
1

Complex Event Recognition for Maritime

Surveillance

MASTER THESIS

Λάμπρος Καραγεώργος

MPSP 13042

Επιβλέπων Καθηγητής : κ. Ιωάννης Θεοδωρίδης

SEPTEMBER 2017

2

Acknowledgements

I would like to thank all my family and my supervisor Professors: Yannis Theodoridis, Nikos

Pelekis and Alexander Artikis.

3

Contents

ABSTRACT .. 5

1.Introduction .. 6

1.1 Motivation - Real time analytics for Big Data ... 6

1.2 Approach - Apache Flink .. 6

1.3 Contributions .. 7

 .. 7

2. Review of the References ... 10

2.1 RTEC ... 10

2.2 dRTEC - State of the art .. 11

2.3 Open Source Stream processing solutions ... 12

2.4 Conclusion .. 13

3. Apache Flink Ecosystem ... 14

3.1 Dataflow Programming Model ... 14

3.2 API’s and Libraries ... 15

3.3 Time in Apache Flink.. 15

3.4 Watermarks .. 16

3.5 Windows .. 17

3.6 State .. 18

3.7 Consistency, fault tolerance, high availability .. 19

3.8 The DataStream API ... 19

3.9 The Dataset API .. 20

3.10 The Deployment.. 21

IMPLEMENTATION ... 22

4. Trajectory Detection Module .. 22

4.1 AISEvents class .. 22

4.2 Keyed Streams ... 23

4.3 Session windowing policy .. 23

4

4.4 Triggering policy .. 23

4.5 Window Process Policy .. 23

4.6 Computing Coordinates ... 24

4.7 Short Term Events - Noise Filtering Process .. 24

4.7.1 State .. 24

4.7.2 NoiseOperator ... 24

4.8 {Pause, Speed Change, Turn} Events .. 25

4.8.1 Pause Event – Speed Change Event – Turn Point Event – Noise Events 25

4.9 Long Lasting Movement Events .. 27

4.9.1 General Approach - Flink CEP Library ... 27

4.9.2 Long Term Stops and Smooth Turns .. 28

4.9.3 The Long Term Stop Operator .. 29

4.10 Gaps .. 31

5 Complex Event Recognition Module .. 32

5.1 Introduction.. 32

5.2 Grid partitioning .. 32

5.2.1 Grid partitioning using GeoHash .. 32

5.3 Vessel Rendezvous ... 34

5.4 Package picking .. 35

5.5 Fast Approach .. 37

6 Visualizations with Kibana ... 40

7 Proposals and next steps ... 44

8 Apache Flink Dashboard and metrics ... 45

8.1 Trajectory Detection Module ... 45

8.1.2 Metrics - Trajectory Detection Module ... 48

8.2 Complex event Recognition Module ... 49

Package Picking .. 49

Vessel Rendezvous .. 50

Fast Approach ... 52

9 References ... 53

5

ABSTRACT

The main scope of this Master thesis is to analyze and design an innovative technological

solution for Complex Event Recognition for Maritime Surveillance purposes, based

entirely on the approach presented in the Paper “Event Recognition for Maritime

Surveillance” by Kostas Patroumpas, Alexander Artikis, Nikos Katzouris, Marios

Vodas, Yannis Theodoridis and Nikos Pelekis in the context of the AMINESS project. The

master Thesis aims to tackle the challenge of processing and analyzing the available AIS

Data sets in real time using Apache Flink. Apache Flink is a real time high-performance

and accurate natural Stream Processing Engine from Apache Software Foundation. The

ultimate goal is to inspire Maritime authorities to develop their digital culture and

empower their ICT departments with a new big data innovative tool that uses the existing

Paper’s algorithms and semantics in an intelligent way, so as to detect vessel’s Trajectories

in the Aegean Sea while performing accurate Complex Event Recognition. The technical

approach and the effective reasoning of complex events is totally based on the business

logic of RTEC and the Event Calculus formal language semantics. We are going to map

these semantics into Apache Flink DataStream and Dataset API and create an efficient

alternative technical approach.

6

1.Introduction

1.1 Motivation - Real time analytics for Big Data

From the dawn of civilization until 2003 humankind generated five Exabyte’s of data.

Now we produce five Exabyte’s every two days and the pace is accelerating. It is expected

that by 2020, the amount of digital information in existence would have grown to 40

zettabytes. It is a growing need for new data management systems and distributed

architectures not only to handle and store a wide variety of data coming from IOT sensors,

Portals, Logs, Mobile apps but to analyze them and extract complex information in real

time for the benefit of the government and the authorities. In our day’s data scientists and

ICT companies have already faced this growing need for improved and advanced

analytical capabilities that extract information from the huge volumes of varied data in

real time and create added-value services. These needs lead for optimized hardware

appliances and software platforms ranging from multi-core processors to distributed

computing and cloud storage infrastructures that will offer optimized performance of

complex queries and will enable complex algorithms to run just in a few minutes.

1.2 Approach - Apache Flink

In December 2014, Apache Flink, a dedicated stream processing engine started at

Technical University Berlin and was accepted from Apache Foundation as an Apache top-

level project. Apache Flink introduced in the community as the high-throughput and low-

latency natural stream processing engine which comes with very rich DataStream API and

new Libraries. The presented technical approach of the Trajectory Detection and Complex

Event Recognition concepts is based on Apache Flink API and its CEP Library using the

event-at-a-time rather than batches of data –an important distinction from previous

streaming approaches - which turns the current master thesis into an innovative service

for the maritime community. Taking into consideration that Apache Flink ecosystem has

been already deployed from Big IT companies in high performance Production

environments we will aim to apply its API features and libraries for the benefit of Shipping

industry and furthermore for the Maritime surveillance.

7

1.3 Contributions

The first micro-service that we are going to implement with Apache Flink is the Trajectory

Detection Module. The second is the Complex Event Recognition Module. The third

module is an approach for integrating Flink with Elastic and Kibana. We are going to

visualize the given AIS data and share them through dashboards in order to make vessel’s

information easily accessible to maritime industry and create geodata reports and graphs

so as the authorities can find their own answers to critical questions easily within a few

seconds.

1.3.1 Trajectory Detection Module

The paper “How not to drown in a sea of information: An event recognition approach.

Elias Alevizos, Alexander Artikis, Kostas Patroumpas, Mario's Vodas, Yannis Theodoridis,

Nikos Pelekis” introduced the notion of critical vessel movement events which can be

cleverly extracted from a stream of raw AIS elements. These vessel’s critical movement

events include the following types: slow speed, speed changes, speed acceleration,

communication gap, vessel turn, and vessel pause, which are summarized in the

following paper’s figure [1] and we are going to implement with Apache Flink.

 figure [1]

8

Trajectory Detection Module is the main module of the implementation since the

Complex Event Recognition module is built on top of it. It is implemented as an Apache

Flink stream processing pipeline which is totally based on the Event Calculus formalism,

the business logic algorithms and semantics presented in the Paper “How not to drown

in a sea of information: An event recognition approach”. The Apache Flink pipeline is

composed of a number of chained operators, each having multiple instances for parallel

processing. Apache Flink composes the execution graph through which the data are

processed in a streaming fashion.

As described in the Paper, a key problem in real time processing implementations is the

detection of event patterns in data streams. By default, the streaming nature of Apache

Flink make it suitable for handling this type of processing, which is facilitated by the

DataStream API, and the Complex Event Pattern Library provided. The dataset, we are

going to use is imis-1month dataset from http://chorochronos.datastories.org . We

will model AISdata into AISEvents and tag them into two different categories of ‘vessel

trajectory events’:

The category of the Short-term critical movement events includes the detected vessel

stops, turning points, slow motions, vessel accelerations, noise events.

The category of Long-term Events includes sequentially processed critical movement

events with the usage of the Flink CEP library in order to detect sequences of patterns,

and extract information about Long Term Events like: Long-term vessel stops, vessel

Gaps and vessel smooth turns Events.

