UNIVERSITY OF PIRAEUS
Department of Digital Systems

MSC Digital Systems Security

Master Thesis

Use of entropy for malware identification

Ouroumidis Athanasios
Supervisor

Prof. Dadoyan Christoforos

Piraeus, Greece, March 2017

1 Abstract

In today’s world internet has become a necessity not only for businesses but also for a
person’s daily life. Communication, trade, information, entertainment and many other
functionalities are provided to us by being “online”. However together with the evolution of
software to help in our day to day activities, the malicious software came to rise. Starting
from being created just for fun and ending up created for financial gain, the IT industry
face a huge challenge. Malicious software is being created every day and new variations
of the same exploits are found every week. The security industry is on cat and mouse race
with malware authors to stay ahead and provide a shield from the dangers on the internet.

However this becomes a bigger challenge as the time goes by because more and more
checks need to be done from a security standpoint when checking if a piece of code or
executable is safe or not. These checks many times are very clear on the definition and
identification of malicious files but many times the checks are vague and do not pose a
clear factor on identifying potential threats. One of those checks is the value of entropy on
the files that the anti-virus vendors use to identify a possible malware.

On this thesis we will explore the definition of entropy as well a possible process of
modifying this value to reach lower levels that could be found on a legitimate software.

2 Acknowledgements

| would like before the beginning of this thesis to take this chance to thank my professor,
who contributed to a valuable learning experience during the MSC studies. Taught me
new and exciting things about the security industry that helped me in my professional life
and will help me further in my career.

| would also like to help my family who was there for me whenever | needed them,
supported me with any means they had available during my difficult times and always
believed in me. Without them | would not be here.

3 Table of contents

L Y 1= £ Lo 2
2 ACKNOWIEAQEMENTS......oiiiererirsmsisssssssms s s sm s s m s n e m s an e s 3
3 Table Of CONTENTS......cccciercisr s 4
4 Information Theory - ENtropy ... ssssss s sssssssssssmsnsanas 6
5 Portable Executable..........isessssssss s anan 6
EIR = 2 o Lo U T (1] 7
= 1L T 10
6.1 Malware Detection TeChNIQUES......ccccrrrrermsmrsmsmsmssessssnssnssssssssse s sssssnnans 12
6.1.1 Signature Based Detection.........orirnmnnissnnnessmssnsssessssssssssssssssssssasssssssssas 12
6.1.2 Anomaly Based DetecCtion.........oriimimirsmnssessssssssssssssssssssssssssssssssssssnsnas 12
6.1.3 Heuristics Based DetecCtion.........c.oucimimimsersmssmsssssssssssssssssssssssssssssssssssssssnsess 12

7 Malware Classification Methods.........ccocoimirnmnnnsisssssssssses s 13
7.1 Classification of Malware using Structured Control Flow.........cccceeiiveneninnnns 13
7.2 Behavioral Malware Classification.........cccoomirnnmssnssssssssssssessesssessassssssasssnsns 13
7.3 Instance-based Learner ... rssssersmssesssssessnns 13
7.4 Support Vector Machines (SVM)........couimrmnrnmnmssssmsnssnns 14
7.5 NAIVE BaYEs.....cioiiirmrmrmrmnsmssessasssssssssssssssnsnssnssmsssssssssssssssssssssnssnssmssmsnsssssssssssssssnssnsssas 14
7.6 Data mining Methods....... s 14
A8 =T =] Lo T I = - 14
7.8 BoOSted ClasSifiers.......o s ssns s s s 15
7.9 Structural ENtropPY....ccociissmiessnsssesssssssssmsssssssssssssssssssssssssnssssssssssssssnssnssssssnssnsanes 15
7.10 Hidden Markov Model Based Detection.........c.ccoouerrrrmrimsemsmssssnssssssssssnssnssnsans 15

8 Malware Analysis TeChNIQUES......cccciriririmsrsssssesse s s s s s 16
8.1 Malware StatiC ANalYSiS.......ccurrmrmrrrmsmssmsmsssmsnssssssssmsss s smssnssnsnss 16

8.1.1 Static Analysis TeChNIQUES.......ccccirrmrmsmrsmssmsssssssssessssss s snssssasans 16

8.2 Malware DynamicC ANalySiS......c.cuomurrsmrsmrsersmrsmssmssmssnsssssssssssssssssnssnsssmsssssssssssmsssassanas 17

8.2.1 Function Call MONItOring......ccccuuumiersmsmsmssmssssnssmsssssssssssssssssssssssssssssssmsssssssssnsnss 17
8.2.2 Function Parameter ANalySiS........ccurrrsmsemsmmsmsmsmssesmssssssssssssssssssssssssssssssssssns 17
8.2.3 Information FIOW TracCKing.....ccccurrremnmsmrsmsssmsimsssesmsssssssssssssssssssssssmssssssnsanss 17
8.2.4 INSTrUCION TraCE.....cccciernerernsnse s e 18
8.2.5 Autostart Extensibility POINtS......cccomimimissssssesesers e 18

L I =TS €19 T T 1Y U= £ Lo T Lo [Yo | 19
9.1 File ENTrOPY...ccicicsrismsssessssssssssssssssss s s sssssssssssssssssnsssssssms s samssssssnssmssssssnssmsnss 19
9.2 File entropy Manipulation........cooccririmimisssssssssssssnsse s s ssssnssmssmsnmsnnes 19
9.2.1 Methodology STEPS.....cccusmiurimrsmsmsmrsmsmsessessssssss s s nn s 20
9.2.2 Entropy Of test PE....... s s 20
9.2.3 Adding new section to test PE......... s 22
9.2.4 Adding section with shellcode to test PE........ccoonnsirinssnssscessesenane 25
9.2.5 Adding mofidied shellcode to new section to test PE.........cccccriemrrnnns 28

9.3 Creating PE from Shellcode...... s sns s snsnssns 31
9.3.1 Adding section to generated PE.......... s 33

9.4 SUMMALNY Tabl@.....u e s 36
9.5 Entropy of Malware Samples........ccuurimsmsmsmssmssmsnssnsans 37
10 FiNal RESUILS.....ceierereresse s e 39
T FURUFE WOKK...uoeececeescsnssesesss s ss s ms s s sm s sn s s sm s s m s 40

B 1P 5 =T =) (=] = a1

4 Information Theory - Entropy

Information can be thought of as being stored in or transmitted as variables that can take
on different values. A variable can be thought of as a unit of storage that can take on, at
different times, one of several different specified values, following some process for taking
on those values. Informally, we get information from a variable by looking at its value, just
as we get information from an email by reading its contents. In the case of the variable, the
information is about the process behind the variable. The entropy of a variable is the
"amount of information" contained in the variable. This amount is determined not just by
the number of different values the variable can take on, just as the information in an email
is quantified not just by the number of words in the email or the different possible words in
the language of the email. Informally, the amount of information in an email is proportional
to the amount of “surprise” its reading causes. For example, if an email is simply a repeat
of an earlier email, then it is not informative at all. On the other hand, If say the emalil
reveals the outcome of a cliffhanger election, then it is highly informative. Similarly, the
information in a variable is tied to the amount of surprise that value of the variable causes
when revealed.

Shannon’s entropy quantifies the amount of information in a variable, thus providing the
foundation for a theory around the notion of information.

In the IT world the Values of entropy range from 1 to 7 are used to represent the
predictability of the next character or byte in a sequence of characters or bytes.

Values closer to 1 means that the entropy is lower therefore the information we can get is
lower. Meaning that we can “guess” with a higher probability the next character or byte in
line.

Values closer to 7 means that the entropy is higher therefore the information we can get is
higher. Meaning that we can “guess” with a lower probability the next character or byte in
line.

5 Portable Executable

The Portable Executable (PE) format is a file format for executables, object code, DLLs,
FON Font files, and others used in 32-bit and 64-bit versions of Windows operating
systems. The PE format is a data structure that encapsulates the information necessary
for the Windows OS loader to manage the wrapped executable code. This includes
dynamic library references for linking, APl export and import tables, resource management
data and thread-local storage (TLS) data. On NT operating systems, the PE format is

https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Thread-local_storage
https://en.wikipedia.org/wiki/Application_programming_interface
file:///C:%5CUsers%5Ca.ouroumidis%5CDesktop%5Cthesis%5Cscience)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/Executable

used for EXE, DLL, SYS (device driver), and other file types. The Extensible Firmware
Interface (EFI) specification states that PE is the standard executable format in EFI
environments.[24]

5.1 Basic Structure

A Portable Executable (PE) basically contains two sections, which can be subdivided into
several sections. One is Header and the other is Section. The diagram below shows a
visualized version of the PE.

Dios MZ Header I

DOE Stub

FE File Header
FE Signature

Section Takle

Array of Image_Section_Headers

Data Directories
Sections \1
[idata |
| TS |
| data |
| tet |
L | SiC | J

Image 1: PE file format
1. DOS Header

DOS header starts with the first 64 bytes of every PE file. It's there because DOS can
recognize it as a valid executable and can run it in the DOS stub mode.

https://en.wikipedia.org/wiki/Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/.sys
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/EXE

2. DOS Stub

The DOS stub usually just prints a string, something like the message, “This program
cannot be run in DOS mode.”, which is shown when the PE tries to run in DOS mode. It
can be a full-blown DOS program. When building applications on Windows, the linker
sends instruction to a binary called winstub.exe to the executable file. This file is kept in the
address 0x3c, which is offset to the next PE header section.

