
University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program in "Digital Systems Security"

Master Thesis Title:

“Blockchain technologies and smart contracts in the context of the

Internet of Things”

Sotirios Stampernas

Supervisor: Sokratis Katsikas, Professor, University of Piraeus

Advisor: Dr. Pankaj Pandey, Research Scientist, Faculty of Information

Technology and Electrical Engineering, Norwegian University of Science and

Technology, Gjovik, Norway

April 2018

2

Πανεπιστήµιο Πειραιώς

Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών

Τµήµα Ψηφιακών Συστηµάτων

Π.Μ.Σ. «Ασφάλεια Ψηφιακών Συστηµάτων»

Τίτλος Μεταπτυχιακής Εργασίας:

“Τεχνολογίες αλυσίδας συστοιχιών και έξυπνα συµβόλαια στο

πλαίσιο του Διαδικτύου των Πραγµάτων”

Σωτήρης Σταµπέρνας

Επιβλέπων Καθηγητής: Σωκράτης Κάτσικας, Καθηγητής Πανεπιστηµίου Πειραιώς

Σύµβουλος: Dr. Pankaj Pandey, Research Scientist, NTNU

Απρίλιος 2018

3

Abstract

Distributed ledger technology, is a set of technologies where a ledger is maintained by

a number of peers without needing a single central authority. From this family of

technologies, blockchain has recently become very popular. Blockchain is a

distributed, transactional database which is shared across all the nodes of the network

system , acting as a public ledger. Every node, usually most of the times has a full

copy of the current blockchain , which contains every transaction that has ever been

executed. Each block contains a hash of the previous block; the linking of those two

together, constitutes the blockchain. This is the main technology underneath

cryptocurrencies that started with Bitcoin. The recent focus on blockchain came as a

result of the commercial success of Bitcoin and the consequent attention it caught by

the researchers and industries. In this thesis we deal with the current status of the

blockchain in addition to an application beyond cryptocurrencies, named smart

contracts combined with IoT. Furthermore, we compare five blockchain platforms

enabling smart contracts focusing on their general description, their main

technological properties and their financial data. Additionally, we will perform a cost-

benefit analysis and security assessment of smart contracts to highlight the related

issues providing a set of possible solutions. Finally, we present a hands-on example to

show the process and the flexibility in building smart contracts in an IoT environment.

Keywords: Blockchain technology, Smart contracts, Internet of Things, Distributed

ledger technology, Bitcoin, Ethereum, Consensus mechanism, Security assessment,

Blockchain platform evaluation

4

Περίληψη

Η τεχνολογία κατανεµηµένου καθολικού είναι µια βάση δεδοµένων όσον αφορά τις

συναλλαγές που, αντί να αποθηκεύεται σε µια κεντρική τοποθεσία, κατανέµεται σε

ένα δίκτυο πολλών υπολογιστών. Συνήθως, όλα τα µέλη του δικτύου µπορούν να

διαβάζουν τις πληροφορίες και, ανάλογα µε τις άδειες που τους έχουν δοθεί, να

προσθέτουν στοιχεία. Ο γνωστότερος τύπος τεχνολογίας κατανεµηµένου καθολικού

είναι η αλυσίδα συστοιχιών (blockchain). Όπου οι συναλλαγές οµαδοποιούνται

σχηµατίζοντας συστοιχίες (blocks) οι οποίες συνδέονται µεταξύ τους µε χρονολογική

σειρά δηµιουργώντας µια αλυσίδα (chain). Αυτή είναι και η τεχνολογία πίσω από τα

κρυπτονοµίσµατα τα που ξεκίνησαν µε την έλευση του Bitcoin. Η πρόσφατη

επικέντρωση στην τεχνολογία της αλυσίδας συστοιχιών προήλθε από την εµπορική

επιτυχία του Bitcoin και της προσοχής που έτυχε από τους ερευνητές και τις

βιοµηχανίες. Σε αυτή την διπλωµατική εργασία ασχολούµαστε µε την τρέχουσα

κατάσταση της αλυσίδας συστοιχιών και επιπλέον µε µια εφαρµογή πέραν των

κρυπτονοµισµάτων, που ονοµάζεται έξυπνο συµβόλαιο. Επιπλέον, συγκρίνουµε πέντε

πλατφόρµες αλυσίδας συστοιχιών που µπορούν να υποστηρίξουν έξυπνα συµβόλαια

επικεντρώνοντας την ανάλυση σε µια γενική περιγραφή τους, στις κύριες

τεχνολογικές ιδιότητές τους και στα χρηµατοοικονοµικά τους στοιχεία. Επιπρόσθετα,

θα παρουσιάσουµε µια ανάλυση κόστους-οφέλους και µια αξιολόγηση ασφάλειας

των έξυπνων συµβολαίων σηµειώνοντας τα σχετικά θέµατα παρέχοντας ένα σύνολο

πιθανών λύσεων. Τέλος, θα δείξουµε µια πρακτική εφαρµογή και τη διαδικασία και

την ευελιξία της διαδικασίας δηµιουργίας ενός έξυπνου συµβολαίου σε ένα

περιβάλλον µε το διαδίκτυο των πραγµάτων (Internet of Things).

Λέξεις κλειδιά: Τεχνολογία αλυσίδας συστοιχιών, Έξυπνα συµβόλαια, Διαδίκτυο

των Πραγµάτων, Τεχνολογία κατανεµηµένου καθολικού, Μηχανισµοί Οµοφωνίας,

Αξιολόγηση ασφάλειας, Αξιολόγηση Πλατφόρµων Τεχνολογιών αλυσίδας

συστοιχιών

5

Contents

ABSTRACT... 3
ΠΕΡΙΛΗΨΗ... 4
CONTENTS... 5
LIST OF FIGURES.. 8
LIST OF TABLES.. 9
1 INTRODUCTION .. 10

1.1 RESEARCH QUESTIONS ... 10
1.2 RESEARCH METHODOLOGY AND OUTLINE.. 10
1.3 IMPORTANT DEFINITIONS ... 11

2 AN OVERVIEW OF BLOCKCHAIN TECHNOLOGY... 13
2.1 ABOUT BLOCKCHAIN .. 13
2.2 A SHORT HISTORY OF BLOCKCHAIN.. 13
2.3 BYZANTINE GENERALS PROBLEM.. 14
2.4 TYPES OF BLOCKCHAIN .. 15

2.4.1 Public Blockchain .. 15
2.4.2 Private Blockchain ... 16
2.4.3 Hybrid (or Federated or Consortium) Blockchains... 16
2.4.4 Adoption Stages of Blockchain.. 17

2.5 MAIN TECHNOLOGIES CONNECTED TO BLOCKCHAIN... 17
2.5.1 Peer-to-Peer (P2P) Network ... 17
2.5.2 Hash .. 18
2.5.3 Public Key Cryptography and Digital Signature... 18
2.5.4 Consensus Mechanism... 19

2.6 HOW BLOCKCHAIN WORKS.. 23
3 AN OVERVIEW OF SMART CONTRACTS... 25

3.1 ABOUT SMART CONTRACTS ... 25
3.2 DEFINITION AND CHARACTERISTICS .. 25
3.3 MAIN COMPONENTS.. 26
3.4 ORACLES ... 27
3.5 TAXONOMY OF SMART CONTRACTS .. 28
3.6 BENEFITS OF SMART CONTRACTS .. 29
3.7 CHALLENGES... 30
3.8 COST-BENEFIT ANALYSIS OF SMART CONTRACTS.. 31

3.8.1 Cost Analysis .. 31
3.8.2 Benefit Analysis .. 33
3.8.3 Outcome .. 35

4 MARKET DATA AND FORECAST .. 36
4.1 BLOCKCHAIN TECHNOLOGY DATA ... 36

4.1.1 Market size.. 36
4.1.2 Regional spread.. 36
4.1.3 Development drivers .. 37

4.2 SMART CONTRACTS DATA... 40
4.2.1 Drivers .. 41
4.2.2 Market segmentation.. 41
4.2.3 Regional Spread ... 41

4.3 IOT DATA .. 42
4.3.1 Key Data ... 42
4.3.2 Connected IoT devices ... 42

6

5 STUDY AND COMPARATIVE EVALUATION OF BLOCKCHAIN PLATFORMS
SUPPORTING SMART CONTRACTS ... 44

5.1 PLATFORMS UNDER EVALUATION .. 44
5.1.1 Hyperledger Fabric.. 44
5.1.2 Ethereum... 45
5.1.3 Monax ... 45
5.1.4 Stellar .. 46
5.1.5 Lisk .. 46

5.2 METHOD AND CRITERIA OF EVALUATION .. 47
5.3 COMPARISON TABLE... 48

6 SECURITY ISSUES IN BLOCKCHAIN AND SMART CONTRACTS................................ 50
6.1 KNOWN SECURITY ISSUES IN BLOCKCHAIN .. 50

6.1.1 The Majority Attack ... 50
6.1.2 Fork Problems.. 50
6.1.3 Scale of Blockchain .. 52
6.1.4 Time Required to Confirm Blockchain Transactions... 52

6.2 KNOWN SECURITY ISSUES IN SMART CONTRACTS.. 52
7 SECURITY ASSESSMENT IN ETHEREUM SMART CONTRACTS 54

7.1 VULNERABILITIES ... 54
7.2 ATTACKS AND DESCRIPTION .. 57

7.2.1 The DAO attack.. 57
7.2.2 King of the Ether Throne ... 57
7.2.3 Multi-player games .. 57
7.2.4 Rubixi .. 57
7.2.5 GovernMental... 58
7.2.6 Dynamic libraries... 58
7.2.7 Summary and Evaluation of Attacks ... 58

7.3 COUNTERMEASURES ... 59
7.3.1 Methods... 59
7.3.2 Software Tools: .. 59

7.4 RELATIONAL TABLE.. 61
8 BLOCKCHAIN AND SMART CONTRACTS APPLICATIONS IN IOT 62

8.1 ABOUT INTERNET OF THINGS (IOT) ... 62
8.2 USE CASES FOR SMART CONTRACTS AND IOT .. 62

8.2.1 Digital Identity ... 62
8.2.2 Records ... 63
8.2.3 Securities... 63
8.2.4 Trade Finance .. 64
8.2.5 Derivatives.. 64
8.2.6 Financial Data Recording ... 65
8.2.7 Mortgages... 65
8.2.8 Land Title Recording ... 66
8.2.9 Supply Chain .. 66
8.2.10 Auto Insurance ... 67
8.2.11 Clinical Trials... 67
8.2.12 Research ... 68

9 DEPLOYMENT OF A SMART CONTRACT SYSTEM IN AN IOT ENVIRONMENT ... 69
9.1 ENVIRONMENT OF THE APPLICATION... 69

9.1.1 Hardware.. 69
9.1.2 Software .. 69
9.1.3 Goal... 69

9.2 CONFIGURATION AND SETUP .. 70
9.2.1 Installing an Ethereum node on the Raspberry PI (RPi)... 70
9.2.2 Installing an Ethereum node on the Computer .. 70
9.2.3 Setting up a private chain and the miners .. 70

7

9.2.4 Pairing the miners.. 74
9.2.5 Synchronizing the RPi node with miners .. 77
9.2.6 Deployment of the Smart Contract.. 79

10 CONCLUDING REMARKS .. 85
10.1 ANSWERS TO RESEARCH QUESTIONS... 85
10.2 CONCLUSION ... 86

REFERENCES.. 87

8

List of Figures

Figure 1: Relational Scheme...12
Figure 2: Adoption Stages of Blockchain ...17
Figure 3: Block Structure ...24
Figure 4: Smart Contracts Potential Benefits ..35
Figure 5: Blockchain Revenue by Region...37
Figure 6: Blockchain Revenue Pool..39
Figure 7: CAGR of Smart Contracts...40
Figure 8: Forecast of Connected Devices..43
Figure 9: Digital Identity..63
Figure 10: Records ...63
Figure 11: Securities ..64
Figure 12: Trade Finance ...64
Figure 13: Derivatives..65
Figure 14: Financial Data Recording ..65
Figure 15: Mortgages ...66
Figure 16: Land Title Recording ..66
Figure 17: Supply Chain...67
Figure 18: Auto Insurance..67
Figure 19: Clinical Trials ...68
Figure 20: Research ...68
Figure 21: Node Info..75
Figure 22: Block Synchronization ..76
Figure 23: Peers Info..77
Figure 24: Contract Address...83
Figure 25: Withdrawing Tokens ...83
Figure 26: Event viewing ...84

9

List of Tables

Table 1: Consensus algorithms...23
Table 2: Block Content ..24
Table 3: Smart contracts by category..29
Table 4: Cost Analysis of a Smart Contract Transaction ...32
Table 5: Comparison of Blockchain Platforms ...49
Table 6: Known Vulnerabilities in Ethereum smart contracts56
Table 7: Known Attacks in Ethereum smart contracts...58
Table 8: Smart Contracts Vulnerabilities-Attacks and Countermeasures...................61

10

1 Introduction
Over the past few years, after introducing Bitcoin in 2008, several cryptocurrencies

appeared in the world market. This was the opportunity for a variety of businesses to

familiarize with their underlined technology named blockchain and its possible

applications. Particularly, in the field of IoT there has been a lot of research and

applications, emerging or applied such as smart contracts. In the next paragraphs, we

are going to present the research questions, the methodology and the outline of this

thesis followed by some important definitions.

1.1 Research Questions

In this master’s thesis we are going to make an approach, in order to answer the

following research questions (RQs):

• RQ1 –What is the current status and the predictions concerning blockchain

technology, smart contracts and IoT? Technologies evolve, new models appear

and more applications for smart contracts come up. However, businesses and

clients are still questioning if it’s worth switching to applications using

blockchain.

• RQ2 – What are the main similarities and differences among blockchain

platforms that enable smart contracts? Every year new platforms make their

appearance, promising new features and a different technological approach. We

will evaluate five of the most well-known and influential platforms enabling

smart contracts, presenting their main features of the chosen platforms and

making a cost-benefit analysis of smart contracts.

• RQ3 – What is the level of security in smart contracts and what can we do to

improve it? The use of smart contracts is growing in time and their global market

value is exponentially increasing. Projections for the future value of blockchain,

smart contracts and IoT are promising. However, security is a major issue that

has to be taken into serious consideration since these breaches are costly.

1.2 Research Methodology and Outline

The research methodology for this thesis consists of the following:

11

The evaluation of blockchain platforms supporting smart contracts is based on the

current literature. This information is well documented in some platforms whereas in

the majority of others, it is dispersed in different sources or it is insufficient due to

their recent appearance. Their key features are placed in a matrix in order to be

highlighted allowing thus, a comparison, which highlights both their similarities and

differences. Additionally, we are going to provide an insight of a cost-benefit analysis

for smart contracts and supporting technology, plus a security assessment of

ethereum-based smart contracts, discussing the risks, the vulnerabilities and the

related countermeasures.

Apart from the study of the literature, we will deploy a smart contract in an IoT

environment describing the steps of the process.

An outline of the contents of this thesis is given below:

Chapter 2: In this chapter we provide a description of the blockchain technology.

Chapter 3: This chapter provides an overview of smart contracts.

Chapter 4: Forecast, market data and other related figures for blockchain, smart

contracts and IoT.

Chapter 5: A study and a comparative evaluation of blockchain platforms

supporting smart contracts.

Chapter 6: A brief description of security issues related to blockchain and smart

contracts.

Chapter 7: An effort to make a security assessment in ethereum-based smart

contracts.

Chapter 8: A set of smart contracts applications in IoT is described.

