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Abstract 
 

This thesis was prepared in such a way that anyone – with basic Android and Security 

knowledge – can understand the problems around the key storage module of Android 

OS called Android Keystore. Keystore is the secure way of Android for storing the 

sensitive data of Applications. 

 

Most of the use cases are examined – regarding the application of Android Keystore – 

on AVDs (android Virtual Devices), but a physical machine (Nexus 5) is included as 

well, with or without TEE (Trusted Execution Environment), for Android versions 5, 6 

and 7. The contents and areas included in this thesis are as follows: 

 

Chapter one is the introduction chapter. The reader gets familiar with the subjects that 

this thesis explores, mainly the security in Android Apps. 

 

In the second chapter, Security background is analyzed for the reader to understand this 

thesis. 

 

The third chapter is focused on the theoretical approach of Android Keystore 

vulnerability. 

 

Chapter four presents the proof of concept for the Android Keystore vulnerability. 

 

Chapter five focus on future work that will be done concerning this vulnerability and 

conclusions. 

 

The whole project was executed on 3 AVDs and 1 physical machine with the following 

Android versions: 

 

 Android 5 Lollipop 

 Android 6 Marshmallow 

 Android 7 Nougat 
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1. Introduction 
 

1.1 Foreword 
 

This is an introduction in definitions, facts and paradigms. 

 

1.1.1 What is Android (1)? 

Android is a mobile operating system developed by Google, based on a modified 

version of the Linux (2) kernel and other open source software and designed primarily 

for touchscreen mobile devices such as smartphones and tablets. In addition, Google 

has further developed Android TV for televisions, Android Auto for cars, and Android 

Wear for wrist watches, each with a specialized user interface. Variants of Android are 

also used on game consoles, digital cameras, PCs and other electronics. 

 

Android's default user interface is mainly based on direct manipulation, using touch 

inputs that loosely correspond to real-world actions, like swiping, tapping, pinching, 

and reverse pinching to manipulate on-screen objects, along with a virtual keyboard. 

 

Applications ("apps"), which extend the functionality of devices, are written using the 

Android software development kit (SDK) and, often, the Java programming language. 

Java may be combined with C/C++, together with a choice of non-default runtimes that 

allow better C++ support 

 

1.1.2 What is computer security and how important is it in the 21th century? 

Information security (3) means protecting information and information systems from 

unauthorized access, use, disclosure, disruption, modification, perusal, inspection, 

recording or destruction. 

 

Governments, military, corporations, financial institutions, hospitals, and private 

businesses amass a great deal of confidential information about their employees, 

customers, products, research, and financial status. Most of this information is now 

collected, processed and stored on electronic computers and transmitted across 

networks to other computers. Should confidential information about a business’ 

customers or finances or new product line fall into the hands of a competitor, such a 

breach of security could lead to lost business, law suits or even bankruptcy of the 

business. Protecting confidential information is a business requirement, and in many 

cases also an ethical and legal requirement. 

 

For the individual, information security has a significant effect on privacy, which is 

viewed very differently in different cultures. Information security is the ongoing 

process of exercising due care and due diligence to protect information, and information 

systems, from unauthorized access, use, disclosure, destruction, modification, or 

disruption or distribution. The never ending process of information security involves 

ongoing training, assessment, protection, monitoring & detection, incident response & 

repair, documentation, and review. This makes information security an indispensable 

part of all the business operations across different domains. 
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1.1.3 Mobile Platform Security 

The usage of smartphones has grown beyond imagination, in U.S.A. the percentage of 

smartphone adult users was 35% and nowadays has become 77%1. Also according to 

Newzoo's Global Mobile Market Report, globally the smartphone penetration has 

reached 50% for 20172 and the number of smartphone users for 2018 is 2,5 billion 

people. Looking at the numbers we realize how important Security can be for 

smartphones and the owners of the devices.  

 

Most companies sell or give as freeware Android Applications either as a product that 

earn profit (paid Applications), or as a tool to be used for their business model (mostly 

free applications, web-banking etc). Also, most applications have sensitive data stored 

inside the device that hosts them, data that users create or data that are needed for their 

functionalities. This fact has caught the attention of malicious individuals or even 

criminals who started creating malware for the mobile platforms. There are several 

attacks that have happened through the short life of smartphones, most have to do with 

malware and software, but there are also hardware, communication, network attacks 

and even high tech physics has play some role into forming attack models. 

 

There has been a lot of research about rogue Apps inside Google Play Store, Google 

has blocked over 700.000 rogue apps in 20173 and many “legitimate” apps found to be 

malware from researchers at the same year4. Another one called Juice Jacking is a 

physical or hardware vulnerability specific to mobile platforms. Mobile ransomware is 

a type of malware that locks users out of their mobile devices in a pay-to-unlock-your-

device ploy, it has grown by leaps and bounds as a threat category since 2014 (4).  

Utilizing the dual purpose of the USB charge port, many devices have been susceptible 

to having data exfiltrated from, or malware installed onto a mobile device by utilizing 

malicious charging kiosks set up in public places or hidden in normal charge adapters 

(5). SMS and MMS attacks have been unleased, in December 2012 the Eurograbber 

SMS trojan intercepted SMS messages on Android phones containing Transaction 

Authentication Numbers (TAN), also Stagefright5, a group of software bugs that affect 

versions 2.2 ("Froyo") and newer of the Android operating system. The name is taken 

from the affected library, which among other things, is used to unpack MMS messages. 

Exploitation of these bugs allows an attacker to perform arbitrary operations on the 

victim's device through remote code execution and privilege escalation. In 2015, 

researchers at the French government agency Agence nationale de la sécurité des 

systèmes d'information (ANSSI) demonstrated the capability to trigger the voice 

interface of certain smartphones remotely by using "specific electromagnetic 

waveforms". The exploit took advantage of antenna-properties of headphone wires 

                                                 

 

 

 

 
1 http://www.pewinternet.org/fact-sheet/mobile/ 
2 https://en.wikipedia.org/wiki/List_of_countries_by_smartphone_penetration#2017_rankings 
3 https://www.theinquirer.net/inquirer/news/3025746/google-play-blocked-700-000-rogue-apps-in-2017 
4https://www.scmagazineuk.com/spyware-found-in-more-than-1000-apps-in-google-play-

store/article/681506/ 
5 http://blog.zimperium.com/how-to-protect-from-stagefright-vulnerability/ 
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while plugged into the audio-output jacks of the vulnerable smartphones and effectively 

spoofed audio input to inject commands via the audio interface6. 

 

In a more general aspect there are three major types of threats (6): 

 

 Data Theft smartphones are devices for data management, and may contain 

sensitive data like credit card numbers, authentication information, private 

information, activity logs (calendar, call logs). 

 Identity Theft smartphones are highly customizable, so the device or its contents 

can easily be associated with a specific person. For example, every mobile device 

can transmit information related to the owner of the mobile phone contract and an 

attacker may want to steal the identity of the owner of a smartphone to commit 

other offenses. 

 Availability Prevention attacking a smartphone can limit access to it and deprive 

the owner of its use. 

 

The types of threats for the smartphone industries are basically the following (7): 

 

 Botnets attackers infect multiple machines with malware that victims generally 

acquire via e-mail attachments or from compromised applications or websites. The 

malware then gives hackers remote control of "zombie" devices, which can then 

be instructed to perform harmful acts. 

 Malicious applications hackers upload malicious programs or games to third-party 

smartphone application marketplaces. The programs steal personal information and 

open backdoor communication channels to install additional applications and cause 

other problems. 

 Malicious links on social networks an effective way to spread malware where 

hackers can place Trojans, spyware, and backdoors. 

 Spyware hackers use this to hijack phones, allowing them to hear calls, see text 

messages and e-mails as well as track someone's location through GPS updates 

 

 

All these made the manufacturers of smartphones and mobile software developers to 

try and secure platforms and apps. In every Android or Apple iOS version update, new 

security fixes or features are integrated in order for the systems and their users to be 

more secure. Also this led companies to create awareness to their employers but also to 

the users of the smartphones and mobile applications. Alpha Bank, a Greek Bank after 

logging to the web banking application, a pop up message appears stating that the bank 

will never ask for user credentials, and informing the users for various security matters, 

giving instructions and tips for things to do or don’t do, or even a maintenance schedule. 

 

1.2 Subject of Thesis 
 

                                                 

 

 

 

 
6 https://www.wired.com/2015/10/this-radio-trick-silently-hacks-siri-from-16-feet-away/ 
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Two are the main subjects of this thesis, Secure Computation and Secure Key Storage 

(SKS). Key Storage is not like a key management system (KMS). KMS also known as 

a cryptographic key management system (CKMS), is an integrated approach for 

generating, distributing and managing cryptographic keys for devices and applications. 

Compared to the term key management, a KMS is tailored to specific use-cases such as 

secure software update or machine-to-machine communication. In a holistic approach, 

it covers all aspects of security - from the secure generation of keys over the secure 

exchange of keys up to secure key handling and storage on the client. Thus, a KMS 

includes the backend functionality for key generation, distribution, and replacement as 

well as the client functionality for injecting keys, storing and managing keys on devices. 

SKS only stores keys securely. SKS, functionalities provided by CKMS and the other 

aspects of a secure execution environment provided inside a device make the “Secure 

Computation”. 

 

Inside this secure environment trusted apps can run and handle sensitive operations 

such as asking for a PIN-code or running a specific cryptographic algorithm. In order 

to make computation faster but also more secure different solutions were provided by 

the manufacturers. One commonly used solution for secure computation and secure key 

storage is the Secure Element. This is a smart card like tamper resistant platform that 

can be embedded in systems as a chip or integrated in SIM cards. Other solutions 

concern embedded chips on top of smartphone motherboards either inside the main 

CPU chip.  

 

As far as concerning the last category, Arm, has provided a solution called Arm 

TrustZone. ARM architecture processors are used almost by all modern smartphones 

regardless the mobile OS. As ARM states to their website7, Arm TrustZone technology 

is a System on Chip (SoC) and CPU system-wide approach to security. TrustZone is 

hardware-based security built into SoCs by semiconductor chip designers who want to 

provide secure end points and a device root of trust. The family of TrustZone 

technologies added to ARMv6 processors and greater, such as ARM11, CortexA8, CortexA9 and 

CortexA15. It can be integrated into any Arm Cortex-A and the latest Cortex-M23 and 

Cortex-M33 based systems, from the smallest of microcontrollers, with TrustZone for 

Cortex-M processors, to high-performance applications processors, with TrustZone 

technology for Cortex-A processors.  

 

ARM TrustZone Technology provides the basis for a Trusted Execution Environment 

(TEE). The TrustZone hardware features, together with some software, ensure that 

resources from the secure world and some specific devices cannot be accessed from the 

normal world. The TEE offers secure computation (and as a consequence also secure 

key storage). However, a TEE also provides a way to securely communicate with a user 

as we will see in section 2.2. This is not possible for a secure element. 