1.3.2 Complex Maritime Events Recognition Module

The Complex Event Recognition module consumes the output of the Trajectory detection

module so as to process the results and recognize in real time potentially complex

maritime situations for preventing too complicated situations and for Maritime

intelligence purposes also. According to the paper “How not to drown in a sea of

information: An event recognition approach” complex events can be categorized into

Instantaneous vessel complex events and Long lasting vessel complex events. Using the

semantics and algorithms already defined, we aim to represent Vessel rendezvous,

package pickings and fast approaches concepts designed with Apache Flink. We are going

to implement this module with Apache Flink Dataset API. The reason of using the Dataset

API is that the detection of those complex events depends on notions of proximity of the

vessel’s defined cells, and on complex reasoning about vessel’s timestamps which are hard

to implement using Flink DataStream API.

http://chorochronos.datastories.org/?q=datasets

9

1.3.3 Visualizations and Maritime analytics

The third visualization module is based on ElasticSearch. Events are indexed into

ElasticSearch can be then easily visualized using a graphic tool called Kibana that is

connected to Elastic using the REST API. It aims to provide an easy to use interface to

maritime authorities in order to perform real-time data analysis and visualizations on real

time streaming data. In the presented Master thesis, we are going to represent the vessel’s

raw AIS data and easily understand them by taking advantage of their graphic

representations on Kibana geo-map.

Keywords: Big Data, Maritime Intelligence, Real Time Analytics, Complex Event

Recognition, Apache Flink.

10

2. Review of the References

The first contact to real time complex event reasoning was the paper “How not to drown

in a sea of information: An event recognition approach” which motivates thinking about

illustrating and implementing those practices in the top of many big-data open source

frameworks from the Apache Foundation, like Apache Kafka and Apache Flink. Queries

against the data should be performed continuously as the data coming in real time; What

exactly Apache Flink is naturally doing. Also, my attendance in the premium conference

of Apache Flink “Flink Forward at 11-13 September 2017 in Berlin” gave me the

opportunity to learn many best practices in the technical Workshops, to understand how

and where Flink is used in production environments and how it can be integrated with

other Big Data frameworks. We are going to present the concepts of those references, and

how we tried to develop a step further. First of all, we are going to describe concepts of

RTEC.

2.1 RTEC

RTEC approach uses a formal syntax for reasoning as presented in this Paper “How not

to drown in a sea of information: An event recognition approach”. RTEC is a Complex

event recognition system using Event Calculus formal programming language for

reasoning events. The idea of implementing a streaming real-time model that will extend

the Implementation of the Event Calculus is motivated by the following reasons:

● RTEC sliding windows

 The RTEC implementation is based on Sliding Windows approach for processing the

incoming data, because data needs to be processed in batches, whereas with Apache Flink

this constraint is not present because Flink naturally supports streams of events.

● RTEC transformations

 The implementation of RTEC is using hard coded the Gap detection, elements buffering,

the noise detection while Apache Flink provides a DataStream API which facilitates

dealing with streams such as Map Functions, stateful operations and event time.

● Checkpoints

 The advantage of Flink is that it comes also with a checkpointing mechanism, distributes

processing, scalable state (with RocksDB), which are not provided in RTEC

11

implementation, and might be useful extension if a real time streaming application is

going to be deployed in a production environment.

● CEP

In RTEC, Complex Event processing is implemented in prolog, while the usage of Apache

Flink CEP library will help us to detect patterns without the need to translate them to a

custom formal logic.

2.2 dRTEC - State of the art

In Big data ecosystem, real time processing frameworks are designed to ingest big

volumes of data streams and provide analytics to the end users in real time. dRTEC

event recognition engine is an enhanced version of RTEC which employs data

partitioning techniques using dynamic grounding and indexing. dRTEC uses resources

of distributed infrastructures very efficient and has introduced in the Paper “A

Distributed Event Calculus for Event Recognition Alexandros Mavrommatis, Alexander

Artikis, Anastasios Skarlatidis and Georgios Paliouras”. dRTEC intends to improve the

abilities of RTEC by focusing on the event streaming analysis in order to detect patterns

over streams in a more efficient way when the volumes of incoming data become very

big and the velocity is increasing because it is a natural scalable, high-throughput and

fault-tolerant stream processing engine.

Reasoning of statically determined and long term events is implemented with Apache

Spark API by using the Apache Spark Streaming extension which offers all the

capabilities of an in-memory application for efficient processing micro-batches of

events. Complex event processing with dRTEC evaluated in the context of

SYNAISTHISI project for real time human activity recognition and in datACRON

project for the real time recognition of suspicious and illegal vessel maritime activities in

the Aegean Sea.

For maritime surveillance monitoring, data analysts are interested in what happened for

the last second of time in the vessels in the open sea and they want those statistics to

refresh every minute. For this reason, dRTEC applies advanced windowing function

based on the durations of the sliding windows, the sliding step and the maximum

timestamp of each event so as to handle out of order events and compute in memory

each time only the events that are inside the dynamic sliding window.

12

According to the empirical evaluations in the context of dataACRON project dRTEC is

more efficient than RTEC when the incoming volumes of data become even bigger

The usage of Spark Streaming facilitates the integration of dRTEC with other modules

(Kafka, Flume, Hadoop)

 The Apache Flink implementation that we are going to introduce as we have already

mentioned is using the Event Calculus formalism – like RTEC and dRTEC- including

advanced techniques session windowing.

2.3 Open Source Stream processing solutions

 To tackle the challenge of large scale stream processing, a number of open source

frameworks were recently developed including - but not limited to Apache Flink - like

Apache Spark and Apache Storm. We are going to present some key differences between

Apache Flink and {Apache Spark - Apache Storm} as we extracted them from their

characteristics and from many technical presentations in Flink Forward conference and

their documentations:

2.3.1 Differences between Apache Spark and Apache Flink

Both support batch and stream capabilities and both are in-memory databases. The main

difference is that Apache Flink is introduced to the community as a natural streaming

framework that is built from scratch with a DataStream API logic, in contrast to Apache

Spark which divides streaming data sets into micro batches in a continuous fashion to

simulate real time processing. Apache Spark by default is not a real time Stream process

engine. For this reason, it uses extensions like DStreams (Discretized Streams) a plugin

for streaming data and RDD plugin (Resilient distributed dataset) for batch data. Apache

Spark includes also the component Apache Spark Streaming, which can turn Apache

Spark into a real-time stream processing engine.

2.3.2 Differences between Apache Storm and Apache Flink

In contrast to Apache Spark restrictions in real time streaming, Apache Storm is sharing

a very similar logic with Apache Flink that means similar interfaces API and Libraries.

Apache Storm is a data stream processor but with no batch capabilities - while Flink has

both. When it comes to compare their streaming capabilities, Apache Flink offers a more

high-level API and Libraries compared to Storm. Apache Flink DataStream API provides

13

built-in data transformations and aggregations such as Map, groupBy, Window, and Join,

while in Storm we have to implement them from scratch.

2.4 Conclusion

Because accurate and real time data streaming analytics and metrics has vital business

meaning in Maritime Industry, all the technical approach and implementation is based

on Apache Flink API which turns the current master thesis into an innovative service for

the maritime community. Taking into consideration that Apache Flink ecosystem has

already been deployed for Big IT companies in high performance Production

environments, like in the Banking Industry solving Fraud detection issues, we will take

advantage and we will apply its API features operators and libraries for the benefit of

Shipping industry and furthermore for the Maritime surveillance.

14

3. Apache Flink Ecosystem

The first use case that real time streaming technology applied, is the Twitter social media

platform. Developers were able to use the Twitter API for querying all the tweets in real

time as the content was generated from the users. As we told in the introduction,

streaming data can be produced from wide variety of operational and transactional

Source Systems every millisecond for example from IOT sensors in car/vessels/airplanes,

traffic sensors, weather data sensors, social media applications mobile applications and

logs that machines are producing every day. When we deal with streaming processing, the

input data are supposed to be unbounded data sets that are continuously produced and

we want to continuously process them in real time.

3.1 Dataflow Programming Model

A Flink program is defined by the notions of the data streams and their transformations.

Conceptually a stream is a (potentially never-ending) flow of events, and a transformation

is an operation that takes one or more streams as input, and produces one or more output

streams as an output. When executed, Flink programs are mapped to directed acyclic

graphs, consisting of streams and transformation operators. Each graphs starts with one

or more sources and ends in one or more sinks.

Flink programs are executed in a distributed and parallel manner. Each data stream is

divided into many partitions, which go through different instances of the operators

defining the Flink program. The number of instances of each operator is each degree of

parallelism. By defining parallelism over operators and partitions, Flink abstracts

distributed execution from physical machines.

For example: A Flink cluster can be defined by 8 task managers each one installed in a

different machine and having 1 task slot. This is equivalent to having only one Task

manager on one machine having 8 task slots, and in the two cases the maximum

parallelism of a Flink program on such cluster would be equal to 8.

