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ABSTRACT  

The main scope of this Master thesis is to analyze and design an innovative technological 

solution for Complex Event Recognition for Maritime Surveillance purposes, based 

entirely on the approach presented in the Paper “Event Recognition for Maritime 

Surveillance” by Kostas Patroumpas, Alexander Artikis, Nikos Katzouris, Marios 

Vodas, Yannis Theodoridis and Nikos Pelekis in the context of the AMINESS project.  The 

master Thesis aims to tackle the challenge of processing and analyzing the available AIS 

Data sets in real time using Apache Flink. Apache Flink is a real time high-performance 

and accurate natural Stream Processing Engine from Apache Software Foundation. The 

ultimate goal is to inspire Maritime authorities to develop their digital culture and 

empower their ICT departments with a new big data innovative tool that uses the existing 

Paper’s algorithms and semantics in an intelligent way, so as to detect vessel’s Trajectories 

in the Aegean Sea while performing accurate Complex Event Recognition. The technical 

approach and the effective reasoning of complex events is totally based on the business 

logic of RTEC and the Event Calculus formal language semantics. We are going to map 

these semantics into Apache Flink DataStream and Dataset API and create an efficient 

alternative technical approach. 
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1.Introduction 

 

1.1 Motivation - Real time analytics for Big Data 

 

From the dawn of civilization until 2003 humankind generated five Exabyte’s of data. 

Now we produce five Exabyte’s every two days and the pace is accelerating. It is expected 

that by 2020, the amount of digital information in existence would have grown to 40 

zettabytes. It is a growing need for new data management systems and distributed 

architectures not only to handle and store a wide variety of data coming from IOT sensors, 

Portals, Logs, Mobile apps but to analyze them and extract complex information in real 

time for the benefit of the government and the authorities. In our day’s data scientists and 

ICT companies have already faced this growing need for improved and advanced 

analytical capabilities that extract information from the huge volumes of varied data in 

real time and create added-value services. These needs lead for optimized hardware 

appliances and software platforms ranging from multi-core processors to distributed 

computing and cloud storage infrastructures that will offer optimized performance of 

complex queries and will enable complex algorithms to run just in a few minutes.  

 

1.2 Approach - Apache Flink  

 

In December 2014, Apache Flink, a dedicated stream processing engine started at 

Technical University Berlin and was accepted from Apache Foundation as an Apache top-

level project. Apache Flink introduced in the community as the high-throughput and low-

latency natural stream processing engine which comes with very rich DataStream API and 

new Libraries. The presented technical approach of the Trajectory Detection and Complex 

Event Recognition concepts is based on Apache Flink API and its CEP Library using the 

event-at-a-time rather than batches of data –an important distinction from previous 

streaming approaches - which turns the current master thesis into an innovative service 

for the maritime community. Taking into consideration that Apache Flink ecosystem has 

been already deployed from Big IT companies in high performance Production 

environments we will aim to apply its API features and libraries for the benefit of Shipping 

industry and furthermore for the Maritime surveillance.  
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1.3 Contributions  

 

The first micro-service that we are going to implement with Apache Flink is the Trajectory 

Detection Module. The second is the Complex Event Recognition Module. The third 

module is an approach for integrating Flink with Elastic and Kibana. We are going to 

visualize the given AIS data and share them through dashboards in order to make vessel’s 

information easily accessible to maritime industry and create geodata reports and graphs 

so as the authorities can find their own answers to critical questions easily within a few 

seconds. 

 

 

1.3.1 Trajectory Detection Module 

The paper “How not to drown in a sea of information: An event recognition approach. 

Elias Alevizos, Alexander Artikis, Kostas Patroumpas, Mario's Vodas, Yannis Theodoridis, 

Nikos Pelekis” introduced the notion of critical vessel movement events which can be 

cleverly extracted from a stream of raw AIS elements. These vessel’s critical movement 

events include the following types: slow speed, speed changes, speed acceleration, 

communication gap, vessel turn, and vessel pause, which are summarized in the 

following paper’s figure [1] and we are going to implement with Apache Flink.   

 

                                                          figure [1] 
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Trajectory Detection Module is the main module of the implementation since the 

Complex Event Recognition module is built on top of it. It is implemented as an Apache 

Flink stream processing pipeline which is totally based on the Event Calculus formalism, 

the business logic algorithms and semantics presented in the Paper “How not to drown 

in a sea of information: An event recognition approach”. The Apache Flink pipeline is 

composed of a number of chained operators, each having multiple instances for parallel 

processing. Apache Flink composes the execution graph through which the data are 

processed in a streaming fashion.  

 

As described in the Paper, a key problem in real time processing implementations is the 

detection of event patterns in data streams. By default, the streaming nature of Apache 

Flink make it suitable for handling this type of processing, which is facilitated by the 

DataStream API, and the Complex Event Pattern Library provided.  The dataset, we are 

going to use is imis-1month dataset from http://chorochronos.datastories.org . We 

will model AISdata into AISEvents and tag them into two different categories of ‘vessel 

trajectory events’:  

The category of the Short-term critical movement events includes the detected vessel 

stops, turning points, slow motions, vessel accelerations, noise events.    

The category of Long-term Events includes sequentially processed critical movement 

events with the usage of the Flink CEP library in order to detect sequences of patterns, 

and extract information about Long Term Events like: Long-term vessel stops, vessel 

Gaps and vessel smooth turns Events.  

 

 

1.3.2 Complex Maritime Events Recognition Module 

The Complex Event Recognition module consumes the output of the Trajectory detection 

module so as to process the results and recognize in real time potentially complex 

maritime situations for preventing too complicated situations and for Maritime 

intelligence purposes also.  According to the paper “How not to drown in a sea of 

information: An event recognition approach” complex events can be categorized into 

Instantaneous vessel complex events and Long lasting vessel complex events. Using the 

semantics and algorithms already defined, we aim to represent Vessel rendezvous, 

package pickings and fast approaches concepts designed with Apache Flink. We are going 

to implement this module with Apache Flink Dataset API. The reason of using the Dataset 

API is that the detection of those complex events depends on notions of proximity of the 

vessel’s defined cells, and on complex reasoning about vessel’s timestamps which are hard 

to implement using Flink DataStream API. 

 

 

http://chorochronos.datastories.org/?q=datasets
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1.3.3 Visualizations and Maritime analytics  

The third visualization module is based on ElasticSearch. Events are indexed into 

ElasticSearch can be then easily visualized using a graphic tool called Kibana that is 

connected to Elastic using the REST API. It aims to provide an easy to use interface to 

maritime authorities in order to perform real-time data analysis and visualizations on real 

time streaming data.  In the presented Master thesis, we are going to represent the vessel’s 

raw AIS data and easily understand them by taking advantage of their graphic 

representations on Kibana geo-map.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords:  Big Data, Maritime Intelligence, Real Time Analytics, Complex Event 

Recognition, Apache Flink.  
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2. Review of the References  

 

The first contact to real time complex event reasoning was the paper “How not to drown 

in a sea of information: An event recognition approach” which motivates thinking about 

illustrating and implementing those practices in the top of many big-data open source 

frameworks from the Apache Foundation, like Apache Kafka and Apache Flink. Queries 

against the data should be performed continuously as the data coming in real time; What 

exactly Apache Flink is naturally doing. Also, my attendance in the premium conference 

of Apache Flink “Flink Forward at 11-13 September 2017 in Berlin” gave me the 

opportunity to learn many best practices in the technical Workshops, to understand how 

and where Flink is used in production environments and how it can be integrated with 

other Big Data frameworks. We are going to present the concepts of those references, and 

how we tried to develop a step further. First of all, we are going to describe concepts of 

RTEC.  

 

2.1 RTEC  

RTEC approach uses a formal syntax for reasoning as presented in this Paper “How not 

to drown in a sea of information: An event recognition approach”. RTEC is a Complex 

event recognition system using Event Calculus formal programming language for 

reasoning events.  The idea of implementing a streaming real-time model that will extend 

the Implementation of the Event Calculus is motivated by the following reasons:   

 

● RTEC sliding windows 

 

 The RTEC implementation is based on Sliding Windows approach for processing the 

incoming data, because data needs to be processed in batches, whereas with Apache Flink 

this constraint is not present because Flink naturally supports streams of events. 

  

 

● RTEC transformations 

 

 The implementation of RTEC is using hard coded the Gap detection, elements buffering, 

the noise detection while Apache Flink provides a DataStream API which facilitates 

dealing with streams such as Map Functions, stateful operations and event time. 