Chapter 9: A deployment of a smart contract system in an IoT environment.

Chapter 10: Answers to research questions and conclusion.

1.3 Important Definitions

In order to make the distinction among blockchain and related terms clearer, we are

providing below some definitions and their relation.

Distributed Ledger Technology (DLT): It is a family of technologies that includes

blockchain, where a ledger is maintained by a group of peers rather than a single

central authority.

Blockchain: A type of distributed ledger, which enables records to be stored and

12

sorted into blocks.

Cryptocurrency: An electronic currency application using blockchain technology.

This category is synonymous to Bitcoin, the first and foremost known cryptocurrency

that uses this technology. Other applications exist too, but they are not fully functional

or widely accepted by the public. Cryptocurrencies attracted most of the users’

attention, due to their financial impact.

Miner: A peer in the blockchain network that confirms or verifies a transaction by

solving a challenging cryptographic problem and adds the transaction or “blocks” the

blockchain, thus updating the ledger.

The figure below shows the relationship between the basic technologies and their

applications.

Figure 1: Relational Scheme

13

2 An Overview of Blockchain

Technology
This chapter discusses the different types of blockchain technology and their

connected technologies. The main difference among blockchain platforms, the

consensus mechanism, is discusses at the end of this chapter.

2.1 About Blockchain

Blockchain technology is a distributed database, which maintains an immutable

public ledger of all the transactions. Blockchain allows for the time stamped recording

of all the transactions. Every node in the network is responsible for the maintenance

and continuous verification of transactions. The blockchain technology involves

creation of digital tokens for digital files, such as documents or transactions. These

digital tokens can be considered as digital fingerprints of the files. These fingerprints

are saved in groups called “block”. The individual blocks are then linked in a chain of

blocks and each subsequent block has a digital token from the previous block. Thus, it

becomes impossible to modify the information in an old block in the chain without

modifying the subsequent blocks. The main idea behind the blockchain technology is

to register, confirm and transfer all kinds of contracts and properties without the need

of any intermediary [1].

The ability of blockchain to secure the data and history of transactions led it to be

called as “The Trust Machine” by the Economist [2]. The World Economic Forum

conducted an expert survey in 2015 and reported that the majority (57%) of the

respondents estimated that by the year 2025 10% of the world’s Gross Domestic

Product (GDP) will be registered in blockchain [3]. Furthermore, in Dec 2015,

Goldman Sachs, an influential international investment bank stated that “....Silicon

Valley and Wall Street are betting that the underlying technology; the blockchain can

change..... Well everything” [4].

2.2 A Short History of Blockchain

In 1991, Stuart Haber and W. Scott Stornetta were the first ones to present their work

on a cryptographically secured chain of blocks [5]. Later, Bayer, Haber and Stornetta

14

incorporated Merkle trees to the blockchain in 1992; this was to improve the

efficiency so as to collect several documents into one block [6]. The concept of

distributed blockchain was first introduced by an anonymous person or group known

as Satoshi Nakamoto in 2008 by publishing a whitepaper title ”Bitcoin: A Peer-to-

Peer Electronic Cash System” [7]. Blockchain (bitcoin) was born when Satoshi

Nakamoto solved a complex Game Theory conundrum called Byzantine Generals

Problem, which ensured that at a particular time, a block of asset could be transferred

to only one other person, without the need for a third-party check.

In 2009, the concept of distributed blockchain was implemented and released as an

open-source software as a core component of the digital currency bitcoin. The use of

the blockchain for bitcoin made it the first digital currency to solve the double

spending problem without requiring a trusted administrator [8]. The words block and

chain were used separately in the original paper presented by Satoshi Nakamoto in

October 2008 [7], and when the term moved into wider use it was originally block

chain [8] before becoming a single word, blockchain, by 2016.

2.3 Byzantine Generals Problem

Blockchain technology answers the “Byzantine Generals Problem” or how do

individual users secure their data from non-trusted actors. The Byzantine Generals

problem is the computer-world’s practical take on a thought-experiment called the

Two Generals Problem. The problem is illustrated by two or more generals that siege

a city from opposite sides, trying to coordinate an attack. If General A sends a

message that says “attack at noon tomorrow,” he has no idea whether or not General

B will actually receive the message, and could potentially be marching toward death if

he attacks without the other general. Upon receipt, General B has no idea if the

message is authentic or has been sent from the enemy to draw him into a trap.

Nevertheless, he will assume authenticity and send a response confirming the attack,

but without knowing whether General A received his response, he may fear that the

other general will hold off attacking, meaning that General B will be the one attacking

alone at noon tomorrow and facing certain death. General A could, of course, send a

message confirming receipt of General B’s acknowledgment, but will never actually

know if it reached its destination, or even if the message was authentic in the first

place. This puts him in the same spot General B was just in. This problem bounces

15

back and forth into perpetuity, with neither general ever able to be sure whether their

message went through, let alone is authentic. [9]

To relate this to the blockchain we can describe it as follows: A person can store just

about anything of value into a ‘digital lock box’. The content inside of the box can

only be opened and changed with a unique private key. The information inside of this

box can then be shared on demand without the possibility of it being altered, changed,

or replicated from its original form. [10]

2.4 Types of Blockchain

Buterin [11] categorized blockchains into three categories: Public Blockchain; Private

Blockchain; and Hybrid Blockchain.

2.4.1 Public Blockchain

A fully open public ledger has no limitations with regards to reading and writing

permissions. Anyone can connect to the network obtain access to information and has

the possibility to add information. Anyone connected to the network has the right to

participate in the consensus protocol, to verify the newly added blocks and ensure that

it is not conflict with previous blocks in the chain. The consensus protocol is forced to

be based on a cryptoeconomic mechanism, because of the open nature of the system

and due to lack of trust between the nodes. A public ledger blockchain system

operates without the requirement of trust between users; hence, considered to be fully

decentralized.

Some of the state of the art open source public Blockchain protocols based on a Proof

of Work (PoW) consensus algorithms are Bitcoin, Ethereum and Monero.

The main characteristics of public blockchain are as follows:

• Anyone can participate, without permission.

• Anyone can download the code and start running a public node on their local

device, validating transactions in the network, and thus participating in the

consensus process. This is the process for determining what blocks get added

to the chain and what the current state is.

• Anyone in the world can send transactions through the network and expect to

see them included in the blockchain, if they are valid.

• Anyone can read transactions on the public block explorer. Transactions are

16

transparent, but anonymous/pseudonymous.

2.4.2 Private Blockchain

A private blockchain has certain limitations on the reading and writing permissions

and is more tightly controlled than a public ledger. The right to modify, add or read

information is restricted and kept centralized to a group of participants, e.g. an

organization. In a private blockchain system, a consensus protocol is usually not

required because of the trusted nodes. Private ledgers have the ability to fast access

information, make transactions cheaper, and possibility to control the level of privacy.

Example applications include database management, auditing, etc. which are internal

to a single company, and so public readability may in many cases not be necessary at

all. In other cases public audit ability is desired. Private blockchains (such as Monax

and Multichain) are a way of taking advantage of blockchain technology by setting up

groups and participants who can verify transactions internally. This has the risk of

security breaches just like in a centralized system but has advantages when it comes to

scalability and state compliance of data privacy rules and other regulatory issues.

2.4.3 Hybrid (or Federated or Consortium) Blockchains

There is a hybrid blockchain system consisting of some features of a public and

private ledger, called consortium ledger. In a consortium ledger, the consensus

protocol is usually predetermined and managed by a predefined group of institutions

[11]. A consortium blockchain system could e.g. have 20 institutions controlling one

node, and every newly added block must be signed by at least 13 institutions to be

considered valid. A hybrid blockchain system is considered to be partially

decentralized. In a consortium ledger, the reading permissions could be open to the

public or restricted to a group of participants. There is a hybrid solution to this as

well, such that the parts of the information are public and other parts are not.

Federated Blockchains (such as R3 (Banks), EWF (Energy), B3i (Insurance), Corda),

operate under the leadership of a group without letting any person with access to the

Internet to participate in the process of verifying transactions. Federated Blockchains

are faster providing more transaction privacy.

Consortium blockchains are mostly used in the banking sector. The consensus process

is controlled by a preselected set of nodes. The right to read the blockchain may be

public, or restricted to the participants.

17

2.4.4 Adoption Stages of Blockchain

Based on Accenture’s maturity model [11A] for the adoption of blockchain, by 2025

blockchain technology will reach the stage of maturity. This means that today we are

in the early adoption of this technology and it will take years for its complete

acceptance.

Figure 2: Adoption Stages of Blockchain

2.5 Main Technologies Connected to Blockchain

Bitcoin is considered to have created new functions by combining existing

technologies. In order to operate a system like the one for electronic money, without

any central authority, it is indispensable to put in place measures to prevent

falsification of data and duplicate payments, as well as a mechanism to maintain the

system against any attacks by malicious users. Major technologies connected to

blockchain to make applications such as Bitcoin function in a proper manner (P2P,

hash, public-key cryptography and digital signature, Proof of Work, Proof of Stake)

are outlined below.

2.5.1 Peer-to-Peer (P2P) Network

In a client-server network, a server takes charge of preservation and provision of data

while a client requests the server for data and gains access to them, and their roles are

thus fixed. In contrast, in P2P networks, all participating nodes hold data respectively

and create an autonomous network wherein data are requested and provided among

these nodes. In such a network, the role (server or client) of respective nodes is not

fixed. It is necessary for P2P networks to consider search methods and data

18

transmission methods. Search methods are the means to manage locations of nodes as

well as data and data transmission methods are means of transmitting data between

nodes (direct or relayed).

2.5.2 Hash

Blockchain technology relies extensively on hashes and hash functions. A hash

function is a mathematical algorithm that takes an input and transforms it into an

output. A hash is the result of a transformation of the original information that serves

as input. The main hash function characteristic is collision resistance meaning that it

is extremely difficulty to recreate the input data from its output (hash value) alone.

This mechanism is characterized by the fact that the same hash value is obtained from

the same data and even a slight difference in the original data will result in a

completely different hash value. Taking advantage of such characteristics, this

mechanism is used for the detection of falsification of data.

2.5.3 Public Key Cryptography and Digital Signature

Public-key cryptography is a cryptographic method using different keys for

encryption and decryption. The problem of handing over keys was solved by dividing

the key into one for private use (private key) and one available for anyone (public

key). In the case of symmetric-key cryptography using the same key for encryption

and decryption, requires various safety measures for delivering the key only to the

relevant counterparty. In contrast, public-key cryptography enables safe delivery and

receipt of files only if a receiver prepares a pair of a private key and a public key and

delivers the public key to the sender in advance. Safety can be maintained even

though other persons use the public key as long as the receiver properly manages

his/her private key. Blockchain uses an asymmetric cryptography mechanism to

validate the authentication of transactions.

A digital signature refers to a mechanism to prove the authenticity of the data sent via

a network using a pair of keys like in public-key cryptography. A digital signature,

sent to the receiver together with the relative file, is made by encrypting the hash

value of the file to be sent with the sender’s private key. The receiver uses the same

hash function as the sender to create the hash value of the file by himself and

crosschecks the created hash value with the hash value obtained through decrypting

the sender’s digital signature with the sender’s public key. This results to the

19

confirmation that the sender’s digital signature is authentic. In blockchain the typical

digital signature is involved with two phases: the signing phase and the verification

phase as described above. Among other algorithms, the elliptic curve digital signature

algorithm (ECDSA) is used in blockchain.

2.5.4 Consensus Mechanism

A major difficulty with blockchain technology with public ledgers is to make sure that

the consensus protocol is reached by the entire peer-to-peer network participants [12].

A consensus protocol is used to make sure that the participants in the network follow

the network’s rules and to make sure the transactions are validated in the right order.

It is also used to make sure that the information within a block is correct, that the

nodes (miners) get a fair compensation and to avoid issues like the double spending

problem.

Algorithms for achieving consensus with arbitrary faults require a type of voting

among a known set of peers. Two main approaches that exist are the “Nakamoto

consensus” and the Byzantine Fault Tolerance (BFT). The first approach elects the

leader, through some form of “lottery”, who then proposes a block that can be added

to a chain of previously committed blocks. The second approach is based on

Byzantine Fault Tolerance (BFT) algorithms and uses multiple rounds of explicit

votes to achieve the necessary consensus. In this part of the section, we present some

of the most popular consensus mechanisms with Proof of Work and Proof of Stake

being the most popular and tested mainly through cryptocurrencies.

2.5.4.1 Proof of Work (PoW)

Proof of Work (PoW) generally refers to a mechanism to confirm a person’s

innocence by giving him to do a certain work, which is simple but troublesome and

can be easily verified that he did it. Backlund [13] argues that one way of ensuring

authenticity is to let each user within the network get one vote and let all users vote

which transaction should be included in the next block. The number of votes decides

which set of transactions should be included. This kind of consensus-process is

vulnerable to Sybil attacks, where one user could create multiple accounts and get a

higher influence within the network.

Nakamoto, the creator of Bitcoin, solved this issue of influence by adding a cost to the

vote. Each user’s amount of influence is based on the computing power of that user.

20

The more computing power, the higher the needed energy and the higher the hardware

costs. This is the concept of proof-of-work consensus protocol. In the case of bitcoins

(which use a proof-of-work consensus protocol) the network collects all the

transactions made during a set period into a block. The nodes task is to confirm those

transactions and write them into a blockchain hashing the information as well, to

protect it from intruders. The nodes get economic incentives to keep mining and

hashing, the more blocks created, the more bitcoins received.

Carlsson and Huang [14] argue that when a node creates a block, it gets distributed to

neighbouring nodes. The neighboring nodes independently verify that the information

is correct within the block and that the rules have been followed. In a bitcoin network,

it is recommended to wait at least six blocks to make sure that the transaction is final.

Nodes compete against each other to be the first one to produce a block and a couple

of nodes could be working on the same transaction simultaneously, a blockchain fork

is created. The block that is created first, with the longest blockchain behind it, wins

and that node gets rewarded. Despite this being hardware and energy intensive and

thus raising mining costs, proof-of-work has been empirically proven to be safe and

robust [13].

Buterin [15] argues that there are some downturns with a proof-of-work consensus

protocol, e.g. the risk of a 51% attack and there are high-energy costs of producing

one block. Courtious [16] further argues that the proof-of-work protocol is heading

towards self-destruction. The mining community is getting smaller and more

specialized, where big companies with great resources could outwork the individual

miner. This specialization of mining is making the system more centralized to a few

big companies and the risk of a 51% attack increases.

2.5.4.2 Proof of Stake (PoS)

To reduce the risk of a 51% attack and to reduce energy consumption, a new

consensus protocol was introduced within the blockchain community, called proof-of-

stake. Instead of proving that a node solved a computational hard task, like one does

in the proof-of-work protocol, the node could instead proof it has a certain amount of

coins [17]. In the case of proof-of-stake it takes coins to create a new block, not

computational power and the node with the most coins, gets the most influence [18].

The bitcoin community and Manning [19] argue that a proof-of-stake protocol will

reduce the risk of a 51% attack. He argues that the likelihood of a 51% attack is

21

reduced due to the coins invested by the miner within the network. If someone has

51% of the computational power within a proof-of-stake protocol, one needs to own

51% of the total bitcoins as well. According to game theory, it is thus in the interest of

the majority owner to have a stable and secure network, and will therefore not attack

it. If there is an attack, it will only destabilize the digital currency and decrease its

value. One issue with the proof-of-stake protocol is the issue of forking. When one

node starts mining on a transaction, another node could start mining on it

simultaneously, without the cost of computational power.

