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1 Abstract

In today’s world internet has become a necessity not only for businesses but also for a 
person’s  daily  life.  Communication,  trade,  information,  entertainment  and  many  other 
functionalities are provided to us by being “online”. However together with the evolution of 
software to help in our day to day activities, the malicious software came to rise. Starting 
from being created just for fun and ending up created for fnancial gain, the IT industry 
face a huge challenge. Malicious software is being created every day and new variations 
of the same exploits are found every week. The security industry is on cat and mouse race 
with malware authors to stay ahead and provide a shield from the dangers on the internet. 

However this becomes a bigger challenge as the time goes by because more and more 
checks need to be done from a security standpoint when checking if a piece of code or 
executable is safe or not. These checks many times are very clear on the defnition and 
identifcation of malicious fles but many times the checks are vague and do not pose a 
clear factor on identifying potential threats. One of those checks is the value of entropy on  
the fles that the anti-virus vendors use to identify a possible malware. 

On  this  thesis  we will  explore  the  defnition  of  entropy  as  well  a  possible  process  of  
modifying this value to reach lower levels that could be found on a legitimate software.
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4 Information Theory - Entropy

Information can be thought of as being stored in or transmitted as variables that can take 
on diferent values. A variable can be thought of as a unit of storage that can take on, at 
diferent times, one of several diferent specifed values, following some process for taking 
on those values. Informally, we get information from a variable by looking at its value, just  
as we get information from an email by reading its contents. In the case of the variable, the 
information is  about  the process behind the variable.  The entropy of  a variable is  the 
"amount of information" contained in the variable. This amount is determined not just by 
the number of diferent values the variable can take on, just as the information in an email 
is quantifed not just by the number of words in the email or the diferent possible words in 
the language of the email. Informally, the amount of information in an email is proportional 
to the amount of “surprise” its reading causes. For example, if an email is simply a repeat  
of an earlier email, then it  is not informative at all. On the other hand, If say the email 
reveals the outcome of a clifhanger election, then it is highly informative. Similarly, the 
information in a variable is tied to the amount of surprise that value of the variable causes  
when revealed. 

Shannon’s entropy quantifes the amount of information in a variable, thus providing the 
foundation for a theory around the notion of information.

In  the  IT  world  the  Values  of  entropy  range  from  1  to  7  are  used  to  represent  the 
predictability of the next character or byte in a sequence of characters or bytes.

Values closer to 1 means that the entropy is lower therefore the information we can get is  
lower. Meaning that we can “guess” with a higher probability the next character or byte in  
line. 

Values closer to 7 means that the entropy is higher therefore the information we can get is 
higher. Meaning that we can “guess” with a lower probability the next character or byte in  
line. 

5 Portable Executable

The Portable Executable (PE) format is a fle format for  executables,  object code,  DLLs, 
FON  Font  fles,  and  others  used  in  32-bit  and  64-bit  versions  of  Windows operating 
systems. The PE format is a data structure that encapsulates the information necessary 
for  the  Windows  OS  loader  to  manage  the  wrapped  executable  code.  This  includes 
dynamic library references for linking, API export and import tables, resource management 
data and  thread-local  storage (TLS) data. On  NT operating systems, the PE format is 
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used for  EXE,  DLL,  SYS (device driver), and other fle types. The  Extensible Firmware 
Interface  (EFI) specifcation  states  that  PE  is  the  standard  executable  format  in  EFI 
environments.[24]

5.1 Basic Structure

A Portable Executable (PE) basically contains two sections, which can be subdivided into 
several sections. One is Header and the other is Section. The diagram below shows a 
visualized version of the PE. 

1. DOS Header

DOS header starts with the frst 64 bytes of every PE fle. It’s there because DOS can 
recognize it as a valid executable and can run it in the DOS stub mode. 

Image 1: PE fle format
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2. DOS Stub

The DOS stub usually just  prints a string, something like the message, “This program 
cannot be run in DOS mode.”, which is shown when the PE tries to run in DOS mode. It  
can be a full-blown DOS program. When building applications on Windows, the linker 
sends instruction to a binary called winstub.exe to the executable fle. This fle is kept in the 
address 0x3c, which is ofset to the next PE header section.

3. PE File Header

Like other executable fles, a PE fle has a collection of felds that defnes what the rest of 
fle looks like. The header contains info such as the location and size of code,

4. Characteristics

 Signature: It only contains the signature so that it can be easily understandable by 
windows loader. The letters P.E. followed by two 0’s tells everything.

 NumberOfSections: This defnes the size of the section table, which immediately 
follow the header.

 SizeOfOptionalHeader: This lies between top of the optional header and the start 
of the section table. This is the size of the optional header that is required for an  
executable fle. This value should be zero for an object fle.

 Characteristics:  This is the characteristic fags that indicate an attribute of the 
object or image fle. It has a fag called Image_File_dll, which has the value 0x2000, 
indicating that the image is a DLL. It has also diferent fags that are not required for 
us at this time

 Image_Optional_Header: This optional header contains most of the meaningful 
information about the image, such as initial stack size, program entry point location, 
preferred base address, operating system version, section alignment information, 
and so forth. We can see the information in the snapshot below.