3. PE File Header

Like other executable files, a PE file has a collection of fields that defines what the rest of
file looks like. The header contains info such as the location and size of code,

4. Characteristics

e Signature: It only contains the signature so that it can be easily understandable by
windows loader. The letters P.E. followed by two 0’s tells everything.

¢ NumberOfSections: This defines the size of the section table, which immediately
follow the header.

e SizeOfOptionalHeader: This lies between top of the optional header and the start
of the section table. This is the size of the optional header that is required for an
executable file. This value should be zero for an object file.

e Characteristics: This is the characteristic flags that indicate an attribute of the
object or image file. It has a flag called Image_File_dll, which has the value 0x2000,
indicating that the image is a DLL. It has also different flags that are not required for
us at this time

e Image_Optional_Header: This optional header contains most of the meaningful
information about the image, such as initial stack size, program entry point location,
preferred base address, operating system version, section alignment information,
and so forth. We can see the information in the snapshot below.

5. The Section Table

This table immediately follows the optional header. The location of this section of the
section table is determined by calculating the location of the first bytes after header. For
that, we have to use the size of the optional header. The number of the array members is

determined by NumberOfSections field in the file header (IMAGE_FILE_HEADER)
structure. The structure is called IMAGE_SECTION_HEADER.

The number of entries in the section table is given by noofsectionfield in the file header.
Each section header has at least 40 bytes of entry. We will discuss some of the important
entries below.

¢ Name: An 8-byte null-padded UTF8 encoding string. This is can be null.

e VirtualSize: The actual size of the section’s data in bytes. This may be less than the
size of the section on disk.

o SizeOfRawData: The size of section’s data in the file on the disk.

e PointerToRawData: This is so useful because it is the offset from the file’s
beginning to the section’s data.

e Characteristics: This flag describes the characteristics of the section.

6. The PE File Section

This section contains the main content of the file, including code, data, resources and
other executable files. Each section has a header and body.

An application in Windows NT typically has nine different predefined sections, such as
text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Depending on the
application, some of these sections are used, but not all are used.

The Executable Code: In Windows, all code segments reside in a section called .text
section or CODE. We know that windows uses a page-based virtual system, which means
having one large code section that is easier to manage for both the OS and application
developer. This also called as entry point and thunk table, which points to IAT. We will
discuss the thunk table in IAT.

e The .bss represents the uninitialized data for the application.

e The .rdata represents the read-only data on the file system, such as strings and
constants.

e The .rsrcis a resource section, which contains resource information of a module. In
many cases it shows icons and images that are part of the file’s resources.

The .edata section contains the export directory for an application or DLL. When
present, this section contains information about the names and addresses of
exported functions. We will discuss these in greater depth later.

The .idata section contains various information about imported functions, including
the import directory and import address table. We will discuss these in greater
depth later.

6 Malware

Is a software program developed to perform malicious activities on a computer and refers
to a variety of different forms of hostile or intrusive software. There can be any reasons for
writing malware varying from simple pranks to organized internet crimes. The early
infectious programs were written as pranks. These days, malware is widely used to steal
personal, financial, business information. Malware includes all families of viruses,
computer worms, Trojans, backdoor, spyware, adware, scareware, ransomware. A brief
overview of different types of malware is given below.[25]

Virus: A virus is a type of malware that replicates itself by inserting copies or
modified copies of itself into other programs. It is designed to change the way the
computer operates. They can live anywhere. It can live on the boot sector. If it lives
on the boot sector, it can take control before anything else. It establishes itself
before any antivirus software starts or operating system security is enabled. It can
also live in the memory. It can enter the computer by any way the user interacts with
the computer (i.e. open an email, plug in an external storage device, open a website
that is infected, open malicious files etc). They have the ability to reproduce
themselves by infecting other files and programs with malicious code. When they
are run, they are able to carry out a range of usually malicious actions in the
computer or simply annoying. Virus writers constantly modify their software to
evade the detection techniques. The prominent methods to evade the detection
techniques are encryption, polymorphism and metamorphism. [26][22][15]

Polymorphic Virus: A polymorphic virus has, for all practical purposes, an infinite
number of decryptor loop variations that’s morphed with each generation. Tremor,
for example, has almost six billion possible decryptor loops! Polymorphic viruses
clearly can’t be detected by listing all the possible combinations. The techniques
such as emulation can be used for polymorphic virus detection.[15]

Encrypted Virus: Antivirus software searches for a signature (a specific bit string)
for virus detection. The simplest method to hide the virus body is to encrypt it with
different encryption keys. As a result of this, the detection of a virus becomes a
difficult task. The idea of an encrypted virus is to encrypt the signature in order to
evade signature detection. However, it is still possible to search for an encrypted

signature too. Thus, the encrypted virus is not a reliable way of evading signature
detection. The only part that is constant in the encrypted virus is the decryptor loop.
Antivirus software will exploit this fact for detection, so the next logical development
is to change the decryptor loop’s code with each infection. [15]

Metamorphic Virus: Virus writers modified the malware furthermore to avoid
emulation detection. The metamorphic virus is also called as body polymorphic
virus. The appearance of the virus changes before infecting any system. The
detection of a metamorphic virus is very challenging. The morphed virus has the
same functionality but a different structure. Hence the detection of metamorphic
virus is difficult.

Worm: A computer worm is a standalone malware computer program that
replicates itself in order to spread to other computers. Worms are programs that
replicate themselves from system to system without the use of a host file. Unlike
viruses, which requires the spreading of an infected host file. Worms replicate
themselves damaging files, but can reproduce rapidly, saturating a network and
causing it to collapse. [16][27][22]

Trojan: A Trojan is a type of malware which appears to perform a desirable
function but instead inserts a malicious payload to the target. An crucial difference
between Trojan and a virus is that the Trojan does not replicate itself. They pose as
legitimate programs that users know and they intend to use but when these are
executed, they install a malicious payload into the target host for various purposes
that the trojan author created them. The Trojans have the capacity of deleting files,
destroying information on the hard drive, or open a backdoor to the security
systems. [27][28][22]

Trapdoor/Backdoor: A trapdoor/backdoor is a program which bypasses the
security check in place of personal network or corporate. This allows a malicious
user to carry out various actions on the infected computer that can compromise
user confidentiality or disrupt the actions that are being carried out. The actions that
a backdoor allow malicious users to carry out can be extremely damaging for for
the user but also for others in the network. They could allow them to delete files,
destroy all the information on the hard disk, capture confidential data and send it
out to an external address or open communications ports, allowing remote control
of the computer. [15][22]

Ransomware: A type of malicious software that threatens the victim with
publishing its private confidential information or blocking the access to its data by
encrypting them. To gain access to its data or not publishing the victim’s private
information to the internet, ransomware authors demand a “ransom”; usually in
some kind of cryptocurrency before they provide the victim with the unlocking code

for their files. These types of attack come along with a time limit that the victim has
to sent the ransom before the data stays forever encrypted or the data are
published online.

6.1 Malware Detection Techniques

As malware writers fine-tune their software by making it better to evade signature
detection, the anitivirus companies are improving their detection techniques as well.

6.1.1 Signature Based Detection

Signature based detection is a simple and most commonly used technique in antivirus
software. They are popular because of accurate detection, simplicity and speed. In
signature based detection, the scanner scans each executable and looks for specific string
or pattern of bits (signatures). Antivirus software has a database of signatures for different
viruses. By comparing the signature, it detects the virus. The disadvantage is that only the
known malware can be detected. If the signature is not known, malware cannot be
detected. The signature file must be kept up to date. By using simple code obfuscation
techniques, malware can easily evade the signature based detection. [29][30]

6.1.2 Anomaly Based Detection

The problem of detecting new malwares in signature based detection can be overcome
using anomaly based detection. Heuristic methods are implemented to detect anomalous
behavior. This technique comprises of two phases - the training phase and the detection
phase. In the training phase, the model is trained with the normal behavior. Anything other
than the normal behavior is considered as malicious behavior. However, there can be
more false positives in this technique.[18][29]

6.1.3 Heuristics Based Detection

Unlike signature-based detection, which looks to match signatures of files against
a database of known malware, heuristic scanning uses rules and/or algorithms to look for
commands which may indicate malicious intent. When using this method, some heuristic
scanning methods are able to detect malware without needing a signature comparison.
This is why most antivirus programs use both signature and heuristic-based methods in
combination, in order to catch any malware that may try to evade detection by using
obfuscation techniques or any new malware that has not been discovered yet.