15

3.2 API’s and Libraries

Flink has natural DataStream API and Dataset API written in Java or Scala and Table /

Sql API. Apache Flink supports data stream processing of events through its DataStream

API and the windowing mechanism. The implementation of the vessel’s Trajectory

Detection Module is using DataStream API and many of its capabilities like the notion of

event time and session window mechanism. DataStream API uses many operators from

the Dataset API such as such as MapReduce, and joins written in Java or Scala to the

streaming world. For the Implementation of the Complex Event Recognition Module, we

used the Dataset API for performance reasons due to huge joins between the AIS datasets

so as to detect critical information.

3.3 Time in Apache Flink

Flink supports different concepts in streaming time. Aggregations on data streams are

different from the aggregations on the datasets. It is not possible to count for example all

the elements of a DataStream, because the stream is infinite. Apache Flink is a stream

processor with a flexible mechanism for building windows for evaluating real time data

streams. In order to process infinite real time data streams, the stream is divided into

finite slices / buckets with boundaries based on some criteria like the time passed or

number of elements per window or other criteria like the period of inactivity. Flink offers

explicit handling of time: and defines two types of time

3.3.1 Ingestion time

Ingestion time is the time that events enter Flink. At the source operator each record gets

the source’s current time as a timestamp attribute, and windows will based their

computations on this timestamp. Internally, ingestion time is treated much like event

time, but with automatic timestamp assignment and automatic watermark generation.

Ingestion time can be used for example when developing a custom Flink source which

directly ingests AIS events and therefore assigns timestamps at the source level.

3.3.2 Processing time

Processing time is the time that the event arrives in the system. Processing time refers to

the system time (clock) of the machine that is executing the operations. When a streaming

program runs on processing time, all time-based operations (like time windows) will use

the system clock of the machines that run the respective operator. For example, an hourly

16

processing time window will include all records that arrived at a specific operator between

the times when the system clock indicated the full hour.

Processing time is the simplest notion of time and requires no coordination between

streams and machines. It provides the best performance and the lowest latency. However,

in distributed and asynchronous environments processing time does not provide

determinism, because it is susceptible to the speed at which records arrive in the system

(for example from the message queue), and to the speed at which the records flow between

operators inside the system.

3.3.3 Event time

Event time is the time that each individual event occurred on its producing device. This

time is typically embedded within the elements before they enter Flink and that event

timestamp can be extracted from the record. An hourly event time window will contain

all records that carry an event timestamp that falls into that hour, regardless of when the

records arrive, and in what order they arrive. For example, if a vessel suddenly stops at

time t1, this timestamp is the event time of this element. Event time gives correct results

even on out-of-order events, late events, In event time, the progress of time depends on

the data, not on any machine clocks.

3.4 Watermarks

The Gap Detection, Windowing, State of previous/following events mechanisms depend

on the event time. It’s critical to define how Apache Flink handles run time. Generally, a

streaming pipeline can depend either on the processing time or on the event time.

Processing time as we state before is simply the time of the current machine clock. Event

time on the other hand is the time event occurs, which is specified as a timestamp

attribute. A time window of ten minutes in processing time lasts effectively ten minutes,

but a time window of ten minutes in event time might be computed in few seconds, since

event time is merely an attribute of the data which can be ingested instantly.

Apache Flink has to rely on its internal clock so as to be able to compute windows and

handle event time correctly as if it was processing time. Watermarks are simply a way for

defining such clock. A watermark of time T tells Apache Flink operators the all events of

timestamp < T have passed. The advantage of using watermarks is that enables handling

out of order events, by subtracting a delta from the watermarks. At event time T we inject

a watermark of (T - delta), i.e. we specify that all AIS raw events of timestamps less than

(T - delta) have passed. This allows handling types of events with a lateness of at most

delta T. Watermarks are injected periodically in the beginning of the stream in a

transparent way to the user. The user need just to specify how to extract timestamp

17

attributes and a strategy for watermarks injection. Either ascending, or by accounting late

events.

3.5 Windows

Streaming applications are processing data in continuous fashion, and therefore we can’t

wait for the whole data to be streamed before starting the processing.

Of course, we can process each incoming event as it comes and move on to the next one,

but in some cases we will need to do some kind of aggregation on the incoming data; e.g.,

how many vessels are in Piraeus port over the last 40 minutes. In such cases, we have to

define a window and do the aggregations for the data within the window.

3.5.1 Tumbling Window

One kind of window is the tumbling window, where we don't have overlaps between the

windows. Grouping the events in buckets (last five minutes, last five elements) and then

apply aggregations on their elements is the concept. Actually it takes time equals to the

window size, until the aggregation starts.

3.5.2 Sliding Window

Another type of windows are the sliding windows. Opposed to a tumbling window, the

sliding slides over the stream of data. A sliding window can be overlapping and it gives a

smoother aggregation over the incoming stream of data.

3.5.3 Session Window

Apache Flink is the first open source streaming engine that completely decouples

windowing from fault tolerance, allowing for richer forms of windows, such as session

windows. Session Windows in Apache Flink allows messages to be windowed into

sessions based on vessel’s activity. Flink allows us to define a time gap and all the

messages that arrive within a “period of vessel’s inactivity” less than the defined time -

gap - can be considered to belong to the same session. Apache Flink is a stream processor

with a flexible mechanism for session building windows and evaluating real time data

18

streams. In order to process infinite real time data streams, each logical stream is divided

into finite buckets with boundaries based on some rules like timestamps of elements or

other criteria. Window boundaries need to be adjusted as per incoming AIS raw data. A

new session window starts at individual timestamp for each key and finishes when certain

period of inactivity has passed. The configuration parameter is the session gap which is

used to specify how long to wait for new AIS data before closing the session window. All

the elements that arrive within a “period of inactivity” less than the defined session gap

are considered to belong to the same session window. In our implementation we are going

to use the concept of session windowing.

3.5.4 Triggers

The basic scope of the triggering policy in Apache Flink is to determine when a window is

ready for data processing. While watermarks indicate the current state of the received

data, triggers materialize the computations. Different kind of triggers are possible in

Apache Flink, like on the processing time, every 5 minutes for example, on the event

number, every 10 AISEvents for example, or at the end of processing a log file. Triggers

are used to determine intermediate computations before the watermark reached the end

of the window and it is possible in a window of 10 minutes to trigger or purge every minute

for example.

3.6 State

Apache Flink is a stateful stream processing engine. Many operations in a dataflow simply

look at an individual event at a time while other use a state in order to keep in memory

data about the previous and current events. For example, a state can hold a counter which

holds the number of seen event until the current one. Another example of stateful

operators are windows which buffer events into an internal state until the window is

triggered. In our use we use Flink’s state to store the previous event for each vessel in

order to be able to define the velocity of a vessel for example.

19

3.7 Consistency, fault tolerance, high availability

Apache Flink is using stateful functions and operators to store data while doing

intermediate transformations and computations making state a critical component for a

real time streaming application. When we are searching the stream for detecting certain

event patterns, the state will store the sequence of events detected by each pattern. When

we are grouping events, the state holds the pending aggregates.

In order to make state fault tolerant, Apache Flink needs to be aware of the state and

checkpoint it. Apache Flink offers real time checkpointing functionality. The state of each

computation can be checkpointed and guaranteed to have consistent data flow when a

machine failure happens. Data are moving between source and sinks, after the machine

recovers and the task managers is up and running again from the same point it stopped.

Checkpointing mechanism is useful in production environments, when we want to ensure

the consistent data movement between Kafka and HDFS after task managers failure. We

are not using checkpoints, since it is not very critical in our case, because we can easily

rerun the module, but the implementation can easily be extended with this functionality.

3.8 The DataStream API

Flink aims to support all types of input data. Apache Flink can handles many Java

Primitives like the atomic data types of Arrays, Strings, Longs, Integers, Booleans and

more complex Java data types like Tuples which Flink is using to create lists of elements.

Tuples are more composite types because they can nest other types. In Flink we do not

have to specify a schema file so as to read the data.

20

3.8.1 Transformations

The basic transformations that can be done to the data stream are map, flatmap and the

filter transformation. The Map defines a mapping between the input element to the

output and is doing a transformation. When we have a DataStream of input elements and

apply a map transformation, it will take as input all the elements of the input type one by

one and emits one by one the same elements of the output Java type. For example, Apache

Flink’s map function is useful in cases we want to append all the input string elements

with a static string or when we want to multiply all the numeric input elements with a

number we will retrieve them as results in the output stream. Flatmap transformation is

very similar to map, and is a computation that gets one by one the elements in, and it can

give as output result zero or more elements of another data type.

Another transformation that we can apply in Apache Flink is the filter transformation.