5. The Section Table

This  table  immediately  follows the optional  header.  The location of  this section of  the 
section table is determined by calculating the location of the frst bytes after header. For  
that, we have to use the size of the optional header. The number of the array members is 



determined  by  NumberOfSections  feld  in  the  fle  header  (IMAGE_FILE_HEADER) 
structure. The structure is called IMAGE_SECTION_HEADER.

The number of entries in the section table is given by noofsectionfeld in the fle header. 
Each section header has at least 40 bytes of entry. We will discuss some of the important  
entries below.

 Name: An 8-byte null-padded UTF8 encoding string. This is can be null.

 VirtualSize: The actual size of the section’s data in bytes. This may be less than the 
size of the section on disk.

 SizeOfRawData: The size of section’s data in the fle on the disk.

 PointerToRawData:  This  is  so  useful  because  it  is  the  ofset  from  the  fle’s 
beginning to the section’s data.

 Characteristics: This fag describes the characteristics of the section.

6. The PE File Section

This section contains the main content of  the fle, including code, data, resources and 
other executable fles. Each section has a header and body.

An application in Windows NT typically has nine diferent predefned sections, such as 
.text,  .bss,  .rdata,  .data,  .rsrc,  .edata,  .idata,  .pdata,  and  .debug.  Depending  on  the 
application, some of these sections are used, but not all are used.

The Executable  Code:  In  Windows,  all  code segments  reside in  a  section called .text  
section or CODE. We know that windows uses a page-based virtual system, which means 
having one large code section that is easier to manage for both the OS and application  
developer. This also called as entry point and thunk table, which points to IAT. We will 
discuss the thunk table in IAT.

 The .bss represents the uninitialized data for the application.

 The .rdata represents the read-only data on the fle system, such as strings and 
constants.

 The .rsrc is a resource section, which contains resource information of a module. In 
many cases it shows icons and images that are part of the fle’s resources.



 The .edata section contains the export directory for an application or DLL. When 
present,  this  section  contains  information  about  the  names  and  addresses  of 
exported functions. We will discuss these in greater depth later.

 The .idata section contains various information about imported functions, including 
the import  directory and import  address table.  We will  discuss these in  greater 
depth later.

6 Malware
Is a software program developed to perform malicious activities on a computer and refers 
to a variety of diferent forms of hostile or intrusive software. There can be any reasons for 
writing  malware  varying  from  simple  pranks  to  organized  internet  crimes.  The  early 
infectious programs were written as pranks. These days, malware is widely used to steal 
personal,  fnancial,  business  information.  Malware  includes  all  families  of  viruses, 
computer worms, Trojans, backdoor, spyware, adware, scareware, ransomware. A brief 
overview of diferent types of malware is given below.[25]

 Virus: A  virus is  a  type of  malware that  replicates itself  by  inserting copies or 
modifed copies of itself into other programs. It is designed to change the way the 
computer operates. They can live anywhere. It can live on the boot sector. If it lives 
on the boot  sector,  it  can take control  before anything else.  It  establishes itself 
before any antivirus software starts or operating system security is enabled. It can 
also live in the memory. It can enter the computer by any way the user interacts with 
the computer (i.e. open an email, plug in an external storage device, open a website 
that  is  infected,  open  malicious  fles  etc).  They  have  the  ability  to  reproduce 
themselves by infecting other fles and programs with malicious code. When they 
are  run,  they  are  able  to  carry  out  a  range  of  usually  malicious  actions  in  the 
computer  or  simply  annoying.  Virus  writers  constantly  modify  their  software  to 
evade the detection techniques.  The prominent  methods to evade the detection 
techniques are encryption, polymorphism and metamorphism. [26][22][15]

 Polymorphic Virus: A polymorphic virus has, for all practical purposes, an infnite 
number of decryptor loop variations that’s morphed with each generation. Tremor, 
for example, has almost six billion possible decryptor loops! Polymorphic viruses 
clearly can’t be detected by listing all the possible combinations. The techniques 
such as emulation can be used for polymorphic virus detection.[15]

 Encrypted Virus: Antivirus software searches for a signature (a specifc bit string) 
for virus detection. The simplest method to hide the virus body is to encrypt it with  
diferent encryption keys. As a result of this, the detection of a virus becomes a 
difcult task. The idea of an encrypted virus is to encrypt the signature in order to 
evade signature detection. However, it is still possible to search for an encrypted 



signature too. Thus, the encrypted virus is not a reliable way of evading signature 
detection. The only part that is constant in the encrypted virus is the decryptor loop. 
Antivirus software will exploit this fact for detection, so the next logical development  
is to change the decryptor loop’s code with each infection. [15]

 Metamorphic  Virus: Virus  writers  modifed  the  malware  furthermore  to  avoid 
emulation detection.  The metamorphic  virus is  also called as body polymorphic 
virus.  The  appearance  of  the  virus  changes  before  infecting  any  system.  The 
detection of a metamorphic virus is very challenging. The morphed virus has the 
same functionality but a diferent structure. Hence the detection of  metamorphic 
virus is difcult. 