Backlund [13] argues that the risk of villainous nodes that fork the blockchain is

increased compared with a proof-of-work protocol. This increases the risk of double-

spending attacks and greedy behavior, where the nodes start to mine on all forks to

not miss out on block rewards. This issue can be solved by using check-point blocks,

where blocks before a check-point cannot be revised and the issue of double spending

attacks are solved. There still remains a risk of a 51% attack in a proof-of-stake

protocol and Houy [20] argues that the points made by the bitcoin community and

Manning is not valid. He argues that it will cost nothing for a miner to buy 50% of a

proof-of-work cryptocurrency monetary base and thus take over the platform.

2.5.4.3 Delegated Proof of Stake (DPoS)

DPOS (Delegated proof-of-stake). Similar to POS, miners get their priority to

generate the blocks according to their stake. The major difference between POS and

DPOS is that POS is a direct democratic while DPOS is representative democratic.

Stakeholders elect their delegates to generate and validate a block. With significantly

fewer nodes to validate the block, the block could be confirmed quickly, making the

transactions confirmed quickly. Meanwhile, the parameters of the network such as

block size and block intervals could be tuned. Additionally, users do not to need

worry about the dishonest delegates because the delegates could be voted out easily.

DPOS has already been implemented, and is the backbone of Bitshares.

2.5.4.4 Practical Byzantine Fault Tolerance (PBFT)

PBFT (Practical byzantine fault tolerance) is a replication algorithm to tolerate

byzantine faults (Miguel and Barbara, 1999). Hyperledger Fabric (Hyperledger, 2015)

utilizes the PBFT as its consensus algorithm since PBFT could handle up to 1/3

malicious byzantine replicas. A new block is determined in a round. In each round, a

22

primary would be selected according to some rules. And it is responsible for ordering

the transaction. The whole process could be divided into three phase: pre-prepared,

prepared and commit. In each phase, a node would enter next phase if it has received

votes from over 2/3 of all nodes. So PBFT requires that every node is known to the

network. Like PBFT, Stellar Consensus Protocol (SCP) (Mazieres, 2015) is also a

Byzantine agreement protocol. There is no hashing procedure in PBFT. In PBFT,

each node has to query other nodes while SCP gives participants the right to choose

which set of other participants to believe. Based on PBFT, Antshares (antshares,

2016) has implemented their dBFT (delegated byzantine fault tolerance). In dBFT,

some professional nodes are voted to record the transactions instead of all nodes. [21]

2.5.4.5 Proof of Elapsed Time

The Proof of Elapsed Time (PoET) Consensus was originally released to Hyperledger

utilizing an abstract TEE (trusted execution environment). In terms of functionality,

PoET stochastically elects individual peers to execute requests at a given target rate.

Individual peers sample an exponentially distributed random variable and wait for an

amount of time dictated by the sample. The peer with the smallest sample wins the

election. Cheating is prevented through the use of a trusted execution environment,

identity verification and blacklisting based on asymmetric key cryptography, and an

additional set of election policies. [21A]

2.5.4.6 Ripple Protocol

The Ripple Transaction Protocol (RTXP), was issued in 2012, and its purpose is to

facilitate financial transactions by defining a set of rules that allow users to make

online transactions with any currency, cryptocurrency or any other means. Ripple

Schwartz et al., 2014) is a consensus algorithm that utilizes trusted sub-networks

within a larger network. In the network, nodes are divided into two types: server for

participating consensus process and client for transferring funds. [21]

2.5.4.7 Tendermint

Tendermint (Kwon, 2014) is a byzantine consensus algorithm where a block is

determined in a round. All nodes need to be known and among them a proposer is

selected to broadcast an unconfirmed block. The process is divided into three steps:

23

1) Prevote: Validators choose whether to broadcast a prevote for the proposed

block.

2) Precommit: If the node has received more than 2/3 of prevotes on the

proposed block, it broadcasts a precommit for that block. If the node has

received over 2/3 of precommits, it enters the commit step.

3) Commit: The node validates the block and broadcasts a commit for that block.

If the node has received 2/3 of the commits, it accepts the block.

The process is quite similar to PBFT, but Tendermint nodes have to lock their coins to

become validators. [21]

The following table is a comparison of properties among the different consensus

algorithms:

Property PoW PoS PBFT DPoS PoET Ripple Tendermint
Node

identity

management

open open permissioned open - open permissioned

Tolerated

power of the

adversary

<25,0%

computing

power

<51,0%

stake
<33,3% fault

replicas
<51,0%

validators
- <20,0%

faulty

nodes

in UNL

<33,3%

byzantine

voting power

Energy

saving
No Partial Yes Partial Yes Yes Yes

Known apps

or platforms
Bitcoin Ethereum

(next

version)

Hyperledger

Fabric
Bitshares Sawtooth

Lake
Ripple Tendermint

Table 1: Consensus algorithms

2.6 How Blockchain Works

The next figures will provide a high-level explanation on how blockchain works. The

blockchain as a meaning, involves blocks consisting of several data (i.e. transactions)

including some other important pieces of information to make the chain work with its

special features. Each block points to the immediate previous block via a reference

that is an essential hash value of the previous block called parent block. It is worth

noting that uncle block hashes (children of the block’s ancestors) would also be stored

in ethereum blockchain (Buterin, 2014). The first block which has no parent block is

called the genesis block of a blockchain,

24

Figure 3: Block Structure

A block consists of the block header and the block body where the block header

includes the following information:

• Block version: indicates which set of block validation rules to follow.

• Parent block hash: a 256-bit hash value that points to the previous block.

• Merkle tree root hash: the hash value of all the transactions in the block.

• Timestamp: current timestamp as seconds since 1970-01-01T00:00 UTC.

• Nonce: a 4-byte field, which usually starts with 0 and increases in every hash

calculation.

• nBits: current hashing target in compact format.

The block body is consisted of a transaction counter and transactions. The maximum

number of transactions that a block can contain depends on the block size and the size

of each transaction. [21]

Block version 0000000000010

Parent block hash fffff00015421256ffffffffffff00000000

Merkle tree root dd008121256ddddddddffff11111111

Timestamp 12e5d1985y

Nonce 0efdef12

Header

Nbits 30x30x301845

Body Transaction counter TX1 TX2 TX3 TX4….. TXn
Table 2: Block Content

25

3 An Overview of Smart Contracts

3.1 About Smart Contracts

An American cryptographer Nick Szabo is deemed to be the person who

conceptualized smart contracts in 1994. He often mentioned about an example of a

rented car with a smart contract such that the control to the car is returned back to the

car owner when a car renter forgives the payments. Smart Contracts can be defined as

autonomous computer programs (self-executing codes) that, once started, execute

automatically and in a mandatory manner the underlying conditions, such as the

facilitation, verification or enforcement of the negotiation or performance of a

contract, executing a payment transaction, and so on.

The main benefits of deploying Smart Contracts over a blockchain are that the

blockchain guarantees that the contract terms cannot be modified. Blockchain makes

it impossible to tamper or hack the contract terms. Thus, smart contracts deployed

over a blockchain are expected to bring reduction in costs of verification, execution,

arbitration and fraud prevention. Furthermore, smart contracts can be useful in

overcoming the moral hazard problem.

3.2 Definition and Characteristics

A smart contract is a digitally signed, computable agreement between two or more

parties. A virtual third party, a software agent, can execute and enforce (at least some

of) the terms of such agreements. In the context of the blockchain, where it truly takes

it sense, a smart-contract is an event-driven program, with state, that runs on a

replicated, shared ledger and which can take custody over assets on that ledger.

Smart contracts on the blockchain, created by computer programmers, are entirely

digital and written using programming code languages. This code defines the rules

and consequences in the same way that a traditional legal document would, stating the

obligations, benefits and penalties, which may be due to either party in various

different circumstances. The big difference is that this code is automatically executed

by a distributed ledger system, in a non-repudiable and unbreakable way.

Smart Contract code has some unique characteristics:

• Deterministic: Since a smart contract code is executed on multiple distributed

26

nodes simultaneously, it needs to be deterministic i.e. given an input; all nodes

should produce the same output. That implies the smart contract code should not

have any randomness; it should be independent of time (within a small time

window because the code might get executed a slightly different time in each of

the nodes); and it should be possible to execute the code multiple times.

• Immutable: Smart contract code is immutable. This means that once deployed, it

cannot be changed. This of course is beneficial from the trust perspective but it

also raises some challenges (e.g. how to fix a code bug) and implies that smart

contract code requires additional due diligence/governance.

• Verifiable: Once deployed, smart contract code gets a unique address. Before

using the smart contract, interested parties can and should view or verify the code.

3.3 Main Components

A smart contract can be broken down into two separate components:

• Smart Contract Code: The code that is stored verified and executed on a

blockchain.

• Smart Legal Contracts: The use of the smart contract code that can be used as a

complement, or substitute, for legal contracts.

Following is a short description of how smart contracts work divided into three parts,

the input, the process and the output [22].

• Coding (what goes into a smart contract): Because smart contracts work like

computer programs, it is very important that they do exactly what the parties want

them to do. This is achieved by inputting the proper logic when writing a smart

contract. The code behaves in predefined ways and doesn’t have the linguistic

nuances of human languages, thus, it has now automated the “if this happens then

do that” part of traditional contracts.

• Distributed Ledgers (how the smart contract is sent out): The code is encrypted

and sent out to other computers via a distributed network of nodes running a

distributed ledger.

• Execution (how it is processed): Once the computers in the network of distributed

ledgers receive the code, they each come to the same agreement or consensus on

the results of the code execution. The network would then update the distributed

ledgers to record the execution of the contract, and then monitor for compliance

27

with the terms of the smart contract. In this type of system, single party

manipulation is averted because control over the execution of the smart contract is

no longer possible since that execution is not in the hands of a single party.

3.4 Oracles

Oracles are trusted entities which sign claims about the state of the world. Since the

verification of signatures can be deterministic, it allows deterministic smart contracts

to react to the (non-deterministic) outside world. Oracles are required to connect

smart contracts to critical data feeds, any web API or various accepted payment

methods. As mentioned previously, Smart Contracts are executed by examining all

the conditions of execution, which have been defined in advance in the contract code,

and the problem arises from the validation of these conditions of execution.

Two scenarios are then possible:

• The execution conditions of the contract are linked to other entries in the

blockchain or are simple time markers. In this case, checking these execution

conditions is very easy: the contract is programmed to verify that these entries exist

or that the execution time is passed, and it executes when this is the case.

• The conditions of execution of the contract are outside the blockchain. In this case,

the execution of the contract requires the use of a trusted third party, an oracle.

An oracle is instructed to enter the blockchain information reliably so that the contract

can run properly and can be constituted in several ways [22]:

• Prior designation of a trusted third party known to both parties.

• Reference to a database considered trustworthy.(i.e. in the case of a sports betting,

possibility of referring to the result recorded on the site of a sports newspaper).

• Using a decentralized oracle service. It is an existing service on the blockchain

involving many participants. Each participant votes for the result he considers to be

accurate and it is the consensus among the participants that determines the final

result sent to the contract. Decentralized oracle projects already exist, notably the

Oraclize project.

The Oracle stands in between of the External world data or API and the Smart

Contract.

28

3.5 Taxonomy of Smart Contracts

We will categorize smart contracts by application domain as far as concerning Bitcoin

and Ethereum contracts, for the first ones based on the research in their web pages and

the related discussion forums and on manual inspection of the Solidity source code for

the Ethereum contracts as it is described in the related paper [23]. The result of this

research is the distribution of smarts contracts into five categories as described below:

i. Financial

The main feature of this type of contracts is to manage certain amount of money, or

verify the ownership of goods. Other contracts are used in crowdfunding money

gathering in order to fund specific projects. High-yield investment programs are

contracts witch include a high risk collecting money from users promising them a

high interest rate if new investors will join the scheme. Some contracts provide

insurance on setbacks, which are digitally provable, and others deal with

advertisements.

ii. Notary

In this category contracts exploit the immutability of the blockchain to store data, and

in some cases to certify their ownership and provenance. Some contracts allow users

to write the hash of a document on the blockchain, so that they can prove document

existence and integrity. Others allow declaring copyrights on digital media such as

photos and music and some allow users to write down on the blockchain messages

that everyone can read. In this category there are contracts that associate users to

addresses, in order to certify their identity.

iii. Game

Contracts in this category include games of chance and games of skill that users want

to participate.

iv. Wallet

These contracts handle keys, manage money complete transactions and deploy

contracts, making the interaction with the blockchain simple. Wallets can be managed

by one or many owners and the latter is possible using multiple authorizations.

v. Library

These contracts are implemented for common and general-purpose operations, to be

used by other contracts.

29

Next, we present a table including the quantitative results of the research in smart

contracts giving information for the number of contracts (Bitcoin and Ethereum) and

the transactions in each category concerning a sample of 834 smart contracts [23].

The table consists of four columns including the number of detected contracts (third

column), and the total number of transactions (fourth column). Overall, we have

1.673.271 transactions. Even though, Bitcoin contracts are fewer than the ones in

Ethereum, they have a larger amount of transactions:

Category Platform
Number of Detected

Contracts

Total Number of

Transactions

Bitcoin 6 470.391
Financial

Ethereum 373 624.046

Bitcoin 17 443.269
Notary

Ethereum 79 35.253

Bitcoin 0 0
Game

Ethereum 158 58.257

Bitcoin 0 0
Wallet

Ethereum 17 1.342

Bitcoin 0 0
Library

Ethereum 29 37.034

Bitcoin 0 0
Unclassified

Ethereum 155 3.679

Bitcoin 23 913.66
Total

Ethereum 811 759.611

Overall Overall 834 1.673.271
Table 3: Smart contracts by category

3.6 Benefits of Smart Contracts

For a wide range of potential applications, blockchain-based smart contracts offer a

number of benefits:

• Speed and real-time updates: because smart contracts use software code to

automate tasks that are otherwise typically accomplished through manual means,

they can increase the speed of a wide variety of business processes.

• Accuracy: automated transactions are not only faster but less prone to manual

30

error.

• Lower execution risk: The decentralized process of execution virtually eliminates

the risk of manipulation, nonperformance, or errors, since execution is managed

automatically by the network rather than an individual party.

• Fewer intermediaries: smart contracts can reduce or eliminate reliance on third-

party intermediaries that provide “trust” services such as escrow between counter

parties.

• Lower cost: new processes enabled by smart contracts require less human

intervention and fewer intermediaries and will therefore reduce costs.

• New business or operational models: because smart contracts provide a low-cost

way of ensuring that the transactions are reliably performed as agreed upon, they

will enable new kinds of businesses, from peer-to-peer renewable energy trading to

automated access to vehicles and storage units.

3.7 Challenges

Smart contract technology is still in its early stages in both technology and business

developments surrounding smart contracts. On the technology side, certain advances

will help broaden the applications and adoption of smart contracts. Current challenges

in the blockchain are the following [22]:

• Scalability: Smart contract platforms are still considered unproven in terms of

scalability. The community is aware of this problem and is thinking of several

approaches. It remains to be seen whether or not any of the approaches can

preserve the benefits of a public blockchain.

• Access to real world information: As discussed above, because smart contracts

can reference only information on the blockchain, oracles that can push

information to the blockchain will be needed. While some initiatives are

promising, approaches for creating oracles are still emerging.

• Privacy: The code within smart contracts is visible to all parties within the

network, which may not be acceptable for some applications. For instance, some

retailers may not want their deals with their suppliers to be public.

• Latency and performance: Blockchains suffer from high latency, given that time

passes for each verified block of transactions to be added to the ledger. For

Ethereum blockchain this occurs approximately every 17 seconds too far from the

31

milliseconds to which we are accustomed while using non-blockchain databases.