Filter evaluates a Boolean function for each element and retains those for which the

function returns true values. Suppose we have a real time data stream of elements or

events and we apply a filter condition to them one by one so we can exclude elements

according to the specific logic from the result stream. Instead of specify a filter condition,

we can apply a lambda function to the elements. The way we do partitioning on the data

affects our computations. Suppose we have an input stream of Tuples. We use this

transformation, when we want to compute a value based on a specific key-field of the

Tuple so as to partition the Data Streams by the same key and emit the result to the next

transformations. In the first module for example, many computations are done for each

vessel individually so we use the key-by partitioning in order to partition the stream to

logical streams according to the vessel id’s.

3.9 The Dataset API

Flink is facing the Batch processing as a special case of Streams, as finite data sources are

streams that have an end. Apache Flink offers the Dataset API which supports similar

transformations as the DataStream Api, but with dedicated Libraries for graph processing

and Machine learning. Apache Flink provides various optimizations like scheduling

batches and query plan optimizations. We are going to use the Dataset API in the Complex

Event Recognition module, for performance reasons due to huge joins between the AIS

datasets so as to detect critical information. It is very hard to do self Joins so as to create

21

Cartesian products between huge datasets, so as to recognize a vessel rendezvous for

example, as we will present in detail in the Part 3 Implementation - of this Master thesis.

3.10 The Deployment

Apache Flink can be deployed in a variety of Production environments, from a local Java

Virtual Machine to a standalone cluster or a cloud provider managed by YARN. In the

current implementation we are running Apache Flink in digitalocean.com cloud

infrastructure using an Ubuntu 16.04.1 x64 Virtual Machine, with 8 cores, 16GB Memory

and 40GB SSD Disk.

22

IMPLEMENTATION

4. Trajectory Detection Module

The Trajectory Detection Module is the main part of the current implementation. We are

going to design a real time application by continuously read AIS data from a Kafka topic

using Apache Flink DataStream API and Apache Kafka. We integrate Apache Flink with

Apache Kafka because it solved us the low throughput issues due to backpressure while

reading directly the data from the given static file. We created a Kafka topic from which

contains all the AIS data set and we feed Apache Flink, fully simulating its operations in

real time.

4.1 AISEvents class

 The raw input elements are first modeled into an AISEvents class. An AISEvents class is

designed to have the following fields and methods:

Fields Methods

long previousTS;

long timestamp;

int id;

double lat;

double lon;

double instantSpeed;

public Velocity velocity;

boolean isNoisy;

boolean isPause;

boolean isTurn;

boolean isSpeedChange;

boolean isGapStart;

boolean isGapEnd;

double computeDistance(AisEvent
other)
double computeSpeed(AisEvent
previous)
double computeBearing(AisEvent
previous)

23

The values of those fields are defined and computed progressively in the first, pre-

processing, part of the pipeline. From raw AIS data, we create Data Streams of “Vessel

Tagged Events” using Apache Flink DataStream API in order to apply computations over

infinite data streams. So as to model input AIS data into an AISEvents java class we flat-

map them with the InputParseOperator which takes as input the measurement lines and

maps them to AISEvents objects so as to assign the vessel id, vessel latitude, vessel

longitude and vessel timestamp which is the event time the AIS event happened. Events

are already ordered, so we don't have to handle low latency issues and out of order events.

We are using the ascending timestamp extractor to define timestamps and watermark

policy.

4.2 Keyed Streams

A critical step in the pipeline is to detect the “Gaps Starts” and “Gap Ends” of the AIS

Events as it is presented in the Paper: so as to include them in next calculations. This

processing step is done for each vessel separately. We separate logically the vessels using

DataStream Apache Flink API and the key by operator which selects the id of the vessel

as the key. This way the subsequent operator is applied to each vessel separately. With

this operator, we simply extract the vessel’s id, from an AISEvents object, so as to

implement logical keyed streams based on the vessel’s id.

4.3 Session windowing policy

We used a session window assigner configured with session gap which defines how long

is the required period of inactivity.

4.4 Triggering policy

We used EventTimeTrigger, that triggers the window based on the progress of event time

as measured by the watermarks. This permits an incremental computation and purging

of the session windows.

4.5 Window Process Policy

A Windowing function is used to process one by one the events that belong to the same

window which fires and becomes ready for processing based on the triggering policy. For

this scope, we implemented the SimpleGapOperator Operator which extends the

functionality of the built-in WindowFunction (ProcessWindowFunction) and implements

24

the window processing policy. The SimpleGapOperator stores all the events of a session

window inside a buffer in order to loop and define the first element of the window as the

“Gap End” and the last one “Gap Start”. We set boolean attributes isGapStart, isGapEnd

in the subsequent operator which processes the session windows.

4.6 Computing Coordinates

Trajectory Movement Events like vessel Pause Events or vessel Speed Change Events, as

well as Noise Filtering rules depends on the vessel’s velocity vector and the vessel’s

acceleration. To facilitate computing the speed, bearing and distances, we use the

MapFunction to assign each AISEvents its Cartesian coordinates using the Coordinates

Operator Operator. The CoordinatesOperator Operator is applied to AISEvents one by

one so we can extract and assign (x,y,z) coordinates to all AISEvents to indicate their

points on the map. For this purpose, it is no need to treat each vessel separately. That’s

why we do not use the keyby operator so as to group by vessel’s id’s.

4.7 Short Term Events - Noise Filtering Process

4.7.1 State

To be able to compute Short-term Events we need to access the previous state of the same

vessel. In other words, we need to keep a state which contains previous AisEvent values

and to update correctly the state in real time. Apache Flink DataStream API offers stateful

operators, which can be scoped by key, i.e. keep a state for each vessel separately. Keyby

operator is used before the NoiseOperator Operator so as to group the stream by vessel’s

id.

4.7.2 NoiseOperator

Operator implements maritime rules, as they introduced in the Paper: “How not to drown

in a sea of information: An event recognition approach” so as to detect and recognize with

Apache Flink API both Short Term Events and Noise Events in order to keep only the

critical instantaneous information in the pipeline and compress the Trajectory of the

vessels.

25

4.7.2.1 Functionality

If the AisEvent is a GapEnd that is the first AISEvent potentially after a gap we cannot

define its velocity, acceleration, or Bearing Differences and Speed Differences because we

do not have its previous state. Otherwise, if the AisEvent is not a GapEnd - so we have a

previous state that we retrieve the previous AISEvent state from Flink State API.

In the same logic we fetch its previous speed using the computeSpeed function. The way

we compute the Speed of an AISEvent, is implemented inside the AISEvent class and is

the distance from the previous event if it is not a GapEnd, divided by the difference

between current and previous AISEvent timestamps. If there is no previous event the

speed is undefined. The same goes for the bearing. We compute the Bearing of the

previous AISEvent inside the AISEvent class. We define its Velocity vector using speed

and bearing attributes. The implementation of the Velocity class based on angle and speed

attributes is also part and implemented inside the AISEvent class. In order to fetch the

instant acceleration of the vessel, we have to divide Speed Difference from the difference

between the current and the previous timestamp of the same AISEvent. So, if the velocity

of the previous status of the AISEvent is not null, we compute

a) The Bearing difference

b) The Speed difference

c) The acceleration

In any other case, if the velocity is null, we set all the previous attributes as not applicable.

Having done all the previous calculations, we are about to apply the rules for critical

points along vessel trajectories as presented in the paper “How not to drown in a sea

of information: An event recognition approach” so as to detect vessel’s critical

movement events such as stops, acceleration or turn events along their trajectory.

4.8 {Pause, Speed Change, Turn} Events

Based on the AISEvent class calculations we continue by analyzing instantaneous vessel

Pauses, vessel speed changes and vessel turns and recognize them with Apache Flink

Datastream API.

4.8.1 Pause Event – Speed Change Event – Turn Point Event – Noise Events

The minimum speed in km/h (=1 KNOT) so as to characterize an object as a moving one

is following. If the value of the vessel’s speed is less than 1.852 Km/h then, we recognize

the AISEvent as a Pause Event. If the vessel’s Speed difference is more than 0.25 KNOTS,

the vessel is supposed to have a speed change and we recognize it as SpeedChange

26

AISEvent. If the maximum heading difference between successive positions is more than

15 degrees, this suggests that the vessel is changing its route direction, so we recognize

that this is a Turn Point AISEvent. As presented in the paper: “How not to drown in a

sea of information: An event recognition approach”, the Trajectory Detection

Module has to compress the Data Stream into a stream that contains only critical

movement AISEvents. The following rules are used so as to define noise events and to

exclude them from the pipeline.

a) If the maximum acceleration during a speed change AISEvent is greater than 10

measurement units, we consider this AISEvent a noise event, because this rate cannot

happen in real conditions and may have been caused for example by high waves in the

open sea or by AIS signal delays. The received position is considered an outlier and we

recognize it as a Noise AISEvent.

b) If the maximum difference in vessel’s heading between successive positions (in

degrees) is greater than 60 degrees, then the AISEvent is considered as a noise event.