 Worm: A  computer  worm  is  a  standalone  malware  computer  program  that 
replicates itself in order to spread to other computers. Worms are programs that 
replicate themselves from system to system without the use of a host fle. Unlike 
viruses,  which  requires  the  spreading  of  an  infected  host  fle.  Worms  replicate 
themselves damaging fles, but can reproduce rapidly,  saturating a network and 
causing it to collapse. [16][27][22]

 Trojan: A  Trojan  is  a  type  of  malware  which  appears  to  perform  a  desirable 
function but instead inserts a malicious payload to the target. An crucial diference 
between Trojan and a virus is that the Trojan does not replicate itself. They pose as 
legitimate programs that users know and they intend to use but when these are 
executed, they install a malicious payload into the target host for various purposes 
that the trojan author created them. The Trojans have the capacity of deleting fles, 
destroying  information  on  the  hard  drive,  or  open  a  backdoor  to  the  security 
systems. [27][28][22]

 Trapdoor/Backdoor: A  trapdoor/backdoor  is  a  program  which  bypasses  the 
security check in place of personal network or corporate. This allows a malicious 
user to carry out various actions on the infected computer that can compromise 
user confdentiality or disrupt the actions that are being carried out. The actions that 
a backdoor allow malicious users to carry out can be extremely damaging for for 
the user but also for others in the network. They could allow them to delete fles, 
destroy all the information on the hard disk, capture confdential data and send it 
out to an external address or open communications ports, allowing remote control 
of the computer. [15][22]

 Ransomware:  A  type  of  malicious  software  that  threatens  the  victim  with 
publishing its private confdential information or blocking the access to its data by 
encrypting them. To gain access to its data or not publishing the victim’s private 
information to  the internet,  ransomware authors  demand a “ransom”,  usually  in 
some kind of cryptocurrency before they provide the victim with the unlocking code 



for their fles. These types of attack come along with a time limit that the victim has 
to  sent  the  ransom  before  the  data  stays  forever  encrypted  or  the  data  are 
published online.

6.1 Malware Detection Techniques
As  malware  writers  fne-tune  their  software  by  making  it  better  to  evade  signature 
detection, the anitivirus companies are improving their detection techniques as well. 

6.1.1 Signature Based Detection
Signature based detection is a simple and most commonly used technique in antivirus 
software.  They  are  popular  because  of  accurate  detection,  simplicity  and  speed.  In 
signature based detection, the scanner scans each executable and looks for specifc string 
or pattern of bits (signatures). Antivirus software has a database of signatures for diferent  
viruses. By comparing the signature, it detects the virus. The disadvantage is that only the 
known  malware  can  be  detected.  If  the  signature  is  not  known,  malware  cannot  be 
detected. The signature fle must be kept up to date. By using simple code obfuscation 
techniques, malware can easily evade the signature based detection. [29][30]

6.1.2 Anomaly Based Detection
The problem of detecting new malwares in signature based detection can be overcome 
using anomaly based detection. Heuristic methods are implemented to detect anomalous 
behavior. This technique comprises of two phases - the training phase and the detection 
phase. In the training phase, the model is trained with the normal behavior. Anything other 
than the normal  behavior is considered as malicious behavior.  However,  there can be 
more false positives in this technique.[18][29]

6.1.3 Heuristics Based Detection
Unlike  signature-based  detection,  which  looks to  match signatures  of  fles  against 
a database of known malware, heuristic scanning uses rules and/or algorithms to look for 
commands which may indicate malicious intent. When using this method, some heuristic 
scanning methods are able to detect malware without needing a signature comparison. 
This is why most antivirus programs use both signature and heuristic-based methods in 
combination,  in  order  to  catch any  malware that  may try  to  evade detection  by using 
obfuscation techniques or any new malware that has not been discovered yet.



7 Malware Classifcation Methods

7.1 Classifcation of Malware using Structured Control Flow
Control fow represents the execution path that a program can take.  In related research it  
has been shown that malware can be efectively be characterized by its control fow. The 
authors have proposed a malware classifcation system using approximate matching of 
control fow patterns. The result of distances can be calculated between the control fow 
signatures and the structured graphs of the malware in the database. The threshold is 
decided.  If  the  edit  distance  exceeds  a  particular  threshold,  then  the  binary  can  be 
classifed as a malicious binary, else it is a benign binary. Control fow is more invariant  
among polymorphic and metamorphic malware. The research shows that the proposed 
method could successfully identify variants of malware.[17]

7.2 Behavioral Malware Classifcation
Classifcation systems generally fall into one of two categories:”Those that rely on features 
extracted from static fles, or those that execute malware and use behavioral features to 
classify malware. Static approaches sometimes use low-level  features such as calls to 
external libraries, strings, and byte sequences for classifcation. Other static approaches 
extract  more  detailed information  from binaries,  including  sequences  of  API  calls,  the 
graphical representations of control fow. Although the variants in a malware family have 
diferent static signatures, they share characteristic behavioral patterns resulting from their  
common generation machine. It has been already described an automatic classifcation 
system that  can be  trained  to  accurately  identify  new  variants  within  known malware 
families, using observed
similarities in behavioral extracted monitoring live computer hosts.”In the feature selection 
used in, the authors have selected a set of observable features that are easily extracted 
from live computer  hosts,  and whose values can be used to infer  whether a detected 
malware sample belongs to particular category or family. [20][17][32][31]

7.3 Instance-based Learner
One  of  the  simplest  learning  methods  is  the  instance-based  (IB)  learner.  Its  concept 
description is a collection of training examples or instances. Learning, therefore, is the 
addition of new examples to the collection.“An example is found in the collection that is 
most similar to the unknown and the examples class label is returned as its prediction for  
the unknown. The authors have used the number of  values the two instances have in 
common as the measure of similarity. In the variation of this method, such as IBk, the k 
most similar instances are found and the majority vote of their class labels is returned as 
the prediction.”Values for k are typically odd to prevent ties.  These are also called as 
nearest neighbor and k-nearest neighbors.[20]



7.4 Support Vector Machines (SVM)
Support  Vector  Machines  are  supervised  learning  models  with  associated  learning 
algorithms that analyze data and recognize patterns, used for classifcation.

