
UNIVERSITY OF PIRAEUS

Department of Digital Systems

MSC Digital Systems Security

Master Thesis

Use of entropy for malware identifcation

Ouroumidis Athanasios

Supervisor

Prof. Dadoyan Christoforos

Piraeus, Greece, March 2017

1 Abstract

In today’s world internet has become a necessity not only for businesses but also for a
person’s daily life. Communication, trade, information, entertainment and many other
functionalities are provided to us by being “online”. However together with the evolution of
software to help in our day to day activities, the malicious software came to rise. Starting
from being created just for fun and ending up created for fnancial gain, the IT industry
face a huge challenge. Malicious software is being created every day and new variations
of the same exploits are found every week. The security industry is on cat and mouse race
with malware authors to stay ahead and provide a shield from the dangers on the internet.

However this becomes a bigger challenge as the time goes by because more and more
checks need to be done from a security standpoint when checking if a piece of code or
executable is safe or not. These checks many times are very clear on the defnition and
identifcation of malicious fles but many times the checks are vague and do not pose a
clear factor on identifying potential threats. One of those checks is the value of entropy on
the fles that the anti-virus vendors use to identify a possible malware.

On this thesis we will explore the defnition of entropy as well a possible process of
modifying this value to reach lower levels that could be found on a legitimate software.

2 Acknowledgements

I would like before the beginning of this thesis to take this chance to thank my professor,
who contributed to a valuable learning experience during the MSC studies. Taught me
new and exciting things about the security industry that helped me in my professional life
and will help me further in my career.

I would also like to help my family who was there for me whenever I needed them,
supported me with any means they had available during my difcult times and always
believed in me. Without them I would not be here.

3 Table of contents

1 Abstract..2

2 Acknowledgements..3

3 Table of contents..4

4 Information Theory - Entropy..6

5 Portable Executable...6

5.1 Basic Structure..7

6 Malware..10

6.1 Malware Detection Techniques..12

6.1.1 Signature Based Detection..12

6.1.2 Anomaly Based Detection..12

6.1.3 Heuristics Based Detection...12

7 Malware Classifcation Methods...13

7.1 Classifcation of Malware using Structured Control Flow.................................13

7.2 Behavioral Malware Classifcation...13

7.3 Instance-based Learner..13

7.4 Support Vector Machines (SVM)..14

7.5 Naϊve Bayes..14

7.6 Data mining methods...14

7.7 Decision Trees...14

7.8 Boosted Classifers..15

7.9 Structural Entropy..15

7.10 Hidden Markov Model Based Detection...15

8 Malware Analysis Techniques..16

8.1 Malware Static Analysis..16

8.1.1 Static Analysis Techniques..16

8.2 Malware Dynamic Analysis..17

8.2.1 Function Call Monitoring..17

8.2.2 Function Parameter Analysis..17

8.2.3 Information Flow Tracking...17

8.2.4 Instruction Trace...18

8.2.5 Autostart Extensibility Points..18

9 Testing Methodology...19

9.1 File Entropy..19

9.2 File entropy Manipulation...19

9.2.1 Methodology Steps..20

9.2.2 Entropy of test PE...20

9.2.3 Adding new section to test PE..22

9.2.4 Adding section with shellcode to test PE..25

9.2.5 Adding mofdied shellcode to new section to test PE...............................28

9.3 Creating PE from shellcode...31

9.3.1 Adding section to generated PE...33

9.4 Summary Table..36

9.5 Entropy of Malware Samples...37

10 Final Results..39

11 Future Work..40

12 References...41

4 Information Theory - Entropy

Information can be thought of as being stored in or transmitted as variables that can take
on diferent values. A variable can be thought of as a unit of storage that can take on, at
diferent times, one of several diferent specifed values, following some process for taking
on those values. Informally, we get information from a variable by looking at its value, just
as we get information from an email by reading its contents. In the case of the variable, the
information is about the process behind the variable. The entropy of a variable is the
"amount of information" contained in the variable. This amount is determined not just by
the number of diferent values the variable can take on, just as the information in an email
is quantifed not just by the number of words in the email or the diferent possible words in
the language of the email. Informally, the amount of information in an email is proportional
to the amount of “surprise” its reading causes. For example, if an email is simply a repeat
of an earlier email, then it is not informative at all. On the other hand, If say the email
reveals the outcome of a clifhanger election, then it is highly informative. Similarly, the
information in a variable is tied to the amount of surprise that value of the variable causes
when revealed.

Shannon’s entropy quantifes the amount of information in a variable, thus providing the
foundation for a theory around the notion of information.

In the IT world the Values of entropy range from 1 to 7 are used to represent the
predictability of the next character or byte in a sequence of characters or bytes.

Values closer to 1 means that the entropy is lower therefore the information we can get is
lower. Meaning that we can “guess” with a higher probability the next character or byte in
line.

Values closer to 7 means that the entropy is higher therefore the information we can get is
higher. Meaning that we can “guess” with a lower probability the next character or byte in
line.

5 Portable Executable

The Portable Executable (PE) format is a fle format for executables, object code, DLLs,
FON Font fles, and others used in 32-bit and 64-bit versions of Windows operating
systems. The PE format is a data structure that encapsulates the information necessary
for the Windows OS loader to manage the wrapped executable code. This includes
dynamic library references for linking, API export and import tables, resource management
data and thread-local storage (TLS) data. On NT operating systems, the PE format is

https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Thread-local_storage
https://en.wikipedia.org/wiki/Application_programming_interface
file:///C:%5CUsers%5Ca.ouroumidis%5CDesktop%5Cthesis%5Cscience)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/Executable

used for EXE, DLL, SYS (device driver), and other fle types. The Extensible Firmware
Interface (EFI) specifcation states that PE is the standard executable format in EFI
environments.[24]

5.1 Basic Structure

A Portable Executable (PE) basically contains two sections, which can be subdivided into
several sections. One is Header and the other is Section. The diagram below shows a
visualized version of the PE.