• Permissioning: While excitement for smart contracts is growing in the realm of

both permissionless and permissioned blockchains, the latter is likely to see faster

adoption in industry, given that complexities around trust, privacy, and scalability

are more easily resolved within a consortium of known parties.

• Limits of application: There are often good reasons for providing options while

writing contracts. In many of them, clauses are written into things on purpose to

create a channel for arbitration. In addition some business may simply not be

modeled in a way that would enable it to benefit from Smart Contracts or other

blockchains.

• Governance: If blockchains are to be sustainable in the long run, serious

consideration of appropriate governance mechanisms is needed. The distribution of

mining power and crypto-currency holdings combined with pseudonymity of

account holders and a strong incentive to game the system makes it prone to

deception, unaccountability and fraud.

3.8 Cost-Benefit Analysis of Smart Contracts

3.8.1 Cost Analysis

The attempted cost analysis includes costs for smart contract and blockchain adoption

costs too. Because of the uniqueness and the dependence of these costs to a variety of

factors, we will make an effort to describe them in most cases and where possible, we

will provide a quantitative explanation.

3.8.1.1 Smart Contract Costs

From a general point of view, smart contracts aim to reduce the cost of trust. This fact

however, does not mean that smart contracts come for free even though anyone can

write one. The main costs related to smart contracts can be divided into the following

categories:

• The cost of writing a contract.

This cost depends on the developer and any other person’s expertise needed to

complete the contract or deploy new ones.

• The cost of the purchase of the contract

32

The cost of purchasing a contract depends on the seller’s policy but the cost of writing

one includes among others:

• The complexity of the code of smart contract.

• The control needed for the security of a contract

• The cost to link to external resources such as Oracles.

• The cost of the transaction.

In paper [23A] there is a detailed analysis of the costs related to the transaction of a

simple ethereum smart contract. Breaking down the costs of each stage of the contract

can be done in practice too, by deploying an instance of a simple escrow contract [24]

onto a testnet, and the gas spent at each stage can be viewed in Etherscan. We will try to

simplify these costs and categorize the most important ones between fixed and variable

costs.

The costs of the different steps of a transaction in a simple escrow contract are

presented below:

Action Description Fixed Costs Variable Costs Additional Costs

First

transaction

contract

initialization and

transaction data

21000 gas
baseline

transaction fee
- -

Second

transaction

code execution -

the sender calls

confirm (for each

call)

- 200 gas/byte -

Third

transaction

code execution -

the arbitrator calls

confirm (for each

call)

-

200 gas/byte + a fee

solely for arbitration
rather than all of the

book keeping

-

Gas

Transfer
Transferring gas

to recipient
- -

25000 gas in case

the recipient has

an empty account.
In case of a non-

empty account,

the gas costs

would be

smaller.
Table 4: Cost Analysis of a Smart Contract Transaction

33

3.8.1.2 Blockchain Adoption Costs

Apart from the costs related to the contract itself and the transaction process, there are

also costs concerning the adoption of the blockchain in an organization. These

involve:

• Hardware cost

These costs are related to the extra hardware that is possibly needed on top of the

existing one in the company.

• Software cost

These costs are related to the extra software that is possibly needed on top of the

existing one in the company and the cost of the contract itself.

• System implementation cost

This category includes the modification costs and the costs of deployment of the

blockchain in order to put on top of it, the smart contract. Security parameters as

well as possibly software and hardware, need to be added here.

• Operational cost

The operational cost deals with the cost of the resources dedicated to the smart

contract process.

• Maintenance cost

The maintenance cost is the cost needed to maintain the whole blockchain

system.

Critical factors to determine these costs are:

• The size of the organization and

• The scope of smart contracts in relation to the organization’s mission.

Because of the complexity of the costs involved in smart contracts, before adopting it,

a thorough total-cost-of-ownership analysis of a blockchain platform for smart

contracts is important to be done in order to identify the related costs.

3.8.2 Benefit Analysis

The benefit analysis for applications varies from business to business. That is because

until now, there are no extensive business cases in order to conduct an actual data

research and as a result, we cannot provide a detailed benefit analysis. Our benefit

analysis points out the following:

• The mediator

34

As smart contracts eliminate mediators, the benefit is considered to be equal to

the mediation cost of the real world mediator charged in different types of

businesses. As far as this approach is concerned, we need to point out that the

mediator still exists in smart contracts with a smaller fee though and it intends to

compensate the mediation itself and not other related services that might be

offered in the real world.

• The transaction itself

Reduction of time and fewer mistakes during the participants is a key benefit.

We will provide a brief analysis of the potential economic benefits, as explained in

the report [24A], from the use of smart contracts in the financial sector. These benefits

for both clients and businesses, are illustrated in the next use cases. We need to point

out that more and more real world cases arise and there will be a more accurate

benefit analysis.

− Investment banking: In trading and settlement of syndicated loans, corporate

clients could benefit from shorter settlement cycles. Instead of the current 20

days or more, smart contracts bring this down to 6 to 10 days. This could lead

to an additional 5% to 6% growth in demand in the future, leading to

additional income of between US$2 billion and $7 billion annually.

Investment banks in the US and Europe can see lower operational costs too.

− Retail banking: There will be a significant benefit for the mortgage loan

industry by adopting smart contracts. Consumers could potentially expect

savings of US$480 to US$960 per loan and banks would be able to cut costs in

the range of US$3 billion to $11 billion annually by lowering processing costs

in the origination process in the US and European markets.

− Insurance: Usage of smart contracts in the personal motor insurance industry

alone, could result in US$21 billion annual cost savings globally through

automation and reduced processing overheads in claims handling. Consumers

could also expect lower premiums as insurers potentially pass on a portion of

their annual savings to them.

These potential cost savings are shown in the figure below taken from

CapGemini’s report [24A] .

35

Figure 4: Smart Contracts Potential Benefits

3.8.3 Outcome

The results from the above analysis indicate that:

• A careful financial assessment of the proposed blockchain system should take

place.

• The cost of the transactions can be reduced adopting smart contracts.

• There are costs related to the adoption of smart contracts and blockchain that

should be taken into consideration by organizations.

• Not every business is suitable for smart contracts in terms of financial

benefits.

36

4 Market Data and Forecast
This section deals with the current status and prospects that the market has about

blockchain technology, smart contracts and IoT. We will focus on market data,

meaning market size, regional spread and projections concerning the future financial

aspects of these technologies.

4.1 Blockchain technology data

Businesswire [28] and MarketsandMarkets [29] conducted the two main researches

published in 2017 that we used to gather data for the future value and market

evaluation of blockchain technology. Both researches show similar high growth rates

and similar increase in terms of usage in various sectors and regions.

4.1.1 Market size

The Businesswire research [28] indicates that the global blockchain market is

projected to witness a significant CAGR of 71.46 % during the forecast period to

reach a total market size of US$4.401 billion by 2022, increasing from US$297

million in 2017. It is expected that the usage of blockchain technology is going to

increase owing to investments in blockchain technology start-ups, ties between

financial organization and blockchain technology providers.

According to the market research [29] conducted by MarketsandMarkets, blockchain

market will worth 7,683.7 Million USD by 2022. The blockchain market size is

expected to grow from USD 411.5 Million in 2017 to USD 7,683.7 Million by 2022,

at a Compound Annual Growth Rate (CAGR) of 79.6%.

4.1.2 Regional spread

The global market is segmented in regions which include North America, Europe,

Asia Pacific (APAC), Latin America, Middle East and Africa (MEA). North America

is home for the majority of industries with a large operation base, and has witnessed a

prominent implementation of smart contracts, documentation, and payment

applications in most of its industries especially BFSI, healthcare and life sciences.

North America is dominating the global blockchain market and contributes to the

leading shares in terms of revenue on account of high acceptance of blockchain

37

technology due to its transparency and immutability. Europe has also significant

shares in the global blockchain market and is anticipated to register the healthy

growth. Asia Pacific is the most lucrative market due to the growing demand for the

blockchain technology from various industries such as banking, finance, insurance,

media, entertainment, retail and e-commerce sectors. South America, Middle East and

Africa, are at an early stage in the global blockchain market due to low awareness and

adaptability in the regions and are anticipated to register decent market growth. [29]

Tractica, a market research firm conducting a research in 2016 expects the worldwide

market for enterprise blockchain applications to reach $19.9 billion by 2025 from $2.5

billion in 2016. North America will primarily drive demand during the forecast

period, followed by Europe. [30]

According to a report from Tractica, the annual revenue for enterprise applications of

blockchain will increase from $2,5Bn worldwide in 2016 to $19,9Bn by 2025. The

firm’s predictions are described in the following figure:

Figure 5: Blockchain Revenue by Region

4.1.3 Development drivers

Increasing penetration rate in multiple industries including transportation and

logistics, retail and eCommerce, media and entertainment, real estate and IT and

Telecommunication verticals, are expected to drive the market growth. Moreover,

financial institutions in the APAC region are heavily investing in designing a

38

permissioned blockchain network to streamline their internal operations and minimize

costs. The integration of the technology in these sectors is changing the way

businesses are conducted across varied industry verticals.

The major leading factor of the blockchain use is the transparency of a transaction

along with the ability to be incorruptible, which has resulted in increased acceptance

among the wider audience. The adoption of DLT among the various applications such

as payments, smart contracts, exchanges, digital identities, and documentation has

also supplemented its growth.[28]

Key factors including reduced total cost of ownership, faster transactions, simplified

business process with transparency and immutability and rising cryptocurrencies

market cap and ICO, are expected to drive the overall growth of the market, too.[29]

Blockchain technology companies could experience a revenue pool of $6 billion by

2020 and $20 billion by 2030. These figures are based on the impact of digital ledger

technology on payments: (1) Business Cross Border, (2) Remittance, as well as

impact on (3) Capital Markets and (4) Title Insurance. Findings show that Cross

Border B2B will make up most of the Blockchain revenue pool at $3.5 billion (56%)

in 2020 and $12.2 billion (60%) in 2030. We also expect the increasing adoption of

digital currency to put downward pressure on remittance payments shifting 20% of

revenue to Blockchain companies. We project this to account for $1.5 billion (24%)

of Blockchain revenue in 2020 and $3.8 billion (19%) in 2030. Remaining revenue is

captured by the reduction of infrastructure and counter party risk for capital markets,

as well as savings in Title Insurance commissions and maintenance cost. In the period

2020-2030, Autonomous Research estimates a CAGR of 12.6% for the Blockchain

technology market presented in the next figure. [31]

39

Figure 6: Blockchain Revenue Pool

4.1.3.1 Application and solution providers

Application and solution providers in the blockchain market, deliver significant value

to the businesses by reducing duplication in transactions data, providing periodic

reconciliation and authentication for commercial and regulatory reasons. These

vendors provide an international online money transfer network and cloud-based

services using blockchain that allows people to do transactions more easily.

Application and solution providers have the potential to deliver disruptive outcomes

and reshape digital businesses by providing distributed ledger technology to multiple

industry verticals.

4.1.3.2 Digital identity

The digital identity management is said to be the fastest-growing application in the

blockchain market, as it eliminates the need for central authority and third-party,

thereby making it easier for the individuals to manage and take control over personal

information and access. The vendors operating in the global market are focusing on

developing commercially feasible solutions. Moreover, the focus of dominant players

in the market is towards the development of blockchain-based identity management

solutions for financial transactions and personal use cases.

40

4.1.3.3 BFSI

BFSI (Banking, Financial Services and Insurance) industry has realized the

significance of distributed ledger technologies, which help secure the transaction for

the customers. In addition, the technology shift from centralized infrastructure

management to the distributed ecosystem, is paving the way for new business models

in payments, internet banking, and financial transaction technologies. However, the

real estate majorly works on traditional paper records to register land and property

ownership which makes the process slow, time-consuming, and prone to fraud.

Blockchain integration constantly records and shares information to address

traditional process inefficiencies in the commercial real estate industry. The

distributed ledger technology providers, offer a system in which anyone can access

and record information, eliminate the middlemen and provide overall transparency to

the buyer, seller, and government bodies involved in the process. Companies

operating in the market provide blockchain platforms which are powered by tokens to

provide lifelong access to office facilities.

4.2 Smart contracts data

According to a research report from Market Research Future the global smart

contracts market is expected to reach approximately $300 Million by the end of 2023

with 32% CAGR during the forecast period from 2017-2023. The next figure presents

this rate of growth in the coming years. [32]

Figure 7: CAGR of Smart Contracts

41

4.2.1 Drivers

The main driver and at the same time the main factor that holds the growth of smart

contracts, is their tendency to define the rules and regulations of an agreement but

also automatically enforce any of the obligations. The smart contract can be used for

situations such as financial, insurance premiums, contract breaches and property law.

Smart contracts are expected to grow significantly in the forecast period catering the

end users like banking, government, insurance, real estate and supply chain among

others. For governmental purposes, smart contracts can prove to be the next advanced

step towards voting, legal agreements or tenders.

4.2.2 Market segmentation

In the research of MarketsandMarkets, the market for smart contracts is segmented on

the basis of blockchain platform, technology, end user and region. All the data and

categorization presented below come from this research.

4.2.2.1 Blockchain platforms

On the basis of blockchain platform, the segmentation is divided into Bitcoin,

Sidechains, NXT and Ethereum. Ethereum is the most advanced smart contract for

coding and processing and accounts for the large share followed by Bitcoin and NXT.

4.2.2.2 Technology

In terms of technology, the segmentation is done on the basis of Ethereum, Rootstock,

Namecoin, Ripple among others. The market holds many of the end users such as

banking, government, management, supply chain, automobile, real estate, insurance

and healthcare.

4.2.3 Regional Spread

In regional terms, the market is segmented in four regions: North America, Europe,

Asia Pacific and the rest of the world. The market for smart contracts, is led by

Europe while North America shows a significant growth. Asia Pacific and the rest of

the world are far behind from these two competing markets.

42

4.3 IoT Data

The growth of the Internet of Things and the number of connected devices, is driven

by emerging applications and business models, and supported by standardization and

falling device costs. [34]

4.3.1 Key Data

• 70% of wide-area IoT devices will use cellular technology in 2022

• In 2018, mobile phones are expected to be surpassed in numbers by IoT devices

• There will be around 400 million IoT devices with cellular connections at the end

of 2016

• Around 29 billion connected devices are forecasted by 2022, of which around 18

billion will be related to IoT.

• Between 2016 and 2022, IoT devices are expected to increase at a CAGR of 21%,

driven by new use cases.

4.3.2 Connected IoT devices

In the figure below illustrating all connected devices, IoT is divided into short-range

and wide-area segments. [34]

The short-range segment consists of devices connected by unlicensed radio with a

typical range of up to around 100 meters, such as Wi-Fi, Bluetooth and ZigBee. This

category also includes devices connected over fixed line local area connections. The

wide-area IoT category consists of devices using cellular connections (3GPP-based

with some CDMA), as well as, unlicensed low-power technologies, such as Sigfox,

LoRa and Ingenu.

43

Figure 8: Forecast of Connected Devices

There will be around 400 million IoT devices with cellular connections at the end of

2016 and that number is projected to reach 1.5 billion in 2022, or around 70 percent of

the wide-area category. This growth is due to increased industry focus and 3GPP

standardization of cellular IoT technologies.

Today, LTE’s share of cellular IoT devices is around 5 percent. Declining modem

costs, evolving LTE functionality and 5G capabilities are all expected to extend the

range of applications for critical IoT deployments.

