm. In the API level 19 release a new static method was added to the

class, isBoundKeyAlgorithm(String algorithm). This method Returns true if the current

device's KeyChain binds any PrivateKey of the given algorithm to the device once

imported or generated according to documentation17.

In addition to private keys it is also possible to store symmetric keys in the KeyStore.

To support this the key store has a SecretKeyEntry. Secret keys can be created using

the javax.crypto.spec.SecretKeySpec class. Instances of this class are initialized by a

byte-array for the secret key and a string indicating the algorithm that is associated with

the secret key.

Also another problem which might concern the developers and also the end users is that

until Android M when device security settings (device-lock) are set or changed by the

user (No lock, PIN, Swipe etc) the keys inside Keystore are wiped. I realized it when

testing the behavior of Android Keystore and Dorian Cussen confirmed it in his blog

post18 stating that it was a mistake in KeyPairGeneratorSpec class “an

undocumented-exception-throwing fail which requires you to reset the alias

(Keystore.deleteEntry())”

17 http://developer.android.com/reference/android/security/KeyChain.html
18 https://doridori.github.io/android-security-the-forgetful-keystore/

Security Evaluation of Android Keystore

23

3.2 Methodology

As we said in the previous section a good way to evaluate and check the differences of

Android Keystore is the open source code of Android (AOSP) in the git repositories.

Most of the code is provided that is used by mobile phones running Android OS (Nexus

and Pixel phones). Since licensing of the AOSP, code requires that changes made to

code are also made public so the code for phones that are not developed under Google

is available. Therefore some manufacturers also have donated part of their source code

to the AOSP making it open.

To evaluate the condition and to analyze the system of Android OS, we will be using

root privileges on the platforms. Root access disabled in the Android OS that is shipped

with the mobile phones, so in order to gain root privileges, we root the device (in AVDs

this is not needed). By unlocking the bootloaders of the phone users are allowed to

install android images that are not signed by the manufacturer. Many tutorials exist for

rooting an Android device on internet accessible by anyone19 using just Android Debug

Bridge (ADB). ADB is a “bridge” for developers to work out bugs in their Android

applications aka debugging. This is done by connecting a device that runs the software

through a PC, and feeding it terminal commands. ADB lets you modify your device (or

device’s software) via a PC command line. For the whole rooting process there is even

a video in YouTube20 giving instructions on how to extract the Stock Android Firmware

that the phone shipped with in order not to lose the “clean” OS using the TWRP

recovery tool21. This is not supported though for all device manufacturers and

firmwares. The users then install an app called SuperSU that allows any app that is

installed in the device to run with root privileges.

3.2.1 Criteria

As Tim Cooijmans refers (8), he defined three requirements for evaluation:

Rdevice bound The private key material stored in the key store cannot be extracted by an

attacker to be used outside of the device that generated it. This defines that keys are

bound to the device.

Rapp bound The private key material stored in the key store can only be used by the

application and on the device that generated it. This defines that keys are bound to the

device and the application.

Ruser consent Using the private key material requires explicit permission from the user and

cannot be used without explicit consent. This defines user consent.

19 http://trendblog.net/how-to-root-your-google-nexus-device-4-5-7-10/
20 https://www.youtube.com/watch?v=DyUainEJwLM
21 https://dl.twrp.me/

Georgios Kasagiannis

24

The requirements Rdevice bound and Rapp bound are evaluated using three assumed attacker

models:

Aoutside no root The first attacker model is an attacker that is able to run and install his own

application on the phone with any of the permissions that an application can request.

This models a rogue application (or update of an application) that a user can install from

an app store such as the Google Play Store.

Aoutside root no memory The second is an attacker that has root permissions and can use all

data stored on the phone. We assume that these permissions are gained by either an

exploit or are given to the attacker by using an application that asks for root permissions

on a rooted phone. This models that either the attacker uses an exploit to gain root

permissions on the device or that the attacker has the ability to run an application with

root permissions. Note that this may seem as a situation that does not happen a lot,

however, many users today enable the root permissions on their phone to work around

the permission model. There are even applications in the Google Play Store that require

root permissions. For example the Titanium Backup in the Play Store11 application that

is used to back up a phone requires root permissions.

Aoutside root memory The third attacker model assumes that an attacker has root permissions

and can use all data stored on the phone but also has access to data that is only

temporarily stored on the phone such as data stored in memory. For example a PIN that

is used to unlock the phone but that is not stored phone.

For the requirement Ruser consent there is only one attacker model:

Ainside no root This attacker model assumes that the actual developer of an app is or has

become malicious. This is particularly interesting in the case where the developer of an

application has interest in using the key pair that is stored for the app. An example of

this can be an e-mail application that has a key pair to sign messages. The signature

may have legal-effect that may be abused

For all criteria the described attacker models are evaluated. For each combination of a

criteria and an attacker model the result is either:

 An attacker using the attacker model cannot violate the requirement.

X An attacker using the attacker model can violate the requirement.

Security Evaluation of Android Keystore

25

A
outside−no−root

A
inside−no−root

Mal. App App

Android OS

A
outside−root−no−memory

A
outside−root−memory

Figure 8: Schematic overview of the attacker models

All attacker models are shown in a schematic overview in the above figure. In this

figure we see two applications, App is the genuine owner of the keys that need to be

protected, Mal. App is an malicious application controlled by an attacker. The attackers

that have root permissions can access the operating system controls and are therefore

pictures to be inside the operating system. Although in fact attackers could also gain

root credentials by using an application.