 

This thesis though will not emphasize much to different technologies providing TEE 

and SKS like Tim Cooijmans, but using the knowledge from this paper (8) and his thesis 

                                                 

 

 

 

 
7 https://www.arm.com/products/security-on-arm/trustzone 
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(9) we will examine the use cases for ARM Trust Zone for hardware solution and 

Android Secure functionalities for software solution, for devices without hardware 

support for Android versions 5, 6 and 7 and check if it the Key Storage solution 

provided by Android (Android Key Store) is vulnerable like in previous version. 

 

1.3 Chapter Reference 
 

Table 1: Chapter reference 

Chapter 

Number 

Title 

1 Introduction 

2 Background 

3 Android Keystore 

4 Experiment 

5 Future Work & Conclusions 

 Bibliography 

Appendix A Acronyms 

Appendix B Source Code 

 

Back to contents 
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2. Background 
 

In this chapter will be presented and analyzed the basics of what someone needs to 

know to comprehend the subject of the current thesis. In Section 2.1 an introduction in 

cryptography and its primitives is taking place, where the reader understands what 

cryptographic keys are and what are they needed for. Section 2.2 describes the 

principles of a Trusted Execution Environment and the requirements which needed to 

exist in order for an Execution Environment to be a trusted one. Also the ARM 

TrustZone technology and the functionalities of the Operating System related to it are 

discussed. Android OS will be covered in Section 2.3 and its security features, for the 

reason that this thesis is concerned with mobile devices running Android OS. 

 

2.1 Cryptography 
 

Here a short introduction about cryptography is going to take place, but very shallow 

in order to cover only what is needed. We will focus on what cryptography is, where 

and why is needed but not so much on how it works. In this Section we will present 

only some kinds of algorithms which are the asymmetric and the symmetric ones. Also 

some of the uses of these algorithms will be referred to better realize the real life usage 

of them in digital systems. So what is Cryptography? 

 

It is a method of using advanced mathematical principles in storing and transmitting 

data in a particular form so that only those whom it is intended can read and process 

them. More generally, cryptography is about constructing and analyzing protocols that 

prevent third parties or the public from reading private messages; various aspects in 

information security such as data confidentiality, data integrity, authentication, and non-

repudiation are central to modern cryptography (10). Modern cryptography exists at the 

intersection of the disciplines of mathematics, computer science, electrical engineering, 

communication science, and physics. 

 

 Encryption: It is the process of locking up information using cryptography. 

Information that has been locked this way is encrypted. 

 Decryption: The process of unlocking the encrypted information using 

cryptographic techniques. 

 Key: A secret like a password used to encrypt and decrypt information. There are 

a few different types of keys used in cryptography. 

 Digital Signature: A digital signature gives the receiver reason to believe the 

message was sent by the claimed sender. Digital seals and signatures are equivalent 

to handwritten signatures and stamped seals. 

 Public Key Certificate: Also known as a digital certificate or identity certificate, is 

an electronic document used to prove the ownership of a public key. The certificate 

includes information about the key, information about the identity of its owner, and 

the digital signature of an entity that has verified the certificate's contents8. 

                                                 

 

 

 

 
8 https://en.wikipedia.org/wiki/Public_key_certificate 
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2.1.1 Symmetric Cryptography 

Symmetric-key cryptography refers to encryption methods in which both the sender 

and receiver share the same key. This is the simplest kind of encryption, it is an old and 

best-known technique. It uses a secret key that can either be a number, a word or a string 

of random letters. Also the key can be blended with the plain text of a message in certain 

ways to change the result of a hashing algorithm. This technique is known as Message 

Authentication Code (MAC) and it protects both a message’s integrity and authenticity 

by allowing verifiers (who also possess the secret key) to detect any changes to the 

message content.  

 

Why symmetric key ciphers are valuable (11): 

 

 It is relatively inexpensive to produce a strong key for these ciphers. 

 The keys tend to be much smaller for the level of protection they afford. 

 The algorithms are relatively inexpensive to process. 

 

Therefore, implementing symmetric cryptography (particularly with hardware) can be 

highly effective because you do not experience any significant time delay as a result of 

the encryption and decryption. The sender and the recipient should know the secret key 

that is used to encrypt and decrypt all the messages because data encrypted with one 

symmetric key cannot be decrypted with any other symmetric key. Therefore, as long 

as the symmetric key is kept secret by the two parties using it to encrypt 

communications, each party can be sure that it is communicating with the other as long 

as the decrypted messages continue to make sense.  

 

The main disadvantage of the symmetric key encryption is that all parties involved have 

to exchange the key used to encrypt the data before they can decrypt it. 

 

Some examples of Symmetric Encryption Algorithms are Blowfish, AES, RC4, DES, 

3DES, RC5, and RC6. DES was published as a standard in 1977 (12). It originally used 

a 56-bit key. In 2006 a DES key could be broken in 9 days for under 9000 euro (13). 

The most widely modern used symmetric algorithm is AES-128, AES-192, and AES-

256.  

 

2.1.2 Asymmetric Cryptography 

Asymmetric Cryptography or else Public Key Encryption is called asymmetric because 

it’s functionality is based on two different keys of different length, called a key-pair one 

public and one private, which are impossible to derive one from another. The user 

cannot encrypt and decrypt the payload-message with the same key. If you use the 

private key for encryption you have to use the public key from the pair for decryption. 

This kind of cryptography maybe is the most significant evolvement in coding theory 

in the last 3000 years of its history but either way it does not replace conventional 

cryptography it just supplement it. 

 

The two keys are used as described below: 

 Public Key, is known to everyone and anyone can have it. It is being used to encrypt 

or decrypt messages and digital signature verification. 

 Private Key, is known only to the owner and is being used for message encryption 

or decryption and digital signature creation. 
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For this reason the private key is binded together with the identity of the owner by a 

trusted third party, a Certificate Authority (CA). The CA checks the identity of the 

owner of a key pair with procedures to certify that he is the one that he claims to be, 

then the CA signs (we will see how later) a certificate that confirms that this certain 

person or entity has a certain private key. In Transport Layer Security (TLS) a 

certificate's subject is typically a computer or other device, though TLS certificates may 

identify organizations or individuals in addition to their core role in identifying devices. 

TLS, sometimes called by its older name Secure Sockets Layer (SSL), is notable for 

being a part of HTTPS, a protocol for securely browsing the web. The key generation 

is done by special mathematical functions that take as input a big random number. The 

more entropy exists in the random number the merrier secure are the keys. 

 

Now let’s see the classic Bob-Alice example... When Bob needs to communicate with 

Alice securely he sends an encrypted message with Alice’s public key which is given 

as input to the asymmetric algorithm together with the message. The only way for 

someone to read the message is to use Alice’s private key that was generated together 

with the public key as a key pair, that only Alice should possess it (else anyone can read 

the message). This gives Bob (and Alice of course) the assurance that only Alice can 

read his message providing confidentiality. If Bob cannot meet with Alice to take the 

public key from her, then this schema is not going to happen. However if Bob may take 

the public key of Alice from a third party let’s say Eve, he must be sure for the 

authenticity of the public key in a way that the key belongs to Alice and not to Eve or 

someone else, because if it is used for encryption the other end could read the message 

if he has access to it. Here comes the CA to play its part... CA holds the public key of 

both and when Bob and Alice need to communicate they exchange their certificates 

which basically are their public keys and IDs encrypted with the private key of the CA. 

By knowing the public key of CA Bob can decrypt the certificate and verify that the 

key is Alice’s or not. For confidentiality but also authentication, but with the condition 

that they have exchanged their public keys securely, Bob should first encrypt the 

message with his private key and then encrypt again the generated cipher with Alice’s 

public key so that Bob will be sure that only Alice can read his message but also Alice 

will be sure that Bob sent the message. With this way they can then exchange a 

symmetric key and use only that for their communication which is a lot faster. This 

symmetric key is also called session key. 

 

It is time we see how signatures are generated. Let’s say that the key owner, Bob, wants 

to prove that a certain message was sent by him. Bob has to create the hash of the 

message generated by a hash function and encrypt it with his private key. This quantity 

is the so called digital signature. He then sends the signature together with the message 

and the recipient, Alice, then decrypts the encrypted hash (signature) with Bob’s public 

key and compares it with the hash of the message. If the signature is valid Alice knows 

that it was signed by Bob and if the hashes are equal then she knows that the message 

is unchanged. This provides integrity and authenticity. If Alice can prove that only Bob 

has this private key then he cannot deny that he signed the message providing non-

repudiation. 

 

Hash functions are publicly known and can be executed by anyone. If the tiniest part of 

the input-message changes (a single bit) it has to assure that the output will change 

dramatically. The size of the output (hash) is fixed, as a result messages that have bigger 
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complexity than the hash can have the same output. Depending on the hash function 

and the output length though it is infeasible to find a message that will have the same 

hash with another message. 

 

In general the best practice for using key pairs, is to have one for every job you need to 

do. One pair for encryption, one pair for authentication and one for signature 

generation. As we examined above encryption and decryption operations are user also 

for signature generation. For encryption we use the public key, for decryption the 

private key. For signature generation we use the private key and for signature 

verification the public key. If the key owner is convinced to encrypt for you hash of a 

forged message he unintentionally signs a forged message. So if he used other key for 

encryption and other for signing the recipient would realize that something is not good 

because the public key for signing would not decrypt the hash which was encrypted 

with the private key for message encryption 

 

There are lot of public key encryption algorithms that are used for signature generation 

and encryption. RSA (Rivest–Shamir–Adleman) is one of the first public-key 

cryptosystems and is widely used for secure data transmission. In such a cryptosystem, 

the encryption key is public and it is different from the decryption key which is kept 

secret (private). In RSA, this asymmetry is based on the practical difficulty of the 

factorization of the product of two large prime numbers, the "factoring problem". To be 

secure RSA key pairs with 3072bits length are recommended9 by BIS (Bundesamt fur 

Sicherheit in der Informationstechnik, the German Federal Office for Information 

Security) (14). 

 

Another algorithm for signatures based on Elliptic Curve Cryptography (ECC) is 

Elliptic Curve Digital Signature Algorithm (ECDSA). It is more efficient than RSA and 

uses smaller key length and is also supported by OpenSSL library. For example as we 

stated above the minimum length for an RSA key is 2048 bit but the “equivalent” key 

length for ECDSA is 256bits. This is a factor 8 smaller, however this is only an 

estimation. 