7.5 Naϊve Bayes
Naϊve Bayes is a probabilistic method that has a long history in information retrieval and 
text classifcation.:It stores as its concept description the prior probability of each class, 
and the conditional probability of each attribute value given the class. These quantities are 
estimated by counting in training data the frequency of occurrence of the classes and the 
attribute values for each class.”The Bayes rule is used to compute the posterior probability 
of each class given an
unknown instance, returning as its prediction the class with highest such value.[20]

7.6 Data mining methods
In  related  researches  the  authors  have  extracted  the  byte  sequences  from  the 
executables,
converting  these  into  n  -grams,  and  constructed  several  classifers:  instance-based 
learner, Naϊve Bayes, decision trees, support vector machines and boosting.”They viewed 
each  n-grams  as  a  Boolean  attribute  that  is  either  present  in  or  absent  from   the 
executable.  They  have shown that  the  boosted decision  trees  outperformed the  other 
methods.”The following section shows the methods used in their research.[20]

7.7 Decision Trees
The decision trees are built based on the training data. The internal nodes of a decision 
tree correspond to attributes and leaf nodes correspond to class labels.”The performance 
element uses the attributes and their values of an instance to traverse the tree from the 
root to a leaf. It predicts the class label of the leaf node. It creates a node, branches, and 
children for the attribute and its values, removes the attribute from further consideration,  
and  distributes  the  examples  to  the  appropriate  child  node.  This  process  repeats 
recursively until a node contains examples of the same class, at which point, it stores the 
class label. In an efort to reduce over training, most implementations also prune induced 
decision trees by removing subtrees that are likely to perform poorly on test data. The 
malware classifcation based on the decision trees is very fast  and also accurate.”The 
disadvantage of the decision trees is that an error in higher level of the tree may cause an  
error in the lower part of the tree.[20]



7.8 Boosted Classifers
Boosting is  a method for  combining multiple classifers.  A set  of  weighted models  are 
produced by iteratively learning a model from a weighted dataset.”The generated model is 
then evaluated. The dataset is re-weighted based upon the model’s performance.  The 
authors  have provided a method of  detecting  unknown malicious  code in  executables 
using  machine  learning.  They  have  extracted  byte  sequences  from  the  executables, 
converted these into n-grams, and constructed several classifers: naϊve Bayes, boosted 
SVMs and boosted decision trees.”The results of their experiments have shown that the 
boosted decision trees outperformed other methods and achieved a true-positive rate of 
0.98 and a false-positive rate of 0.0. [19][20]

7.9 Structural Entropy
The method of structural entropy lies in the static analysis of fles and produces a similarity 
measure, i.e. evaluates to which extent the two fles can be considered similar. The only 
thing of importance is fle structure, that is, the order of its distinctive code and data areas. 
The entropy measure provides a sort of signature of a fle, by computing the distribution of 
bytes within the fle. The assumption is that diferent malware samples of the same family 
have  a  similar  order  of  code and  data  areas;  as  a  matter  of  fact  each  area  may  be 
characterized  not  only  by  its  length,  but  also  by  its  homogeneity.  Authors  in  related 
research identify as structural entropy this characteristic of an application. The approach 
consists  of  using  discrete  wavelet  transform (DWT)  for  the  segmentation  of  fles  into 
segments of diferent entropy levels and using edit distance between sequence segments 
to determine the similarity of the fles. The method comprises two steps: fle segmentation 
and sequence comparison. The frst step splits each fle into segments of varying entropy 
levels using wavelet analysis applied to raw entropy measurements.[2][3]

7.10 Hidden Markov Model Based Detection
Hidden Markov models (HMMs) are generally used for statistical pattern analysis. They 
can be used in speech recognition, malware detection and biological sequence analysis. 
The following  sections  give an  overview of  the introduction to  HMM and its  usage in 
detection of malware.
A statistical model that has states and known probabilities of the state transitions is called 
a  Markov  model.  In  such  a  Markov  model,  the  states  are  visible  to  the  observer.  In 
contrast, a hidden Markov model (HMM) has states that are not directly observable. HMM 
is a machine learning technique. HMM acts as a state machine. Every state is associated 
with a probability distribution for observing a set of observation symbols. The transition 
between the states have fxed probabilities. We can train an HMM using the observation 
sequences to represent a set of data. We can match an observation sequence against a 
trained HMM to determine the probability of seeing such a sequence. If the probability is 
high, the observation sequence is similar to the training sequence.