44

5 Study and Comparative evaluation of

Blockchain Platforms supporting

Smart Contracts

5.1 Platforms under evaluation

Hyperledger, Ethereum, Stellar, Monax and Lisk are some major open source

implementations of distributed ledgers with usability for Internet of Things. They all

have common fundamental characteristics such as: linking among blocks, being

cryptographically secure for hashing of multiple transactions in single blocks,

asymmetric cryptography, digital signatures, consensus mechanism and smart

contracts support. However, their implementations vary significantly as well as their

extent of applicability to IoT considering how different aspects and particularly smart

contracts are applied to these platforms.

5.1.1 Hyperledger Fabric

Hyperledger is a permissioned blockchain which uniquely applies access control,

smart contracts based on chaincode, variable consensus with a current implementation

of practical byzantine fault tolerance (PBFT) and includes trust anchors to root

certificate authorities as an enhancement to the asymmetric cryptography and digital

signature features with SHA3 and ECDSA [35]. The permissioned nature of

Hyperledger enhances security of the network by means of preventing attacks like

Sybil attacks- an attack in which consensus could potentially be threatened by a

malicious entity creating and enrolling illegitimate (Sybil) peers to affect the network

adversely [36]. Furthermore, the implementation of smart contracts in Hyperledger

involves the chaincode, which can self-execute conditions such as asset, or resource

transfers among peers in hundreds of milliseconds [37], [38]. This latency is low

among comparative blockchain systems. Hyperledger’s adoption of PBFT prevents

the probabilistic and computationally expensive mining of hashes. However, there is a

trade off between the immediate computational overheads with network utilization. In

the context of Internet-of-Things, the scale at which network utilization increases in

45

comparison with the increase in the number of devices on a network, must be

investigated and measured further. Overall, between applying smart contracts based

on chaincode and a unique PBFT implementation which offsets computational

overhead for increased networking among peers, Hyperledger offers robust platform

of applications for Internet-of-Things.

5.1.2 Ethereum

Ethereum began as an alternative cryptocurrency solution to compete Bitcoin but

further on things have changed. It has some special characteristics, as it is an

adaptable blockchain implementation with an implementation of smart contracts and a

derivative of proof-of-work consensus known as Ethash. This also applies to directed

acyclic graphs to manage probabilistic hash generation in matters that will prevent

potential abuse from specialized hardware where other proof-of-work algorithms are

vulnerable to [39], [40]. In addition to implementing smart contracts, Ethereum

transactions can also store custom data. This increases the potential for auditability

and immutability of IoT data beyond cryptocurrency transactions and allows robust

extensibility for IoT applications that involves performance tradeoffs. Due to Ethash

being based upon proof-of-work, Ethereum is very fast (compared to Bitcoin’s proof-

of-stake) and may require between 10 to 20 seconds to produce a block. Still high

frequency and time-sensitive IoT device operations may not support such delays [37],

[41]. While Ethash prevents abuses from potential specialized hardware, it does not

necessarily enhance fault tolerance. At scale, IoT devices would need to rely on

trusted and computationally powerful peers to ensure fault handling.

Storage also presents another problem, as Ethereum requires all peers to store a

blockchain that is tens of gigabytes larger. IoT devices, that normally don’t have such

storage capacity, will either need to intercommunicate with a proxy server that will

act as a peer in the Ethereum network or accommodate large storage. Ethereum, as it

is used longer than most distributed ledger implementations, has IoT prototypes, such

as handling tokens and contracts for electronic lock sharing and supply chain

assurance prototypes [41].

5.1.3 Monax

Monax supports the execution of Ethereum contracts, without having its own

currency. Monax allows users to create private blockchains, and define authorization

46

policies for accessing them. Its consensus protocol is organised in rounds, where a

participant proposes a new block of transactions and the others vote for it. When a

block fails to be approved, the protocol moves to the next round, where another

participant will be in charge of proposing blocks. A block is confirmed when it is

approved by at least 2/3 of the total voting power. [23]

5.1.4 Stellar

Stellar features a public blockchain with its own cryptocurrency, governed by a

consensus algorithm inspired by federated Byzantine agreement. Basically, a node

agrees on a transaction if the nodes in its neighborhood (that are considered more

trusted than the others) agree as well. When the transaction has been accepted by

enough nodes of the network, it becomes infeasible for an attacker to roll it back, and

it can be considered as confirmed. Compared to proof-of-work, this protocol

consumes far less computing power, since it does not involve solve cryptographic

puzzles. Unlike Ethereum, there is no specific language for smart contracts; it is still

possible to gather together some transactions (possibly ordered in a chain) and write

them atomically in the blockchain. Since transactions in a chain can involve different

addresses, this feature can be used to implement basic smart contracts. For instance,

assume that a participant A wants to pay B only if B promises to pay C after receiving

the payment from A. This behavior can be enforced by putting these transactions at

the same chain. While this specific example can be implemented on Bitcoin as well,

Stellar also allows to batch operations different from payments, as creating a new

account. Stellar features special accounts, called multisignature that can be handled by

several owners. To perform operations from these accounts, a threshold of consensus

must be reached among the owners. Transaction chaining and multisignature accounts

can be combined to create more complex contracts. [23]

5.1.5 Lisk

Lisk has its own currency, and a public blockchain with a delegated proof-of-stake

consensus mechanism. More specifically, 101 active delegates, each one elected by

the stakeholders, have the authority to generate blocks. Stakeholders can take part in

the electoral process, by placing votes for delegates in their favor, or by becoming

candidates themselves. Lisk supports the execution of Turing-complete smart

contracts, written either in JavaScript or in Node.js. Unlike Ethereum, determinism of

47

executions is not ensured by the language: thus, programmers must take care of it e.g.

by not using functions like Math.random. Although Lisk has a main blockchain, each

smart contract is executed on a separated one. Users can deposit or withdraw currency

from a contract to the main chain, while avoiding double spending. Contract owners

can customize their blockchain before deploying their contracts, e.g. choosing which

nodes can participate to the consensus mechanism.

5.2 Method and criteria of evaluation

The chosen platforms for the purpose of this master thesis are: Hyperledger Fabric,

Ethereum, Monax, Stellar, Lisk. They satisfy the following criteria:

(i) they have already been launched.

(ii) they are publicly accessible.

(iii) they are popular or they seem to make a breakthrough in the field.

The features that we consider for the platforms under evaluation are:

• General

(i) Permission restrictions

(ii) Privacy/access to data

(iii) Ownership/Governance

(iv) Blockchain Type

(v) Release Year

• Financial (31/12/2017)

(vi) Currency

(vii) Market Cap

(viii) Average Transaction fee

(ix) Cost Model

• Technical

(x) Scalability

(xi) Blockchain size

(xii) Consensus Mechanism

(xiii) Turing-Complete

(xiv) Contract Language

(xv) Blockchain Interval

(xvi) Anonimity

48

5.3 Comparison Table

Following, the comparison matrix presents the main characteristics of the platforms

included in the test revealing differences and similarities. Wherever there is no

information found or the feature does not exist, N/A (not applicable) appears on the

table.
 Platform Name
Features/Characteristics Ethereum Hyperledger

Fabric
Monax Lisk Stellar

General
Permission restrictions Permissionless Permissioned Permissionless Permissionless Permissionless

Privacy/access to data Public or private Private Public Public Public

Ownership/Governance Ethereum

Foundation
Linux

Foundation
Monax

Industries

Limited

MIT Stellar

Development

Foundation
Blockchain Type Public Public Private Private Public

Release Year 2015 2015 2014 2016 2014

Financial (31/12/2017)

Currency Ether No No LSK XLM
Market Cap $69.767.510.695 N/A N/A $2.221.966.516 $

5.676.400.000
Average Transaction fee $2,50 N/A N/A flat 0.1 LSK fixed fee of

0.00001 XLM
Cost Model N/A N/A N/A N/A The Stellar

network is free

to use.
Technical
Scalability High node

scalability, Low

performance

scalability

Low node

scalability,

High

performance

scalability

N/A N/A N/A

Blockchain size 17-60GB N/A N/A N/A N/A

Consensus Mechanism PoW PBFT Tendermint DPoS Stellar

Consensus

49

Protocol

Turing-Complete Yes Yes N/A Yes No

Contract Language Solidity,

Serpent, LLL
Go Solidity JavaScript Javascript, Go,

Ruby, Python,

C
Blockchain Interval 12sec Custom Custom Custom 3sec

Anonimity Pseudonymity,

no encryption of

transaction data

Pseudonymity,

encryption of

transaction

data

N/A N/A N/A

Table 5: Comparison of Blockchain Platforms

50

6 Security Issues in Blockchain and

Smart Contracts

6.1 Known Security Issues in Blockchain

Despite the attention that the blockchain technology has received in the community of

researchers, practitioners, and developers, it still faces several challenges. Some of the

known security issues in blockchains are presented below:

6.1.1 The Majority Attack

In a Proof of Work based consensus mechanism, the probability of mining a block

depends on the work done by the miner (e.g. CPU/GPU cycles spent checking

hashes). Thus, providing an incentive to the miners to join together in order to mine

more blocks, and become “mining pools”. Mining pools can be defined as miners

with huge computing power. Once it holds 51% computing power in a particular

blockchain network, it can then take control of the blockchain. Apparently, it causes

security issues because if someone has more than 51% computing power, then he/she

can find Nonce value quicker than others, means he/she has authority to decide which

block is permissible. What it can do is:

1. Modify the transaction data; it may cause double spending attack.

2. To stop the block verifying transaction.

3. To stop miner mining any available block.

A majority attack was more feasible in the past when most transactions were worth

significantly more than the block reward and when the network hash rate was much

lower and prone to reorganization with the advent of new mining technologies.

6.1.2 Fork Problems

Another known security issue is fork problem. Fork problem is related to

decentralized node version, agreement when the software upgrade. It is a critical issue

as it affects a wide range of blockchain. When a new version of blockchain software

is published, new agreement in consensus rule is also changed for the nodes.

Therefore, the nodes in blockchain network can be divided into two types: New

51

Nodes; and Old Nodes. This may lead to following four situations:

1. The new nodes agree with the transaction of blocks sent by the old nodes.

2. The new nodes don’t agree with the transaction of blocks sent by the old nodes.

3. The old nodes agree with the transaction of blocks sent by the new nodes.

4. The old nodes don’t agree with the transaction of blocks sent by the new nodes.

It is because of the above-mentioned different cases in getting consensus, the fork

problem arises.

Based on the type of consensus issue, the fork problems can be categorized as: Hard

Fork; and Soft Fork. In addition to distinguish between a new node and an old node,

we also need to compare the computing power of new nodes with old nodes, and

assume that the computing power of new nodes is more than 50.

6.1.2.1 Hard Fork

Hard Fork implies that a system is not compatible with the new version or new

agreement, and there are compatibility issues with the previous version such that the

old nodes do not agree with the mining of new nodes; thus, creating two forks of the

blockchain. On the other hand, new nodes may have higher computing power than the

old nodes, yet, the old nodes will continue to maintain the chain which they think is

right.

When a Hard Fork situation occurs then all nodes in the network to should be

upgraded the latest version, agreement. Nodes, which are not upgraded, will not work

as usual. Thus, if there are a large number of old nodes that did not upgrade to the

latest agreement, then they will continue to work on a completely different chain. This

implies that the ordinary chain will fork into two chains.

6.1.2.2 Soft Fork

Soft Fork occurs when a system comes to a new version or new agreement, but is not

compatible with the previous version. In such a scenario, the new nodes couldn’t

agree with the mining of old nodes. Since the computing power of new nodes is

stronger than the old nodes, the blocks mined by the old nodes will never be approved

by the new nodes, but new nodes and old nodes will still continue to work on the

same chain. When Soft Fork happens, nodes in the network don’t have to upgrade to

the new agreement at the same time, it allows them to upgrade gradually. Unlike Hard

Fork, Soft Fork will only have one chain, it won’t affect the stability and effectiveness

52

of the system when nodes upgrade. However, Soft Fork makes the old nodes unaware

that the consensus rule has changed, contrary to the principle of every node can verify

correctly to some extent.

6.1.3 Scale of Blockchain

As the blockchain grows and data size swells, the loading and computing will become

harder and harder; it will take a lot more time to synchronize data, in the same time,

data still continue to increase, thus, creating a huge problem for the client running the

system. A potential solution to this problem is Simplified Payment Verification (SPV)

technology. SPV is a payment verification technology, it does not require full

blockchain information and only the block header message is used for transaction.

This technology can greatly reduce users’ storage problem and lower the pressure on

users’ when the number of transactions increase in future.

6.1.4 Time Required to Confirm Blockchain Transactions

Blockchain came to existence in the form of a “cryptocurrency” called Bitcoin as an

alternative to fiat currency and electronic transactions. In comparison to traditional

online credit card transaction that usually takes 2 to 3 days to confirm the transaction,

Bitcoin transactions usually take an hour to verify. Thus, Bitcoin clearly is better than

traditional transaction mechanisms however; it is still not good enough to what we

want it to. A potential solution is Lightning Network. Lightning Network is a

proposed implementation of Hashed Timelock Contracts (HTLCs) with bi-directional

payment channels, which allows payments to be securely routed across multiple peer-

to-peer payment channels. This allows the formation of a network where any peer on

the network can pay any other peer even if they don’t directly have a channel open

between each other.

6.2 Known Security Issues in Smart Contracts

Given that the smart contracts are computer codes that define contractual agreement

between two or more parties, it is crucial to look at some of the well-known security

issues in the smart contracts mechanism. Some of the issues are as follows:

• Reentrancy: Reentrancy should not be used in smart contracts. If a coder performs

external calls in contracts then it should be ensured that it is absolutely necessary.

• Send can fail: When executing the instructions such as sending money, the code

53

should always be prepared for the send function to fail.

• Loops can trigger gas limit: It is important to be careful when looping over state

variables, which can grow in size and make gas consumption (in Ethereum based

smart contracts) hit the limits.

• Call stack depth limit: One should not use recursion in smart contracts, and

should be aware that any call can fail if stack depth limit is reached.

• Timestamp dependency: Smart contract coders should avoid using timestamps in

critical parts of the code as the miners can manipulate the timestamps.

54

7 Security Assessment in Ethereum

Smart Contracts
In this section we will identify the known vulnerabilities, the attacks, their explanation

and the countermeasures concerning smart contracts.

7.1 Vulnerabilities

According to the authors of the paper [43], there is a number of discovered

vulnerabilities that take advantage of issues found in different components that can be

exploited to perform a certain attack. These components are listed in three categories

based on the component they affect: Solidity (the language), the EVM bytecode (the

“operating system”) and the blockchain itself. These vulnerabilities are described

below:

Call to the unknown: Some of the primitives used at Solidity to invoke functions and

transfer ether, may have the side effect of invoking the fallback function of the

callee/recipient.

Gasless send: When using the function send to transfer ether to a contract, it is

possible to incur in an out-of-gas exception. This may be quite unexpected by

programmers, because transferring ether is not generally associated to executing code.

Exception disorder: In Solidity there are several situations where an exception may

be raised, e.g. if (i) the execution runs out of gas; (ii) the call stack reaches its limit;

(iii) the command throw is executed. However, Solidity is not uniform in the way it

handles exceptions: there are two different behaviors, which depend on how contracts

call each other.

Reentrancy: The atomicity and sequentiality of transactions may induce

programmers to believe that when a non-recursive function is invoked, it cannot be re-

entered before its termination. However, this is not always the case, because the

fallback mechanism may allow an attacker to re-enter the caller function. This may

result in unexpected behaviors, and possibly also in loops of invocations, which

eventually consume all the gas.