 

2.2 Trusted Execution Environment 
 

In July 2010 GlobalPlatform first announced their own standardization of the TEE. In 

according to GlobalPlatform the TEE is a secure area of the main processor in a smart 

phone (or any connected device)10. It ensures that sensitive data is stored, processed 

and protected in an isolated, trusted environment. The TEE's ability to offer isolated 

safe execution of authorized security software, known as 'trusted applications', enables 

it to provide end-to-end security by enforcing protected execution of authenticated 

code, confidentiality, authenticity, privacy, system integrity and data access rights. 

Comparative to other security environments on the device, the TEE also offers high 

processing speeds and a large amount of accessible memory.  

                                                 

 

 

 

 
9 A minimum length of 2048-bit may remain in use until end 2021. 
10 https://www.globalplatform.org/mediaguidetee.asp#_Toc419214135 
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There are two main components of platform security: 

 

 Trusted Execution Environment 

 Trusted Platform Module 

 

They work in tandem; one is not designed as a replacement of the other. As an analogy, 

TEE is the bulletproof safe, while TPM is the 128-digit combination lock for the safe. 

Both are needed to ensure the safe is protected. 

 

The TEE offers a level of protection against attacks that have been generated in the 

Rich OS environment. It assists in the control of access rights and houses sensitive 

applications, which need to be isolated from the Rich OS. For example, the TEE is the 

ideal environment for content providers offering a video for a limited period of time, as 

premium content (e.g. HD video) must be secured so that it cannot be shared for free. 

Vasudevan et al. provide a number of requirements that are needed to ensure a Trusted 

Execution Environment (15): 

 

 Isolated execution: TEE should allow applications to be run in isolation from other 

applications. This ensures that malicious applications can not access or modify the 

code or data of an application while it is running. 

 Secure storage: Secure storage of data should be provided to protect the secrecy 

and integrity of the binaries that represent the applications while they are not 

running. The same security properties should also be guaranteed for the application 

data. Note that application data can be even more sensitive than the binaries as 

passwords and secret keys may be stored in the application data. 

 Remote attestation: For a service to verify that it is actually talking to the software 

on the device it intends to talk to the principle of remote attestation is invented. It 

allows parties communicating with the secure execution environment to check the 

authenticity of the software and/or hardware that implements the TEE. 

 Secure provisioning: It should be possible to send data to a specific software 

module operating in the execution environment of a specific device while 

guaranteeing the integrity and secrecy of the data being communicated. 

 Trusted path: It should be possible for the execution environment to communicate 

with the outside world and to receive communication from the outside world while 

guaranteeing the authenticity of the communicated data and optionally also the 

secrecy and availability. This should allow on one hand a party, either human or 

non-human, to verify that the communicated data originates from the execution 

environment. On the other hand the technology should ensure that data from 

peripherals received by the environment is authentic. 

 

Some of the interfaces to communicate to the user can be used by both the secure and 

non-secure world. For example the secure world and the non-secure world can both 

control the display in TrustZone-enabled processors. This makes it hard for the user to 

verify that he is interacting with an application in the TEE. To solve this the TEE has 

to provide local attestation. Local attestation should enable a user to check that they are 

in fact interacting with the TEE. An example solution is the Secure Mode Indicator 

patented by Texas Instruments. This solution provides the user a LED that is hardware 

controlled and that is only lighted when the secure world is running. 
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Arguments were made that TPM is not necessary if the TEE is robust. Some vendors 

have chosen not to use external TPM and store the keys and protected data in a TEE-

only addressable area. TEE can help with Binding and Sealing. ISO standards suggest 

using a full-fledged TPM. External TPM could be very useful in coordinating between 

several masters and other complex systems. On the other hand, solutions that only rely 

on TPM are very vulnerable for execution and boot attacks. It is easy to override the 

application run states and circumvent TPM. 

 

2.2.1 ARM TrustZone® 

ARM TrustZone technology has been around for almost a decade. It was introduced at 

a time when the controversial discussion about trusted platform-modules (TPM) on x86 

platforms was in full swing (TCPA, Palladium). Similar to how TPM chips were meant 

to magically make PCs "trustworthy", TrustZone aimed at establishing trust in ARM-

based platforms. In contrast to TPMs, which were designed as fixed-function devices 

with a predefined feature set, TrustZone represented a much more flexible approach by 

leveraging the CPU as a freely programmable trusted platform module. To do that, 

ARM introduced a special CPU mode called "secure mode" in addition to the regular 

normal mode, thereby establishing the notions of a "secure world" and a "normal 

world". The distinction between both worlds is completely orthogonal to the normal 

ring protection between user-level and kernel-level code and hidden from the operating 

system running in the normal world. Furthermore, it is not limited to the CPU but 

propagated over the system bus to peripheral devices and memory controllers. This way, 

such an ARM-based platform effectively becomes a kind of split personality. When 

secure mode is active, the software running on the CPU has a different view on the 

whole system than software running in non-secure mode. This way, system functions, 

in particular security functions and cryptographic credentials, can be hidden from the 

normal world. It goes without saying that this concept is vastly more flexible than TPM 

chips because the functionality of the secure world is defined by system software 

instead of being hard-wired. 

 

These worlds are achieved by separating both software and hardware resources (16): 

 

 All memory in the system is separated. This includes the system's RAM but also 

the registers of the CPUs. The RAM is split into two separate virtual memory 

spaces. One for the secure world and one for the normal world. This means that the 

normal world cannot access the memory used by the secure world. The persistent 

memory (such as ash memory) can be separated by using encryption. 

 A dedicated cryptoprocessor and memory for storing keys can only be made 

accessible by the secure world. This prevents the normal world from accessing 

sensitive key material. 

 The display controller can use both a section of the memory of the normal world 

and a section of the secure world as display buffer. This dual buffer setup allows 

the secure world to communicate information to the user without interference from 

the normal world. As the display buffer for the secure world is located in the secure 

world memory, the normal world applications cannot access it. 

 

To ensure the requirements discussed to build a Trusted Execution Environment a 

concept called secure boot is normally used. This process verifies the integrity of the 

contents of the storage that contains the operating system and checks that the operating 
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system is issued by the device manufacturer by checking its signature. This prevents 

attackers from modifying or changing the operating system. 

 

All these arise questions such as: Does TrustZone provide mechanisms for secure 

booting and secure storage? Isn't it a kind of virtualization technology? If yes, isn't it 

superseded by ARM's virtualization extensions? How does it work? Is it important to 

consider it when developing an operating system (17)? 

 

How does it work 

 

TrustZone technology is programmed into the hardware, enabling the protection of 

memory and peripherals. Since security is designed into the hardware, TrustZone 

avoids security vulnerabilities caused by proprietary, non-portable solutions outside the 

core. Security can be maintained as an inherent feature of the device, without degrading 

system performance, enabling device manufacturers to build security applications, such 

as DRM or mobile payment as protected applications that run on the secure kernel. 

 

With TrustZone, user space applications operate in "normal" mode. The kernel runs 

"system" mode. The trusted kernel operates in "monitor" mode. Because of this 

architecture, even a "rooted" application cannot access protected regions within the 

trusted kernel. Any component can be designated as part of the trusted infrastructure, 

from regions of the PCI-E address space to NAND memory. Overall, TrustZone offers 

a secure and easy-to-implement trusted computing solution for device manufacturers, 

without requiring additional hardware. 

 

One of the main hardware features of TrustZone technology is the Security bit on the 

communication bus (18). The ARM processor has a communication bus called the AXI-

bus that is used by the main processor to communicate with peripherals (see figure 

below). These peripherals are located in the same package or chip based on the SoC 

architecture. The security bit is added to this bus to communicate to the peripherals 

whether the transaction they are receiving is either from the secure world or the normal 

world. All peripherals should check the security status of the transaction and ensure that 

they do not leak any sensitive information. 
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Figure 1: AXI-bus diagram 

 

Another aspect of the TrustZone hardware is the separation of the two worlds in the 

processor itself. This is indicated by the NS -bit (Non-Secure-bit) in the Secure 

Configuration Register (SCR) of the processor. This bit can only be set in the Secure 

mode. When the NS-bit is 0 the processor is operating in secure world and when it is 1 

the processor is operating in normal world. Two operating systems can run alongside 

each other using this architecture: One in the secure world and one in the normal world. 

As a result a special form of virtualization is created: There are two virtual 

environments that include virtual processors and virtual resources. Access to those 

virtual resources can be limited depending on the security status of the processor. The 

value of the NS-bit is used to signal the security status of communications on the AXI 

bus. This is in turn used by the peripheral to decide if it should act on a certain 

transaction. 

 

Figure 2: NS Bit functionality normal world below illustrates the concept of the two 

worlds. The normal world is active (non-secure bit is set), the OS running on the 

platform can only access a subset of the physical resources. 
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Figure 2: NS Bit functionality normal world 

 

When a world switch takes place, the secure world comes into effect. The system 

software running in the secure world can access the devices hidden from the normal 

world. In Figure 2 below we can see clearly the switch to the secure world with NS Bit 

0, but also the different areas of memory that are being used. 

 

 
Figure 3: NS Bit functionality secure world 

 

A special state is created in the secure world to facilitate switching between the worlds. 

This state is called the monitor mode. The normal world can start this monitor mode by 

calling the Secure Monitor Call (SMC) instruction. Hardware exceptions such as 

interrupts can also cause a switch to the secure world. When such switch due to the 

SMC instruction or exceptions happens the monitor mode of the secure world is 

enabled. The monitor mode ensures that the state of the world it is leaving is saved and 
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the state of the world it is entering is restored (16). State data includes all processor 

registers and optionally additional information depending on the peripherals in the SoC 

(16). 

 

TrustZone software provides a minimal secure kernel which can be run in parallel with 

a more fully featured high-level OS-such as Linux, Android, or BSD-on the same core. 

It also provides drivers for the normal, rich OS (normal world) to communicate with 

the secure OS (secure world). 

 

 
Figure 4: Arm Trusted Firmware 

 

TrustZone software uses ARM TrustZone security extensions to completely protect the 

secure OS and any secure peripherals from code running in the normal world. It 

includes a secure monitor that switches between the secure and the normal world, and 

an example secure first-stage bootloader. Systems with a separate ARM processor 

dedicated for security can use the TrustZone software multicore, running the secure 

kernel on its own CPU. 

 

Processors can have multiple processor cores to allow multiprocessing. This may 

present additional difficulties to ensure that all data is kept safe between context 

switches. To simplify the switching, the secure world can be fixed to a single core or a 

certain number of cores. Note that, in contrast to dedicated security processors, the 

TrustZone hardware does not by default include tamper protection [9]. Since ARM only 

sells the designs to create the processors and does not make the chip itself 

manufacturers may include additional hardware features to offer better tamper 

resistance. Also note that while TrustZone provides hardware-based security features, 

the security of the whole system is also depending on some software features such as 

the sanity of the switching between the secure and normal world implemented in the 
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monitor mode. A bad implementation could leak the register values that may contain 

sensitive information. 