 

● Checkpoints 

 

 The advantage of Flink is that it comes also with a checkpointing mechanism, distributes 

processing, scalable state (with RocksDB), which are not provided in RTEC 
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implementation, and might be useful extension if a real time streaming application is 

going to be deployed in a production environment.  

 

 

● CEP  

 

In RTEC, Complex Event processing is implemented in prolog, while the usage of Apache 

Flink CEP library will help us to detect patterns without the need to translate them to a 

custom formal logic. 

 

 

 

2.2 dRTEC - State of the art 

 

 

In Big data ecosystem, real time processing frameworks are designed to ingest big 

volumes of data streams and provide analytics to the end users in real time. dRTEC 

event recognition engine is an enhanced version of RTEC which employs data 

partitioning techniques using dynamic grounding and indexing. dRTEC uses resources 

of distributed infrastructures very efficient and has introduced in the Paper “A 

Distributed Event Calculus for Event Recognition Alexandros Mavrommatis, Alexander 

Artikis, Anastasios Skarlatidis and Georgios Paliouras”. dRTEC intends to improve the 

abilities of RTEC by focusing on the event streaming analysis in order to detect patterns 

over streams in a more efficient way when the volumes of incoming data become very 

big and the velocity is increasing because it is a natural scalable, high-throughput and 

fault-tolerant stream processing engine. 

Reasoning of statically determined and long term events is implemented with Apache 

Spark API by using the Apache Spark Streaming extension which offers all the 

capabilities of an in-memory application for efficient processing micro-batches of 

events.  Complex event processing with dRTEC evaluated in the context of 

SYNAISTHISI project for real time human activity recognition and in datACRON 

project for the real time recognition of suspicious and illegal vessel maritime activities in 

the Aegean Sea.  

For maritime surveillance monitoring, data analysts are interested in what happened for 

the last second of time in the vessels in the open sea and they want those statistics to 

refresh every minute. For this reason, dRTEC applies advanced windowing function 

based on the durations of the sliding windows, the sliding step and the maximum 

timestamp of each event so as to handle out of order events and compute in memory 

each time only the events that are inside the dynamic sliding window.   
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According to the empirical evaluations in the context of dataACRON project dRTEC is 

more efficient than RTEC when the incoming volumes of data become even bigger  

The usage of Spark Streaming facilitates the integration of dRTEC with other modules 

(Kafka, Flume, Hadoop)  

 

 

 The Apache Flink implementation that we are going to introduce as we have already 

mentioned is using the Event Calculus formalism – like RTEC and dRTEC- including 

advanced techniques session windowing.  

 

2.3 Open Source Stream processing solutions  

 

 To tackle the challenge of large scale stream processing, a number of open source 

frameworks were recently developed including -  but not limited to Apache Flink - like 

Apache Spark and Apache Storm. We are going to present some key differences between 

Apache Flink and {Apache Spark - Apache Storm} as we extracted them from their 

characteristics and from many technical presentations in Flink Forward conference and 

their documentations:  

 

 

2.3.1 Differences between Apache Spark and Apache Flink 

 

Both support batch and stream capabilities and both are in-memory databases. The main 

difference is that Apache Flink is introduced to the community as a natural streaming 

framework that is built from scratch with a DataStream API logic, in contrast to Apache 

Spark which divides streaming data sets into micro batches in a continuous fashion to 

simulate real time processing. Apache Spark by default is not a real time Stream process 

engine. For this reason, it uses extensions like DStreams (Discretized Streams) a plugin 

for streaming data and RDD plugin (Resilient distributed dataset) for batch data.  Apache 

Spark includes also the component Apache Spark Streaming, which can turn Apache 

Spark into a real-time stream processing engine. 

  

2.3.2 Differences between Apache Storm and Apache Flink 

 

In contrast to Apache Spark restrictions in real time streaming, Apache Storm is sharing 

a very similar logic with Apache Flink that means similar interfaces API and Libraries.  

Apache Storm is a data stream processor but with no batch capabilities - while Flink has 

both.  When it comes to compare their streaming capabilities, Apache Flink offers a more 

high-level API and Libraries compared to Storm. Apache Flink DataStream API provides 
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built-in data transformations and aggregations such as Map, groupBy, Window, and Join, 

while in Storm we have to implement them from scratch.  

 

 

 

 

 

 

 

2.4 Conclusion   

 

Because accurate and real time data streaming analytics and metrics has vital business 

meaning in Maritime Industry, all the technical approach and implementation is based 

on Apache Flink API which turns the current master thesis into an innovative service for 

the maritime community. Taking into consideration that Apache Flink ecosystem has 

already been deployed for Big IT companies in high performance Production 

environments, like in the Banking Industry solving Fraud detection issues, we will take 

advantage and we will apply its API features operators and libraries for the benefit of 

Shipping industry and furthermore for the Maritime surveillance.   
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3. Apache Flink Ecosystem  

 

The first use case that real time streaming technology applied, is the Twitter social media 

platform. Developers were able to use the Twitter API for querying all the tweets in real 

time as the content was generated from the users. As we told in the introduction, 

streaming data can be produced from wide variety of operational and transactional 

Source Systems every millisecond for example from IOT sensors in car/vessels/airplanes, 

traffic sensors, weather data sensors, social media applications mobile applications and 

logs that machines are producing every day. When we deal with streaming processing, the 

input data are supposed to be unbounded data sets that are continuously produced and 

we want to continuously process them in real time.  

 

3.1 Dataflow Programming Model 

 

A Flink program is defined by the notions of the data streams and their transformations. 

Conceptually a stream is a (potentially never-ending) flow of events, and a transformation 

is an operation that takes one or more streams as input, and produces one or more output 

streams as an output. When executed, Flink programs are mapped to directed acyclic 

graphs, consisting of streams and transformation operators. Each graphs starts with one 

or more sources and ends in one or more sinks. 

Flink programs are executed in a distributed and parallel manner. Each data stream is 

divided into many partitions, which go through different instances of the operators 

defining the Flink program. The number of instances of each operator is each degree of 

parallelism. By defining parallelism over operators and partitions, Flink abstracts 

distributed execution from physical machines. 

For example: A Flink cluster can be defined by 8 task managers each one installed in a 

different machine and having 1 task slot. This is equivalent to having only one Task 

manager on one machine having 8 task slots, and in the two cases the maximum 

parallelism of a Flink program on such cluster would be equal to 8. 
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3.2 API’s and Libraries   

 

Flink has natural DataStream API and Dataset API written in Java or Scala and Table / 

Sql API. Apache Flink supports data stream processing of events through its DataStream 

API and the windowing mechanism. The implementation of the vessel’s Trajectory 

Detection Module is using DataStream API and many of its capabilities like the notion of 

event time and session window mechanism. DataStream API uses many operators from 

the Dataset API such as such as MapReduce, and joins written in Java or Scala to the 

streaming world. For the Implementation of the Complex Event Recognition Module, we 

used the Dataset API for performance reasons due to huge joins between the AIS datasets 

so as to detect critical information. 

 

 

3.3 Time in Apache Flink  

 

Flink supports different concepts in streaming time.  Aggregations on data streams are 

different from the aggregations on the datasets. It is not possible to count for example all 

the elements of a DataStream, because the stream is infinite.  Apache Flink is a stream 

processor with a flexible mechanism for building windows for evaluating real time data 

streams. In order to process infinite real time data streams, the stream is divided into 

finite slices / buckets with boundaries based on some criteria like the time passed or 

number of elements per window or other criteria like the period of inactivity. Flink offers 

explicit handling of time: and defines two types of time 

 

3.3.1 Ingestion time 

Ingestion time is the time that events enter Flink. At the source operator each record gets 

the source’s current time as a timestamp attribute, and windows will based their 

computations on this timestamp. Internally, ingestion time is treated much like event 

time, but with automatic timestamp assignment and automatic watermark generation. 

Ingestion time can be used for example when developing a custom Flink source which 

directly ingests AIS events and therefore assigns timestamps at the source level.   

 

3.3.2 Processing time 

Processing time is the time that the event arrives in the system. Processing time refers to 

the system time (clock) of the machine that is executing the operations. When a streaming 

program runs on processing time, all time-based operations (like time windows) will use 

the system clock of the machines that run the respective operator. For example, an hourly 
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processing time window will include all records that arrived at a specific operator between 

the times when the system clock indicated the full hour. 