1. DOS Header

DOS header starts with the frst 64 bytes of every PE fle. It’s there because DOS can
recognize it as a valid executable and can run it in the DOS stub mode.

Image 1: PE fle format

https://en.wikipedia.org/wiki/Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/.sys
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/EXE

2. DOS Stub

The DOS stub usually just prints a string, something like the message, “This program
cannot be run in DOS mode.”, which is shown when the PE tries to run in DOS mode. It
can be a full-blown DOS program. When building applications on Windows, the linker
sends instruction to a binary called winstub.exe to the executable fle. This fle is kept in the
address 0x3c, which is ofset to the next PE header section.

3. PE File Header

Like other executable fles, a PE fle has a collection of felds that defnes what the rest of
fle looks like. The header contains info such as the location and size of code,

4. Characteristics

 Signature: It only contains the signature so that it can be easily understandable by
windows loader. The letters P.E. followed by two 0’s tells everything.

 NumberOfSections: This defnes the size of the section table, which immediately
follow the header.

 SizeOfOptionalHeader: This lies between top of the optional header and the start
of the section table. This is the size of the optional header that is required for an
executable fle. This value should be zero for an object fle.

 Characteristics: This is the characteristic fags that indicate an attribute of the
object or image fle. It has a fag called Image_File_dll, which has the value 0x2000,
indicating that the image is a DLL. It has also diferent fags that are not required for
us at this time

 Image_Optional_Header: This optional header contains most of the meaningful
information about the image, such as initial stack size, program entry point location,
preferred base address, operating system version, section alignment information,
and so forth. We can see the information in the snapshot below.

5. The Section Table

This table immediately follows the optional header. The location of this section of the
section table is determined by calculating the location of the frst bytes after header. For
that, we have to use the size of the optional header. The number of the array members is

determined by NumberOfSections feld in the fle header (IMAGE_FILE_HEADER)
structure. The structure is called IMAGE_SECTION_HEADER.

The number of entries in the section table is given by noofsectionfeld in the fle header.
Each section header has at least 40 bytes of entry. We will discuss some of the important
entries below.

 Name: An 8-byte null-padded UTF8 encoding string. This is can be null.

 VirtualSize: The actual size of the section’s data in bytes. This may be less than the
size of the section on disk.

 SizeOfRawData: The size of section’s data in the fle on the disk.

 PointerToRawData: This is so useful because it is the ofset from the fle’s
beginning to the section’s data.

 Characteristics: This fag describes the characteristics of the section.

6. The PE File Section

This section contains the main content of the fle, including code, data, resources and
other executable fles. Each section has a header and body.

An application in Windows NT typically has nine diferent predefned sections, such as
.text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Depending on the
application, some of these sections are used, but not all are used.

The Executable Code: In Windows, all code segments reside in a section called .text
section or CODE. We know that windows uses a page-based virtual system, which means
having one large code section that is easier to manage for both the OS and application
developer. This also called as entry point and thunk table, which points to IAT. We will
discuss the thunk table in IAT.

 The .bss represents the uninitialized data for the application.

 The .rdata represents the read-only data on the fle system, such as strings and
constants.

 The .rsrc is a resource section, which contains resource information of a module. In
many cases it shows icons and images that are part of the fle’s resources.

 The .edata section contains the export directory for an application or DLL. When
present, this section contains information about the names and addresses of
exported functions. We will discuss these in greater depth later.

 The .idata section contains various information about imported functions, including
the import directory and import address table. We will discuss these in greater
depth later.

6 Malware
Is a software program developed to perform malicious activities on a computer and refers
to a variety of diferent forms of hostile or intrusive software. There can be any reasons for
writing malware varying from simple pranks to organized internet crimes. The early
infectious programs were written as pranks. These days, malware is widely used to steal
personal, fnancial, business information. Malware includes all families of viruses,
computer worms, Trojans, backdoor, spyware, adware, scareware, ransomware. A brief
overview of diferent types of malware is given below.[25]

 Virus: A virus is a type of malware that replicates itself by inserting copies or
modifed copies of itself into other programs. It is designed to change the way the
computer operates. They can live anywhere. It can live on the boot sector. If it lives
on the boot sector, it can take control before anything else. It establishes itself
before any antivirus software starts or operating system security is enabled. It can
also live in the memory. It can enter the computer by any way the user interacts with
the computer (i.e. open an email, plug in an external storage device, open a website
that is infected, open malicious fles etc). They have the ability to reproduce
themselves by infecting other fles and programs with malicious code. When they
are run, they are able to carry out a range of usually malicious actions in the
computer or simply annoying. Virus writers constantly modify their software to
evade the detection techniques. The prominent methods to evade the detection
techniques are encryption, polymorphism and metamorphism. [26][22][15]

 Polymorphic Virus: A polymorphic virus has, for all practical purposes, an infnite
number of decryptor loop variations that’s morphed with each generation. Tremor,
for example, has almost six billion possible decryptor loops! Polymorphic viruses
clearly can’t be detected by listing all the possible combinations. The techniques
such as emulation can be used for polymorphic virus detection.[15]

 Encrypted Virus: Antivirus software searches for a signature (a specifc bit string)
for virus detection. The simplest method to hide the virus body is to encrypt it with
diferent encryption keys. As a result of this, the detection of a virus becomes a
difcult task. The idea of an encrypted virus is to encrypt the signature in order to
evade signature detection. However, it is still possible to search for an encrypted

signature too. Thus, the encrypted virus is not a reliable way of evading signature
detection. The only part that is constant in the encrypted virus is the decryptor loop.
Antivirus software will exploit this fact for detection, so the next logical development
is to change the decryptor loop’s code with each infection. [15]

 Metamorphic Virus: Virus writers modifed the malware furthermore to avoid
emulation detection. The metamorphic virus is also called as body polymorphic
virus. The appearance of the virus changes before infecting any system. The
detection of a metamorphic virus is very challenging. The morphed virus has the
same functionality but a diferent structure. Hence the detection of metamorphic
virus is difcult.