When an HMM is trained, it can be used to distinguish between a malware and a benign 
fle. There is a lot of previous work done on the use of HMM for malware detection. The 
dataset is tested against the trained models. There is a range of values of scores for which 
the scores of the malware and the benign fles do not overlap. This is known as threshold. 
Using this threshold, the malware can be distinguished from the benign fles.[1][21]

8 Malware Analysis Techniques

8.1 Malware Static Analysis

Basic static analysis consists of examining the executable fle without viewing the actual  
instructions.  Basic  static  analysis  can  confrm  whether  a  fle  is  malicious,  provide 
information about its functionality, and sometimes provide information that will allow you to 
produce simple network signatures. Basic static analysis is straightforward and can be 
quick, but it’s largely inefective against sophisticated malware, and it can miss important  
behaviors.[7]

8.1.1 Static Analysis Techniques

 File Fingerprinting: During the File Fingerprinting for every fle under investigation a 
cryptographic hash value will be computed.[7]

 Virus Scanning: The fles under investigation will be scanned with diferent antivirus 
vendors to identify any possible warnings.[7]

 Analyzing memory artifacts: During this process memory artifacts will be analyzed 
such as Ram dump, page fle.sys hiberfle.sys, so that they can be identifed any 
possible rogue processes.[7]

 Packer Detection: Almost always the malware will  be packed with some kind of  
packer. The fles will need to be analyzed and their packer will need to be identifed.
[7]

 Disassembly:  Many  times  malwares  use  dynamic  linking  in  their  code.  The 
Dependencies can be analyzed using various tools while it can also be done by 
disassembling the executable.[7]



8.2 Malware Dynamic Analysis 

8.2.1 Function Call Monitoring
Typically, a function consists of code that performs a specifc task, such as calculating the  
factorial value of a number or creating a fle. While the use of functions can result in easy 
code re-usability, and easier maintenance, the property that makes functions interesting 
for  program analysis  is  that  they  are  commonly  used to  abstract  from implementation 
details to a semantically richer representation. For example, the particular algorithm which 
a sort function implements might not be important as long as the result corresponds to the 
sorted input. When it comes to analyzing code, such abstractions help gain an overview of  
the behavior of the program. One possibile way to monitor what functions are called by a 
program is to intercept these calls.  The process of  intercepting function calls is called 
hooking. The analyzed program is manipulated in a way so that, in addition to the intended 
function, a hook function is invoked. This hook function is responsible for implementing the 
required analysis functionality,  such as recording its invocation to a log fle, or analyze 
input parameters.[7]

8.2.2 Function Parameter Analysis
While  function  parameter  analysis  in  static  analysis  tries  to  infer  the  set  of  possible 
parameter values or their types in a static manner, dynamic function parameter analysis 
focuses on the actual values that are passed when a function is invoked. The tracking of 
parameters and function return values enables the correlation of individual function calls 
that  operate  on  the  same object.  For  example,  if  the  return  value  (a  fle-handle)  of  a  
CreateFile  system  call  is  used  in  a  subsequent  WriteFile  call,  such  a  correlation  is 
obviously  given.  Grouping  function  calls  into  logically  coherent  sets  provides  detailed 
insight into the program’s behavior from a diferent, object-centric, point-of-view.[7]

8.2.3 Information Flow Tracking
An  orthogonal  approach  to  the  monitoring  of  function  calls  during  the  execution  of  a 
program, is the analysis on how the program processes data. The goal of information fow 
tracking is to shed light on the propagation of “interesting” data throughout the system 
while a program manipulating this data is executed. In general, the data that should be 
monitored is specifcally marked (tainted) with a corresponding label. Whenever the data is 
processed by the application,  its  taint-label  is  propagated.  Assignment  statements,  for  
example, usually propagate the taint-label of the source operand to the target. Besides the 
obvious  cases,  policies  have  to  be  implemented  that  describe  how  taint-labels  are 
propagated  in  more  difcult  scenarios.  Such scenarios  include  the  usage of  a  tainted 
pointer as the base address when indexing to an array or conditional expressions that are 
evaluated on tainted values.[7]



8.2.4 Instruction Trace
A valuable source of information for an analyst to understand the behavior of an analyzed 
sample is  the instruction trace.  That is,  the sequence of  machine instructions that  the 
sample  executed  while  it  was  analyzed.  While  commonly  cumbersome  to  read  and 
interpret, this trace may contain important information not represented in a higher level  
abstraction (e.g., analysis report of system and function calls).[7]

8.2.5 Autostart Extensibility Points
Autostart  extensibility  points  (ASEPs)  defne  mechanisms  in  the  system  that  allow 
programs to be automatically invoked upon the operating system boot process or when an 
application is  launched.  Most  malware components  try to persist  during reboots of  an 
infected host  by adding themselves to one of  the available  ASEPs.  It  is,  therefore,  of 
interest to an analyst to monitor such ASEPs when an unknown sample is analyzed.[7]



9 Testing Methodology

9.1 File Entropy
The entropy of a fle is also used from antivirus vendors to identify potential malwares. 
When fles are packet or encrypted their entropy is increased because of the compression 
algorithm or the packer. 

Malware authors that wants to avoid being detected will encrypt their malwares therefore 
increasing their entropy. 

On the following sections of the paper we will  see how it’s possible to alter the overall 
entropy of a fle but also alter the overall entropy of a section of a fle that contains malware 
code. 

9.2 File entropy Manipulation
For our experiment we will need to calculate the entropy of a fle in 2 diferent ways: 

The overall entropy of a fle. We will calculate the fle entropy by treating the fle like a long 
sequence of bytes ignoring its structure. This test will be done by using an open source 
tool name “ent” (available in github), which the only thing that it does is measuring the 
entropy of a fle regardless of the type we will also use PEid which is a tool that is used to  
identify if a fle is packed, the type of packer and the entropy of a fle. 