Processing time is the simplest notion of time and requires no coordination between 

streams and machines. It provides the best performance and the lowest latency. However, 

in distributed and asynchronous environments processing time does not provide 

determinism, because it is susceptible to the speed at which records arrive in the system 

(for example from the message queue), and to the speed at which the records flow between 

operators inside the system. 

 

3.3.3 Event time  

Event time is the time that each individual event occurred on its producing device. This 

time is typically embedded within the elements before they enter Flink and that event 

timestamp can be extracted from the record. An hourly event time window will contain 

all records that carry an event timestamp that falls into that hour, regardless of when the 

records arrive, and in what order they arrive. For example, if a vessel suddenly stops at 

time t1, this timestamp is the event time of this element. Event time gives correct results 

even on out-of-order events, late events, In event time, the progress of time depends on 

the data, not on any machine clocks.  

 

 

3.4 Watermarks  

 

The Gap Detection, Windowing, State of previous/following events mechanisms depend 

on the event time. It’s critical to define how Apache Flink handles run time. Generally, a 

streaming pipeline can depend either on the processing time or on the event time. 

Processing time as we state before is simply the time of the current machine clock. Event 

time on the other hand is the time event occurs, which is specified as a timestamp 

attribute. A time window of ten minutes in processing time lasts effectively ten minutes, 

but a time window of ten minutes in event time might be computed in few seconds, since 

event time is merely an attribute of the data which can be ingested instantly. 

Apache Flink has to rely on its internal clock so as to be able to compute windows and 

handle event time correctly as if it was processing time. Watermarks are simply a way for 

defining such clock. A watermark of time T tells Apache Flink operators the all events of 

timestamp < T have passed. The advantage of using watermarks is that enables handling 

out of order events, by subtracting a delta from the watermarks. At event time T we inject 

a watermark of (T - delta), i.e. we specify that all AIS raw events of timestamps less than 

(T - delta) have passed. This allows handling types of events with a lateness of at most 

delta T. Watermarks are injected periodically in the beginning of the stream in a 

transparent way to the user. The user need just to specify how to extract timestamp 
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attributes and a strategy for watermarks injection. Either ascending, or by accounting late 

events.  

 

 

 

3.5 Windows 

 

Streaming applications are processing data in continuous fashion, and therefore we can’t 

wait for the whole data to be streamed before starting the processing.  

Of course, we can process each incoming event as it comes and move on to the next one, 

but in some cases we will need to do some kind of aggregation on the incoming data; e.g., 

how many vessels are in Piraeus port over the last 40 minutes. In such cases, we have to 

define a window and do the aggregations for the data within the window. 

 

3.5.1 Tumbling Window 

 

One kind of window is the tumbling window, where we don't have overlaps between the 

windows. Grouping the events in buckets (last five minutes, last five elements) and then 

apply aggregations on their elements is the concept. Actually it takes time equals to the 

window size, until the aggregation starts.  

 

3.5.2 Sliding Window 

 

Another type of windows are the sliding windows. Opposed to a tumbling window, the 

sliding slides over the stream of data. A sliding window can be overlapping and it gives a 

smoother aggregation over the incoming stream of data. 

 

3.5.3 Session Window 

 

Apache Flink is the first open source streaming engine that completely decouples 

windowing from fault tolerance, allowing for richer forms of windows, such as session 

windows. Session Windows in Apache Flink allows messages to be windowed into 

sessions based on vessel’s activity. Flink allows us to define a time gap and all the 

messages that arrive within a “period of vessel’s inactivity” less than the defined time - 

gap -  can be considered to belong to the same session. Apache Flink is a stream processor 

with a flexible mechanism for session building windows and evaluating real time data 
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streams. In order to process infinite real time data streams, each logical stream is divided 

into finite buckets with boundaries based on some rules like timestamps of elements or 

other criteria.  Window boundaries need to be adjusted as per incoming AIS raw data. A 

new session window starts at individual timestamp for each key and finishes when certain 

period of inactivity has passed. The configuration parameter is the session gap which is 

used to specify how long to wait for new AIS data before closing the session window. All 

the elements that arrive within a “period of inactivity” less than the defined session gap 

are considered to belong to the same session window. In our implementation we are going 

to use the concept of session windowing.  

 

 

3.5.4 Triggers 

 

The basic scope of the triggering policy in Apache Flink is to determine when a window is 

ready for data processing. While watermarks indicate the current state of the received 

data, triggers materialize the computations. Different kind of triggers are possible in 

Apache Flink, like on the processing time, every 5 minutes for example, on the event 

number, every 10 AISEvents for example, or at the end of processing a log file.  Triggers 

are used to determine intermediate computations before the watermark reached the end 

of the window and it is possible in a window of 10 minutes to trigger or purge every minute 

for example.  

 

 

 

3.6 State  

  

Apache Flink is a stateful stream processing engine. Many operations in a dataflow simply 

look at an individual event at a time while other use a state in order to keep in memory 

data about the previous and current events. For example, a state can hold a counter which 

holds the number of seen event until the current one. Another example of stateful 

operators are windows which buffer events into an internal state until the window is 

triggered. In our use we use Flink’s state to store the previous event for each vessel in 

order to be able to define the velocity of a vessel for example. 
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3.7 Consistency, fault tolerance, high availability 

 

Apache Flink is using stateful functions and operators to store data while doing 

intermediate transformations and computations making state a critical component for a 

real time streaming application. When we are searching the stream for detecting certain 

event patterns, the state will store the sequence of events detected by each pattern. When 

we are grouping events, the state holds the pending aggregates. 

In order to make state fault tolerant, Apache Flink needs to be aware of the state and 

checkpoint it. Apache Flink offers real time checkpointing functionality. The state of each 

computation can be checkpointed and guaranteed to have consistent data flow when a 

machine failure happens. Data are moving between source and sinks, after the machine 

recovers and the task managers is up and running again from the same point it stopped. 

Checkpointing mechanism is useful in production environments, when we want to ensure 

the consistent data movement between Kafka and HDFS after task managers failure. We 

are not using checkpoints, since it is not very critical in our case, because we can easily 

rerun the module, but the implementation can easily be extended with this functionality.   

 

 

 

 

 

3.8 The DataStream API  

 

Flink aims to support all types of input data. Apache Flink can handles many Java 

Primitives like the atomic data types of Arrays, Strings, Longs, Integers, Booleans and 

more complex Java data types like Tuples which Flink is using to create lists of elements. 

Tuples are more composite types because they can nest other types. In Flink we do not 

have to specify a schema file so as to read the data.  
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3.8.1 Transformations 

 

The basic transformations that can be done to the data stream are map, flatmap and the 

filter transformation. The Map defines a mapping between the input element to the 

output and is doing a transformation. When we have a DataStream of input elements and 

apply a map transformation, it will take as input all the elements of the input type one by 

one and emits one by one the same elements of the output Java type. For example, Apache 

Flink’s map function is useful in cases we want to append all the input string elements 

with a static string or when we want to multiply all the numeric input elements with a 

number we will retrieve them as results in the output stream. Flatmap transformation is 

very similar to map, and is a computation that gets one by one the elements in, and it can 

give as output result zero or more elements of another data type.  

Another transformation that we can apply in Apache Flink is the filter transformation. 

Filter evaluates a Boolean function for each element and retains those for which the 

function returns true values. Suppose we have a real time data stream of elements or 

events and we apply a filter condition to them one by one so we can exclude elements 

according to the specific logic from the result stream. Instead of specify a filter condition, 

we can apply a lambda function to the elements. The way we do partitioning on the data 

affects our computations. Suppose we have an input stream of Tuples. We use this 

transformation, when we want to compute a value based on a specific key-field of the 

Tuple so as to partition the Data Streams by the same key and emit the result to the next 

transformations.  In the first module for example, many computations are done for each 

vessel individually so we use the key-by partitioning in order to partition the stream to 

logical streams according to the vessel id’s. 

 

 

 

 

 

3.9 The Dataset API  

 

Flink is facing the Batch processing as a special case of Streams, as finite data sources are 

streams that have an end. Apache Flink offers the Dataset API which supports similar 

transformations as the DataStream Api, but with dedicated Libraries for graph processing 

and Machine learning. Apache Flink provides various optimizations like scheduling 

batches and query plan optimizations. We are going to use the Dataset API in the Complex 

Event Recognition module, for performance reasons due to huge joins between the AIS 

datasets so as to detect critical information. It is very hard to do self Joins so as to create 
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Cartesian products between huge datasets, so as to recognize a vessel rendezvous for 

example, as we will present in detail in the Part 3 Implementation - of this Master thesis.   