The solution that scores X on all requirements for all attacker models is clearly the best

solution. Note that requirement Rapp bound is a more specific variant of requirement

Rdevice bound. So if Rapp bound is satisfied then Rdevice bound is also satisfied. Also note that

the attacker models for Rapp bound and Rdevice bound are increasing in the privileges the

attacker has, Aoutside no root has the smallest number of permissions and Aoutside root memory

the most. If a requirement can be violated by an attacker having attacker model Aoutside

no root than it can also be violated by an attacker having attacker model Aoutside root no memory

or Aoutside root memory.

The case where a user is tricked to give for example his password is not considered an

attack in this use case. However, this may be a realistic threat.

3.2.2 Evaluation

To test the Android KeyStore we use a modified version of Cooijmans KeyStorageTest

application (9). It is modified so it will try and export the modulus of the RSA key and

the Private exponent that we will be storing in Android Keystore which it is prohibited

by the API for the software version22, and because there is a bug in Android code for

versions 6 and 7 as described we cannot test its behavior23. The code exists in Appendix

B, some classed are deprecated since Android 7, but they run correctly with backwards

compatibility. So let’s analyze what the code does.

22 https://developer.android.com/training/articles/keystore.html
23 https://issuetracker.google.com/issues/37091211

Georgios Kasagiannis

26

On startup of the application the constructor checks if the cryptographic algorithms

RSA, ECDSA and DSA are bound to the device if they are available. This check is done

by function isBoundKeyAlgorithm(String algorithm) of the KeyChain

class. When the algorithms are bound to device it returns true. Continuing the

constructor gets all keys stored in the Keystore by alias. This alias is defined inside the

application and creates the key with it which is for identification of the key pair. The

other methods are for generating the key, signing it, delete it and also for the rogue app

there is a special button that shows the modulus and try to show the private exponent.

This applications generates an RSA key pair using the code in table 3. This code

generates a key pair using the RSA algorithm with a key with size of 2048bits. The

KeyPariGenerator by default also generates a self-signed certificate. The subject

the serial number, start and end dates and the validity period have to be defined on

creation of the key pair. The setKeySize function is supported from API version 19

and above, while version 18 only supports RSA keys of 2048-bits in size.

Table 2: Generating an RSA key pair

Since API version 21, Android KeyStore also supports symmetric keys generation

which was the major change of it since its debut. We can see a short example of

generating and retrieving a 256 AES key using the M API in Table 3.

KeyPairGenerator rsaKeyGen;

try {

 rsaKeyGen = KeyPairGenerator.getInstance(“RSA”,

"AndroidKeyStore");

} catch (Exception exception) {

 writeToLog(exception.toString());

 return;

}

KeyPairGeneratorSpec rsaKeyGenSpec;

try {

 rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(this)

 .setAlias(KEY_ALIAS)

 .setSubject(new X500Principal("CN=test"))

 .setSerialNumber(new BigInteger("1"))

 .setStartDate(new Date())

 .setEndDate(new GregorianCalendar(2019, 1,

1).getTime())

 .build();

}catch (Exception exception){

 writeToLog(exception.toString());

 return;

}

try {

 rsaKeyGen.initialize(rsaKeyGenSpec);

} catch (InvalidAlgorithmParameterException exception) {

 writeToLog(exception.toString());

 return;

}

rsaKeyGen.generateKeyPair();

Security Evaluation of Android Keystore

27

This is Java Cryptography Architecture (JCA) code, very similar to our example for

asymmetric key handling. What is new is that there are more parameters available for

the developer to use when generating or importing a key. Now you can specify the exact

usage type of each key (encryption/decryption, signing/verification), its block mode,

padding, etc. These parameters are stored along with the key, and it is prohibited to use

the key for other purpose than the one it was generated for. So you can use a key for

encryption only for that reason. Key validity period for each purpose can also be

specified.

Another major feature in this version it is that key usage needs authentication before

actually using the key check Figure 9. The authentication validity period can also be set

giving the key more protection even if the key use is authenticated. That way you can

authenticate each time you use a key or once every 15 minutes. This is for both

symmetric and asymmetric keys and as an extra, the system can check whether a user

has authenticated within a given time period. This is a good way to verify user presence,

especially if the application does not make use of cryptography.

Table 3: Symmetric Key generation24

If we skip the details though key generation and storage work the same as previous

android versions, the Keystore service provides an interface with almost the same

methods and also a fallback implementation in opposing with the Keymaster which

offers a completely different interface. All these have not mitigate the theme of this

thesis though.

24 https://nelenkov.blogspot.gr/2015/06/keystore-redesign-in-android-m.html

KeyGenParameterSpec.Builder builder = new

KeyGenParameterSpec.Builder("key1",

 KeyProperties.PURPOSE_ENCRYPT |

KeyProperties.PURPOSE_DECRYPT);

KeyGenParameterSpec keySpec = builder

 .setKeySize(256)

 .setBlockModes("CBC")

 .setEncryptionPaddings("PKCS7Padding")

 .setRandomizedEncryptionRequired(true)

 .setUserAuthenticationRequired(true)

 .setUserAuthenticationValidityDurationSeconds(5

* 60)

 .build();

KeyGenerator kg = KeyGenerator.getInstance("AES",

"AndroidKeyStore");

kg.init(keySpec);

SecretKey key = kg.generateKey();

KeyStore ks = KeyStore.getInstance("AndroidKeyStore");

ks.load(null);

KeyStore.SecretKeyEntry entry =

(KeyStore.SecretKeyEntry)ks.getEntry("key1", null);

key = entry.getSecretKey();

Georgios Kasagiannis

28

Figure 9: Per use key authentication

Keymaster blobs are the files that keys are stored in the directory

/data/misc/keystore/user_X, where X is the android user ID starting from 0

for primary user. Keymaster blobs are variable size and they include a version byte,

nonce, encrypted key, tag for authenticating the encrypted key and the key properties.