Keeping secrets: Fields in contracts can be public, i.e. directly readable by everyone,

or private, i.e. not directly readable by other users/contracts. Still, declaring a field as

55

private, does not guarantee its secrecy. This is because, to set the value of a field,

users must send a suitable transaction to miners, who will then publish it on the

blockchain. Since the blockchain is public, everyone can inspect the contents of the

transaction, and infer the new value of the field.

Ether lost in transfer: When sending ether, one has to specify the recipient address,

which takes the form of a sequence of 160 bits. However, many of these addresses are

orphan, i.e. they are not associated to any user or contract. If some ether is sent to an

orphan address, it is lost forever (note that there is no way to detect whether an

address is orphan). Since lost ether cannot be recovered, programmers have to ensure

manually the correctness of the recipient addresses.

Stack size limit: Each time a contract invokes another contract or even itself, the call

stack associated with the transaction grows by one frame. The call stack is bounded to

1024 frames and when this limit is reached, a further invocation throws an exception.

Unpredictable state: The state of a contract is determined by the value of its fields

and balance. In general, when a user sends a transaction to the network in order to

invoke some contract, he cannot be sure that the transaction will run at the same state

as the contract was at the time of sending that transaction. This may happen because,

in the meanwhile, other transactions have changed the contract state. Even if the user

was fast enough to be the first one to send a transaction, it is not guaranteed that such

transaction will be the first to run. Indeed, when miners group transactions into

blocks, they are not required to preserve any order; they could also choose not to

include some transactions. There is another circumstance where a user may not know

the actual state wherein his transaction will run. This happens in case the blockchain

forks

Generating randomness: The execution of EVM bytecode is deterministic: in the

absence of misbehavior, all miners executing a transaction will have the same results.

Hence, to simulate non-deterministic choices, many contracts (e.g. lotteries, games,

etc.) generate pseudo-random numbers, where the initialization seed is chosen

uniquely for all miners. A common choice is to take for this seed (or for the random

number itself) the hash or the timestamp of some block that will appear in the

blockchain at a given time in the future. Since all the miners have the same view of

the blockchain, at run-time this value will be the same for everyone. Apparently, this

is a secure way to generate random numbers, as the content of future blocks is

unpredictable. However, since miners control which transactions are put in a block

56

and in which order, a malicious miner could attempt to craft his block in order to bias

the outcome of the pseudo-random generator.

Time constraints: A wide range of applications use time constraints in order to

determine the permitted actions in the current state. Typically, time constraints are

implemented by using block timestamps, which are agreed upon by all miners.

The next table summarizes and categorizes the vulnerabilities and the components

they affect.

Component Vulnerability

Call to the unknown

Gasless send

Exception disorders

Type casts

Reentrancy

Solidity

Keeping secrets

Immutable bugs

Ether lost in transfer EVM bytecode

Stack size limit

Unpredictable state

Generating randomness Blockchain

Time constraints

Table 6: Known Vulnerabilities in Ethereum smart contracts

Alharby and Moorsel [45] provide another taxonomy based on a systematic mapping

study of current research topics related to smart contracts. In their study, they

discovered four key smart contract issues;

Codifying issues: they refer to the challenges/mistakes that are related with the

development of smart contracts.

Security issues: they include bugs or vulnerabilities

Privacy issues: they refer to the issues related to unintentional information disclosure

to the public.

Performance issues: they are related to the challenges that affect the ability of

blockchain to scale.

57

7.2 Attacks and Description

In the next paragraphs, we will provide a general description of some known attacks

that have taken place or can be used from a malicious actor against smart contracts

supported by Ethereum. The attacks are divided according to the level they are

introduced, meaning Solidity, EVM bytecode and blockchain as in paper [45].

7.2.1 The DAO attack
The DAO was a contract implementing a crowd-funding platform, which raised

around $150M before being attacked on June 18th, 2016. An attacker managed to put

approximately $60M under her control, until the hard-fork of the blockchain nullified

the effects of the transactions involved in the attack.

7.2.2 King of the Ether Throne
The “King of the Ether Throne" is a game where players compete for acquiring the

title of king. If someone wishes to be the king, he must pay some ether to the current

king, plus a small fee to the contract.

7.2.3 Multi-player games
Consider a contract, which implements a simple “odds and evens” game between two

players. Each player chooses a number: if the sum is even, the first player wins,

otherwise the second one does.

7.2.4 Rubixi
Rubixi is a contract which implements a Ponzi scheme, a fraudulent high-yield

investment program where participants gain money from the investments made by

newcomers. Further, the contract owner can collect some fees, paid to the contract

upon investments. There is an attack that allows an adversary to steal some ether from

the contract, exploiting the “immutable bugs” vulnerability. At some point during the

development of the contract, its name changed from DynamicPyramid into Rubixi.

However, programmers forgot accordingly to change the name of the constructor,

which then became a function that could be invoked by anyone. After this bug

became public, users started to invoke DynamicPyramid in order to become the

owner, and as a result to withdraw the fees.

58

7.2.5 GovernMental
GovernMental is another known Ponzi scheme. To join the scheme, a participant must

send a certain amount of ether to the contract. If no one joins the scheme for 12 hours,

the last participant gets all the ether in the contract (except for a fee kept by the

owner). The list of participants and their credit are stored in two arrays. When the 12

hours are expired, the last participant can claim the money, and the arrays are cleared

The EVM code obtained from this snippet of Solidity code clears one-by-one each

location of the arrays. At a certain point, the list of participants of GovernMental grew

so long, that clearing the arrays would have required more gas than the maximum

allowed for a single transaction. From that point, any attempt to clear the arrays has

failed. The contract did not check if the operations were successful, leaving it

vulnerable to attack.

7.2.6 Dynamic libraries
We now consider a contract, which can dynamically update one of its components,

which is a library of operation on sets. Therefore, if a more efficient implementation

of these operations is developed or if a bug is fixed, the contract can use the new

version of the library.

7.2.7 Summary and Evaluation of Attacks
Based on the components they affect, we attempt a qualitative evaluation in the scale

of low-high with low being the least effective attack and high being the most

dangerous attack. The severity is related to the amount of money claimed by the

hackers or how fundamental to the structure the attack is (i.e GovernmMental attack

was a code mistake). The results are shown in the next table.

Attack Severity

The DAO attack High

King of the Ether Throne Medium

Multi-player games Low

Rubixi Low

GovernMental High

Dynamic libraries High
Table 7: Known Attacks in Ethereum smart contracts

59

7.3 Countermeasures

In the papers [43], [45] authors propose as countermeasures, different types of tools

able to prevent the vulnerabilities in smart contracts. Some solutions are explained

below:

7.3.1 Methods
ZeppelinOS: is an operating system for smart contract applications developed by

Zeppelin Solutions [40]. As referred to by Zeppelin Solutions, ZeppelinOS is "an

open-source, distributed platform of tools and services on top of the EVM to develop

and manage smart contract applications securely" [40]. Zeppelin introduces a novel

approach in developing smart contracts by using already developed and secure smart

contracts (i.e. libraries).

SolCover: provides code coverage for Solidity testing and by relying on that, it

measures and describes the degree of overall testing in a smart contract.

HackThisContract: It is a crowdsourcing experimental website that encourages

developers to test their smart contracts before deployment by uploading it on their

website. Other developers, with their own techniques, will try and exploit possible

vulnerabilities. Additionally, they provide a list of vulnerable smart contract

examples, which the developers should not follow. Overall, with the sole purpose of

deploying secure smart contracts and mitigate (eliminate) severe issues in a pre-

deployment phase.

Hard Fork: Among other suggestions, the authors of the paper [42] suggest an

upgrade in the Ethereum platform adding functionalities that can improve operational

semantics and face security issues such as: guarded transactions to deal with

transaction ordering dependence (TOD), deterministic timestamp and exception

handling.

7.3.2 Software Tools:
a. Oyente: The tool Oyente extracts the control flow graph from the

EVM bytecode of a contract, and symbolically executes it in order to

detect some vulnerability patterns. In particular, the tool considers the

patterns leading to vulnerabilities of kind exception disorder (e.g. not

checking the return code of call, send and delegate call), time

60

constraints (e.g. using block timestamps in conditional expressions),

unpredictable state, and reentrancy.

b. Distributed proof market and program verification in an

interactive theorem prover (ITP). In this approach we translate smart

contracts, either Solidity or EVM bytecode, into the functional

language F*. Various properties are then verified on the resulting F*

code. In particular, code obtained from Solidity contracts, is checked

against exception confusion and reentrancy vulnerabilities, by looking

for specific patterns. Code obtained from EVM supports low-level

analyses, like e.g. computing bounds on the gas consumption of

contract functions. Furthermore, given a Solidity program and an

alleged compilation of it into EVM bytecode, the tool verifies that the

two pieces of code have equivalent behaviors. Both tools have been

experimented on the contracts published in blockchain of Ethereum.

c. SmartPool: In pooled mining, miners combine their power to solve

the PoW puzzles together and split the reward according to each’s

contribution. This approach is called pooled mining in which miners

are asked to solve pool-puzzles much easier. SmartPool is a

decentralized pooled mining protocol for cryptocurrencies that

leverages smart contracts in existing cryptocurrencies, coupling with

its data structures and verification mechanism, providing security and

efficiency to miners.

d. Hawk: Hawk is a decentralized smart contract system that does not

store financial transactions in the clear on the blockchain, resulting in

retaining transactional privacy from the public’s view. The Hawk

compiler automatically generates a cryptographic protocol where

contractual parties interact with the blockchain, using cryptographic

primitives such as zero-knowledge proofs.

e. Town Crier: Town Crier (TC) is a system that addresses this

challenge by providing an authenticated data feed (ADF) for smart

contracts. TC acts as a high-trust bridge between existing https-enabled

data websites and the Ethereum blockchain. It retrieves website data

and serves it to relying contracts on the blockchain as concise pieces of

data (e.g. stock quotes) called datagrams. TC uses a novel combination

61

of Software Guard Extensions (SGX), Intel's recently released trusted

hardware capability, and a smart-contract front end. It executes its core

functionality as a trusted piece of code in an SGX enclave, which

protects against malicious processes and the OS and can attest (prove)

to a remote client that the client is interacting with a legitimate, SGX-

backed instance of the TC code.

f. Remix: is a web-based IDE that allows users to write, deploy and run

Solidity smart contracts. In Remix we find integrated a debugger and a

testing environment (test-blockchain network). It serves as a security

tool by analyzing the Solidity code only (a setback for the tool), to

reduce coding mistakes and identify potential vulnerable coding

patterns. Its security analysis relies on formal verification that is a

deductive program verification and theorem provers.

7.4 Relational Table

Component Vulnerabilities Attacks Countermeasures

Call to the unknown The DAO attack

Gasless send King of the Ether Throne

Exception disorders King of the Ether Throne,

GovernMental

Type casts -

Reentrancy The DAO attack

Solidity

Keeping secrets Multi-player games

Immutable bugs Rubixi, GovernMental

Ether lost in transfer - EVM bytecode

Stack size limit GovernMental

Unpredictable state GovernMental, Dynamic

libraries

Generating randomness -
Blockchain

Time constraints GovernMental

Methods or

Software tools

Table 8: Smart Contracts Vulnerabilities-Attacks and Countermeasures

62

8 Blockchain and Smart Contracts

Applications in IoT

8.1 About Internet of Things (IoT)

As defined by ITU [25], the Internet of Things (IoT) refers to the network of

numerous physical objects (20 billion by 2020, according to Gartner, [26] which are

provided with Internet connection. Such devices acquire information about the

surrounding environment, and they communicate with each other and with other

systems through Internet. As a consequence of that rich interaction, they also produce

a large amount of data, usable in turn to enable dependent services. Possible use cases

for smart contracts and IoT are presented in this section.

8.2 Use Cases for Smart Contracts and IoT

Further on are the 12 smart contract business use cases as explained and presented in

the paper “Smart Contracts: 12 Use Cases for Business & Beyond A Technology,

Legal & Regulatory Introduction” [27] by the Chamber of Digital Commerce with the

support of the Smart Contracts Alliance. In the next paragraphs we will explain the

cases illustrated in this paper including the explanatory figures (9-20) from the above

paper.

8.2.1 Digital Identity

Smart contracts can allow individuals to own and control their digital identity

containing data, reputation and digital assets increasing compliance, resiliency and

interoperability. They permit individuals to decide what data to disclose to

counterparties, providing companies the opportunity to get to know with their

customers. The different parties will not have to hold sensitive data to verify

transactions reducing liability while facilitating know-your-customer requirements.

The figure below describes how the current state will transform with the use of

blockchain. [27]

63

Figure 9: Digital Identity

8.2.2 Records

In the United States smart contracts can reduce legal costs as they can potentially

digitize the Uniform Commercial Code (UCC). This can be achieved by filing and

automating the renewal and release processes. They can automate compliance with

the rules that require destroying records at a future date. They also make possible a

UCC feature that allows a lender to establish priority in repayment in case of debtor

default or bankruptcy by automatically releasing and renewing or automatically

requesting collateral as shown in the figure below.[27]

Figure 10: Records

8.2.3 Securities

Smart contracts can exclude intermediaries in the chain of securities custody and

facilitate the automatic payment of dividends, stock splits and liability management,

while reducing operational risks and digitizing work flows. Visibility into who owns

their securities is an issues because it is accepted and welcomed by some issuers of

64

securities while others want to protect this information as described in the next figure.

[27]

Figure 11: Securities

8.2.4 Trade Finance

Smart contracts can improve international transfers of goods reducing time through

fast letter of credit and trade payment initiation, while enabling a greater liquidity of

financial assets. They can also improve financing efficiencies for buyers, suppliers

and institutions. Because of a complex international trading system it is necessary to

integrate its parameters and procedures into smart contracts in order to benefit the

most out of it. The process reform in described next. [27]

Figure 12: Trade Finance

8.2.5 Derivatives

It is important to address protocol changes related to regulatory reform for derivative

smart contracts to improve the post-trade processes by removing duplicate processes

executed by the participating counterparties. They can enable a standard set of

65

contract conditions and a real-time valuation of positions for monitoring, preventing

and reducing mistakes. [27]

Figure 13: Derivatives

8.2.6 Financial Data Recording

Financial organizations can utilize smart contracts for accurate, transparent financial

data recording. Smart contracts allow for uniform financial data across organizations,

improving financial reporting and reducing accounting and auditing costs. Data

integrity through smart contracts increases market stability. [27]

Figure 14: Financial Data Recording

8.2.7 Mortgages

Smart contracts using digital identity as a prerequisite can automate mortgage

contracts by automatically connecting the parties, providing a frictionless and less

error-prone process. The payment process can be automated and release liens from

land records when the loan is paid. They can also improve record visibility for all

parties and reduce errors and costs associated with manual processes. [27]

66

Figure 15: Mortgages

8.2.8 Land Title Recording

Smart contracts that facilitate property transfers, can improve transaction transparency

and efficiency and strengthen confidence in identity, reducing auditing costs. In order

to succeed electronic record filing, common protocols need to be developed.

Figure 16: Land Title Recording

8.2.9 Supply Chain

Smart contracts can provide visibility for all stages in the supply chain and using IoT

devices can keep record of a product moving from the production to the retail store.

Consequently, inventory tracking is facilitated, benefiting supply chain financing,

insurance and risk. [27]

67

Figure 17: Supply Chain

8.2.10 Auto Insurance

Smart contracts can improve the auto insurance process through cross-industry

collaboration in order to cope with the technological, regulatory and financial issues..