 

 

3.10 The Deployment  

 

Apache Flink can be deployed in a variety of Production environments, from a local Java 

Virtual Machine to a standalone cluster or a cloud provider managed by YARN. In the 

current implementation we are running Apache Flink in digitalocean.com cloud 

infrastructure using an Ubuntu 16.04.1 x64 Virtual Machine, with 8 cores, 16GB Memory 

and 40GB SSD Disk. 
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IMPLEMENTATION  

 

4. Trajectory Detection Module 

 

  

The Trajectory Detection Module is the main part of the current implementation. We are 

going to design a real time application by continuously read AIS data from a Kafka topic 

using Apache Flink DataStream API and Apache Kafka. We integrate Apache Flink with 

Apache Kafka because it solved us the low throughput issues due to backpressure while 

reading directly the data from the given static file. We created a Kafka topic from which 

contains all the AIS data set and we feed Apache Flink, fully simulating its operations in 

real time.  

 

 

 

4.1 AISEvents class  

 The raw input elements are first modeled into an AISEvents class.  An AISEvents class is 

designed to have the following fields and methods: 

 

Fields Methods 

long previousTS; 

long timestamp; 

int id; 

double lat; 

double lon; 

double instantSpeed; 

public Velocity velocity; 

boolean isNoisy; 

boolean isPause; 

boolean isTurn; 

boolean isSpeedChange; 

boolean isGapStart; 

boolean isGapEnd; 

double computeDistance(AisEvent 
other) 
double computeSpeed(AisEvent 
previous) 
double computeBearing(AisEvent 
previous) 
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The values of those fields are defined and computed progressively in the first, pre-

processing, part of the pipeline. From raw AIS data, we create Data Streams of “Vessel 

Tagged Events” using Apache Flink DataStream API in order to apply computations over 

infinite data streams. So as to model input AIS data into an AISEvents java class we flat-

map them with the InputParseOperator which takes as input the measurement lines and 

maps them to AISEvents objects so as to assign the vessel id, vessel latitude, vessel 

longitude and vessel timestamp which is the event time the AIS event happened. Events 

are already ordered, so we don't have to handle low latency issues and out of order events. 

We are using the ascending timestamp extractor to define timestamps and watermark 

policy.  

 

4.2 Keyed Streams 

A critical step in the pipeline is to detect the “Gaps Starts” and “Gap Ends” of the AIS 

Events as it is presented in the Paper: so as to include them in next calculations. This 

processing step is done for each vessel separately. We separate logically the vessels using 

DataStream Apache Flink API and the key by operator which selects the id of the vessel 

as the key. This way the subsequent operator is applied to each vessel separately. With 

this operator, we simply extract the vessel’s id, from an AISEvents object, so as to 

implement logical keyed streams based on the vessel’s id.   

 

4.3 Session windowing policy  

We used a session window assigner configured with session gap which defines how long 

is the required period of inactivity. 

 

4.4 Triggering policy 

We used EventTimeTrigger, that triggers the window based on the progress of event time 

as measured by the watermarks. This permits an incremental computation and purging 

of the session windows.  

 

 

4.5 Window Process Policy  

A Windowing function is used to process one by one the events that belong to the same 

window which fires and becomes ready for processing based on the triggering policy. For 

this scope, we implemented the SimpleGapOperator Operator which extends the 

functionality of the built-in WindowFunction (ProcessWindowFunction) and implements 



24 

the window processing policy. The SimpleGapOperator stores all the events of a session 

window inside a buffer in order to loop and define the first element of the window as the 

“Gap End” and the last one “Gap Start”. We set boolean attributes isGapStart, isGapEnd 

in the subsequent operator which processes the session windows. 

 

4.6 Computing Coordinates 

Trajectory Movement Events like vessel Pause Events or vessel Speed Change Events, as 

well as Noise Filtering rules depends on the vessel’s velocity vector and the vessel’s 

acceleration. To facilitate computing the speed, bearing and distances, we use the 

MapFunction to assign each AISEvents its Cartesian coordinates using the Coordinates 

Operator Operator. The CoordinatesOperator Operator is applied to AISEvents one by 

one so we can extract and assign (x,y,z) coordinates to all AISEvents to indicate their 

points on the map. For this purpose, it is no need to treat each vessel separately. That’s 

why we do not use the keyby operator so as to group by vessel’s id’s.  

 

  

 

 

4.7 Short Term Events - Noise Filtering Process 

 

4.7.1 State 

To be able to compute Short-term Events we need to access the previous state of the same 

vessel. In other words, we need to keep a state which contains previous AisEvent values 

and to update correctly the state in real time. Apache Flink DataStream API offers stateful 

operators, which can be scoped by key, i.e. keep a state for each vessel separately. Keyby 

operator is used before the NoiseOperator Operator so as to group the stream by vessel’s 

id.  

 

4.7.2 NoiseOperator 

Operator implements maritime rules, as they introduced in the Paper: “How not to drown 

in a sea of information: An event recognition approach” so as to detect and recognize with 

Apache Flink API both Short Term Events and Noise Events in order to keep only the 

critical instantaneous information in the pipeline and compress the Trajectory of the 

vessels.  
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4.7.2.1 Functionality 

If the AisEvent is a GapEnd that is the first AISEvent potentially after a gap we cannot 

define its velocity, acceleration, or Bearing Differences and Speed Differences because we 

do not have its previous state. Otherwise, if the AisEvent is not a GapEnd - so we have a 

previous state that we retrieve the previous AISEvent state from Flink State API.  

In the same logic we fetch its previous speed using the computeSpeed function. The way 

we compute the Speed of an AISEvent, is implemented inside the AISEvent class and is 

the distance from the previous event if it is not a GapEnd, divided by the difference 

between current and previous AISEvent timestamps. If there is no previous event the 

speed is undefined. The same goes for the bearing. We compute the Bearing of the 

previous AISEvent inside the AISEvent class. We define its Velocity vector using speed 

and bearing attributes. The implementation of the Velocity class based on angle and speed 

attributes is also part and implemented inside the AISEvent class. In order to fetch the 

instant acceleration of the vessel, we have to divide Speed Difference from the difference 

between the current and the previous timestamp of the same AISEvent. So, if the velocity 

of the previous status of the AISEvent is not null, we compute  

a) The Bearing difference 

b) The Speed difference  

c) The acceleration 

In any other case, if the velocity is null, we set all the previous attributes as not applicable. 

 

Having done all the previous calculations, we are about to apply the rules for critical 

points along vessel trajectories as presented in the paper “How not to drown in a sea 

of information: An event recognition approach” so as to detect vessel’s critical 

movement events such as stops, acceleration or turn events along their trajectory.  

 

 

 

4.8 {Pause, Speed Change, Turn} Events    

Based on the AISEvent class calculations we continue by analyzing instantaneous vessel 

Pauses, vessel speed changes and vessel turns and recognize them with Apache Flink 

Datastream API.  

 

4.8.1 Pause Event – Speed Change Event – Turn Point Event – Noise Events 

The minimum speed in km/h (=1 KNOT) so as to characterize an object as a moving one 

is following. If the value of the vessel’s speed is less than 1.852 Km/h then, we recognize 

the AISEvent as a Pause Event.  If the vessel’s Speed difference is more than 0.25 KNOTS, 

the vessel is supposed to have a speed change and we recognize it as SpeedChange 
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AISEvent. If the maximum heading difference between successive positions is more than 

15 degrees, this suggests that the vessel is changing its route direction, so we recognize 

that this is a Turn Point AISEvent. As presented in the paper: “How not to drown in a 

sea of information: An event recognition approach”, the Trajectory Detection 

Module has to compress the Data Stream into a stream that contains only critical 

movement AISEvents. The following rules are used so as to define noise events and to 

exclude them from the pipeline. 

 

a) If the maximum acceleration during a speed change AISEvent is greater than 10 

measurement units, we consider this AISEvent a noise event, because this rate cannot 

happen in real conditions and may have been caused for example by high waves in the 

open sea or by AIS signal delays. The received position is considered an outlier and we 

recognize it as a Noise AISEvent.   

 

b) If the maximum difference in vessel’s heading between successive positions (in 

degrees) is greater than 60 degrees, then the AISEvent is considered as a noise event. 

Again, this is because this rate cannot happen in real conditions and may have been 

caused by high waves in the open sea or by AIS signal delays.  The received position is 

considered an outlier and we recognize it as a Nose AISEvent.  