 

 

 
Figure 5: ARM Trusted Firmware Architecture 

 

When an ARM processor with TrustZone support boots it starts by executing an 

application that is programmed in the on-chip-ROM in the secure world. This 

application is called the bootrom. The bootrom can be fixed by the processor 

manufacturer at design-time using a Masked ROM or by the customer of the 

manufacturer (the manufacturer of the system that incorporates the processor) by using 

write-locked ash. A public key is programmed in to the SoC using One-Time-

Programmable (OTP) memory. This memory can only be written once. This is often 

achieved by burning fuses on the chip. 

 

A TrustZone compatible bootloader starts the OS that runs in secure world. When it 

boots is starts the normal world OS. The use case of this procedure is described below. 
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Figure 6: TrustZone boot procedure 

 

However, hardware features such as the impossibility of the normal world to access the 

memory of the secure world allow this functionality to be implemented. To allow 

multiple applications to be run in the secure world a secure world operating system 

(secure world OS) has to be implemented. We consider the secure world OS as the 

software that provides the TEE: It provides an execution environment for applications 

to run in. As discussed previously, applications running in the TEE are called trustlets. 

The secure world OS schedules resources between both the trustlets running in the 

secure world and the operating system running in the normal world. The secure world 

OS should handle both context switches (between trustlets in the secure world and 

between the secure and normal world). It should also ensure that no data is leaked 

during the context switches. Note that if an untrusted user is allowed to run trustlets in 

the TEE, also the security of context switches between trustlets in the TEE should not 

leak any information. Even if all trustlets are created by the same issuer this is still a 

good property to ensure. The separation between the two worlds each with its operating 

system is pictured in Figure 6. 

 

 

 
Figure 7: The separation of the hardware by TrustZone in two worlds. 
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A secure world OS is sometimes seen as a hypervisor. A term that is generally associated 

with running virtual machines; running multiple operating systems in their own 

environment on the same hardware. While the separation by TrustZone also provides 

two operating systems running in their own environment on the same hardware, the 

actual architecture is different. In the case of virtualization the hypervisor provides 

virtual hardware on which the (unlimited number of) operating systems run. The 

hypervisor sits in between the virtual hardware and the real hardware. In the case of 

TrustZone technology both the secure world OS and the OS running in the normal world 

can directly communicate with the hardware. However, some parts of the hardware are 

only accessible by the secure world. In principle there is no limit to the complexity and 

functionality of the secure world OS running in the secure world. Also, to reduce the 

attack-surface, the functionality is usually limited. There is only a small number of open 

source implementations of TrustZone compatible secure world OSes available (19) but 

ARM has opensourced the ARM Trusted Firmware11. 

 

2.3 Android 
 

Initially developed by Android Inc., which Google bought in 2005, Android was 

unveiled in 2007, with the first commercial Android device launched in September 

2008. The operating system has since gone through multiple major releases, with the 

current version being 8.1 "Oreo", released in December 2017. It is based on a LTS 

Linux Kernel and since 2017 version 3.18 or 4.4 are used. 

 

Android has been the best-selling OS worldwide on smartphones since 2011 and on 

tablets since 2013. As of May 2017, it has over two billion monthly active users, the 

largest installed base of any operating system, and as of 2017, the Google Play store 

features over 3.5 million apps12. Applications are written using Android SDK and Java. 

Java may be combined with C/C++. Also the Go language is supported an in May of 

2017, Google announced support for Kotlin. Android SDK includes a lot of libraries 

and tools such as emulators, documentations, tutorials and sample code. The primary 

IDE since 2014 is Google’s Android Studio witch has integrate all the tools mentioned 

above in its GUI. Numbers of Android developers have grown big last years, building 

apps for almost everything which can be acquired by Android users from Google Play 

Store, or unofficial sources. 

 

Source code of Android is available after the release of each version in AOSP, an open 

source initiative by Google. The AOSP code can be found mainly on Nexus and Pixel 

series of devices. Many OEMs customize and adapt the AOSP code to run on their 

hardware based on their needs and their peripheral devices. As a result most Android 

devices ship with a combination of open source and closed source software. 

 

                                                 

 

 

 

 
11 https://github.com/ARM-software/arm-trusted-firmware 
12 https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-

store/ 
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The directory layout of the file system for Android is somewhat different from a 

usual Linux operating system: 

 

 /data is used to store the data of all applications and services running on the 

operating system in. 

 

 /data/data is the location for applications to store their data. Each application gets 

its own directory that is named using the application identifier 

(com.company.example). 

 

 /sdcard is the location where the SD-card (if present in the system) is mounted. 

The internal storage is limited but faster on older Android devices so developers 

had to choose whether the stored the data internally or on the SD-card. Most recent 

Android devices have larger internal ash storage so they do not need a SD-card 

anymore. On systems that have internal ash storage and no SD-card slot the 

/sdcard path is symlinked to /storage/emulated/legacy. 

 

The (emulated) SD-card directory can be accessed over USB to write and read all les 

from it. A number of directories in /sdcard are accessible by all applications such as 

/sdcard/DCIM where pictures are stored and /sdcard/Music for storing Music. The 

/sdcard/Android/data directory is where applications can store application speci c data 

(like the /data/data directory). As with the internal application-data directory each 

application gets its own directory that only can be read by that application. However, 

all contents of the (emulated) SD-card can be read and modified over USB. This also 

includes the application data that is stored in /sdcard/Android/data, so caution should 

be used when storing data on /sdcard. 

 

Applications have a file AndroidManifest.xml that describes the contents of the 

application and the permissions that the applications requests. A user cannot deny a 

single permission in AOSP Android 5 and older in the set of permissions requested by 

the application. Some OEMs have implemented their own application permission 

restriction to applications. Starting from version 6 the user can chose almost all 

permissions that the application is allowed to have except if they are critical for the 

functionality of the app. The requested permissions are showed before the application 

is installed by the user or when an updated version of an application requests additional 

permissions. After installation there is no way for a user the denial of certain 

permissions other than un-installing the application in Android 5. As we mentioned 

since Android 6 this has changed. A list of all permissions available can be found in the 

Android API documentation13. 

 

To control the access of the application to the file system, OS assigns automatically a 

UID to each name of the application. This is different than normal Linux where each 

user can run the applications under his UID. The mapping of UIDs and application 

names can be found in /data/system/packages.list and its structure is like that: 

                                                 

 

 

 

 
13 http://developer.android.com/reference/android/Manifest.permission.html 

http://developer.android.com/reference/android/Manifest.permission.html
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<pkg_name> <UID> <user_installed> <directory> <type_of_app> 

 

An example:  
 

com.example.user.rogue.app 10081 1 

/data/user/0/com.example.user.rogue_app default 

 

We can clearly see that an application with package name com.example.user.rogue.app 

(this is the app we are going to use in the next chapter) has UID 10081. 

 

Android OS uses its special virtual machine called Dalvic14 as basis for the apps and 

services. This virtual machine is based on Java resulting a number of Java APIs ported 

to Android. The ported APIs can be found under java.* packages which provide support 

for cryptographic operations through the java.security package. Additional 

functionality is implemented in the android.security package. The API version is 

indicated by API level. The rst Android release has API 1 and the latest one (Oreo 8.1) 

has API level 27. An overview of Android versions associated with API levels can ve 

found on the Android Developer web-page15 

 

Back to contents 

                                                 

 

 

 

 
14 https://source.android.com/devices/tech/dalvik/index.html 
15 https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels 
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3. Android Keystore 
 

In this Chapter the key storage solution provided by Android is going to be analyzed. 

In Android 6.0 M the security scheme changed dramatically over L version giving user 

more control over app permissions. Instead of granting all apps permissions when the 

user installs them, Android prompts the user to choose only which permissions he 

wants. It is also easy to revoke permissions even for apps designed for old versions. 

Also the big news was the Android Keystore which made its debut with Android API 

18. Chad Brubaker, a senior engineer working on Android security, states in Androids 

website “Android has opened access to hardware security that used to be costly and 

difficult to use. Now with Keystore, any developer can use the best available hardware 

security features.” As a matter of fact if we check the AOSP page16 we will find out that 

many bug-fixes and security issues are resolved as time passes. We shall see though in 

Chapter 4 that this is not true if someone gains root or system privileges with even SE 

Linux to not complain about anything… 

 

3.1 APIs for Key storage 
 

In Android API 1 developers where provided with cryptographic operations and key 

storage. For this the java.security.KeyStore class which provided an inderface for key 

storage. It only provided the interface to store the keys and also to get the instance of 

the class. Each key store type is defined in a class that provides a 

java.security.KeystoreSpi interface. The KeyStore class uses the methods of 

KeystoreSpi interface which give the ability to developers to store keys. 

 

There are multiple Key Store types given from Android API. The most knowns are the 

Bouncy Castle key store which is a cryptographic library for Java and C#, and the 

official Android Keystore. As we said above it was added to AOSP with API 18 and 

since then it is inside all API versions.  

 

This Keystore has a service created for it named KeyStore, communicating with it using 

Inter Process Communication (IPC). The KeyStore service starts at boot time with the 

OS. Manufacturers can develop drivers for their hardware that communicates with 

KeyStore service, providing hardware based secure key storage. If no drivers are 

detected or not compatible or no hardware for TEE, Android defaults to a software 

implementation. The following variants of AndroidKeyStore will be evaluated: 

 

 Software based: Not all Android devices support hardware-based key storage. 

Some old Arm chips simple do not have TrustZone support and some device 

manufacturers do not have the ability to create applications for the TEE. For this 

reason Android developers created a software based KeyMaster trustlet that runs 

in the TEE. If a device supports hardware based AndroidKeyStore though the 

software based is not available. 

                                                 

 

 

 

 
16 https://android.googlesource.com/platform/system/security/ 
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 Hardware based: Qualcomm created a closed source keymanager trustlet in the 

TEE and driver for Android. 

 

Note that while the AndroidKeyStore variants are called software-based and hardware-

based all solutions are of course based on both software and hardware. With software-

based and hardware-based we mean that hardware-based or only software-based 

security features are used to protect the key store.  

 

Besides the key store type a provider can be optionally defined for some classes. This 

defines what library is used for cryptographic operations. The Spongy Castle library 

uses this to interact with the Bouncy Castle key store type. When creating an instance 

of the Bouncy Castle key store type Spongy Castle is defined as provider. Subsequently 

keys compatible with the Spongy Castle library are provided. Note that not all 

combinations of providers and key store types are supported, some key store types do 

not support providers at all. This can be the case for key store types that only provide 

an interface to manage the keys but do not provide the actual key material. An example 

of this is the AndroidKeyStore key store type that can run its cryptographic operations 

outside of application process on other hardware. 