Again, this is because this rate cannot happen in real conditions and may have been

caused by high waves in the open sea or by AIS signal delays. The received position is

considered an outlier and we recognize it as a Nose AISEvent.

c)If the speed in km/h is 55.56 measurement units (=30 KNOTs), we consider the

AISEvent as a noise Event, because again this cannot happen in real conditions. The

received position is considered an outlier and we recognize it as a Noise AISEvent.

By applying all the previous rules to the DataStream, we process the next incoming

AISEvent sequentially and one by one which means that the current AisEvent becomes

the previous AisEvent for the next one.

So, after the flatmap (new NoiseOperator ()) application, we are able to collect one by

one all the rest AISEvents that are not Noise Events or Gaps:

The result of the process, is a recognized stream of only tagged - modified - instantaneous

AISEvents in JSON format.

27

4.9 Long Lasting Movement Events

We are going to apply predefined Patterns to the DataStream of the tagged AISEvents so

as to detect more complex Long Term AISEvents with Apache Flink CEP Library. The goal

is to discover critical Long Term Events for the vessels in the open sea and to record

critical events while making decisions so as to prevent complex situations. In this Master

Thesis, the Trajectory Detection Module, introduce Complex event processing (CEP) with

Apache Flink and gives a solution for this issue, by matching continuously incoming

AISEvents against one or more patterns so as to detect these critical Events. All AIS data

which do not match the patterns can be immediately discarded and all the rest are

processed immediately once the system has detected all the events for a matching

sequence. The results are emitted straight away in real time taking advantage of Apache

Flink’s streaming nature and its capabilities for low latency and high throughput stream

processing as a natural fit for CEP workloads.

4.9.1 General Approach - Flink CEP Library

To detect the Long Lasting Events like Long Term Stops, Smooth Turns and Gaps we use

Flink CEP (Complex Event Pattern) library, which is implemented on top of Apache Flink

and does custom pattern detection over an endless stream of tagged - modified

AISEvents. First of all, to deal with Apache Flink CEP we have to define one or more

custom pattern(s) and then apply them on the Data Stream so as to extract the

subsequences of AISEvents matching those patterns. Based in the Paper “How not to

drown in a sea of information: An event recognition approach” in order an AISEvent to

be a candidate Long Term Stop, it should be an only a Pause AISEvent or a Turn AISEvent.

The isCandidateForLts is a boolean indicating whether an AISEvent is a Turn or a Pause,

since those two event types are used to define long term events. In the AISEvent class

implementation, we have introduced the “Candidate Long Term Stop”

28

4.9.2 Long Term Stops and Smooth Turns

Pattern1 for identifying Long Term Events is specified by considering the first incoming

element as not a candidate for Long Term Stop (non-Pause AISEvents) and

assigning/marking a label “Start” to it. If the following one or more consecutively

incoming AISEvents are considered as candidates for Long Term Stop (Pause AISEvents)

then and we assign/mark a label “Middle” to them. If The following final event, is

considered as a Candidate for Long Term Stop (Pause AISEvent) and a Gap Start at the

same time, then we assign/mark the label “end” to it. Pattern1 and Pattern2 are presented

below:

4.9.2.1 Pattern 1

For example, suppose we have the Sequence of AISEvents 000011111112 where 00000 is

not candidates for LongTermStop (Non Pause Events), 1111111 are candidate

LongTermStops (Pause Events) and 2 is candidate LongTermStop (e.g. Pause Event) and

GapStart at the same time. Pattern1 claims that these Pause AISEvents (1111111) are

surrounded by non-pause events (0000 and 2 as a gap Start). So 11112 is a Pattern1 for a

LongTermStop Event. {“start”:0,” middle”: [1111111],” end”:2}

4.9.2.2 Pattern 2

Pattern2 for identifying Long Term Events is specified by considering the first element as

not a candidate for Long Term Stop (non-Pause AISEvents) and assigns/marks a label

“Start” to it. If the following one or more consecutively AISEvents are considered as

candidates for Long Term Stop (Pause AISEvents) and not GapStart AISEvents at the

same time, then we assign/mark a label “Middle” to them. If the following final event of

this pattern is considered as a not Candidate for Long Term Stop (non-Pause AISEvent)

and not a GapStart at the same time, then we assigning/marking label “end” to it.

For example, suppose we have the Sequence of AISEvents 000011111110000000 where

incoming 0000 is not candidate Long Term Stop (Non Pause Events), 1111111 are

candidate LongTermStops (Pause Events) and not a GapStart and 0000000 are not

candidate LongTermStop (e.g. non-Pause Event). In Pattern2 we state that Pause

AISEvents (1111111) are surrounded by non-pause events (0000 and 0000000). So

011111110 is a Pattern2 for LongTermStops.

 {“start”:0,” middle”: [1111111],” end”:0}. We use these Patterns and we apply them to the

tagged Events Stream, so as to detect either Long Term Stops or Smooth Turns. The

29

separation between those two types of long term events will be done in next steps by the

Trajectory Detection Module and the LongTermStop Operator.

4.9.2.3 Pattern 1 Union Pattern 2

The union of Pattern1 and Pattern2 is the general Pattern build for detecting

LongTermStops and Smooth Turns. After applying flat map function, the output of the

union is no more tagged events, but a stream of lists of events

● By applying Pattern1 - the first part of the Union - we will collect results according

to this input e.g.: {“start”:0,”middle”:[1111111],”end”:2} a stream of lists of events

like : 11111112

● By applying Pattern2 - the second part of the Union - we will collect results

according to this input e.g.: {“start”:0,” middle”: [1111111],” end”:0} a stream of

lists of events like: 1111111

4.9.2.4 Filtering

As we state before, the result of applying the pattern to the tagged events, is a stream of

series of events matching the pattern. So each incoming individual element of the data

stream is a list composed of one or more events. According to the Paper “How not to

drown in a sea of information: An event recognition approach” to be considered a Long

Term Event as valid it must contain at least 10 consecutive pause events or turn events.

We process those lists with the LongTermStop Operator so as to separate long term stops

from smooth turns and create two different lists of events.

The filtering process of the LongTermEvents based on the length of the list (e.g. 11111112,

1111111, 111111111111111).

4.9.3 The Long Term Stop Operator

The LongTermStop Operator takes as input the result of the subsequence data streams of

AISEvents that matched the pattern. The pattern is built to recognize either a vessel’s

smooth turn or a vessel’s long term stop. The role of the LongTermStop operator is to

separate those two types of long term events. It works as follows: Given a list L of AIS

Events matched by the pattern, we start looping through L to extract any events which lie

30

within a radius of 250 meters. If an event does not lie within 250 meters of the events

already extracted, then it is part of a smooth turn. The number of events already extracted

is either more than a threshold (for example 10), in which case they are considered a long

term stop or less, in which case the extracted events are part of a smooth turn. Suppose

we have the following list of long term events matched by the pattern: [e, e, e, e, e | e, e,

e, e, e, e | e, e, e, e, e, e, e, e, e, e, e, e| e, e]

The comma “,” delimiter between those events indicates that the right event lies within

250 meters of the previous ones, and the pipe “|”, indicates the opposite.

The first 5 events lie within 250 meters of each other, so they should be collectively

considered a long term stop. Except that their number is less than the threshold of long

term events (= 10). The next 6 events lie within 250 meters of each other’s but they cannot

be considered a long term stop because they are less than 10. The first 11 events are then

concatenated into one smooth turn.

The next 12 events lie within the predefined radius and pass the threshold criteria so they

are concatenated on one long term event. The last 2 events are simply discarded.

Result: <” smt”, 2222222222>, <” lts”, 33333333333333>, <” smt”, 44444444444444>

4.9.3.1 Filtering

According to the string label “smt” or “lts” we are going to filter the events so as to separate

them into two different streams. The first stream will contain the Smooth Turn

AISEvents. The second stream will contain the Long Term Stops AISEvents. We then map

each element of those streams to a common model (class) “LongTermEvents” which has

the following attributes:

- Start (type: AisEvent)

- End (type: AisEvent)

- Label (type: String)

For the long term stops stream, those attributes and the result of applying the pattern are

serialized as a json with the following fields:

- Start: the starting AISEvent (of a long term stop)

- End: the ending AISEvent (of a long term stop)

- Label: “long term stops”.

