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 Abstract 

Outsourcing storage/computation has been gaining popularity because its elasticity. 

However, this new type of storage model also brings security concerns. Privacy of data 

storage has long been a central problem in computer security. The most common 

technique to protect our data is to encrypt it. However, encryption does not prevent 

information disclosure about where we read or write in our data. This additional 

information, the access pattern, can be used to reverse-engineer proprietary 

programs as they run, reveal a user's physical location or health information, and 

more, even if data is correctly encrypted. 

A cryptographic primitive, which provably hides a client’ access pattern as seen by 

untrusted storage, called Oblivious RAM (ORAM). ORAM was introduced by Goldreich 

and Ostrovsky [1], where in the key motivation was stated as software protection 

from an adversary who can observe the memory access pattern (but not the contents 

of the memory). ORAM incurs a large performance overhead and can require a large 

amount of client, who is considered trusted, storage. In particular, ORAM schemes 

require the client to continuously shuffle the data stored in the untrusted storage, 

using the trusted storage. Early work on ORAM proves that this operation must incur 

a client-storage bandwidth blowup that is logarithmic in the dataset size, which can 

translate to > 100× in practice. This thesis studies several ORAM schemes that could 

make feasible the use of ORAM in practice by reducing performance overhead and in 

some cases client storage. 

We address this challenge by presenting ORAM schemes that make both theoretical 

and practical contributions. Those schemes are categorized based on their 

characteristics. The 4 main categories are Path ORAM, Constant worst-case 

bandwidth blowup, ObliviStore, and Applied ORAM. In the Path ORAM family we 

present the schemes Path ORAM [2], Path Oblivious RAM in Secure Processors [7], 

Circuit ORAM [8], Bucket ORAM [44] and Ring ORAM [11] and a comparison between 

them. The Constant worst-case bandwidth blowup ORAM family includes Onion 

ORAM [14] and C – ORAM [22] and we present the respective comparison. In Chapter 

5 we present and compare ObliviStore ORAM [5], Burst ORAM [13] and CURIOUS 

ORAM [35], which are included in the ObliviStore ORAM Family. Finally, we present 

two Applied ORAM schemes ObliviSync [50] and Tiny ORAM [33]. ObliviSync is an 

oblivious cloud storage system that specifically targets one of the most widely-used 

personal cloud storage paradigms. Tiny ORAM is a hardware ORAM with small client 

storage, integrity verification, or encryption units. 
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1 Introduction 

Security of data storage is a huge problem in nearly all aspects of the Internet 

connected world. Consider several ubiquitous settings: outsourced storage, 

computation outsourcing and the Internet of Things (IoT).  

In outsourced storage, users outsource private data storage from their private 

infrastructure to remote cloud servers. Data can now be stolen at any point in the 

cloud infrastructure; for instance, at the server itself (e.g., by insiders [56]), at the 

internet-server boundary (based on the Snowden revelations [57]) or in transit (e.g., 

[58]).  

Further, in computation outsourcing and IoT, sensitive information is stored on cloud 

servers, or other potentially hostile environments, as it is being computed upon. 

Despite the promise of tamper-resistant systems (e.g., [59]) and bootstrapping trust 

from a known CPU state (e.g., [60]), which protect data while it resides on-chip (or on-

package), data can still be stolen via software or physical attacks when it is stored on-

chip (e.g., in main memory or disk). For instance, it has been shown how memory can 

be accessed by exploiting cloud resource sharing [61] and vulnerable firmware [39, 

41]. In IoT, the attacker may have physical access to devices, which it can use to 

extract data using (for example) test cards [37], bus probing [38] or technology-

specific techniques [36].  

A natural starting point to address this issue is to encrypt all data written to untrusted 

storage. For example, consider client-side encryption which defines two parties: a 

trusted client and untrusted server (storage). When data passes to/from the server, it 

is encrypted/ decrypted by the client. Only the client holds the secret key. Thus, the 

server cannot decrypt the data it stores unless it is able to break the encryption 

scheme. Client-side encryption is used today. For example, it is implemented at the 

chip boundary in remote processors to protect main memory (e.g., Intel SGX [62]) and 

at the client boundary to protect outsourced storage applications (e.g., [63]).  

A big problem with client-side encryption (and other systems that protect only the 

data itself) is that it does not protect all aspects of how the client interacts with the 

server's storage. Where storage is accessed, the access pattern, can also reveal secret 

information. For example, consider the following: 

 Suppose a patient stores his/her genome on a remote server and wishes to 

check if he/she has an allele/SNP (i.e., which is located at a specific point on 

the genome) which corresponds to cancer. If an observer (e.g., an insurance 

company) learns where that patient is looking in its genome, the observer can 

infer that the patient was concerned about cancer. Similar examples can be 
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drawn from users requesting geo-location, financial and database queries 

over other sensitive information (e.g., [47, 64]). 

 A common task in personal and cloud computing is to run a proprietary 

program on a remote processor. One of the open challenges with this 

deployment is to prevent software IP theft: the program distributor wants to 

avoid malicious parties from being able to reverse-engineer the program as it 

runs. Unfortunately, an observer capable of monitoring how a program 

accesses main memory can, in fact, reverse engineer the program's 

conditional and loop structure, simply by monitoring address requests to 

main memory [65, 66, 47]. 

 In the inverse of the software IP theft setting, a user may wish to outsource 

private data to a remote processor to compute some result. In this case, the 

program may be selected by the server hosting the processor (e.g., a cloud 

service which cannot be attested by the user) and is therefore untrustworthy 

[67, 68]. Untrusted programs running on sensitive data are a serious concern: 

the program may directly or inadvertently leak the user's data. 

1.1 Challenges in Protecting Access Pattern 

The underlying problem in the above examples is inherent in how programs are 

written today: to be performant, program control flow and memory access behavior 

depends on the sensitive information we wish to hide. Indeed, a strawman solution 

to eliminate all access pattern leakage is to perform the same amount of work, 

regardless of the program's sensitive inputs. In the worst case, this requires that the 

program scan all of memory on every access {e.g., download the entire genome to 

analyze a single allele {incurring huge performance overheads.  

A natural question to ask is: can encryption solve this problem? Generally, the answer 

is no, considering practical constraints. Encrypting an address makes that address 

unusable by the memory unless the remote memory has the corresponding 

decryption key or the system is using certain cryptographic schemes. First, distributing 

decryption keys has serious limitations. In particular, the trust boundary now includes 

all of remote storage and the burden is on memory manufacturers to re-design their 

products to (safely) perform key exchange. Second, certain encryption schemes (e.g., 

private information retrieval [23] or homomorphic encryption [69]) can securely 

search over encrypted data. However, these schemes have an inherent problem: the 

scheme must compute over every element in the database. Otherwise, an observer 

trivially knows what elements were not selected. This has even worse overheads than 

scanning memory due to these schemes' computational complexities. To summarize, 

we desire address pattern protection that doesn't make assumptions on the 

untrusted storage, and is asymptotically more efficient than scanning memory.  
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Another question is: can we get away with incomplete protection? Incomplete access 

pattern protection is implicit in the state of the art hardware extensions from Intel, 

called Intel SGX [62, 41]. In that system, the access pattern may be called ‘partially 

hidden’ because the subset of memory accesses that cause page faults are directly 

revealed to the untrusted operating system. Recently, however, researchers showed 

how even this amount of leakage can be used to reconstruct the outline of medical 

images in medical applications [70]. Another example in this vein is the HIDE 

framework, by Zhuang et al. [65]. HIDE provides access pattern protection assuming 

constraints on the spatial locality in the program access pattern. But HIDE makes no 

guarantees for programs with arbitrary access patterns and, in particular, leaks non-

negligible information for even a single access if there are no restrictions on where 

that access may occur. To summarize, we desire a general solution that doesn't make 

assumptions about the program access pattern, or about how much privacy is leaked 

on a particular memory access.  

Another way to see the danger in the above attacks is to look at society's move from 

deterministic to randomized encryption schemes. In the University and Industry, 

students learn not to use deterministic encryption because it is “insecure”, in 

particular it is subject to frequency analysis attacks. The access pattern can be viewed 

in a similar light: as client-side encryption becomes ubiquitous, frequency attacks on 

the remaining un-encrypted information (the access pattern) can become the new 

low-hanging fruit. 

1.2 The Case for Oblivious RAM 

To address the above problems, this thesis studies a cryptographic primitive called 

Oblivious RAM (ORAM), which provably eliminates all information leakage in memory 

access patterns [1, 3].  

As with client-side encryption, an ORAM scheme is made up of a client and server with 

data blocks residing on the server. Consider two sequences of storage requests and 

𝐴′ made to the server, where each sequence is made up of read (𝑟𝑒𝑎𝑑, 𝑎𝑑𝑑𝑟) and 

write (𝑤𝑟𝑖𝑡𝑒, 𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎) tuples. ORAM guarantees that from the server's 

perspective: if |𝐴| = |𝐴′|, then 𝐴 is computationally indistinguishable from 𝐴′. 

Informally, this hides all information in 𝐴 and 𝐴′: whether the client is reading/writing 

to the storage, where the client is accessing, and the underlying data that the client is 

accessing.  

ORAM addresses all the weaknesses discussed in the previous section. First, ORAM is 

asymptotically efficient: for a database of size 𝑁, modern ORAM schemes only need 

to download/re-upload 𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑁) data blocks from untrusted memory, per 

access (as opposed to the 𝑂(𝑁) cost of scanning memory). Second, ORAM makes no 
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assumptions on the external memory. Memory is considered untrusted, or actively 

malicious, and need not manage private keys. Finally, ORAM provides the same level 

of protection regardless of the access pattern and assumes all memory accesses are 

visible to the adversary.  

Since its proposal by Goldreich and Ostrovsky [1, 3], ORAM has become an important 

part of the cryptographic “swiss army” knife, and has been proposed to secure 

numerous settings, both practical and theoretical. On the practice side, ORAM has 

been proposed to secure outsourced storage (e.g., [71]), hide secure processor 

behavior to external memory (e.g., [68, 47]) and implement searchable encryption 

with small leakage (e.g., [72]). Additionally on the cryptography side, ORAM has 

become an important building block in constructing efficient secure multi-party 

computation protocols (e.g., [73]), proofs of retrievability [74], and Garbled RAM [75].  

Despite recent advancements and numerous potential applications, however, the 

primary impedance to ORAM adoption continues to be its practical efficiency. To 

achieve privacy as advertised, ORAM schemes require that the client continuously 

shuffle (i.e., physically re-locate) data as it is stored on the server. This shuffling has 

incurred 𝛺(log 𝑁) bandwidth blowup between client and server in all ORAM 

proposals – which translates to 25× > 100× overhead in practice. In fact, the seminal 

work by Goldreich and Ostrovsky [1, 3] proved that the shuffling bandwidth must be 

at least logarithmic in 𝑁 for an ORAM scheme to be secure.  

To confound the problem, the shuffling requires a potentially large amount of trusted 

storage on the client side, and the most performant schemes require more storage. It 

is especially challenging to reduce bandwidth overhead while maintaining small client 

storage. This is obviously desirable: ORAM exists to securely outsource storage. 

Indeed, the most performant ORAM schemes (e.g., [13]) require GBytes (to tens of 

GBytes) of client storage to handle TByte-range ORAMs. This immediately rules out 

their applicability to settings where the client storage must be small; for example, if it 

must fit in the on-chip memory of a remote processor (which is the case with the 

software IP theft and computation outsourcing settings discussed above). On the 

other hand, the state of the art construction that can be deployed in a remote 

processor (i.e., requires only KBytes to MBytes of client storage) incurs > 8× the 

bandwidth overhead of the most performant schemes [2]. 

1.3 Thesis overview 

We now give an overview of each chapter. 

Chapter 2 – Preliminaries. We start by introducing security definitions for ORAM in 

several settings and efficiency metrics which will be studied later in the thesis. We 

then describe the usage settings for ORAM most related to the thesis and give a 
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history of prior work in ORAM starting with the first ORAM schemes by Goldreich and 

Ostrovsky. 

Chapter 3 – Path ORAM Family. We present Path ORAM [2] and several ORAM 

schemes, which were based on Path ORAM and a comparison between them. The 

schemes that presented on this section are a) Optimization of Path Oblivious RAM in 

Secure Processors [7], b) Circuit ORAM [8], c) Bucket ORAM [44], and d) Ring ORAM 

[11]. 

Chapter 4 – Constant worst-case bandwidth blowup. We present ORAM schemes, 

which achieve Constant worst-case Bandwidth blowup and a comparison between 

them. The ORAM schemes are Onion ORAM [14] and C – ORAM [22].    

Chapter 5 – ObliviStore ORAM Family. We present ObliviStore ORAM [5] and ORAM 

schemes, which were based on ObliviStore ORAM and a comparison between them. 

The schemes that presented on this section are a) Burst ORAM [13], and b) CURIOUS 

ORAM [35]. 

Chapter 6 – Applied ORAM Schemes. In this section, we present two applied ORAM 

schemes (ObliviSync [50] and Tiny ORAM [33]) that could be used in real world. 

ObliviSync is an oblivious cloud storage system that specifically targets one of the 

most widely-used personal cloud storage paradigms: synchronization and backup 

services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. Tiny 

ORAM is a hardware ORAM with small client storage, integrity verification, or 

encryption units. 

Chapter 7 – Conclusion. We summarize the results of the thesis.  
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2 Preliminaries 

In this chapter, we give formal definitions for ORAM. We first give a strong and general 

security definition, which achieves simulator-based security against a malicious 

adversary. We then discuss ORAM metrics and how they impact practice, and give a 

history of ORAM schemes. 

2.1 Problem Definition 

We consider a client that wishes to store data at a remote untrusted server while 

preserving its privacy. While traditional encryption schemes can provide data 

confidentiality, they do not hide the data access pattern which can reveal very 

sensitive information to the untrusted server. In other words, the blocks accessed on 

the server and the order in which they were accessed is revealed. We assume that the 

server is untrusted, and the client is trusted, including the client's processor, memory, 

and disk. The goal of ORAM is to completely hide the data access pattern (which 

blocks were read/written) from the server. From the server's perspective, the data 

access patterns from two sequences of read/write operations with the same length 

must be indistinguishable. 

2.2 ORAM Definition 

Following Apon et al. [28], we define ORAM as a reactive two-party protocol between 

the client and the server, and define its security in the Universal Composability model 

[29]. We use the notation 

((c_out, c_state), (s_out, s_state)) ←protocol((c_in, c_state), (s_in, s_state)) 

to denote a (stateful) protocol between a client and server, where c_in and c_out are 

the client’s input and output; s_in and s_out are the server’s input and output; and 

c_state and s_state are the client and server’s status before and after the protocol. 

 

Definition 1 An ORAM scheme consists of the following interactive protocols 

between a client and a server. 

((⊥,𝒞),(⊥, 𝒟)) ← Setup(1λ, (D, ⊥),(⊥,⊥)): An interactive protocol where the client’s input 

is a memory array D[1..N] where each memory block has bit-length Β; and the server’s 

input is ⊥. At the end of the Setup protocol, the client has secret state 𝒞, and the 

server’s state is 𝒟 (which typically encodes the memory array D).  

((data,𝒞′), (⊥, 𝒟′)) ← Access((op, 𝒞), (⊥,𝒟)): To access data, the client starts in state 𝒞, 

with an input op where op := (read, addr) or op := (write, addr, data); the server starts 
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in state 𝒟, and has no input. In a correct execution of the protocol, the client’s output 

data is the current value of the memory 𝒟 at location addr (for writes, the output is 

the old value of D[addr] before the write takes place). The client and the server also 

update their state to 𝒞′ and 𝒟′ respectively. The client outputs data := ⊥ if the protocol 

execution aborted. 

We say that the ORAM scheme is correct, if for any initial memory D ∈ {0, 1}ΒΝ, for any 

operation sequence op1, op2, …, op𝓂 where 𝓂 = poly(λ), an op := (read, addr) 

operation would always return the last value written to the logical location addr 

(except with negligible probability). 

2.2.1 Tree-based ORAM Framework 

Shi et al. [4] proposed a new tree-based framework, which was adopted subsequently 

by several improved constructions [9, 12, 30, 2, 31]. We now briefly review the 

framework.  

Notation.    We use N to denote the number of (real) data blocks in ORAM, Β to denote 

the bit-length of a block in ORAM, Z to denote the capacity of each bucket in the 

ORAM tree, and λ to denote the ORAM’s statistical security parameter. For 

convenience in algorithm descriptions, we sometimes treat the stash as a depth-0 

bucket with some capacity R that is the imaginary parent of the root. We assume that 

leaves are numbered sequentially from 0 to N -1. We also denote [a…b] := {a, a+1, …, 

b}. 

 

 

 

 

Figure 1: Generic Access Algorithm 

Data structure. The server organizes blocks into a binary tree of height L = log N + 1; 

each node of the tree is a bucket containing Z blocks. Each block is of the form: 

{idx||label||data}, 

where idx is the index of the block, e.g. the (logical) address of desired block; label is 

a leaf identifier specifying the path on which the block resides; and data is the payload 

of the block, of Β bits in size.  

Access(op) // wher op = (“read”, idx) or op = (“write”, idx, data*) 

1: label := PositionMap[idx] 
2: {idx||label||data} := ReadAndRm(idx, label) 
3: PositionMap [idx] := UniformRandom(0…N – 1) 
4: If op is “read” : data* := data 
5: stash.add({idx||PositionMap[idx]||data*}) 
6:Evict() 
7:Return darax ← position[a] 
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The client stores a stash for buffering overflowing blocks. In certain schemes such as 

the original binary-tree scheme [4], a stash is not necessary. In this case, we can simply 

treat this as a degenerate stash of size 0. 

The client also stores a position map, mapping a block’s idx to a leaf label. As described 

later, position map storage can be reduced to O(1) by recursively storing the position 

map in a smaller ORAM. These leaf labels are assigned randomly and are reassigned 

as blocks are accessed. If we label the leaves from 0 to N - 1 then each label is 

associated with a path from the root to the corresponding leaf. 

Main path invariant. Three-based ORAMs maintain the invariant that a block marked 

label resides on the path from the stash (to the root) to the lead node marked label 

Operations. Tree-based ORAMs all follow a similar recipe as shown in Figure 1. In 

particular, the ReadAndRm operation would read every block on the path leading to 

the leaf node marked label, and fetches and removes the block idx from the path. 

Various tree-based ORAMs are differentiated by the eviction algorithm denoted 

Evict(). For example, the original binay-tree ORAM adopts a simple eviction algorithm 

engineered to make their proof easy: with each data access, two distinct buckets are 

chosen at random from each level to evict from. By contrast, the Path ORAM 

algorithm performs eviction on the read path, and the eviction strategy is aggressive: 

pack all blocks as close to the leaf as possible respecting the main invariant. In Path 

ORAM, a O(log N) ∙  𝜔 (1) stash is necessary to buffer overflowing blocks. 

Recursion. Instead of storing the entire position map in the client’s local memory, the 

client can store it in a smaller ORAM on the server. In particular, this position map 

ORAM needs to store N labels each of log N bits. We can apply this idea recursively 

until we get down to a constant amount of metadata, which the client could store 

locally. 

2.2.2 Security Definition 

We will adopt two security definitions throughout this thesis. The first follows a 

standard simulation-based definition of secure computation [32], requiring that a 

real-world execution “simulate” an ideal-world (reactive) functionality ℱ. 

Ideal world. We define an ideal functionality ℱ that maintains an up-to-date version 

of the data D on behalf of the client, and answers the client’s access queries. 

 Setup. An environment 𝒵 gives an initial database D to the client. The client sends 

D to an ideal functionality ℱ. ℱ notifies the ideal-world adversary 𝒮 of the fact 

that the setup operation occurred as well as the size of the database N = | D |, but 
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not of the data contents D. The ideal-world adversary 𝒮 says ok or abort to ℱ. 

ℱ then says ok or ⊥ to the client accordingly. 

 

 Access. In each time step, the environment 𝒵 specifies an operation op := (read, 

addr) or op := (write, addr, data) as the client’s input. The client sends op to ℱ. 

ℱ notifies the ideal-world adversary 𝒮 (without revealing to 𝒮 the operation op). 

If 𝒮 says ok to ℱ, ℱ sends D[addr] to the client, and updates D[addr] := data 

accordingly if this is a write operation. The client then forwards D[addr] to the 

environment 𝒵. If 𝒮 says abort to ℱ, ℱ sends ⊥ to the client 

 

Real world. In the real world, an environment 𝒵 gives an honest client a database D. 

The honest client runs the Setup protocol with the server 𝒜. Then, at each time step, 

𝒵 specifies an input op := (read, addr) or op := (write, addr, data) to the client. The 

client runs the Access protocol with the server. The environment 𝒵 gets the view of 

the adversary 𝒜 after every operation. The client outputs to the environment the 

data fetched or ⊥ (indicating abort). 

Definition 2 (Simulation-based security: privacy + verifiability). We say that a protocol 

Π𝒵 securely computes the ideal functionality ℱ if for all probabilistic polynomial-time 

real-world adversaries (i.e. server) 𝒜, there exists an ideal-world adversary 𝒮, such 

that for all non-uniform, polynomial-time environments 𝒵, there exists a negligible 

function negl such that 

|Pr [𝑅𝐸𝐴𝐿Π𝒵 ,𝒜,𝒵(λ) = 1] – Pr[𝐼𝐷𝐸𝐴𝐿ℱ,𝒮,𝒵(λ) = 1]| ≤ negl(λ) 

At an intuitive level, our definition captures the privacy and verifiability requirements 

for an honest client (the client is never malicious in our setting), in the presence of a 

malicious server. The definition simultaneously captures privacy and verifiability. 

Privacy ensures that the server cannot observe the data contents or the access 

pattern (the contents of any opi). Verifiability ensures that the client is guaranteed to 

read the correct data from the server. 

2.2.3 Termination Channel Leakage 

The two outcomes from running the protocol in the previous section are: (1) the 

adversary deviates from the protocol, which may cause the client to prematurely 

abort, or (2) the adversary lets the protocol complete. In (1), which we call the 

termination channel, there is no privacy leakage since we require the existence of 𝒮 

that, for all 𝒵, can predict when the termination occurs a-priori (i.e. independent of 

the access pattern given by 𝒵). In (2), there is some leakage: the adversary learns how 

many accesses were requested by 𝒵. However we are not interested in preventing 
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this leakage since it once again does not depend on the operations (the access 

pattern) submitted by 𝒵.  

In this section. We want to provide a more relaxed definition, which permits 

some small, but access pattern-related, leakage through the termination channel. 

Doing so will enable several performance optimizations on Tiny ORAM scheme 

(hardware ORAM) [33]. Informally, the change to the real world adversary's view is 

the following. If the adversary is semi-honest, the protocol terminates when 𝒵 stops 

submitting operations and the adversary only learns (2) above, as with the previous 

definition. If the adversary is malicious, the protocol may terminate before (2) occurs, 

but when it terminates will be a function of the adversary's strategy, randomness in 

the protocol, and importantly the access pattern specified by 𝓩. For the purposes of 

satisfying the definition, we wish to show that this termination channel leakage is the 

only new information the adversary is able to learn. More formally, 

Definition 3 (Termination channel security: privacy). An ORAM scheme is secure by 

the termination channel definition if for every (malicious) adversary 𝒜, there exists a 

simulator 𝒮′ such that the following two distributions are computationally 

indistinguishable. 

1. (Real world). 𝒜 choose D. The experiment runs ((⊥,𝒞0), (⊥, , 𝒟0)) ← Setup(1λ, (D, ⊥), 

(⊥,⊥)). 𝒜 then adaptively makes read/write queries through 𝒵, which runs the 

protocol (for i=0, 1, …) 

((datai+1,𝒞𝑖+1), (⊥, 𝒟𝑖+1)) ← Access((opi, 𝒞𝑖), (⊥,𝒟𝑖)) 

 

Denote the transcript of events visible to 𝒜 during this call to Access as ti. After the i-

th call to Access, there are one of two outcomes. First, the client aborts with ⊥ and 

the protocol terminates. Second, the client makes the (i + 1)-th call to Access, during 

which 𝒜 may adaptively change its strategy based on its current view, namely 

{D0,t0, …, ti}. (Implicit in the adversary’s view is that the client did not abort during the 

first i calls.) 

 

Repeat this procedure for 𝓂′ calls to Access, which denotes the point when the client 

aborts or 𝒵 stops submitting operations (whichever comes first). The distribution 

output by the experiment is then {D0,t0, …, 𝑡𝓂′} or {D0,t0, …, 𝑡𝓂′, ⊥} depending on 

whether an abort occurred. 

 

2. (Ideal world). Repeat the experiment in the real world with 𝒮′, except for the 

following: Replace the transcript of events visible to 𝒮′ during each call to Access 

with the symbol Τ (if the client does not abort) and ⊥ (otherwise). Suppose the 

experiment terminates or concludes after 𝓂′′ calls to Access. The distribution 
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output by the experiment is {D0, {Τ𝓂′′
}} or {D0, Τ𝓂′′− 1, ⊥} depending on whether 

an abort occurred. 

Definition 4 (Termination channel security: verifiability/integrity). Consider the 

following correctness experiment. The client and 𝒜 run 𝓂′ rounds of the Access 

protocol, at which point the protocol naturally terminates or prematurely aborts as 

described above. Correctness requires that except with negligible probability: 

1. If the client aborted: op1, op2, …, op𝓂′−1are correct. 

 

2. Otherwise (if the protocol naturally concluded): op1, op2, …, op𝓂′ are correct. 

Correctness of each trace follows the definition from Section 2.2 and is from the 

perspective of 𝒵. 

2.3 Metrics 

We will gauge ORAM schemes primarily on the following performance metrics. Note 

regarding notation: Metrics are in bits unless otherwise specified. 