This key blob can be encrypted for Android versions older than 6 as we will see in the

next Chapter.

The Keystore data are stored on a per-application basis while the application is the one

that gives the command to store and load the data. The application calls the load

function of Keystore with an InputStream as argument which can be a

FileImputStream that reads the contents of a file. As a second argument a byte

array of the password can be provided as a password (as we will see later this will be

the .masterkey of Android Keystore).

For our attack schema, two applications are installed on devices (keystore_app,

rogue_app). The goal is to give the rogue app control over the key pair generated by the

keystore app. Rogue app then can generate a valid signature over predefined data. If

this is possible it violates Rapp-bound. To test if Rdevice-bound is violated we copy the key

blobs and try to decrypt them or generate a valid signature on another phone. To verify

Ruser-consent we look if the phone will ask for consent when we use the key (in Android 6

and later it asks but only if this API is used when creating the keys and providing the

key purpose).

Back to contents

Security Evaluation of Android Keystore

29

4. Experiment

In this Chapter we will experiment and evaluate if all assumptions that are real for

Android 4.4 are also for 5, 6 & 7 versions. We will do the same tests in each Android

version Keystore with or without TEE (software and hardware based) using the two

applications keystore_app and rogue_app. In the beginning of each Section we will

analyze each architecture and then we will provide the proof of concept for each one

separately.

Figure 10: Legit app and Rogue app installed

Also for Android version 5 we will try to parse the private key of the keyblob exported

from the device. To achieve that we will use the Nikolay Elenkov’s java application

keystore-decryptor25 which decrypts the keystore files. To make it work I had to forcibly

copy the bouncycastle library to the jar file of keystore-decryptor because the gradle

script for an uknown reason did not put it inside the jar even when changing the version

of bouncycastle to current.

25 https://github.com/nelenkov/keystore-decryptor

Georgios Kasagiannis

30

Figure 11: Forcibly inserting bouncycastle library to keystore-decryptor

The final step is to install each Android Version to Nexus 5 and then root it using the

walkthroughs provided at the beginning of each Section.

4.1 Android KeyStore test using TEE on Qualcomm devices

Android Keystore on Qualcomm devices creates two key blobs in the directory we

provided in Section 3.2.2 which is /data/misc/keystore/user_X, two for each

key pair created using the keystore_app.

 A USRPKEY key blob that stores the key pair parameters including the private

key

 A USRCERT key blob that stores the self-signed certificate.

Both files have the following format upon creation given by the Android Keystore itself:

<UID of the app>_USRPKEY_<key alias given inside app> and

<UID of the app>_USRCERT_<key alias given inside app>. For

example as we will see later our files will be like 10084_USRPKEY_TestKeyPair.

The UID of the app is the UID that the application is running under. The key alias is

chosen by the developer using the setAllias(String key_alias) method of

KeyPairGeneratorSpec.Builder.

The /data/misc/keystore/user_X is not accessible by a non-root user making

other apps or services not to be able to read the key files. That way Rdevice-bound and Rapp-

bound are secured for Aoutside-no-root. The part that make the Android KeyStore vulnerable

is the UID inside the name of the keyfiles. Using root permissions an attacker can

rename or copy the files to new files in the same directory on the same device with the

Security Evaluation of Android Keystore

31

UID of the rogue-app. For example in the next figure we show how we copy the key

files of the legit up keystore_app to the rogue_app.

Figure 12: Copying key files with other UID

This way the private keys of legit app will be accessible to the other rogue app. Then

we can generate a valid signature from the rogue_app using the key pair generated from

the keystore_app. With this happening Rapp-bound is not satisfied for Aoutside-root-no-memory.

Copying the files to another device will not work because the private key can only be

decrypted with the hardware-baked key that exists in the TEE. So Rdevice-bound is satisfied

for all attacker models. We observed that when no pin exists on the device there is no

.masterkey file created giving us the suspicion that a standard key is used for keyblob

encryption.

In Android 5 Android Keystore does not support user-key authentication when using a

key as version 6 and 7 do. So an attacker can access the private key material at any time

even for Android 6 and 7 if he knows the pin of the key. So Ruser-consent is not satisfied

explicitly in Android 5 but only if the pin of the key is unknown is satisfied in Android

6 and 7.

For Android 5 this gives us the following conclusions:

 An attacker that has root permissions can easily use the keys of other apps on the

same device by renaming the keystore files.

 Key pairs cannot be used outside of the device because the private data are

encrypted with a device-specific key living inside the TEE that cannot be exported.

 There is no way to require any input from the user before key usage in Android 5.

The actual storage format of the PKEY is defined by the Qualcomm API 21. As we can

see the file contains a number of fields according to the struct:

 Magic num: A fixed magic number is used to identify the les as key storage. The

magic number is 0x4B4D4B42 or "KMKB" (KeyMaster Key Blob).

 Version num: The version number indicates the version of key.

 Modulus: Stores the modulus of the RSA key pair. The size of this field is fixed to

KM KEY SIZE MAX which is 512 bytes (= 4096 bits).

 Modulus size: The actual size of the modulus. Since the modulus can be smaller

than 4096 bits this field indicates the number of bytes that is actual used.