 

 

c)If the speed in km/h is 55.56 measurement units (=30 KNOTs), we consider the 

AISEvent as a noise Event, because again this cannot happen in real conditions. The 

received position is considered an outlier and we recognize it as a Noise AISEvent. 

 

 

By applying all the previous rules to the DataStream, we process the next incoming 

AISEvent sequentially and one by one which means that the current AisEvent becomes 

the previous AisEvent for the next one.  

So, after the flatmap (new NoiseOperator ()) application, we are able to collect one by 

one all the rest AISEvents that are not Noise Events or Gaps:  

 

 

The result of the process, is a recognized stream of only tagged - modified - instantaneous 

AISEvents in JSON format.   
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4.9 Long Lasting Movement Events  

 

We are going to apply predefined Patterns to the DataStream of the tagged AISEvents so 

as to detect more complex Long Term AISEvents with Apache Flink CEP Library. The goal 

is to discover critical Long Term Events for the vessels in the open sea and to record 

critical events while making decisions so as to prevent complex situations. In this Master 

Thesis, the Trajectory Detection Module, introduce Complex event processing (CEP) with 

Apache Flink and gives a solution for this issue, by matching continuously incoming 

AISEvents against one or more patterns so as to detect these critical Events. All AIS data 

which do not match the patterns can be immediately discarded and all the rest are 

processed immediately once the system has detected all the events for a matching 

sequence. The results are emitted straight away in real time taking advantage of Apache 

Flink’s streaming nature and its capabilities for low latency and high throughput stream 

processing as a natural fit for CEP workloads.  

 

 

 

 

4.9.1 General Approach - Flink CEP Library  

 

To detect the Long Lasting Events like Long Term Stops, Smooth Turns and Gaps we use 

Flink CEP (Complex Event Pattern) library, which is implemented on top of Apache Flink 

and does custom pattern detection over an endless stream of tagged - modified 

AISEvents.  First of all, to deal with Apache Flink CEP we have to define one or more 

custom pattern(s) and then apply them on the Data Stream so as to extract the 

subsequences of AISEvents matching those patterns. Based in the Paper “How not to 

drown in a sea of information: An event recognition approach” in order an AISEvent to 

be a candidate Long Term Stop, it should be an only a Pause AISEvent or a Turn AISEvent. 

The isCandidateForLts is a boolean indicating whether an AISEvent is a Turn or a Pause, 

since those two event types are used to define long term events. In the AISEvent class 

implementation, we have introduced the “Candidate Long Term Stop”   
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4.9.2 Long Term Stops and Smooth Turns  

 

Pattern1 for identifying Long Term Events is specified by considering the first incoming 

element as not a candidate for Long Term Stop (non-Pause AISEvents) and 

assigning/marking a label “Start” to it. If the following one or more consecutively 

incoming AISEvents are considered as candidates for Long Term Stop (Pause AISEvents) 

then and we assign/mark a label “Middle” to them. If The following final event, is 

considered as a Candidate for Long Term Stop (Pause AISEvent) and a Gap Start at the 

same time, then we assign/mark the label “end” to it. Pattern1 and Pattern2 are presented 

below:  

 

4.9.2.1 Pattern 1 

 

For example, suppose we have the Sequence of AISEvents 000011111112 where 00000 is 

not candidates for LongTermStop (Non Pause Events), 1111111 are candidate 

LongTermStops (Pause Events) and 2 is candidate LongTermStop (e.g. Pause Event) and 

GapStart at the same time. Pattern1 claims that these Pause AISEvents (1111111) are 

surrounded by non-pause events (0000 and 2 as a gap Start). So 11112 is a Pattern1 for a 

LongTermStop Event.  {“start”:0,” middle”: [1111111],” end”:2} 

 

4.9.2.2 Pattern 2 

 

Pattern2 for identifying Long Term Events is specified by considering the first element as 

not a candidate for Long Term Stop (non-Pause AISEvents) and assigns/marks a label 

“Start” to it. If the following one or more consecutively AISEvents are considered as 

candidates for Long Term Stop (Pause AISEvents) and not GapStart AISEvents at the 

same time, then we assign/mark a label “Middle” to them. If the following final event of 

this pattern is considered as a not Candidate for Long Term Stop (non-Pause AISEvent) 

and not a GapStart at the same time, then we assigning/marking label “end” to it.  

For example, suppose we have the Sequence of AISEvents  000011111110000000 where 

incoming 0000 is not candidate Long Term Stop (Non Pause Events), 1111111 are 

candidate LongTermStops (Pause Events) and not a GapStart and 0000000 are not 

candidate LongTermStop (e.g. non-Pause Event). In Pattern2 we state that Pause 

AISEvents (1111111) are surrounded by non-pause events (0000 and 0000000). So 

011111110 is a Pattern2 for LongTermStops.  

 

 {“start”:0,” middle”: [1111111],” end”:0}. We use these Patterns and we apply them to the 

tagged Events Stream, so as to detect either Long Term Stops or Smooth Turns. The 
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separation between those two types of long term events will be done in next steps by the 

Trajectory Detection Module and the LongTermStop Operator.  

 

4.9.2.3 Pattern 1 Union Pattern 2 

 

The union of Pattern1 and Pattern2 is the general Pattern build for detecting 

LongTermStops and Smooth Turns. After applying flat map function, the output of the 

union is no more tagged events, but a stream of lists of events  

 

● By applying Pattern1 - the first part of the Union -  we will collect results according 

to this input  e.g.: {“start”:0,”middle”:[1111111],”end”:2} a stream of lists of events 

like : 11111112   

 

● By applying Pattern2 - the second part of the Union -  we will collect results 

according to this input e.g.: {“start”:0,” middle”: [1111111],” end”:0} a stream of 

lists of events like: 1111111 

 

 

 

4.9.2.4 Filtering  

 

As we state before, the result of applying the pattern to the tagged events, is a stream of 

series of events matching the pattern. So each incoming individual element of the data 

stream is a list composed of one or more events. According to the Paper “How not to 

drown in a sea of information: An event recognition approach” to be considered a Long 

Term Event as valid it must contain at least 10 consecutive pause events or turn events. 

We process those lists with the LongTermStop Operator so as to separate long term stops 

from smooth turns and create two different lists of events.  

The filtering process of the LongTermEvents based on the length of the list (e.g. 11111112, 

1111111, 111111111111111). 

 

4.9.3 The Long Term Stop Operator   

 

The LongTermStop Operator takes as input the result of the subsequence data streams of 

AISEvents that matched the pattern. The pattern is built to recognize either a vessel’s 

smooth turn or a vessel’s long term stop. The role of the LongTermStop operator is to 

separate those two types of long term events. It works as follows: Given a list L of AIS 

Events matched by the pattern, we start looping through L to extract any events which lie 
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within a radius of 250 meters. If an event does not lie within 250 meters of the events 

already extracted, then it is part of a smooth turn. The number of events already extracted 

is either more than a threshold (for example 10), in which case they are considered a long 

term stop or less, in which case the extracted events are part of a smooth turn. Suppose 

we have the following list of long term events matched by the pattern: [ e, e, e, e, e | e, e, 

e, e, e, e | e, e, e, e, e, e, e, e, e, e, e, e| e, e] 

The comma “,” delimiter between those events indicates that the right event lies within 

250 meters of the previous ones, and the pipe “|”, indicates the opposite. 

The first 5 events lie within 250 meters of each other, so they should be collectively 

considered a long term stop. Except that their number is less than the threshold of long 

term events (= 10). The next 6 events lie within 250 meters of each other’s but they cannot 

be considered a long term stop because they are less than 10. The first 11 events are then 

concatenated into one smooth turn. 

The next 12 events lie within the predefined radius and pass the threshold criteria so they 

are concatenated on one long term event. The last 2 events are simply discarded.  

 

Result: <” smt”, 2222222222>, <” lts”, 33333333333333>, <” smt”, 44444444444444>  

 

4.9.3.1 Filtering 

According to the string label “smt” or “lts” we are going to filter the events so as to separate 

them into two different streams. The first stream will contain the Smooth Turn 

AISEvents. The second stream will contain the Long Term Stops AISEvents. We then map 

each element of those streams to a common model (class) “LongTermEvents” which has 

the following attributes:  

- Start (type: AisEvent) 

- End (type: AisEvent) 

- Label (type: String) 

 

For the long term stops stream, those attributes and the result of applying the pattern are 

serialized as a json with the following fields: 

- Start: the starting AISEvent (of a long term stop) 

- End: the ending AISEvent (of a long term stop) 

- Label: “long term stops”. 