The Section entropy of  a fle:  We will  calculate the section entropy,  by calculating the 
entropy of the diferent sections in the PE (.text, .data, .bss etc) . For this test we will use  
python code and the “pe” library for python that is already available in github as well as a  
software called DIE (Detect It Easy) which among other things it has the functionality of 
calculating the section entropy of a fle, which will be used to verify our results.

For both test cases we will use python code to add a section to a PE fle. The new section 
will contain either a long sequence of “NOP” instructions, a shellcode or a shellcode with 
NOP instructions before and after the shellcode. This will help us test how it will afect the 
overall entropy and the section entropy of the fle. 



9.2.1 Methodology Steps
The test steps will be as follows: 

1. Creating a new section with NOPs on a legitimate PE.
2. Creating a new section with a shellcode on a legitimate PE 
3. Creating a new section with a shellcode that will contain NOPs before and after the 

shellcode

9.2.2 Entropy of test PE 
For testing purposes we will use the putty.exe PE that is free to download and is used very 
often  for ssh connections from windows machines. 

After Downloading putty from its website (https://putty.org) we frst test its entropy. 

As it can be seen from the image the entropy of putty.exe is 6.726460. 
If we recall the information theory the entropy values range from 1 till 7, with 7 representing 
high randomness or very low possibility of guessing the next character in line. 
Such high values can be found also in packed executables or compressed. 
We test the entropy values both with PEid and DIE tools to verify the result.



As we can see “ent” and “DIE” tools report the same entropy values, unlike PEid which 
has a slightly lower value. 
This can be attributed to the possible diferent algorithms between those tools. 



9.2.3 Adding new section to test PE

Next step will be to create a new section in putty.exe with the name .axc that will contain a 
long sequence of NOP instructions (1274, the value was selected to be big enough so that  
it can fll up the section as much as possible) and we will again compare it with the same 
tools but also we will use a tool called PE view to take a look inside the code of the new 
section that we will create. 

We can see here that the new section resulted in a slight drop of entropy of about 0.04. 
Such small result is expected as the fle is very big (more than 700KB) compared to our 
section (~1KB), which is not enough to create a big diference.



We can confrm as well from PEid that the entropy dropped in this case only a 0.01. 

Here we can see not only the entropy that is identical to the value of “ent” but we can also 
see all the sections along with the new section entropy that we added and its only 1.4729. 



With the python code we can verify our fndings about the new section and its entropy 
(1.4719)

The results from both “DIE” and the written python code resulted in the new section having 
an entropy of around 1.4 instead of lower that one would expect. This is expected as the 
screenshot above shows at the end of the section there are garbage values that were 
added at the moment of the creation, thus resulting in an entropy higher than expected. If  
the whole section however was fled only with NOPs the entropy value would be lower.



9.2.4 Adding section with shellcode to test PE

Next step will be to add a small shellcode to the test PE and test its overall and section  
entropy.

The shellcode that we are going to use has been generated from msfvenom for Microsoft  
Windows  and  its  functionality  is  a  simple  message  box  popup.  For  demonstration 
purposes we don’t need a bigger or more sophisticated shellcode.

Here we can see that the addition of the new section with the shellcode actually causes a  
minor reduction in the overall entropy of the original PE fle, instead of increasing it.



The entropy of the section where the shellcode is stored has a value of 6.68 which also  
explains the minor reduction of the overall entropy value.



PEid does not report any changes to the entropy value which would considered normal  
since the shellcode itself is very small compared to the overall size of the executable.

We can verify our fndings about entropy from DIE as well both the overall and the entropy 
values of all the sections.



From PEView we can see the actual size of the section as well as the contents

9.2.5 Adding mofdied shellcode to new section to test PE

In this step we are going to modify our shellcode to check if we can modify the section 
entropy that it is located. This is going to be accomplished by surrounding the shellcode 
with NOPs before and after. 



By following the same procedure as the previous steps we gather the following results



As we can see from the above screenshots we get the following results:

1. The overall entropy of the fle reduced slightly but not as much as when we added 
only the shellcode. This will be explained later. 

2. The section entropy where the shellcode is is now reduced to a value around 5.3, a 
diference of 1.3 less from when the shellcode was not surrounded with NOPs.

3. PEid reports that the overall  entropy of  the fle was not reduced which again is 
expected if we compare the size of the section and the size of the whole fle. 

4. DIE reports values overall and section very similar to the values reported from ent 
and our python code. 

5. In  the  fnal  Screenshot  we  can  see  the  shellcode  surrounded  with  NOPs  as 
expected. However because the shellcode size and the number of NOPs that we 
inserted was lower than the size of the section we created, it was observed the 
same issue as a previous example. For the bytes of the section that we didn’t fll,  
they were flled with random values, thus raising the section entropy to 5.3. If we 
had flled the whole section with only the shellcode and NOPs the entropy value 
would be much lower that the one that we got. This is also the reason that when we 
used ent we got a slightly higher entropy value. 

 



9.3 Creating PE from shellcode

For this part we will generate an executable from msfvenom that will be encrypted. The 
shellcode that will be used will be a bind tcp shell shellcode encoded with shikata_ga_nai. 