Georgios Kasagiannis

32

 Public exponent: Stores the public exponent of the RSA key pair. The size of this

field is also fixed to KM KEY SIZE MAX.

 Public exponent size: The actual size of the public exponent.

 IV: The IV (initialization vector) that is used for the encryption of the encrypted

private exponent using AES-CBC-128.

 Encrypted private exponent: Stores the private exponent of the RSA key pair in a

encrypted form using AES-CBC-128 encryption. For the encryption the iv and an

unknown key is used. This key is probably fixed in hardware to bind the private

key to the device.

 Encrypted private exponent size: Stores the actual size of the private exponent in

unencrypted form.

 HMAC: A HMAC is computed over the whole le using a SHA-2 and a key which

is probably also fixed in hardware. This should ensure the integrity of the file.

The KeyStore service adds some data around the struct to identify the contents. The key

used for encryption of the private exponent and for computing the HMAC cannot be

found on the device. Also the trustlet is not open source according to the source code

that is available the encryption is done in the TEE by the keymaster trustlet. We suspect

that the keys are also stored in the TEE and are device specific. No method to access

these keys from outside the TEE is documented, nor could we find one.

4.1.1 Evaluation in Android 5.0

Firstly we install the keystore app and we generate a key pair by pressing the “GEN”

button and then we sign a byte array of string "Test Test Test". Then we install the

roguw_app to our device and we read the file /data/system/packages.list

which contains the information of which applications map with which UIDs, in order

to find the rogue_app UID.

Figure 13: 5HW key generation and validation of signature

Afterwards the only thing we have to do is to copy the files of the legit app with the

UID of the rogue app (10089) as we can see in the figure below.

Security Evaluation of Android Keystore

33

Figure 14: 5HW Finding UID of rogue and legit apps

Figure 15: 5HW Copy key files and change ownership

Now we have to change also the ownership because the new files are owned by root

user and group, or else keystore will not be able to read these files. After this step we

run the rogue app and we can see that the key entry of the legit app is being read

(Algorithm used, Subject, validity period) but also a validation of signature.

Georgios Kasagiannis

34

Figure 16: 5HW rogue app parsing key of legit app

As we can see in Figure 16 the whole modulus of the RSA key can be exported on

display. In the next step we will use keystore-decryptor to try to decrypt the private key

from the file we pulled from device using ADB.

$ java -jar ksdecryptor-all.jar <master key file> <key

file> <password>

Figure 17: 5HW using keystore-decryptor

The modulus that keystore-decryptor exports from the keyblob is the same as in Figure

16 but the private key cannot be exported because it is encrypted using the key provided

by the TEE. The .masterkey file that encrypts the keyblob has its key decrypted.

The structure of the keyblob is as described in page 30.

4.1.2 Evaluation in Android 6.0.1

Firstly we install the keystore app and when we run it we see that the algorithms are

bound to device. Then we generate a key pair by pressing the “GEN” button and then

Security Evaluation of Android Keystore

35

we push the “SIG” button to sign a byte array of string "Test Test Test" and verify the

signature. Then we install the rogue_app to our device and we read the file

/data/system/packages.list which contains the information of which

applications map with which UIDs, in order to find the rogue_app UID.

Figure 18: 6HW key generation and validation of signature

Afterwards the only thing we have to do is to copy the files of the legit app with the

UID of the rogue app (10085) as we can see in the figure below. Now we have to change

also the ownership because the new files are owned by root user and group, or else

keystore will not be able to read these files.

Figure 19: 6HW Copy key files and change ownership

The final step will be again to run the rogue app and check what will happen. We find

out that nothing has changed and the key entries are accessible again by the rogue app.

We can see again the algorithm, the subject and the validity period of the key pair and

also the modulus of RSA but not whole. The system does not permit the full extraction

of the modulus in the screen. Also when we try to export the private exponent of the

key pair the bug which we referred in page 24 is causing a casting exception where an

RSAPrivatekey cannot be casted to and AndroidKeyStoreRSAPrivateKey

(funny huh?).

Georgios Kasagiannis

36

Figure 20: 6HW rogue app parsing key of legit app

4.1.3 Evaluation in Android 7.1.2

Again firstly we install the keystore app and when we run it we see that the algorithms

are bound to device. Then we generate a key pair by pressing the “GEN” button and

then we sign a byte array of string "Test Test Test" which is hardcoded in the device.

Then we install the rogue_app to our device and we read the file

/data/system/packages.list which contains the information of which

applications map with which UIDs, in order to find the rogue_app UID.

Figure 21: 7HW key generation and validation of signature

Afterwards we have to copy the files of the legit app with the UID of the rogue app

(10085) as we can see in the figure below. Now we have to change also the ownership

because the new files are owned by root user and group, or else keystore will not be

able to read these files. In Android 7 we can see another entry which is hidden file

.10009_chr_USRPKEY_TestKeyPair.

Security Evaluation of Android Keystore

37

Figure 22: 7HW Copy key files and change ownership

If we run the rogue app we can see again the algorithm, the subject and the validity

period of the key pair and also the modulus of RSA but not whole. The system again

does not permit the full extraction of the modulus in the screen. Also when we try to

export the private exponent of the key pair the same exception with Android 6 is

occurring.

Figure 23: 7HW rogue app parsing key of legit app

There are not any particular differences from Android 6 and the result is typically the

same.