Client/server storage. The client/server's storage, given by |𝒞| and |𝒟| in the above 

definitions, refers to the number of blocks held by the client and server at the start of 

an Access operation. In all the schemes we describe, the client/server storage after 

and during each call to Access will be the same asymptotically as the starting size, so 

we will not distinguish these cases. Following conventions from related work, we say 

client storage is small if it is O(Β polylog N) and large if it is Ω(Β√𝑁) – where Β is the 

data block size in bits. We consider an insecure block storage system to require O(ΒN) 

server storage and O(Β) client storage, thus this is optimal for an ORAM as well. 

Bandwidth cost and bandwidth blowup. An ORAM's bandwidth cost refers to the 

average number of bits transferred for accessing each block of Β bits. An ORAM's 

bandwidth blowup is defined as its bandwidth cost divided by Β (i.e., the bit-length of 

a data block). Effectively, the bandwidth blowup means the multiplicative factor in 

bandwidth one needs to pay to get obliviousness. 

Client-server bandwidth. Client-server bandwidth (bandwidth for short) refers to the 

number of blocks sent between the client and server to serve all Access operations, 

over the number of accesses made (i.e., is amortized). Insecure block storage systems 

require O(Β) bandwidth. When we say an ORAM requires O(Β logN) bandwidth, this 

may also be interpreted as O(logN) bandwidth blowup/overhead relative to the 

insecure system. Note that some ORAM schemes only achieve their best bandwidth 

given large-enough blocks. If the allowed block size is larger than the client 

application's desired block size, the bandwidth blowup increases proportionally. 
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In addition to the primary metrics, we will analyze the following as they become 

relevant to different constructions. 

Online bandwidth. The online bandwidth during each access refers to the blocks 

transferred before the access is completed from the client's point of view. By the 

“client's point of view," we are mainly interested in the case when the access type is 

read: i.e., online bandwidth represents the critical-path operation, the time between 

when the client requests a block and receives that block. To hide whether the 

operation type is read or write, however, ORAM schemes typically make Access 

perform the same operations from the server's perspective, regardless of operation 

type. So, for the rest of the thesis online bandwidth will refer to the blocks transferred 

before data is returned to the client, as if every client operation was a read. After the 

online phase of Access, more block transfers may be required before the access is 

complete, which we call the offline phase. 

Worst-case bandwidth. The worst-case bandwidth refers to the per-Access 

bandwidth if amortization is not possible. For certain ORAM schemes, the bandwidth 

per call to Access is naturally the same for every call (in which case worst-case equals 

bandwidth). In other schemes, offline bandwidth can be pushed to future calls to 

Access to improve the online bandwidth of multiple consecutive requests. This is to 

improve performance of “bursty workloads:" if the client must make two read 

requests before proceeding in its computation, the effective online bandwidth is the 

online bandwidth of both calls to Access and the offline bandwidth of the first call to 

Access. 

Server computation. The server computation is the amount of untrusted, local 

computation performed by the server, in addition to performing simple memory 

read/write operations. In the first ORAM papers [1, 34], the server is assumed to only 

perform read and write operations to untrusted storage. In practice, many recent 

constructions have implicitly assumed the server is able to perform some amount of 

computation on data to reduce client-server bandwidth. Depending on the amount of 

computation, the computation may become the system bottleneck. 

Number of round-trips. The number of round-trips refers to the round-trip block 

traffic between client and server during each call to Access. As in regular systems 

design, more roundtrips means worse performance since future operations must wait 

for the interconnect latency between client and server. 

Number of accesses. The “number of accesses" metric characterizes how many times 

the ORAM client must access physical memory on average to satisfy each ORAM 

request. Two blocks at different addresses count as two distinct accesses even if they 

are accessed in the same roundtrip. This was the original metric considered by 

Goldreich and Ostrovsky in their original ORAM work (where they equivalently call it 
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the runtime blowup comparing the Oblivious RAM simulation and the original non-

oblivious RAM).  

We note that the “number of accesses metric" is in fact the same as bandwidth 

blowup if block sizes are uniform. However, these metrics do not necessarily agree 

when blocks have non-uniform sizes, e.g., in recent tree-based ORAM schemes [2, 4], 

a “big data block, little metadata block" trick is commonly used to achieve better 

bandwidth costs. 

Circuit size. The circuit size metric for ORAMs was first raised by Wang et al. [31], and 

is defined as the total circuit size of the ORAM client algorithm Next over all execution 

rounds during each ORAM request. 

2.4 Settings 

Many of the techniques presented in the thesis are general and help improve any 

ORAM deployment. 

Outsourced storage. Here, a client (e.g., a mobile device or in-house data 

management system) wishes to securely store data on a remote storage provider. We 

assume the storage provider acts as block storage (e.g., Amazon S3): the operations 

exposed to the client are to read/write blocks of data [35]. The trusted computing 

base (TCB) is the client machine: we wish to eliminate access pattern leakage, given a 

potentially malicious adversary, at all points beyond the client (e.g., the network, 

server, etc). 

Secure processor. Here, a client wishes to outsource computation to a server or to 

obfuscate its execution in an Internet-of-Things (IoT) environment. In the outsourcing 

setting, there is a remote client, a secure processor on the server, and the rest of the 

server state (e.g., its DRAM / disk hierarchy). In a setup phase, the client loads data 

and (possibly) a program into the secure processor using conventional secure 

channels and attestation techniques. Once setup, the secure processor computes the 

result of running the program on the provided data, and sends it back to the client 

(also using secure channels). In the IoT setting, a processor collects and computes on 

data in a hostile environment where the adversary may have physical access to the 

device. The TCB is the secure processor and the remote client (if one exists).  

As the program runs, we wish to eliminate access pattern leakage to main memory, 

given a potentially malicious adversary, when last-level cache (LLC) misses occur. 

Several possible attacks include cold boot [36], intercepting data on the memory bus 

[37, 38], BIOS flashing [39, 40], and in general multiple processors (or helper modules 

such as the Intel Management Engine [41]) sharing main memory in space or time. 
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2.5 ORAM History 

We now review prior ORAM work more generally. We start by describing the three 

main families of ORAM schemes. The goal is to show the progression of ideas over 

time. The three schemes detailed below all require O(B) client storage (asymptotically 

optimal). 

2.5.1 Square root ORAM (1987) 

The study of ORAM was initiated by Goldreich [34], who sought to address the 

problem of software IP theft. This problem is similar to our secure processor setting: 

for a program running on a remote secure processor, one wishes to hide a program's 

control flow as determined by the address pattern to main memory. The trivial 

solution is to scan all of memory on each access, which has O(BN) online/overall 

bandwidth.  

To address the high online bandwidth in the trivial scheme, Goldreich proposed the 

square root ORAM. In this design, the server memory is into two regions: a main O(N) 

block region and a shelter of size O(√𝑁) blocks. The main region is filled with O(N) real 

blocks and O(√𝑁) dummy blocks. All blocks are encrypted using a semantically secures 

scheme and shuffled together. How the permutation is selected is implementation 

dependent; the square root ORAM uses a random oracle / hash function followed by 

an oblivious sort.  

To make an access, the client first scans the entire shelter. If the block is found there, 

the client reads a random, previously unread dummy block from the main region. 

Otherwise, the client uses the hash function to determine the address of the block of 

interest in the main region. Finally, the real or dummy block is re-encrypted and 

appended to the shelter. Thus, the online bandwidth is O(B√𝑁). The intuition for 

security is that each read scans the shelter, and performs a read to a random, 

previously unread slot in the main region.  

Every O(√𝑁) accesses, the main region runs out of dummies and must be fully re-

permuted by the client. [34] achieves this eviction step by using an oblivious sort and 

a new keyed hash function to re-mix the shelter into the main region and re-permute 

the main region. Using the sorting algorithm described in the paper, this step requires 

O(B) client storage, and O(ΒN logN) bits to be transferred every O(√𝑁) accesses, giving 

the scheme a O(Β√𝑁 logN) amortized bandwidth. 
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2.5.2 Hierarchical ORAM (1996) 

Goldreich and Ostrovsky proposed the hierarchical ORAM [1] to improve the online 

and overall bandwidth of the square root algorithm. The key idea is to, instead of 

having one main memory region and shelter, organize the server as a pyramid of 

permuted arrays where each array is geometrically (e.g., a factor of 2) larger than the 

previous array. Each permuted array acts as the main region in the square root ORAM, 

and thus is parameterized by a hash function and has space reserved for dummy 

blocks. 

To access a block, each level in the pyramid is accessed as if it were the main region 

in the square root ORAM. To avoid collisions in the hash function for the smaller levels, 

each slot in each permuted array is treated as a bucket of size O(logN) blocks. The 

hash function now maps blocks to random buckets. Buckets are downloaded 

atomically by the client when read/written to, and the bucket size is set to make 

overflow probability negligible. Thus, online bandwidth is O(𝑙𝑜𝑔2N): the cost to access 

O(logN) buckets (one per level in the pyramid) of O(logN) blocks each. 

Instead of scanning a shelter, each block accessed is appended to the smallest level 

of the pyramid after that access. Eventually (like the shelter), the top (or root) of the 

pyramid will fill, and an eviction step must merge it into the second pyramid level. 

When the second level fills, it along with the first level is merged into the third level, 

so on to the largest level of O(N) blocks. In general, merging levels 0 through i involves 

completely re-shuffling the contents of those levels into a new array which becomes 

level i + 1. The worst case and amortized bandwidth cost of this operation is O(N 

𝑙𝑜𝑔2N) and O(𝑙𝑜𝑔3N) blocks, respectively. 

2.5.3 Tree ORAM (2011) 

Shi et al. [4] proposed the tree ORAM to decrease the worst-case bandwidth cost of 

the hierarchical ORAM to be O(polylog N) blocks. 

The key idea in the tree ORAM is that, instead of blocks stored in level i having 

complete freedom on where they will be re-shuffled into in level i+1 (as with the 

hierarchical solution), blocks may only live in a single pre-ordained bucket per level. 

This is accomplished by connecting the buckets in the hierarchical ORAM pyramid as 

if they were nodes in a binary tree, and associating each block to a random path of 

buckets from the top bucket (the root bucket) to a leaf in the tree.  

To access a block the client first looks up a position map, a table in client storage 

which tracks the path each block is currently mapped to, and then reads all the 

buckets on the block's assigned path. The scheme achieves access pattern privacy by 
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re-mapping the accessed block to a new random path when it is accessed. Similar to 

[1], the tree ORAM requires buckets to be size O(logN) for reasons that will be 

described below. Thus, online bandwidth is also O(B 𝑙𝑜𝑔2N).  

Similar to the hierarchical ORAM, each block accessed is appended to the root bucket 

at the end of each access. To prevent the root bucket (or any other bucket) from 

overflowing, an eviction procedure downloads O(1) buckets per level per access to try 

and push blocks down the tree subject to blocks needing to stay on their assigned 

paths. This operation has an amortized and worst-case bandwidth overhead of O(B 

𝑙𝑜𝑔2N). 
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3 Path ORAM Family 

3.1 Path ORAM 

We present Path ORAM, an extremely simple Oblivious RAM protocol with a small 

amount of client storage. Partly due to its simplicity, Path ORAM is one of the most 

practical ORAM scheme known to date with small client storage. In paper [2] is proven 

that Path ORAM has a O(logN) bandwidth cost for blocks of size B = (𝑙𝑜𝑔2N) bits. For 

such block sizes, Path ORAM is asymptotically better than the best known ORAM 

schemes with small client storage. Due to its practicality, Path ORAM has been 

adopted in the design of secure processors since its proposal. 

3.1.1 The Path ORAM Protocol 

We give an informal overview of the Path ORAM protocol. The client stores a small 

amount of local data in a stash. The server-side storage is treated as a binary tree 

where each node is a bucket that can hold up to a fixed number of blocks. 

Main invariant. We maintain the invariant that at any time, each block is mapped to 

a uniformly random leaf bucket in the tree, and unstashed blocks are always placed 

in some bucket along the path to the mapped leaf. 

Whenever a block is read from the server, the entire path to the mapped leaf is read 

into the stash, the requested block is remapped to another leaf, and then the path 

that was just read is written back to the server. When the path is written back to the 

server, additional blocks in the stash may be evicted into the path as long as the 

invariant is preserved and there is remaining space in the buckets. 

3.1.1.1 Server Storage 

Data on the server is stored in a tree consisting of buckets as nodes. The tree does not 

have to necessarily be a binary tree, but we use a binary tree in our description for 

simplicity. 

Binary tree. The server stores a binary tree data structure of height L and 2L leaves. 

The tree can easily be laid out as a flat array when stored on disk. The levels of the 

tree are numbered 0 to L where level 0 denotes the root of the tree and level L 

denotes the leaves. 

Bucket. Each node in the tree is called a bucket. Each bucket can contain up to Z real 

blocks. If a bucket has less than Z real blocks, it is padded with dummy blocks to 

always be of size Z. It suffices to choose the bucket size Z to be a small constant such 

as Z = 4. 



    Oblivious RAM from theory to practice 

 

University of Piraeus  25 

Path. Let x ∈ {0, 1, ..., 2L -1} denote the x-th leaf node in the tree. Any leaf node x 

defines a unique path from leaf x to the root of the tree. 𝒫(x) is used to denote set of 

buckets along the path from leaf x to the root. Additionally, 𝒫(x, ℓ) denotes the bucket 

in 𝒫(x) at level ℓ in the tree. 

Server storage size. Since there are about 𝑁 buckets in the tree, the total server 

storage used is about Z ∙𝑁 blocks. 

3.1.1.2 Client Storage and Bandwidth 

The storage on the client consists of 2 data structures, a stash and a position map. 

Stash. During the course of the algorithm, a small number of blocks might overflow 

from the tree buckets on the server. The client locally stores these overflowing blocks 

in a local data structure S called the stash. 

Position map. The client stores a position map, such that x := position[a] means that 

block a is currently mapped to the x -th leaf node – this means that block a resides in 

some bucket in path 𝒫(x), or in the stash. The position map changes over time as 

blocks are accessed and remapped. 

3.1.1.3 Path ORAM Initialization 

The client stash S is initially empty. The server buckets are initialized to contain 

random encryptions of the dummy block (i.e., initially no block is stored on the 

server). The client's position map is filled with independent random numbers between 

0 and 2L – 1. 

Figure 2: Path ORAM Access Algorithm 

Access(op, a, data*) 

1: x ← position[a] 
2: position[a] ← UniformRandom (0…2L – 1) 
3: for ℓ ∈ {0,1, …., L} do 
4:    S ← S ∪ ReadBucket(𝒫(x, ℓ)) 
5: end for 
6: data ← Read block a from S 
7: if op := write then 
8:    S ← (S – {(a,data)}) ∪ {(a, data*)} 

9: end if 
10: for ℓ ∈ {L, L-1, …, 0} do 
11:    S’ ← {(a’, data’) ∈ S : 𝒫(x, ℓ) = 𝒫(position[a’], ℓ)} 
12:    S’ ← Select min(|S’|,Z) blocks from S’ 
13:    S ← S – S’ 
14:    WriteBucket(𝒫(x, ℓ),S’) 
15: end for 
16: return data 



    Oblivious RAM from theory to practice 

 

University of Piraeus  26 

3.1.1.4 Path ORAM Reads and Writes 

In Path ORAM construction, reading and writing a block to ORAM is done via a single 

protocol called Access described in Figure 2. Specifically, to read block a, the client 

performs data ← Access(read, a, None)and to write to write data* to block a, the client 

performs Access(write, a, data*). The Access protocol can be summarized in 4 simple 

steps: 

1. Remap block: Randomly remap the position of block a to a new random 

position. Let x denote the block's old position. 

2. Read path: Read the path 𝒫(x) containing block a. 

3. Update block: If the access is a write, update the data stored for block a. 

4. Write path: Write the path back and possibly include some additional blocks 

from the stash if they can be placed into the path. Buckets are greedily filled 

with blocks in the stash in the order of leaf to root, ensuring that blocks get 

pushed as deep down into the tree as possible. A block a' can be placed in the 

bucket at level ℓ only if the path 𝒫(position[a']) to the leaf of block a' 

intersects the path accessed 𝒫(x) at level ℓ. In otherwords, if 𝒫(x, ℓ)= 

𝒫(position[a'], ℓ). 

Note that when the client performs Access on a block for the first time, it will not find 

it in the tree or stash, and should assume that the block has a default value of zero. 

Subroutines. We now explain the ReadBucket and theWriteBucket subroutine. For 

ReadBucket(bucket),the client reads all Z blocks (including any dummy blocks) from 

the bucket stored on the server. Blocks are decrypted as they are read. For 

WriteBucket(bucket, blocks), the client writes the blocks into the specified bucket on 

the server. When writing, the client pads blocks with dummy blocks to make it of size 

Z - note that this is important for security. All blocks (including dummy blocks) are re-

encrypted, using a randomized encryption scheme, as they are written. 

Computation. Client's computation is O(logN) ∙ ω(1) per data access. In practice, the 

majority of this time is spent decrypting and encrypting O(logN) blocks per data 

access. We treat the server as a network storage device, so it only needs to do the 

computation necessary to retrieve and store O(logN) blocks per data access. 

3.1.2 Security Analysis 

To prove the security of Path-ORAM, let �⃗� be a data request of size M. By the 

definition of Path-ORAM, the server sees A(�⃗�) which is a sequence 

p = (positionM[aM], positionM-1[aM-1], ..., position1[a1]) 
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where positionj[aj] is the position of the address aj indicated by the position map for 

the j-th load/store operation, together with a sequence of encrypted paths 

𝒫(positionj(aj)), 1 ≤ j ≤ M, each encrypted using randomized encryption. The 

sequence of encrypted paths is computationally indistinguishable from a random 

sequence of bit strings by the definition of randomized encryption (note that 

ciphertexts that correspond to the same plaintext use different randomness and are 

therefore indistinguishable from one another). 

Notice that once positioni(ai) is revealed to the server, it is remapped to a completely 

new random label, hence, positioni(ai) is statistically independent of 𝒫(positionj(aj) for 

i < j with aj = ai. Since the positions of different addresses do not affect one another in 

Path ORAM, positioni(ai) is statistically independent of positionj(aj) for i < j with aj ≠ ai. 

This shows that positioni(ai) is statistically independent of positionj(aj) for i < j, 

therefore, (by using Bayes rule) Pr(p) = ∏ PrM
𝑗=1 (positionj(aj)) = (

1

2𝐿
)M. This proves that 

A(�⃗�) is computationally indistinguishable from a random sequence of bit strings. 

3.1.3 Recursion 

In the non-recursive scheme described in the previous section, the client must store 

a relatively large position map. We can leverage the same recursion idea as described 

in the ORAM constructions of Stafanov et al. [3] and Shi et al. [4] to reduce the client-

side storage. The idea is simple: instead of storing the position ma on the client side, 

we store the position on the server side in a smaller ORAM, and recurs. 

More concretely, consider a recursive Path ORAM made up of series of ORAMs called 

ORAM0, ORAM1, ORAM2, ..., ORAMX where ORAM0 contains the data blocks, the 

position map of ORAMi ORAMi+1, and the client stores the position map for ORAMX. 

To access a block in ORAM0 the client looks up its position in ORAM1, which triggers a 

recursive call to look up the position of the position in ORAM2, and so on until finally 

a position of ORAMX is looked up in the client storage.     

3.2 Optimization of Path Oblivious RAM in Secure Processors  

In this section, we present techniques that proposed at [7] and make Path ORAM 

practical in a secure processor setting. The first technique is called background 

eviction scheme to prevent Path ORAM failure and allow for a performance-driven 

design space exploration. The second technique is called super blocks to further 

improve Path ORAM’s performance, and also show an efficient integrity verification 

scheme for Path ORAM.  

3.2.1 Background Eviction 

To be usable, a background eviction scheme must: 
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a) Not change the ORAM’s security guarantees,  

b) Make the probability of stash overflow negligible and  

c) Introduce as little additional overhead to the ORAM’s normal operation as 

possible.  

For instance, a strawman scheme could be to read/write every bucket in the ORAM 

tree when stash occupancy reaches a threshold – clearly not acceptable from a 

performance standpoint. Unfortunately, the strawman scheme is also not secure. If 

background evictions occur when stash occupancy reaches a threshold, the fact that 

background evictions occurred can leak privacy because some access patterns fill up 

the stash faster than others. For example, if a program keeps accessing the same block 

over and over again, the requested block is likely to be already in the stash – not 

increasing the number of blocks in the stash. In contrast, a program that scans the 

memory (i.e., accesses all the blocks one by one) fills up the stash much faster. If an 

attacker realizes that background evictions happen frequently, the attacker can infer 

that the access pattern of the program is similar to a memory scan and can possibly 

learn something about private data based on the access pattern.  

One way to prevent attacks based on when background evictions take place is to make 

background evictions indistinguishable from regular ORAM accesses. The proposed 

background eviction scheme prevents Path ORAM stash overflow using dummy 

load/stores. To prevent stash overflow, it stops serving real memory requests and 

issue dummy requests whenever the number of blocks in the stash exceeds C – Z(L+1). 

(Since there can be up to Z(L+1) real blocks on a path, the next access has a chance to 

overflow the stash at this point.) A dummy access reads and decrypts a random path 

and writes back (after re-encryption) as many blocks from the path and stash as 

possible. A dummy access will at least not add blocks to the stash because all the 

blocks on that path can at least go back to their original places (note that no block is 

remapped on a dummy access). Furthermore, there is a possibility that some blocks 

in the stash will find places on this path. Thus, the stash cannot overflow and Path 

ORAM cannot fail, with this background eviction scheme. It keeps issuing dummy 

accesses until the number of blocks in the stash drops below the C – Z(L+1) threshold, 

at which point the ORAM can resume serving real requests again. 

This background eviction scheme can be easily extended to a hierarchical Path ORAM. 

If the stash of any of the ORAMs in the hierarchy exceeds the threshold, it issues a 

dummy request to each of the path ORAMs in the same order as a normal access, i.e., 

the smallest Path ORAM first and the data ORAM last. 

Liveclock. The proposed background eviction scheme does have an extremely low 

probability of livelock. Livelock occurs when no finite number of background evictions 

is able to reduce the stash occupancy to below C –Z(L+1) blocks. For example, all 
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blocks along a path may be mapped to the same leaf ℓ and every block in the (full) 

stash might also map to leaf ℓ. In that case no blocks in the stash can be evicted, and 

dummy accesses are continually performed (this is similar to a program hanging). 

However, the possibility of such a scenario is similar to that of randomly throwing 32 

million balls (blocks) to 16 million bins (leafs) with more than 200 balls (stash size) 

landing into the same bin—astronomically small (on the 10−100 scale). Therefore, we 

do not try to detect or deal with this type of livelock. It is noted that livelock does not 

compromise security. 

3.2.1.1 Security of the background eviction 

Background eviction scheme does not leak any information. Recall that the original 

Path ORAM (with an infinite stash and no background eviction) is secure because, 

independent of the memory requests, an observer sees a sequence of random paths 

being accessed, denoted as 

P = {p1, p2, …,pk,…}, 

where pk is the is the path that is accessed on k - th memory access. Each pk, (k = 1, 2, 

…) follows a uniformly random distribution and is independent of any other pj in the 

sequence. Background eviction interleaves another sequence of random paths qm 

caused by dummy accesses, producing a new sequence 

Q = {p1, p2, …, pk1, q1, …, qk2,q2, …}, 

since qm follows the same uniformly random distribution with pk and qm is independent 

of any pk and any qn (n ≠ m), Q also consists of randomly selected paths, and thus is 

indistinguishable from P. This shows the security of the proposed background 

eviction. 

3.2.2 Super Blocks 

Another way to improve Path ORAM’s efficiency is to increase the amount of useful 

data per ORAM access, by loading multiple useful blocks on an ORAM access. 

However, this is almost impossible in the original Path ORAM, since blocks are 

randomly dispersed to all the leaves and are unlikely to reside on the same path.  

To load a group of blocks on a single access, these blocks have to be intentionally 

mapped to the same leaf in the ORAM tree. Such a group of blocks is called as super 

block. It is important to note that the blocks within a super block S do not have to 

reside in the same bucket. Rather, they only have to be along the same path so that 

an access to any of them can load all the blocks in S. 
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When a block b ∈ S is evicted from on-chip cache, it is put back into the ORAM stash 

without waiting for other blocks in S. At this point it can find its way to the ORAM tree 

alone. When other blocks in S get evicted from on-chip cache at a later time, they will 

be assigned and evicted to the same path as b. We remark that this is the reason why 

super blocks are not equivalent to having larger blocks (cache lines): a cache line is 

either entirely in on-chip cache, or entirely in main memory. 

Super blocks create other design spaces for Path ORAM, such as super block size, 

which blocks to merge, etc. In paper [7], only adjacent blocks are merged in the 

address space into super blocks. This can exploit most of the spatial locality in an 

application, while keeping the implementation simple. The following scheme is used. 

Static merging scheme. Only merge adjacent blocks (cache lines) into super blocks of 

a fixed size. The super block size is determined and specified to the ORAM interface 

before the program starts. At initialization stage, data blocks are initially written to 

ORAM, and the ORAM interface simply assigns the same leaf label to the blocks from 

the same super block. The additional hardware required is small. 

3.2.2.1 Security of Super Blocks  

For the same reasons as background eviction, an access to a super block must be 

indistinguishable from an access to a normal block for security reasons. In the scheme 

above, a super block is always mapped to a random leaf in the ORAM tree in the same 

way as a normal block. If any block in the super block is accessed, all the blocks are 

moved from ORAM to on-chip cache and also remapped to a new random leaf. A 

super block access also reads and writes a path, which is randomly selected at the 

previous access to this super block. This is exactly the Path ORAM operation. 

Splitting/merging super blocks is performed on-chip and is not revealed to an 

observer. 