We test the results using the way we did for the previous parts





The results we get are the following:

 The overall entropy of the PE is high at 6.31 using ent and DIE and 6.48 using PEid

 The high value is expected as the the shellcode has been encrypted 

9.3.1 Adding section to generated PE 

In this part we will use the PE that we generated from msfvenom and we will add to in a  
section that will be flled with NOPs to test the efect on the overall entropy of the fle. 

The check the results using the same method.





As we can see the results are what we would expect:

The  Overall  entropy  using  all  the  tools  (ent,  PEid,  DIE)  has  been  lowered.  Not  by  a 
signifcant amount since the size of the PE is 72KB and the section that we are creating is  
around 1KB. Also something else that we need to take into account is that the section is 
not full with NOP instructions. 



9.4 Summary Table 

The following  table  represents  a  summary  of  the fndings  for  the fles that  we tested, 
focusing on the overall entropy and on the entropy of the new section we created (.axc)

File Type
Measure Method

File Name
ent Peid DIE DIE (.axc) python(.axc)

Original Test PE 6.72646 6.43 6.72646 N/A N/A putty.exe
Added NOP Section 6.685167 6.42 6.68517 1.4729 1.4719 putty_modified.exe
Added Shellcode section 6.683808 6.43 6.68381 6.68672 6.6838 putty_shellcode.exe
Added modified shellcode 6.684562 6.43 6.68456 5.3825 5.3815 putty_modified_shellcode.exe
Shellcode Executable 6.318871 6.48 6.31889 N/A N/A msfvenom_file.exe
Modified shellcode 5.93261 6.36 5.93262 1.06577 1.06541 msfvenom_file_modified.exe



9.5 Entropy of Malware Samples

As  part  of  the  testings  a  number  of  malware  samples  available  online  on  diferent 
repositories were tested for their entropy values. 

The Following table represents a small sample of the 3700 fles that were tested.

The Collumn “AVG_ENTROPY” refers to the overall entropy of the fle while the “MIN” 
and “MAX” entropy collumns refer to the minumum and maximum entropy values of the 
sections

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY
4.426297303 2.867124198 6.096939721
5.214709787 4.084872622 6.673501782
3.173186073 0 7.999371708
2.294760411 0 6.530868468
2.294783725 0 6.530868468
2.327657194 0 6.631747641
6.017597431 3.402931054 7.902031708
2.300557835 0 6.562232258
2.295011308 0 6.530868468
2.297530702 0 6.564721241
4.479505412 0 6.449717905
2.305030692 0 6.562232258
2.294803859 0 6.530868468
6.227480168 4.184278832 7.947140697
5.99050511 4.619834149 7.997200275
3.925425342 0 7.790831956
3.973397216 1.892199801 6.516178183
5.382012912 4.445088033 6.638992819
3.733659266 0 6.497884652
4.304746956 2.399821812 6.567290989
2.294654207 0 6.530868468
2.295313201 0 6.530868468
2.294979921 0 6.530868468
2.295129445 0 6.530868468
4.599600543 2.988368347 6.577777545
2.295002922 0 6.530868468
4.165283174 0.269444839 7.998463401
4.02028889 0 6.396305005
3.426560412 0 6.650422302
4.441162392 0.394140975 6.683800888
4.248977944 0.60747647 6.683642715
4.482634099 2.94889919 6.550136664
2.294939734 0 6.530868468
2.298667213 0 6.52973184
2.345772926 0 6.499603846
6.030917672 5.10382227 6.89497467
4.577271241 0 6.598411597
2.295159016 0 6.530868468
2.330158428 0 6.496038061
5.245474628 1.836679167 7.998993291

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY
2.296986435 0 6.53892752
2.294639202 0 6.530868468
4.137655425 0 6.410406825
4.955723175 3.667153173 6.419912706
2.433021436 0 6.563139352
4.441406182 2.927559713 6.096939721
2.297264108 0 6.53892752
2.29483193 0 6.530868468
2.29502051 0 6.530868468
5.958414586 4.591708551 7.874263165
2.294577923 0 6.530868468
2.294920758 0 6.530868468
2.294671195 0 6.530868468
3.454583804 0 7.93600008
2.760652352 0 5.910445078
2.915807825 0 5.935052364
2.258390325 0 5.860265633
4.9307686 3.193638902 6.605107474

6.597119433 3.985078565 7.983563618
4.982680109 4.127240712 6.32622336
4.356458536 0 6.417698237
4.98598922 2.951925917 6.446828762
3.623639539 0 6.497884652
3.365807708 0 7.995181989
5.334365373 4.068465151 6.035730827
4.115510688 0 6.877406246
4.163910847 0 6.497884652
5.287804455 4.207579475 6.572551931
4.917674437 2.458886248 6.318474099
5.586331992 4.508373407 6.561306487
4.821959119 3.202715463 6.516518185
2.544826765 0 5.974830461
2.329866222 0 6.153356413
5.179280157 4.303255992 6.573206125
4.467429119 0 7.927776502
4.316136169 0 7.926069174
4.038051772 0 7.917869782
4.153434456 0 7.93152154
4.441803949 0 7.780490017
5.097277607 2.43668428 6.543951938
3.41737148 0 6.497884652



AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY
4.610731649 2.152015628 6.68581953
3.941302849 0 7.998987038
4.026921653 1.852499945 6.464695388
2.649535825 0 5.589445261
5.049897405 3.89961076 6.642460579
2.328679917 0 5.862227917
4.138339841 0 6.417698237
4.47585472 0 7.776313108
5.034868575 2.488179651 6.394668199
3.321002224 0 5.997496784
3.361344469 0 6.535749259
5.35824472 4.396796299 6.579148586
3.967695937 0 6.497884652
5.289034099 2.213200384 7.05695537
2.673733682 0 6.436379637
2.473338857 0 6.497884652
3.302447264 0 6.497884652
3.258094291 0 6.480448376
4.884486487 2.266386129 6.578698604
3.314309123 0 7.998374087
4.205485806 0 7.927312134
4.972576007 3.22351651 6.589233028
3.590692802 0 6.497884652
4.265277681 0 7.920170245
4.395258429 0 6.450231726
4.280595634 0 6.29093337
3.801349375 0 6.497884652
2.855868199 0 6.497884652
3.040766301 0 6.497884652
4.06877138 0 6.719415702
4.469655097 0 7.901445667
3.521821281 0 7.918980839
2.244044716 0 5.809670488
3.560271109 0 6.497884652
4.510238829 0 7.942032612
3.440589843 0 6.421092436
3.942427942 3.084965637 5.949718001
4.194853593 0 6.433100348
4.042752619 0 6.497884652
4.952370832 3.51044725 6.655914168
2.949007111 0 5.681021902

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY
4.517077282 0.020393135 6.599033393
4.873116266 3.192076594 6.682816882
3.18619056 0 6.015548456
3.961854917 0 6.717667374
2.938541563 0 5.904659367
2.244044716 0 5.809670488
3.740301655 0 6.497884652
3.408559137 0 7.81835259
4.421767704 1.955565864 6.528199949
4.889881091 4.080367057 6.614560896
3.55705392 0 6.497884652
3.847562126 0 6.497884652
4.683639081 3.189745702 6.593136124
3.120867614 0 6.497884652
4.494347293 2.808535214 6.387448572
3.590930721 0 7.474678754
4.43589276 0 7.924875779
3.513839978 0 6.497884652
5.109330642 0 7.928653506
3.805065211 0 6.696397554
4.902661186 3.190142906 6.555858682
3.834712346 0 6.128108318
2.520830449 0 6.065012874
3.933574671 0.762670683 6.257227514
3.046336629 0 5.313254611
3.905956185 0 6.497884652
3.623504828 0 7.266887287
4.131767069 0 7.997699313
4.035109547 0 6.497884652
2.449333951 0 6.062043662
4.468556311 0 7.926680234
4.012265429 0.020393135 6.581870645
2.48198126 0 6.497884652
4.614002314 0.020393135 6.856402239
4.526147426 0 7.035102788
4.238204985 0.020393135 6.774073328
4.789055745 3.205876702 6.665481102
5.570017255 3.327596729 6.602102655
4.8211787 3.197740598 6.636600349

5.170584106 4.123284643 6.681036423
3.786191938 0 6.497884652



As we can see from the results the overall entropy and the section entropy of the malware 
samples varies. We would expect that the malware fles would usually have high entropy 
values because of the encryption and the packaging but the numbers show something 
very diferent. 

The values range from as low as 2.5 until  as high as 6.5 with many fles to have an 
average of 4.5 till  5.5.  This is considered in many cases a value that can be found In 
legitimate software as well.

That makes us further question how accurate is the entropy value of a fle to identify a  
potential  malicious fle, when many of the malwares tested that are available online have 
reasonable entropy values that can also pass as legitimate.

10 Final Results 

From the tests that we did and their results, we come to an interesting conclusion. Even  
though malware authors choose to encrypt their fles resulting to an increased entropy, the 
values can be modifed easily by using the same methodology in this thesis, by adding 
new sections or surrounding the shellcode with a length of the same bytes to lower the 
entropy. 

Anti-virus vendors use the entropy value as an indicator among others to identify potential 
malicious fles. 

By  looking  at  the  results  we  can  see  that  the  entropy  cannot  be  safely  used  for  the 
identifcation of  malicious fles,  but it  can still  be used to identify  potentially packed or 
encrypted fles. 

However not only malicious fles are packed or encrypted. Many legitimate softwares have 
these  traits.  For  example  software  installers  have  packed  in  one  executable  all  the 
necessary  fles  and  dependencies  for  the  software  to  be  installed  and  run.  Software 
authors use encryption techniques in their software to prevent reverse engineering to keep 
the code hard to read, but also many legitimate executables have a high entropy value just 
because they are big and have a big number of diferent and randomized characters in 
their code. 



11 Future Work

As a future work on this thesis the tests performed can be expanded to other Operating 
Systems (OS). Specifcally Android, because of the popularity of it and the fact that a very 
big percentage of current mobile devices have it pre-installed. 

That reason has attracted the attention of malware authors, since the popularity of Android 
on devices also brought in the ecosystem users who are not aware of the dangers of now 
mobile malware, and not properly educated on the “on-line safety”. 

Anti-virus  vendors  have  released  various  solutions  for  protecting  these  devices  by 
applying similar login as the other Operating Systems, therefore we can assume that the 
tests done in this thesis also apply in the case of android. 

More specifcally, in the case of encrypted and packed malware the same logic will apply 
in android as well. Creating test cases that show how can entropy can manipulated in the 
mobile  ecosystem  will  show  how  much  value  it  has  as  a  metric  to  identify  potential  
malicious application.
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