 

API level 14 added a new KeyChain class. This is a high-level API to provide 

asymmetric key storage. In contrast to the KeyStore class the KeyChain class interacts 

with the user using a graphical interface. For example the user can be asked confirm 

key generation. When a private key is required for operation the user is also asked to 

confirm. This class, however, also provides two interesting static methods. The 

isKeyAlgorithmSupported(String algorithm) can be used to test if the device supports 

a certain algorithm. In the API level 19 release a new static method was added to the 

class, isBoundKeyAlgorithm(String algorithm). This method Returns true if the current 

device's KeyChain binds any PrivateKey of the given algorithm to the device once 

imported or generated according to documentation17. 

 

In addition to private keys it is also possible to store symmetric keys in the KeyStore. 

To support this the key store has a SecretKeyEntry. Secret keys can be created using 

the javax.crypto.spec.SecretKeySpec class. Instances of this class are initialized by a 

byte-array for the secret key and a string indicating the algorithm that is associated with 

the secret key. 

 

Also another problem which might concern the developers and also the end users is that 

until Android M when device security settings (device-lock) are set or changed by the 

user (No lock, PIN, Swipe etc) the keys inside Keystore are wiped. I realized it when 

testing the behavior of Android Keystore and Dorian Cussen confirmed it in his blog 

post18 stating that it was a mistake in KeyPairGeneratorSpec class “an 

undocumented-exception-throwing fail which requires you to reset the alias 

(Keystore.deleteEntry())” 

                                                 

 

 

 

 
17 http://developer.android.com/reference/android/security/KeyChain.html 
18 https://doridori.github.io/android-security-the-forgetful-keystore/ 
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3.2 Methodology 
 

As we said in the previous section a good way to evaluate and check the differences of 

Android Keystore is the open source code of Android (AOSP) in the git repositories. 

Most of the code is provided that is used by mobile phones running Android OS (Nexus 

and Pixel phones). Since licensing of the AOSP, code requires that changes made to 

code are also made public so the code for phones that are not developed under Google 

is available. Therefore some manufacturers also have donated part of their source code 

to the AOSP making it open. 

 

To evaluate the condition and to analyze the system of Android OS, we will be using 

root privileges on the platforms. Root access disabled in the Android OS that is shipped 

with the mobile phones, so in order to gain root privileges, we root the device (in AVDs 

this is not needed). By unlocking the bootloaders of the phone users are allowed to 

install android images that are not signed by the manufacturer. Many tutorials exist for 

rooting an Android device on internet accessible by anyone19 using just Android Debug 

Bridge (ADB). ADB is a “bridge” for developers to work out bugs in their Android 

applications aka debugging. This is done by connecting a device that runs the software 

through a PC, and feeding it terminal commands. ADB lets you modify your device (or 

device’s software) via a PC command line. For the whole rooting process there is even 

a video in YouTube20 giving instructions on how to extract the Stock Android Firmware 

that the phone shipped with in order not to lose the “clean” OS using the TWRP 

recovery tool21. This is not supported though for all device manufacturers and 

firmwares. The users then install an app called SuperSU that allows any app that is 

installed in the device to run with root privileges. 

 

3.2.1 Criteria 

As Tim Cooijmans refers (8), he defined three requirements for evaluation: 

 

Rdevice bound The private key material stored in the key store cannot be extracted by an 

attacker to be used outside of the device that generated it. This defines that keys are 

bound to the device. 

 

Rapp bound The private key material stored in the key store can only be used by the 

application and on the device that generated it. This defines that keys are bound to the 

device and the application. 

 

Ruser consent Using the private key material requires explicit permission from the user and 

cannot be used without explicit consent. This defines user consent. 

 

                                                 

 

 

 

 
19 http://trendblog.net/how-to-root-your-google-nexus-device-4-5-7-10/ 
20 https://www.youtube.com/watch?v=DyUainEJwLM 
21 https://dl.twrp.me/ 
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The requirements Rdevice bound and Rapp bound are evaluated using three assumed attacker 

models: 

 

Aoutside no root The first attacker model is an attacker that is able to run and install his own 

application on the phone with any of the permissions that an application can request. 

This models a rogue application (or update of an application) that a user can install from 

an app store such as the Google Play Store.  

Aoutside root no memory The second is an attacker that has root permissions and can use all 

data stored on the phone. We assume that these permissions are gained by either an 

exploit or are given to the attacker by using an application that asks for root permissions 

on a rooted phone. This models that either the attacker uses an exploit to gain root 

permissions on the device or that the attacker has the ability to run an application with 

root permissions. Note that this may seem as a situation that does not happen a lot, 

however, many users today enable the root permissions on their phone to work around 

the permission model. There are even applications in the Google Play Store that require 

root permissions. For example the Titanium Backup in the Play Store11 application that 

is used to back up a phone requires root permissions. 

 

Aoutside root memory The third attacker model assumes that an attacker has root permissions 

and can use all data stored on the phone but also has access to data that is only 

temporarily stored on the phone such as data stored in memory. For example a PIN that 

is used to unlock the phone but that is not stored phone. 

 

For the requirement Ruser  consent there is only one attacker model: 

 

Ainside no root This attacker model assumes that the actual developer of an app is or has 

become malicious. This is particularly interesting in the case where the developer of an 

application has interest in using the key pair that is stored for the app. An example of 

this can be an e-mail application that has a key pair to sign messages. The signature 

may have legal-effect that may be abused 

 

For all criteria the described attacker models are evaluated. For each combination of a 

criteria and an attacker model the result is either: 

 

 An attacker using the attacker model cannot violate the requirement. 

 

X An attacker using the attacker model can violate the requirement. 

 

 

 

 

 

 

 

 

 

 

 

 



Security Evaluation of Android Keystore 

25 

 

A
outside−no−root 

A
inside−no−root 

 
 
 

 
Mal. App App  

 
 

 

Android OS 
 
 

A
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Figure 8: Schematic overview of the attacker models 

 

 

All attacker models are shown in a schematic overview in the above figure. In this 

figure we see two applications, App is the genuine owner of the keys that need to be 

protected, Mal. App is an malicious application controlled by an attacker. The attackers 

that have root permissions can access the operating system controls and are therefore 

pictures to be inside the operating system. Although in fact attackers could also gain 

root credentials by using an application. 

 

The solution that scores X on all requirements for all attacker models is clearly the best 

solution. Note that requirement Rapp bound is a more specific variant of requirement 

Rdevice bound. So if Rapp bound is satisfied then Rdevice bound is also satisfied. Also note that 

the attacker models for Rapp bound and Rdevice bound are increasing in the privileges the 

attacker has, Aoutside no root has the smallest number of permissions and Aoutside root memory 

the most. If a requirement can be violated by an attacker having attacker model Aoutside 

no root than it can also be violated by an attacker having attacker model Aoutside root no memory 

or Aoutside root memory.  

 

The case where a user is tricked to give for example his password is not considered an 

attack in this use case. However, this may be a realistic threat. 

 

3.2.2 Evaluation 

To test the Android KeyStore we use a modified version of Cooijmans KeyStorageTest 

application (9). It is modified so it will try and export the modulus of the RSA key and 

the Private exponent that we will be storing in Android Keystore which it is prohibited 

by the API for the software version22, and because there is a bug in Android code for 

versions 6 and 7 as described we cannot test its behavior23. The code exists in Appendix 

B, some classed are deprecated since Android 7, but they run correctly with backwards 

compatibility. So let’s analyze what the code does. 

 

                                                 

 

 

 

 
22 https://developer.android.com/training/articles/keystore.html 
23 https://issuetracker.google.com/issues/37091211 
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On startup of the application the constructor checks if the cryptographic algorithms 

RSA, ECDSA and DSA are bound to the device if they are available. This check is done 

by function isBoundKeyAlgorithm(String algorithm) of the KeyChain 

class. When the algorithms are bound to device it returns true. Continuing the 

constructor gets all keys stored in the Keystore by alias. This alias is defined inside the 

application and creates the key with it which is for identification of the key pair. The 

other methods are for generating the key, signing it, delete it and also for the rogue app 

there is a special button that shows the modulus and try to show the private exponent. 

 

This applications generates an RSA key pair using the code in table 3. This code 

generates a key pair using the RSA algorithm with a key with size of 2048bits. The 

KeyPariGenerator by default also generates a self-signed certificate. The subject 

the serial number, start and end dates and the validity period have to be defined on 

creation of the key pair. The setKeySize function is supported from API version 19 

and above, while version 18 only supports RSA keys of 2048-bits in size.  

 
Table 2: Generating an RSA key pair 

 
 

Since API version 21, Android KeyStore also supports symmetric keys generation 

which was the major change of it since its debut. We can see a short example of 

generating and retrieving a 256 AES key using the M API in Table 3. 

KeyPairGenerator rsaKeyGen; 

 

try { 

    rsaKeyGen = KeyPairGenerator.getInstance(“RSA”, 

"AndroidKeyStore"); 

} catch (Exception exception) { 

    writeToLog(exception.toString()); 

    return; 

} 

 

KeyPairGeneratorSpec rsaKeyGenSpec; 

 

try { 

    rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(this) 

                        .setAlias(KEY_ALIAS) 

                        .setSubject(new X500Principal("CN=test")) 

                        .setSerialNumber(new BigInteger("1")) 

                        .setStartDate(new Date()) 

                        .setEndDate(new GregorianCalendar(2019, 1, 

1).getTime()) 

                        .build(); 

}catch (Exception exception){ 

     writeToLog(exception.toString()); 

     return; 

} 

 

try { 

    rsaKeyGen.initialize(rsaKeyGenSpec); 

} catch (InvalidAlgorithmParameterException exception) { 

    writeToLog(exception.toString()); 

    return; 

} 

 

rsaKeyGen.generateKeyPair(); 
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This is Java Cryptography Architecture (JCA) code, very similar to our example for 

asymmetric key handling. What is new is that there are more parameters available for 

the developer to use when generating or importing a key. Now you can specify the exact 

usage type of each key (encryption/decryption, signing/verification), its block mode, 

padding, etc. These parameters are stored along with the key, and it is prohibited to use 

the key for other purpose than the one it was generated for. So you can use a key for 

encryption only for that reason. Key validity period for each purpose can also be 

specified. 

 

Another major feature in this version it is that key usage needs authentication before 

actually using the key check Figure 9. The authentication validity period can also be set 

giving the key more protection even if the key use is authenticated. That way you can 

authenticate each time you use a key or once every 15 minutes. This is for both 

symmetric and asymmetric keys and as an extra, the system can check whether a user 

has authenticated within a given time period. This is a good way to verify user presence, 

especially if the application does not make use of cryptography.  