3.3 Circuit ORAM 

In this section we present the tree-based ORAM scheme called Circuit ORAM [8]. 

Circuit ORAM shows that the well-known Goldreich-Ostrovsky logarithmic ORAM 

lower bound is tight under certain parameter ranges, for several performance 

metrics. From a practical perspective, Circuit ORAM earns its name because it 

achieves (almost) optimal circuit size both in theory and in practice for realistic choices 

of block sizes. Thus, Circuit ORAM is ideal for secure multi-party computation 

applications.  
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3.3.1 The Circuit ORAM Protocol  

Circuit ORAM follows the tree-based ORAM framework, by building a binary tree 

containing N nodes (referred as buckets), where each bucket can store Z = O(1) 

number of blocks. We provide two definitions Legally side and Deepness w.r.t eviction 

path before below before we provide a detailed scheme description.  

Definition 5 (Legally reside). We say that a block B can legally reside in path[ℓ] if by 

placing B in path[ℓ], the main path invariant is satisfied. 

Definition 6 (Deepness w.r.t eviction path). For a given eviction path, block B0 is 

deeper that block B1 (with respect to path), if there exists some path[ℓ] such that B0 

can legally reside in path[ℓ], but B1 cannot; in the case when both blocks can legally 

reside in the same buckets along path, the block with smaller index idx will be 

considered deeper. 

 In other word B0 is deeper on the current eviction path than B1 if it can legally reside 

nearer to the leaf along path. If two blocks have the same deepness, we use their 

indices idx to resolve ambiguity. The notion of deepness and greedy eviction choice 

of the deepest block on a path came by the novel ideas of the CLP ORAM [9], but it is 

applied in a different manner.  

3.3.1.1 Intuition   

The main idea is to have an eviction algorithm that is easy to implement as a small 

circuit. Ideally it should make a single scan of the data blocks on the eviction path from 

the stash to leaf (and only a constant number of metadata scans), and still try to push 

blocks towards the leaf as much as possible. 

During the one-pass scan of the data blocks, the client “picks up" (i.e., remove from 

path) and holds onto one block, which can later be “dropped" somewhere further 

along the path. At any point of time, the client should hold onto at most one block. 

Further, it makes sense for the client to hold onto the currently deepest block when 

it does decide to hold a block. This way, the block in holding will have the maximum 

chance of being dropped later. On encountering a deeper block, the client could swap 

it with the one in holding. 

However, a dilemma arises. How does the client decide when it should pick up a block 

and hold onto it? Maybe this block will never get a chance to be dropped later, in 

which case there will be two equally bad choices: 1) put the block into the stash - 

which results in rapid stash growth; and 2) go back and revisit the path to write the 

block back. However, doing this obliviously results in high cost. 
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Remedy: lookahead mechanism with two metadata scans. The above issues result 

from the lack of foresight. If the client could only know when to pick up a block and 

place it in holding, and when to write the block back into an available slot, then these 

issues would have been resolved. Instead of that the idea is to rely on two metadata 

scans prior to the real block scan, to compute all the information necessary for the 

client to develop this foresight. These metadata scans need not touch the actual 

blocks on the eviction path, but only metadata information such as the leaf label for 

each block, and the dummy bit indicator for each block. If the bucket size is O(1), then 

the bandwidth blowup is O(logN). 

Figure 3: EvictOnceSlow Algorithm 

3.3.1.2 Detailed Scheme Description   

A slow and non-oblivious version of the eviction algorithm. To aid understanding, 

we first describe a slow, non-oblivious version of the Circuit eviction algorithm, 

EvictOnceSlow, as shown in Figure 3. This slow version only serves to illustrate the 

effect of the eviction algorithm, but does not describe how the algorithm can be 

efficiently implemented in circuit. Furthermore, this slow, non-oblivious version of the 

Circuit eviction algorithm gives a simpler way to reason about the stash usage of the 

algorithm. Later in this section, we describe how to implement the Circuit eviction 

algorithm efficiently and obliviously by making use of two metadata scans and a one 

real block scan; this can be readily converted into a small-sized circuit. The 

EvictOnceSlow algorithm makes a reverse (i.e., leaf to stash) scan over the current 

eviction path. When it first encounters an empty slot in path[i], it will try to evict the 

deepest block B in path[0..i – 1] to this empty slot, provided that the block B can legally 

reside in path[i]. Suppose this deepest block B resides in path[ℓ] where ℓ< i. After 

relocating the block B to path[i], the algorithm now skips levels path[ℓ+1.. i – 1], and 

continues its reverse scan at level ℓ instead (Line 8 in Algorithm 1). In case no block in 

path[0..i – 1] can fill the empty slot in path[i], the scan simply continues to level path[i 

– 1]. 

EvictOnceSlow(path) 

1:  := 𝐿 
2: while 𝑖 ≤ 1 do: 
3:    if path[𝑖] has empty slot then 
4:        (B, ℓ) := Deepest block in path[0.. 𝑖 - 1] that can legally reside in path[𝑖] 
5:    end if 
6:    if B ≠ ⊥ then  
7:        Move B from path[ℓ] to path[𝑖]  
8:        𝑖 := ℓ 

9:    else  
10:      𝑖 := 𝑖 – 1  
11:  end if 
12: end while 
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Circuit ORAM eviction algorithm. In Figure 3, Line 4 is inefficient, and Line 8 is non-

oblivious. We now present how to implement the same EvictSlow algorithm 

obliviously and efficiently, but using two metadata scans (Algorithms PrepareDeepest 

and PrepareTarget) plus a single real block scan (Algorithm 4). Since metadata is 

typically much smaller than real data blocks, a metadata scan is faster than a real block 

scan. The two metadata scans will generate two helper data structures: 

 An array deepest[1..L], where deepest[i] = ℓ means that the deepest block in 

path[0..i – 1] that can legally reside in path[i] is now in level ℓ < i. If no block 

in path[0..i – 1] can legally reside in path[i], then deepest[i] := ⊥. In the pre-

processing state, one metadata scan will be used, namely the PrepareDeepest 

subroutine (see Figure 4), to populate the deepest array. This allows us to avoid 

Line 4 in Figure 3 causing an additional Θ(L) overhead. 

 An array target [0..L], where target[i] stores which level the deepest block in 

path[i] will be evicted to. This target array is prepopulated using a backward 

metadata scan as depicted in the PrepareTarget algorithm (see Figure 5). 

Observe that the prepopulated target array basically gives a precise prescription of 

the client's actions (including when to pick up a block and when to drop it) during the 

real block scan At this moment, the client performs a forward block scan from stash 

to leaf, as depicted in the EvictOnceFast algorithm (see Figure 6). The high level idea 

here is to “hold a block in one's hand" as one scans through the path, where the block-

in-hand is denoted as hold in the algorithm. This block hold will later be written to its 

appropriate destination level, when the scan reaches that level. 

Eviction rate and choice of eviction path. For each data access, two paths are chosen 

for eviction using the EvictOnceFast algorithm. While other approaches are 

conceivable, we describe two simple ways for choosing the eviction paths: 

 A random-order eviction strategy denoted EvictRandom() (see Figure 7). The 

randomized strategy chooses two random paths that are non-overlapping 

except at the stash and the root. This means that one path is randomly chosen 

from each of the left and the right branches of the root. 

 A deterministic-order strategy denoted EvictDeterministic() (see Figure 8). The 

deterministic-order strategy is inspired by Gentry et al. [12] and several 

subsequent works [42, 43]. 

Recursion. So far, we have assumed that the client stores the entire position map. 

Based on a standard trick [2, 3, 4], we can recursively store the position map on the 

server. In the position map recursion levels, Circuit ORAM uses a different block size 

than the main data level as suggested by Stefanov et al. [2]. Specifically, a group c 

number of labels in one block for an appropriate constant c > 1. In other words, the 
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block size for position map levels is set to be D’ = O(logN), resulting in O(logN) depth 

of recursion. In this way, the total bandwidth cost over all recursion levels would be 

O(D logN + log3 N)  ∙ ω(1) (for negligible failure probability), assuming that the stashes 

reside on the server side, and the hence client only needs to hold a constant number 

of blocks at any time. For inverse polynomial failure probability, the total bandwidth 

cost is O(D logN + log3 N). 

Security Proof. The security proof is trivial. First, as in all tree-based ORAMs, every 

time a block is read or written, a random path is read, where the random choice has 

not been revealed to the server before. This part of the proof is trivial, and the same 

as Shi et al. [4]. It remains to show that the eviction process is oblivious too. As we 

can see from Algorithms PrepareDeepest, PrepareTarget and EvictOnceFast, eviction 

on a selected path always reads blocks or metadata (stored on the server) in a 

sequential manner, either from leaf to root or from root to leaf. Clearly this does not 

depend on the logical address being read or written. In fact, saying that the eviction 

algorithm (Figure 6) is oblivious is the same as saying that it can be implemented 

efficiently in circuit representation. Finally, no matter whether it is used random-

order eviction (Figure 7) or deterministic order eviction (Figure 8), the choice of the 

eviction path is also independent of the logical address sequence being read/written. 

Figure 4: PrepareDeepest Algorithm 

 

Figure 5: PrepareTarget Algorithm 

PrepareDeepst(path) 

1: Initialize deepest := (⊥, ⊥, …, ⊥), src := ⊥, goal := ⊥ 
2: if stash not empty then 
3:    src := 0 
4:    goal := Deepest level that a block in path[0] can legally reside on path 
5: end if 
6: for 𝑖 = 1 to L do  
7:     if goal ≥  𝑖 then deepest[𝑖] := src 
8:     end if 
9:     ℓ := Deepest level that a block in path[𝑖] can legally reside on path 
10:   if  ℓ > goal then 
11:       goal := ℓ, src := 𝑖  
12:   end if 
13: end while 

PrepareTarget(path) 

1: dest := ⊥, src := ⊥, target := (⊥, ⊥, …, ⊥) 
2: for 𝑖 = L downto 0 do 
3:    if (𝑖 == src) then 
4:        target[𝑖] := dest, dest := ⊥, src := ⊥ 
5:    end if 
6:    if ((dest = ⊥ and path[𝑖] has empty slot) or (target[𝑖] ≠ ⊥) and (deepest[𝑖] ≠ ⊥) then 
7:            src := deepest[𝑖] 
8:            dest := 𝑖 
9:      end if 
10: end for 
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Figure 6: EvictOnceFast Algorithm  

Figure 7: EvictRandom Algorithm  

Figure 8: EvictDeterministic Algorithm 

3.4 Bucket ORAM  

Bucket ORAM [44] protocol designed to achieve bandwidth efficiency, and at the 

same time to be compatible with known techniques for both single online roundtrip 

as well as constant bandwidth blowup. Bucket ORAM is a hybrid between two ORAM 

frameworks and enjoys nice properties of both.  

Roughly speaking, two types of ORAM constructions have been proposed in the past, 

1) those based on the hierarchical framework initially proposed by Goldreich and 

Ostrovsky [1]; and 2) those based on the tree-based framework initially proposed by 

Shi et al. [4].  

Both hierarchical ORAMs and tree-based ORAMs share the common feature of having 

exponentially growing levels. One fundamental difference between the two 

frameworks is whether they impose restrictions on a block's location within a level, 

and how they treat shuffling of data blocks (also referred to as eviction). 

Bucket ORAM adopts the level-rebuild-style data shuffling of hierarchical ORAMs, 

where larger levels are rebuilt exponentially less often than smaller levels. At the 

EvictOnceFast(path) 

1: Call the PrepareDeepest and PRepareTarget subroutins to pre-process arrays deepest and target 
2: hold := ⊥, dest := ⊥ 
3: for 𝑖 = 0 to  L do 
4:        towrite := ⊥ (B, ℓ) := Deepest block in path[0.. 𝑖 - 1] that can legally reside in path[𝑖] 
5:        if (hold ≠ ⊥) and (𝑖 == dest) then   
6:            towrite := hold 
7:            hold := ⊥, dest := ⊥  
8:        end if 
9:        if (target[𝑖] ≠ ⊥) then 
10:          hold := read and remove deepest block in path[𝑖] dest := 
11:          dest := target[𝑖] 
12:      end if 
13:      Place towrite into bucket patjh[𝑖] if towrite ≠ ⊥ 
14: end for 
 

EvictRandom() 

1: Choose a leaf from each of the left and the right branches of the root independently, and denote the two 
corresponding (stash-to-leaf) paths by path0 path1  

2: Call EvictOnceFast(path0) and EvictOnceFast(path1) 
 

EvictDeterministic() 

In timestep t: 
1: Choose two paths, path0 and path1, corresponding to the leaves labeled with integers bitrev(2t mod N) and 

bitrev((2t + 1) mod N), respectively. In the above bitrev(𝑖) denotes the integer obtained by reversing the bit 
order of 𝑖 when expressed in binary  

2: Call EvictOnceFast(path0) and EvictOnceFast(path1) 
3: Increase t by 1 for the next access 
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same time, Bucket ORAM also places restrictions where blocks can reside in a level 

much as in tree-based ORAMs. In this way, Bucket ORAM's level rebuild eviction 

involves the client performing local operations on O(1) number of buckets at a time, 

and there is no need to perform global oblivious sorting on entire levels. 

3.4.1 The Bucket ORAM Protocol  

Bucket ORAM features level-rebuild style shuffling just like in hierarchical ORAMs, but 

avoids having to perform oblivious sorts globally on all blocks within a level. Instead, 

blocks within a level are divided into ω(logN)-sized buckets, and the client works on 

four buckets at a time during the level rebuild. 

Server layout. Sever storage is organized into 𝐿 = O(logN) levels where level ℓ 

contains 2ℓ buckets for ℓ ∈ {0, 1, … , 𝐿 − 1}. Each bucket stores 𝑍 blocks, and each 

block is of 𝐵 bits in length. Each block is either a real block or a dummy block, and if 

the number of real blocks is < 𝑍, we fill the rest of the bucket with dummies. To help 

achieve local shuffles, the server storage is treated as a binary tree where each bucket 

is a node in the tree. We get a tree structure by first labeling each bucket in level ℓ 

with a unique identifier 𝑖 ∈ {0, 1, … , 2ℓ − 1}. This way, each bucket in level ℓ < 𝐿 − 1 

has two distinct child buckets in level ℓ + 1, whose respective identifiers are 2𝑖 and 2𝑖 

+ 1. 

Client Storage. Like in tree-based ORAM schemes, the client stores an O(N logN)-bit 

position map that maps each block to a bucket in level 𝐿 − 1. The client also stores an 

eviction buffer of size 𝑍′ = 𝑍/O(1) (denoted ebuffer) containing blocks that have not 

been evicted yet. 

Block metadata. To enable all ORAM operations, each block carries with it some 

metadata besides it payload. For the purpose of this section, each block's metadata 

include its type (either “real" or “dummy"), and for a real block, its logical address idx 

and path label it's mapped to. Therefore, block formats are as below: 

Real Block: (“real”, data, idx, label) 

Dummy Block: (“dummy”, data=_, idx=_, label=_) 

Main Invariant. Like in tree-based ORAMs, every block is assigned a position label 

indicating a leaf node in the tree, and the mapping is stored in the position map. A 

block always resides along the path to its designated leaf node. 

Recursion. The position map is the O(N logN)-bit. The client can reduce this local 

storage to O(1) bits by recursively storing the position map in other smaller ORAMs 

using the standard recursion technique [4, 2]. 
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Requesting a block. In the basic Bucket ORAM construction, a client requests (either 

to read or to update) a block like in any tree-based ORAM (Figure 9). To request a block 

with logical address idx, the client looks up the position map to identify the path 

where the block resides. The client then reads every block in the eviction buffer and 

on the corresponding path. The client is guaranteed to find the block idx in the 

process. Finally, the requested block (possible updated by the client) is appended to 

the client's local eviction buffer. 

Eviction. After 𝑍′ requests, the client-side eviction buffer may be full and called an 

eviction routine (Figure 10). The goal of the eviction step is to write the blocks in the 

eviction buffer back to the server. In [44] is described a novel eviction routine that 

achieves hierarchical ORAM's level rebuild using only local reshuffle. Therefore, 

Bucket ORAM does not require large client storage or global oblivious sorting on a 

large set of blocks. 

Figure 9: Bucket ORAM Request Algorithm 

 

ORAM.Request(op, idx, data) 

// Precondition: ebuffer is not full 

1: label* ← UniformRandom({0,1}2𝐿−1) 
2: label ← position[idx], position[idx] ← label*  
3: block ← ⊥ 
4: for each block0 ∈ {ebuffer ∪ 𝒫(label)}   do //path from leaf label to root 
5:     if blocko.idx = idx then  
6:          block ← block0 

7:     end if 
8: end for 
9: if op is “write”: block.data ← data  
10: block.label ← label* 
11: ebuffer ← ebuffer ∪ {block} 
12: return block.data 

ORAM.Eviction(block) 

// Happens every 𝑍′ requests 
1: Pad ebuffer with 𝑍 − 𝑍′ or more dymmy blocks such that its size is 𝑍  
2: if AllLevels[0] is empty on server then  
3:      Write back ebuffer to AllLeves[0] 
4:      return 
5: end if 
6: Let level ← (ebuffer) 

7: Let ℓ* := first empty level or 𝐿 − 1 if all levels are full 
8: for ℓ = 0 to ℓ* – 1 do    
9:     level ← Merge(level, AllLevels[ℓ]) 
10: end for 
11: if AllLevels[ℓ*] is empty then 
12:     AllLevels[ℓ*] := level 
13: else // ℓ* must be 𝐿 − 1 
14:     AllLevels[ℓ*] := MergeInPlace(AllLevels[ℓ*], level) 
15: end if 
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Figure 10: Bucket ORAM Evict Algorithm  

3.4.2 Bucket ORAM Construction with No Position Map  

The standard recursion techniques [2-4, 8, 14] in the basic construction requires 

multiple O(logN) interactions with the server for the online phase. In this section, we 

describe techniques that will allow to get rid of the client-side position map (hence 

recursion is not needed). In this section, the described techniques require that the 

server perform computation. Therefore, strictly speaking, we are in the setting of 

(Verifiable) Oblivious Storage as phrased by Apon et al. [28]. 

Intuition. In this new scheme, developed techniques so that the client can read 

exactly one block per level (thereby improving online bandwidth) yet be able to 

execute the entire request operation in a single roundtrip. For this purpose, we need 

each block to be one of three types, a real block, a mask block, and a dummy block. A 

dummy block signals an empty slot in the level data structure. Real blocks are the 

same as before. However, a new type of block introduced that called a mask block. 

Upon being rebuilt, a level will have 𝑍′ ∙ 2ℓ mask blocks (as many as there are real 

blocks), and every mask block has a counter maskcnt ∈ {1, 2, … , 𝑍′ ∙ 2ℓ}. The format 

of different blocks are summarized below where _ denotes “don't care" fields for each 

type of block: 

Merge(level, level̅̅ ̅̅ ̅̅ ) 

// level and level̅̅ ̅̅ ̅̅  each contains 𝑚 buckets and resides on server 
1: Initialize an empty new levelnew of size 2𝑚 on server   
2: for 𝑖 ∈ {0, 1, … , 𝑚 − 1} do  

3:      Fetch level[𝑖] and level̅̅ ̅̅ ̅̅ [𝑖] from server 
4:      𝑚𝑖𝑑 ← (2𝑖 + 1)𝑁/2𝑚 

5:      𝑆𝐿 ← Left(level[𝑖], 𝑚𝑖𝑑) ∪ Left(level̅̅ ̅̅ ̅̅  [𝑖], 𝑚𝑖𝑑) 

6:      𝑆𝑅 ← Right(level[𝑖], 𝑚𝑖𝑑) ∪ Right(level̅̅ ̅̅ ̅̅  [𝑖], 𝑚𝑖𝑑) 

7:      bucket𝐿 ← ConstructBucket(𝑆𝐿), bucket𝑅 ← ConstructBucket(𝑆𝑅) 
8:      Write back bucket𝐿 to levelnew[2𝑖]    
9:      Write back bucket𝑅 to levelnew[2𝑖 + 1] 
10:    Return (a pointer to) levelnew 

11: end for 
 

MergeInPlace(level, level̅̅ ̅̅ ̅̅ ) 

// level and level̅̅ ̅̅ ̅̅  each contains 𝑚 buckets  
1: Initialize an empty new levelnew of size 𝑚 on server   
2: for 𝑖 ∈ {0, 1, … , 𝑚 − 1} do  

3:      Fetch level[𝑖] and level̅̅ ̅̅ ̅̅ [𝑖] from server 

4:      bucket𝐿 ← ConstructBucket(level[𝑖] ∪ level̅̅ ̅̅ ̅̅  [𝑖]) 
5:      Write back bucket to levelnew[𝑖] 
6: end for 
 

Left(bucket, 𝑚𝑖𝑑) 

1: Return {block ∈ bucket: (block is “real”) ∧ (block.label < 𝑚𝑖𝑑)}   
 
Right(bucket, 𝑚𝑖𝑑) 

1: Return {block ∈ bucket: (block is “real”) ∧ (block.label ≥ 𝑚𝑖𝑑)} 
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Real Block: (“real”, data, idx, label, maskcnt = _) 

Mask Block: (“mask”, data =_, idx = _, label = _, maskcnt) 

Dummy Block: (“dummy”, data = _, idx = _, label = _, maskcnt = _) 

As in hierarchical ORAM and Ring ORAM [11], during each request the client will 

download the requested (real) block from a level if it is present, or a previously un-

read mask block otherwise. For security, the distribution of the mask blocks within 

the level must be identical to the distribution of real blocks in the level. And obviously 

each level must be rebuilt before all the mask blocks can possibly be consumed. 

Dummy blocks simply fill in the remaining empty spaces. 

Server stores blocks in a hash table. To find the real block (or next mask block) in each 

level, we leverage a server-side hash table technique first proposed by Williams and 

Sion [45, 46]. For every (encrypted) block stored on the server, either real, mask, or 

dummy, the client uses a pseudo-random function to compute a hash key (denoted 

hkey), and reveals hkey to the server. The server builds a hash table over the blocks, 

such that blocks can be looked up by their hkey. Now, to read a block from a level, the 

client would perform a sequence of actions at the end of which produces the hkey of 

the block to be retrieved. Specifically, if the block to be retrieved is within the current 

level, the client computes the real hkey of the block. If the block is not in the current 

level, the client would compute the hkey for the next mask block. As in the previous 

paragraph, for security we guarantee that the client will ask for each hkey only once 

before the hash table is rebuilt. The client now reveals the hkey to the server to fetch 

this block. In this way, the client only fetches a single block from each level instead 

of 𝑍. For security, it is important that hkey be pseudorandom and time-dependent. In 

other words, the same block will have a different hkey when it is written to the server 

again in the future.  

Bloom filter. Accompanying the hash table trick, in this constructions adopted a 

standard Bloom Filter trick first introduced by Williams and Sion [45, 46]. To allow the 

client to determine whether a level contains the desired block, each level has an 

auxiliary (encrypted) Bloom filter. To look up a block in a level, the client looks up 𝑘 

locations in the the Bloom filter first to determine if the level contains the desired 

block. For security, if the desired block has been found in smaller levels, the client 

looks up 𝑘 random locations in the Bloom filter. Otherwise, it looks up 𝑘 real locations. 

Oblivious sorts on metadata during level rebuilding. During a level rebuilding, the 

client performs O(1) number of oblivious sorts on metadata to achieve the following 

goals: 

 Rebuild the encrypted Bloom filter in synchrony with the new level being 

rebuilt. 
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 Randomly distribute mask blocks to all buckets in a level, and assign unique 

mask counters. 

Pseudo-random hash keys for blocks. Level ℓ has 𝑍′ ∙ 2ℓ mask blocks, and every mask 

block has a unique mask counter denoted maskcnt ∈ {1, … , 𝑍′ ∙ 2ℓ}. This guarantees 

that each level has at least as many mask blocks as there are real blocks. The mask 

counters for all mask blocks within a level must be (pseudo-)randomly distributed to 

buckets for security reasons. Then the every block has a hash key defined as follows: 

Hkey(block) := {

𝑃𝑅𝐹𝐻(𝑠𝑘, 𝑇‖𝑏𝑙𝑜𝑐𝑘. 𝑖𝑑𝑥)                          

𝑃𝑅𝐹𝐻(𝑠𝑘, 𝑇‖"𝑚𝑎𝑠𝑘"‖𝑚𝑎𝑠𝑘𝑐𝑛𝑡)             
𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔                                         

𝑖𝑓 𝑟𝑒𝑎𝑙 𝑏𝑙𝑜𝑐𝑘
𝑖𝑓 𝑚𝑎𝑠𝑘 𝑏𝑙𝑜𝑐𝑘

𝑜. 𝑤.

 

where 𝑇 denotes the time step when the level has rebuilt, 𝑃𝑅𝐹𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛denotes 

different pseudo-random functions employed by the client, and 𝑠𝑘 denotes a client 

secret key that is kept confidential from the server. The level number can be uniquely 

inferred by the timestamp 𝑇, and therefore we do not separately include the level 

number in the 𝑃𝑅𝐹’s input. 

Leverage a per-level Bloom filter to compute the hkey of block to fetch. To allow the 

client to efficiently query whether a block is contained in a specific level, the client 

stores an auxiliary data structure, an encrypted Bloom filter on the server. The check 

if a block is within a specific level, the client computes 𝑘 locations in the Bloom filter 

as 

𝑙𝑜𝑐𝑖  :=  𝑃𝑅𝐹𝐵𝐹(𝑠𝑘, 𝑇‖𝑏𝑙𝑜𝑐𝑘. 𝑖𝑑𝑥‖𝑖) (1) 

Figure 11: Improved Bucket ORAM Access Algorithm 

 

Access Algorithm that fetches only one block per-level  

For each level ℓ, the client stores a current mask counter denoted 𝑚𝑎𝑠𝑘𝑐𝑛𝑡ℓ. When a level ℓ is rebuilt, its 
𝑚𝑎𝑠𝑘𝑐𝑛𝑡ℓ is reset to 0. 
To look up a block idx, the client does the following: 
Initialize found := false, Next, for each level ℓ = 0 to 𝐿 − 1: 
Look up Bloom filter: 

 If not found, look up 𝑘 real locations in this level’s Bloom filter, where location 𝑖 is computed as in 
Equation above (1). If all 𝑘 locations are 1, conclude that the block is in this level, and set found := 
true.  