 Worm: A computer worm is a standalone malware computer program that
replicates itself in order to spread to other computers. Worms are programs that
replicate themselves from system to system without the use of a host fle. Unlike
viruses, which requires the spreading of an infected host fle. Worms replicate
themselves damaging fles, but can reproduce rapidly, saturating a network and
causing it to collapse. [16][27][22]

 Trojan: A Trojan is a type of malware which appears to perform a desirable
function but instead inserts a malicious payload to the target. An crucial diference
between Trojan and a virus is that the Trojan does not replicate itself. They pose as
legitimate programs that users know and they intend to use but when these are
executed, they install a malicious payload into the target host for various purposes
that the trojan author created them. The Trojans have the capacity of deleting fles,
destroying information on the hard drive, or open a backdoor to the security
systems. [27][28][22]

 Trapdoor/Backdoor: A trapdoor/backdoor is a program which bypasses the
security check in place of personal network or corporate. This allows a malicious
user to carry out various actions on the infected computer that can compromise
user confdentiality or disrupt the actions that are being carried out. The actions that
a backdoor allow malicious users to carry out can be extremely damaging for for
the user but also for others in the network. They could allow them to delete fles,
destroy all the information on the hard disk, capture confdential data and send it
out to an external address or open communications ports, allowing remote control
of the computer. [15][22]

 Ransomware: A type of malicious software that threatens the victim with
publishing its private confdential information or blocking the access to its data by
encrypting them. To gain access to its data or not publishing the victim’s private
information to the internet, ransomware authors demand a “ransom”, usually in
some kind of cryptocurrency before they provide the victim with the unlocking code

for their fles. These types of attack come along with a time limit that the victim has
to sent the ransom before the data stays forever encrypted or the data are
published online.

6.1 Malware Detection Techniques
As malware writers fne-tune their software by making it better to evade signature
detection, the anitivirus companies are improving their detection techniques as well.

6.1.1 Signature Based Detection
Signature based detection is a simple and most commonly used technique in antivirus
software. They are popular because of accurate detection, simplicity and speed. In
signature based detection, the scanner scans each executable and looks for specifc string
or pattern of bits (signatures). Antivirus software has a database of signatures for diferent
viruses. By comparing the signature, it detects the virus. The disadvantage is that only the
known malware can be detected. If the signature is not known, malware cannot be
detected. The signature fle must be kept up to date. By using simple code obfuscation
techniques, malware can easily evade the signature based detection. [29][30]

6.1.2 Anomaly Based Detection
The problem of detecting new malwares in signature based detection can be overcome
using anomaly based detection. Heuristic methods are implemented to detect anomalous
behavior. This technique comprises of two phases - the training phase and the detection
phase. In the training phase, the model is trained with the normal behavior. Anything other
than the normal behavior is considered as malicious behavior. However, there can be
more false positives in this technique.[18][29]

6.1.3 Heuristics Based Detection
Unlike signature-based detection, which looks to match signatures of fles against
a database of known malware, heuristic scanning uses rules and/or algorithms to look for
commands which may indicate malicious intent. When using this method, some heuristic
scanning methods are able to detect malware without needing a signature comparison.
This is why most antivirus programs use both signature and heuristic-based methods in
combination, in order to catch any malware that may try to evade detection by using
obfuscation techniques or any new malware that has not been discovered yet.

7 Malware Classifcation Methods

7.1 Classifcation of Malware using Structured Control Flow
Control fow represents the execution path that a program can take. In related research it
has been shown that malware can be efectively be characterized by its control fow. The
authors have proposed a malware classifcation system using approximate matching of
control fow patterns. The result of distances can be calculated between the control fow
signatures and the structured graphs of the malware in the database. The threshold is
decided. If the edit distance exceeds a particular threshold, then the binary can be
classifed as a malicious binary, else it is a benign binary. Control fow is more invariant
among polymorphic and metamorphic malware. The research shows that the proposed
method could successfully identify variants of malware.[17]

7.2 Behavioral Malware Classifcation
Classifcation systems generally fall into one of two categories:”Those that rely on features
extracted from static fles, or those that execute malware and use behavioral features to
classify malware. Static approaches sometimes use low-level features such as calls to
external libraries, strings, and byte sequences for classifcation. Other static approaches
extract more detailed information from binaries, including sequences of API calls, the
graphical representations of control fow. Although the variants in a malware family have
diferent static signatures, they share characteristic behavioral patterns resulting from their
common generation machine. It has been already described an automatic classifcation
system that can be trained to accurately identify new variants within known malware
families, using observed
similarities in behavioral extracted monitoring live computer hosts.”In the feature selection
used in, the authors have selected a set of observable features that are easily extracted
from live computer hosts, and whose values can be used to infer whether a detected
malware sample belongs to particular category or family. [20][17][32][31]

7.3 Instance-based Learner
One of the simplest learning methods is the instance-based (IB) learner. Its concept
description is a collection of training examples or instances. Learning, therefore, is the
addition of new examples to the collection.“An example is found in the collection that is
most similar to the unknown and the examples class label is returned as its prediction for
the unknown. The authors have used the number of values the two instances have in
common as the measure of similarity. In the variation of this method, such as IBk, the k
most similar instances are found and the majority vote of their class labels is returned as
the prediction.”Values for k are typically odd to prevent ties. These are also called as
nearest neighbor and k-nearest neighbors.[20]

7.4 Support Vector Machines (SVM)
Support Vector Machines are supervised learning models with associated learning
algorithms that analyze data and recognize patterns, used for classifcation.