{label: “lts”, start: First_AISEvent, end: Last_AISEvent}

The same goes for Smooth Turns.

The result of applying the patterns are serialized as a json with the following fields:

- Start: the starting AISEvent (of a smooth turn)

- End: the ending AISEvent (of a smooth turn)

31

- Label: “smooth turn”.

{label: “smt”, start: First_AISEvent, end: Last_AISEvent}

LongTermEvents either for LongTermStops or Smooth Turns AISEvents are finally

converted to JSON representations, using the GSON serializer operator which

implements a MapFunction in order to store the results as json files in the disk. Below are

presented the results for LongTermStops and the results for Smooth Turns We finally

output the results using Flink Filesystem connector.

4.10 Gaps

We specify the pattern to output consecutive Gap starts and Gap ends and to apply those

patterns to the tagged events, so as to extract Gaps - Long Term Events.

The result of applying the pattern is serialized as a json with the following fields:

- Start: the starting AISEvent (of a gap)

- End: the ending AISEvent (of a gap)

- Label: “gap”

Gaps LongTermEvents are finally converted to JSON representations, using the GSON

serializer so as to store the results as files on the disk. We finally output the results using

Flink Filesystem connector.

32

5 Complex Event Recognition Module

5.1 Introduction

The second module is based on the output of Trajectory Detection Module, and its

goal is to detect events which are more complex than the movement AISEvents. In this

Master Thesis we recognize and implement Vessel Rendezvous, Package picking and Fast

approaches. For this module we rely on Apache Flink Batch Dataset API, since many

operations require performing joins between data sets, which are easier implemented

using the batch API.

5.2 Grid partitioning

Some complex events, like vessels approach, depend on a notion of proximity of the

vessels defined by the fact that two vessels lie in the same cell. That’s why we need to be

able to map each vessel coordinates to a cell in the map. For this we use GeoHash which

is a geocoding system based on a hierarchical spatial data structure which subdivides

space into buckets of grid shape.(github.com/davidmoten/geo)

Therefore, each cell is labeled using a geohash which is of user-definable precision:

● High precision geohash have a long string length and represent cells that cover

only a small area.

● Low precision geohash have a short string length and represent cells that each

cover a large area.

GeoHash can have a choice of precision between 1 and 12. As a consequence of the gradual

precision degradation, nearby places will often present similar prefixes. The longer a

shared prefix is, the closer the two places are.

5.2.1 Grid partitioning using GeoHash

Examples of Geohash mapping given latitude and longitude:

➢ 39.664148, 23.604166 :

○ Precision 5: sx0c9

○ Precision 6: sx0c9h

○ Precision 12: sx0c9hsh2vjg

➢ 39.56, 23.90:

○ Precision 5: sx0cp

○ Precision 6: sx0cpk

○ Precision 12: sx0cpks00000

https://github.com/davidmoten/geo

33

As we can see, these two nearby points share a prefix of length 4 (sx0c).

The following table shows the cell dimension given the geohash precision:

GeoHash
Length

Area width X height

1 5,009.4km x 4,992.6km

2 1,252.3km x 624.1km

3 156.5km x 156km

4 39.1km x 19.5km

5 4.9km x 4.9km

6 1.2km x 609.4m

7 152.9m x 152.4m

8 38.2m x 19m

9 4.8m x 4.8m

10 1.2m x 59.5cm

11 14.9cm x 14.9cm

12 3.7cm x 1.9cm

For GeoHash mapping we using the following open-source library

github.com/davidmoten/geo, which provides convenient methods for geohash mapping

In the Complex Event Recognition Module, input data are considered the JSON files that

are produced from the Trajectory Detection Module.

https://github.com/davidmoten/geo

34

1) Gaps

2) Long Term Stops

3) Smooth Turns

5.3 Vessel Rendezvous

We implement vessel Rendezvous and the other complex maritime events recognition

using Apache Flink Batch API. The batch API is more suitable in this case, since multiple

comparison between vessels locations and timestamps should be performed, and the

batch API is more capable of such computation heavy workload.

Given the following logical rule that is representing and reasoning about vessel

rendezvous with Event Calculus as presented in the Paper “How not to drown in a sea

of information: An event recognition approach” we implement it as follows:

Event Calculus rule for Vessel Rendezvous:

1. holdsFor (possibleRendezvous(Vessel1 ;Vessel2)=true; I)

2. holdsFor (in(Vessel1)=Cell ; I1);

3. holdsFor (in(Vessel2)=Cell ; I2);

4. holdsFor (suspiciousDelay(Vessel1)=true; I3);

5. holdsFor (suspiciousDelay(Vessel2)=true; I4);

6. intersect all([I1 ; I2 ; I3 ; I4]; I)

Implementation with Apache Flink API:

1. We read the Gaps data which is output from the Trajectory Detection Module. The

gaps data contains the following attributes: label (=” gap”), start Event, end Event.

2. Each gap event is then mapped using a Flink MapFunction to a tuple containing

the following fields:

a. GeoHash of the location of the GapEnd event

b. Vessel ID

c. gap Start timestamp

d. GapEnd timestamp

The result type is an Apache Flink Dataset of

Tuple4<GeoHash, ID, gapStart_timestamp, gapEnd_timestamp>>

3. We perform a self-join operation on the dataset, where the join key is the GeoHash.

This allows us to check vessel rendezvous for vessels which have been in the same

vessel. For each couple events (first, second) having a matching key(=cell), we

compute the gaps overlap as follows

35

intersection =

Range (first. GapStart_timestamp, first. GapEnd_timestamp)

 . intersect (Range (second. gapStart_timestamp, second. gapEnd_timestamp))

 . intersect (Range (first. gapEnd_timestamp - 60, first. gapEnd_timestamp +

60))

 . intersect (Range (second. gapEnd_timestamp - 60, second.

gapEnd_timestamp + 60));

If the intersection is not empty we output (vessel1_id, vessel2_id, intersection.

Start, intersection. End) where vessel ids are sorted.

4. Then we perform a distinct operation on (vessel1_id, vessel2_id) to filter

duplicates.

5. We finally output the results to text csv files using Flink Filesystem connector.

5.4 Package picking

According to the paper “Online Event Recognition from Moving Vessel

Trajectories” is defined that in order to have a possible Package Picking complex event,

the end of the stop of one vessel is the start of the stop of another vessel and this point of

time the two vessels should be in the same cell in the grid, and the delta of the timestamps

should be less than 1 hour, and also the distance between the two vessels should be less

than 0.5 km. We will manage to deploy the above rules using Apache Flink API. Package

Picking deals with couples of vessels when the first vessel does a Long Term Stop and

drops the package when Long Term Stop Event finishes, and a second vessel stops in the

same cell (start of stop) so as to pick the package. The process is doing by Joining two

different Tuple2 Datasets. The first Dataset contains the Start of Stops and the second

Dataset contains the End of Stops. We have to import in the Complex Event Recognition

module the LongTermStops from ltsOut JSON file produced from the Trajectory

Detection Module, so as to parse the Long Term Stops: DataSet<LongTermEvent> stops

= env. readTextFile(ltsOut) and convert them back as LongTermEvents by mapping these

Strings to LongTermEvent class, that has 3 attributes a) Start, b)End, c)Label:

Package picking in Event Calculus is characterized by the following rule:

36

Event Calculus rule for Package Picking:

1. happensAt(possiblePicking(Vessel1 ;Vessel2); Tpick)

2. happensAt(end(stopped(Vessel1)=true);Tdrop);

3. holdsAt(in(Vessel1)=Cell ; Tdrop);

4. happensAt(start(stopped(Vessel2)=true);Tpick);

5. holdsAt(in(Vessel2)=Cell ; Tpick);

6. Tpick - Tdrop < 1 hour;

7. holdsAt(coord(Vessel1) =(Lon1 ; Lat1); Tdrop);

8. holdsAt(coord(Vessel2) =(Lon2 ; Lat2); Tpick);

9. distance((Lon1 ; Lat1); (Lon2 ; Lat2); Dist);

10. Dist < 0,5 miles

It is therefore based on long-term stop events, which are output from the Trajectory

Detection Module.