 Else if found, lookup 𝑘 random locations in this level’s Bloom filter. 
 
Compute and reveal hash key to server: 

 If block idx is in level ℓ, then reveal the real hkey := 𝑃𝑅𝐹𝐻(𝑠𝑘, 𝑇‖𝑏𝑙𝑜𝑐𝑘. 𝑖𝑑𝑥) to the server, where 
𝑇 denotes the last time level ℓ was rebuilt. 

 If bloci idx is not in level ℓ, reveal a mask hkey := 𝑃𝑅𝐹𝐻(𝑠𝑘, 𝑇‖𝑏𝑙𝑜𝑐𝑘. 𝑖𝑑𝑥‖𝑚𝑎𝑠𝑘𝑐𝑛𝑡ℓ) to the server, 
and then increment 𝑚𝑎𝑠𝑘𝑐𝑛𝑡ℓ. 

 
Retrieve block: 

 The server now returns the block with the specified hkey to the client (along with the block’s 
location within the level). The online phase ends here. 

 In an offline roundtrip, the client marks the block fetched invalid, by setting block.type := “dummy”.   
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where 1 ≤ 𝑖 ≤ 𝑘 and 𝑇 denotes tha last time this level was rebuilt. However, the 

moment that a block is found in a level, for all future levels, the client looks up 𝑘 

random locations instead. 

Putting everything together, the new algorithm for requesting a block is described in 

Figure 11. In this algorithm, the client fetches only one block per-level during a request. 

Eviction/Level-rebuild. The algorithm for evicting back blocks to the server and 

rebuilding levels proceeds in a similar fashion as in Section 3.4.1. However, now the 

client has to additionally 1) obliviously rebuild metadata for this level; and 2) randomly 

distribute mask blocks to buckets, and assign a unique mask counter maskcnt from 

the range {1, … , 𝑍′ ∙ 2ℓ} to each mask block. The random redistribution of mask blocks 

to buckets is required to ensure the mask blocks in the rebuilt level have the same 

distribution as real blocks from the server's perspective. We note that only the rebuilt 

level requires the above two steps, i.e., rebuilding of metadata and redistribution of 

mask blocks. Intermediate levels created during the cascading merge will be empty 

after the eviction completes and will not be touched during request operations until 

they themselves are rebuilt. At a high level, the new level rebuild algorithm works as 

follows. 

Quadruplet merges on data blocks. First, the client performs quadruplet merges as 

in Figure 10. At this moment, observe that 1) the hkeys of the blocks have not been 

revealed to the server; and 2) the rebuilt level contains only real and dummy blocks 

(i.e., no mask blocks). 

Assign mask counters, and randomly distribute mask blocks to buckets. When a 

rebuilt level is being accessed in the future, it is crucial for security that from the 

server's perspective, every real or mask block is assigned to a random bucket, and 

then a random location within the bucket. Real blocks that get merged in the level 

have random leaf labels whose values have not been revealed to the server earlier. 

And this guarantees that every real block is residing in a random bucket from the 

server's perspective. Mask blocks should have this same distribution over the buckets 

in the level. Every mask block must also be assigned a unique maskcnt from a 

contiguous range {1, … , 𝑍 ∙ 2ℓ}. It is described an oblivious procedure for achieving 

the above in Figure 12. This algorithm relies on O(1) oblivious sorting operations on 

metadata to distribute all mask blocks to random buckets. Finally, at the end of this 

step, hkeys of blocks are revealed sequentially to the server. 

Rebuild Bloom filter. Whenever a level is being rebuilt, the client rebuilds the level's 

Bloom filter in synchrony with the new level. Doing so would require O(1) oblivious 

sorts on metadata only as shown in Figure 13. This algorithm is standard and a similar 

version was described by William and Sion [45, 46]. 
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Figure 12: Randomly distribute mask blocks to buckets during level rebuilding  

Figure 13: Obliviously rebuild Bloom filter in synchrony with a newly rebuilt level 

Randomly distribute mask blocks to buckets 

Input: A level containing m buckets, where each bucket contains Z blocks, either real or dummy (there is no 
mask block in a newly built level after the quadruplet merge step). 
Output: A new level, where real blocks reside at random locations in the same bucket. Let 𝑛1, …,𝑛2ℓ be random 

variables denoting the number of balls in each bin when we throw 𝑍′ ∙ 2ℓ balls into 2ℓ bins. Each bucket 𝑖 ∈
[2ℓ] has exactly 𝑛𝑖  mask blocks residing at random locations, where each mask block has a unique mask 

counter maskcnt ∈  {1, … , 𝑍′ ∙ 2ℓ}. The remainder empty slots in each bucket are populated with dummy 
blocks. 
 

1. Metadata array creation. Create an array containing all blocks' metadata. Make a linear scan over the level 
and for each bucket 𝑖 = 0 to 2ℓ − 1, append (“dummy”, _, 𝑖) for each dummy block and (“real", _, 𝑖) for each 

real block. Then, for 𝑗 = 1 to 𝑍 ∙ 2ℓ: pick a random bucket 𝑖 within this level, and append the metadata entry 
(“mask", 𝑗, 𝑟) to the array. The tuple stipulates the “mask" block with maskcnt = 𝑗 will end up in bucket 𝑟. 
Note that the number of metadata entries assigned to each bucket is guaranteed to be ≥ 𝑍 at this point. 

 
2. O-sort metadata. Oblivious sort the above array based on increasing order of bucket number (the last 

element in the tuple). For the same bucket number, place real block before mask blocks before dummy 
blocks. 

 

3. Linear scan. Make a linear scan over the array, and for each bucket number: preserve the first 𝑍 entries and 
rewrite all remaining entries as (“dummy", _, ∞). 

 

4. O-sort metadata. Oblivious sort the above array based on increasing order of bucket number. When sorted, 

preserve the first 𝑍 ∙ 2ℓ entries and discard the remainder of the array. 
 

5. Permute blocks within each bucket. One bucket at a time, read the next 𝑍 entries from the array (metadata 
for real, dummy and mask blocks) and all 𝑍 data blocks in the bucket (some of which will be real blocks). 
Randomly permute blocks and metadata within the bucket (on the client side), and write the bucket back. 

Obliviously rebuild Bloom filter 

Input: The metadata of the real, mask, and dummy blocks within a level, residing on the server side. 
Output: A Bloom filter for this level, residing on the server side. 
 

1. Initialization. Make a linear scan over the metadata. For each block: 

 If block is real: create 𝑘 pairs (on server): {(𝑙𝑜𝑐𝑖 , 1)}𝑖∈[𝑘] where 𝑙𝑜𝑐𝑖 denotes a location 

in the Bloom filter that should be set to 1. 

 Else if block is mask or dummy: create 𝑘 pairs (on server): {(⊥, ⊥), …, (⊥, ⊥)} 
 
2. Padding. Let 𝑚 be the total number of blocks (all three types) in a level. At the end of the last step, we have 

an array containing 𝑘 ⋅ 𝑚 pairs. Pad this array with the pairs (1, ⊥), (2, ⊥), …, (𝐵𝐹𝑆𝑖𝑧𝑒, ⊥), where 𝐵𝐹𝑆𝑖𝑧𝑒 is 
the Bloom filter size. 

 

3. O-sort array. Oblivious sort the padded array lexigraphically where ⊥ is considered lexigraphically larger 
than everything else. In the sorted array, all entries (𝑖, _) appear before (𝑗, _) if 𝑖 > 𝑗 where _ denotes 
wildcard. Further, all (𝑖, 1) pairs appear before the (𝑖, ⊥) pair. All (⊥, ⊥) pairs appear at the end. 

 

4. Deduplicate pairs. In the linear scan, preserve only the first occurrence of each (𝑖, _) and rewrite all other 
occurrences as (⊥, ⊥). 

 

5. O-sort array. Oblivious sort the resulting array lexigraphically. The sorted result should be of the format. 
 

(1,_), (2,_), …, (𝑚, _), (⊥, ⊥), …, (⊥, ⊥) 
where each (𝑖, _) is either (𝑖, 1) denoting that the 𝑖-th bit of the Bloom filter should be set, or (𝑖, ⊥) denoting 
that the 𝑖-th bit of the Bloom filter should be clear. 

 

6. Finalize Bloom filter. In a synchronized scan of the above array and the Bloom filter, sequentially set all bits 
of the Bloom filter as indicated. 
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3.4.3 Security Analysis 

In this sections we present the security of the Bucket ORAM protocol and show that 

satisfies malicious security. 

Lemma 1 (Distribution of block locations within a level). From the server's perspective, 

after a level is rebuilt, every real and mask block resides in an independent, random 

bucket. 

Proof. First, every real block is assigned a fresh, random leaf label when the block was 

last fetched. This random choice of leaf label is kept hidden from the server until the 

block is next requested. This leaf label places a real block in a random bucket within 

the level. Second, mask blocks are distributed to random buckets during the level 

rebuild procedure. 

Lemma 2 (Every hkey is fetched only once from the server). Every hash key hkey for a 

real or mask block is fetched only once by the server before the level is rebuilt. 

Further, the request phase will not run out of mask blocks, i.e., will not attempt to 

read a mask block whose maskcnt is greater than the number of mask blocks within 

the level. 

Proof. First, the mask counter for a given level is always incremented whenever a mask 

block is fetched, such that the next time, the client would be trying to fetch the next 

mask block. Second, when a real block is fetched from a level ℓ, it is logically removed 

from the level ℓ. Until the next time the level ℓ is rebuilt, the same block will be found 

in a level ℓ′ < ℓ. Therefore, the next time the client seeks the same real block, it will 

have been found in a smaller level ℓ′, and the client would be reading the next mask 

block from level ℓ. As mentioned earlier, each level ℓ is rebuilt with 𝑍′ ∙ 2ℓ mask blocks. 

We also know that level ℓ will be rebuilt every 𝑍′ ∙ 2ℓ time steps. Therefore, the mask 

blocks will not run out before the next rebuild. When the next rebuild happens, the 

level's mask counter is reset to 0, and all blocks within the level obtain fresh new 

hkeys, since the hkeys are time-dependent.  

Lemma 3 (Bloom filter reads are oblivious). From the perspective of the server, the 

client reads 𝑘 independent, (pseudo-)random locations in the Bloom filter every time. 

Proof. If a block has been found in a smaller level, the client reads 𝑘 fresh, random 

locations in a level's Bloom filter. If the block has not been found in smaller levels, the 

client reads 𝑘 real locations computed with a pseudorandom function 𝑃𝑅𝐹𝐵𝐹. 

Assuming security of the 𝑃𝑅𝐹𝐵𝐹, we can pretend that these are random locations, and 

further it is important to observe that these locations have not been disclosed to the 

server before. In particular, observe that if the client reads 𝑘 real locations in level ℓ's 

Bloom filter looking for a specific block idx.  This means that block idx resides in a level 
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ℓ′ ≥ ℓ. At the end of the present read operation, the block idx will be relocated to a 

level ℓ∗ ≥ ℓ. Until the next time level ℓ is rebuilt, block idx will always exist in a smaller 

level than ℓ. This means that the client will never look for block idx in level ℓ again till 

the next time level ℓ is rebuilt. As a result, when the client discloses the real Bloom 

filter locations to the server, these locations cannot have been disclosed before. 

Lemma 4 (Offline shuffling is oblivious). The level rebuilding algorithm has 

deterministic, predictable access patterns. 

Proof. Straightforward from the description of the algorithms. 

Theorem 1 (Obliviousness of the ORAM scheme). Assume that the symmetric-key 

encryption scheme used to encrypt data and metadata satisfies semantic security and 

that 𝑃𝑅𝐹𝐻 and 𝑃𝑅𝐹𝐵𝐹 are secure pseudorandom functions. Then, the ORAM scheme 

described in this section satisfies semi-honest security. 

Proof. Based on the set of lemmas above, it is straightforward to construct an ideal-

world simulator for a semi-honest, real-world adversary. Since the symmetric-key 

encryption scheme is semantically secure, the simulator simulates all ciphertexts by 

random encryptions of 0 of appropriate length. The time step 𝑇 and the 

occupied/empty status of each level is known by the simulator, and the access 

patterns of the offline shuffling is deterministic and predictable. Therefore, the 

simulator can easily simulate the offline shuffling. For the online request phase, the 

simulator simulates by reading 𝑘 random locations in the Bloom filter in each level. 

The simulator also discloses the hkey of a random block in this level to the real-world 

adversary. Each block's hkey is simulated by picking a fresh random string of 

appropriate length. It is not hard to argue that no polynomial-time environment can 

distinguish the real- and the ideal-worlds. 

3.4.3.1 Malicious Security 

Malicious security can be obtained in Bucket ORAM scheme with standard 

techniques. Most of the data and metadata satisfy predictive time, i.e., the client can 

efficiently compute the time at which this block (or metadata) was last written to the 

server during a level rebuild.  

With the exception of some metadata, can, for the most part, be used time- and 

location-aware message authentication codes to achieve malicious security (and 

there is no need for building a Merkle-hash tree). Upon retrieving a block from the 

server, the client always verifies the message authentication code, and rejects block 

if the verification fails.  

In Bucket ORAM scheme in this section, block data can be accessed in two modes:  
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1. By their hkeys during the online phase of the block access algorithm. 

2. By their explicit physical addresses on the server (typically containing the level 

number, the bucket number, and the offset within the bucket) during the offline 

shuffling phase.  

All auxiliary metadata (including the per-level bloom filters and transient metadata 

created during level rebuilding, not including metadata attached to blocks) are always 

accessed by their explicit physical addresses. Therefore, below we discuss how to 

authenticate auxiliary metadata and block data separately.  

Authenticating auxiliary metadata. Observe that in our scheme described in this 

section, all auxiliary metadata (including the per-level bloom filters and transient 

metadata created during level rebuilding, not including metadata attached to blocks) 

are accessed by their explicit addresses. Further, all metadata touched during level 

rebuilding is written to the server via linear scans or oblivious sorting. Both of these 

operations perform each write to each physical location at public and pre-determined 

times. Putting the above observations together, the client can attach a time- and 

location-sensitive message authentication code MAC(𝑠𝑘, 𝑇‖𝑝ℎ𝑦𝑠_𝑎𝑑𝑑𝑟‖𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎) 

to every auxiliary metadata chunk, where 𝑇 is the time metadata was last written to 

the server.  

Authenticating block data. Block data (including most directly attached to the block, 

such as idx the leaf label) can be accessed by either their hkey or their physical address 

on the server. Block data are authenticated also using a time- and location-aware 

MAC:  

MAC(𝑠𝑘, 𝑇‖𝑝ℎ𝑦𝑠_𝑎𝑑𝑑𝑟‖𝑏𝑙𝑜𝑐𝑘) 

where 𝑇 denotes the last time the block was written, and phys_addr typically contains 

the level number, bucket number, and offset within the bucket. The only subtlety is 

that when the block is accessed by its hkey, the server needs to additionally return 

the block's phys_addr to the client, such that the client is able to verify the MAC. 

Subtlety. The only exception to this “predictive time” rule is the client invalidating 

blocks fetched in the online phase, by setting block.type := “dummy”. Therefore, the 

client can employ a merkle hash tree to authenticate dummy bits attached to blocks. 

Corollary. Assuming that the underlying ORAM scheme described in Section 3.4.2 has 

semi-honest security and that MAC is a secure message authentication scheme, then 

the augmented scheme with time- and location-aware message authentication codes 

(as described above) satisfies malicious security. 

Proof. The simulator is simulating interactions with a real-world adversary 𝒜. For 

every block (or metadata) the semi-honest simulator intends to send to the semi-
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honest real-world adversary, now the simulator interacting with a malicious 𝒜 

additionally authenticates the block (or metadata) with time- and location-aware 

message authentication code. Whenever 𝒜 returns a block (or metadata), the 

simulator verifies the message authentication code. If the verification fails, the 

simulator simply aborts. Effectively, any deviation of from the correct behavior by 𝒜 

can be detected except with negligible probability. Therefore, any deviation from the 

correct behavior translates to an aborting attack in the ideal world. 

3.5 Ring ORAM 

Ring ORAM [11] is considered the most bandwidth-efficient ORAM scheme for the 

small client storage setting. At the core of the construction is an ORAM that achieves 

“bucket-size independent bandwidth", which unlocks numerous performance 

improvements. In practice, Ring ORAM's overall bandwidth is 2.3× to 3× better than 

the prior-art scheme for small client storage. Further, if memory can perform simple 

untrusted computation, Ring ORAM achieves constant online bandwidth (∼ 60× 

improvement over prior art for practical parameters). On the theory side, Ring ORAM 

features a tighter and significantly simpler analysis than prior art. 

3.5.1 The Ring ORAM Protocol  

We first describe Ring ORAM in terms of its server and client data structures. 

Server storage is organized as a binary tree of buckets where each bucket has a small 

number of slots to hold blocks. Levels in the tree are numbered from 0 (the root) to L 

(inclusive, the leaves) where L = O(log N) and N is the number of blocks in the ORAM. 

Each bucket has Z + S slots and a small amount of metadata. Of these slots, up to Z 

slots may contain real blocks and the remaining S slots are reserved for dummy blocks. 

Client storage is made up of a position map and a stash. The position map is a 

dictionary that maps each block in the ORAM to a random path in the ORAM tree 

(each path is uniquely identified by the path's leaf node). The stash buffers blocks that 

have not been evicted to the ORAM tree and additionally stores Z(L + 1) blocks on the 

eviction path during an eviction operation. The position map stores N * L bits, but can 

be squashed to constant storage using the standard recursion technique [4]. 

Main invariants. Ring ORAM has two main invariants: 

1. Every block is mapped to a path chosen uniformly at random in the ORAM 

tree. If a block α is mapped to path ℓ, block α is contained either in the stash 

or in some bucket along the path from the root of the tree to leaf ℓ. 
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2. (Permuted buckets) For every bucket in the tree, the physical positions of the 

Z + S dummy and real blocks in each bucket are randomly permuted with 

respect to all past and future writes to that bucket. 

Since a leaf uniquely determines a path in a binary tree, leaves/paths will be used 

interchangeably when the context is clear, and denote path ℓ as 𝒫(ℓ). 

Figure 14: Ring ORAM Access Algorithm  

Access and Eviction Operations.  The Ring ORAM access protocol is shown in Figure 14. 

Each access is broken into the following four steps: 

1) Position Map lookup (lines 3-5): Look up the position map to learn which path ℓ 

the block being accessed is currently mapped to. Remap that block to a new 

random path ℓ’. This first step is identical to other tree-based ORAMs [2, 4], but 

the rest of the protocol differs substantially from previous tree-based schemes. 

2) Read Path (lines 6-18): The ReadPath(ℓ, α) operation reads all buckets along 

𝒫(ℓ) to look for the block of interest (block α), and then reads that block into 

the stash. The block of interest is then updated in stash on a write, or is 

returned to the client on a read. We remind that both reading and writing a 

fata block are served by a ReadPath operation. Unlike prior tree-based 

schemes, this ReadPath operation only reads one block from each backet-the 

block of interest if found or a previously-unread dummy block otherwise.  This 

is safe because of Invariant 2, above: each bucket is permuted randomly, so 

the slot being read looks random to an observer. This lowers the bandwidth 

overhead of ReadPath (i.e., online bandwidth) to L+1 blocks (the number of 

levels in the tree) or even a single block if the XOR trick is applied. 

3) Evict Path (Lines 19-22): The EvictPath operation reads Z blocks (all the 

remaining real blocks, and potentially some dummy blocks) from each bucket 

Access(op, a, data*) 

1: Global/persistent variables: round 
2: ℓ′ ← UniformRandom (0, 2L – 1) 
3: ℓ ← PositionMap[a] 
4: PositionMap[a]← ℓ’    
5: data ← ReadPath(ℓ, a) 
6: data ← Read block a from S 
7: if data := ⊥ then 
8:    If block a is not found on path ℓ, it must be in Stash 
9:    data ← read and remove a from Stash    
10: if op := read then 
11:    return data to client 
12: if op := write then    
13:    data ← data’ 
14: Stash ← round + 1 mod A 
15: if round ≠ 0 then 
16:    EvictPath() 
17: EarlyReshuffle(ℓ) 
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along a path into the stash, and then fills that path with blocks from the stash, 

trying to push blocks as far down towards the leaves as possible. The sole 

purpose of an eviction operation is to push blocks back to the ORAM tree to 

keep the stash occupancy low. Unlike Path ORAM, eviction in Ring ORAM 

selects paths in the reverse lexico-graphical order, and does not happen on 

every access [12]. Its rate is controlled by a public parameter A: every A 

ReadPath operations trigger a single EvictPath operation. This means Ring 

ORAM needs much fewer eviction operations than Path ORAM. 

4) Early Reshuffles (Line 23): Finally, EarlyReshuffle on 𝒫(ℓ), is performed to the 

path accessed by ReadPath. This step is crucial in maintaining blocks randomly 

shuffled in each bucket, which enables ReadPath to securely read only one 

block from each bucket. 

3.5.1.1 Read Path Operation 

The ReadPath operation is shown in Figure 15. For each bucket along the current path, 

ReadPath selects a single block to read from that bucket. For a given bucket, if the 

block of interest lives in that bucket, we read and invalidate the block of interest. 

Otherwise, we read and invalidate a randomly-chosen dummy block that is still valid 

at that point. The index of the block to read (either real or random) is returned by the 

GetBlockOffset. Reading a single block per bucket is crucial for bandwidth 

improvements. In addition to reducing online bandwidth by a factor of Z, it allows to 

use larger Z and A to decrease overall bandwidth. Without this, read bandwidth is 

proportional to Z, and the cost of larger Z on reads outweighs the benefits. 

Bucket Metadata. Because the position map only tracks the path containing the block 

of interest, the client does not know where in each bucket to look for the block of 

interest. Thus, for each bucket we must store the permutation in the bucket metadata 

that maps each real block in the bucket to one of the Z + S slots (Lines 3, GetBlockO 

set) as well as some additional metadata. Once we know the offset into the bucket, 

Line 4 reads the block in the slot, and invalidates it. We should mention that the 

metadata is small and independent of the block size. One important piece of metadata 

to mention now is a counter which tracks how many times it has been read since its 

last eviction (Line 8). If a bucket is read too many (S) times, it may run out of dummy 

blocks (i.e., all the dummy blocks have been invalidated). On future accesses, if 

additional dummy blocks are requested from this bucket, we cannot reread a 

previously invalidated dummy block: doing so reveals to the adversary that the block 

of interest is not in this bucket. Therefore, we need to reshuffle single buckets on-

demand as soon as they are touched more than S times using EarlyReshuffle. 

XOR Technique. During ReadPath operation, each block returned to the client is a 

dummy block except for the block of interest. This means Ring ORAM scheme can also 
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take advantage of the XOR technique introduced in [13] to reduce online bandwidth 

overhead to O(1). To be more concrete, on each access ReadPath returns L + 1 blocks 

in ciphertext, one from each bucket, Enc(b0, r0), Enc(b1, r1), …, Enc(bL, rL). Enc is a 

randomized symmetric scheme such as AES counter mode with nonce ri. With the XOR 

technique, ReadPath will return a single ciphertext – the ciphertext of all the blocks 

XORed together, namely Enc(b0, r0) ⨁ Enc(b1, r1) ⨁ … ⨁ Enc(bL, rL). The client can 

recover the encrypted block of interest by XORing the returned ciphertext with the 

encryptions of all the dummy blocks. To make computing each dummy block's 

encryption easy, the client can set the plaintext of all dummy blocks to a fixed value 

of its choosing (e.g., 0). 

Figure 15: Ring ORAM ReadPath Algorithm  

3.5.1.2 Evict Path Operation 

The EvictPath routine is shown in Figure 16. As mentioned, evictions are scheduled 

statically: one eviction operation happens after every A reads. At a high level, an 

eviction operation reads all remaining real blocks on a path (in a secure fashion), and 

tries to push them down that path as far as possible. The leaf-to-root order in the 

writeback step (Lines 8) reflects that we wish to fill the deepest buckets as fully as 

possible (EvictPath is like a Path ORAM access where no block is accessed and 

therefore no block is remapped to a new path). We emphasize two unique features 

of Ring ORAM eviction operations. First, evictions in Ring ORAM are performed to 

paths in a specific order called the reverse-lexicographic order, first proposed by 

Gentry et al. [12]. The reverse-lexicographic order eviction aims to minimize the 

overlap between consecutive eviction paths, because (intuitively) evictions to the 

same bucket in consecutive accesses are less useful. This improves eviction quality 

and allows to reduce the frequency of eviction. Second, buckets in Ring ORAM need 

ReadPAth(ℓ, a) 

1: data ← ⊥ 
2: for 𝑖 = 0 to L do 
3:    offset ← GetBlockOffset(𝒫(ℓ, 𝑖), a)  
4:    data’ ← 𝒫(ℓ, 𝑖, offset) 
5:    Invalidate 𝒫(ℓ, 𝑖, offset) 
6:    if data’ ≠ ⊥ then 
7:        data ←  data’ 
8:    𝒫(ℓ, 𝑖).count ← 𝒫(ℓ, 𝑖).count + 1 
9: return data 

EvictPAth() 

1: Global/persistent variable G initialized to 0 
2: ℓ ← G mod 2L 

3: G← G + 1 
4: for 𝑖 = 0 to L do 
5:    Stash ← Stash∪ReadBucket(𝒫(ℓ, 𝑖)) 
6: for 𝑖 = L to 0 do 
7:     WriteBucket(𝒫(ℓ, 𝑖), Stash) 
8:    𝒫(ℓ, 𝑖).count ← 0 
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to be randomly shuffled (Invariant 2), and we mostly rely on EvictPath operations to 

keep them shuffled. An EvictPath operation reads Z blocks from each bucket on a path 

into the stash, and writes out Z + S blocks (only up to Z are real blocks) to each bucket, 

randomly permuted. 