7.5 Naϊve Bayes
Naϊve Bayes is a probabilistic method that has a long history in information retrieval and
text classifcation.:It stores as its concept description the prior probability of each class,
and the conditional probability of each attribute value given the class. These quantities are
estimated by counting in training data the frequency of occurrence of the classes and the
attribute values for each class.”The Bayes rule is used to compute the posterior probability
of each class given an
unknown instance, returning as its prediction the class with highest such value.[20]

7.6 Data mining methods
In related researches the authors have extracted the byte sequences from the
executables,
converting these into n -grams, and constructed several classifers: instance-based
learner, Naϊve Bayes, decision trees, support vector machines and boosting.”They viewed
each n-grams as a Boolean attribute that is either present in or absent from the
executable. They have shown that the boosted decision trees outperformed the other
methods.”The following section shows the methods used in their research.[20]

7.7 Decision Trees
The decision trees are built based on the training data. The internal nodes of a decision
tree correspond to attributes and leaf nodes correspond to class labels.”The performance
element uses the attributes and their values of an instance to traverse the tree from the
root to a leaf. It predicts the class label of the leaf node. It creates a node, branches, and
children for the attribute and its values, removes the attribute from further consideration,
and distributes the examples to the appropriate child node. This process repeats
recursively until a node contains examples of the same class, at which point, it stores the
class label. In an efort to reduce over training, most implementations also prune induced
decision trees by removing subtrees that are likely to perform poorly on test data. The
malware classifcation based on the decision trees is very fast and also accurate.”The
disadvantage of the decision trees is that an error in higher level of the tree may cause an
error in the lower part of the tree.[20]

7.8 Boosted Classifers
Boosting is a method for combining multiple classifers. A set of weighted models are
produced by iteratively learning a model from a weighted dataset.”The generated model is
then evaluated. The dataset is re-weighted based upon the model’s performance. The
authors have provided a method of detecting unknown malicious code in executables
using machine learning. They have extracted byte sequences from the executables,
converted these into n-grams, and constructed several classifers: naϊve Bayes, boosted
SVMs and boosted decision trees.”The results of their experiments have shown that the
boosted decision trees outperformed other methods and achieved a true-positive rate of
0.98 and a false-positive rate of 0.0. [19][20]

7.9 Structural Entropy
The method of structural entropy lies in the static analysis of fles and produces a similarity
measure, i.e. evaluates to which extent the two fles can be considered similar. The only
thing of importance is fle structure, that is, the order of its distinctive code and data areas.
The entropy measure provides a sort of signature of a fle, by computing the distribution of
bytes within the fle. The assumption is that diferent malware samples of the same family
have a similar order of code and data areas; as a matter of fact each area may be
characterized not only by its length, but also by its homogeneity. Authors in related
research identify as structural entropy this characteristic of an application. The approach
consists of using discrete wavelet transform (DWT) for the segmentation of fles into
segments of diferent entropy levels and using edit distance between sequence segments
to determine the similarity of the fles. The method comprises two steps: fle segmentation
and sequence comparison. The frst step splits each fle into segments of varying entropy
levels using wavelet analysis applied to raw entropy measurements.[2][3]

7.10 Hidden Markov Model Based Detection
Hidden Markov models (HMMs) are generally used for statistical pattern analysis. They
can be used in speech recognition, malware detection and biological sequence analysis.
The following sections give an overview of the introduction to HMM and its usage in
detection of malware.
A statistical model that has states and known probabilities of the state transitions is called
a Markov model. In such a Markov model, the states are visible to the observer. In
contrast, a hidden Markov model (HMM) has states that are not directly observable. HMM
is a machine learning technique. HMM acts as a state machine. Every state is associated
with a probability distribution for observing a set of observation symbols. The transition
between the states have fxed probabilities. We can train an HMM using the observation
sequences to represent a set of data. We can match an observation sequence against a
trained HMM to determine the probability of seeing such a sequence. If the probability is
high, the observation sequence is similar to the training sequence.

When an HMM is trained, it can be used to distinguish between a malware and a benign
fle. There is a lot of previous work done on the use of HMM for malware detection. The
dataset is tested against the trained models. There is a range of values of scores for which
the scores of the malware and the benign fles do not overlap. This is known as threshold.
Using this threshold, the malware can be distinguished from the benign fles.[1][21]

8 Malware Analysis Techniques

8.1 Malware Static Analysis

Basic static analysis consists of examining the executable fle without viewing the actual
instructions. Basic static analysis can confrm whether a fle is malicious, provide
information about its functionality, and sometimes provide information that will allow you to
produce simple network signatures. Basic static analysis is straightforward and can be
quick, but it’s largely inefective against sophisticated malware, and it can miss important
behaviors.[7]

8.1.1 Static Analysis Techniques

 File Fingerprinting: During the File Fingerprinting for every fle under investigation a
cryptographic hash value will be computed.[7]

 Virus Scanning: The fles under investigation will be scanned with diferent antivirus
vendors to identify any possible warnings.[7]

 Analyzing memory artifacts: During this process memory artifacts will be analyzed
such as Ram dump, page fle.sys hiberfle.sys, so that they can be identifed any
possible rogue processes.[7]

 Packer Detection: Almost always the malware will be packed with some kind of
packer. The fles will need to be analyzed and their packer will need to be identifed.
[7]

 Disassembly: Many times malwares use dynamic linking in their code. The
Dependencies can be analyzed using various tools while it can also be done by
disassembling the executable.[7]

8.2 Malware Dynamic Analysis

8.2.1 Function Call Monitoring
Typically, a function consists of code that performs a specifc task, such as calculating the
factorial value of a number or creating a fle. While the use of functions can result in easy
code re-usability, and easier maintenance, the property that makes functions interesting
for program analysis is that they are commonly used to abstract from implementation
details to a semantically richer representation. For example, the particular algorithm which
a sort function implements might not be important as long as the result corresponds to the
sorted input. When it comes to analyzing code, such abstractions help gain an overview of
the behavior of the program. One possibile way to monitor what functions are called by a
program is to intercept these calls. The process of intercepting function calls is called
hooking. The analyzed program is manipulated in a way so that, in addition to the intended
function, a hook function is invoked. This hook function is responsible for implementing the
required analysis functionality, such as recording its invocation to a log fle, or analyze
input parameters.[7]