7 Malware Classification Methods

7.1 Classification of Malware using Structured Control Flow

Control flow represents the execution path that a program can take. In related research it
has been shown that malware can be effectively be characterized by its control flow. The
authors have proposed a malware classification system using approximate matching of
control flow patterns. The result of distances can be calculated between the control flow
signatures and the structured graphs of the malware in the database. The threshold is
decided. If the edit distance exceeds a particular threshold, then the binary can be
classified as a malicious binary, else it is a benign binary. Control flow is more invariant
among polymorphic and metamorphic malware. The research shows that the proposed
method could successfully identify variants of malware.[17]

7.2 Behavioral Malware Classification

Classification systems generally fall into one of two categories: Those that rely on features
extracted from static files, or those that execute malware and use behavioral features to
classify malware. Static approaches sometimes use low-level features such as calls to
external libraries, strings, and byte sequences for classification. Other static approaches
extract more detailed information from binaries, including sequences of API calls, the
graphical representations of control flow. Although the variants in a malware family have
different static signatures, they share characteristic behavioral patterns resulting from their
common generation machine. It has been already described an automatic classification
system that can be trained to accurately identify new variants within known malware
families, using observed

similarities in behavioral extracted monitoring live computer hosts. In the feature selection
used in, the authors have selected a set of observable features that are easily extracted
from live computer hosts, and whose values can be used to infer whether a detected
malware sample belongs to particular category or family. [20][17][32][31]

7.3 Instance-based Learner

One of the simplest learning methods is the instance-based (IB) learner. Its concept
description is a collection of training examples or instances. Learning, therefore, is the
addition of new examples to the collection. An example is found in the collection that is
most similar to the unknown and the examples class label is returned as its prediction for
the unknown. The authors have used the number of values the two instances have in
common as the measure of similarity. In the variation of this method, such as IBk, the k
most similar instances are found and the majority vote of their class labels is returned as
the prediction. Values for k are typically odd to prevent ties. These are also called as
nearest neighbor and k-nearest neighbors.[20]

7.4 Support Vector Machines (SVM)

Support Vector Machines are supervised learning models with associated learning
algorithms that analyze data and recognize patterns, used for classification.

7.5 Naive Bayes

Naive Bayes is a probabilistic method that has a long history in information retrieval and
text classification. It stores as its concept description the prior probability of each class,
and the conditional probability of each attribute value given the class. These quantities are
estimated by counting in training data the frequency of occurrence of the classes and the
attribute values for each class. The Bayes rule is used to compute the posterior probability
of each class given an

unknown instance, returning as its prediction the class with highest such value.[20]

7.6 Data mining methods

In related researches the authors have extracted the byte sequences from the
executables,

converting these into n -grams, and constructed several classifiers: instance-based
learner, Naive Bayes, decision trees, support vector machines and boosting. They viewed
each n-grams as a Boolean attribute that is either present in or absent from the
executable. They have shown that the boosted decision trees outperformed the other
methods. The following section shows the methods used in their research.[20]

7.7 Decision Trees

The decision trees are built based on the training data. The internal nodes of a decision
tree correspond to attributes and leaf nodes correspond to class labels. The performance
element uses the attributes and their values of an instance to traverse the tree from the
root to a leaf. It predicts the class label of the leaf node. It creates a node, branches, and
children for the attribute and its values, removes the attribute from further consideration,
and distributes the examples to the appropriate child node. This process repeats
recursively until a node contains examples of the same class, at which point, it stores the
class label. In an effort to reduce over training, most implementations also prune induced
decision trees by removing subtrees that are likely to perform poorly on test data. The
malware classification based on the decision trees is very fast and also accurate. The
disadvantage of the decision trees is that an error in higher level of the tree may cause an
error in the lower part of the tree.[20]

7.8 Boosted Classifiers

Boosting is a method for combining multiple classifiers. A set of weighted models are
produced by iteratively learning a model from a weighted dataset. The generated model is
then evaluated. The dataset is re-weighted based upon the model’s performance. The
authors have provided a method of detecting unknown malicious code in executables
using machine learning. They have extracted byte sequences from the executables,
converted these into n-grams, and constructed several classifiers: naive Bayes, boosted
SVMs and boosted decision trees. The results of their experiments have shown that the
boosted decision trees outperformed other methods and achieved a true-positive rate of
0.98 and a false-positive rate of 0.0. [19][20]

7.9 Structural Entropy

The method of structural entropy lies in the static analysis of files and produces a similarity
measure, i.e. evaluates to which extent the two files can be considered similar. The only
thing of importance is file structure, that is, the order of its distinctive code and data areas.
The entropy measure provides a sort of signature of a file, by computing the distribution of
bytes within the file. The assumption is that different malware samples of the same family
have a similar order of code and data areas; as a matter of fact each area may be
characterized not only by its length, but also by its homogeneity. Authors in related
research identify as structural entropy this characteristic of an application. The approach
consists of using discrete wavelet transform (DWT) for the segmentation of files into
segments of different entropy levels and using edit distance between sequence segments
to determine the similarity of the files. The method comprises two steps: file segmentation
and sequence comparison. The first step splits each file into segments of varying entropy
levels using wavelet analysis applied to raw entropy measurements.[2][3]

7.10 Hidden Markov Model Based Detection

Hidden Markov models (HMMs) are generally used for statistical pattern analysis. They
can be used in speech recognition, malware detection and biological sequence analysis.
The following sections give an overview of the introduction to HMM and its usage in
detection of malware.

A statistical model that has states and known probabilities of the state transitions is called
a Markov model. In such a Markov model, the states are visible to the observer. In
contrast, a hidden Markov model (HMM) has states that are not directly observable. HMM
is @ machine learning technique. HMM acts as a state machine. Every state is associated
with a probability distribution for observing a set of observation symbols. The transition
between the states have fixed probabilities. We can train an HMM using the observation
sequences to represent a set of data. We can match an observation sequence against a
trained HMM to determine the probability of seeing such a sequence. If the probability is
high, the observation sequence is similar to the training sequence.

When an HMM is trained, it can be used to distinguish between a malware and a benign
file. There is a lot of previous work done on the use of HMM for malware detection. The
dataset is tested against the trained models. There is a range of values of scores for which
the scores of the malware and the benign files do not overlap. This is known as threshold.
Using this threshold, the malware can be distinguished from the benign files.[1][21]

8 Malware Analysis Techniques

8.1 Malware Static Analysis

Basic static analysis consists of examining the executable file without viewing the actual
instructions. Basic static analysis can confirm whether a file is malicious, provide
information about its functionality, and sometimes provide information that will allow you to
produce simple network signatures. Basic static analysis is straightforward and can be
quick, but it’s largely ineffective against sophisticated malware, and it can miss important
behaviors.[7]

8.1.1 Static Analysis Techniques

¢ File Fingerprinting: During the File Fingerprinting for every file under investigation a
cryptographic hash value will be computed.[7]

e Virus Scanning: The files under investigation will be scanned with different antivirus
vendors to identify any possible warnings.[7]

¢ Analyzing memory artifacts: During this process memory artifacts will be analyzed
such as Ram dump, page file.sys hiberfile.sys, so that they can be identified any
possible rogue processes.[7]

e Packer Detection: Almost always the malware will be packed with some kind of
packer. The files will need to be analyzed and their packer will need to be identified.
[7]

e Disassembly: Many times malwares use dynamic linking in their code. The
Dependencies can be analyzed using various tools while it can also be done by
disassembling the executable.[7]

8.2 Malware Dynamic Analysis

8.2.1 Function Call Monitoring

Typically, a function consists of code that performs a specific task, such as calculating the
factorial value of a number or creating a file. While the use of functions can result in easy
code re-usability, and easier maintenance, the property that makes functions interesting
for program analysis is that they are commonly used to abstract from implementation
details to a semantically richer representation. For example, the particular algorithm which
a sort function implements might not be important as long as the result corresponds to the
sorted input. When it comes to analyzing code, such abstractions help gain an overview of
the behavior of the program. One possibile way to monitor what functions are called by a
program is to intercept these calls. The process of intercepting function calls is called
hooking. The analyzed program is manipulated in a way so that, in addition to the intended
function, a hook function is invoked. This hook function is responsible for implementing the
required analysis functionality, such as recording its invocation to a log file, or analyze
input parameters.[7]

8.2.2 Function Parameter Analysis

While function parameter analysis in static analysis tries to infer the set of possible
parameter values or their types in a static manner, dynamic function parameter analysis
focuses on the actual values that are passed when a function is invoked. The tracking of
parameters and function return values enables the correlation of individual function calls
that operate on the same object. For example, if the return value (a file-handle) of a
CreateFile system call is used in a subsequent WriteFile call, such a correlation is
obviously given. Grouping function calls into logically coherent sets provides detailed
insight into the program’s behavior from a different, object-centric, point-of-view.[7]

8.2.3 Information Flow Tracking

An orthogonal approach to the monitoring of function calls during the execution of a
program, is the analysis on how the program processes data. The goal of information flow
tracking is to shed light on the propagation of “interesting” data throughout the system
while a program manipulating this data is executed. In general, the data that should be
monitored is specifically marked (tainted) with a corresponding label. Whenever the data is
processed by the application, its taint-label is propagated. Assignment statements, for
example, usually propagate the taint-label of the source operand to the target. Besides the
obvious cases, policies have to be implemented that describe how taint-labels are
propagated in more difficult scenarios. Such scenarios include the usage of a tainted
pointer as the base address when indexing to an array or conditional expressions that are
evaluated on tainted values.[7]

8.2.4 Instruction Trace

A valuable source of information for an analyst to understand the behavior of an analyzed
sample is the instruction trace. That is, the sequence of machine instructions that the
sample executed while it was analyzed. While commonly cumbersome to read and
interpret, this trace may contain important information not represented in a higher level
abstraction (e.g., analysis report of system and function calls).[7]

8.2.5 Autostart Extensibility Points

Autostart extensibility points (ASEPs) define mechanisms in the system that allow
programs to be automatically invoked upon the operating system boot process or when an
application is launched. Most malware components try to persist during reboots of an
infected host by adding themselves to one of the available ASEPs. It is, therefore, of
interest to an analyst to monitor such ASEPs when an unknown sample is analyzed.[7]

9 Testing Methodology

9.1 File Entropy

The entropy of a file is also used from antivirus vendors to identify potential malwares.
When files are packet or encrypted their entropy is increased because of the compression
algorithm or the packer.