Figure 16: Ring ORAM EvictPAth Algorithm 

3.5.1.3 Early Reshuffle Operation 

Due to randomness, a bucket can be touched > S times by ReadPath operations before 

it is reshuffled by the scheduled EvictPath. If this happens, we call EarlyReshuffle on 

that bucket to reshuffle it before the bucket is read again. More precisely, after each 

ORAM access EarlyReshuffle goes over all the buckets on the read path, and reshuffles 

all the buckets that have been accessed more than S times by performing ReadBucket 

and WriteBucket. ReadBucket and WriteBucket are the same as in EvictPath: that is, 

ReadBucket reads exactly Z slots in the bucket and WriteBucket re-permutes and 

writes back Z + S real/dummy blocks. Though S does not affect security, it clearly has 

an impact on performance (how often we shuffle, the extra cost per reshuffle, etc.).  

3.5.1.4 Bucket Structure 

We would like to make two remarks. First, only the data fields are permuted and that 

permutation is stored in ptrs. Other bucket fields do not need to be permuted because 

when they are needed, they will be read in their entirety. Second, count and valids 

are stored in plaintext. There is no need to encrypt them since the server can see 

which bucket is accessed (deducing count for each bucket), and which slot is accessed 

in each bucket (deducing valids for each bucket). In fact, if the server can do 

computation and is trusted to follow the protocol faithfully, the client can let the 

server update count and valids. All the other structures should be probabilistically 

encrypted. 

Having defined the bucket structure, we can be more specific about some of the 

operations in earlier sections. For example, in Algorithm 2 Line 5 means reading 

𝒫(ℓ,i).data[offset], and Line 6 means setting 𝒫(ℓ,i).valids[offset] to 0. 

Now, we describe the helper functions in detail. GetBlockOffset reads in the valids, 

addrs, ptrs fields, and looks for the block of interest. If it finds the block of interest, 

meaning that the address of a still valid block matches the block of interest, it returns 

the permuted location of that block (stored in ptrs). If it does not find the block of 

interest, it returns the permuted location of a random valid dummy block. 

ReadBucket reads all of the remaining real blocks in a bucket into the stash. For 

security reasons, ReadBucket always reads exactly Z blocks from that bucket. If the 

bucket contains less than Z valid real blocks, the remaining blocks read out are 
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random valid dummy blocks. Importantly, since we allow at most S reads to each 

bucket before reshuffling it, it is guaranteed that there are at least Z valid (real + 

dummy) blocks left that have not been touched since the last reshuffle. 

WriteBucket evicts as many blocks as possible (up to Z) from the stash to a certain 

bucket. If there are z’ ≤ Z real blocks to be evicted to that bucket, Z + S – z’ dummy 

blocks are added. The Z + S blocks are then randomly shuffled based on either a truly 

random permutation or a Pseudo Random Permutation (PRP). The permutation is 

stored in the bucket field ptrs. Then, the function resets count to 0 and all valid bits 

to 1, since this bucket has just been reshuffled and no blocks have been touched. 

Finally, the permuted data field along with its metadata are encrypted (except count 

and valids) and written out to the bucket. 

3.5.2 Security Analysis 

Claim 1. ReadPath leaks no information. The path selected for reading will look 

random to any adversary due to Invariant 1 (leaves are chosen uniformly at random). 

From Invariant 2, we know that every bucket is randomly shuffled. Moreover, because 

we invalidate any block we read, we will never read the same slot. Thus, any sequence 

of reads (real or dummy) to a bucket between two shuffles is indistinguishable. Thus 

the adversary learns nothing during ReadPath. 

Claim 2. EvictPath leaks no information. The path selected for eviction is chosen 

statically, and is public (reverse-lexicographic order). ReadBucket always reads exactly 

Z blocks from random slots. WriteBucket similarly writes Z + S encrypted blocks in a 

data-independent fashion. 

Claim 3. EarlyShuflle leaks no information. To which buckets EarlyShuffle operations 

occur is publicly known: the adversary knows how many times a bucket has been 

accessed since the last EvictPath to that bucket. ReadBucket and WriteBucket are 

secure as per observations in Claim 2. 

The three subroutines of the Ring ORAM algorithm are the only operations that cause 

externally observable behaviors. Claims 1, 2, and 3 show that the subroutines are 

secure. We have so far assumed that path remapping and bucket permutation are 

truly random, which gives unconditional security. If pseudorandom numbers are used 

instead, we have computational security through similar arguments. 

3.6 Comparison  

3.6.1 Path ORAM vs Optimization of Path Oblivious RAM in Secure Processors  

Path ORAM overhead drops by 41.8%, and SPEC benchmark execution time improves 

by 52.4% in relation to a baseline configuration due to the optimizations that 
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presented at [7]. In [7], they used DRAMSim2 [54] to simulate ORAM performance on 

commodity DRAM, assuming that the data ORAM is 8 GB with 50% utilization 

(resulting in 4 GB working set); position map ORAMs combined are less than 1 GB. So 

it was considered a 16 GB DRAM. DRAMSim2’s default DDR3_micron configuration 

was used with 16-bit device width, 1024 columns per row in 8 banks, and 16384 rows 

per DRAM-chip. So the size of a node in the 2k-ary tree was 𝑐ℎ × 128 × 64 bytes, 

where 𝑐ℎ is the number of independent channels. The evaluation was between 

baseORAM and the 4 best configuration with the Overhead breakdown for 8 GB 

hierarchical ORAMs with 4 GB working set based on Figure 17Figure 17: Overhead breakdown 

for 8 GB hierarchical ORAMs with 4 GB working set. DZ3Pb12 means data ORAM uses Z=3 and 

position map ORAMs have 12-byte block. The final position map is smaller than 200 

KB. 

 

Figure 17: Overhead breakdown for 8 GB hierarchical ORAMs with 4 GB working set 

Figure 18: Hierarchical ORAM latency in DRAM cycles assuming 1/2/4 channel(s)Figure 18 shows the 

data latency (not counting decryption latency) of hierarchical Path ORAMs using the 

naïve memory placement and the subtree strategy of Section 3.2, and compares these 

with the theoretical value, which assumes DRAM always works at its peak bandwidth. 

The figure shows that ORAM can benefit from multiple independent channels, 

because each ORAM access is turned into hundreds of DRAM accesses. But this also 

brings the challenge of how to keep all the independent channels busy. On average, 

the naïve scheme’s performance becomes 20% worse than the theoretical result 

when there are two independent channels and 60% worse when there are four. The 

subtree memory placement strategy is only 6% worse than the theoretical value with 

two channels and 13% worse with four. The remaining overhead comes from the few 

row buffer misses and DRAM refresh. Even though a 12-byte position map ORAM 

block size has lower theoretical overheads, it is worse than the 32-byte design. We 

remark that it is hard to define Path ORAM’s slowdown over DRAM. On one hand, 

DDR3 imposes a minimum ~26 (DRAM) cycles per access, making Path ORAM’s 

latency ~30× over DRAM assuming 4 channels. On the other hand, the Path ORAM 

that presented to Section 3.2 consumes almost the entire bandwidth of all channels. 
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Its effective throughput is hundreds of times lower than DRAM’s peak bandwidth (≈ 

access overhead). But the actual bandwidth of DRAM in real systems varies greatly 

and depends heavily on the applications, making the comparison harder. 

 

Figure 18: Hierarchical ORAM latency in DRAM cycles assuming 1/2/4 channel(s) 

In order to evaluate the SPEC benchmark performance Path ORAM was connected to 

a processor and evaluated the optimizations over a subset of the SPEC06-int 

benchmarks. The processors are modeled with a cycle-level simulator based on the 

public domain SESC [55] simulator that uses the MIPS ISA. Instruction/memory 

address traces are first generated through SESC’s rabbit (fast forward) mode and then 

fed into a timing model. Each experiment uses SPEC reference inputs, fast-forwards 1 

billion instructions to get out of initialization code and then monitors performance for 

3 billion instructions. It was also compared against a conventional processor that uses 

DRAM. Path ORAMs and DRAMs are both simulated using DRAMSim2. Figure 19 shows 

the SPEC benchmark running time using different Path ORAM configurations and 

super blocks, normalized to the insecure processor with DRAM. DZ3Pb32 reduces the 

average execution time by 43.9% compared with the baseline ORAM. As expected, 

the performance improvement is most significant on memory bound benchmarks 

(mcf, bzip2 and libquantum). 

In that experiment, used only super blocks of size two (consisting of two blocks). On 

average, DZ4Pb32 with super blocks outperforms DZ3Pb32 without super blocks (the 

best configuration without super blocks) by 5.9%, and is 52.4% better than the 

baseline ORAM. There is a substantial performance gain on applications with good 

spatial locality (e.g., mcf) where the prefetched block is likely to be accessed 

subsequently. Using static super blocks with DZ3Pb32 slightly improves the 

performance on most benchmarks, but has worse performance on certain 

benchmarks because it requires too many dummy accesses, canceling the 

performance gain on average. 
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Figure 19: SPEC benchmark performance 

3.6.2 Path ORAM vs Circuit ORAM 

Circuit size. In Table 1, the circuit sizes is compared for Circuit ORAM and Path ORAM 

scheme. Results in this table are obtained for a 4GB dataset with the following 

concrete parameters: 𝑁 = 230, 𝐷 = 32𝑏𝑖𝑡𝑠 𝑎𝑛𝑑 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝛿 = 2−80, 

“Rand." stands for randomly chose eviction paths; “Det.” stands for eviction with 

reverse-lexicographical-ordered paths. For Path ORAM [2], considered a naive 

implementation. For both schemes, considered two strategies for choosing the 

eviction path: random-order eviction and deterministic-order eviction (based on digit-

reversed lexicographic order [12]). The table shows that Circuit ORAM results in 8.2× 

to 48.6× smaller circuit size than Path ORAM. Circuit ORAM's speedup will become 

even bigger when the total data size 𝑁 is greater.  

 
Table 1: Comparison of Circuit ORAM and Path ORAM 

Circuit ORAM also outperforms previous schemes in terms of bandwidth costs and 

number of accesses under wide parameter ranges. Circuit ORAM achieves the 

following bandwidth cost and number of accesses for a negl(𝑁) statistical failure 

probability. 

 Suppose the position map levels adopt a block size 𝐷′ = 𝑂(𝑙𝑜𝑔𝑁), then 

Circuit ORAM achieves 𝑂(𝐷𝑙𝑜𝑔𝑁 + 𝑙𝑜𝑔3𝑁)𝜔(1) bandwidth cost 
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and𝑂(𝑙𝑜𝑔2𝑁) number of accesses. In particular, for a 𝐷 = 𝛺(𝑙𝑜𝑔2𝑁) block 

size, the bandwidth cost is 𝑂(𝐷𝑙𝑜𝑔𝑁)𝜔(1). 

 Suppose all levels adopt a uniform block size of 𝐷 = 𝜒 𝑙𝑜𝑔𝑁, then Circuit 

ORAM achieves 𝑂(𝐷𝑙𝑜𝑔𝑁𝑙𝑜𝑔𝜒𝛮)𝜔(1) bandwidth cost, and 

𝛰(𝑙𝑜𝑔𝑁𝑙𝑜𝑔𝜒𝛮)𝜔(10) number of accesses. Of particular interest is when 

𝐷 = 𝑁𝜀 for some constant 0 < 휀 < 1. In this case, Circuit ORAM achieves 

𝑂(𝐷𝑙𝑜𝑔𝑁)𝜔(1) bandwidth cost, and 𝑂(𝑙𝑜𝑔𝑁)𝜔(1) number of accesses. 

 
Table 2: Comparison of Circuit ORAM, Path ORAM and Binary-tree ORAM 

3.6.3 Path ORAM vs Bucket ORAM  

The cost of Oblivious RAM constructions can be characterized by several related but 

different metrics. Two of the most important metrics are: 

 Bandwidth blowup. For the client to access a single block, how many blocks 

on average must be transmitted between the client and the server to hide the 

true block of intent. This metric accounts for both online and offline traffic, 

and hence is also referred to as overall bandwidth blowup 

 Response time or latency. The minimum delay from a client's request till the 

block is retrieved 

Bucket ORAM scheme gives a positive answer to the above challenge. Bucket ORAM 

+ AHE (with the use of additively homomorphic encryption) achieves a single online 

roundtrip, and 𝑂(1) bandwidth blowup. Without additively homomorphic 

encryption, Bucket ORAM has �̃�(𝑙𝑜𝑔𝑁) bandwidth blowup. We refer the reader to 

Table 3 for a more detailed comparison with ORAM schemes. �̃�𝑎𝑛𝑑 �̃� hides 𝑙𝑜𝑔𝑙𝑜𝑔𝑁 

to poly(𝑙𝑜𝑔𝑙𝑜𝑔𝑁) factors. Asymptotical costs listed here are for malicious security. 

The security of all schemes are parameterized to have negligible in 𝑁 failure 

probability. Server I/O counts the amortized number of blocks the server touches per 

access. 



    Oblivious RAM from theory to practice 

 

University of Piraeus  56 

 
Table 3: Comparison of Bucket ORAM and Path ORAM 

3.6.4 Path ORAM vs Ring ORAM 

In this section, it is shown how Ring ORAM improves the performance of secure 

processors over Path ORAM. It was evaluated a 4 GB ORAM with 64-Byte block size 

(matching a typical processor’s cache line size). Due to the small block size, Ring ORAM 

had the parameters 𝑍 = 5; 𝐴 = 5; 𝑋 = 2 to reduce metadata overhead. Recursion 

was applied three times with 32-Byte position map block size and get a 256 KB final 

position map. It was evaluated the performance for SPEC-int benchmarks and two 

database benchmarks, and simulate 3 billion instructions for each benchmark. 

Assuming a flat 50-cycle DRAM latency, and compute ORAM latency with 128 

bits/cycle processor memory bandwidth. It was not used a tree-top caching since it 

proportionally benefits both Ring ORAM and Path ORAM. Today’s DRAM DIMMs 

cannot perform any computation, but it is not hard to imagine having simple XOR logic 

either inside memory, or connected to O(logN) parallel DIMMs so as not to occupy 

processor memory bandwidth. Thus, it is shown results with and without the XOR 

technique. Figure 20 shows program slowdown over an insecure DRAM. The high order 

bit is that using Ring ORAM with XOR results in a geometric average slowdown of 2.8× 

relative to an insecure system. This is a 1.5× improvement over Path ORAM. If XOR is 

not available, the slowdown over an insecure system is 3.2×. The experiment had also 

repeated with the unified ORAM recursion technique. The geometric average 

slowdown over an insecure system is 2.4× (2.5× without XOR). 

 
Figure 20: SPEC benchmark slowdown 
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4 Constant worst-case bandwidth blowup 

4.1 Onion ORAM 

Onion ORAM [14] is the first ORAM with constant worst-case bandwidth blowup 

under standard cryptographic assumptions. Onion ORAM leverages poly-logarithmic 

server computation to circumvent the logarithmic lower bound on ORAM bandwidth 

blowup. Unlike prior work, Onion ORAM does not require fully homomorphic 

encryption, but re-quires only certain additively homomorphic encryption schemes. 

Onion ORAM utilizes novel techniques to achieve security against a malicious server, 

without resorting to expensive and non-standard techniques. 

4.1.1 Overview of Techniques 

In Onion ORAM schemes, the client “guides" the server to perform ORAM accesses 

and evictions homomorphically by sending the server some “helper values". With 

these helper values, the server's main job will be to run a sub-routine called the 

“homomorphic select" operation (select operation for short), which can be 

implemented using either AHE or SWHE. We can achieve constant bandwidth blowup 

because helper value size is independent of data block size: when the block size 

sufficiently large, sending helper values does not affect the asymptotic bandwidth 

blowup. We now explain these ideas along with pitfalls and solutions in more detail. 

 Building block: homomorphic select operation. The select operation, which 

resembles techniques from private information retrieval (PIR) [15], takes as input m 

plaintext data blocks 𝑝𝑡1, …,𝑝𝑡𝓂 and encrypted helper values which represent a user-

chosen index 𝑖*. The output is an encryption of block 𝑝𝑡𝑖∗. Obviously, the helper 

values should not reveal 𝑖*.  

All ORAM operations can be implemented using homomorphic select operations. In 

Onion scheme, for each ORAM operation, the client read/writes per-block metadata 

and creates a select vector(s) based on that metadata. The client then sends the 

encrypted select vector(s) to the server, who does the heavy work of performing 

actual computation over block contents.  

Specifically, on top of tree-based ORAMs [2, 4] will be built a standard type of 

ORAM without server computation. Metadata for each block includes its logical 

address and the path it is mapped to. To request a data block, the client first reads 

the logic addresses of all blocks along the read path. After this step, the client knows 

which block to select and can run the homomorphic select protocol with the server. 

ORAM eviction operations require that the client sends encrypted select vectors to 

indicate how blocks should percolate down the ORAM tree. As explained above, each 

select operation adds an encryption layer to the selected block. 
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Achieving constant bandwidth blowup. To get constant bandwidth blowup, we must 

ensure that select vector bandwidth is smaller than the data block size. For this, we 

need several techniques. First, we will split each plaintext data block into 𝒞 chunks 

𝑝𝑡𝑖 = (𝑝𝑡𝑖[1], …, 𝑝𝑡𝑖[𝒞]), where each chunk is encrypted separately, i.e., 𝑐𝑡𝑖 = (𝑐𝑡𝑖[1], 

…, 𝑐𝑡𝑖[𝒞]) where 𝑐𝑡𝑖[j] is an encryption of 𝑝𝑡𝑖[j]. Crucially, each select vector can be 

reused for all the 𝒞 chunks. By increasing 𝒞, we can increase the data block size to 

decrease the relative bandwidth of select vectors.  

Second, we require that each encryption layer adds a small additive ciphertext 

expansion (even a constant multiplicative expansion would be too large). Fortunately, 

we do have well established additively homomorphic encryption schemes that meet 

this requirement, such as the Damgård–Jurik cryptosystem [16]. Third, the “depth" of 

the homomorphic select operations has to be bounded and shallow. 

Bounding the select operation depth. This issue addressed in [14] by constructing a 

new tree-based ORAM, which is called “bounded feedback ORAM". By “feedback", 

we refer to the situation where during an eviction some block α gets stuck in its 

current bucket b. When this happens, an eviction into b needs select operations that 

take both incoming blocks and block α as input, resulting in an extra layer on bucket 

b (on top of the layers bucket b already has). The result is that buckets will accumulate 

layers (with AHE) on each eviction, which grows unbounded over time. 

This bounded feedback ORAM breaks the feedback loop by guaranteeing that 

bucket b will be empty at public times, which allows upstream blocks to move into b 

without feedback from blocks already in b. It turns out that breaking this feedback is 

not trivial: in all existing tree-based ORAM schemes [4, 2, 8], blocks can get stuck in 

buckets during evictions which means there is no guarantee on when buckets are 

empty.  

Techniques for malicious security. The main idea is to rely on probabilistic checking, 

and to leverage an error-correcting code to amplify the probability of detection. As 

mentioned before, each block is divided into 𝒞 chunks. We will have the client 

randomly sample security parameter λ ≪ 𝒞 chunks per block (the same random 

choice for all blocks), referred to as verification chunks, and use standard memory 

checking to ensure their authenticity and freshness. On each step, the server will 

perform homomorphic select operations on all 𝒞 chunks in a block, and the client will 

perform the same homomorphic select operations on the λ verification chunks. In this 

way, whenever the server returns the client some encrypted block, the client can 

check whether the corresponding chunks match the verification chunks.  

Unfortunately, the above scheme does not guarantee negligible failure of 

detection. For example, the server can simply tamper with a random chunk and hope 

that it's not one of the verification chunks. Clearly, the server succeeds with non-
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negligible probability. The fix is to leverage an error-correcting code to encode the 

original 𝒞 chunks of each block into 𝒞’’ = 2 𝒞 chunks, and ensure that as long as 
3

4
 𝒞’’ 

chunks are correct, the block can be correctly decoded. Therefore, the server knows 

a priori that it will have to tamper with at least 
1

4
 𝒞’’ chunks to cause any damage at 

all, in which case it will get caught except with negligible probability. 

4.1.2 Onion ORAM Protocol (Additively Homomorphic Encryption) 

In this section, we describe how to leverage an AHE scheme with additive ciphertext 

expansion to transform the bounded feedback ORAM into a semi-honest secure 

Onion ORAM scheme. Recall that each block is tagged with the following metadata: 

the block's logical address and the leaf it is mapped to, and that the size of the 

metadata is independent of the block size. 

Initialization. The client runs a key generation routine for all layers of encryption, and 

gives all public keys to the server.  

Read Path. ReadPath(ℓ, a) Figure 21 can be done with the following steps: 

1. Client downloads and decrypts the addresses of all blocks on path l, locates 

the block of interest a, and creates a corresponding select vector �⃗⃗� ∈ {0,1}Z(L+1). 

2. Client and server run the homomorphic select sub-protocol with client's input 

being encryptions of each element in  �⃗⃗� and server's input being all encrypted 

blocks on path l. The outcome of the sub-protocol block a is sent to the client. 

3. Client re-encrypts and writes back the addresses of all blocks on path l, with 

block a now invalidated. This removes block a from the path without revealing 

its location. Then, the client re-encrypts block a (possibly modified) under 1 

layer, and appends it to the root bucket. 

Eviction. To perform EvictAlongPath(ℓ e), do the following for each level k from 0 to L–

1: 

1. Client downloads all the metadata (addresses and leaf labels) of the bucket 

triplet. Based on the metadata, the client determines each block's location 

after the bucket-triplet eviction. 

2. For each slot to be written in the two child buckets: 

a. Client creates a corresponding select vector �⃗⃗� ∈ {0,1}2Z. 

b. Client and server run the homomorphic select sub-protocol with the 

client's input being encryptions of each element in �⃗⃗�, and the server's 

input being the child bucket (being written to) and its parent bucket. 

Note that if the child bucket is empty (which is public information to 

the server), it conceptually has zero encryption layers. 
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c. Server overwrites the slot with the outcome of the homomorphic 

select sub-protocol. 

Figure 21: Onion ORAM ReadPath Algorithm 

Figure 22: Onion ORAM EvictAlongPath Algorithm 

4.1.3 Security Analysis 

We now show that the scheme is secure against a fully malicious server who can 

deviate arbitrarily from the protocol. We start by describing several abstract 

properties of the Onion ORAM scheme from the previous section. We will call any 

server computation ORAM scheme satisfying these properties an abstract server 

computation ORAM. 

Data blocks and metadata. The server storage consists of two types of data: data 

blocks and metadata. The server performs computation on data blocks, but never on 

metadata. The client reads and writes the metadata directly, so the metadata can be 

encrypted under any semantically secure encryption scheme.  

Operations on data blocks. Each plaintext data block is divided into 𝒞 chunks, and 

each chunk is separately encrypted 𝑐𝑡𝑖 = (𝑐𝑡𝑖[1], …, 𝑐𝑡𝑖[𝒞]). The client operates on the 

data blocks either by: (1) directly reading/writing an encrypted data block, or (2) 

instructing the server to apply a function f to form a new data block 𝑐𝑡𝑖, where 𝑐𝑡𝑖[j] 

only depends on the j-th chunk of other data blocks, i.e., 𝑐𝑡𝑖[j] = f(𝑐𝑡1[j], …, 𝑐𝑡𝑚[𝑗])) 

for all j  ∈ [1..C]. It is easy to check that the Onion ORAM scheme is instance of the 

above abstraction. The metadata consists of the encrypted addresses and leaf labels 

of each data block, as well as additional space needed to implement ORAM recursion. 

The data blocks are encrypted under a layered AHE scheme. Function f is a 

“homomorphic select operation", and is applied to each chunk. 

We now describe a generic compiler that takes any “abstract server computation 

ORAM" that satisfies honest-but-curious security and compiles it into a “verified 

server computation ORAM" which is secure in the fully malicious setting. 

ReadPAth(ℓ, a) 

1: Read all blocks on path 𝒫(ℓ) 
2: Select and return the block with address a 
3: Invalidate the block with address a 
 

EvictAlongPath (ℓe) 

1: for 𝑘 = 0 to L – 1 do  
2:     Read all blocks in 𝒫(ℓe, 𝑘) and its two children 
3:     Move all blocks in 𝒫(ℓe, 𝑘) and its two children 
4:         𝒫(ℓe, 𝑘) is empty at this point 
5: end for 
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Verifying metadata. We can use standard “memory checking" [17] schemes based on 

Merkle trees [18] to ensure that the client always gets the correct metadata, or aborts 

if the malicious server ever sends an incorrect value. A generic use of a Merkle tree 

would add an O(log N) multiplicative overhead to the process of accessing metadata 

[19], which is good enough. This O(log N) Integrity verification for Path Oblivious 

overhead can also be avoided by aligning the Merkle tree with the ORAM tree [20], or 

using generic authenticated data structures [21]. In any case, verifying metadata is 

basically free in Onion ORAM. 