8.2.2 Function Parameter Analysis
While function parameter analysis in static analysis tries to infer the set of possible
parameter values or their types in a static manner, dynamic function parameter analysis
focuses on the actual values that are passed when a function is invoked. The tracking of
parameters and function return values enables the correlation of individual function calls
that operate on the same object. For example, if the return value (a fle-handle) of a
CreateFile system call is used in a subsequent WriteFile call, such a correlation is
obviously given. Grouping function calls into logically coherent sets provides detailed
insight into the program’s behavior from a diferent, object-centric, point-of-view.[7]

8.2.3 Information Flow Tracking
An orthogonal approach to the monitoring of function calls during the execution of a
program, is the analysis on how the program processes data. The goal of information fow
tracking is to shed light on the propagation of “interesting” data throughout the system
while a program manipulating this data is executed. In general, the data that should be
monitored is specifcally marked (tainted) with a corresponding label. Whenever the data is
processed by the application, its taint-label is propagated. Assignment statements, for
example, usually propagate the taint-label of the source operand to the target. Besides the
obvious cases, policies have to be implemented that describe how taint-labels are
propagated in more difcult scenarios. Such scenarios include the usage of a tainted
pointer as the base address when indexing to an array or conditional expressions that are
evaluated on tainted values.[7]

8.2.4 Instruction Trace
A valuable source of information for an analyst to understand the behavior of an analyzed
sample is the instruction trace. That is, the sequence of machine instructions that the
sample executed while it was analyzed. While commonly cumbersome to read and
interpret, this trace may contain important information not represented in a higher level
abstraction (e.g., analysis report of system and function calls).[7]

8.2.5 Autostart Extensibility Points
Autostart extensibility points (ASEPs) defne mechanisms in the system that allow
programs to be automatically invoked upon the operating system boot process or when an
application is launched. Most malware components try to persist during reboots of an
infected host by adding themselves to one of the available ASEPs. It is, therefore, of
interest to an analyst to monitor such ASEPs when an unknown sample is analyzed.[7]

9 Testing Methodology

9.1 File Entropy
The entropy of a fle is also used from antivirus vendors to identify potential malwares.
When fles are packet or encrypted their entropy is increased because of the compression
algorithm or the packer.

Malware authors that wants to avoid being detected will encrypt their malwares therefore
increasing their entropy.

On the following sections of the paper we will see how it’s possible to alter the overall
entropy of a fle but also alter the overall entropy of a section of a fle that contains malware
code.

9.2 File entropy Manipulation
For our experiment we will need to calculate the entropy of a fle in 2 diferent ways:

The overall entropy of a fle. We will calculate the fle entropy by treating the fle like a long
sequence of bytes ignoring its structure. This test will be done by using an open source
tool name “ent” (available in github), which the only thing that it does is measuring the
entropy of a fle regardless of the type we will also use PEid which is a tool that is used to
identify if a fle is packed, the type of packer and the entropy of a fle.

The Section entropy of a fle: We will calculate the section entropy, by calculating the
entropy of the diferent sections in the PE (.text, .data, .bss etc) . For this test we will use
python code and the “pe” library for python that is already available in github as well as a
software called DIE (Detect It Easy) which among other things it has the functionality of
calculating the section entropy of a fle, which will be used to verify our results.

For both test cases we will use python code to add a section to a PE fle. The new section
will contain either a long sequence of “NOP” instructions, a shellcode or a shellcode with
NOP instructions before and after the shellcode. This will help us test how it will afect the
overall entropy and the section entropy of the fle.

9.2.1 Methodology Steps
The test steps will be as follows:

1. Creating a new section with NOPs on a legitimate PE.
2. Creating a new section with a shellcode on a legitimate PE
3. Creating a new section with a shellcode that will contain NOPs before and after the

shellcode

9.2.2 Entropy of test PE
For testing purposes we will use the putty.exe PE that is free to download and is used very
often for ssh connections from windows machines.

After Downloading putty from its website (https://putty.org) we frst test its entropy.

As it can be seen from the image the entropy of putty.exe is 6.726460.
If we recall the information theory the entropy values range from 1 till 7, with 7 representing
high randomness or very low possibility of guessing the next character in line.
Such high values can be found also in packed executables or compressed.
We test the entropy values both with PEid and DIE tools to verify the result.

As we can see “ent” and “DIE” tools report the same entropy values, unlike PEid which
has a slightly lower value.
This can be attributed to the possible diferent algorithms between those tools.

9.2.3 Adding new section to test PE

Next step will be to create a new section in putty.exe with the name .axc that will contain a
long sequence of NOP instructions (1274, the value was selected to be big enough so that
it can fll up the section as much as possible) and we will again compare it with the same
tools but also we will use a tool called PE view to take a look inside the code of the new
section that we will create.

We can see here that the new section resulted in a slight drop of entropy of about 0.04.
Such small result is expected as the fle is very big (more than 700KB) compared to our
section (~1KB), which is not enough to create a big diference.

We can confrm as well from PEid that the entropy dropped in this case only a 0.01.

Here we can see not only the entropy that is identical to the value of “ent” but we can also
see all the sections along with the new section entropy that we added and its only 1.4729.

With the python code we can verify our fndings about the new section and its entropy
(1.4719)

The results from both “DIE” and the written python code resulted in the new section having
an entropy of around 1.4 instead of lower that one would expect. This is expected as the
screenshot above shows at the end of the section there are garbage values that were
added at the moment of the creation, thus resulting in an entropy higher than expected. If
the whole section however was fled only with NOPs the entropy value would be lower.