Malware authors that wants to avoid being detected will encrypt their malwares therefore
increasing their entropy.

On the following sections of the paper we will see how it's possible to alter the overall
entropy of a file but also alter the overall entropy of a section of a file that contains malware
code.

9.2 File entropy Manipulation
For our experiment we will need to calculate the entropy of a file in 2 different ways:

The overall entropy of a file. We will calculate the file entropy by treating the file like a long
sequence of bytes ignoring its structure. This test will be done by using an open source
tool name “ent” (available in github), which the only thing that it does is measuring the
entropy of a file regardless of the type we will also use PEid which is a tool that is used to
identify if a file is packed, the type of packer and the entropy of a file.

The Section entropy of a file: We will calculate the section entropy, by calculating the
entropy of the different sections in the PE (.text, .data, .bss etc) . For this test we will use
python code and the “pe” library for python that is already available in github as well as a
software called DIE (Detect It Easy) which among other things it has the functionality of
calculating the section entropy of a file, which will be used to verify our results.

For both test cases we will use python code to add a section to a PE file. The new section
will contain either a long sequence of “NOP” instructions, a shellcode or a shellcode with
NOP instructions before and after the shellcode. This will help us test how it will affect the
overall entropy and the section entropy of the file.

9.2.1 Methodology Steps
The test steps will be as follows:

1. Creating a new section with NOPs on a legitimate PE.

2. Creating a new section with a shellcode on a legitimate PE

3. Creating a new section with a shellcode that will contain NOPs before and after the
shellcode

9.2.2 Entropy of test PE
For testing purposes we will use the putty.exe PE that is free to download and is used very
often for ssh connections from windows machines.

After Downloading putty from its website (https://putty.org) we first test its entropy.

Image 2: putty.exe (ent entropy)

As it can be seen from the image the entropy of putty.exe is 6.726460.

If we recall the information theory the entropy values range from 1 till 7, with 7 representing
high randomness or very low possibility of guessing the next character in line.

Such high values can be found also in packed executables or compressed.

We test the entropy values both with PEid and DIE tools to verify the result.

File: C:\Documents and Settings\tester\Desktop!practicaliputty.exe
Entrypoint: | 000D97FD6 EP Section: | .text LI
File OFfset: |00090BDG First Bytes: |E8,84,02,00 | > |
Linker Info: 14,0 Subsystem: | Win32 GUI _>J
Mothing Found [Overlay] *

Multi Scan | TaskViewer| Options About | Exit |
[v Stay on top ’_l’ _|'>

Extra Information

FileName: | C:\Documents and Settingsitester\Deskkoppracticaliputty .exe

Detected: | Mothing found [Overlay] *

Scan Mode: | Mormal

Entropy: 6.43 (Mot Packed)]

EP Check: -
|

Fast Check:

QK

Image 3: putty.exe (PEiD Entropy)

Size: 774200 Reload

6.72646 not packed Save diagram

PE Header{("1.83035")
Section0{".

Section1(",

Section2(".

Section3{". 5
Section4(".gfids")("1.97149")
SectionS(".rsrc")("3.93388")
Section6(",

Section7{".

Section8{".i
Section3(".)
Overlay("7.42868")

1005

Image 4: putty.exe (DIE entropy)

As we can see “ent” and “DIE” tools report the same entropy values, unlike PEid which
has a slightly lower value.
This can be attributed to the possible different algorithms between those tools.

9.2.3 Adding new section to test PE

Next step will be to create a new section in putty.exe with the name .axc that will contain a
long sequence of NOP instructions (1274, the value was selected to be big enough so that
it can fill up the section as much as possible) and we will again compare it with the same
tools but also we will use a tool called PE view to take a look inside the code of the new
section that we will create.

Image 5: Modified putty.exe (ent entropy)

We can see here that the new section resulted in a slight drop of entropy of about 0.04.
Such small result is expected as the file is very big (more than 700KB) compared to our
section (~1KB), which is not enough to create a big difference.

- [BIx
File: | C:\Documents and Settingsitester\Desktopipractical\putty_modified.
Entrypoint: 000C3000 EP Section: ,axc il
File Offset: | 00DBADOD First Bytes: 90,90,90,90 | > |
Linker Info: |14.0 Subsystem: |Win32 GUI >

PENinja - > +DZA Kracker/TNT! [Overlay]

Multi Scan Task Viewer | Options | About | Exit |

Iv Stay on top 2|)=
Extra Information X
FileName: | C:\Documents and Settings\tester|Desktopipracticaliputty_modifies

Detected: | PENinja -> +DZA Kracker/TNT! [Overlay]
Scan Mode: Mormal

| Entropy: 6.42 (Mot Packed)
il EP Check:
Fast Check:

OK

Image 6: Modified putty.exe (PEiD entropy)

We can confirm as well from PEid that the entropy dropped in this case only a 0.01.

Offset: Size: 782392 Reload

6.68517 not packed Save diagram

Histogran Bytes

PE Header("1.89018")
Section0(".00cfg")("0.0639806")
Section1(".rdata"){"6.0075")
Section2(".bss")("0")
Section3(".data")("2.72597")
Sectiond(".gfids")("1.97149")
SectionS(".

Section6(",

Section7{".
Sectiona(".idata")("5.56398")
Section9(".reloc")("6.72876")
Section10{".axc")("1.4729")
Overlay("s,18089")

Offset:

Size:

10y

Image 7: Modified putty.exe (DIE entropy)

Here we can see not only the entropy that is identical to the value of “ent” but we can also
see all the sections along with the new section entropy that we added and its only 1.4729.

Image 8: Modified putty.exe (section entropy)

With the python code we can verify our findings about the new section and its entropy
(1.4719)

= putty_modified. exe pFile Raw Data Value
IMAGE_DOS_HEADER 0D0BA380 9 90 90 .

MS-DOS Stub Program 0DOBA390 90 90 90 90 90 90 90 90 S0 9090 90 9090 90 90
IMAGE_NT_HEADERS ODDBA3AD 90 90 90 90 90 90 S0 90 90 90 90 90 90 90 90 80
IMAGE_SECTION_HEADER .00cfy ODOBA3BO 90 90 90 90 90 90 90 90 9090909090 909090
IMAGE_SECTION_HEADER .rdata ODDBA3CO 90 90 S0 90 90 90 S0 90 90 90 90 S0 90 90 90 80
IMAGE_SECTION_HEADER .bss 0DOBA3DO 90 90 90 90 90 90 90 90 9090 909090 9090 90
IMAGE_SECTION_HEADER .data ODOBA3EO 90 90 90 90 90 90 90 90 9090 909090909090
IMAGE_SECTION_HEADER .gfids ODOBA3FO 90 90 S0 90 90 90 90 90 S0 90 90 90 90 80 90 90
IMAGE_SECTION_HEADER .rsrc 000BA400 90 90 S0 90 90 90 90 90 S0 90 90 90 90 80 90 90
IMAGE_SECTION_HEADER .text 000BA410 90 90 90 90 90 90 90 90 S0 90 90 90 9090 90 90
IMAGE_SECTION_HEADER .xdata 000BA420 90 90 90 90 90 90 90 90 S0 909090909090 90
IMAGE_SECTION_HEADER .idata 000BA430 90 90 S0 90 90 S0 90 90 S0 90 90 90 90 80 90 90
IMAGE_SECTION_HEADER .reloc 000BA440 90 90 S0 90 90 90 90 90 S0 90 90 90 90 80 90 90
IMAGE_SECTION_HEADER .axc 000BA450 90 90 90 90 90 90 90 90 S0 909090 909090 90
SECTION .00cfy 000BA4G0 90 90 90 90 90 90 90 90 S0 909090 90909090

SECTION .rdata 000BA470 90 90 S0 90 90 S0 90 90 S0 90 90 90 90 80 90 90
SECTION .data 000BA480 90 90 S0 90 90 90 90 90 S0 90 90 90 9080 90 90
SECTION .gfids 000BA4S0 90 90 90 90 90 90 90 90 S0 909090 90909090
@ SECTION .rsrc 0ODDBA4AD 90 90 90 90 90 90 S0 90 90 90 90 90 90 90 90 80
SECTION .text 0D0BA4BO 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
SECTION .xdata 0D0BAACO 90 90 90 90 90 90 90 90 9090 9090 90 9090 90
SECTION .idata 0DOBA4DO 90 90 S0 90 90 90 S0 90 90 90 90 90 90 90 90 80
@ SECTION .reloc ODDBA4EO 90 90 90 90 90 90 S0 90 90 90 90 90 90 90 90 80
= SECTION .axc 0D0BA4FO 90 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90
CERTIFICATE Table 000BAS00 90 90 90 90 90 90 90 90 S0 90 90 90 9090 90 90
000BAS10 90 90 90 90 45 31 14 30 1206 03 55 04 OA130BE1.0...U....

000BAS20 41 B4 B4 54 72 75 73 74 20 41 42 31 26 30 24 06 AddTrust AB1&0%.
000BAS30 03 55 04 0B 13 1D 41 64 64 54 7275 73 74 20 45 . U. .. AddTrust E
000BAS40 78 74 65 72 BE 61 BC 20 54 54 50 20 4E 65 74 77 xternal TTP Netw
000BASS0 BF 72 6B 31 22 30 20 06 03 55 04 03 13 19 41 64 ork1"0 .. U. .. . Ad

0D0BASE0 64 54 72 75 73 74 20 45 78 74 65 72 6E 61 6C 20 dTrust External
000BAS70 43 41 20 52 6F BF 74 30 1E 17 0D 31 34 31 32 32 CA Root0D...14122
000BAS80 32 30 30 30 30 30 30 5A 17 OD 32 30 30 35 33 30 2000000Z..200530

000BASS0 31 30 34 38 33 38 5A 30 81 81 31 0B 30 09 06 03 104838Z0..1.0...