{label: “lts”, start: First_AISEvent, end: Last_AISEvent}   

 

The same goes for Smooth Turns.  

 

The result of applying the patterns are serialized as a json with the following fields: 

- Start: the starting AISEvent (of a smooth turn) 

- End: the ending AISEvent (of a smooth turn) 
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- Label: “smooth turn”. 

 

{label: “smt”, start: First_AISEvent, end: Last_AISEvent}   

 

 

LongTermEvents either for LongTermStops or Smooth Turns AISEvents are finally 

converted to JSON representations, using the GSON serializer operator which 

implements a MapFunction in order to store the results as json files in the disk. Below are 

presented the results for LongTermStops and the results for Smooth Turns We finally 

output the results using Flink Filesystem connector. 

 

4.10 Gaps 

We specify the pattern to output consecutive Gap starts and Gap ends and to apply those 

patterns to the tagged events, so as to extract Gaps - Long Term Events.  

The result of applying the pattern is serialized as a json with the following fields: 

- Start: the starting AISEvent (of a gap) 

- End: the ending AISEvent (of a gap) 

- Label: “gap” 

 

Gaps LongTermEvents are finally converted to JSON representations, using the GSON 

serializer so as to store the results as files on the disk. We finally output the results using 

Flink Filesystem connector. 
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5 Complex Event Recognition Module 

 

5.1 Introduction 

The second module is based on the output of Trajectory Detection Module, and its 

goal is to detect events which are more complex than the movement AISEvents. In this 

Master Thesis we recognize and implement Vessel Rendezvous, Package picking and Fast 

approaches. For this module we rely on Apache Flink Batch Dataset API, since many 

operations require performing joins between data sets, which are easier implemented 

using the batch API. 

 

5.2 Grid partitioning 

Some complex events, like vessels approach, depend on a notion of proximity of the 

vessels defined by the fact that two vessels lie in the same cell. That’s why we need to be 

able to map each vessel coordinates to a cell in the map. For this we use GeoHash which 

is a geocoding system based on a hierarchical spatial data structure which subdivides 

space into buckets of grid shape.(github.com/davidmoten/geo) 

Therefore, each cell is labeled using a geohash which is of user-definable precision: 

● High precision geohash have a long string length and represent cells that cover 

only a small area. 

● Low precision geohash have a short string length and represent cells that each 

cover a large area.  

GeoHash can have a choice of precision between 1 and 12. As a consequence of the gradual 

precision degradation, nearby places will often present similar prefixes. The longer a 

shared prefix is, the closer the two places are. 

 

5.2.1 Grid partitioning using GeoHash 

Examples of Geohash mapping given latitude and longitude: 

➢ 39.664148, 23.604166 :   

○  Precision 5: sx0c9 

○  Precision 6: sx0c9h 

○  Precision 12: sx0c9hsh2vjg 

➢ 39.56, 23.90: 

○  Precision 5: sx0cp 

○  Precision 6: sx0cpk 

○  Precision 12: sx0cpks00000 

https://github.com/davidmoten/geo
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As we can see, these two nearby points share a prefix of length 4 (sx0c). 

The following table shows the cell dimension given the geohash precision: 

GeoHash 
Length 

Area width X height 

1 5,009.4km x 4,992.6km 

2 1,252.3km x 624.1km 

3 156.5km x 156km 

4 39.1km x 19.5km 

5 4.9km x 4.9km 

6 1.2km x 609.4m 

7 152.9m x 152.4m 

8 38.2m x 19m 

9 4.8m x 4.8m 

10 1.2m x 59.5cm 

11 14.9cm x 14.9cm 

12 3.7cm x 1.9cm 

 

For GeoHash mapping we using the following open-source library  

github.com/davidmoten/geo, which provides convenient methods for geohash mapping  

In the Complex Event Recognition Module, input data are considered the JSON files that 

are produced from the Trajectory Detection Module. 

 

https://github.com/davidmoten/geo
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1) Gaps 

2) Long Term Stops 

3) Smooth Turns 

 

5.3 Vessel Rendezvous  

We implement vessel Rendezvous and the other complex maritime events recognition 

using Apache Flink Batch API. The batch API is more suitable in this case, since multiple 

comparison between vessels locations and timestamps should be performed, and the 

batch API is more capable of such computation heavy workload. 

Given the following logical rule that is representing and reasoning about vessel 

rendezvous with Event Calculus as presented in the Paper “How not to drown in a sea 

of information: An event recognition approach” we implement it as follows: 

 

Event Calculus rule for Vessel Rendezvous: 

1. holdsFor (possibleRendezvous(Vessel1 ;Vessel2 )=true; I)   

2. holdsFor (in(Vessel1 )=Cell ; I1 ); 

3. holdsFor (in(Vessel2 )=Cell ; I2 ); 

4. holdsFor (suspiciousDelay(Vessel1 )=true; I3 ); 

5. holdsFor (suspiciousDelay(Vessel2 )=true; I4 ); 

6. intersect all([I1 ; I2 ; I3 ; I4 ]; I ) 

 

Implementation with Apache Flink API:  

1. We read the Gaps data which is output from the Trajectory Detection Module. The 

gaps data contains the following attributes: label (=” gap”), start Event, end Event. 

 

2. Each gap event is then mapped using a Flink MapFunction to a tuple containing 

the following fields: 

a. GeoHash of the location of the GapEnd event 

b. Vessel ID 

c. gap Start timestamp 

d. GapEnd timestamp 

The result type is an Apache Flink Dataset of  

Tuple4<GeoHash, ID, gapStart_timestamp, gapEnd_timestamp>> 

 

3. We perform a self-join operation on the dataset, where the join key is the GeoHash. 

This allows us to check vessel rendezvous for vessels which have been in the same 

vessel. For each couple events (first, second) having a matching key(=cell), we 

compute the gaps overlap as follows 
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intersection =  

Range (first. GapStart_timestamp, first. GapEnd_timestamp) 

    . intersect (Range (second. gapStart_timestamp, second. gapEnd_timestamp)) 

    . intersect (Range (first. gapEnd_timestamp - 60, first. gapEnd_timestamp + 

60)) 

    . intersect (Range (second. gapEnd_timestamp - 60, second. 

gapEnd_timestamp + 60)); 

If the intersection is not empty we output (vessel1_id, vessel2_id, intersection. 

Start, intersection. End) where vessel ids are sorted. 

4. Then we perform a distinct operation on (vessel1_id, vessel2_id) to filter 

duplicates. 

5. We finally output the results to text csv files using Flink Filesystem connector. 

 

 

 

 

5.4 Package picking  

According to the paper “Online Event Recognition from Moving Vessel 

Trajectories” is defined that in order to have a possible Package Picking complex event, 

the end of the stop of one vessel is the start of the stop of another vessel and this point of 

time the two vessels should be in the same cell in the grid, and the delta of the timestamps 

should be less than 1 hour, and also the distance between the two vessels should be less 

than 0.5 km. We will manage to deploy the above rules using Apache Flink API. Package 

Picking deals with couples of vessels when the first vessel does a Long Term Stop and 

drops the package when Long Term Stop Event finishes, and a second vessel stops in the 

same cell (start of stop) so as to pick the package. The process is doing by Joining two 

different Tuple2 Datasets. The first Dataset contains the Start of Stops and the second 

Dataset contains the End of Stops. We have to import in the Complex Event Recognition 

module the LongTermStops from ltsOut JSON file produced from the Trajectory 

Detection Module, so as to parse the Long Term Stops: DataSet<LongTermEvent> stops 

= env. readTextFile(ltsOut) and convert them back as LongTermEvents by mapping these 

Strings to LongTermEvent class, that has 3 attributes a) Start, b)End, c)Label:  

 

 

Package picking in Event Calculus is characterized by the following rule: 

 

 

 

 



36 

 

Event Calculus rule for Package Picking:  

1. happensAt(possiblePicking(Vessel1 ;Vessel2 ); Tpick )   

2. happensAt(end(stopped(Vessel1 )=true);Tdrop); 

3. holdsAt(in(Vessel1 )=Cell ; Tdrop); 

4. happensAt(start(stopped(Vessel2 )=true);Tpick ); 

5. holdsAt(in(Vessel2 )=Cell ; Tpick ); 

6. Tpick - Tdrop < 1 hour; 

7. holdsAt(coord(Vessel1 ) =(Lon1 ; Lat1 ); Tdrop); 

8. holdsAt(coord(Vessel2 ) =(Lon2 ; Lat2 ); Tpick ); 

9. distance((Lon1 ; Lat1 ); (Lon2 ; Lat2 ); Dist); 

10. Dist < 0,5 miles 

 

 

It is therefore based on long-term stop events, which are output from the Trajectory 

Detection Module. 