9.2.4 Adding section with shellcode to test PE

Next step will be to add a small shellcode to the test PE and test its overall and section
entropy.

The shellcode that we are going to use has been generated from msfvenom for Microsoft
Windows and its functionality is a simple message box popup. For demonstration
purposes we don’t need a bigger or more sophisticated shellcode.

Here we can see that the addition of the new section with the shellcode actually causes a
minor reduction in the overall entropy of the original PE fle, instead of increasing it.

The entropy of the section where the shellcode is stored has a value of 6.68 which also
explains the minor reduction of the overall entropy value.

PEid does not report any changes to the entropy value which would considered normal
since the shellcode itself is very small compared to the overall size of the executable.

We can verify our fndings about entropy from DIE as well both the overall and the entropy
values of all the sections.

From PEView we can see the actual size of the section as well as the contents

9.2.5 Adding mofdied shellcode to new section to test PE

In this step we are going to modify our shellcode to check if we can modify the section
entropy that it is located. This is going to be accomplished by surrounding the shellcode
with NOPs before and after.

By following the same procedure as the previous steps we gather the following results

As we can see from the above screenshots we get the following results:

1. The overall entropy of the fle reduced slightly but not as much as when we added
only the shellcode. This will be explained later.

2. The section entropy where the shellcode is is now reduced to a value around 5.3, a
diference of 1.3 less from when the shellcode was not surrounded with NOPs.

3. PEid reports that the overall entropy of the fle was not reduced which again is
expected if we compare the size of the section and the size of the whole fle.

4. DIE reports values overall and section very similar to the values reported from ent
and our python code.

5. In the fnal Screenshot we can see the shellcode surrounded with NOPs as
expected. However because the shellcode size and the number of NOPs that we
inserted was lower than the size of the section we created, it was observed the
same issue as a previous example. For the bytes of the section that we didn’t fll,
they were flled with random values, thus raising the section entropy to 5.3. If we
had flled the whole section with only the shellcode and NOPs the entropy value
would be much lower that the one that we got. This is also the reason that when we
used ent we got a slightly higher entropy value.

9.3 Creating PE from shellcode

For this part we will generate an executable from msfvenom that will be encrypted. The
shellcode that will be used will be a bind tcp shell shellcode encoded with shikata_ga_nai.

We test the results using the way we did for the previous parts

The results we get are the following:

 The overall entropy of the PE is high at 6.31 using ent and DIE and 6.48 using PEid

 The high value is expected as the the shellcode has been encrypted

9.3.1 Adding section to generated PE

In this part we will use the PE that we generated from msfvenom and we will add to in a
section that will be flled with NOPs to test the efect on the overall entropy of the fle.

The check the results using the same method.

As we can see the results are what we would expect:

The Overall entropy using all the tools (ent, PEid, DIE) has been lowered. Not by a
signifcant amount since the size of the PE is 72KB and the section that we are creating is
around 1KB. Also something else that we need to take into account is that the section is
not full with NOP instructions.

9.4 Summary Table

The following table represents a summary of the fndings for the fles that we tested,
focusing on the overall entropy and on the entropy of the new section we created (.axc)

File Type
Measure Method

File Name
ent Peid DIE DIE (.axc) python(.axc)

Original Test PE 6.72646 6.43 6.72646 N/A N/A putty.exe
Added NOP Section 6.685167 6.42 6.68517 1.4729 1.4719 putty_modified.exe
Added Shellcode section 6.683808 6.43 6.68381 6.68672 6.6838 putty_shellcode.exe
Added modified shellcode 6.684562 6.43 6.68456 5.3825 5.3815 putty_modified_shellcode.exe
Shellcode Executable 6.318871 6.48 6.31889 N/A N/A msfvenom_file.exe
Modified shellcode 5.93261 6.36 5.93262 1.06577 1.06541 msfvenom_file_modified.exe

9.5 Entropy of Malware Samples

As part of the testings a number of malware samples available online on diferent
repositories were tested for their entropy values.

The Following table represents a small sample of the 3700 fles that were tested.

The Collumn “AVG_ENTROPY” refers to the overall entropy of the fle while the “MIN”
and “MAX” entropy collumns refer to the minumum and maximum entropy values of the
sections

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY
4.426297303 2.867124198 6.096939721
5.214709787 4.084872622 6.673501782
3.173186073 0 7.999371708
2.294760411 0 6.530868468
2.294783725 0 6.530868468
2.327657194 0 6.631747641
6.017597431 3.402931054 7.902031708
2.300557835 0 6.562232258
2.295011308 0 6.530868468
2.297530702 0 6.564721241
4.479505412 0 6.449717905
2.305030692 0 6.562232258
2.294803859 0 6.530868468
6.227480168 4.184278832 7.947140697
5.99050511 4.619834149 7.997200275
3.925425342 0 7.790831956
3.973397216 1.892199801 6.516178183
5.382012912 4.445088033 6.638992819
3.733659266 0 6.497884652
4.304746956 2.399821812 6.567290989
2.294654207 0 6.530868468
2.295313201 0 6.530868468
2.294979921 0 6.530868468
2.295129445 0 6.530868468
4.599600543 2.988368347 6.577777545
2.295002922 0 6.530868468
4.165283174 0.269444839 7.998463401
4.02028889 0 6.396305005
3.426560412 0 6.650422302
4.441162392 0.394140975 6.683800888
4.248977944 0.60747647 6.683642715
4.482634099 2.94889919 6.550136664
2.294939734 0 6.530868468
2.298667213 0 6.52973184
2.345772926 0 6.499603846
6.030917672 5.10382227 6.89497467
4.577271241 0 6.598411597
2.295159016 0 6.530868468
2.330158428 0 6.496038061
5.245474628 1.836679167 7.998993291