0D0BASAD 55 04 06 13 02 47 42 31 1B 301906 03 5504 08 U. .. .GB1.0...U. .
000BASBO 13 12 47 72 65 61 74 65 72 20 4D 61 BE 63 68 65 . .Greater Manche
000BASCO 73 74 65 72 31 10 30 OE 06 03 55 04 07 13 07 53 ster1.0...U....S

000BASDO 61 BC 66 6F 72 64 31 1A 30 18 06 03 55 04 0A 13 alford1.0...U. ..
ODOBASED 11 43 4F 4D 4F 44 4F 20 43 41 20 4C 69 6D 69 74 . COMODO CA Limit
000BASFO 65 B4 31 27 30 25 06 03 55 04 03 13 1E 43 4F 4D ed1'0%. .U. .. . COM

Image 9: Modified putty.exe (PEview sections)

The results from both “DIE” and the written python code resulted in the new section having
an entropy of around 1.4 instead of lower that one would expect. This is expected as the
screenshot above shows at the end of the section there are garbage values that were
added at the moment of the creation, thus resulting in an entropy higher than expected. If
the whole section however was filed only with NOPs the entropy value would be lower.

9.2.4 Adding section with shellcode to test PE

Next step will be to add a small shellcode to the test PE and test its overall and section
entropy.

The shellcode that we are going to use has been generated from msfvenom for Microsoft
Windows and its functionality is a simple message box popup. For demonstration
purposes we don’t need a bigger or more sophisticated shellcode.

Image 10: putty.exe - shellcode in section (ent entropy)

Here we can see that the addition of the new section with the shellcode actually causes a
minor reduction in the overall entropy of the original PE file, instead of increasing it.

Image 11: putty.exe - shellcode in section (section entropy)

The entropy of the section where the shellcode is stored has a value of 6.68 which also
explains the minor reduction of the overall entropy value.

File: |C:\Documents and Settings\tester\Deskkopipracticaliputty_shellcode El

Entrypoint: | 000C3000 EP Section: [.axc E]
File Offset: | 0OOBADOD First Bytes: |D9,EB,9B,D9
Linker Info: [14.0 Subsystem: ‘Win32GUI | > |
'Nothing found [Overlay] *

[Multi Scan | [Task 'v'iewerl [Options | [About | [Exit |
IV Stay on top M B‘

Extra Information 3]

FileName: | C:\Documents and Settings\tester|Desktopipracticaliputty_shellcoc
Detected: | Nothing Found [Overlay] *
Scan Mode: Normal

Entropy: | 6.43 (Not Packed) =
EP Check: | (-]
Fast Check: | =

ok |

Image 12: putty.exe - shellcode in section (PEiD entropy)

PEid does not report any changes to the entropy value which would considered normal
since the shellcode itself is very small compared to the overall size of the executable.

782392 Reload

6.68381 not packed Save diagram

PE Header("1.88743")
Section0{",00cfg .0639806")
Section1{".rdata")("6.0075")
Section2{".bss"

Section3(".dat. 2,72597")
Section4{".gfids")("1.97149")
SectionS(".rsrc")("3.93388")
Section6(".text")("6.58712")
Section7{".xdata")("2.01945")

Section9(".reloc")("
Section10{",axc")("
Overlay("5,33805"

500,000

00y

Image 13: putty.exe - shellcode in section (DIE entropy)

We can verify our findings about entropy from DIE as well both the overall and the entropy
values of all the sections.

= putty_shellcode.exe pFile Raw Data Value
IMAGE_DOS_HEADER 000BADOD D9 EBS9B D9 74 24 F4 31 D2B277 31 C9B48B71 t§.1. . wl.d. g
MS-DOS Stub Program 000BADID 30 BB 76 OCBB 76 1CB8B 46 088B7E208B36 38 0.v..v. . F..~ .68
IMAGE_NT_HEADERS 000BAD20 4F 18 75 F3 59 01 D1 FF E1 60 8BBC 24 24 8B 45 O.u.Y. I1§§.E
IMAGE_SECTION_HEADER .00cfg 000BAOD30 3C BB 54 28 78 01 EABB 4A 18 8B5A 20 01 EBE3 <. T(x J.oZ
IMAGE_SECTION_HEADER .rdata 000BAD4D 34 49 8B 34 8B 01 EE31 FF 31 COFCACSB4 CO74 41.4. . . 1.1.... .t
IMAGE_SECTION_HEADER .bss 000BADSD 07 C1 CFOD 01 C7EBF4 3B 7C 24 28 75 E1 8B 5A o8 (u. 2
IMAGE_SECTION_HEADER .data 000BADBD 24 01 EB 66 8B 0C 4888 S5A1CO1EBBBO48BO1 §. . f. K. Z.... ...
IMAGE_SECTION_HEADER .gfids 000BAD70 EB 89 44 24 1C 61 C3 B2 08 29 D4 89 E5 89 C2 68 D§.a) h
IMAGE_SECTION_HEADER .rsrc 000BADSD SE 4EOEEC 52 EB9F FF FF FF B89 45 04 BE7E DS .N. .R..... . E..~.
IMAGE_SECTION_HEADER .text 000BAD9D E2 73 87 1C 24 52 EBBE FF FF FF 89 45 08 68 6C .s. . $R. CE.hl
IMAGE_SECTION_HEADER .xdata 0D0BADAD BC 20 41 68 33 32 2E 64 68 75 73 6572 30DB88 | Ah32.dhuser0. .
IMAGE_SECTION_HEADER .idata 000BADBO 5C 24 OA 89 E6 56 FF 55 04 89 C2 50 BB AB A2 4D \§ V.U P M
IMAGE_SECTION_HEADER .reloc 0DOBADCD BC 87 1C 24 52 EB 5F FF FF FF 68 69 74 79 58 68 .. . $R. _. . . hityXh
IMAGE_SECTION_HEADER .axc 000BADDD 65 63 75 72 68 6B 43 BE 53 68 42 72 65 61 31 DB ecurhkInShBreal.
SECTION .00cfy ODOBADED 88 5C 24 OF 89 E3 6B 65 58 20 20 68 20 63 6F 64 .\§.. . heX h cod
SECTION .rdata O00BAODFO 68 BE 20 75 72 68 27 6D 20 69 68 6F 2C 20 49 68 hn urh'm iho, I|h
SECTION .data O00BAT0D 48 65 6C BC 31 C9 88 4C 24 15 89 E1 31 D2 6A 40 Hell1. . L%.. . 1.j@
SECTION .gfids 000BAT10 53 51 52 FF DO B8 FO 50 45 00 FF DO 20 45 78 74 SQR. .. . PE... Ext
SECTION .rsrc 000BA120 65 72 BE 61 BC 20 43 41 20 52 6F 6F 74 30 1E 17 ernal CA RootO..
SECTION .text 000BA130 0D 30 30 30 35 33 30 31 30 34 38 33 38 5A 17 0D .000530104838Z
SECTION .xdata 000BAT40 32 30 30 35 33 30 31 30 34 38 33 38 5A 30 6F 31 200530104838Z001
@ SECTION .idata 000BA1S0 0B 30 09 06 03 55 04 06 13 02 53 45 31 14 30 12 .0...U. SE1.0.
@ SECTION .reloc 000BATB0 06 03 55 04 OA 13 0B 41 64 64 54 72 75 73 74 20 U. .. AddTrust
R SECTION .axc 000BA170 41 42 31 26 30 24 06 03 55 04 0B 13 1D 41 64 64 AB1&0§. . U. .. Add
000BA18BD 54 72 75 73 74 20 45 78 74 65 72 BE 61 6C 20 54 Trust External T
000BA190 54 50 20 4E 65 74 77 6F 72 6B 31 22 30 20 06 03 TP Network1"0 ..
ODOBA1AD 55 04 03 13 19 41 64 64 54 72 75 73 74 20 4578 U. .. AddTrust Ex
000BA1BO 74 B5 72 BE 61 6C 20 43 41 20 52 6F 6F 74 30 82 ternal CA Root0
ODOBA1CO 01 22 30 OD 06 09 2A 86 48 86 F7 OD 01 01 01 05 . "0 *.H
000BA1DD 00 03 82 01 OF 00 30 82 01 0A 02 82 01 01 00 B7 B 1
ODOBATED F7 1A 33 E6 F2 00 04 2D 39 EO 4E 5B ED 1F BC 6C 3.0 -9.N[.]
O0OBATFO OF CDB5SFA 23 BECEDE 9B 11 33 97 A4 294C7D#.3..)L}

Image 14: putty.exe - shellcode in section (PEview sections)

From PEView we can see the actual size of the section as well as the contents

9.2.5 Adding mofidied shellcode to new section to test PE

In this step we are going to modify our shellcode to check if we can modify the section
entropy that it is located. This is going to be accomplished by surrounding the shellcode
with NOPs before and after.