 
Table 3: Symmetric Key generation24 

 
 

If we skip the details though key generation and storage work the same as previous 

android versions, the Keystore service provides an interface with almost the same 

methods and also a fallback implementation in opposing with the Keymaster which 

offers a completely different interface. All these have not mitigate the theme of this 

thesis though. 

                                                 

 

 

 

 
24 https://nelenkov.blogspot.gr/2015/06/keystore-redesign-in-android-m.html 

KeyGenParameterSpec.Builder builder = new 

KeyGenParameterSpec.Builder("key1", 

                    KeyProperties.PURPOSE_ENCRYPT | 

KeyProperties.PURPOSE_DECRYPT); 

KeyGenParameterSpec keySpec = builder 

                    .setKeySize(256) 

                    .setBlockModes("CBC") 

                    .setEncryptionPaddings("PKCS7Padding") 

                    .setRandomizedEncryptionRequired(true) 

                    .setUserAuthenticationRequired(true) 

                    .setUserAuthenticationValidityDurationSeconds(5 

* 60) 

                    .build(); 

KeyGenerator kg = KeyGenerator.getInstance("AES", 

"AndroidKeyStore"); 

kg.init(keySpec); 

SecretKey key = kg.generateKey(); 

KeyStore ks = KeyStore.getInstance("AndroidKeyStore"); 

ks.load(null); 

KeyStore.SecretKeyEntry entry = 

(KeyStore.SecretKeyEntry)ks.getEntry("key1", null); 

key = entry.getSecretKey(); 
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Figure 9: Per use key authentication 

 

Keymaster blobs are the files that keys are stored in the directory 

/data/misc/keystore/user_X, where X is the android user ID starting from 0 

for primary user. Keymaster blobs are variable size and they include a version byte, 

nonce, encrypted key, tag for authenticating the encrypted key and the key properties. 

This key blob can be encrypted for Android versions older than 6 as we will see in the 

next Chapter. 

 

The Keystore data are stored on a per-application basis while the application is the one 

that gives the command to store and load the data. The application calls the load 

function of Keystore with an InputStream as argument which can be a 

FileImputStream that reads the contents of a file. As a second argument a byte 

array of the password can be provided as a password (as we will see later this will be 

the .masterkey of Android Keystore).  

 

For our attack schema, two applications are installed on devices (keystore_app, 

rogue_app). The goal is to give the rogue app control over the key pair generated by the 

keystore app. Rogue app then can generate a valid signature over predefined data. If 

this is possible it violates Rapp-bound. To test if Rdevice-bound is violated we copy the key 

blobs and try to decrypt them or generate a valid signature on another phone. To verify 

Ruser-consent we look if the phone will ask for consent when we use the key (in Android 6 

and later it asks but only if this API is used when creating the keys and providing the 

key purpose). 

 

Back to contents 
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4. Experiment 
 

In this Chapter we will experiment and evaluate if all assumptions that are real for 

Android 4.4 are also for 5, 6 & 7 versions. We will do the same tests in each Android 

version Keystore with or without TEE (software and hardware based) using the two 

applications keystore_app and rogue_app. In the beginning of each Section we will 

analyze each architecture and then we will provide the proof of concept for each one 

separately.  

 

 
Figure 10: Legit app and Rogue app installed 

 

Also for Android version 5 we will try to parse the private key of the keyblob exported 

from the device. To achieve that we will use the Nikolay Elenkov’s java application 

keystore-decryptor25 which decrypts the keystore files. To make it work I had to forcibly 

copy the bouncycastle library to the jar file of keystore-decryptor because the gradle 

script for an uknown reason did not put it inside the jar even when changing the version 

of bouncycastle to current. 

 

 

                                                 

 

 

 

 
25 https://github.com/nelenkov/keystore-decryptor 
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Figure 11: Forcibly inserting bouncycastle library to keystore-decryptor 

 

The final step is to install each Android Version to Nexus 5 and then root it using the 

walkthroughs provided at the beginning of each Section. 

 

4.1 Android KeyStore test using TEE on Qualcomm devices 
 

Android Keystore on Qualcomm devices creates two key blobs in the directory we 

provided in Section 3.2.2 which is /data/misc/keystore/user_X, two for each 

key pair created using the keystore_app.  

 

 A USRPKEY key blob that stores the key pair parameters including the private 

key 

 A USRCERT key blob that stores the self-signed certificate. 

 

Both files have the following format upon creation given by the Android Keystore itself: 

<UID of the app>_USRPKEY_<key alias given inside app> and 

<UID of the app>_USRCERT_<key alias given inside app>. For 

example as we will see later our files will be like 10084_USRPKEY_TestKeyPair. 

The UID of the app is the UID that the application is running under. The key alias is 

chosen by the developer using the setAllias(String key_alias) method of 

KeyPairGeneratorSpec.Builder. 

 

The /data/misc/keystore/user_X is not accessible by a non-root user making 

other apps or services not to be able to read the key files. That way Rdevice-bound and Rapp-

bound are secured for Aoutside-no-root. The part that make the Android KeyStore vulnerable 

is the UID inside the name of the keyfiles. Using root permissions an attacker can 

rename or copy the files to new files in the same directory on the same device with the 
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UID of the rogue-app. For example in the next figure we  show how we copy the key 

files of the legit up keystore_app to the rogue_app. 

 

 
Figure 12: Copying key files with other UID 

 

This way the private keys of legit app will be accessible to the other rogue app. Then 

we can generate a valid signature from the rogue_app using the key pair generated from 

the keystore_app. With this happening Rapp-bound is not satisfied for Aoutside-root-no-memory. 

Copying the files to another device will not work because the private key can only be 

decrypted with the hardware-baked key that exists in the TEE. So Rdevice-bound  is satisfied 

for all attacker models. We observed that when no pin exists on the device there is no 

.masterkey file created giving us the suspicion that a standard key is used for keyblob 

encryption. 

 

In Android 5 Android Keystore does not support user-key authentication when using a 

key as version 6 and 7 do. So an attacker can access the private key material at any time 

even for Android 6 and 7 if he knows the pin of the key. So Ruser-consent is not satisfied 

explicitly in Android 5 but only if the pin of the key is unknown is satisfied in Android 

6 and 7. 

 

For Android 5 this gives us the following conclusions: 

 

 An attacker that has root permissions can easily use the keys of other apps on the 

same device by renaming the keystore files. 

 Key pairs cannot be used outside of the device because the private data are 

encrypted with a device-specific key living inside the TEE that cannot be exported. 

 There is no way to require any input from the user before key usage in Android 5. 

 

The actual storage format of the PKEY is defined by the Qualcomm API 21. As we can 

see the file contains a number of fields according to the struct: 

 

 Magic num: A fixed magic number is used to identify the les as key storage. The 

magic number is 0x4B4D4B42 or "KMKB" (KeyMaster Key Blob). 

 Version num: The version number indicates the version of key. 

 Modulus: Stores the modulus of the RSA key pair. The size of this field is fixed to 

KM KEY SIZE MAX which is 512 bytes (= 4096 bits). 

 Modulus size: The actual size of the modulus. Since the modulus can be smaller 

than 4096 bits this field indicates the number of bytes that is actual used. 
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 Public exponent: Stores the public exponent of the RSA key pair. The size of this 

field is also fixed to KM KEY SIZE MAX. 

 Public exponent size: The actual size of the public exponent. 

 IV: The IV (initialization vector) that is used for the encryption of the encrypted 

private exponent using AES-CBC-128. 

 Encrypted private exponent: Stores the private exponent of the RSA key pair in a 

encrypted form using AES-CBC-128 encryption. For the encryption the iv and an 

unknown key is used. This key is probably fixed in hardware to bind the private 

key to the device. 

 Encrypted private exponent size: Stores the actual size of the private exponent in 

unencrypted form. 

 HMAC: A HMAC is computed over the whole le using a SHA-2 and a key which 

is probably also fixed in hardware. This should ensure the integrity of the file. 

 

 

The KeyStore service adds some data around the struct to identify the contents. The key 

used for encryption of the private exponent and for computing the HMAC cannot be 

found on the device. Also the trustlet is not open source according to the source code 

that is available the encryption is done in the TEE by the keymaster trustlet. We suspect 

that the keys are also stored in the TEE and are device specific. No method to access 

these keys from outside the TEE is documented, nor could we find one. 

 

4.1.1 Evaluation in Android 5.0 

Firstly we install the keystore app and we generate a key pair by pressing the “GEN” 

button and then we sign a byte array of string "Test Test Test". Then we install the 

roguw_app to our device and we read the file /data/system/packages.list 

which contains the information of which applications map with which UIDs, in order 

to find the rogue_app UID. 

 

 
Figure 13: 5HW key generation and validation of signature 

 

 

Afterwards the only thing we have to do is to copy the files of the legit app with the 

UID of the rogue app (10089) as we can see in the figure below. 
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Figure 14: 5HW Finding UID of rogue and legit apps 

 

 
Figure 15: 5HW Copy key files and change ownership 

 

Now we have to change also the ownership because the new files are owned by root 

user and group, or else keystore will not be able to read these files. After this step we 

run the rogue app and we can see that the key entry of the legit app is being read 

(Algorithm used, Subject, validity period) but also a validation of signature. 
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Figure 16: 5HW rogue app parsing key of legit app 

 

As we can see in Figure 16 the whole modulus of the RSA key can be exported on 

display. In the next step we will use keystore-decryptor to try to decrypt the private key 

from the file we pulled from device using ADB. 

 
$ java -jar ksdecryptor-all.jar <master key file> <key 

file> <password> 

 

 
Figure 17: 5HW using keystore-decryptor 

 

The modulus that keystore-decryptor exports from the keyblob is the same as in Figure 

16 but the private key cannot be exported because it is encrypted using the key provided 

by the TEE. The .masterkey file that encrypts the keyblob has its key decrypted. 

The structure of the keyblob is as described in page 30.  

 

 

4.1.2 Evaluation in Android 6.0.1 

Firstly we install the keystore app and when we run it we see that the algorithms are 

bound to device. Then we generate a key pair by pressing the “GEN” button and then 
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we push the “SIG” button to sign a byte array of string "Test Test Test" and verify the 

signature. Then we install the rogue_app to our device and we read the file 

/data/system/packages.list which contains the information of which 

applications map with which UIDs, in order to find the rogue_app UID. 

 

 
Figure 18: 6HW key generation and validation of signature 

 

Afterwards the only thing we have to do is to copy the files of the legit app with the 

UID of the rogue app (10085) as we can see in the figure below. Now we have to change 

also the ownership because the new files are owned by root user and group, or else 

keystore will not be able to read these files. 

 

 
Figure 19: 6HW Copy key files and change ownership 

 

The final step will be again to run the rogue app and check what will happen. We find 

out that nothing has changed and the key entries are accessible again by the rogue app. 