Implementation with Apache Flink API:

1. We first derive two datasets from the long-term stops dataset:

2. Dataset <Tuple2<GeoHash, AisEvent>> cell_startOfStops, and

DataSet<Tuple2<GeoHash, AisEvent>> cell_endOfStops.

This is done using Flink MapFunction which takes as input the long-term stops

dataset and maps it to one of the previous datasets as follows:

Tuple2<GeoHash, AisEvent> cell_startOfStop =

map (LongTermEvent longTermEvent) {

 return Tuple2.of(

 GeoHash.encodeHash(

 longTermEvent.getStart().getLat(),

 longTermEvent.getStart().getLon(), accuracy),

 longTermEvent.getStart());

}

3. We then join the two datasets on the GeoHash key in order to find vessel couples

such that the end of the long-term stop of one vessel happens in the same cell as

the start of the long-term stop of the other vessel. The join is performed using the

Flink batch API as follows:

cell_startOfStops

 . join(cell_endOfStops)

 . where(0)

 .equalTo(0)

4. Then we filter events which verify the distance and duration between T_drop and

T_pick constraints.

37

5. The output result is a dataset of (vessel1_id, vessel2_id, pick_timestamp) that we

output to a csv file using Flink Filesystem connector.

5.5 Fast Approach

Fast approach is defined by the following rule in paper “Online Event Recognition

from Moving Vessel Trajectories” “headingToVessels(Vessel) is a fluent that

becomes true whenever a Vessel's direction of movement is towards at least one nearby

vessel.”

Event Calculus rule for Fast Approach :

1. happensAt(fastApproach(Vessel); T)

2. happensAt(speedChange(Vessel); T);

3. holdsAt(velocity(Vessel)=Speed; T);

4. Speed > 20 knots;

5. holdsAt(coord(Vessel) =(Lon; Lat); T);

6. not nearPorts(Lon; Lat);

7. holdsAt(headingToVessels(Vessel)=true; T)

Implementation with Apache Flink API:

To implement Fast Approach Complex Event, we are filtering all movement events which

is output by the Trajectory Detection Module in order to keep only speed change events.

This is done using Flink Filter function. The result is a DataSet that will contain Speed

Change Events. We then assign to each event its GeoHash in the same way we did for

Vessel Rendezvous and Package Picking. The scope is to create two different Datasets.

The First Dataset is all the events that are SpeedChanges. The Second Dataset is all the

events that detected from the Trajectory Detection Module. A join is performed between

these 2 datasets, so as to get results of Fast Approaches events as couple of elements in

the same cell on the grid.

5.5.1 SpeedChange DataSet:

Specifically, the input data are JSONs file that we convert back to AISEvent class, in order

to have access to all its attributes as described in the Trajectory Detection Module. Using

the is SpeedChange function that is implemented in the AISEvent class we are going to

filter and keep only Speed Changes events whose speed is greater than 30 KNOTS.

Furthermore, we compute the cell of the events using the GeoHash function, and we

create DataSet of Tuple2<String, AisEvent>, where the String is the result of the GeoHash

function.

38

5.5.2 AllEvents DataSet:

The input data is a JSON file that we convert back to AISEvent, in order to have access to

all its attributes as described in the Trajectory Detection Module. Same way as before, we

compute the cell of the events using the GeoHash function, and we create DataSet of

Tuple2<String, AisEvent> where the String is the result of the GeoHash function. Joining

process is performed between the speed changes dataset and the dataset containing all

events on the GeoHash key, to find couples of vessels that one of them is heading toward

the other. This is implemented using Flink Join Function in the same way as package

picking and vessel rendezvous.

5.5.3 Join between these two Datasets:

In order to extract the couples of vessels participating in the fast approach, we filter couple

having the same id (same vessel). Next we check if the vessel with the speed change is

heading towards the other event.

Given a vessel whose current position is at B, and its previous position is A, we can define

its velocity at B by the speed and the bearing. The speed is given by the distance between

A and B divided by the difference in timestamps. The bearing is defined by the angle with

respect to a reference line (here 30 for example). The resulting velocity vector has the

same direction as the line between A and B.

If a vessel is heading towards another vessel, but their timestamps are very distant, we

have to exclude these from the results. The timestamp of the one Event should not be less

than the delta duration from the timestamp of the other event: |event. f1. get Timestamp

() - change. f1. get Timestamp ()| <= delta

We define the notion of “heading toward” by the the following: a vessel is heading toward

another one if the direction of its velocity is within a given angle alpha, of the line joining

the two vessels.

Given a velocity object V, we can compute the angle between its direction and the

direction of another velocity object V1 using the method V .getBearingDiff(V1) that we

implemented in the velocity class.

We want to compute: angle between: (my velocity) and (line connecting me and you)

(line connecting me and you) == velocity V

We can compute: angle between (my velocity) and (any velocity V2)

39

So all we need to do is to create a virtual Velocity vector which has the same direction as

the line between the two vessels. This can be done by computing the velocity of the second

vessel as if the first vessel was its previous position.

If the direction of the velocity vector of the first vessel is less than “within” degrees from

the direction of the line connecting the two vessels, then the result is supposed to be a

Fast Approach.

40

6 Visualizations with Kibana

Flink has an integrated ElasticSearch sink, which helps sending AISEvents to

ElasticSearch and visualizing them in in real-time. One first we have to create an

ElasticSearch index which will contain the events. Then one should specify fields types,

to be able to visualize geopoints in maps in case or geographical data or to query data by

time range in case of time series. In our case, we specify the following mapping for the

ElasticSearch index we created:

curl -XPUT 'localhost:9200/aisevents/_mapping/all?pretty' -H 'Content-Type:

application/json' -d

'{

 "properties": {

 "location": {

 "type": "geo_point"

 },

 "timestamp": {

 "type": "date"

 }

 }

}'

Then we launch another Flink pipeline which reads the raw AISEvents, pre-process them

into json objects to be recognized by ElasticSearch and send them to ElasticSearch index.

The Flink Job has two operators:

The first one reads each line of the input and converts it to a json with the following

schema:

{timestamp, id, location: {long, lat}}. This is achieved using a Flink MapFunction as

follows:

.map(new MapFunction<String, Tuple2<String, JsonObject>>() {

 @Override

 public Tuple2<String, JsonObject> map (String s) throws Exception {

 String [] data = s.split(" ");

 JsonObject jsonObject = new JsonObject();

 jsonObject.addProperty("timestamp", 1000*Long.parseLong(data[0]));

 jsonObject.addProperty("id",data[1]);

 JsonObject location = new JsonObject();

 location.addProperty("lon", Double.parseDouble(data[2]));

41

 location.addProperty("lat", Double.parseDouble(data[3]));

 jsonObject.add("location", location);

 return Tuple2.of(data[1], jsonObject);

 }

})

The second one is the ElasticSearch sink which sends the resulting json objects to the

specified ElasticSearch index (“aisevents” in our case):

stream.addSink(new ElasticsearchSink<>(config, transportAddresses, new

ElasticsearchSinkFunction<Tuple2<String, String>>() {

 public Index Request createIndexRequest (Tuple2<String, String> element) {

 return Requests.indexRequest()

 . index("aisevents")

 . type("all")

 . source(element.f1);

 }

 @Override

 public void process (Tuple2<String, String> element, Runtime Context ctx,

RequestIndexer indexer) {

 indexer.add(createIndexRequest(element));

 }

}));

42

This results in the events being indexed and shown in Kibana as soon as they are sent in

Figure [2]:

Figure [2] : Kibana indexing

One can then easily visualize trajectories using Kibana integrated Coordinate Maps as

described below in Figure [3]:

Figure [3]: Vessel Trajectory Visualization near Rhodes island

43

Using the coordinates map visualization, we can visually check for complex events like

rendezvous for example. In the following Figure [3.1] we can see that the “Ship 3” was

around Rhodes in June 1st between 18h and 22h:

Figure [3.1]: Vessel Trajectory Visualization near Rhodes island

Figure [3.2]: Vessel Trajectory Visualization near Rhodes island

And that the “Ship 6” was in the same area around the same time which suggest a possible

rendezvous which was successfully recognized by the complex event recognition module,

as it is visualized in Figure [3.2]

44

7 Proposals and next steps

● The proposed service can be considered a proof of concept for treating maritime

events and is far from being ready for production. To make it suitable for

production, the full pipeline should be set up with Kafka a data source and also as

a data sink given the streaming nature of the data, the whole process should be

automated and tested, and input and outputs should be properly configured and

possibly integrated to databases.

● One shortcoming of our implementation is the costly join performed between

speed change events and all other events to detect fast approaches. This can maybe

be optimized.