. 3815028

Image 15: putty.exe - modified shellcode in section (section

entropy)

Image 16: putty.exe - modified shellcode in section (ent entropy)

By following the same procedure as the previous steps we gather the following results

AES

File: | C:\Documents and Settings\tester\Deskkopipractical\putty_modified. | ... |

Entrypoint: | 00DC3000 EP Section: | .axc =]
File OFfset: | DDOBAQOD First Bytes: [90,90,90,90 | > |
Linker Info: 14.0 Subsystem: Win32 GUI i]

PENinja -> +DZA KrackerTNT! [Overlay]
Multi Scan Task Viewer | Options | About | Exit |

[V Stay on top i’ _>|

Extra Information

FileMame: | C:\Documents and Settings\tester\Desktopipracticaliputty_modifie:

Detected: PENinja -> +DZA Kracker/TNT! [Overlay]

Scan Mode: Mormal

| Entropy: 6.43 (Mot Packed) EI

| EP Check: - +
-]

Fast Check:

OK

Offset: Size: > Reload

Entropy(b rte): not packed Save diagram

PE Header("1.89018")
Section0(",00cfg")("0.0639806")
Section1(".rdata")("6.0075")
Section2(".bss")("0")
Section3(".data"){"2.72597")
Sectiond(".gfids")("1.97149")
SectionS(". 3388")
Section6(".text")("6.58712")
Section7(",

Section8(".i

Section9(".
Section10(",axc"){
Overlay("S.18089")

10054

Image 18: putty.exe - modified shellcode in section (DIE entropy)

= putty_modified_she

leade exe
IMAGE_DOS_H

MS-DOS Stub Program
IMAGE_NT_HEADERS

pFile

Raw Data

000BADDD 80 90 90 S0 S0 90 90 90 90 90 90 S0 S0 90 S0 S0

OD0BADED
O00BADFO

90 S0 90 90 90 S0 S0 90
90 S0 90 90 90 S0 90 90

90 90 90 90 S0 S0 90 90
90 90 90 90 S0 S0 90 90

Value

IMAGE_SECTION_HEADER .00cfy O00OBA100 90 S0 90 90 90 S0 S0 90 S0 S0 90 90 S0 S0 90 90
IMAGE_SECTION_HEADER .rdata O0DBA110 90 S0 90 90 90 S0 S0 90 S0 S0 90 90 S0 S0 90 90
IMAGE_SECTION_HEADER .bss O00BA120 90 S0 90 90 90 S0 S0 90 S0 S0 90 D9 EB 9B D9 74 t
IMAGE_SECTION_HEADER .data O00OBA130 24 F4 31 D2B277 31 C9 648B71 308B760C8B $.1. .wl.d. gq0.v
IMAGE_SECTION_HEADER .gfids O00BA140 76 1C 8B 46 0B 8B 7E 20 8B 36 38 4F 18 75 F3 83 v. .F..~ .B80.u.Y
IMAGE_SECTION_HEADER .rsrc 000BA150 01 D1 FF E1 60 8B 6C 24 24 8B 45 3C 8B 54 28 78 U188 E<. T(x
IMAGE_SECTION_HEADER text O00BA160 01 EA BB 4A 18 8B 5A 20 01 EB E3 34 49 8B 34 8B J..Z 41.4
IMAGE_SECTION_HEADER .xdata 000BA170 01 EE 31 FF 31 COFC AC 84 CO 74 07 C1 CF OD 01 1.1 to.o..
IMAGE_SECTION_HEADER .idata 000BA1B0 C7 EBF4 3B7C 24 28 75 E1 8B 5A 24 01 EB 66 8B IS (u. Z§.
IMAGE_SECTION_HEADER .reloc 000BA1S0 OC 4B 8B 5A 1C 01 EBBB 04 8B 01 EG 89 44 24 1C K. Z .D§
IMAGE_SECTION_HEADER .axc ODOBA1AD 61 C3B208 29 D4 83 E5 89 C2 68 SE4EDEECS52 a...) ..h.N..R
SECTION .00cfy OD0BA1BD EB 9F FF FF FF 89 45 04 BB7E D8 E2 73 87 1C 24 . .. E..~. .s..§

SECTION .rdata
SECTION .data
SECTION .gfids

SECTION .rsrc
SECTION .text
SECTION .xdata

SECTION .idata

SECTION .reloc

SECTION .axc

OD0BA1CO 52 EB BE FF FF FF 83 45 08 68 6C 6C 20 41 68 33 R. . .E.hll Ah3
ODOBA1DD 32 2E B4 68 75 73 65 72 30 DB 88 5C 24 DA 89 E6 2. dhuserD. . \§. .
ODOBATED 56 FF 55 04 89 C2 50 BB AB A2 4D BC 87 1C 24 52 V.U P...M.._$R
O00BA1FO EB 5F FF FF FF 68 69 74 79 58 68 65 63 75 72 68 . _. . . hityXhecurh
000BA200 6B 49 6E 53 68 42 72 65 61 31 DB 88 5C 24 OF 839 kInShBreal. . \§.
000BA210 E3 68 65 58 20 20 68 20 63 6F 64 68 6E 20 75 72 . heX h codhn ur
000BA220 68 27 6D 20 69 68 6F 2C 20 49 6B 48 65 6C6C 31 h'm iho, IhHell1
000BA230 C9 B8 4C 24 15 89 E1 31 D2 6A 40 53 51 52 FF DO . .L$...1. j@SQR.
000BA240 B8 FO 50 45 00 FF DD 90 90 90 90 90 90 80 90 90 . .PE...........
000BA250 90 90 90 90 90 S0 S0 90 S0 9090909809090 90
000BA260 90 90 90 90 90 90 S0 90 S0 909090 909809090
000BA270 90 90 90 90 90 S0 S0 90 S0 909090 S0 9809090
000BA280 90 90 90 90 90 S0 S0 90 S0 909090 80909090
000BA290 90 90 90 90 90 S0 S0 90 S0 9090 9090909090
0D0BA2AD 90 90 90 90 S0 90 90 90 90 90 90 S0 90 90 90 S0

NANNDANDA NN NN NN NN NN NN 0N NN 0N NN NN_nn_0n_nn_nn_nn

Image 19: putty.exe - modified shellcode in section (PEview sections)
As we can see from the above screenshots we get the following results:

1.

The overall entropy of the file reduced slightly but not as much as when we added
only the shellcode. This will be explained later.

The section entropy where the shellcode is is now reduced to a value around 5.3, a
difference of 1.3 less from when the shellcode was not surrounded with NOPs.

PEid reports that the overall entropy of the file was not reduced which again is
expected if we compare the size of the section and the size of the whole file.

DIE reports values overall and section very similar to the values reported from ent
and our python code.

In the final Screenshot we can see the shellcode surrounded with NOPs as
expected. However because the shellcode size and the number of NOPs that we
inserted was lower than the size of the section we created, it was observed the
same issue as a previous example. For the bytes of the section that we didn’t fill,
they were filled with random values, thus raising the section entropy to 5.3. If we
had filled the whole section with only the shellcode and NOPs the entropy value
would be much lower that the one that we got. This is also the reason that when we
used ent we got a slightly higher entropy value.

9.3 Creating PE from shellcode

For this part we will generate an executable from msfvenom that will be encrypted. The
shellcode that will be used will be a bind tcp shell shellcode encoded with shikata_ga_nai.

We test the results using the way we did for the previous parts

Serial correlation coefficient 1is

Image 20: PE from shellcode (ent entropy)

Image 21: PE from shellcode (section entropy)

D 0.5 833

File: | C:\Documents and Settings\tester\Desktopipracticalimsfvenom_Ffile.e | ... |
Entrypoint: | 00004DD0 EP Section: .text il
File OFfset: | 00004DDO First Bytes: |F8,99,FD,2F > |
Linker Info: 6.0 Subsystem: |Win32 GUI Ll
Mothing found [Debug] *

Multi Scan | Task Viewer | Options | About | Exit |
|v Stay on top L | '>_|

Extra Information

l

FileName: | C:\Documents and Settingsitester\Desktopipracticalimsfvenom_file
Detected: Nothing Found [Debug] *
Scan Mode: Normal

Entropy: 6.48 (Not Packed)

EP Check:

Fast Check:

LI

OK

Image 22: PE from shellcode (PEiD entropy)

Offset: Size: = Reload

Entropy e): 6.31889 not packed Save diagram

Bytes

PE Header("0.702556")
Section0{".text")("7.01306")
Section1({".rdat 5.31874")
Section2({".data")("4.40793")
Section3{".rsrc"){"1.95865")
Overlay("4.62564")

10,000 30,000 40,000 50,000

Image 23: PE from shellcode (DIE entropy)

The results we get are the following:
¢ The overall entropy of the PE is high at 6.31 using ent and DIE and 6.48 using PEid

e The high value is expected as the the shellcode has been encrypted

9.3.1 Adding section to generated PE

In this part we will use the PE that we generated from msfvenom and we will add to in a
section that will be filled with NOPs to test the effect on the overall entropy of the file.