Georgios Kasagiannis

38

4.2 Android KeyStore using software-based Keymaster

Again we will evaluate with the same methodology the Android KeyStore but now

without using TEE and hardware-baked keys. The naming of the files when a software

Keymaster, is the same as we have seen in Section 4.1 Android KeyStore test using

TEE on Qualcomm devices. Also the attack schema is the same, if an attacker gains

root permissions he can copy the keyblobs of the legit app to the keyblobs with the UID

of the rogue app. This issue appears to be specific to the Android KeyStore and not to

the actual implementation of the key storage that Android KeyStore uses. So Rapp-bound

is not satisfied for Aoutside-root-no-memory.

When a device does not require a PIN to unlock it no encryption is used for the private

key. By parsing the USRPKEY file an attacker can learn all information that should be

kept secret such as the private exponent and the two primes of the RSA key pair.

However, when a PIN is required to unlock the device a random 128-bit AES master

key is used for encryption. This master key is randomly generated and stored in the

.masterkey file in the directory above. This file is encrypted using a key that is

derived from the PIN using 8192 rounds of PKCS5 PBKDF2 HMAC SHA1. The

master key is used to encrypt all key entries without any form of per-entry key-

derivation. So if a password is used to unlock the device even if an attacker does not

know the PIN or password, he can brute-force it outside of the device in case it has not

much entropy or learn it from memory. Therefore we consider Rdevice-bound as violated.

This changed in Android 6 whereas key blobs are wrapped inside keystore blobs, which

are in turn stored as files in /data/misc/keystore/user_X, as before. Key

material is encrypted using AES in OCB mode, which automatically authenticates the

cipher text and produces an authentication tag upon completion. Each key blob is

encrypted with a dedicated key encryption key (KEK), which is derived by hashing a

binary tag representing the key's root of trust (hardware or software), concatenated with

the key's authorization sets. Finally, the resulting hash value is encrypted with the

master key to derive the blob's KEK. The current software implementation deliberately

uses a 128-bit AES zero key, and employs a constant, all-zero nonce for all keys.

In this overview we see the following data (encoded as hexadecimal arrays):

1. The version number (=0)

2. The (public) modulus n (starts with E408)

3. The public exponent e (=010001)

4. The private exponent d (starts with BA4B)

5. The first prime p (starts with FD3E). This is one of the prime factors of the

modulus.

6. The second prime q (starts with E683). This is the other prime factor of the

modulus.

7. d mod p1 (starts with 078C)

8. d mod q1 (starts with C891)

9. q1 mod p (starts with CA12)

Items 2-4 are represent all the data that is stored for an RSA key pair (including the

private key). The additional data stored in parameters 5-9 are used for the Chinese

Remainder Theorem (20). This allows for faster RSA operations compared to a native

Security Evaluation of Android Keystore

39

implementation. Even when this data to use the Chinese Remainder Theorem is not

present the private key can be used as described in the OpenSSL documentation for the

RSA algorithm.

The software-based key store is called SoftKeyMaster or OpenSSLKeyMaster and can

be found in the Android repositories26. The communication between the application and

the software-based is exactly the same as for the TEE-based implementation. The

SoftKeyMaster acts as a kind of driver between the KeyMaster daemon and the

filesystem.

For the needs of software based Android Keystore experiment we use the provided

Android emulators AVDs. We firstly have to download Android Studio27, download and

install SDKs and images for Android versions 5, 6 & 7.

Figure 24: Android Studio downloading SDKs

When we have everything needed we can then create our AVDs using the avd manager

provided by SDK.

26 https://android.googlesource.com/platform/system/security/+/master/softkeymaster/

keymaster_openssl.cpp

27 https://dl.google.com/dl/android/studio/install/3.0.1.0/android-studio-ide-171.4443003-windows.exe

https://android.googlesource.com/platform/system/security/+/master/softkeymaster/keymaster_openssl.cpp
https://android.googlesource.com/platform/system/security/+/master/softkeymaster/keymaster_openssl.cpp

Georgios Kasagiannis

40

Figure 25: Creating the AVDs

For a statefull execution of the emulator we should append the parameter –writable-

system when running the AVD. Next we can install google PlayStore in orded to

download and test apps for this vulnerability using open google apps project28. We

extract GmsCore.apk, GoogleServicesFramework.apk, GoogleLoginService.apk and

Phonesky.apk from the archive and we push them in the AVD with ADB like below:

adb push PrebuiltGmsCore.apk /system/priv-app/ && adb push

GoogleServicesFramework.apk /system/priv-app/ && adb push

GoogleLoginService.apk /system/priv-app/ && adb push

Phonesky.apk /system/priv-app

We are ready to go, we don’t need to root the ADVs because they are unlocked and

have root support from ADB natively.

4.2.1 Evaluation in Android 5.0

Firstly we install the keystore app and when we run it we see that the algorithms are

not bound to device. Then we generate a key pair by pressing the “GEN” button and

then we sign a byte array of string "Test Test Test" which is hardcoded in the device.

Then we install the rogue_app to our device and we read the file

/data/system/packages.list which contains the information of which

applications map with which UIDs, in order to find the rogue_app UID.

28 http://opengapps.org/

Security Evaluation of Android Keystore

41

Figure 26: 5SW Copy key files and change ownership

Now we run the rogue app and we can see that the key entry of the legit app is being

read (Algorithm used, Subject, validity period) but also a validation of signature.

Figure 27: 5SW rogue app parsing key of legit app

As we can see in Figure 27: 5SW rogue app parsing key of legit app Android does not

allow to extract the private exponent giving an UnsupportedOperationException. The

next step is to try again to export the private key outside of the device. We use again

the keystore-decryptor with the following command and let’s see what happens.