Challenge of verifying data blocks. Unfortunately, we cannot rely on standard 

memory checking to protect the encrypted data blocks when the client doesn't 

read/write them directly but rather instructs the server to compute on them. The 

problem is that a malicious server that learns some information about the client's 

access pattern based on whether the client aborts or not. Consider Onion ORAM for 

example. The malicious server wants to learn if, during the homomorphic select 

operation of a ORAM request, the location being selected is i. The server can perform 

the operation correctly except that it would replace the ciphertext at position i with 

some incorrect value. In this case, if the location being selected was indeed i then the 

client will abort since the data it receives will be incorrect, but otherwise the client 

will accept. This violates ORAM's privacy requirement. A more general way to see the 

problem is to notice that the client's abort decision above depends on the decrypted 

value, which depends on the secret key of the homomorphic encryption scheme. 

Therefore, we can no longer rely on the semantic security of the encryption scheme 

if the abort decision is revealed to the server. To fix this problem, we need to ensure 

that the client's abort decision only depends on ciphertext and not on the plaintext 

data. 

Verifying data blocks.  The solution is as follows, the client selects a random subset 𝑉 

consisting of λ chunk positions. This set 𝑉 is kept secret from the server. The subset 

of chunks in positions {j : j ∈  𝑉} of every encrypted data block are treated as additional 

metadata, which called the “verification chunks". Verification chunks are encrypted 

and memory checked in the same way as the other metadata. Whenever the client 

instructs the server to update an encrypted data block, the client performs the same 

operation himself on the verification chunks. Then, when the client reads an 

encrypted data block from the server, he can check the chunks in V against the 

ciphertexts of verification chunks. This check ensures that the server cannot modify 

too many chunks without getting caught. To ensure that this check is sufficient, it is 

applied an error-correcting code which guarantees that the server has to modify a 

large fraction of chunks to affect the plaintext. In more detail: 

 Every plaintext data block 𝑝𝑡 = (𝑝𝑡 [1], …, 𝑝𝑡 [𝒞]) is first encoded via an error-

correcting code into a codeword block 𝑝𝑡_ecc = ECC(𝑝𝑡) = (𝑝𝑡_ecc [1], …, 
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𝑝𝑡_ecc[𝒞’]). The error-correcting code ECC has a rate 𝒞/ 𝒞’= a < 1and can 

efficiently recover the plaintext block if at most a δ-fraction of the codeword 

chunks are erroneous. For concreteness, we can use a Reed-Solomon code, 

and set α = 
1

2
, δ = (1 – α)/2 =

1

4
 . The client then uses the “abstract server 

computation ORAM" over the codeword blocks 𝑝𝑡_ecc(instead of 𝑝𝑡). 

 During initialization, the client selects a secret random set 𝑉 = {𝑣1, …, 𝑣λ} ⊆

 [𝒞’]. Each ciphertext data block 𝑐𝑡𝑖 has verification chunks 𝑣𝑒𝑟𝐶ℎ𝑖 = 

(𝑣𝑒𝑟𝐶ℎ𝑖[1], …, 𝑣𝑒𝑟𝐶ℎ𝑖[λ]). We ensure the invariant that, during an honest 

execution, 𝑣𝑒𝑟𝐶ℎ𝑖[j] = 𝑐𝑡𝑖[sj ] for j ∈ [1…λ]. 

 The client uses a memory checking scheme to ensure the authenticity and 

freshness of the metadata including the verification chunks. If the client 

detects a violation in metadata at any point, the client aborts (it is called 

abort0). 

 Whenever the client directly updates or instructs the server to apply the 

aforementioned function f on an encrypted data block 𝑐𝑡𝑖, it also updates or 

applies the same function f on the corresponding verification chunks 

𝑣𝑒𝑟𝐶ℎ𝑖[j] for j ∈ [1...λ], which possibly involves reading other verification 

chunks that are input to f. 

 When the client reads an encrypted data block 𝑐𝑡𝑖, it also reads 𝑣𝑒𝑟𝐶ℎ𝑖 and 

checks that 𝑣𝑒𝑟𝐶ℎ𝑖 [j] = 𝑐𝑡𝑖[sj] for j ∈ [1…λ] and aborts if this is not the case 

(it is called abort1). Otherwise the client decrypts 𝑐𝑡𝑖 to get 𝑝𝑡_ecci and 

performs error-correction to recover 𝑝𝑡𝑖. If the error-correction fails, the 

client aborts (it is called abort2) 

If the client ever aborts during any operation with abort0; abort1 or abort2, it refuses 

to perform any future operations. 

Security Intuition. Notice that in the above scheme, the decision whether abort1 

occurs does not depend on any secret state of the abstract server computation ORAM 

scheme and therefore can be revealed to the server without sacrificing privacy. We 

will argue that, if abort1 does not occur, then the client retrieves the correct data (so 

abort2 will not occur) with overwhelming probability. Intuitively, the only way that a 

malicious server can cause the client to either retrieve the incorrect data or trigger 

abort2 without triggering abort1 is to modify at least a (by default, δ = 1/4) fraction of 

the chunks in an encrypted data block, but avoid modifying any of the λ chunks 

corresponding to the secret set 𝑉. This happens with probability at most (1 – δ)λ over 

the random choice of 𝑉, which is negligible. 

4.2 C – ORAM  

Onion ORAM uses homomorphic encryption to increase the efficiency of Oblivious 

RAM protocols and achieves O(1) communication overhead with polylogarithmic 
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server computation. However, it has two drawbacks. It requires a large block size of B 

= Ω(log6 N) with large constants. Moreover, while it only needs polylogarithmic 

computation complexity, that computation consists mostly of expensive 

homomorphic multiplications. C – ORAM [22] addresses these problems and reduces 

the required block size to Ω(log4 N).  The main idea is to replace Onion ORAM 

homomorphic eviction routine with a new, much cheaper permute-and-merge 

eviction which eliminates homomorphic multiplications and maintains the same level 

of security. In turn, this removes the need for layered encryption that Onion ORAM 

relies on and reduces both the minimum block size and server computation. 

4.2.1 Overview of C – ORAM 

To achieve the increased efficiency and lower block size, in C – ORAM [22] presented 

a novel, efficient, oblivious bucket merging technique for Onion ORAM that replaces 

its expensive layered encryption. Bucket merging is applied during ORAM eviction. 

The content of a parent node/bucket and its child node/bucket can be merged 

obliviously, i.e., the server does not learn any information about the load of each 

bucket. The idea is that the client sends a permutation Π to the server. Using this 

permutation, the server aligns the individual encrypted blocks of the two buckets and 

merges them into a destination bucket. The client chooses the permutation such that 

blocks containing real data in one bucket are always aligned to empty blocks in the 

other bucket. As each block is encrypted with additively homomorphic encryption, 

merging two blocks is a simple addition of ciphertexts. For the server, merging is 

oblivious, because, informally, any permutation Π from the client is indistinguishable 

from a randomly chosen permutation. For buckets of size O(z), oblivious merging 

evicts elements from a parent bucket to its child with O(z log z) bits of communication 

instead of O(γz2) of Onion ORAM. As a result of applying this merging technique, it is 

only needed a constant number of PIR reads and writes for ORAM operations. As a 

warm up, in [22] is presented a technique allowing amortized constant 

communication complexity with a smaller block size B in Ω(z log z log N + γz log N). 

Additionally the second and main technique achieves constant worst case 

communication complexity with smaller block size in Ω(z log z log N + γz). 

4.2.1.1 Oblivious Merging 

Oblivious merging is a technique that obliviously lines up two buckets in a specific 

order and merges them into one bucket. Using this technique, real data elements can 

be evicted from a bucket to another by permuting the order of blocks of one of them 

and then adding additively homomorphically encrypted blocks. Oblivious merging is 

based on an oblivious permutation generation that takes as input the configurations 

of two buckets and outputs a permutation Π. A configuration of a bucket specifies 

which of the blocks in the bucket are real blocks and which are empty. Permutation 
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Π arranges blocks in such a way that there are no real data elements at the same 

position in the two blocks. 

C-ORAM keeps Onion ORAM’s main construction. That is, C – ORAM is a tree-based 

ORAM composed of a main tree ORAM storing the actual data and a recursive ORAM 

storing the position map. The position map consists of a number of ORAM trees with 

linearly increasing height mapping a given address to a tag. For n elements stored in 

the ORAM, the communication needed to access the position map is in O(log2 N). As 

with all recent tree-based ORAMS, the recursive position map’s communication 

complexity is dominated by the block size. Let N be a power of 2. C-ORAM is a binary 

tree with L levels and 2L leave nodes. Each node/bucket contains μ ∙ z blocks. Here, z 

is the number of slots needed to hold blocks as in Onion ORAM and μ is a 

multiplicative constant that gives extra room in the buckets for noisy blocks, which is 

important for C – ORAM construction. We maintain the same relation between N, L 

and z as in Onion ORAM, namely N ≤ z ∙ 2L – 1. Each block in a C-ORAM bucket is 

encrypted using an additively homomorphic encryption, e.g., Pailler’s or Damgard-

Jurik’s cryptosystem. Also each bucket contains IND-CPA encrypted meta-

information, headers, containing additional information about a bucket’s contents. 

4.2.1.2 Headers 

Bucket headers are an important component in C – ORAM as they determine how 

oblivious permutations are generated. A bucket header is comprised of two parts: the 

first part stores for each block whether it is noisy, contains real data or is empty. The 

second part stores the block tags. More formally, the header is composed of two 

vectors header1 and header2. Vector header1 has length μ ∙ z, and each element is 

either noisy, empty or real. Thus, each element has a size of two bits. The total size of 

this vector is in O (μz). header2 is a (μ ∙ z × log N) binary matrix. The rows represent 

the address of the blocks. Finally, as with all tree based ORAMS, each block in a bucket 

also contains the encryption of its address. That is, the address of each block is 

encrypted separately from the block itself. 

4.2.2 C – ORAM: First Construction 

In this section we present a technique allowing amortized constant communication 

complexity with a smaller block size.  

To access an element in C-ORAM, i.e., read or write, the client first fetches the 

corresponding tag from the position map. This tag defines a unique path starting from 

the root of the ORAM tree and going to a specific leaf given by the tag. The element 

might reside in any bucket on this path. To find this element, is used a PIR read [23] 

that will be applied to each bucket. To verify whether the block exists in a bucket, the 

client downloads the encrypted headers of each bucket. Therewith, the client can 
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generate a PIR read vector retrieving the block from a bucket. To preserve the 

scheme’s obliviousness, the client sends PIR read vectors for each bucket on the path. 

Once the block has been retrieved, the client can modify the block’s content if 

required, then insert it back into the root of the C – ORAM tree using PIR write. This 

is the standard Path-PIR behavior to read from or write into blocks [24]. 

Eviction takes place after every χ = O(z) access operations. As in Onion ORAM, a path 

in C – ORAM is selected following deterministic reverse lexicographic order. Then, the 

entire root of the ORAM tree is downloaded, randomly shuffled and written back 

(additively homomorphically) encrypted. Finally, the eviction is performed by 

repeatedly applying an oblivious merge on buckets along the selected path. Any 

bucket belonging to this path is obliviously merged with its parent while the other 

child of the parent will be overwritten by a copy of the parent bucket. Τhe former 

bucket on the path is called the destination bucket and the latter one its sibling 

bucket. 

Before starting the eviction of a specific path, an invariant of the eviction process is 

that siblings of buckets of this path are empty, except the leaves. After the eviction, 

all buckets belonging to the evicted path will be empty except the leaf [14]. Note that 

siblings of this path, after the eviction, will not be empty anymore. 

Sibling buckets, since they are simply copies of their parents, will contain blocks with 

tags outside the subtree of this bucket. These blocks are called noisy blocks as they 

do not belong into this subtree and are essentially leftover “junk”. Now for 

correctness, in this construction, is guaranteed that the number of noisy blocks in any 

bucket is upper bounded. So, there will always be space for real elements in a bucket 

and will not overflow. 

Elements in each bucket are encrypted using additively homomorphic encryption, 

respectively. Given two buckets B1 and B2, oblivious merging will permute the position 

of blocks in B1 such that there are no real or noisy element at the same positions in B1 

and B2. Consequently, if there is a real element in the ith position in B1, then for the 

scheme to be correct, the ith position in B2 should be empty. The following addition of 

elements at the same position in B1 and B2 will preserve the value of the real element. 

After χ operations, we also download the leaf bucket to delete its noisy blocks. 

4.2.2.1 Details and Analysis 

Let 𝒫(tag) denote the path starting from the root and going to the leaf identified by 

tag. The path is composed of L + 1 buckets including the root. 𝒫(tag, i)  refers to the 

bucket at the ith level of 𝒫(tag). For example, 𝒫(tag, 0) is the root bucket. 𝒫s(tag, i)  

is the sibling of bucket 𝒫(tag, i). Let [N] be the set of integers {1, …, N}, x 
$

← [N] 

uniformly sampling a random element from set [N], and χ the period of eviction 
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which is in O(z). Identity is an empty bucket containing only encryptions of zero. 

Figure 23 presents details of the access operation. An access can be either an ORAM 

Read or a Write operation. The only difference between the two is that a write 

changes the value of the block before putting it back in the root. The access 

operation invokes a PIR read algorithm, see Figure 24 that obliviously retrieves a 

block. Figure 25 shows the eviction where elements percolate towards their leaves 

using oblivious permutations, see 

Figure 26. 

Block size. The following asymptotic analysis will be in function of z, N, and γ. z is the 

size of the bucket, N the number of elements, and γ the length of the ciphertext of 

the additively homomorphic encryption. The communication complexity induced by 

an ORAM access operation comprises a PIR read operation and the eviction process 

(happening every χ ∈ O(z) accesses). The size of the bucket is μ ∙ z, it is shown in 

security analysis section later that μ is a constant. First, the client performs PIR reads 

L + 1 times. For this, the client has to download all addresses in the path, i.e., O(z ∙ L ∙ 

log N) bits. Also, the client should send a logarithmic number of PIR read vectors 𝑉 

with size O(γ ∙ z ∙ L) bits. Note that the computation of PIR read vectors outputs, for 

all but one buckets’ block, encryption of zeros. Instead of sending back a logarithmic 

number of blocks to the client, the server only sends a single block, the summation of 

all the blocks output, cf. Figure 23. Thus, the client only retrieves a single block B. A PIR 

read applied to all buckets of the path induces an overhead in O(z ∙ L ∙ log N + γ ∙ z ∙ 

L + B). For the eviction, the client downloads header1 and the ith column of header2 

and sends permutations for all buckets in the path. Thus, the overhead induced by the 

permutations is O(L ∙ z ∙ log z) bits. Also, after every χ = O(z) operations, the client 

downloads the root and one leaf, which has O(zB) communication complexity. 

Amortized, for each operation we have Oz(B) communication complexity (amortized 

over z). In conclusion, each access has Oz(z ∙ L ∙ log N + γ ∙ z ∙ L + z ∙ log(z) ∙ L + B) 

communication complexity. To have constant communication complexity in B, the 

block size should be B ∈ Ω(z ∙ L ∙ log N + γ ∙ z ∙ L + L ∙ z ∙ log z) ∈ Ω(λ∙log2 N + γ∙λ∙ 

log N). This is a consequence of z = Θ(λ), λ ∈ ω(log n), and L ∈ Θ(log N). Based on 

current attacks [25]. Therefore, λ∙ log2 N is dominated by γ ∙ λ ∙ log N, and B ∈ Ω(γ ∙ λ 

∙ log N). 

The main idea of the construction below is based on that the block size has exactly 

the same asymptotic as transmitted vectors 𝑉. So to improve the block size, in the 

next section we present a different way to access the ORAM that introduced in [22]. 
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Figure 23: C-ORAM 1st Access Algorithm 

Figure 24: C-ORAM PIR-Read Algorithm  

Figure 25: C-ORAM Evict Algorithm 

 

 

 

 

Access(op, adr, data, ctr, st) 

1: tag = posMap(adr) 

2: posMap(adr) 
$

←  [N] 
3: if ctr = 0 mod (χ) then 
4:    Download root buckt, refresh encryption, randomize order of real elements 
5:    Evict(st) 
6: else 
7:    for 𝑖 = 0 to L do B = B+RIP-Read(adr, 𝒫(tag, 𝑖) 
8: end if 
9: if op := write then set B = data 
10: ctr = ctr + 1 
11: Upload IND-CPA encrypted block to root 𝒫(tag, 0) 

PIR-Read(addr, 𝒫(tag, level)) 

1: Retrieve and decrypt address Addr of the bucket 𝒫(tag, level) 
2: if addr ∈ Addr then 
3:    a = Addr[addr]if ctr = 0 mod (χ) then 
4:    for 𝑖 = 1 to μ ∙ z do  
5:        if 𝑖 ≠ a then 𝑉i 

 
← ENC(0) else 

6:        𝑉i 
 

← ENC(1) 
7:    end 
8: else 

9:    for 𝑖 = 1 to μ ∙ z do 𝑉i 
 

← ENC(0) 
10: end if 
11: Parse bucket 𝒫(tag, level) as (μ ∙ z × |B|) binary matrix 𝑀 
12: B = (∑ 𝑉𝑖 ∙ ℳ1,𝑖

𝜇 ∙𝑧
𝑖=1 , …, ∑ 𝑉𝑖 ∙ ℳ|𝐵|,𝑖

𝜇 ∙𝑧
𝑖=1 ) 

13: Update ℎ𝑒𝑎𝑑𝑒𝑟1
𝑙𝑒𝑣𝑒𝑙 of bucket 𝒫(tag, level)  

Evict(st) 

1: for 𝑖 = 0 to  L -1 do 

2:    Retrieve ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖 and ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1 

3:    Retrieve Ci and Ci+1 respectively the ith and (i+1)th column of  ℎ𝑒𝑎𝑑𝑒𝑟2
𝑖 and ℎ𝑒𝑎𝑑𝑒𝑟2

𝑖+1 of the bucket 𝒫(𝑠𝑡, 𝑖) 
and 𝒫(𝑠𝑡, 𝑖 + 1) 

4:    π 
 

← GenPerm((ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖, Ci), (ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1, Ci+1)) generate the oblivious permutation π 
5:    𝒫(𝑠𝑡, 𝑖 + 1) = π(𝒫(𝑠𝑡, 𝑖)) +  𝒫(𝑠𝑡, 𝑖 + 1) 
6:    if  𝑖 < L – 1 then 
7:        𝒫s(𝑠𝑡, 𝑖)) = 𝒫(𝑠𝑡, 𝑖) //Copy the parent bucket into its sibling 
8:    else  

9:        Retrieve ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖+1 and Ci+1 from the sibling leaf 

10:      π 
 

← GenPerm((ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖, Ci), (ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1, Ci+1)) 
11:      𝒫(𝑠𝑡, 𝑖 + 1) = π(𝒫(𝑠𝑡, 𝑖)) +  𝒫(𝑠𝑡, 𝑖 + 1) 
12:   end if 

13:   Update(ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖) and store it with bucket 𝒫s(𝑠𝑡, 𝑖) 

14:   Update(ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖+1) and store it with bucket 𝒫(𝑠𝑡, 𝑖 + 1) 

15:   𝒫(𝑠𝑡, 𝑖) = Identity 
16: end 
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Figure 26: C-ORAM GenPerm Algorithm 

 

4.2.3 C – ORAM: Second Construction 

In this section we show how C – ORAM further reduces the block size – again by a 

multiplicative factor of log N compared to the previous construction. Recall that in 

the previous section, the worst case involves a blowup of O(z), because during 

eviction the client needs to download O(z ∙ B) bits. In this construction, the eviction 

remains exactly the same, and our focus will only be on ORAM access. 

In 4.2.2, performed a PIR read per bucket during an access. Contrary, here is 

performed an oblivious merge to find out the block to retrieve. For an ORAM access 

to tag, our idea is to perform a special evict of path 𝒫(tag). All real elements pushed 

in 𝒫(tag) towards the leaf and then simply access the leaf bucket. So, we preserve 

access obliviousness and make sure that the element we want is pushed into leaf 

bucket tag.  

This approach comes with several challenges. The bucket distribution must be 

preserved, i.e., maintaining sibling emptiness property, as guaranteed by the reverse 

lexicographic eviction, before evicting any path. Instead of deterministically selecting 

GenPerm(A, B) 

1: Let 𝑥1, 𝑥2 be the number of empty and noisy slots in A 
2: Let 𝑦1, 𝑦2 be the number of empty and noisy slots in B 
3: 𝑑1 = 𝑥1 - 𝑦1 
4: 𝑑2 = 𝑥2 - 𝑦2    
5: for 𝑖 = 1 to μ ∙ z do 

6:   case B[𝑖] is full z 
$

← all empty slots in A 
7:   case B[𝑖] is noisy 
8:       if 𝑑2 > 0 then 

9:             z 
$

← all noisy slots in A 
10:           𝑑2 = 𝑑2 – 1 
11:     else  

11:           z 
$

← all noisy slots in A 
12:     end 
13:   case B[𝑖] is empty 
14:      if 𝑑1 > 0 then 

15:           z 
$

← all non-assigned slots in A 
16:           𝑑1 = 𝑑1 – 1 
17:      else 

18:           z 
$

← all full slots in A 
19:      end 
20:   end 
21:   π(𝑖) = z 

22:   Α[z] = assigned 
23: end 
24: return π 
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a path for eviction, in this construction paths are chosen randomly. However, using 

randomized eviction, should be guaranteed empty siblings on the evicted path. By 

randomly evicting a path, might end to copy a bucket in its sibling which is not empty 

resulting therefore in a correctness flaw. 

Temporarily clone the path 𝒫(tag) due to challenges above. The clone of 𝒫(tag) 

serves to simulate the eviction towards the leaf bucket, and we remove the clone 

after the access operation. We apply the oblivious merging on the bucket of this 

cloned path, and at the end we will have all real elements in the leaf bucket of the 

cloned path. Finally, we apply a PIR read to retrieve the block.  

Besides, to get rid of the amortized cost and have a scheme that only requires a 

constant bandwidth in the worst case, we make use of a PIR write operation that will 

be performed during every access. In the construction of 4.2.2, we have to shuffle the 

root bucket since oblivious merging has to be performed on random buckets for 

security purposes. Moreover, we need to eliminate noisy blocks from the leaf buckets 

and therefore after each  operations, the client downloads the evicted leaf to 

eliminate all noisy blocks. In the second C – ORAM construction, we are evicting after 

every access. Consequently, we can be certain that the root bucket is always empty 

after an eviction. The first PIR write operation that we perform will randomly insert 

the block in an empty root bucket after any access obliviously. The second use of PIR 

write is to delete the retrieved element from the leaf. In fact, we can also delete noisy 

blocks by the same tool but a PIR read is needed to retrieve first the noisy block that 

we will overwrite with a PIR write. 

4.2.3.1 Details and Analysis 

Algorithm in Figure 27 presents the core of the second C – ORAM construction. Now, 

instead of performing a logarithmic number of PIR reads, we only invoke an Evict-

Clone to read a block, cf. Figure 28. Evict-Clone uses oblivious merging of 4.2.1.1, 

together with one PIR read to retrieve a block. Moreover, we evict after every access. 

In order to eliminate noisy blocks that have been percolated to the leaf bucket, we 

use a PIR write to delete the noisy block, cf. Figure 29. 

Block size. The access operation in C – ORAM is composed of scheduled path eviction, 

eviction in the cloned path, a PIR read, and two PIR writes. The size of the headers are 

negligible compared to the PIR read and write vectors. First, the eviction always 

involves an overhead of O(z L log z). Evict-Clone performs one PIR read in addition to 

the regular evict. Finally, we retrieve the block of size B. Therefore, the overhead 

induced by these steps is O(z L log z + z log N + γz + B). Adding the two PIR writes 

and single PIR read operation will not change asymptotic behavior since the number 

of these operations is constant in N. In conclusion, to have a bandwidth that is 

constant in block size B, the block size should be B ∈ Ω(z ∙ L ∙ log z + γz). With z ∈ 
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Θ(λ), λ ∈ ω(log N) and L ∈ (log N), we achieve B ∈ Ω(λ [log N ∙ log λ + γ]). In practice, 

γ ∈ O(λ3), so dominates log N ∙ log λ. Therefore, block size B is B ∈ Ω(γλ).  This C – 

ORAM construction achieves worst-case constant blow-up, it also omits inefficient PIR 

reads performed for ORAM access. This second construction improves the blocks size 

by a multiplicative factor of log2 N compared to Onion ORAM in the worst case. As 

you can see, the main overhead of C-ORAM’s block size comes from the size of 

ciphertext. Recall that   γ ∈ O(λ3). Therefore, the smaller the additively homomorphic 

ciphertext will get, the smaller the block size of C-ORAM will be. 