 

Implementation with Apache Flink API:  

1. We first derive two datasets from the long-term stops dataset:  

2. Dataset <Tuple2<GeoHash, AisEvent>> cell_startOfStops, and 

DataSet<Tuple2<GeoHash, AisEvent>> cell_endOfStops. 

This is done using Flink MapFunction which takes as input the long-term stops 

dataset and maps it to one of the previous datasets as follows: 

Tuple2<GeoHash, AisEvent> cell_startOfStop =  

map (LongTermEvent longTermEvent) { 

   return Tuple2.of( 

           GeoHash.encodeHash( 

                   longTermEvent.getStart().getLat(), 

                   longTermEvent.getStart().getLon(), accuracy), 

           longTermEvent.getStart()); 

} 

3. We then join the two datasets on the GeoHash key in order to find vessel couples 

such that the end of the long-term stop of one vessel happens in the same cell as 

the start of the long-term stop of the other vessel. The join is performed using the 

Flink batch API as follows: 

cell_startOfStops 

       . join(cell_endOfStops) 

       . where(0) 

       .equalTo(0) 

4. Then we filter events which verify the distance and duration between T_drop and 

T_pick constraints. 
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5. The output result is a dataset of (vessel1_id, vessel2_id, pick_timestamp) that we 

output to a csv file using Flink Filesystem connector. 

 

 

 

5.5 Fast Approach  

Fast approach is defined by the following rule in paper “Online Event Recognition 

from Moving Vessel Trajectories” “headingToVessels(Vessel) is a fluent that 

becomes true whenever a Vessel's direction of movement is towards at least one nearby 

vessel.”   

Event Calculus rule for Fast Approach :  

1. happensAt(fastApproach(Vessel ); T)   

2. happensAt(speedChange(Vessel ); T); 

3. holdsAt(velocity(Vessel )=Speed; T); 

4. Speed > 20 knots; 

5. holdsAt(coord(Vessel ) =(Lon; Lat); T); 

6. not nearPorts(Lon; Lat); 

7. holdsAt(headingToVessels(Vessel )=true; T) 

 

Implementation with Apache Flink API:  

To implement Fast Approach Complex Event, we are filtering all movement events which 

is output by the Trajectory Detection Module in order to keep only speed change events.  

This is done using Flink Filter function. The result is a DataSet that will contain Speed 

Change Events. We then assign to each event its GeoHash in the same way we did for 

Vessel Rendezvous and Package Picking. The scope is to create two different Datasets. 

The First Dataset is all the events that are SpeedChanges. The Second Dataset is all the 

events that detected from the Trajectory Detection Module. A join is performed between 

these 2 datasets, so as to get results of Fast Approaches events as couple of elements in 

the same cell on the grid.  

 

5.5.1 SpeedChange DataSet:  

Specifically, the input data are JSONs file that we convert back to AISEvent class, in order 

to have access to all its attributes as described in the Trajectory Detection Module.  Using 

the is SpeedChange function that is implemented in the AISEvent class we are going to 

filter and keep only Speed Changes events whose speed is greater than 30 KNOTS. 

Furthermore, we compute the cell of the events using the GeoHash function, and we 

create DataSet of Tuple2<String, AisEvent>, where the String is the result of the GeoHash 

function. 
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5.5.2 AllEvents DataSet: 

The input data is a JSON file that we convert back to AISEvent, in order to have access to 

all its attributes as described in the Trajectory Detection Module. Same way as before, we 

compute the cell of the events using the GeoHash function, and we create DataSet of 

Tuple2<String, AisEvent> where the String is the result of the GeoHash function. Joining 

process is performed between the speed changes dataset and the dataset containing all 

events on the GeoHash key, to find couples of vessels that one of them is heading toward 

the other. This is implemented using Flink Join Function in the same way as package 

picking and vessel rendezvous. 

 

5.5.3 Join between these two Datasets: 

 

In order to extract the couples of vessels participating in the fast approach, we filter couple 

having the same id (same vessel). Next we check if the vessel with the speed change is 

heading towards the other event. 

  

Given a vessel whose current position is at B, and its previous position is A, we can define 

its velocity at B by the speed and the bearing. The speed is given by the distance between 

A and B divided by the difference in timestamps. The bearing is defined by the angle with 

respect to a reference line (here 30 for example). The resulting velocity vector has the 

same direction as the line between A and B. 

If a vessel is heading towards another vessel, but their timestamps are very distant, we 

have to exclude these from the results. The timestamp of the one Event should not be less 

than the delta duration from the timestamp of the other event: |event. f1. get Timestamp 

() - change. f1. get Timestamp ()| <= delta 

 

We define the notion of “heading toward” by the the following: a vessel is heading toward 

another one if the direction of its velocity is within a given angle alpha, of the line joining 

the two vessels. 

Given a velocity object V, we can compute the angle between its direction and the 

direction of another velocity object V1 using the method V .getBearingDiff(V1) that we 

implemented in the velocity class.  

 

We want to compute: angle between: (my velocity) and (line connecting me and you) 

 

(line connecting me and you) == velocity V  

We can compute: angle between (my velocity) and (any velocity V2) 
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So all we need to do is to create a virtual Velocity vector which has the same direction as 

the line between the two vessels. This can be done by computing the velocity of the second 

vessel as if the first vessel was its previous position.  

If the direction of the velocity vector of the first vessel is less than “within” degrees from 

the direction of the line connecting the two vessels, then the result is supposed to be a 

Fast Approach. 
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6 Visualizations with Kibana   

 

 

Flink has an integrated ElasticSearch sink, which helps sending AISEvents to 

ElasticSearch and visualizing them in in real-time. One first we have to create an 

ElasticSearch index which will contain the events. Then one should specify fields types, 

to be able to visualize geopoints in maps in case or geographical data or to query data by 

time range in case of time series. In our case, we specify the following mapping for the 

ElasticSearch index we created: 

curl -XPUT 'localhost:9200/aisevents/_mapping/all?pretty' -H 'Content-Type: 

application/json' -d 

'{ 

  "properties": { 

    "location": { 

          "type": "geo_point" 

        }, 

    "timestamp": { 

          "type": "date"  

        } 

  } 

}' 

Then we launch another Flink pipeline which reads the raw AISEvents, pre-process them 

into json objects to be recognized by ElasticSearch and send them to ElasticSearch index. 

 

 

The Flink Job has two operators: 

 

 

The first one reads each line of the input and converts it to a json with the following 

schema: 

{timestamp, id, location: {long, lat}}. This is achieved using a Flink MapFunction as 

follows: 

.map(new MapFunction<String, Tuple2<String, JsonObject>>() { 

   @Override 

   public Tuple2<String, JsonObject> map (String s) throws Exception { 

       String [] data = s.split(" "); 

       JsonObject jsonObject = new JsonObject(); 

       jsonObject.addProperty("timestamp", 1000*Long.parseLong(data[0])); 

       jsonObject.addProperty("id",data[1]); 

       JsonObject location = new JsonObject(); 

       location.addProperty("lon", Double.parseDouble(data[2])); 
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       location.addProperty("lat", Double.parseDouble(data[3])); 

       jsonObject.add("location", location); 

       return Tuple2.of(data[1], jsonObject); 

   } 

}) 

 

 

The second one is the ElasticSearch sink which sends the resulting json objects to the 

specified ElasticSearch index (“aisevents” in our case):  

 

stream.addSink(new ElasticsearchSink<>(config, transportAddresses, new 

ElasticsearchSinkFunction<Tuple2<String, String>>() { 

   public Index Request createIndexRequest (Tuple2<String, String> element) { 

 

       return Requests.indexRequest() 

               . index("aisevents") 

               . type("all") 

               . source(element.f1); 

   } 

   @Override 

   public void process (Tuple2<String, String> element, Runtime Context ctx, 

RequestIndexer indexer) { 

       indexer.add(createIndexRequest(element)); 

   } 

})); 
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This results in the events being indexed and shown in Kibana as soon as they are sent in 

Figure [2]: 

 
                                                        

Figure [2] : Kibana indexing 

 

 

One can then easily visualize trajectories using Kibana integrated Coordinate Maps as 

described below in Figure [3]: 

 

 
 

Figure [3]: Vessel Trajectory Visualization near Rhodes island 
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Using the coordinates map visualization, we can visually check for complex events like 

rendezvous for example. In the following Figure [3.1] we can see that the “Ship 3” was 

around Rhodes in June 1st between 18h and 22h: 

 

 
Figure [3.1]: Vessel Trajectory Visualization near Rhodes island 

 

 
Figure [3.2]: Vessel Trajectory Visualization near Rhodes island 

 

And that the “Ship 6” was in the same area around the same time which suggest a possible 

rendezvous which was successfully recognized by the complex event recognition module, 

as it is visualized in Figure [3.2] 
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7 Proposals and next steps 

 

● The proposed service can be considered a proof of concept for treating maritime 

events and is far from being ready for production. To make it suitable for 

production, the full pipeline should be set up with Kafka a data source and also as 

a data sink given the streaming nature of the data, the whole process should be 

automated and tested, and input and outputs should be properly configured and 

possibly integrated to databases. 