$ java -jar ksdecryptor-all.jar <master key file> <key

file> <password>

Georgios Kasagiannis

42

Figure 28: 5SW using keystore-decryptor

The Private Key entry has been fully exported in plain text!!!

4.2.2 Evaluation in Android 6.0

Again firstly we install the keystore app and then we generate a key pair by pressing

the “GEN” button and then we sign a byte array of string "Test Test Test" which is

hardcoded in the device. Then we install the rogue_app to our device and we read the

file /data/system/packages.list which contains the information of which

applications map with which UIDs, in order to find the rogue_app UID.

Figure 29: 6SW key generation and validation of signature

Afterwards we have to copy the files of the legit app with the UID of the rogue app

(10064) as we can see in the figure below and change also the ownership.

Security Evaluation of Android Keystore

43

Figure 30: 6SW Copy key files and change ownership

We then run the rogue app and we can see that the key entry of the legit app is being

read (Algorithm used, Subject, validity period) but also a validation of signature.

Figure 31: 6SW rogue app parsing key of legit app

The same exception arises as in Android 6 hardware based keystore, also again modulus

is not exported but the key of the legit app is parsed again without a problem. Software

or hardware based it does not mitigate the problem for Android 6. Lastly let’s check

software based keystore of Android 7 if anything has changed with this version.

Georgios Kasagiannis

44

4.2.3 Evaluation in Android 7.0

We stuck to the procedure and we install the keystore app, then generate a key pair by

pressing the “GEN” button and then we sign a byte array of string "Test Test Test"

which is hardcoded in the device using the “SIG” button. Then we install the rogue_app

to our device and we read the file /data/system/packages.list which

contains the information of which applications map with which UIDs, in order to find

the rogue_app UID.

Figure 32: 7SW key generation and validation of signature

Figure 33: 7SW Copy key files and change ownership

Security Evaluation of Android Keystore

45

Afterwards we have to copy the files of the legit app with the UID of the rogue app

(10081) as we can see in the figure above and change also the ownership. We run the

rogue app and we can see that the key entry of the legit app is being read (Algorithm

used, Subject, validity period) but also a validation of signature.

Figure 34: 6SW rogue app parsing key of legit app

The same exception arises as in Android 7 hardware based keystore, also again modulus

is not exported but the key of the legit app is parsed again without a problem. Software

or hardware based it does not mitigate the problem for Android 7.

Back to contents

Georgios Kasagiannis

46

5. Future Work & Conclusions

As time pass and Android OS is becoming more and more mature we still have to think

about what level of security is provided to the end user. Users pay their money to buy

a black box which will serve the needs they have to their everyday lives, not knowing

most of the times the dangers but also what could happen if…

Even after 7 versions of API, Android developers still have not found a final solution

to this major security hole giving the malicious app-user the ability to have

unauthorized access to the secure stored key. In Android version 5 we also saw that a

malicious user can even export the private key from the key blob of the software based

Android KeyStore if he knows the pin and to make matters even worse, he can do it out

of the device. In Android versions 6 and 7 if the keys are built with the new APIs then

it asks for user consent when using the key but without fully protecting it again if the

attacker know the password. Also when changing a PIN or password the device informs

the user that it will delete the keys.

A solution to all these matters could be a custom kernel that will check everything that

interacts with the Keystore directory, inform the user whenever this happens and

provide choices of action. It will not mitigate the problem but at least the system will

let the user know and decide what to do if he is not the one using the key entries.

The future work of this thesis is to research a way to obtain root access and use it to do

all the things we saw automatically. Also to test the behavior of Android Keystore of

versions 8 and 8.1.

Back to contents

Security Evaluation of Android Keystore

47

References

1. Android. Wikipedia. [Online]

https://en.wikipedia.org/wiki/Android_(operating_system).

2. Linux. Wikipedia. [Online] http://en.wikipedia.org/wiki/Linux.

3. Computer Security. Wikipedia. [Online]

http://en.wikipedia.org/wiki/Computer_security.

4. Haas, Peter D. Ransomware goes mobile: An analysis of the threats posed by

emerging methods. May 2015.

5. Drake, Joshua, et al. Android Hacker's Handbook. March 2014.

6. Mobile Security. Wikipedia. [Online]

https://en.wikipedia.org/wiki/Mobile_security.

7. Mobile Security: Finally a Serious Problem? Leavitt, Neal. 6, s.l. : IEEE, June

2011, Vol. 44. 0018-9162 .

8. Tim Cooijmans, Joeri de Ruiter, Erik Poll. Analysis of Secure Key Storage

Solutions on Android. Institute for Computing and Information Sciences (iCIS) .

[Online] 2014. Analysis of Secure Key Storage Solutions on Android.

9. Cooijmans, Tim. Secure Key Storage and Secure Computation in Android. s.l. :

Radboud University Nijmegen, 2014.

10. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook of

Applied Cryptography. Centre for Applied Cryptographic Research (CACR).

[Online] October 1996. http://cacr.uwaterloo.ca/hac/. 0-8493-8523-7.

11. Symmetric cryptography. IBM Knowledge Center. [Online]

https://www.ibm.com/support/knowledgecenter/en/SSB23S_1.1.0.14/gtps7/s7sym

m.html.

12. National Bureau of Standards, US Department of Commerce. Data Encryption

Standard. s.l. : Federal Information Processing Standards Publication 46, (1977).

13. Kumar, Sandeep. How to Break DES for €8,980. [Online]

http://www.hyperelliptic.org/tanja/SHARCS/talks06/copa_sharcs.pdf.