A smart contract can record the policy, driving record and driver reports, allowing

future vehicles equipped with IoT devices to execute claims shortly after an accident

automating claims processing, verification and payment. [27]

Figure 18: Auto Insurance

8.2.11 Clinical Trials

Smart contracts can improve clinical trials through increased cross-institutional

visibility considering privacy issues. They can improve processes for trials, access to

cross-institution data, and increase confidence in patient privacy. [27]

68

Figure 19: Clinical Trials

8.2.12 Research

Smart contracts can facilitate the sharing of important research data. They can

facilitate the patient consent management process and aggregate data contribution and

data sharing while protecting patient privacy. As stated previously, protection of data

confidentiality is an important issue in this case too. [27]

Figure 20: Research

69

9 Deployment of a smart contract

system in an IoT environment

9.1 Environment of the Application

9.1.1 Hardware

The hardware used to develop the system is:

• a laptop and

• a Raspberry PI 3 (RPi).

Two separate miners will run on the same laptop and the RPi is intended to act as a

node connected to our private ethereum blockchain. Due to hardware limitations

(CPU, memory), the RPi will not be able to mine ethers (gas in Ethereum) or to build

new blocks of transactions.

9.1.2 Software

The operating system of the laptop is Windows 10 but we use Ubuntu Linux 16.04.01

LTS (VM in Virtual Box) and the steps to build the ethereum blockchain and the

miners are described below. As for the RPi we will install an image of Raspbian

provided by the project EthRaspbian. The image includes both geth and parity but we

will use the first one deactivating the other.

9.1.3 Goal

The goal of this process is to set up a private Ethereum blockchain composed of a

computer (miners) and one Raspberry PI 3 device (node). The objective is to develop

and test the use of a simple smart contract. We will integrate the RPi with a smart

contract that will be used to check if a user has enough tokens to use a service. The

necessary steps to successfully deploy this system are described below:

70

9.2 Configuration and setup

9.2.1 Installing an Ethereum node on the Raspberry PI (RPi)

We will describe the steps to transform the Raspberry Pi 3 (RPi) into an Ethereum

node. The RPi is intended to act as a node connected to our private Ethereum

blockchain.

Step 1- Installing image on RPi

• We download the image from http://www.ethraspbian.com/

• We burn the image using related software (in this case Etcher) in the SD card.

Step 2- Preparing the RPi to become a node

• We connect the RPi to a screen or we use SSH from another computer in order to

interact with the device.

• We connect the RPi to the Internet

9.2.2 Installing an Ethereum node on the Computer

Step 1- Updating Ubuntu installation with the latest packages

sudo apt-get update

sudo apt-get -y upgrade

Step 2- Installing geth from PPA

The installation is done using a PPA:

sudo apt-get install software-properties-common

sudo add-apt-repository -y ppa:ethereum/ethereum

sudo apt-get update

sudo apt-get install ethereum

Note:

At this stage, Ethereum is installed on the computer and it is able to synchronize with

the live chain (mainnet) if we run the geth command.

The blockchain (chaindata) is located in: ~/.ethereum

The accounts will be stored in a wallet located in this folder for Linux:

~/.ethereum/keystore

9.2.3 Setting up a private chain and the miners

Our private chain needs miners in order to validate and propagate blocks of

transactions within the blockchain. Miners will also be used to generate ether to pay

71

for the gas required to process transactions on the Ethereum blockchain. After

completing this step, each miner should be running its own version of the private

blockchain and the transactions will not be distributed within the same private

blockchain.

The requirements for each node to join the same private blockchain are the following:

• Each node will use a separate data directory to store the database and the

wallet.

• Each node must initialize a blockchain using the same genesis file.

• Each node must join the same network id different from the one reserved by

Ethereum.

• The port numbers must be different for different nodes installed on the same

computer.

Step 1 – Creating the datadir folders

mkdir -p ~/blockchain/miner1

mkdir -p ~/blockchain/miner2

Step 2 – Creating the Genesis file

We create the genesis file copied in both folders (miner1 and miner2)

{
"nonce": "0x0000000000000042",
"mixhash":
"0x00"
,
"difficulty": "0x400",
"alloc": {},
"coinbase": "0x00",
"timestamp": "0x00",
"parentHash":
"0x00"
,
"extraData": "0x436861696e536b696c6c732047656e6573697320426c6f636b",
"gasLimit": "0xffffffff",
"config": {
"chainId": 4253647586,
"homesteadBlock": 0,
"eip155Block": 0,
"eip158Block": 0
}
}

72

Among the parameters, we have:

• difficulty: if the value is low, the transactions will be quickly processed

within our private blockchain.

• gasLimit: define the limit of Gas expenditure per block. The gasLimit is set to

the maximum to avoid being limited to our tests.

Step 3 – Initializing the private blockchain

Step 3.1 – Initialize miners

We initialize the blockchain by executing the following command inside the

blockchain folder

geth --datadir miner1 init genesis.json

geth --datadir miner2 init genesis.json

After that, miner1 and miner2 folders, include the subfolders:

• geth: contains the database of the private blockchain (chaindata).

• keystore: location of the wallet used to store

Step 4 – Creating accounts for miners

We create the default account that will be used to run the node. This account will

receive all ethers created by the miner in the private blockchain. These ethers will

serve to test by paying the gas required to process each transaction. To create the

default account for the miner 1, we type the following command.

geth --datadir miner1 account new

The system will prompt for password

For miner 2 we type:

geth --datadir miner2 account new

Step 5 – Preparing the miners

To prepare the miners we will create two files for each miner in order to make things

easier.

Step 5.1 – Miner 1: setup

Password file

For miner 1 we create a file named password.sec in the miner 1 folder where we type

in plaintext the password we entered when we created the account in the previous

step.

Initialization script

73

We create a script to initialize each miner due to the length of the needed parameters

and we will save it in a file named startminer1.sh in the miner 1 folder.

The content of startminer1.sh file:

geth --identity "miner1" --networkid 4253647586 --datadir "~/blockchain/miner1" --

nodiscover --mine --rpc --rpcport "8042" --port "30303" --unlock 0 --password

~/blockchain /miner1/password.sec --ipcpath "~/blockchain/miner1/geth.ipc"

The meaning of the main parameters is the following:

• identity: name of our node

• networkid: this network identifier is an arbitrary value that will be used to

pair all nodes of the same network. This value must be different from 0 to 3

(already used by the live chains)

• datadir: folder where our private blockchain stores its data

• rpc and rpcport: enabling HTTP-RPC server and giving its listening port

number

• port: network listening port number, on which nodes connect to one another

to spread new transactions and blocks

• nodiscover: disable the discovery mechanism (we will pair our nodes later)

• mine: mine ethers and transactions

• unlock: id of the default account

• password: path to the file containing the password of the default account

• ipcpath: path where to store the file for ipc socket/pipe

Step 5.2 – Miner 2: setup

Password file

For miner 2 we create a file named password.sec in the miner 2 folder where we type

in plaintext the password we entered when we created the account in the previous

step.

Initialization script

Because the geth command is long we will save it in a file named startminer2.sh in

the miner 2 folder. Additionally we will change the port from 30303 to 30304 and the

rpc port from 8042 to 8043 as the miners must have different ports.

The content of startminer1.sh file:

74

geth --identity "miner2" --networkid 4253647586 --datadir "~/blockchain/miner2" --

nodiscover --mine --rpc --rpcport "8043" --port "30304" --unlock 0 --password

~/blockchain/miner2/password.sec --ipcpath "~/blockchain/miner2/geth.ipc"

Step 5.3 – Miner 1: start

We make the script from the previous step executable and then we execute it.

chmod +x startminer1.sh

./startminer1

Step 5.4 – Miner 2: start

We make the script from the previous step executable and then we execute it.

chmod +x startminer2.sh

./startminer2

9.2.4 Pairing the miners

As a blockchain is a peer-to-peer network, our private blockchain miners must

communicate with each for the execution of transactions. Furthermore, the discovery

protocol will not work on a private blockchain. Therefore, we must configure each

node to specify the identity and the location of its peers.

Step 1 Cleaning the miners

Step 1.1 – Stopping miners

press Control - C on the miner’s console

Step 1.2 – Deleting the chaindata

rm -rf ~/blockchain/miner1/geth

rm -rf ~/ blockchain/miner2/geth

rm -rf ~/blockchain/miner1/keystore

rm -rf ~/blockchain/miner2/keystore

Step 1.3 – Initializing miners

geth --datadir ~/ blockchain/miner1 init genesis.json

geth --datadir ~/ blockchain/miner2 init genesis.json

Step 2 Getting IP address

we type the command: ifconfig

Step 3 Getting Node info from miners

Step 3.1 Getting Node info for miner 1

cd ~/blockchain/miner1

./startminer1.sh

75

Open a second terminal and start the Geth console:

geth attach --datadir miner1

> admin

Figure 21: Node Info

We copy the enode address without discport

"enode://b8863bf7c8bb13c3afc459d5bf6e664ed4200f50b86aebf5c70d205d32dd77cf2

a888b8adf4a8e55ab13e8ab5ad7ec93b7027e73ca70f87af5b425197712d272@[::]:303

03"

Step 3.2 Getting Node info from miner 2

cd ~/blockchain/miner2

./startminer2.sh

Open a second terminal and start the Geth console:

geth attach --datadir miner2

> admin

"enode://b8863bf7c8bb13c3afc459d5bf6e664ed4200f50b86aebf5c70d205d32dd77cf2

a888b8adf4a8e55ab13e8ab5ad7ec93b7027e73ca70f87af5b425197712d272@[::]:303

04"

Step 4 – Pairing the nodes

We will define the permanent static nodes stored in a file called “static-nodes.json“.

This file will contain the node information of our miners. Based on our environment,

we will have the following content:

76

We replace [::] with the ip address we got in paragraph 9.2.4 Step 2

["enode://b8863bf7c8bb13c3afc459d5bf6e664ed4200f50b86aebf5c70d205d32dd77cf

2a888b8adf4a8e55ab13e8ab5ad7ec93b7027e73ca70f87af5b425197712d272@192.16

8.1:30303",

"enode://41be9d79ebe23b59f21cbaf5b584bec5760d448ff6f57ca65ada89c36e7a05f20

d9cfdd091b81464b9c2f0601555c29c3d2d88c9b8ab39b05c0e505dc297ebb7@192.16

8.1:30304"]

Note: The file “static-nodes.json” must be stored under the following locations:

• ~/ blockchain/miner1

• ~/ blockchain/miner2

Step 5 – Restarting the miners

We stop and start the miners to ensure that they will properly reload the “static-

nodes.json” file.

If we check the console of the miners, we should see a line mentioning the

synchronization process (“Block synchronization started” and “Block became a side

fork”):

Figure 22: Block Synchronization

Step 6 – Checking the synchronization process

Step 6.1 – Checking from miner 1

geth attach --datadir miner1

> admin

77

Figure 23: Peers Info

Step 6.2 – Checking from miner 2

geth --datadir miner2

> admin

Step 7 -Validating the synchronization

We can see from the onscreen information that our node is paired to miner 1

identified by its IP address and its port number.

9.2.5 Synchronizing the RPi node with miners

In the previous step we paired the miners and ensured that the private blockchain is

properly synchronized. In this one, we will synchronize the RPi node with the miners

and the process is the same as we did to setup and synchronize the miners before with

minor changes.

Step 1 – Creating the datadir folder

mkdir -p ~/blockchain/node

Step 2 – Transfering the genesis file

In the computer console we type:

cd ~/blockchain

sftp pi@192.168.1.XX

sftp> cd blockchain

sftp> put genesis.json

78

sftp> exit

Step 3 – Initializing the node

cd ~/blockchain

geth --datadir ~/blockchain/node init genesis.json

Step 4 – Creating accounts

geth --datadir ~/blockchain/node account new (password requested)

Step 5 – Preparing the node

Initialization script

Storing the Geth command into an executable script called startnode.sh located

here:~/blockchain/node, containing:

#!/bin/bash

geth --identity "node1" --fast --networkid 4253647586 --datadir ~/blockchain/node --

nodiscover --rpc --rpcport "8042" --port "30303" --unlock 0 --password

"~/blockchain/node/password.sec" –ipcpath ~/.ethereum/geth.ipc

Password file

The password file must be in the datadir folder of the node, and this file should just

contain the password of the default account in plaintext. We name the file

password.sec and should be located at: ~/blockchain/node

Step 6– Starting the node

In Rpi‘s console we type the following:

cd ~/blockchain/node

chmod +x startnode.sh

./startnode.sh

Step 7 – JavaScript console

In Rpi‘s console we type the following:

geth attach --datadir node

Step 9 – Synchronizing the blockchain

Step 9.1 – Getting Node info

we continue in the js console typing:

> admin.nodeInfo.enode

["enode://c52b3349d899e1f8ea67c2d01df35c3a40532dec41174460b777bab020079e1

a546313552b91d5f61adb86ed4e74dd80c0ced70c91d658ef0e4f05969a1cf78e@192.1

68.1.31:30303",

Step 9.2 – Updating the file “static-nodes.json”

79

Based on our environment, we will have the following content (adjust the values

according to the environment):

["enode://b8863bf7c8bb13c3afc459d5bf6e664ed4200f50b86aebf5c70d205d32dd77cf

2a888b8adf4a8e55ab13e8ab5ad7ec93b7027e73ca70f87af5b425197712d272@192.16

8.1.39:30303",

"enode://41be9d79ebe23b59f21cbaf5b584bec5760d448ff6f57ca65ada89c36e7a05f20

d9cfdd091b81464b9c2f0601555c29c3d2d88c9b8ab39b05c0e505dc297ebb7@192.16

8.1.39:30304",

"enode://c52b3349d899e1f8ea67c2d01df35c3a40532dec41174460b777bab020079e1

a546313552b91d5f61adb86ed4e74dd80c0ced70c91d658ef0e4f05969a1cf78e@192.1

68.1.31:30303"]

The first two entries are related to miner 1 and miner 2. The last row identifies the

node deployed on the RPi (with its IP address and port number).

Note:

The IP addresses should be up-to-date as they tend to change on a local network. The

new version of “static-nodes.json” must be stored under the following locations:

• [miner 1] ~/blockchain/miner1

• [miner 2] ~/ blockchain /miner2

• [RPi] ~/ blockchain/node

Step 9.3 – Restarting the blockchain

Stop and start each node of the blockchain:

• miner 1

• miner 2

• RPi

Step 10 – Checking the synchronization process

In the computer console:

geth attach --datadir miner1

> admin.peers

(we must see two peers miner2 and the RPi)

9.2.6 Deployment of the Smart Contract

Step 1 - Installing Mist

80

We type https://github.com/ethereum/mist/releases and we choose the appropriate

Ethereum Wallet version.

Step 2 - Installing Ethereum Wallet (Mist)

After downloading the file and unziping it, we launch the application.

Step 3- Installing nmp

cd ~

curl -sL https://deb.nodesource.com/setup_8.x -o nodesource_setup.sh

sudo bash nodesource_setup.sh

sudo apt-get install nodejs

Step 4- Installing Truffle (Ethereum Development Framework)

The first step is to install a development framework for Ethereum, such as Truffle, for

development and deployment of smart contracts.

npm install -g truffle

Step 4.1 – Creating the project

On the laptop we create a folder to host the project. Then, we initiate the Ethereum

development framework (Truffle) for the specified project.