The check the results using the same method.

serial correlation coefficient is 0.384640 (totally
Image 24: PE from shellcode - modified (ent entropy)
testbed@testbed: no = marbhon cortinn 2

35374

Image 25: PE from shellcode - modified (section entropy)

D 0.5 A3

File: C:\Documents and Settings\tester\Deskkoppractical\msfvenom_file_ ...
Entrypoint: 00016000 EP Section: | .axc L'
File Offset: 00012000 First Bytes: |4€,42,31,30 | > |
Linker Info: | 6.0 Subsystem: | Win32 GUI B
Mothing Found [Overlay] *

Multi Scan I Task Yiewer | Options | About | Exit |
IV Stay on top e | -2

xtra Information 3]

FileMame: | C:\Documents and Settingsitester\Deskkop'practicalimsfvenom_file
Detected: Mothing Found [Overlay] *
Scan Mode: | MNormal

Entropy: 6.36 (Not Packed)

EP Check:

Fast Check:

Ll L]

OK I

Image 26: PE from shellcode - modified (PEiD entropy)

Reload

Entropy(bits/byte): 5.93262 not packed Save diagram

Irve Histogram Bytes

PE Header{"0.729604")
Section0(".text")("7.01306")
Section1(".rdata")("5.31874")
Section2(".data"){"4.40793")
Section3(".rsrc")("1,95865")
Sectiond(".axc")("1.06577")
Overlay("0.00034597")

Image 27: PE from shellcode - modified (DIE entropy)

msfvenom_file_modified. exe pFile Raw Data Value

IMAGE_DOS_HEADER 00012000 4E 42 31 30 00 00 00 00 36 80 C14A 01 00 00 00 NB1O....6..J....
MS-DOS Stub Program 00012010 43 3A 5C BC BF 63 61 6C 30 5C 61 73 66 5C 72 65 C:\localO\asfire

® IMAGE_NT_HEADERS 00012020 BC 65 61 73 65 5C 62 75 69 6C 64 2D 32 2E 32 2E lease\build-2.2.
IMAGE_SECTION_HEADER text 00012030 31 34 5C 73 75 70 70 6F 72 74 5C 52 65 B6C 65 61 14\support\Relea
IMAGE_SECTION_HEADER _rdata 00012040 73 65 5C 61 62 2E 70 64 62 00 90 90 90 90 90 90 selab.pdb.
IMAGE_SECTION_HEADER .data 00012050 90 90 90 90 90 90 90 90 909090909090 9090
IMAGE_SECTION_HEADER .rsrc 00012080 90 90 90 90 90 90 90 90 9090 909090909090
IMAGE_SECTION_HEADER axc 00012070 90 90 90 90 90 90 90 90 90909090 90 9090 90
SECTION text 00012080 90 90 90 90 90 90 90 90 909090 90 90 90 90 90

% SECTION .rdata 00012090 9090909090 909090 909090 9090909090
SECTION data 00012040 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

% SECTION .rsrc 00012080 90 90 90 90 90 90 90 90 90909090 90909090

000120C0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

00012000 90 90 90 90 90 90 S0 S0 90 9090909090909
OD0120E0 90 90 90 90 90 90 S0 90 90909090 90 S80S0 90
0DO120FD 90 90 90 90 90 S0 90 90 9090 90 9080 90 90 90
00012100 90 S0 90 90 90 S0 90 90 90 S0 90 90 8080 90 902
00012110 90 S0 90 90 90 S0 90 90 S0 S0 90 908090 90 90
00012120 90 S0 90 90 90 S0 90 90 S0 90 90 90 80 90 90 90
00012130 90 S0 90 90 90 90 90 90 9090 90 90 90 S0 S0 90
00012140 90 S0 90 90 90 90 90 90 9090 90 90 90 S0 S0 90
00012150 90 S0 90 90 90 S0 90 90 90 S0 90 909090 90 90
00012160 90 S0 90 90 90 S0 90 90 90 S0 90 90 8090 90 90

00012170 90 S0 90 90 90 S0 90 90 90 S0 90 9080 90 90 90
00012180 90 S0 90 90 90 S0 90 90 S0 S0 90 908090 90 90
00012190 S0 S0 90 90 90 90 90 90 9090 90 90 90 S0 S0 90
000121A0 90 90 90 90 90 90 S0 S0 9090 909090909090
000121B0 90 90 90 90 90 90 S0 90 90909090 90 S80S0 90
000121CO 90 90 90 90 90 90 S0 90 90909090 90 S80S0 90
00012100 90 90 S0 90 90 90 90 90 90 90 90 90 8080 90 90

ANN4A1EN AN NN NN AN NN AN NN AN NN AN AN NN NN NN NN AN

Image 28: PE from shellcode - modified (PEview sections)

As we can see the results are what we would expect:

The Overall entropy using all the tools (ent, PEid, DIE) has been lowered. Not by a
significant amount since the size of the PE is 72KB and the section that we are creating is
around 1KB. Also something else that we need to take into account is that the section is
not full with NOP instructions.

9.4 Summary Table

The following table represents a summary of the findings for the files that we tested,
focusing on the overall entropy and on the entropy of the new section we created (.axc)

File Type

Original Test PE

Added NOP Section
Added Shellcode section
Added modified shellcode
Shellcode Executable
Modified shellcode

ent
6.72646
6.685167
6.683808
6.684562
6.318871
5.93261

Peid
6.43
6.42
6.43
6.43
6.48
6.36

Measure Method

DIE
6.72646
6.68517
6.68381
6.68456
6.31889
5.93262

DIE (.axc)
N/A
1.4729
6.68672
5.3825
N/A
1.06577

python(.axc)
N/A
1.4719
6.6838
5.3815
N/A
1.06541

File Name

putty.exe

putty modified.exe

putty shellcode.exe

putty _modified_shellcode.exe
msfvenom_file.exe
msfvenom_file_modified.exe

9.5 Entropy of Malware Samples

As part of the testings a number of malware samples available online on different
repositories were tested for their entropy values.

The Following table represents a small sample of the 3700 files that were tested.

The Collumn “AVG_ENTROPY” refers to the overall entropy of the file while the “MIN”
and “MAX” entropy collumns refer to the minumum and maximum entropy values of the
sections

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY

4.426297303 2.867124198 6.096939721 2.296986435 0 6.53892752
5.214709787 4.084872622 6.673501782 2.294639202 0 6.530868468
3.173186073 0 7.999371708 4.137655425 0 6.410406825
2294760411 0 6.530868468 4.955723175 3.667153173 6.419912706
2.294783725 0 6.530868468 2.433021436 0 6.563139352
2.327657194 0 6.631747641 4.441406182 2.927559713 6.096939721
6.017597431 3.402931054 7.902031708 2.297264108 0 6.53892752
2.300557835 0 6.562232258 2.29483193 0 6.530868468
2.295011308 0 6.530868468 2.29502051 0 6.530868468
2 207530702 0 6.564721241 5.958414586 4.591708551 7.874263165
4. 479505412 0 6.449717905 2.294577923 0 6.530868468
2.294803859 0 6.530868468 2.294671195 0 6.530868468
6.227480168 4.184278832 7.947140697 3.454583804 0 7.93600008
599050511 4.619834149 7.997200275 2.760652352 0 5.910445078
3.025475342 0 7700831956 2.915807825 0 5.935052364
3973397216 1.892199801 6.516178183 2'245593323222 5 193638902 2'28(5)53?2?2
5.382012912 4.445088033 6.638992819 6.507119433 3 985078565 7 983563618
3.733659266 0 6497884652 4.982680109 4.127240712 6.32622336
4.304746956 2.399821812 6.567290989

4.356458536 0 6.417698237
2.294654207 0 6.530868468

4.98598922 2.951925917 6.446828762
2.295313201 0 6.530868468 3.623639539 0 6.497884652
2.294979921 0 6.530868468 3.365807708 0 7.995181989
2.295129445 0 6.530868468 5334365373 4.068465151 6.035730827
4.599600543 2.988368347 6.577777545 4 115510688 0 6.877406246
2.295002922 0 6.530868468 4163910847 0 6.497884652
4.165283174 0.269444839 7.998463401 5.287804455 4.207579475 6.572551931
4.02028889 0 6.396305005 4917674437 2.458886248 6.318474099
3.426560412 0 6650422302 5586331992 4.508373407 6.561306487
4441162392 0.394140975 6.683800868 4821950119 3.202715463 6.516518185
4.248977944 0.60747647 6.683642715 2 544826765 0 5.974830461
4.482634099 2.94889919 6.550136664 2.320866222 0 6.153356413
2.294939734 0 6.530868468 5.179280157 4.303255992 6.573206125
2.298667213 0 6.52973184 4.467429119 0 7.927776502
2.345772926 0 6.499603846 4.316136169 0 7.926069174
6.030917672 5.10382227 6.89497467 4.038051772 0 7.917869782
4.577271241 0 6.598411597 4.153434456 0 7.93152154
2.295159016 0 6.530868468 4.441803949 0 7.780490017
2.330158428 0 6.496038061 5.097277607 2.43668428 6.543951938
5.245474628 1.836679167 7.998993291 3.41737148 0 6.497884652

4.610731649
3.941302849
4.026921653
2.649535825
5.049897405
2.328679917
4.138339841

4.47585472
5.034868575
3.321002224
3.361344469

5.35824472
3.967695937
5.289034099
2.673733682
2.473338857
3.302447264
3.258094291
4.884486487
3.314309123
4.205485806
4.972576007
3.590692802
4.265277681
4.395258429
4.280595634
3.801349375
2.855868199
3.040766301

4.06877138
4.469655097
3.521821281
2.244044716
3.560271109
4.510238829
3.440589843
3.942427942
4.194853593
4.042752619
4.952370832
2.949007111