14. Cryptographic Key Length Recommendation from organizations. GRONAU

IT CLOUD COMPUTING. [Online] GRONAU IT CLOUD COMPUTING,

November 21, 2016. https://www.gronau-it-cloud-

computing.de/en/cryptographic-key-length-recommendation-from-

organizations/.

15. Amit Vasudevan, Jonathan M. McCune, James Newsome. Trustworthy

Execution on Mobile Devices. s.l. : Springer Science & Business Media, 2013.

9781461481904.

16. ARM. Building a Secure System using TrustZone Technology. [Online] April

2009. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-

009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf. PRD29-

GENC-009492C.

17. GENODE. An Exploration of ARM TrustZone Technology. [Online]

https://genode.org/documentation/articles/trustzone.

18. TrustZone Explained: Architectural Features and Use Cases. Bernard

Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho and Sarah Martin. s.l. :

IEEE, 2016. 978-1-5090-4607-2/1.

19. Trusted computing building blocks for embedded linux-based ARM trustzone

platforms. Winter, Johannes. 2008. 10.1145/1456455.1456460.

20. Chinese remainder theorem: applications in computing, coding, cryptography. C

Ding, D Pei, and A Salomaa. 1996.

Georgios Kasagiannis

48

Security Evaluation of Android Keystore

49

Appendix A - Acronyms

A ADB Android Debug Bridge

 AOSP Android Open Source Project

 AVD Android Virtual Device

C CA Certificate Authority

 CKMS Cryptographic Key Management System

 CPU Central Processing Unit

D DSA Digital Signing Algorithm

E ECC Elliptic Curve Cryptography

 ECDSA Elliptic Curve Digital Signing Algorithm

G GUI Graphical User Interface

H HMAC Hashed Message Authentication Code

I IDE Integrated Development Environment

K KMS Key Management System

L LTS Long Term Support

M MAC Message Authentication Code

 MMS Multimedia Messaging Service

O OEM Original Equipment Manufacturer

 OS Operating System

R RSA Rivest Shamir Adleman

S SCR Secure Configuration Register

 SDK Software Development Kit

 SGID Set Group ID

 SKS Secure Key Storage

 SMC Secure Monitor Call

 SMS Short Message Service

 SSL Secure Socket Layer

 SUID Set User ID

T TAN Transaction Authentication Number

 TEE Trusted Execution Environment

 TLS Transport Layer Security

 TPM Trusted Platform Module

U UID User ID

Georgios Kasagiannis

50

Appendix B – Source Code

MainActivity.java

1

2 package com.example.user.roque_app;

3

4 import android.app.Activity;

5 import android.os.Build;

6 import android.os.Bundle;

7 import android.security.KeyChain;

8 import android.security.KeyPairGeneratorSpec;

9 import android.util.Log;

10 import android.text.method.ScrollingMovementMethod;

11 import android.view.View;

12 import android.widget.TextView;

13 import android.support.v7.app.AppCompatActivity;

14

15 import javax.security.auth.x500.X500Principal;

16

17 import java.math.BigInteger;

18 import java.security.*;

19 import java.security.cert.*;

20 import java.security.interfaces.RSAPrivateKey;

21 import java.util.*;

22

23 import static com.example.user.roque_app.R.id.consoleTextView;

24

25

26 public class MainActivity extends Activity {

27 //Tag used for identifying this Activity in the logs

28 private final static String TAG = "KeyStorageTest";

29 //Asymmetric algorithm to use for testing

30 private final static String KEY_ALGORITHM = "RSA";

Security Evaluation of Android Keystore

51

31 //Signature algorithm to use

32 private final static String SIGNATURE_ALGORITHM = "SHA512WithRSA";

33 //Alias of the key to be used

34 private final static String KEY_ALIAS = "TestKeyPair";

35 //Define the algorithms to check if they are supported by the app

36 private final static ArrayList<String> algorithmsToCheck = new ArrayList<String>() {{

37 add("RSA");

38 add("EC");

39 add("DSA");

40 }};

41 //The reference to the view in the activity that shows the log

42 private TextView logView;

43 //Reference to the AndroidKeyStore

44 private KeyStore androidKeyStore;

45

46 /**

47 * Called when the activity class is constructed.

48 */

49

50 @Override

51 public void onCreate(Bundle savedInstanceState) {

52 super.onCreate(savedInstanceState);

53 setContentView(R.layout.main);

54 logView = findViewById(consoleTextView);

55 logView.setMovementMethod(new ScrollingMovementMethod());

56 try {

57 androidKeyStore = KeyStore.getInstance("AndroidKeyStore");

58 androidKeyStore.load(null);

59 } catch (Exception exception) {

60 writeToLog(exception.toString());

61 }

62

63 doStartUpChecks();

64 }

65

66 /**

Georgios Kasagiannis

52

67 * Do a number of checks when the Activity is launched.