Step 4.2 – Creating the contract

In the “contracts” directory, we create a file named “SmartToken.sol” and paste the

following code:

pragma solidity ^0.4.0;

contract SmartToken {
mapping(address => uint) tokens;
event OnValueChanged(address indexed _from, uint _value);

function depositToken(address recipient, uint value) returns (bool success) {
tokens[recipient] += value;
OnValueChanged(recipient, tokens[recipient]);
return true;
}
function withdrawToken(address recipient, uint value) returns (bool success) {
if (int(tokens[recipient] - value) < 0) {
tokens[recipient] = 0;
} else {
tokens[recipient] -= value;
}
OnValueChanged(recipient, tokens[recipient]);
return true;
}

function getTokens(address recipient) constant returns (uint value) {
return tokens[recipient];
}
}

81

This contract has three functions analyzed below:

• depositToken: add some tokens to a specific address

• withdrawToken: withdraw some token from a specific address

• getTokens: retrieve the number of tokens available for a specific address

Step 5 – Preparing for deployment

Certain adjustments will be required in the deployment file and network settings

before the deployment of a smart contract as descpibed next:

Step 5.1 – Adapting deployment file

We replace the content of “migrations/1_initial_migration.js” with the following

content in order to deploy our “SmartToken” Smart Contract:

var SmartToken = artifacts.require("./SmartToken.sol");

module.exports = function(deployer) {

 deployer.deploy(SmartToken);

};

Step 5.2 – Adapting network settings

The file named “truffle.js” contains network settings used to identify the deployment

platform. We will deploy the smart contract onto one of the miners. We change the

file to adjust the port number to fit our eonvironment:

module.exports = { networks: { development: { host: "localhost", port: 8042,

network_id: "*" // Match any network id } } };

Step 6 – Deploying the contract

The smart contract’s deployment process starts with the initialization of miners to

ensure that the smart contract will be mined and deployed on the private blockchain.

Before proceeding, start the miners to ensure that the smart contract will be properly

mined and deployed on the private blockchain.

Step 6.1 – Starting the miners in 2 different tabs

~/blockchain/miner1/startminer1.sh

~/ blockchain /miner2/startminer2.sh

Step 6.2 – Compiling and deploying the contract

cd ~/blockchain/Projects/SmartToken

truffle compile

truffle migrate --reset

The SmartToken contract is deployed onto our private Ethereum chain and it is ready

to receive calls.

82

Step 7 – Interacting with the contract

We can interact with the previously deployed smart contract through the Geth

console, the Mist browser or a client application. Furthermore, for the testing of the

contract, the default address created on the RPi should be used.

Step 7.1 – Identifying the contract

Before using Mist, we need two elements about the deployed contract:

• its address

• its ABI (Application Binary Interface)

This information can be retrieved through the Truffle console in this way:

truffle console

truffle(development)> SmartToken.address

'0x33…'

truffle(development)> JSON.stringify(SmartToken.abi)

Step 7.2 – Watching the contract on Mist

Starting Mist, it detects an IPC file in the default location is being used, it connects to

the private network.

We use the following command to start Mist from a different path than the default:

Ethereumwallet network 2435465768 --rpc ~/blockchain/miner1/geth.ipc

Once the user interface appears, we click the Ethereum Wallet tab on the left, and

click the CONTRACTS button:

Select “WATCH CONTRACT” and fill the form:

• Give a name for the contract, like “SmartToken”

• Enter the contract address retrieved from the Truffle console

(SmartToken.address)

• Enter the ABI (without enclosing quotes) retrieved from the Truffle console

(JSON.stringify(SmartToken.abi))

Step 7.3 – Testing the contract

To test the contract we pick the default address created on the RPi.

(eth.coinbase) is:“0x33…...”

83

To check the contract,get the number of tokens of this contract:

Figure 24: Contract Address

The function “getTokens” is a constant. We can use it without paying any fees. Now,

we deposit some tokens to this address. We choose the account that will execute the

function and pay the fees:

Figure 25: Withdrawing Tokens

When the block is mined, we should see that the value has changed and then, we

proceed with the withdraw function to ensure that the contract works as expected.

We can also watch the events triggered by the contract:

84

Figure 26: Event viewing

85

10 Concluding Remarks

10.1 Answers to Research Questions

In the introduction we presented our research questions and in this section we provide

a synopsis of the answers given through the analysis of the thesis:

• RQ1 –What is the current status and the predictions concerning blockchain

technology, smart contracts and IoT?

We investigated the history of blockchain and the main issue that tries to solve,

explaining its different types (public, private and hybrid). We presented the

technologies enabling blockchain and the way it works. As far as smart contracts

are concerned, we provided an overview of the benefits, challenges and their

main components including a high level cost-benefit analysis for developing and

deploying a smart contract. In both, blockchain and smart contracts, we tried to

identify the major security issues and present twelve business cases of how smart

contracts and blockchain can disrupt traditional business models and transform

them due to their special characteristics. Furthermore, we presented information

from market researches which point out that there will be an increase in the use of

IoT, the following years.

• RQ2 – What are the similarities and the differences among blockchain

platforms that enable smart contracts?

We identified the platforms we intended to evaluate and we provided a

description of their main characteristics. These characteristics were defined based

on the information available from a variety of sources. However, a detailed

quantitative evaluation was not possible due to the lack of research material and

examination of real-life applications. There are a few frameworks that are

developed on a theoretical level, because of the lack of applications and lack of

standardization in technologies.

• RQ3 – What is the level of security in smart contracts and what can we do to

improve it?

We carried out a high-level security assessment based on research papers that

investigate the vulnerabilities, the attacks and the countermeasures and how these

are related. The assessment revealed several security flaws in the different

86

components of ethereum-based smart contracts. The tools to improve security are

at a primary stage and require improvement considering the amount of money

involved in most cases. Finally, we deployed a smart contract system based on

Ethereum using IoT in order to explore the process, to investigate the difficulties

and demonstrate the potential of the applications.

10.2 Conclusion

The current status of blockchain, smart contracts and IoT reveals that this technology

and its applications have a long way to go until they reach a maturity level and

become a daily tool. The lack of standardization in blockchain platforms and the

several security and legal issues concerning smart contracts that remain to be solved,

are going to be critical for the evolution of their adoption cycle.

Throughout the literature, there are only a few frameworks that can be used to assess

blockchain platforms especially for the public ones. The results of the comparison

among the blockchain platforms have pointed out the main differences and

similarities of these platforms. Consensus mechanism is a key element of the

blockchain structure that changes properties of the blockchain. By combining

blockchain, smart contracts and IoT we can have several possible applications but it

remains to be seen which ones will be adopted from the business world and the end-

users. The security assessment of smart contracts presented the vulnerabilities and the

attacks against them, proposing countermeasures. Finally, the application we built

proved the ease and flexibility of smart contracts in an IoT environment.

87

References

[1] M. Swan, Blockchain: blueprint for a new economy. Beijing: O’Reilly Media, Inc., 1st
ed., 2015.

[2] “The trust machine - the technology behind bitcoin could transform how the economy

works,” Oct. 2015.https://www.economist.com/news/leaders/21677198-technology-
behind-bitcoin-could-transform-how-economy-works-trust-machine.

[3] G. A. C. on the Future of Software & Society, “Deep shift: Technology tipping points and

societal impact,” Sept. 2015. Survey Report.

[4] O. Williams-Grut, “Goldman Sachs: ’the blockchain can change...well everything’,” Dec.

2015. http://www.businessinsider.in/GOLDMAN-SACHS-The-Blockchain-can-change-
well-everything/articleshow/50018480.cms.

[5] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” Journal of

Cryptology, vol.3, pp. 99–111, Jan 1991.

[6] D. Bayer, S. Haber, andW. S. Stornetta, Improving the Efficiency and Reliability of Digital

Time-Stamping, pp. 329–334. New York, NY: Springer New York, 1993.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” Electronic, 2008.

https://bitcoin.org/bitcoin.pdf.

[8] J. BRITO and A. CASTILLO, “Bitcoin - a primer for policymakers.” Electronic, Mercatus

Center, George Mason University, USA, 2013.

[9] A. Heikkila, “The blockchain and the byzantine generals problem,” Mar. 2017.

http://techblog.cosmobc.com/2017/03/16/blockchain-byzantine-generals-problem/.

[10] P. Francis, “Blockchain, the byzantine generals problem, and the future of identity

management,” Aug. 2016. https://medium.com/@philfrancis77/blockchain-the-
byzantine-general-problem-and-the-future-of-identity-management-6b50a2eb815d.

[11] V. Buterin, “Slasher: A punitive proof-of-stake algorithm.” Etherum Blog, Jan. 2014.

https://blog.ethereum.org.

[11A] “04/Blockchain Technology: preparing for change”, Accenture 2015,
 https://www.accenture.com/t20160608T052656Z__w__/us-en/_acnmedia/PDF-5/Accenture-

2016-Top-10-Challenges-04-Blockchain-Technology.pdfla=en

[12] D. Kraft, “Difficulty control for blockchain-based consensus systems,” Springer Peer-to-

Peer
Networking and Applications, vol. 9, pp. 397–413, Mar. 2016.

[13] L. Backlund, A technical overview of distributed ledger technologies in the Nordic

capital market. PhD thesis, Uppsala University, 2016.

[14] S. Carlsson, J. & Huang, Blockchain Technology in the Swedish Fund Market. PhD

thesis, Royal Institute of Technology, Stockholm, 2016.

88

[15] V. Buterin, “Slasher: A punitive proof-of-stake algorithm.” Blog, Jan. 2014.

https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/.

[16] T. N. Courtious, “On the longest chain rule and programmed self-destruction of crypto

currencies,” tech. rep., Cornell University Library, 2014.

[17] P. Vasin, “Blackcoins proof-of-stake protocol v2,” 2014. https://blackcoin.co/blackcoin-

pos-protocol-v2-whitepaper.pdf.

[18] V. Buterin, “On public and private blockchains.” Etherum Blog, Sept. 2015.

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/.

[19] J. Manning, “Proof-of-work vs. proof-of-stake explained,” 2016.

https://www.ethnews.com/proof-of-work-vs-proof-of-stake-explained.

[20] N. Houy, “It will cost you nothing to ”kill” a proof-of-stake crypto-currency,” 2014.

https://halshs.archives-ouvertes.fr/file/index/docid/945053/filename/1404.pdf.

[21] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, Huaimin Wang, “Blockchain

Challenges and Opportunities: A Survey" 2016.
https://www.researchgate.net/profile/Hong-
Ning_Dai/publication/319058582_Blockchain_Challenges_and_Opportunities_A_Surve
y/links/59d86d50a6fdcc2aad0a2f2a/Blockchain-Challenges-and-Opportunities-A-
Survey.pdf .

[21A] https://sawtooth.hyperledger.org/docs/core/nightly/0-8/introduction.html#proof-of-

elapsed-time-poet

[21B] Chen L., Xu L., Shah N., Gao Z., Lu Y., Shi W. (2017) “On Security Analysis of

Proof-of-Elapsed-Time (PoET)”. In: Spirakis P., Tsigas P. (eds) Stabilization, Safety,
and Security of Distributed Systems. SSS 2017. Lecture Notes in Computer Science, vol
10616. Springer, Cham

[22] J. Kehrli, “Blockchain 2.0 - from bitcoin transactions to smart contract applications,”

Nov. 2016.

[23] M. Bartoletti and L. Pompianu, “An empirical analysis of smart contracts: platforms,

applications,
and design patterns,” 2017.

http://fc17.ifca.ai/wtsc/An%20empirical%20analysis%20of%20smart%20contracts%20-
%20platforms,%20applications,%20and%20design%20patterns.pdf.

[23A] Gavin Wood, “Ethereum:a secure decentralised generalised transaction ledger” Eip-

150 revision

[24]https://hackernoon.com/costs-of-a-real-world-ethereum-contract-2033511b3214

[24A] “Getting from Hype to Reality”, CapGemini, 2017.

https://www.capgemini.com/consulting-de/wp-
content/uploads/sites/32/2017/08/smart_contracts_paper_long_0.pdf

[25] International Telecommunication Union, “Measuring the Information Society Report,”

International Telecommunication Union (ITU), Report, 2015.

89

[26] “Gartner Says 6.4 Billion Connected “Things” Will Be in Use in 2016, Up 30 Percent
From 2015,” http://www.gartner.com/newsroom/id/3165317.

[27] “Smart Contracts: 12 Use Cases for Business & Beyond A Technology, Legal &

Regulatory Introduction”, Smart Contracts Alliance - In collaboration with Deloitte,
http://www.the-blockchain.com/docs/Smart%20Contracts%20-
%2012%20Use%20Cases%20for%20Business%20and%20Beyond%20-
%20Chamber%20of%20Digital%20Commerce.pdf

[28] MarketsandMarkets, "Blockchain Market by Provider, Application (Payments,

Exchanges, Smart Contracts, Documentation, Digital Identity, Supply Chain
Management, and GRC Management), Organization Size, Industry Vertical, and Region
- Global Forecast to 2022”,
https://www.marketsandmarkets.com/PressReleases/blockchain-technology.asp

[29]https://www.businesswire.com/news/home/20171117005320/en/Global-Blockchain-

Market-Forecasts-2017-2022--

[30] Tractica, “Blockchain for Enterprise Applications Market to Reach $19.9 Billion by

2025”, 2016. https://www.tractica.com/newsroom/press-releases/blockchain-for-
enterprise-applications-market-to-reach-19-9-billion-by-2025/

[31] Autonomous Research, “2030 Projection of Blockchain Technology Market”

https://next.autonomous.com/insights/2030-projection-of-blockchain-technology-market

[32] Market Research Future, “Smart Contracts Market Research Report – Global Forecast to

2023”https://www.marketresearchfuture.com/reports/smart-contracts-market-4588

[33] Market Research Future, “Smart Contracts Market Research Report – Global Forecast

to 2023”, Feb. 2018. https://www.marketresearchfuture.com/reports/smart-contracts-
market-4588

[34] Ericsson, Internet of Things forecast, https://www.ericsson.com/en/mobility-

report/internet-of-things-forecast

[35] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Workshop on

Distributed Cryptocurrencies and Consensus Ledgers, pp. 1–4, 2016.

[36] J. R. Douceur, “The sybil attack,” in International Workshop on Peer-to-Peer Systems,

pp. 251–260, 2002.

[37] M. Samaniego and R. Deters, “Hosting virtual iot resources on edge-hosts with

blockchain,” in IEEE CIT, pp. 116–119, 2016.

[38] B. Smith and K. Christidis, “IBM blockchain: An enterprise deployment of a distributed

consensus based transaction log,” in Fourth International IBM Cloud Academy
Conference, pp. 140–143, 2016.

[39] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” 2014.

http://gavwood.com/paper.pdf.

[40] C. Natoli and V. Gramoli, “The blockchain anomaly,” in IEEE 15th International

Symposium on Network Computing and Applications (NCA), pp. 310–317, 2016.

[41] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet of

90

things,” IEEE Access, vol. 4, no. 1, pp. 2292–2303, 2016.

[42] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, Aquinas Hobor, “Making Smart

Contracts Smarter”, https://www.comp.nus.edu.sg/~loiluu/papers/oyente.pdf

[43] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, "A survey of attacks on Ethereum

smart contracts".

[44] Information Economy Division Commerce and Information Policy Bureau, “Evaluation

Forms for BlockchainBased System ver. 1.0”, 12 April 2017.
http://www.meti.go.jp/english/press/2017/pdf/0329_004a.pdf

[45] lharby, M. & van Moorsel, A. 2017. “Blockchain-based smart contracts: A systematic

mapping study”. arXiv preprint arXiv:1710.06372
https://arxiv.org/ftp/arxiv/papers/1710/1710.06372.pdf

.