We can see again the algorithm, the subject and the validity period of the key pair and 

also the modulus of RSA but not whole. The system does not permit the full extraction 

of the modulus in the screen. Also when we try to export the private exponent of the 

key pair the bug which we referred in page 24 is causing a casting exception where an 

RSAPrivatekey cannot be casted to and AndroidKeyStoreRSAPrivateKey 

(funny huh?). 
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Figure 20: 6HW rogue app parsing key of legit app 

 

4.1.3 Evaluation in Android 7.1.2 

Again firstly we install the keystore app and when we run it we see that the algorithms 

are bound to device. Then we generate a key pair by pressing the “GEN” button and 

then we sign a byte array of string "Test Test Test" which is hardcoded in the device. 

Then we install the rogue_app to our device and we read the file 

/data/system/packages.list which contains the information of which 

applications map with which UIDs, in order to find the rogue_app UID. 

 

 
Figure 21: 7HW key generation and validation of signature 

 

Afterwards we have to copy the files of the legit app with the UID of the rogue app 

(10085) as we can see in the figure below. Now we have to change also the ownership 

because the new files are owned by root user and group, or else keystore will not be 

able to read these files. In Android 7 we can see another entry which is hidden file 

.10009_chr_USRPKEY_TestKeyPair. 
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Figure 22: 7HW Copy key files and change ownership 

 

If we run the rogue app we can see again the algorithm, the subject and the validity 

period of the key pair and also the modulus of RSA but not whole. The system again 

does not permit the full extraction of the modulus in the screen. Also when we try to 

export the private exponent of the key pair the same exception with Android 6 is 

occurring. 

 

 
Figure 23: 7HW rogue app parsing key of legit app 

 

There are not any particular differences from Android 6 and the result is typically the 

same. 
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4.2 Android KeyStore using software-based Keymaster 
 

Again we will evaluate with the same methodology the Android KeyStore but now 

without using TEE and hardware-baked keys. The naming of the files when a software 

Keymaster, is the same as we have seen in Section 4.1 Android KeyStore test using 

TEE on Qualcomm devices. Also the attack schema is the same, if an attacker gains 

root permissions he can copy the keyblobs of the legit app to the keyblobs with the UID 

of the rogue app. This issue appears to be specific to the Android KeyStore and not to 

the actual implementation of the key storage that Android KeyStore uses. So Rapp-bound 

is not satisfied for Aoutside-root-no-memory. 

 

When a device does not require a PIN to unlock it no encryption is used for the private 

key. By parsing the USRPKEY file an attacker can learn all information that should be 

kept secret such as the private exponent and the two primes of the RSA key pair. 

However, when a PIN is required to unlock the device a random 128-bit AES master 

key is used for encryption. This master key is randomly generated and stored in the 

.masterkey file in the directory above. This file is encrypted using a key that is 

derived from the PIN using 8192 rounds of PKCS5 PBKDF2 HMAC SHA1. The 

master key is used to encrypt all key entries without any form of per-entry key-

derivation. So if a password is used to unlock the device even if an attacker does not 

know the PIN or password, he can brute-force it outside of the device in case it has not 

much entropy or learn it from memory. Therefore we consider Rdevice-bound as violated. 

 

This changed in Android 6 whereas key blobs are wrapped inside keystore blobs, which 

are in turn stored as files in /data/misc/keystore/user_X, as before. Key 

material is encrypted using AES in OCB mode, which automatically authenticates the 

cipher text and produces an authentication tag upon completion. Each key blob is 

encrypted with a dedicated key encryption key (KEK), which is derived by hashing a 

binary tag representing the key's root of trust (hardware or software), concatenated with 

the key's authorization sets. Finally, the resulting hash value is encrypted with the 

master key to derive the blob's KEK. The current software implementation deliberately 

uses a 128-bit AES zero key, and employs a constant, all-zero nonce for all keys. 

 

In this overview we see the following data (encoded as hexadecimal arrays): 

 

1. The version number (=0) 

2. The (public) modulus n (starts with E408) 

3. The public exponent e (=010001) 

4. The private exponent d (starts with BA4B) 

5. The first prime p (starts with FD3E). This is one of the prime factors of the 

modulus. 

6. The second prime q (starts with E683). This is the other prime factor of the 

modulus. 

7. d mod p1 (starts with 078C) 

8. d mod q1 (starts with C891) 

9. q1  mod p (starts with CA12) 

 

Items 2-4 are represent all the data that is stored for an RSA key pair (including the 

private key). The additional data stored in parameters 5-9 are used for the Chinese 

Remainder Theorem (20). This allows for faster RSA operations compared to a native 
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implementation. Even when this data to use the Chinese Remainder Theorem is not 

present the private key can be used as described in the OpenSSL documentation for the 

RSA algorithm. 

 

The software-based key store is called SoftKeyMaster or OpenSSLKeyMaster and can 

be found in the Android repositories26. The communication between the application and 

the software-based is exactly the same as for the TEE-based implementation. The 

SoftKeyMaster acts as a kind of driver between the KeyMaster daemon and the 

filesystem. 

 

For the needs of software based Android Keystore experiment we use the provided 

Android emulators AVDs. We firstly have to download Android Studio27, download and 

install SDKs and images for Android versions 5, 6 & 7. 

 

 
Figure 24: Android Studio downloading SDKs 

 

When we have everything needed we can then create our AVDs using the avd manager 

provided by SDK. 

 

                                                 

 

 

 

 
26 https://android.googlesource.com/platform/system/security/+/master/softkeymaster/ 

keymaster_openssl.cpp 

27 https://dl.google.com/dl/android/studio/install/3.0.1.0/android-studio-ide-171.4443003-windows.exe 

https://android.googlesource.com/platform/system/security/+/master/softkeymaster/keymaster_openssl.cpp
https://android.googlesource.com/platform/system/security/+/master/softkeymaster/keymaster_openssl.cpp
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Figure 25: Creating the AVDs 

 

For a statefull execution of the emulator we should append the parameter –writable-

system when running the AVD. Next we can install google PlayStore in orded to 

download and test apps for this vulnerability using open google apps project28. We 

extract GmsCore.apk, GoogleServicesFramework.apk, GoogleLoginService.apk and 

Phonesky.apk from the archive and we push them in the AVD with ADB like below: 

 
adb push PrebuiltGmsCore.apk /system/priv-app/ && adb push 

GoogleServicesFramework.apk /system/priv-app/ && adb push 

GoogleLoginService.apk /system/priv-app/ && adb push 

Phonesky.apk /system/priv-app 

 

We are ready to go, we don’t need to root the ADVs because they are unlocked and 

have root support from ADB natively. 

 

4.2.1 Evaluation in Android 5.0 

Firstly we install the keystore app and when we run it we see that the algorithms are 

not bound to device. Then we generate a key pair by pressing the “GEN” button and 

then we sign a byte array of string "Test Test Test" which is hardcoded in the device. 

Then we install the rogue_app to our device and we read the file 

/data/system/packages.list which contains the information of which 

applications map with which UIDs, in order to find the rogue_app UID. 

 

                                                 

 

 

 

 
28 http://opengapps.org/ 



Security Evaluation of Android Keystore 

41 

 

 
Figure 26: 5SW Copy key files and change ownership 

 

Now we run the rogue app and we can see that the key entry of the legit app is being 

read (Algorithm used, Subject, validity period) but also a validation of signature. 

 

 
Figure 27: 5SW rogue app parsing key of legit app 

 

As we can see in Figure 27: 5SW rogue app parsing key of legit app Android does not 

allow to extract the private exponent giving an UnsupportedOperationException. The 

next step is to try again to export the private key outside of the device. We use again 

the keystore-decryptor with the following command and let’s see what happens. 

 
$ java -jar ksdecryptor-all.jar <master key file> <key 

file> <password> 
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Figure 28: 5SW using keystore-decryptor 

 

The Private Key entry has been fully exported in plain text!!! 

 

4.2.2 Evaluation in Android 6.0 

Again firstly we install the keystore app and then we generate a key pair by pressing 

the “GEN” button and then we sign a byte array of string "Test Test Test" which is 

hardcoded in the device. Then we install the rogue_app to our device and we read the 

file /data/system/packages.list which contains the information of which 

applications map with which UIDs, in order to find the rogue_app UID.  

 

 
Figure 29: 6SW key generation and validation of signature 

 

Afterwards we have to copy the files of the legit app with the UID of the rogue app 

(10064) as we can see in the figure below and change also the ownership. 
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Figure 30: 6SW Copy key files and change ownership 

 

We then run the rogue app and we can see that the key entry of the legit app is being 

read (Algorithm used, Subject, validity period) but also a validation of signature. 

 

 
Figure 31: 6SW rogue app parsing key of legit app 

 

The same exception arises as in Android 6 hardware based keystore, also again modulus 

is not exported but the key of the legit app is parsed again without a problem. Software 

or hardware based it does not mitigate the problem for Android 6. Lastly let’s check 

software based keystore of Android 7 if anything has changed with this version. 
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4.2.3 Evaluation in Android 7.0 

We stuck to the procedure and we install the keystore app, then generate a key pair by 

pressing the “GEN” button and then we sign a byte array of string "Test Test Test" 

which is hardcoded in the device using the “SIG” button. Then we install the rogue_app 

to our device and we read the file /data/system/packages.list which 

contains the information of which applications map with which UIDs, in order to find 

the rogue_app UID.  

 

 
Figure 32: 7SW key generation and validation of signature 

  

 

 
Figure 33: 7SW Copy key files and change ownership 
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Afterwards we have to copy the files of the legit app with the UID of the rogue app 

(10081) as we can see in the figure above and change also the ownership. We run the 

rogue app and we can see that the key entry of the legit app is being read (Algorithm 

used, Subject, validity period) but also a validation of signature. 

 

 
Figure 34: 6SW rogue app parsing key of legit app 

 

The same exception arises as in Android 7 hardware based keystore, also again modulus 

is not exported but the key of the legit app is parsed again without a problem. Software 

or hardware based it does not mitigate the problem for Android 7. 

 

Back to contents 
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5. Future Work & Conclusions 
 

As time pass and Android OS is becoming more and more mature we still have to think 

about what level of security is provided to the end user. Users pay their money to buy 

a black box which will serve the needs they have to their everyday lives, not knowing 

most of the times the dangers but also what could happen if…  

 

Even after 7 versions of API, Android developers still have not found a final solution 

to this major security hole giving the malicious app-user the ability to have 

unauthorized access to the secure stored key. In Android version 5 we also saw that a 

malicious user can even export the private key from the key blob of the software based 

Android KeyStore if he knows the pin and to make matters even worse, he can do it out 

of the device. In Android versions 6 and 7 if the keys are built with the new APIs then 

it asks for user consent when using the key but without fully protecting it again if the 

attacker know the password. Also when changing a PIN or password the device informs 

the user that it will delete the keys. 