68 * <p>

69 * Bibliography

70 */

71 private void doStartUpChecks() {

72 writeToLog("***Checking supported algorithms***");

73 for (String algorithm : algorithmsToCheck) {

74 if (KeyChain.isKeyAlgorithmSupported(algorithm)) {

75 if (KeyChain.isBoundKeyAlgorithm(algorithm)) {

76 writeToLog("Algorithm " + algorithm + " is bound to device");

77 } else {

78 writeToLog("Algorithm " + algorithm + " is not bound to device");

79 }

80 } else {

81 writeToLog("Algorithm " + algorithm + " is not supported");

82 }

83 }

84

85

86 writeToLog("***Checking stored keys***");

87

88

89 try {

90 Enumeration<String> keyStoreAliases = androidKeyStore.aliases();

91 while (keyStoreAliases.hasMoreElements()) {

92 String keyStoreAlias = keyStoreAliases.nextElement();

93 writeToLog("Found alias: " + keyStoreAlias);

94 try {

95 X509Certificate certificate = (X509Certificate)

androidKeyStore.getCertificate(keyStoreAlias);

96 PrivateKey privateKey = (PrivateKey) androidKeyStore.getKey(keyStoreAlias, null);

97 writeToLog("\tAlgorithm: "+ privateKey.getAlgorithm());

98 writeToLog("\tSubject: "+ certificate.getSubjectDN().toString());

99 writeToLog("\tNot Before: "+ certificate.getNotBefore().toString());

100 writeToLog("\tNot After: "+ certificate.getNotAfter().toString());

101

Security Evaluation of Android Keystore

53

102 } catch (Exception exception) {

103 writeToLog(exception.toString());

104 }

105 }

106 } catch (Exception exception) {

107 writeToLog(exception.toString());

108 }

109 }

110

111 /**

112 * Write a message to the log.Writes to both the the view and

113 * the log cat log

114 *

115 * @parammessage

116 */

117 private void writeToLog(String message) {

118 logView.append(message + "\n");

119 Log.d(TAG, message);

120 }

121

122

123 /**

124 * Called when the "GenerateKey" button is clicked.

125 *

126 * @paramview

127 */

128 public void onGenerateKeyButtonClick(View view) {

129 KeyPairGenerator rsaKeyGen;

130 writeToLog("***Generating key***");

131

132 try {

133 rsaKeyGen = KeyPairGenerator.getInstance(KEY_ALGORITHM, "AndroidKeyStore");

134 } catch (Exception exception) {

135 writeToLog(exception.toString());

136 return;

137 }

Georgios Kasagiannis

54

138

139 KeyPairGeneratorSpec rsaKeyGenSpec;

140 try {

141 if (Build.VERSION.RELEASE.startsWith("4.4")) {

142 rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(this)

143 .setAlias(KEY_ALIAS)

144 .setSubject(new X500Principal("CN=test"))

145 .setSerialNumber(new BigInteger("1"))

146 .setStartDate(new Date())

147 .setEndDate(new GregorianCalendar(2019, 1, 1).getTime())

148 .setKeySize(2048)

149 .build();

150 } else {

151 rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(this)

152 .setAlias(KEY_ALIAS)

153 .setSubject(new X500Principal("CN=test"))

154 .setSerialNumber(new BigInteger("1"))

155 .setStartDate(new Date())

156 .setEndDate(new GregorianCalendar(2019, 1, 1).getTime())

157 .build();

158 }

159 }catch (Exception exception){

160 writeToLog(exception.toString());

161 return;

162 }

163

164 try {

165 rsaKeyGen.initialize(rsaKeyGenSpec);

166 } catch (InvalidAlgorithmParameterException exception) {

167 writeToLog(exception.toString());

168 return;

169 }

170 rsaKeyGen.generateKeyPair();

171 writeToLog("Done");

172 }

173 /**

Security Evaluation of Android Keystore

55

174 * Called when the "Delete" button is clicked.

175 */

176 public void onDeleteKeyButtonClick(View view) {

177 try {

178 androidKeyStore.deleteEntry(KEY_ALIAS);

179 } catch (KeyStoreException exception) {

180 writeToLog(exception.toString());

181 }

182 }

183 /**

184 * Called when the "SignData" button is clicked.

185 *

186 * @paramview

187 */

188 public void onSignDataButtonClick(View view) {

189 writeToLog("***Signing data***");

190 try {

191 Signature testKeySignature = Signature.getInstance(SIGNATURE_ALGORITHM);

192 PrivateKey testPrivateKey = (PrivateKey) androidKeyStore.getKey(KEY_ALIAS, null);

193 testKeySignature.initSign(testPrivateKey);

194 testKeySignature.update("Test Test Test".getBytes());

195 byte[] signature = testKeySignature.sign();

196

197 Signature testKeySignatureVerf = Signature.getInstance(SIGNATURE_ALGORITHM);

198 testKeySignatureVerf.initVerify(androidKeyStore.getCertificate(KEY_ALIAS));

199 testKeySignatureVerf.update("Test Test Test".getBytes());

200 if (testKeySignatureVerf.verify(signature)) {

201 writeToLog("Signature is valid");

202 writeToLog(signature.toString());

203 } else {

204 writeToLog("Invalid signature");

205 }

206

207

208 } catch (Exception exception) {

209 writeToLog(exception.toString());

Georgios Kasagiannis

56

210 }

211 }

212

213 public void showPKey(View view){

214 try {

215

216 writeToLog("***Export modulus***");

217 PrivateKey testPrivateKey = (PrivateKey) androidKeyStore.getKey(KEY_ALIAS, null);

218 writeToLog(testPrivateKey.toString());

219 writeToLog("***Export priv exp***");

220 androidKeyStore.load(null);

221 KeyStore.PrivateKeyEntry keyEntry =

(KeyStore.PrivateKeyEntry)androidKeyStore.getEntry(KEY_ALIAS,null);

222 RSAPrivateKey privKey = (RSAPrivateKey)keyEntry.getPrivateKey();

223 writeToLog(privKey.getPrivateExponent().toString());

224

225 } catch (Exception ex){

226 writeToLog(ex.toString());

227 }

228 }

229 }