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY
2.296986435 0 6.53892752
2.294639202 0 6.530868468
4.137655425 0 6.410406825
4.955723175 3.667153173 6.419912706
2.433021436 0 6.563139352
4.441406182 2.927559713 6.096939721
2.297264108 0 6.53892752
2.29483193 0 6.530868468
2.29502051 0 6.530868468
5.958414586 4.591708551 7.874263165
2.294577923 0 6.530868468
2.294920758 0 6.530868468
2.294671195 0 6.530868468
3.454583804 0 7.93600008
2.760652352 0 5.910445078
2.915807825 0 5.935052364
2.258390325 0 5.860265633
4.9307686 3.193638902 6.605107474

6.597119433 3.985078565 7.983563618
4.982680109 4.127240712 6.32622336
4.356458536 0 6.417698237
4.98598922 2.951925917 6.446828762
3.623639539 0 6.497884652
3.365807708 0 7.995181989
5.334365373 4.068465151 6.035730827
4.115510688 0 6.877406246
4.163910847 0 6.497884652
5.287804455 4.207579475 6.572551931
4.917674437 2.458886248 6.318474099
5.586331992 4.508373407 6.561306487
4.821959119 3.202715463 6.516518185
2.544826765 0 5.974830461
2.329866222 0 6.153356413
5.179280157 4.303255992 6.573206125
4.467429119 0 7.927776502
4.316136169 0 7.926069174
4.038051772 0 7.917869782
4.153434456 0 7.93152154
4.441803949 0 7.780490017
5.097277607 2.43668428 6.543951938
3.41737148 0 6.497884652

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY
4.610731649 2.152015628 6.68581953
3.941302849 0 7.998987038
4.026921653 1.852499945 6.464695388
2.649535825 0 5.589445261
5.049897405 3.89961076 6.642460579
2.328679917 0 5.862227917
4.138339841 0 6.417698237
4.47585472 0 7.776313108
5.034868575 2.488179651 6.394668199
3.321002224 0 5.997496784
3.361344469 0 6.535749259
5.35824472 4.396796299 6.579148586
3.967695937 0 6.497884652
5.289034099 2.213200384 7.05695537
2.673733682 0 6.436379637
2.473338857 0 6.497884652
3.302447264 0 6.497884652
3.258094291 0 6.480448376
4.884486487 2.266386129 6.578698604
3.314309123 0 7.998374087
4.205485806 0 7.927312134
4.972576007 3.22351651 6.589233028
3.590692802 0 6.497884652
4.265277681 0 7.920170245
4.395258429 0 6.450231726
4.280595634 0 6.29093337
3.801349375 0 6.497884652
2.855868199 0 6.497884652
3.040766301 0 6.497884652
4.06877138 0 6.719415702
4.469655097 0 7.901445667
3.521821281 0 7.918980839
2.244044716 0 5.809670488
3.560271109 0 6.497884652
4.510238829 0 7.942032612
3.440589843 0 6.421092436
3.942427942 3.084965637 5.949718001
4.194853593 0 6.433100348
4.042752619 0 6.497884652
4.952370832 3.51044725 6.655914168
2.949007111 0 5.681021902

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY
4.517077282 0.020393135 6.599033393
4.873116266 3.192076594 6.682816882
3.18619056 0 6.015548456
3.961854917 0 6.717667374
2.938541563 0 5.904659367
2.244044716 0 5.809670488
3.740301655 0 6.497884652
3.408559137 0 7.81835259
4.421767704 1.955565864 6.528199949
4.889881091 4.080367057 6.614560896
3.55705392 0 6.497884652
3.847562126 0 6.497884652
4.683639081 3.189745702 6.593136124
3.120867614 0 6.497884652
4.494347293 2.808535214 6.387448572
3.590930721 0 7.474678754
4.43589276 0 7.924875779
3.513839978 0 6.497884652
5.109330642 0 7.928653506
3.805065211 0 6.696397554
4.902661186 3.190142906 6.555858682
3.834712346 0 6.128108318
2.520830449 0 6.065012874
3.933574671 0.762670683 6.257227514
3.046336629 0 5.313254611
3.905956185 0 6.497884652
3.623504828 0 7.266887287
4.131767069 0 7.997699313
4.035109547 0 6.497884652
2.449333951 0 6.062043662
4.468556311 0 7.926680234
4.012265429 0.020393135 6.581870645
2.48198126 0 6.497884652
4.614002314 0.020393135 6.856402239
4.526147426 0 7.035102788
4.238204985 0.020393135 6.774073328
4.789055745 3.205876702 6.665481102
5.570017255 3.327596729 6.602102655
4.8211787 3.197740598 6.636600349

5.170584106 4.123284643 6.681036423
3.786191938 0 6.497884652

As we can see from the results the overall entropy and the section entropy of the malware
samples varies. We would expect that the malware fles would usually have high entropy
values because of the encryption and the packaging but the numbers show something
very diferent.

The values range from as low as 2.5 until as high as 6.5 with many fles to have an
average of 4.5 till 5.5. This is considered in many cases a value that can be found In
legitimate software as well.

That makes us further question how accurate is the entropy value of a fle to identify a
potential malicious fle, when many of the malwares tested that are available online have
reasonable entropy values that can also pass as legitimate.

10 Final Results

From the tests that we did and their results, we come to an interesting conclusion. Even
though malware authors choose to encrypt their fles resulting to an increased entropy, the
values can be modifed easily by using the same methodology in this thesis, by adding
new sections or surrounding the shellcode with a length of the same bytes to lower the
entropy.

Anti-virus vendors use the entropy value as an indicator among others to identify potential
malicious fles.

By looking at the results we can see that the entropy cannot be safely used for the
identifcation of malicious fles, but it can still be used to identify potentially packed or
encrypted fles.

However not only malicious fles are packed or encrypted. Many legitimate softwares have
these traits. For example software installers have packed in one executable all the
necessary fles and dependencies for the software to be installed and run. Software
authors use encryption techniques in their software to prevent reverse engineering to keep
the code hard to read, but also many legitimate executables have a high entropy value just
because they are big and have a big number of diferent and randomized characters in
their code.