● Another track of improvement is the automated detection of noisy events, which is

currently performed using hard wired rules, and could maybe be performed using

machine learning techniques to predict vessel trajectories and filter noisy events

as outliers.

● Another improvement might be to think of a streaming adaptation of the

algorithms used in the complex event recognition module which is currently

performed using the batch API due to the streaming API limitations.

● Developers who write big data programs (like MapReduce functions) with

streaming data can take data in whatever format it is in, join different sets, reduce

it to key-value pairs (map), and then run calculations on adjacent pairs to produce

some final calculated value. They also can plug these data items into machine

learning algorithms to make some projection (predictive models) or discover

patterns (classification models).

45

8 Apache Flink Dashboard and metrics

8.1 Trajectory Detection Module

In the following screenshot we are presenting the Flink Dashboard while running the

Trajectory Detection Module, as presented below in Figure [4].

The job can be executed in one of two modes: Either reading the whole input first and

then processing data which is equivalent to batch processing, or reading the input

incrementally and processing it on the fly which is more compatible with the streaming

nature of Apache Flink. When reading the input as whole we can see the gap detecting

operator which computes session windows is stuck and does not output any element:

 Figure [4]: Apache Flink execution dashboard

However, when reading the input incrementally, the operator starts sending elements as

soon as it receives data, which we can see in the following Figure [5]:

Figure [5]: Incrementally data ingestion

In the trajectory detection module, we are reading events from Kafka which are then

processed by a windows in order to detect gaps then a subsequent Flatmap operator that

assigns velocity information and filters noisy events and then patterns are applied to the

46

stream using Flink CEP to detect long term events (smooth turns and long term stops), as

presented in Figure [6]. The results are output to files in the disk.

Figure [6] : Number of records emit by Kafka per second

The session window is used to detect gaps (by marking the first element of the window as

a Gap End and the last one as a Gap Start). In the following graph we can see that the

number of record out/s from the window operator (about 9000/s) is less than what is

emit by Kafka (about 50000) due to the latency of the window operator as presented in

Figure [7] :

Figure [7]: Session Window Operator

In the following Figure [8] and Figure [9] we can see that The Flatmap operator emits less

records (around 2 millions) than it receives (3.5 millions) since it filters noisy ones:

47

Figure [8]: Flatmap Operator, visualizing the number of Input rows

 Figure [9]: Flatmap Operator, visualizing Number of Output rows

The patterns are applied to the stream and aggregate matching results into lists, which

explain the difference between the number of input/output events in LongTermStop and

Smooth Turn in the Pattern matching operator, as described in the next 2 figures, Figure

[10] and Figure [11] for the LTS:

Figure [10]: Number of input records per second in LTS

48

Figure [11]: Number of output records per second in LTS from CEP Pattern Operator

8.1.2 Metrics - Trajectory Detection Module

The “Imis 1month” file from http://chorochronos.datastories.org/?q=node/81 contains

one month of data, 58691821 events and its size is 4.7Gb. Using the Ubuntu 16.04.1 x64

Virtual Machine, with 8 cores, 16GB Memory and 160GB SSD Disk, the experiment took

15 minutes.

As a result, we detect:

●214 997 noisy events

●101 909 long term stops

●816 smooth turns

●1 017 097 gaps (5 minutes gaps)

●5 939 234 smooth turns

http://chorochronos.datastories.org/?q=node/81

49

8.2 Complex event Recognition Module

Package Picking

Figure [12]: Directed Acyclic Graph - Package picking Module

Here are visualizations about the DAG that is generated at Package Picking Jobs runtime-

Figure [12] - and the number of records in and out/second from the join operator. After

a transitional state we reach 50 input records/s and 90 records/s output.

The job took 50 minutes on a local machine of 16GB of Ram to process long term stops

extracted from 1 month of data and detect package pickings. The number of long term

stops used to recognize package pickings is 97077 events, (start of the stops & end of the

stops) and they resulted in 7856 possible package pickings.

Figure [13]: Metrics in Join Operator - number of Records in per Second While Joining the two datasets.

50

Figure [14]: Metrics in Join Operator - number of Records out per Second while Joining the two datasets.

Here is a sample of possible pickings detected by the module:

Vessel 1 Vessel 2 Picking timestamp

4

21

32

53

64

64

92

124

133

133

1261

1953

3020

897

1079

4310

4065

1228

1045

1104

1246585929

1246858703

1247950870

1246689547

1246696652

1248794609

1247359127

1247722378

1247446542

1246598392

Vessel Rendezvous

51

Figure [15]: Directed Acyclic Graph - Vessel Rendezvous.

In Figure [15] is presented the DAG of the Vessel Rendezvous Apache Flink Job and in

Figure [16] and Figure [17] is presented the evolution of the number of records in / out of

the join operator in the vessel rendezvous pipeline:

Figure [16] Number of input rows per second in Join Operator for Vessel Rendezvous

Figure [17] Number of input rows per second in Join Operator for Vessel Rendezvous

After a transitional state, the number of input records/s becomes steady around 120

record/s

And so does the number of out records /s which becomes constant at around 760

record/second.

The job takes 60 minutes to process 1 month of data on a local machine having 16GB of

Ram.

Here are some possible vessel rendezvous detected.

52

Vessel 1 Vessel 2 RDV start RDV end

1

1

1

1

2

2

2

2

2

2

88

1549

2676

2853

9

236

259

289

370

373

1246443231

1246443251

1246431080

1246439991

1246977284

1246892513

1246990826

1247592663

1246990843

1246895054

1246443273

1246443291

1246431112

1246440032

1246977326

1246892535

1246990844

1247592682

1246990844

1246895092

Fast Approach

The main operator in the fast approach pipeline is the join operator. We perform a join

using a sort merge strategy provided by Flink, in which Flink sorts the inputs join keys

before performing the join. An advantage of this strategy is that it is robust, in case the

memory is limited with respect to the dataset size (which is our case) it spills the data to

the disk to perform the sort.

The job takes 5 days to finish processing 1 month of data on a big machine of 128 GB

memory.

Here is the evolution of the number of record in out of the join operator during the run:

 Figure [18] Number of output rows per second in Join Operator for Fast Approach

Flink Job

53

8.2.2 Metrics - Complex Event Recognition

The experiment of Package Picking took 1h and 15 min, and we detected 7856 Package

pickings.

The experiment of Vessel Rendez-Vous took 8h and 30 min and we detected 752551

Vessel Rendez-vous.

The experiment of Fast Approaches took 5 days (using 128Gb Ram) and we detected

10376275 Fast Approaches.

9 References

[1] Apache Flink: Scalable Stream and Batch Data Processing. Accessed on line at

https://flink.apache.org/ - The Apache Software Foundation.

[2] Apache Flink Training. Accessed online at http://training.data-artisans.com/

[3] Chorochronos.org Datasets & Algorithms. Accessed on line at

http://www.chorochronos.org/?q=node/9

[4] Event Recognition for Maritime Surveillance Kostas Patroumpas, Alexander Artikis,

Nikos Katzouris, Marios Vodas, Yannis Theodoridis, Nikos Pelekis.

[5] Flink in Action by Sameer B. Wadkar, Hari Rajaram.

[6] How not to drown in a sea of information: An event recognition approach Elias

Alevizos, Alexander Artikis, Kostas Patroumpas Marios Vodas, Yannis Theodoridis, Nikos

Pelekis.

[7] Introduction to Apache Flink. Stream Processing for Real Time and Beyond by Ellen

Friedman & Kostas Tzoumas.

[8] Kibana User Guide. Accessed on line at

https://www.elastic.co/guide/en/kibana/current/index.html

https://flink.apache.org/
http://training.data-artisans.com/
http://www.chorochronos.org/?q=node/9
https://www.elastic.co/guide/en/kibana/current/index.html

54

[9] Logic-Based Event Recognition Alexander Artikis, Anastasios Skarlatidis, François

Portet and Georgios Paliouras.

[10] Mastering Apache Flink by Tanmay Deshpande.

[11] Online Event Recognition from Moving Vessel Trajectories Kostas Patroumpas · Elias

Alevizos · Alexander Artikis · Marios Vodas · Nikos Pelekis · Yannis Theodoridis.

[12] Stream Processing with Apache Flink Fundamentals, Implementation, and

Operation of Streaming Applications by Fabian Hueske, Vasiliki Kalavri.

[13] A Distributed Event Calculus for Event Recognition by Alexandros Mavrommatis,

Alexander Artikis, Anastasios Skarlatidis and Georgios Paliouras