 

Figure 27: C-ORAM 2nd Access Algorithm 

Figure 28: C-ORAM Evict-Clone Algorithm 

 

 

Figure 29: C-ORAM PIR-Write Algorithm 

Access(op, adr, data, st) 

1: tag = posMap(adr)x ← position[a] 

2: posMap(adr) 
$

←  [N] 
3: B = Evict-Clone(adr, tag) 
4: if op = write then set B = data 

5: pos1 
$

←  [μ ∙ z]     
6: PIR-Write(pos1, B, 𝒫(st, 0)) 
7: Evict(st) 

8: pos2 
$

←  [ℎ𝑒𝑎𝑑𝑒𝑟 
𝐿] 

9: N = PIR-Read(pos2, 𝒫(st, 𝐿)) 
10: PIR-Write(pos2, -N,𝒫(st, 𝐿))  
 

Evict-Clone(adr, tag) 

1: Create a copy of the C-ORAM path 𝒫(tag) 
2: for 𝑖 = 0 to  L -1 do 

3:    Retrieve ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖 and ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1 

4:    Retrieve Ci and Ci+1 respectively the ith and (i+1)th column of  ℎ𝑒𝑎𝑑𝑒𝑟2
𝑖 and ℎ𝑒𝑎𝑑𝑒𝑟2

𝑖+1 of the bucket 
𝒫(𝑡𝑎𝑔, 𝑖) and 𝒫(𝑡𝑎𝑔, 𝑖 + 1) 

5:    π 
 

← GenPerm((ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖, Ci), (ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1, Ci+1))  
6:    𝒫(𝑡𝑎𝑔, 𝑖 + 1) = π(𝒫(𝑡𝑎𝑔, 𝑖)) +  𝒫(𝑡𝑎𝑔, 𝑖 + 1) 
7:  end 
8: B = PIR-Read(adr, 𝒫(𝑡𝑎𝑔, 𝐿) )   
8: for 𝑖 = 0 to 𝐿 do 

10:     Update(ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖) in 𝒫(𝑡𝑎𝑔, 𝑖) 

11: end 

PIR-Write(pos, block, 𝒫(tag, level)) 

1: for 𝑖 = 1 to μ ∙ z do  
2:    if 𝑖 ≠ pos then 𝑉i 

 
← ENC(0) else 

3:    𝑉i 
 

← ENC(1) 
4: end 
5: Parse bucket 𝒫(tag, level) as (μ ∙ z × |B|) binary matrix 𝑀 
6: 𝑀𝑖,𝑗 = 𝒲𝑖  ∙  ℬ𝑗  

7: 𝒫(tag, level) =  𝑀 + 𝒫(tag, level) 
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4.2.4 Security Analysis 

The permutations generated by Algorithm Evict (Figure 25) are indistinguishable from 

random permutations. Informally, the adversary cannot gain any knowledge about 

the load of a particular bucket. Applying a permutation from Algorithm Evict (Figure 25)  

is equal to applying any randomly chosen permutation. We denote the adversarial 

permutation indistingui-shability experiment as PermG. Let ℳ denote a probabilistic 

algorithm that generates permutations based on the configuration of two buckets and 

𝒜 a PPT adversary. Let 𝓀 be the bucket size and 𝓈 the security parameter. By Perm 

we denote the set of all possible permutations of size 𝓀. Let ℰ1 = (Gen, Enc, Dec) and 

ℰ2 = (Gena, Enca, Deca) respectively denote an IND$-CPA encryption and an IND-CPA 

additively homomorphic encryption schemes. Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈) refers to the 

instantiation of the experiments by algorithm ℳ,  ℰ1,  ℰ2 and adversary 𝒜. The 

experiment Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈) consists of: 

 Generate two keys 𝓀1, 𝓀2 such that 𝓀1 

$
←Gena(1𝓈) and 𝓀2 

$
←Gena(1𝓈) and send 

𝓃 buckets additively homomorphic encrypted with Enca(𝓀1,.) associated to 

their headers encrypted with Enc(𝓀2,.) to the adversary 𝒜 

 The adversary 𝒜 picks two buckets A and B, then sends the encrypted 

headers header(A) and header(B) 

 A random bit b 
$

← {0,1} is chosen. If b = 1, π1 
$

← ℳ(header(A), header(B)), 

otherwise π0 
$

← Perm. Send π2 to 𝒜 

 𝒜 has access to the oracle 𝒪ℳ that issues permutations for any couple of 

headers different from those in the challenge 

 𝒜 outputs a bit b’ 

 The output of the experiment is 1 if b’ = b, and 0 otherwise. If 

Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈, b’) = 1, we say that the adversary 𝒜 succeeded. 

Definition 7 (Indistinguishable permutation) Algorithm ℳ generates 

indistinguishable permutation iff for all PPT adversaries 𝒜 and all possible 

configurations of buckets A and B, there exists a negligible function negl, such that 

Pr[Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈, 1) = 1] – Pr[Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈, 0) = 1] ≤ negl(𝓈) 

Theorem 2. If  ℰ1 is IND$-CPA secure,  ℰ2 IND-CPA secure, then Algorithm Evict (Figure 

25) generates indistinguishable permutations.  

4.3 Comparison 

In section 4.2 shown that the homomorphic multiplications, and in fact the nesting 

“onion” nature of Onion ORAM solution, is not necessary. With careful application of 
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an oblivious merging algorithm, all movement of blocks through the tree can be done 

with only homomorphic addition, resulting in a more computationally efficient 

algorithm. This also reduced the required block size by a O(log2 N) factor and, allows 

for O(1) communication complexity in the worst case. Finally, C – ORAM scheme 

requires only a small storage overhead compared to Onion ORAM. For practical 

parameter values, C – ORAM achieves significant improvement in block size and 

number of homomorphic operations. Table 4 summarizes improvements of C – ORAM 

when compared to Onion ORAM. 

 

Scheme Block size B Simplified 
block size 

Worst-case 
bandwidth 

# additions # multiplications 

Onion ORAM Ω(γλ log2 N) Ω(log6 N) O(1) Θ(Bλ log N) Θ(Bλ log N) 

C – ORAM Ω(λ[log N log λ+γ]) Ω(log4 N) O(1) Θ(Bλ log N) Θ (Bλ) 
Table 4: Comparison of Onion ORAM and C-ORAM 
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5 ObliviStore ORAM Family  

5.1 ObliviStore ORAM  

ObliviStore [5] is a high performance, distributed ORAM-based cloud data store 

secure in the malicious model. ObliviStore achieves high throughput by making I/O 

operations asynchronous. Asynchrony introduces security challenges, i.e., 

information leakage must be prevented not only through access patterns, but also 

through timing of I/O events. On [5] various practical optimizations are proposed 

which are key to achieving high performance, as well as techniques for a data center 

to dynamically scale up a distributed ORAM. The authors shown that with 11 trusted 

machines (each with a modern CPU), and 20 Solid State Drives, ObliviStore achieves a 

throughput of 31.5MB/s with a block size of 4KB. 

5.1.1 The ObliviStore ORAM Protocol 

One naive way to distribute an ORAM is to have a single trusted compute node with 

multiple storage partitions. However, in this case, the computation and bandwidth 

available at the trusted node can become a bottleneck as the ORAM scales up. In this 

scheme is proposed a distributed ORAM that distributes not only storage, but also 

computation and bandwidth. 

Oblivistore ORAM consists of an oblivious load balancer and multiple ORAM nodes. 

The key idea is to apply the partitioning framework twice. The partitioning framework 

was initially proposed to reduce the worst-case shuffling cost in ORAMs [4, 3], but it 

could leverage it to securely perform load balancing in a distributed ORAM. 

Specifically, each ORAM node is a “partition” to the oblivious load balancer, which 

relies on the partitioning framework to achieve load balancing amongst multiple 

ORAM nodes. Each ORAM node has several storage partitions, and relies on the 

partitioning framework again to store data blocks in a random storage partition with 

every data access. One benefit of the distributed architecture is that multiple ORAM 

nodes can perform shuffling in parallel. 

5.1.2 Detailed Distributed ORAM Construction  

To access a block, the oblivious load balancer first looks up its position map, and 

determines which ORAM node is responsible for this block. The load balancer than 

passes the request to this corresponding ORAM node. Each ORAM node implements 

a smaller ORAM consisting of multiple storage partitions. Upon obtaining the 

requested block, the ORAM node passes the result back to the oblivious load balancer. 

The oblivious load balancer now temporarily places the block in its eviction caches. 

With every data access, the oblivious load balancer chooses ν random ORAM nodes 
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and evicts one block (possibly real or dummy) to each of them, through an ORAM 

write operation.  

Each ORAM node also implements the shuffling functionalities. In particular, the 

ORAM nodes can be regarded as a parallel processors capable of performing 

reshuffling in parallel. The oblivious load balancer need not implement any shuffling 

functionalities, since it does not directly manage storage partitions. Hence, even 

though the load balancer is a central point, its functionality is very light-weight in 

comparison with ORAM nodes which are in charge of performing actual cryptographic 

and shuffling work.  

Notice that each ORAM node may not be assigned an equal amount of storage 

capacity. In this case, the probability of accessing or evicting to an ORAM node is 

proportional to the amount of its storage capacity. For ease of explanation, we 

assume that each storage partition is of equal size, and that each ORAM node may 

have different number of partitions – although in reality, could be supported 

partitions of uneven sizes in a similar fashion. 

5.1.3 Dynamic Scaling Up  

Adding compute nodes. When a new ORAM node processor is being added to the 

system (without additional storage), the new ORAM node processor registers itself 

with the load balancer. The load balancer now requests existing ORAM nodes to hand 

over some of their existing their partitions to be handled by the new processor. To do 

this, the ORAM nodes also need to hand over part of their local metadata to the new 

processor, including part of the position maps, eviction caches, and partition states. 

The load balancer also needs to update its local metadata accordingly to reflect the 

fact that the new processor is now handling the reassigned partitions 

Adding compute nodes and storage. The more difficult case is when both new 

processor and storage are being added to the system. One naive idea is for the ORAM 

system to immediately start using the new storage as one or more additional 

partitions, and allow evictions to go to the new partitions with some probability. 

However, doing so would result in information leakage. Particularly, when the client 

is reading the new partition for data, it is likely reading a block that has been recently 

accessed and evicted to this partition. In ORAM Scheme [5] is proposed a new 

algorithm for handling addition of new ORAM nodes, including processor and storage. 

When a new ORAM node joins, the oblivious load balancer and the new ORAM node 

jointly build up new storage partitions. At any point of time, only one storage partition 

is being built. Building up a new storage partition involves: 

 Random block migration phase. The load balancer selects random blocks 

from existing partitions, and migrates them to the new partition. The new 
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partition being built is first cached in the load balancer’s local trusted 

memory, and it will be sequentially written out to disk when it is ready. This 

requires about O(N/D) amount of local memory, where N is the total storage 

capacity, and D is the number of ORAM nodes. During the block migration 

phase, if a requested block resides within the new partition, the load balancer 

fetches the block locally, and issues a dummy read to a random existing 

partition (by contacting the corresponding ORAM node). Blocks are only 

evicted to existing partitions until the new partition is fully ready. 

 Marking partition as ready. At some point, enough blocks would have been 

migrated to the new partition. Now the load balances sequentially writes the 

new partition out to disk, and marks this partition as ready. 

 Expanding the address space. The above two steps migrate existing blocks to 

the newly introduced partition, but do not expand the capacity of the ORAM. 

We need to perform an extra step to expand ORAM’s address space. Similarly, 

the challenge is how to do this securely. Suppose the old address space is 

[1, 𝑁], and the new address space after adding a partition is [1, 𝑁'], where 𝑁' 

> 𝑁. One naive idea is to randomly add each block in the delta address space 

[𝑁 + 1, 𝑁'] to a random partition. However, if the above is not an atomic 

operation, and added blocks become immediately accessible, this can create 

an information leakage. For example, after the first block from address space 

[𝑁 + 1, 𝑁'] has been added, at this time, if a data access request wishes to 

fetch the block added, it would definitely visit the partition where the block 

was added. To address this issue, the algorithm first assigns each block from 

address space [𝑁 + 1, 𝑁'] to a random partition – however, at this point, these 

blocks are not accessible yet. Once all blocks from address space [𝑁 + 1, 𝑁'] 

have been assigned, the load balancer notifies all ORAM nodes, and at this 

point, these additional blocks become fully accessible. 

Initially, a new ORAM node will have 0 active partitions. Then, as new storage 

partitions get built, its number of active partitions gradually increases. Suppose that 

at some point of time, each existing ORAM node has c1, c2, ..., cm-1 partitions 

respectively, and the newly joined ORAM node has cm active partitions, while one 

more partition is being built. Suppose all partitions are of equal capacity, then the 

probability of evicting to each active partition should be equal. In other words, the 

probability of evicting to the i'-th ORAM (where i ∈ [m] ) node is proportional to ci. 

The remaining question is when to stop the migration and mark the new partition as 

active. This can be done as follows. Before starting to build a new partition, the 

oblivious load balancer samples a random integer from the binomial distribution k 
$

← 

Β(𝑁,ρ), where 𝑁 is the total capacity of the ORAM, and ρ = 
1

𝑃+1
, where P denotes the 
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total number of active partitions across all ORAM nodes. The goal is now to migrate k 

blocks to the new partition before marking it as active. However, during the block 

migration phase, blocks can be fetched from the new partition but not evicted back 

to it. These blocks fetched from the new partition during normal data accesses are 

discounted from the total number of blocks migrated. The full node join algorithm is 

in [6]. 

5.1.4 Security Analysis 

Definition 8 (Oblivious accesses and scheduling). Let seq0 and seq1 denote two data 

access sequences of the same length and with the same timing: 

seq0 := [(𝑏𝑙𝑜𝑐𝑘𝑖𝑑1
 , 𝑡 1), (𝑏𝑙𝑜𝑐𝑘𝑖𝑑2

 , 𝑡 2), ..., (𝑏𝑙𝑜𝑐𝑘𝑖𝑑𝑚
 , 𝑡 𝑚)] 

seq1 := [(𝑏𝑙𝑜𝑐𝑘𝑖𝑑1
′ , 𝑡 1), (𝑏𝑙𝑜𝑐𝑘𝑖𝑑2

′ , 𝑡 2), ..., (𝑏𝑙𝑜𝑐𝑘𝑖𝑑𝑚
′ , 𝑡 𝑚)] 

Define the following game with an adversary who is in control of the network and the 

storage server: 

 The client flips a random coin b. 

 Now the client runs distributed asynchronous ORAM is algorithm and plays 

access sequence seqb with the adversary. 

 The adversary observes the resulting event sequence and outputs a guess b’ 

of b. 

We say that an asynchronous ORAM is secure, if for any polynomial-time adversary, 

for any two sequences seq0 and seq1 of the same length and timing, |Pr[b’ = b] - 
1

2
| ≤ 

negl(λ), where λ is a security parameter, and negl is a negligible function. 

Theorem 3. ObliviStore (asynchronous) ORAM construction satisfies the security 

notion described in Definition 8 above.  

Both the physical addresses accessed and the sequence of events observed by the 

server are independent of the data access sequence. In [6] is shown that an adversary 

can perform a perfect simulation of the scheduler without knowledge of the data 

request sequence. Specifically, both the timing of I/O events and the physical 

addresses accessed in the simulation are indistinguishable from those in the real 

world. 

5.2 Burst ORAM 

Burst ORAM [13] is an oblivious cloud storage system that achieves both practical 

response times and low total bandwidth consumption for bursty work-loads by 

reducing online bandwidth costs and aggressively rescheduling shuffling work to delay 

the bulk of the IO until the idle periods. In this schema, authors focus on reducing 
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effective IO by reducing online IO and delaying offline IO. This approach achieves to 

satisfy bursts of requests quickly, and delay most IO until idle periods. Moreover, it 

allows many bursts to be satisfied with nearly a 1× effective bandwidth cost. That is, 

during the burst, one block is transferred for every block requested. After the burst 

extra IO executed to catch up on shuffling and prepare for future requests. Before we 

proceed in details of this protocol we provide a short outline of Burst ORAM 

techniques, challenges and what is considered as burst.  

Bursts. Intuitively, a burst is a period of frequent block requests from the client 

preceded and followed by relatively idle periods. Many real-world workloads exhibit 

bursty patterns (e.g. [26, 27]). Often, bursts are not discrete events, such as when 

multiple network file system users are operating concurrently. Thus Burst ORAM 

handles bursts fluidly: the more requests issued at once, the more Burst ORAM tries 

to delay offline IO until idle periods.  

Challenges. When building a burst-friendly ORAM system there are several 

challenges. The first is ensuring security maintenance. A naive approach to reducing 

online IO may mark requests as satisfied before enough blocks are read from the 

server, leaking information about the requested block’s identity. The second 

challenge is ensuring that we maximally utilize client storage and available bandwidth 

while avoiding deadlock. An excessively aggressive strategy that delays too much IO 

may use so much client space that we run out of room to shuffle. It may also 

underutilize available bandwidth, increasing response times. On the other hand, an 

overly conservative strategy may under-utilize client space or perform shuffling too 

early, delaying online IO and increasing response times. 

Techniques. Burst ORAM addresses the challenges above by combining several novel 

techniques. It is introduced a new XOR technique for reducing online bandwidth cost 

to nearly 1×, Prioritizing online IO and delaying offline/ shuffle IO until client memory 

is nearly full. Also, Burst ORAM prioritizes efficient shuffle jobs in order to delay the 

bulk of the shuffle IO even further, ensuring that is minimized effective IO during long 

bursts. Last but not least, available client space is used to cache small levels locally to 

reduce shuffle IO. 

5.2.1 The Burst ORAM Protocol 

Burst ORAM achieves low response time by prioritizing online IO over shuffle IO. That 

is, shuffle IO suppressed during bursts, delaying it until idle periods. Requests are 

satisfied once online IO finishes, so prioritizing online IO allows to satisfy all requests 

before any shuffle IO starts, keeping response times low even for later requests. 

During the burst, requests are processed by fetching blocks from the server, but since 

shuffling is suppressed, no blocks are uploaded. Thus, we must resume shuffling once 

client storage fills. When available bandwidths are large and bursts are short, the 
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response time saved by prioritizing online IO is limited, as most IO needed for the 

burst can be issued in parallel. However, when bandwidth is limited or bursts are long, 

the savings can be substantial. With shuffle IO delayed until idle times, online IO 

dominates the effective IO, becoming the bottleneck during bursts. Here it comes the 

new XOR technique, which introduced in [13] and reduces Online IO. 

5.2.1.1 XOR Technique 

The XOR technique allows the Burst ORAM server to combine the O(log N) blocks 

fetched during a request into a single block that is returned to the client, reducing the 

online bandwidth cost to O(1). If only the desired block was fetched, its identity would 

be revealed to the server. Instead, XOR all the blocks together and return the result. 

Since there is at most one real block among the O(log N) returned, the client can 

locally reconstruct the dummy block values and XOR them with the returned block to 

recover the encrypted real block. 

In Burst ORAM, as in ObliviStore, each request needs to retrieve a block from a single 

partition, which is a simplified hierarchical ORAM resembling those in [1]. The 

hierarchy contains L ≈
1

2
 log2 N levels with real-block capacities 1, 2, 4, ..., 2L-1 

respectively. To retrieve a requested block, the client must fetch exactly one block 

from each of the L levels. The XOR technique requires that the client be able to 

reconstruct dummy blocks, and that dummies remain indistinguishable from real 

blocks. This property is achieved by encrypting a real block b residing in partition 𝑝, 

level ℓ, and offset off as 𝐴𝐸𝑆𝑠𝑘𝑝,ℓ
(off ||B). An encrypted dummy block residing in 

partition 𝑝, level ℓ, and offset off as 𝐴𝐸𝑆𝑠𝑘𝑝,ℓ
(off ). The key 𝑠𝑘𝑝,ℓ is specific to partition 

𝑝 and level ℓ, and is randomized every time ℓ is rebuilt.  

For simplicity, we start by considering the case without early shuffle reads. In this 

case, exactly one of the L blocks requested is the encryption of a real block, and the 

rest are encryptions of dummy blocks. The server XORs all L encrypted blocks together 

into a single block 𝑋𝒬 that it returns to the client. The client knows which blocks are 

dummies, and knows 𝑝, ℓ, off for each block, so it reconstructs all the encrypted 

dummy blocks and XORs them with 𝑋𝒬 to obtain the encrypted requested/real block. 

Early Shuffle Reads. An early shuffle read occurs when we need to read from a level 

with no more than half its original blocks remaining. Since such early shuffle reads 

may be real blocks, they cannot be included in the XOR. Fortunately, the number of 

blocks in a level is public, so the server already knows which levels will cause early 

shuffle reads. Thus, the server simply returns early shuffle reads individually, then 

XORs the remaining blocks, leaking no information about the access sequence. Since 

each early shuffle read block must be transferred individually, early shuffle reads 

increase online IO. Fortunately, early shuffle reads are rare, even while shuffling is 
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suppressed during bursts, so the online bandwidth cost stays under 2× and near 1× in 

practice. 

5.2.1.2 Scheduling and Reducing Shuffle IO 

In this section, we show how Burst ORAM schedules shuffle IO so that jobs that free 

the most client space using the least shuffle IO are prioritized. Thus, at all times, Burst 

ORAM issues only the minimum amount of effective IO needed to continue the burst, 

keeping response times lower for longer. We also show how Burst ORAM reduces 

overall IO by locally caching the smallest levels from each partition. We start by 

defining shuffle jobs. 

In Burst ORAM, as in ObliviStore, shuffle IO is divided into per-partition shuffle jobs. 

Each job represents the work needed to shuffle a partition 𝑝 and upload blocks 

evicted to 𝑝. A shuffle job is defined by five entities: 

 A partition 𝑝 to which the job belongs 

 Blocks evicted to but not yet returned to 𝑝 

 Levels to read blocks from 

 Levels to write blocks to 

 Blocks already read from 𝑝 (early shuffle reads) 

Each shuffle job moves through three phases: 

Creation Phase. We create a shuffle job for p when a block is evicted to p following a 

request. Every job starts out inactive, meaning we have not started work on it. If 

another block is evicted to p, we update the sets of eviction blocks and read/write 

levels in p’s inactive job. When Burst ORAM activates a job, it moves the job to the 

Read Phase, freezing the eviction blocks and read/write levels. Subsequent evictions 

to p will create a new inactive shuffle job. At any time, there is at most one active and 

one inactive shuffle job for each partition. 

Read Phase. Once a shuffle job is activated, we begin fetching all blocks still on the 

server that need to be shuffled. That is, all previously unread blocks from all the job’s 

read levels. Once all such blocks are fetched, they are shuffled with all blocks evicted 

to p and any early shuffle reads from the read levels. Shuffling consists of adding/ 

removing dummies, pseudo-randomly permuting the blocks, and then re-encrypting 

each block. Once shuffling completes, we move the job to the Write Phase. 

Write Phase. Once a job is shuffled we begin storing all shuffled blocks to the job’s 

write levels on the server. Once all writes finish, the job is marked complete, and Burst 

ORAM is free to activate p’s inactive job, if any. 
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5.2.1.2.1 Prioritizing Efficient Jobs 

Since executing shuffle IO delays the online IO needed to satisfy requests, the 

response time could be reduced by doing as little shuffling as is needed to free up 

space. The hope is that the bulk could be delayed of the shuffling until an idle period, 

so that it does not interfere with pending requests. 

By the time client space fills, there will be many partitions with inactive shuffle jobs. 

Since we can choose jobs in any order, we can minimize the up-front shuffling work 

by prioritizing the most efficient shuffle jobs: those that free up the most client space 

per unit of shuffle IO. According to [13] the space freed by completing a job for 

partition p is the number of blocks evicted to p plus the number of early shuffle reads 

from the job’s read levels. Thus, they define in [13] shuffle job efficiency as follows: 

Job Efficiency = 
# 𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑠+ # 𝐸𝑎𝑟𝑙𝑦 𝑆ℎ𝑢𝑓𝑓𝑙𝑒 𝑅𝑒𝑎𝑑𝑠

# 𝐵𝑙𝑜𝑐𝑘𝑠 𝑡𝑜 𝑅𝑒𝑎𝑑+# 𝐵𝑙𝑜𝑐𝑘𝑠 𝑡𝑜 𝑊𝑟𝑖𝑡𝑒
 

Job efficiencies vary substantially. Most jobs start with 1 eviction and 0 early shuffle 

reads, so their relative efficiencies are determined strictly by the sizes of the job’s read 

and write levels. If the partition’s bottom level is empty, no levels need be read, and 

only the bottom must be written, for an overall IO of 2 an efficiency of 0.5. If instead 

the bottom 4 levels are occupied, all 4 levels must be read, and the 5th level written, 

for a total of roughly 15 reads and 32 writes, yielding a much lower efficiency of just 

over 0.02. Both jobs free equal amounts of space, but the higher-efficiency job uses 

less IO.  

Since small levels are written more often than large ones, efficient jobs are common. 

Further, by delaying an unusually inefficient job, it is given time to accumulate more 

evictions. While such a job will also accumulate more IO, the added write levels are 

generally small, so the job’s efficiency tends to improve with time. Thus, prioritizing 

efficient jobs reduces shuffle IO during the burst, thereby reducing response times.  

Unlike Burst ORAM, ObliviStore [5] does not use client space to delay shuffling, so 

there are fewer shuffle jobs to choose from at any one time. Thus, job scheduling is 

less important and jobs are chosen in creation order. Since ObliviStore is concerned 

with throughput, not response times, it has no incentive to prioritize efficient jobs. 

5.2.1.2.2 Level Caching 

Burst ORAM spends a lot of time accessing small levels. If client space used to locally 

cache the smallest levels of each partition, could be eliminated the shuffle IO 

associated with those levels entirely. Since levels are shuffled with a frequency 

inversely proportional to their size, each is responsible for roughly the same fraction 

of shuffle IO. Thus, shuffle IO could be greatly reduced by caching even a few levels 
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from each partition. Further, since caching a level eliminates its early shuffle reads, 

which are common for small levels, caching can also reduce online IO. 

In Burst ORAM, cached only as many levels as are guaranteed to fit in the worst case. 

More precisely, it is identified the maximum number  such that the client could store 

all real blocks from the smallest  levels of every partition even if all were full 

simultaneously. Levels are cached by only updating an inactive job when the number 

of evictions is such that all the job’s write levels have index at least . Since each level 

is only occupied half the time, caching  levels consumes at most half of the client’s 

space on average, leaving the rest for requested blocks. 

5.2.2 Security Analysis 

The server knows public information such as the values of each semaphore and the 

start and end times of each request. The server also knows the level configuration of 

each partition and the size and phase of each shuffle job, including which encrypted 

blocks have been read from and written to the server. The server must not learn the 

contents of any encrypted block, or anything about which plaintext block is being 

requested. Thus, the server may not know the location of a given plaintext block, or 

even the prior location of any previously requested encrypted block.  

All of Burst ORAM’s publicly visible actions are, or appear to the server to be, 

independent of the client’s sensitive data access sequence. Since Burst ORAM treats 

the server as a simple block store, the publicly visible actions consist entirely of 

deciding when to transfer which blocks. Intuitively, Burst ORAM must ensure that 

each action taken is both deterministic and dependent only on public information, or 

appears random to the server. Equivalently, the schema must be able to generate a 

sequence of encrypted block transfers that appears indistinguishable from the actions 

of Burst ORAM using only public information. We now show how each Burst ORAM 

component meets these criteria. 