11 Future Work

As a future work on this thesis the tests performed can be expanded to other Operating
Systems (OS). Specifcally Android, because of the popularity of it and the fact that a very
big percentage of current mobile devices have it pre-installed.

That reason has attracted the attention of malware authors, since the popularity of Android
on devices also brought in the ecosystem users who are not aware of the dangers of now
mobile malware, and not properly educated on the “on-line safety”.

Anti-virus vendors have released various solutions for protecting these devices by
applying similar login as the other Operating Systems, therefore we can assume that the
tests done in this thesis also apply in the case of android.

More specifcally, in the case of encrypted and packed malware the same logic will apply
in android as well. Creating test cases that show how can entropy can manipulated in the
mobile ecosystem will show how much value it has as a metric to identify potential
malicious application.

12 References

[1] “An HMM and structural entropy based detector for Android malware: An empirical

study” - Geradro Canfora, Francesco Mercaldo, Corrado Aaron Visaggio

[2] “Comparing fles using structural entropy” - Sorokin I

[3] “Structural entropy and metamorphic malware” - Baysa D

[4] “Information Theory and the Digital Age” - Aftab, Cheum, Kim, Thakkar, Yeddanapudi

[5] “The mathematical Theory of communication” - Shannon, Claude E, 1949

[6] “Entropy and Information Theory” - Robert M. Gray

[7] “Practical Malware Analysis” - Honig Andrew, Sikorski Michael, 2016

[8] “Hunting for metamorphic engines” - Wong W., Stamp M., 2006

[9] “Microsoft Portable Executable and Common Object File Format Specifcation”

[10] https://www.aldeid.com/wiki/PEiD

[11] http://ntinfo.biz/index.html

[12] http://wjradburn.com/software/PEview

[13] https://github.com/lsauer/entropy

[14] “Exploring Hidden Markov models for varus Analysis: A semantic Approach” -

T.Austin, E. Filiol, S. Josse, M. Stamp (2013)

[15] “Computer Viruses and Malware” - J. Aycock , 2006

[16] “Diference between a computer virus and a computer worm” -

http://scienceline.ucsb.edu/getkey.php?key=52

[17] “Classifcation of Malware Using Structured Control Flow” - S. Cesare and Y. Xiang

(2010)

“Pattern Recognition and Machine Learning” - C. Bishop. (2006)

https://www.aldeid.com/wiki/PEiD
https://github.com/lsauer/entropy
http://wjradburn.com/software/PEview
http://ntinfo.biz/index.html

[18] “A Survey of Malware Detection Techniques” - N. Idika and A. Mathur (2007)

[19] “A Short Introduction to Boosting” - Y. Freund and R. Schapire (1999)

[20] “Learning to Detect and Classify Malicious Executables in the Wild” - S. Kolter and M.

Maloof (2006).

[21] “Hidden Markov Models for Malware Classifcation” – Chinmayee Annachhatre

(2013)

[22] “Panda Security (n.d.). Virus, worms, trojans and backdoors: Other harmful relatives

of viruses” - http://www.pandasecurity.com/homeusers-cms3/security-info/about-

malware/generalconcept

[23] “A tutorial on hidden Markov models and selected applications in speech recognition”

- L. Rabiner (1989).

[24] “https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx”

[25] “https://technet.microsoft.com/en-us/library/dd632948.aspx”

[26] “Boot sector virus repair” - M. Landesman

[27] “What is the diference between viruses, worms, and Trojans?” - Symantec (2009)

[28] “Trojan Horse” - Symantec (2004)

[29] “Information Security: Principles and Practice , second edition” - M. Stamp (2011)

[30] “Metamorphic Detection via Emulation, Masters Thesis, San Jose State University” -

S. Priyadarshani (2011)

[31] “Pattern Recognition and Machine Learning” - C. Bishop. (2006)

[32] “Toward an Automatic, Online Behavioral Malware Classifction System” - R.

Canzanese, M. Kam, and S. Mancoridis

[33] “Support-Vector Networks. Machine Learning” - C. Cortes and V. Vapnik(1995)

https://technet.microsoft.com/en-us/library/dd632948.aspx
https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx

	1 Abstract
	2 Acknowledgements
	3 Table of contents
	4 Information Theory - Entropy
	5 Portable Executable
	5.1 Basic Structure

	6 Malware
	6.1 Malware Detection Techniques
	6.1.1 Signature Based Detection
	6.1.2 Anomaly Based Detection
	6.1.3 Heuristics Based Detection

	7 Malware Classification Methods
	7.1 Classification of Malware using Structured Control Flow
	7.2 Behavioral Malware Classification
	7.3 Instance-based Learner
	7.4 Support Vector Machines (SVM)
	7.5 Naϊve Bayes
	7.6 Data mining methods
	7.7 Decision Trees
	7.8 Boosted Classifiers
	7.9 Structural Entropy
	7.10 Hidden Markov Model Based Detection

	8 Malware Analysis Techniques
	8.1 Malware Static Analysis
	8.1.1 Static Analysis Techniques

	8.2 Malware Dynamic Analysis
	8.2.1 Function Call Monitoring
	8.2.2 Function Parameter Analysis
	8.2.3 Information Flow Tracking
	8.2.4 Instruction Trace
	8.2.5 Autostart Extensibility Points

	9 Testing Methodology
	9.1 File Entropy
	9.2 File entropy Manipulation
	9.2.1 Methodology Steps
	9.2.2 Entropy of test PE
	9.2.3 Adding new section to test PE
	9.2.4 Adding section with shellcode to test PE
	9.2.5 Adding mofidied shellcode to new section to test PE

	9.3 Creating PE from shellcode
	9.3.1 Adding section to generated PE

	9.4 Summary Table
	9.5 Entropy of Malware Samples

	10 Final Results
	11 Future Work
	12 References