2.152015628
0
1.852499945
0
3.89961076
0

0

0
2.488179651
0

0
4.396796299
0
2.213200384
0

0

0

0
2.266386129
0

0
3.22351651

[eNeNeoNoNelNeNoNoNeNo oo Ne Noj

3.084965637
0

0
3.51044725
0

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY

6.68581953
7.998987038
6.464695388
5.589445261
6.642460579
5.862227917
6.417698237
7.776313108
6.394668199
5.997496784
6.535749259
6.579148586
6.497884652

7.05695537
6.436379637
6.497884652
6.497884652
6.480448376
6.578698604
7.998374087
7.927312134
6.589233028
6.497884652
7.920170245
6.450231726

6.29093337
6.497884652
6.497884652
6.497884652
6.719415702
7.901445667
7.918980839
5.809670488
6.497884652
7.942032612
6.421092436
5.949718001
6.433100348
6.497884652
6.655914168
5.681021902

4.517077282
4.873116266
3.18619056
3.961854917
2.938541563
2.244044716
3.740301655
3.408559137
4.421767704
4.889881091
3.55705392
3.847562126
4.683639081
3.120867614
4.494347293
3.590930721
4.43589276
3.513839978
5.109330642
3.805065211
4.902661186
3.834712346
2.520830449
3.933574671
3.046336629
3.905956185
3.623504828
4.131767069
4.035109547
2.449333951
4.468556311
4.012265429
2.48198126
4.614002314
4.526147426
4.238204985
4.789055745
5.570017255
4.8211787
5.170584106
3.786191938

0.020393135
3.192076594

O OO O oo

1.955565864
4.080367057
0
0
3.189745702
0
2.808535214

O OO oo

3.190142906
0
0
0.762670683

O OO O0OO0oOoOOo

0.020393135

0
0.020393135

0
0.020393135
3.205876702
3.327596729
3.197740598
4.123284643

0

AVG_ENTROPY MIN_ENTROPY MAX_ENTROPY

6.599033393
6.682816882
6.015548456
6.717667374
5.904659367
5.809670488
6.497884652

7.81835259
6.528199949
6.614560896
6.497884652
6.497884652
6.593136124
6.497884652
6.387448572
7.474678754
7.924875779
6.497884652
7.928653506
6.696397554
6.555858682
6.128108318
6.065012874
6.257227514
5.313254611
6.497884652
7.266887287
7.997699313
6.497884652
6.062043662
7.926680234
6.581870645
6.497884652
6.856402239
7.035102788
6.774073328
6.665481102
6.602102655
6.636600349
6.681036423
6.497884652

As we can see from the results the overall entropy and the section entropy of the malware
samples varies. We would expect that the malware files would usually have high entropy
values because of the encryption and the packaging but the numbers show something
very different.

The values range from as low as 2.5 until as high as 6.5 with many files to have an
average of 4.5 till 5.5. This is considered in many cases a value that can be found In
legitimate software as well.

That makes us further question how accurate is the entropy value of a file to identify a
potential malicious file, when many of the malwares tested that are available online have
reasonable entropy values that can also pass as legitimate.

10 Final Results

From the tests that we did and their results, we come to an interesting conclusion. Even
though malware authors choose to encrypt their files resulting to an increased entropy, the
values can be modified easily by using the same methodology in this thesis, by adding
new sections or surrounding the shellcode with a length of the same bytes to lower the
entropy.

Anti-virus vendors use the entropy value as an indicator among others to identify potential
malicious files.

By looking at the results we can see that the entropy cannot be safely used for the
identification of malicious files, but it can still be used to identify potentially packed or
encrypted files.

However not only malicious files are packed or encrypted. Many legitimate softwares have
these traits. For example software installers have packed in one executable all the
necessary files and dependencies for the software to be installed and run. Software
authors use encryption techniques in their software to prevent reverse engineering to keep
the code hard to read, but also many legitimate executables have a high entropy value just
because they are big and have a big number of different and randomized characters in
their code.

11 Future Work

As a future work on this thesis the tests performed can be expanded to other Operating
Systems (OS). Specifically Android, because of the popularity of it and the fact that a very
big percentage of current mobile devices have it pre-installed.

That reason has attracted the attention of malware authors, since the popularity of Android
on devices also brought in the ecosystem users who are not aware of the dangers of now
mobile malware, and not properly educated on the “on-line safety”.

Anti-virus vendors have released various solutions for protecting these devices by
applying similar login as the other Operating Systems, therefore we can assume that the
tests done in this thesis also apply in the case of android.

More specifically, in the case of encrypted and packed malware the same logic will apply
in android as well. Creating test cases that show how can entropy can manipulated in the
mobile ecosystem will show how much value it has as a metric to identify potential
malicious application.

12 References

[1] “An HMM and structural entropy based detector for Android malware: An empirical

study” - Geradro Canfora, Francesco Mercaldo, Corrado Aaron Visaggio

[2] “Comparing files using structural entropy” - Sorokin |

[3] “Structural entropy and metamorphic malware” - Baysa D

[4] “Information Theory and the Digital Age” - Aftab, Cheum, Kim, Thakkar, Yeddanapudi
[5] “The mathematical Theory of communication” - Shannon, Claude E, 1949

[6] “Entropy and Information Theory” - Robert M. Gray

[7] “Practical Malware Analysis” - Honig Andrew, Sikorski Michael, 2016

[8] “Hunting for metamorphic engines” - Wong W., Stamp M., 2006

[9] “Microsoft Portable Executable and Common Object File Format Specification”

[10] https://www.aldeid.com/wiki/PEiD

[11] http://ntinfo.biz/index.html

[12] http://wjradburn.com/software/PEview

[13] https://github.com/Isauer/entropy

[14] “Exploring Hidden Markov models for varus Analysis: A semantic Approach” -
T.Austin, E. Filiol, S. Josse, M. Stamp (2013)

[15] “Computer Viruses and Malware” - J. Aycock , 2006

[16] “Difference between a computer virus and a computer worm” -

http://scienceline.ucsb.edu/getkey.php?key=52

[17] “Classification of Malware Using Structured Control Flow” - S. Cesare and Y. Xiang
(2010)
“Pattern Recognition and Machine Learning” - C. Bishop. (2006)

https://www.aldeid.com/wiki/PEiD
https://github.com/lsauer/entropy
http://wjradburn.com/software/PEview
http://ntinfo.biz/index.html

[18] “A Survey of Malware Detection Techniques” - N. Idika and A. Mathur (2007)
[19] “A Short Introduction to Boosting” - Y. Freund and R. Schapire (1999)

[20] “Learning to Detect and Classify Malicious Executables in the Wild” - S. Kolter and M.
Maloof (2006).

[21] “Hidden Markov Models for Malware Classification” - Chinmayee Annachhatre
(2013)

[22] “Panda Security (n.d.). Virus, worms, trojans and backdoors: Other harmful relatives
of viruses” - http://www.pandasecurity.com/homeusers-cms3/security-info/about-
malware/generalconcept

[23] “A tutorial on hidden Markov models and selected applications in speech recognition”
- L. Rabiner (1989).

[24] “https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx”

[25] “https://technet.microsoft.com/en-us/library/dd632948.aspx”

[26] “Boot sector virus repair” - M. Landesman

[27] “What is the difference between viruses, worms, and Trojans?” - Symantec (2009)
[28] “Trojan Horse” - Symantec (2004)

[29] “Information Security: Principles and Practice , second edition” - M. Stamp (2011)

[30] “Metamorphic Detection via Emulation, Masters Thesis, San Jose State University” -
S. Priyadarshani (2011)

[31] “Pattern Recognition and Machine Learning” - C. Bishop. (2006)

[32] “Toward an Automatic, Online Behavioral Malware Classifiction System” - R.

Canzanese, M. Kam, and S. Mancoridis

[33] “Support-Vector Networks. Machine Learning” - C. Cortes and V. Vapnik(1995)

https://technet.microsoft.com/en-us/library/dd632948.aspx
https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx

	1 Abstract
	2 Acknowledgements
	3 Table of contents
	4 Information Theory - Entropy
	5 Portable Executable
	5.1 Basic Structure

	6 Malware
	6.1 Malware Detection Techniques
	6.1.1 Signature Based Detection
	6.1.2 Anomaly Based Detection
	6.1.3 Heuristics Based Detection

	7 Malware Classification Methods
	7.1 Classification of Malware using Structured Control Flow
	7.2 Behavioral Malware Classification
	7.3 Instance-based Learner
	7.4 Support Vector Machines (SVM)
	7.5 Naϊve Bayes
	7.6 Data mining methods
	7.7 Decision Trees
	7.8 Boosted Classifiers
	7.9 Structural Entropy
	7.10 Hidden Markov Model Based Detection

	8 Malware Analysis Techniques
	8.1 Malware Static Analysis
	8.1.1 Static Analysis Techniques

	8.2 Malware Dynamic Analysis
	8.2.1 Function Call Monitoring
	8.2.2 Function Parameter Analysis
	8.2.3 Information Flow Tracking
	8.2.4 Instruction Trace
	8.2.5 Autostart Extensibility Points

	9 Testing Methodology
	9.1 File Entropy
	9.2 File entropy Manipulation
	9.2.1 Methodology Steps
	9.2.2 Entropy of test PE
	9.2.3 Adding new section to test PE
	9.2.4 Adding section with shellcode to test PE
	9.2.5 Adding mofidied shellcode to new section to test PE

	9.3 Creating PE from shellcode
	9.3.1 Adding section to generated PE

	9.4 Summary Table
	9.5 Entropy of Malware Samples

	10 Final Results
	11 Future Work
	12 References