 

A solution to all these matters could be a custom kernel that will check everything that 

interacts with the Keystore directory, inform the user whenever this happens and 

provide choices of action. It will not mitigate the problem but at least the system will 

let the user know and decide what to do if he is not the one using the key entries. 

 

The future work of this thesis is to research a way to obtain root access and use it to do 

all the things we saw automatically. Also to test the behavior of Android Keystore of 

versions 8 and 8.1.  

 

Back to contents 
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Appendix A - Acronyms 
 

A  ADB Android Debug Bridge 

  AOSP Android Open Source Project 

  AVD Android Virtual Device 

    

C  CA Certificate Authority 

  CKMS Cryptographic Key Management System 

  CPU Central Processing Unit 

    

D  DSA Digital Signing Algorithm 

    

E  ECC Elliptic Curve Cryptography 

  ECDSA Elliptic Curve Digital Signing Algorithm 

    

G  GUI Graphical User Interface 

    

H  HMAC Hashed Message Authentication Code 

    

I  IDE Integrated Development Environment 

    

K  KMS Key Management System 

    

L  LTS Long Term Support 

    

M  MAC Message Authentication Code 

  MMS Multimedia Messaging Service 

    

O  OEM Original Equipment Manufacturer 

  OS Operating System 

    

R  RSA Rivest Shamir Adleman 

    

S  SCR Secure Configuration Register 

  SDK Software Development Kit 

  SGID Set Group ID 

  SKS Secure Key Storage 

  SMC Secure Monitor Call 

  SMS Short Message Service 

  SSL Secure Socket Layer 

  SUID Set User ID 

    

T  TAN Transaction Authentication Number 

  TEE Trusted Execution Environment 

  TLS Transport Layer Security 

  TPM Trusted Platform Module 

    

U  UID User ID 
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Appendix B – Source Code 
 

 

MainActivity.java  

1      

2    package com.example.user.roque_app;  

3      

4    import android.app.Activity;  

5    import android.os.Build;  

6    import android.os.Bundle;  

7    import android.security.KeyChain;  

8    import android.security.KeyPairGeneratorSpec;  

9    import android.util.Log;  

10   import android.text.method.ScrollingMovementMethod;  

11   import android.view.View;  

12   import android.widget.TextView;  

13   import android.support.v7.app.AppCompatActivity;  

14     

15   import javax.security.auth.x500.X500Principal;  

16     

17   import java.math.BigInteger;  

18   import java.security.*;  

19   import java.security.cert.*;  

20   import java.security.interfaces.RSAPrivateKey;  

21   import java.util.*;  

22     

23   import static com.example.user.roque_app.R.id.consoleTextView;  

24     

25     

26   public class MainActivity extends Activity {  

27       //Tag used for identifying this Activity in the logs  

28       private final static String TAG = "KeyStorageTest";  

29       //Asymmetric algorithm to use for testing  

30       private final static String KEY_ALGORITHM = "RSA";  
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31       //Signature algorithm to use  

32       private final static String SIGNATURE_ALGORITHM = "SHA512WithRSA";  

33       //Alias of the key to be used  

34       private final static String KEY_ALIAS = "TestKeyPair";  

35       //Define the algorithms to check if they are supported by the app  

36       private final static ArrayList<String> algorithmsToCheck = new ArrayList<String>() {{  

37           add("RSA");  

38           add("EC");  

39           add("DSA");  

40       }};  

41       //The reference to the view in the activity that shows the log  

42       private TextView logView;  

43       //Reference to the AndroidKeyStore  

44       private KeyStore androidKeyStore;  

45     

46       /**  

47        * Called when the activity class is constructed.  

48        */  

49     

50       @Override  

51       public void onCreate(Bundle savedInstanceState) {  

52           super.onCreate(savedInstanceState);  

53           setContentView(R.layout.main);  

54           logView = findViewById(consoleTextView);  

55           logView.setMovementMethod(new ScrollingMovementMethod());  

56           try {  

57               androidKeyStore = KeyStore.getInstance("AndroidKeyStore");  

58               androidKeyStore.load(null);  

59           } catch (Exception exception) {  

60               writeToLog(exception.toString());  

61           }  

62     

63           doStartUpChecks();  

64       }  

65     

66       /**  
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67        * Do a number of checks when the Activity is launched.  

68        * <p>  

69        * Bibliography  

70        */  

71       private void doStartUpChecks() {  

72           writeToLog("***Checking supported algorithms***");  

73           for (String algorithm : algorithmsToCheck) {  

74               if (KeyChain.isKeyAlgorithmSupported(algorithm)) {  

75                   if (KeyChain.isBoundKeyAlgorithm(algorithm)) {  

76                       writeToLog("Algorithm " + algorithm + " is bound to device");  

77                   } else {  

78                       writeToLog("Algorithm " + algorithm + " is not bound to device");  

79                   }  

80               } else {  

81                   writeToLog("Algorithm " + algorithm + " is not supported");  

82               }  

83           }  

84     

85     

86           writeToLog("***Checking stored keys***");  

87     

88     

89           try {  

90               Enumeration<String> keyStoreAliases = androidKeyStore.aliases();  

91               while (keyStoreAliases.hasMoreElements()) {  

92                   String keyStoreAlias = keyStoreAliases.nextElement();  

93                   writeToLog("Found alias: " + keyStoreAlias);  

94                   try {  

95                       X509Certificate certificate = (X509Certificate) 

androidKeyStore.getCertificate(keyStoreAlias);  

96                       PrivateKey privateKey = (PrivateKey) androidKeyStore.getKey(keyStoreAlias, null);  

97                       writeToLog("\tAlgorithm: "+ privateKey.getAlgorithm());  

98                       writeToLog("\tSubject: "+ certificate.getSubjectDN().toString());  

99                       writeToLog("\tNot Before: "+ certificate.getNotBefore().toString());  

100                      writeToLog("\tNot After: "+ certificate.getNotAfter().toString());  

101    
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102                  } catch (Exception exception) {  

103                      writeToLog(exception.toString());  

104                  }  

105              }  

106          } catch (Exception exception) {  

107              writeToLog(exception.toString());  

108          }  

109      }  

110    

111      /**  

112       * Write a message to the log.Writes to both the the view and  

113       * the log cat log  

114       *  

115       * @parammessage  

116       */  

117      private void writeToLog(String message) {  

118          logView.append(message + "\n");  

119          Log.d(TAG, message);  

120      }  

121    

122    

123      /**  

124       * Called when the "GenerateKey" button is clicked.  

125       *  

126       * @paramview  

127       */  

128      public void onGenerateKeyButtonClick(View view) {  

129          KeyPairGenerator rsaKeyGen;  

130          writeToLog("***Generating key***");  

131    

132          try {  

133              rsaKeyGen = KeyPairGenerator.getInstance(KEY_ALGORITHM, "AndroidKeyStore");  

134          } catch (Exception exception) {  

135              writeToLog(exception.toString());  

136              return;  

137          }  
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138    

139          KeyPairGeneratorSpec rsaKeyGenSpec;  

140          try {  

141              if (Build.VERSION.RELEASE.startsWith("4.4")) {  

142                  rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(this)  

143                          .setAlias(KEY_ALIAS)  

144                          .setSubject(new X500Principal("CN=test"))  

145                          .setSerialNumber(new BigInteger("1"))  

146                          .setStartDate(new Date())  

147                          .setEndDate(new GregorianCalendar(2019, 1, 1).getTime())  

148                          .setKeySize(2048)  

149                          .build();  

150              } else {  

151                  rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(this)  

152                          .setAlias(KEY_ALIAS)  

153                          .setSubject(new X500Principal("CN=test"))  

154                          .setSerialNumber(new BigInteger("1"))  

155                          .setStartDate(new Date())  

156                          .setEndDate(new GregorianCalendar(2019, 1, 1).getTime())  

157                          .build();  

158              }  

159          }catch (Exception exception){  

160              writeToLog(exception.toString());  

161              return;  

162          }  

163    

164          try {  

165              rsaKeyGen.initialize(rsaKeyGenSpec);  

166          } catch (InvalidAlgorithmParameterException exception) {  

167              writeToLog(exception.toString());  

168              return;  

169          }  

170          rsaKeyGen.generateKeyPair();  

171          writeToLog("Done");  

172      }  

173      /**  
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174       * Called when the "Delete" button is clicked.  

175       */  

176      public void onDeleteKeyButtonClick(View view) {  

177          try {  

178              androidKeyStore.deleteEntry(KEY_ALIAS);  

179          } catch (KeyStoreException exception) {  

180              writeToLog(exception.toString());  

181          }  

182      }  

183      /**  

184       * Called when the "SignData" button is clicked.  

185       *  

186       * @paramview  

187       */  

188      public void onSignDataButtonClick(View view) {  

189          writeToLog("***Signing data***");  

190          try {  

191              Signature testKeySignature = Signature.getInstance(SIGNATURE_ALGORITHM);  

192              PrivateKey testPrivateKey = (PrivateKey) androidKeyStore.getKey(KEY_ALIAS, null);  

193              testKeySignature.initSign(testPrivateKey);  

194              testKeySignature.update("Test Test Test".getBytes());  

195              byte[] signature = testKeySignature.sign();  

196    

197              Signature testKeySignatureVerf = Signature.getInstance(SIGNATURE_ALGORITHM);  

198              testKeySignatureVerf.initVerify(androidKeyStore.getCertificate(KEY_ALIAS));  

199              testKeySignatureVerf.update("Test Test Test".getBytes());  

200              if (testKeySignatureVerf.verify(signature)) {  

201                  writeToLog("Signature is valid");  

202                  writeToLog(signature.toString());  

203              } else {  

204                  writeToLog("Invalid signature");  

205              }  

206    

207    

208          } catch (Exception exception) {  

209              writeToLog(exception.toString());  
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210          }  

211      }  

212    

213      public void showPKey(View view){  

214          try {  

215    

216              writeToLog("***Export modulus***");  

217              PrivateKey testPrivateKey = (PrivateKey) androidKeyStore.getKey(KEY_ALIAS, null);  

218              writeToLog(testPrivateKey.toString());  

219              writeToLog("***Export priv exp***");  

220              androidKeyStore.load(null);  

221              KeyStore.PrivateKeyEntry keyEntry = 

(KeyStore.PrivateKeyEntry)androidKeyStore.getEntry(KEY_ALIAS,null);  

222              RSAPrivateKey privKey = (RSAPrivateKey)keyEntry.getPrivateKey();  

223              writeToLog(privKey.getPrivateExponent().toString());  

224    

225          } catch ( Exception ex){  

226              writeToLog(ex.toString());  

227          }  

228      }  

229  } 

 