 

 

● One shortcoming of our implementation is the costly join performed between 

speed change events and all other events to detect fast approaches. This can maybe 

be optimized. 

 

● Another track of improvement is the automated detection of noisy events, which is 

currently performed using hard wired rules, and could maybe be performed using 

machine learning techniques to predict vessel trajectories and filter noisy events 

as outliers. 

 

● Another improvement might be to think of a streaming adaptation of the 

algorithms used in the complex event recognition module which is currently 

performed using the batch API due to the streaming API limitations. 

 

● Developers who write big data programs (like MapReduce functions) with 

streaming data can take data in whatever format it is in, join different sets, reduce 

it to key-value pairs (map), and then run calculations on adjacent pairs to produce 

some final calculated value. They also can plug these data items into machine 

learning algorithms to make some projection (predictive models) or discover 

patterns (classification models). 
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8 Apache Flink Dashboard and metrics  

 

8.1 Trajectory Detection Module  

 

In the following screenshot we are presenting the Flink Dashboard while running the 

Trajectory Detection Module, as presented below in Figure [4].  

The job can be executed in one of two modes: Either reading the whole input first and 

then processing data which is equivalent to batch processing, or reading the input 

incrementally and processing it on the fly which is more compatible with the streaming 

nature of Apache Flink. When reading the input as whole we can see the gap detecting 

operator which computes session windows is stuck and does not output any element: 

 

 

 
                                         Figure [4]: Apache Flink execution dashboard 

 

However, when reading the input incrementally, the operator starts sending elements as 

soon as it receives data, which we can see in the following Figure [5]: 

 

 
Figure [5]: Incrementally data ingestion 

 

  

In the trajectory detection module, we are reading events from Kafka which are then 

processed by a windows in order to detect gaps then a subsequent Flatmap operator that 

assigns velocity information and filters noisy events and then patterns are applied to the 
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stream using Flink CEP to detect long term events (smooth turns and long term stops), as 

presented in Figure [6]. The results are output to files in the disk. 

 

 

 

 
Figure [6] : Number of records emit by Kafka per second 

 

 

The session window is used to detect gaps (by marking the first element of the window as 

a Gap End and the last one as a Gap Start). In the following graph we can see that the 

number of record out/s from the window operator (about 9000/s) is less than what is 

emit by Kafka (about 50000) due to the latency of the window operator as presented in 

Figure [7] : 

 
Figure [7]: Session Window Operator 

 

 

In the following Figure [8] and Figure [9] we can see that The Flatmap operator emits less 

records (around 2 millions) than it receives (3.5 millions) since it filters noisy ones: 
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Figure [8]: Flatmap Operator, visualizing the number of Input rows 

 

 
 
                         Figure [9]:  Flatmap Operator, visualizing Number of Output rows 

 

 

 

The patterns are applied to the stream and aggregate matching results into lists, which 

explain the difference between the number of input/output events in LongTermStop and 

Smooth Turn in the Pattern matching operator, as described in the next 2 figures, Figure 

[10] and Figure [11] for the LTS:  

 
Figure [10]: Number of input records per second in LTS 
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Figure [11]: Number of output records per second in LTS from CEP   Pattern Operator 

 

 

8.1.2 Metrics - Trajectory Detection Module  

 

The “Imis 1month” file from http://chorochronos.datastories.org/?q=node/81 contains 

one month of data, 58691821 events and its size is 4.7Gb. Using the Ubuntu 16.04.1 x64 

Virtual Machine, with 8 cores, 16GB Memory and 160GB SSD Disk, the experiment took 

15 minutes.  

As a result, we detect: 

 

●214 997 noisy events 

●101 909 long term stops 

●816 smooth turns 

●1 017 097 gaps (5 minutes gaps) 

●5 939 234 smooth turns 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://chorochronos.datastories.org/?q=node/81
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8.2 Complex event Recognition Module 

Package Picking  

 

 
Figure [12]: Directed Acyclic Graph - Package picking Module 

 

 

Here are visualizations about the DAG that is generated at Package Picking Jobs runtime- 

Figure [12] -  and the number of records in and out/second from the join operator. After 

a transitional state we reach 50 input records/s and 90 records/s output. 

The job took 50 minutes on a local machine of 16GB of Ram to process long term stops 

extracted from 1 month of data and detect package pickings. The number of long term 

stops used to recognize package pickings is 97077 events, (start of the stops & end of the 

stops) and they resulted in 7856 possible package pickings. 

 

 

Figure [13]: Metrics in Join Operator - number of Records in per Second While Joining the two datasets. 
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Figure [14]: Metrics in Join Operator - number of Records out per Second while Joining the two datasets. 

 

 

 

 

Here is a sample of possible pickings detected by the module: 

 

Vessel 1 Vessel 2 Picking timestamp 

4 

21 

32 

53 

64 

64 

92 

124 

133 

133 

 

1261 

1953 

3020 

897 

1079 

4310 

4065 

1228 

1045 

1104 

1246585929 

1246858703 

1247950870 

1246689547 

1246696652 

1248794609 

1247359127 

1247722378 

1247446542 

1246598392 

 

 

Vessel Rendezvous 
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Figure [15]: Directed Acyclic Graph - Vessel Rendezvous. 

 

 

 

In Figure [15] is presented the DAG of the Vessel Rendezvous Apache Flink Job and in 

Figure [16] and Figure [17] is presented the evolution of the number of records in / out of 

the join operator in the vessel rendezvous pipeline: 

 

Figure [16] Number of input rows per second in Join Operator for Vessel Rendezvous 

 

 

 

 
Figure [17] Number of input rows per second in Join Operator for Vessel Rendezvous 

 

 

After a transitional state, the number of input records/s becomes steady around 120 

record/s 

And so does the number of out records /s which becomes constant at around 760 

record/second. 

The job takes 60 minutes to process 1 month of data on a local machine having 16GB of 

Ram. 

 

 

 

Here are some possible vessel rendezvous detected.  
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Vessel 1 Vessel 2 RDV start RDV end 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

88 

1549 

2676 

2853 

9 

236 

259 

289 

370 

373 

1246443231 

1246443251 

1246431080 

1246439991 

1246977284 

1246892513 

1246990826 

1247592663 

1246990843 

1246895054 

1246443273 

1246443291 

1246431112 

1246440032 

1246977326 

1246892535 

1246990844 

1247592682 

1246990844 

1246895092 

 

Fast Approach 

The main operator in the fast approach pipeline is the join operator. We perform a join 

using a sort merge strategy provided by Flink, in which Flink sorts the inputs join keys 

before performing the join. An advantage of this strategy is that it is robust, in case the 

memory is limited with respect to the dataset size (which is our case) it spills the data to 

the disk to perform the sort.  

The job takes 5 days to finish processing 1 month of data on a big machine of 128 GB 

memory. 

Here is the evolution of the number of record in out of the join operator during the run: 

 

 

 
       Figure [18] Number of output rows per second in Join Operator for Fast Approach 

Flink Job  
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8.2.2 Metrics - Complex Event Recognition  

 

The experiment of Package Picking took 1h and 15 min, and we detected 7856 Package 

pickings. 

The experiment of Vessel Rendez-Vous took 8h and 30 min and we detected 752551 

Vessel Rendez-vous. 

The experiment of Fast Approaches took 5 days (using 128Gb Ram) and we detected 

10376275 Fast Approaches. 
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