ORAM Main and Client Security. ORAM Main (Figure 30) chooses whether to advance 

the Requester or the Shuffler, and depends on the size of the request queue and the 

Local Space semaphore. Since the number of pending requests and the semaphores 

are public, ORAM Main is deterministic and based only on public information. For 

each eviction, the choice of partition is made randomly, and exactly one block will 

always be evicted. Thus, every action in Figure 30 is either truly random or based on 

public information, and is trivial to simulate. 

Requester Security. The Requester (Figure 31) must first identify the partition 

containing a desired block. Since the block was assigned to the partition randomly and 

this is the first time it is being retrieved since it was assigned, the choice of partition 

appears random to the server. Within each partition, the requester deterministically 
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retrieves one block from each occupied level. The choice from each level appears 

random, since blocks were randomly permuted when the level was created. The 

Requester singles out early shuffle reads and returns them individually. The identity 

of levels that return early shuffle reads is public, since it depends on the number of 

blocks in the level. The remaining blocks are deterministically combined using XOR 

into a single returned block. Finally, the request is marked satisfied only after all blocks 

have been returned, so request completion time depends only on public information. 

The Requester’s behavior can be simulated using only public information by randomly 

choosing a partition and randomly selecting one block from each occupied level. 

Blocks from levels with at most half their original blocks remaining should be returned 

individually, and all others combined using XOR and returned. Once all blocks have 

been returned, the request is marked satisfied. 

Shuffler Security. As in ObliviStore, Shuffler (Figure 32: Burst ORAM Shuffler Algorithm) 

operations depend on public semaphores. Job efficiency, which used for prioritizing 

jobs, depends on the number of blocks to be read and written to perform shuffling, 

as well as the number of early shuffle reads and blocks already evicted (not assigned). 

The identity of early shuffle read levels and the number of evictions is public. Further, 

the number of reads and writes depends only on the partition’s level configuration. 

Thus, job efficiency and job order depend only on public information. Since the 

Shuffler’s actions are either truly random (e.g. permuting blocks) or depend only on 

public information (i.e. semaphores), it is trivial to simulate. 

Client Space. Since fetched blocks are assigned randomly to partitions, but evicted 

using an independent process, the number of blocks awaiting eviction may grow. The 

precise number of such blocks may leak information about where blocks were 

assigned, so it must be kept secret, and the client must allocate a fixed amount of 

space dedicated to storing such blocks. ObliviStore [5] relies on a probabilistic bound 

on overflow space provided in [2]. Since Burst ORAM uses ObliviStore’s assignment 

and eviction processes, the bound holds for Burst ORAM as well. Level caching uses 

space controlled by the Local Space semaphore, so it depends only on public 

information. 
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Figure 30: Burst ORAM Client and ORAM Main Algorithm 

Figure 31: Burst ORAM Requester Algorithm 

Client and ORAM Main() 

1: function ClientRead(𝑏) 
2:    Append b to RequestQueue 
3:    On RequestCallBack(D(𝑏)), return D(𝑏) 
4: procedure Write(𝑏, 𝑑) 
5:    Append b to RequestQueue     
6:    On RequestCallBack(D(𝑏)), write d to D(𝑏) 
7: procedure ORAM Main 
8:    RequestMade ← false 
9:    if RequestQueue ≠ ∅ then 
10:      b ← Peek(RequestQueue) 
11:      if Fetch(b) then      ⊳ Request Issued 
12:          RequestMade ← true 
13:          Pop(RequestQueue) 
14:          MakeEvictions 
15:  if  RequestMade = false then 
16:      TryShuffleWork 
17: procedure MakeEvictions 
18:   PendingEvictions = PendingEvictions + v 
19:   while PendingEvictions ≥ 1 do 
20:       p ← random partition 
21:       Evict new dummy or assigned real block to p 
22:       Vp = Vp + 1 
23:       if shuffling p only writes levels ≥ λ then 
24:           Jp ← p’s  inactive job ⊳ Create if needed 
25:           𝑉𝐽𝑝

← Vp 

26:           if p has no active job then  
27:               NJQ = NJQ ∪ Jp 
28:       PendingEvictions = PendingEvictions – 1 

Requester() 

1: function Fetch(b) 
2:    P(𝑏), L(𝑏) ← position map lookup on 𝑏 
3:    𝑄 = ∅, 𝐶 = ∅ 
4:    for level ℓ ∈ P(b) do    
5:        if ℓ is non-empty then 
6:            𝑏ℓ ← 𝑏 if ℓ = L(𝑏) 

7:            𝑏ℓ ← ID of next dummy in ℓ if ℓ ≠ L(𝑏) 
8:            if ℓ more than half full then 
9:                 𝑄 ← 𝑄 ∪ S(𝑏ℓ) ⊳ Standard read 
10:          else 
11:               𝐶 ← 𝐶 ∪ S(𝑏ℓ) ⊳ Early shuffle read  
12:    Ret ← | 𝐶 | + MAX(|Q|,1)      ⊳ #blocks to return 
13:    if Not TryDec(Local Space, Ret) then  
14:       return false  ⊳ Not enough space for blocks 
15:    Dec(Concurrent IO, Ret) 
16:    Issue async, request for (𝐶, 𝑄) to server 
17:    When done, server calls:  
18:        FetchCallBack(E(𝐶, XOR, of E(𝑄)) 
19:    return true 
20: procedure FetchCallBack({E(ci)},XQ)  
21:    INC(Concurrent IO, 1)  
22:    if 𝑏 ∈ 𝑄 then 
23:        𝑋𝑄

′ ←  ⨁{𝐸(𝑞𝑖)| 𝑆(𝑞𝑖) ∈ 𝑄, 𝑞𝑖 ≠ 𝑏}   ⊳ Subtraction block, computed locally 

24:        𝐸(𝑏)  ←  𝑋𝑄
 ⨁ 𝑋𝑄

′  

25:    if 𝑏 ∈ 𝐶 then 

26:        𝐸(𝑏)  ←  𝐸(𝑐𝑖) where 𝑐𝑖 = 𝑏  
27:    D(𝑏) ← decrypt 𝐸(𝑏) 
28:    Assign 𝑏 for eviction to random partition 
29:    RequestCallBack(D(𝑏) 
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Figure 32: Burst ORAM Shuffler Algorithm 

 

 

 

 

 

 

 

 

 

 

 

Shuffler() 

1: procedure TryShuffleWork 
2:    if NOT TryDec(Concurrent IO, 1) then 
3:        return 
4:    ReadIssued, WriteIssued ← false   
5:    if All reads for jobs in RJQ issued then 
6:        TryActive ⊳ Try to add job to RJQ 

7:    if Jp ∈ RJQ has not issued read 𝑏𝑟 then 
8:        if TryDec(Shuffle Buffer, 1) then     
9:            Issue assync.request for 𝑆(𝑏𝑅)       
10:          When done: ReadCallBack(𝐸(𝑏𝑅)) 
11:          ReadIssued ← true 
12:  if !ReadIssued and Jp ∈ WJQ has write 𝑏𝑊 then 
13:          Write E(𝑏𝑊) to server 
14:          When done, call WriteCallBack(𝑆(𝑏𝑊)) 
15:          WriteIssued  ← true 
16:  if Not ReadIssued and Not WriteIssued then 
17:          INC(Concurrent IO, 1)  ⊳ No shuffle work 
18: procedure TryActive      
19:     if NJQ ≠  ∅ then 
20:         Jp ← Peek(NJQ)  ⊳ Most efficient job 
21:         if TryDec(Shuffle Bufferm 𝑉𝐽𝑝

 +  𝐴𝐽𝑝
) then 

22:             Mark Jp active   ⊳ 𝑉𝐽𝑝
 frozen 

23:             INC(Local Space, 𝑉𝐽𝑝
 +  𝐴𝐽𝑝

) 

24:             Move Jp from NJQ to RJQ 
25: procedure ReadCallBack(𝐸(𝑏𝑅))    
26:     INC(Concurrent IO, 1) 

27:     Decrypt 𝐸(𝑏𝑅), place 𝐷(𝑏𝑅) in Shuffle Buffer 
28:     if all writes in Jp have finished then 
29:          Mark Jp complete 
30:          Remove Jp from WJQ 
31:          Update 𝐶𝑝  ←  𝐶𝑝 + 𝑉𝐽𝑝

, 𝑉𝑝  ←  𝑉𝑝 − 𝑉𝐽𝑝
  

32:          Add p’s inactive job, if any, to NJQ 
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5.3 CURIOUS ORAM 

CURIOUS ORAM [35] based upon a new set of metrics for evaluating ORAM designs, 

focusing more on latency, monetary expense, outsourcing ratio, elasticity and 

reliability. Among all existing designs, ObliviStore, which is built on partitioning the 

main ORAM into a set of smaller server-side ORAMs, turns out to be the most 

promising one. However, ObliviStore except of the privacy weakness in its 

implementation, it is overly complicated due to some of its specific performance 

optimization (e.g., background shuffling). CURIOUS is characterized by a set of fixed-

size small ORAMs, offering a large constant outsourcing ratio, convenience for 

supporting asynchronous operations and the capability to expand and shrink its cloud-

side storage. It has been built to ensure oblivious data access when serving multiple 

requests concurrently, and adopt a simpler eviction strategy, making it easier to 

implement. Also importantly, unlike ObliviStore, which is tied to a layered RAM 

scheme [5, 3], CURIOUS allows its underlying small, fixed-size ORAMs to be easily 

replaced. As a result, its performance will be continuously improved whenever a new 

design of such a building-block ORAM is available. For applications easily supported 

by ORAM, both ObliviStore and CURIOUS perform comparably. However, for 

demanding applications that stressed ORAM, CURIOUS significantly outperforms 

ObliviStore in response time (only its 25%), despite doubling the network traffic. In all 

cases, CURIOUS incurred lower monetary expense than (1/2 ~ 2/3 of) ObliviStore. 

5.3.1 The CURIOUS ORAM Protocol 

We describe the design of CURIOUS, a modular partition-based framework which 

despite being asymptotically worse (in terms of bandwidth overhead) is able to 

outperform ObliviStore in both monetary expense and response time. 

CURIOUS utilizes many small constant-size ORAMs (called subORAMs, or partition 

ORAMs), and uses existing remote storage services in a black-box way. At a high level, 

the framework consists of a position map, an eviction cache (both stored locally), and 

a collection of m subORAMs (whose state is kept locally, but whose storage is 

outsourced to the cloud). CURIOUS is modular: it cleanly separates the modules so 

that modules (e.g., partitions) can be improved upon independently, and specific 

modules may be replaced by others in order to suit a specific application scenario.  

To process a request for block x, CURIOUS uses the position map to find which 

subORAM contains x. It then calls the subORAM module to both retrieve x and evict 

one or more (possibly dummy) blocks to that subORAM. Once retrieved, x is put into 

the eviction cache, and associated with a random subORAM. This ensures x will be 
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evicted at a random time, preventing the cloud from learning information about the 

requests from the subORAM access sequences. 

Asynchronicity and concurrency. Oblivious processing of concurrent requests is 

challenging, and can compromise security or correctness when done incorrectly. To 

illustrate this, consider the sequence of requests get, put, get, all for the same block 

x. If an asynchronous scheme processes these requests sequentially, whereas other 

requests would be processed concurrently, it becomes vulnerable to certain attacks 

[35]. However, naively processing the three requests concurrently can compromise 

correctness or security, too. Indeed, naive processing would, for each request, lookup 

the position of x (i.e., which subORAM) using the position map, and then it would 

retrieve x. Now the cloud observes three concurrent requests to the same subORAM, 

an event that would happen only with probability 1/m3 for m subORAMs (e.g., m = 

210), if the three requests were independent. In addition, it is necessary to ensure 

correctness, i.e., the last request (get) must return the data written to the block by 

the 2nd request (put), and consistency, e.g., a request should not unexpectedly 

override something written by a concurrent request. To address these requirements, 

CURIOUS leverages modularity and adopts a simple concurrency model: the event 

that any two requests are run concurrently is statistically independent of their 

requests' parameters (i.e., type and block). To ensure this, CURIOUS uses a sequential 

scheduling process that detects whether two requests are “in conflict" (e.g., they 

access the same block). By keeping track of pending requests, the framework can 

make such conflicts oblivious to the cloud (i.e., it appears as if such conflicting 

requests are of any two random requests). 

Construction. Figure 33 describes the modular construction of CURIOUS. The interface 

includes scheduleGet and schedulePut, both of which are asynchronous (i.e., the call 

returns immediately, but the callback is invoked upon completing the request).  

To process requests concurrently as well as obliviously, CURIOUS ensures that the 

event that any two requests are processed concurrently is statistically independent of 

those requests. Each request will operate on a random subORAM so two requests are 

only competing (i.e., must be executed sequentially) if they operate on the same 

subORAM. When a request operates on a subORAM, it gets a lock on it and only 

accesses blocks of that subORAM.  

Two competing requests that scheduled sequentially, though the request processing 

(i.e., accessing the subORAM) can be asynchronous and concurrent. The idea is that 

when scheduling a request, the framework will mark the targeted block as “in transit", 

indicating that a request is in the process of retrieving that block. Subsequent requests 

for the same block are aware of the fact that the block is already being retrieved so 

they perform a dummy access (to a random subORAM) to hide (to the cloud) the fact 
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that the two requests targeted the same block. Upon finishing the first request, the 

block is put in the cache, and also delivered to each concurrent request targeting the 

same block. This prevents the kind of leaks uncovered in this Section, at the cost of 

disallowing requests to concurrently operate on the same subORAM.  

To address correctness, i.e., it must appear (to the application) as if requests are 

processed sequentially, CURIOUS maintains a version id in the header of each block. 

This allows the framework to ensure that every get always retrieves the correct 

version of the data, even in presence of concurrent puts to the same block. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: CURIOUS ORAM Framewotk 

Eviction. When a block is added to the eviction cache (e.g., as a result of a request) it 

becomes associated with a uniformly randomly chosen subORAM, following the same 

way as to ObliviStore. This random choice is integral to ensure obliviousness. CURIOUS 

performs evictions right after each subORAM access, i.e., a constant number of blocks 

associated with that subORAM (in the eviction cache) are re-written to it. Dummy 

blocks are used for padding, if needed. The subORAM module decides how many 

blocks are evicted. To the cloud, the eviction process is statistically independent of 

the requests, because all it sees is a  fixed number of blocks (some of which may be 

CURIOUS ORAM Framework 

Local state: 
1. Position map, storing for each block 𝑘: a pair (𝑠, 𝑝), where 𝑠 is the subORAM, and  𝑝 the position 

within that subORAM. 
2. Eviction cache, storing pairs (𝑘, 𝑠), where 𝑘 is a block and 𝑠 is the index of the associated subORAM. 
3. For each of the m subORAMs: their state. 

 
sheduleGet(𝑘, callback) 

1. Call schedule(𝑘, ⊥, callback) 
 
shedulePut(𝑘, 𝑣,callback) 

1. Call schedule(𝑘, 𝑣, callback) 
 
lookupPos(𝑘) 

1. Lookup (𝑠, 𝑝) for block 𝑘 
2. If block 𝑘 is in cache, set 𝑠 and 𝑝 uniformly at random 

 
evictBlocks(𝑠)  

1. Pick and remove 𝑐 cache entries of the form (𝑘, 𝑠) 
2. If there are less than 𝑐 such entries, add dummy blocks 

 
addToCache(𝑘) 

1. Pick 𝑠, the index of the subORAM, uniformly at random 
2. Store (𝑘, 𝑠) in the cache 

 
schedule(𝑘, 𝑣,callback) 

1. Call lookupPos(𝑘) to get (𝑠, 𝑝) 
2. Call evictBlocks(𝑠) to get 𝑒, te set of blocks to evict 
3. Call 𝑠.retrieveBlockAndEvict(𝑝, 𝑒) 
4. If 𝑣 ≠ ⊥, then overwrite then content of the block 𝑘 with 𝑣 
5. If block 𝑘 is newly retrieved, call addToCache(𝑘) 
6. Call callback 
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dummy) evicted to the same subORAM that was just accessed. This is guaranteed if 

the subORAM's module eviction process (in terms of what the cloud sees) is also 

independent of which blocks are evicted. 

SubORAM. A subORAM module defines a single function: retrieveBlockAndEvict, 

which retrieves a block (given its position information) and evicts a list of blocks in 

one operation. The module is a tree-based ORAM, which resembles PathORAM [2]. 

The construction, shown in Figure 34, makes use of a 𝑏 -ary tree (for any 𝑏 ≥ 2) whose 

nodes are buckets containing 𝑧 𝑏 blocks, for a small integer 𝑧. The security of this 

subORAM design can be easily derived from that of PathORAM. Namely, blocks 

written to a subORAM are associated with a uniformly random leaf, hence a random 

path accessed per ORAM read/write. Note that, there is no stash associated with the 

subORAM, instead when a path overflows, we add the over own blocks to the client 

cache. We can choose values of 𝑏 and 𝑧, such that the outsource ratio remains 

satisfactory. Additionally, in order to exploit the download/upload asymmetry, we can 

deterministically re-write only the first half of the path some of the time, e.g., for the 

first out of every two re-writes, so as to lower the average number of uploaded nodes 

per request (at the cost of lowering the outsource ratio, since blocks are more likely 

to overflow). 

Figure 34: CURIOUS ORAM - subORAM design 

5.3.2 Security 

Part of the challenge to secure an asynchronous scheme involves timing. There are 

two ways in which timing may leak information: (1) through the application running 

on top of ORAM whose requests have input-dependent timing patterns, and (2) due 

to a weakness in the ORAM design itself. Like ObliviStore, CURIOUS only addresses 

the latter. The former is not meant to be prevented by ORAM, which was not designed 

to hide application timing. Here is adopted the security definition of ObliviStore 

(Definition 8 in Section 5.1.4), which roughly says that for any two applications with 

the same timing pattern, the ORAM's timing and accesses must be statistically 

indistinguishable. To prove the security of CURIOUS must shown that what is 

observed by the cloud provider is statistically independent of the requests (i.e., type, 

blocks, and timing). Consider a CURIOUS instance of a fixed capacity with m 

subORAMs. The cloud sees: (1) the timing of operations to the storage, (2) the 

subORAM 

Storage organization: 
1. A 𝑏-ary tree of depth 𝑑 where each node has a capacity of 𝑧 blocks. 

 
retrieveBlockAndEvict(𝑝, 𝑒) 

1. Retrieve path ending at leaf 𝑝 from storage 
2. For each block ∈ 𝑒, pick a random leaf ℓ 
3. For each block ∈ 𝑒, update the position map with its new leaf ℓ 
4. Rewrite path 𝑝, pushing blocks down to the leaf as far as possible 
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sequence of subORAMs accessed, and (3) the exact operations to each subORAM's 

raw storage. CURIOUS' concurrency model takes care of (1). SubORAM design takes 

care of (3) due to the statistical independence of the requests. This leaves (2) to be 

dealt with here.  

Theorem 4. For any sequence of 𝓉 requests, the sequence of subORAMs accessed by 

CURIOUS is statistically independent of the type and target block of those requests. 

Proof. Consider an arbitrary request; there are three possibilities for the targeted 

block: (1) it has not been requested before; (2) it has been requested before and is in 

the cache; or (3) it has been requested before and is not in cache. Since during 

initialization blocks are randomly assigned to a subORAM, for (1), from the point of 

view of the cloud, a uniformly random subORAM will be accessed. For (2), the block 

is in the cache, so a uniformly random subORAM will be accessed. Finally for (3), the 

block is not in the cache, so it must have been evicted earlier, when a uniformly 

random subORAM was visited. 

5.4 Comparison 

5.4.1 ObliviStore ORAM vs Burst ORAM  

For ObliviStore and Burst comparison two experiments are presented to [13] the 

Endless Burst Experiment and NetApp Workload Experiment. 

Endless Burst Experiment. For the endless burst experiments, a 32TB ORAM was used 

with 𝑁 = 233 4KB blocks and 100GB client space. 233 requests were issued at once, 

then start satisfying requests in order using each scheme. The bandwidth costs of each 

request was recorded, averaged over requests with similar indexes and over three 

trials. Figure 35 and Figure 36 show online and effective costs, respectively. The insecure 

baseline is not shown, since its online, effective, and overall bandwidth costs are all 

1. Figure 35 shows that Burst ORAM maintains 5X– 6X lower online cost than ObliviStore 

for bursts of all lengths. When Burst ORAM starts to delay shuffling, it incurs earlier 

shuffle reads, increasing online cost, but stays well under 2X on average. Burst ORAM 

effective costs can be near 1X because writes associated with requests are not 

performed until blocks are shuffled. Burst ORAM defers shuffling, so its effective cost 

stays close to its online cost until client space fills, while ObliviStore starts shuffling 

immediately, so its effective cost stays constant (Figure 41). Thus, response times for 

short bursts will be substantially lower in Burst ORAM than in ObliviStore. Eventually, 

client space fills completely, and even Burst ORAM must shuffle continuously to keep 

up with incoming requests. This behavior is seen at the far right of Figure 41, where 

each scheme’s effective cost converges to its overall cost. Burst ORAM’s XOR 

technique results in slightly higher overall cost than ObliviStore’s level compression, 

so Burst ORAM is slightly less efficient for very long bursts. Without local level caching, 
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Burst ORAM spends much more time shuffling the smallest levels, yielding the poor 

performance of Burst ORAM No Level Caching. If shuffle jobs are started in arbitrary 

order, as for Burst ORAM No Prioritization, the amount of shuffling per request quickly 

increases, pushing effective cost toward overall cost. However, by prioritizing efficient 

shuffle jobs as in Burst ORAM proper, more shuffling can be deferred, keeping 

effective costs lower for longer, and maintaining shorter response times. 

 
Figure 35: Endless Burst – Online Bandwidth Cost 

 
Figure 36: Endless Burst – Effective Bandwidth Cost 

NetApp Workload Experiment. The NetApp experiments show how each scheme 

performs on a realistic, bursty workload. Burst ORAM exploits the bursty request 

patterns, minimizing online IO and delaying shuffle IO to achieve near-optimal 

response times far lower than ObliviStore’s. Level caching keeps Burst ORAM’s overall 

bandwidth costs low. Figure 37 shows 99.9-percentile response times for several 

schemes running the 15-day NetApp workload for varying bandwidths. All 

experiments assume a 50ms network latency. For most bandwidths, Burst ORAM 

response times are orders of magnitude lower than those of ObliviStore and 

comparable to those of the insecure baseline. Shuffle prioritization and level caching 

noticeably reduce response times for bandwidths under 1Gbps. 



    Oblivious RAM from theory to practice 

 

University of Piraeus  91 

 
Figure 37: 99.9% Reponse Time Comparison on NetApp Trace1 

Figure 38 compares 𝑝-percentile response times for 𝑝 values of 90%, 99%, and 99.9%. 

It gives absolute 𝑝-percentile response times for the insecure baseline, and 

differences between the insecure baseline and Burst ORAM 𝑝-percentile response 

times (Burst ORAM overhead). When baseline response times are low, Burst ORAM 

response times are also low across multiple 𝑝.  

Figure 39 shows the overall bandwidth costs incurred by each scheme running the 

NetApp workload at 400Mbps. Costs for other bandwidths are similar. Burst ORAM 

clearly achieves an online cost several times lower than ObliviStore’s. Level caching 

reduces Burst ORAM’s overall cost from 42X to 29X. Burst ORAM’s higher cost is due 

to a combination of factors needed to achieve short response times. First, Burst ORAM 

uses the XOR technique, which is less efficient overall than ObliviStore’s mutually 

exclusive level compression. Second, Burst ORAM handles smaller jobs first. Such jobs 

are more efficient in the short-term, but since they frequently write blocks to small 

                                                           

1 (Top) Burst ORAM achieves short response times in bandwidth-constrained settings. Since 
ObliviStore has high effective cost, it requires more available client-server bandwidth to 
achieve short response times. (Bottom) Burst ORAM response times are comparable to those 
of the insecure (without ORAM) scheme. 
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levels, they create more future shuffle work. In ObliviStore, such jobs are often 

delayed during a large job, so fewer levels are created, reducing overall cost. 

  
Figure 38: Comparison of Burst ORAM and Baseline2 

 
Figure 39: NetApp Trace Bandwidth Costs 

                                                           

2 (Top) Insecure baseline (no ORAM) 𝑝-percentile response times for various 𝑝. (Bottom) 
Overhead (difference) between insecure baseline and Burst ORAM’s 𝑝-percentile response 
times. Marked nodes show that when baseline 𝑝-percentile response times are < 100ms, Burst 
ORAM overhead is also < 100ms. 
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5.4.2 ObliviStore ORAM vs CURIOUS ORAM 

CURIOUS was evaluated against ObliviStore using the following experimental setup.  

Experiment settings. The experiments were conducted from a Linux server on a 

university network. The machine ran an ORAM client to interact with S3; the S3 

buckets were placed on the US EAST1 Standard (North Virginia) Amazon S3 region. 

This region has the lowest round-trip time with the ORAM client. The bandwidth 

between the client and S3 was 50 MB/s downstream and 10 MB/s upstream2. In those 

particular experiments, an ORAM always started running in a warmed-up state (after 

𝑂(𝑛) requests were processed where 𝑛 is the capacity of the ORAM instance).  

The application traces were replayed, with capacity 256MB and block size 16KB, in all 

cases. For a fair comparison, the number of sub-ORAMs of CURIOUS were set such 

that either schemes have roughly the same outsource ratio (or ObliviStore has the 

advantage). The results, displayed in Comparison of CURIOUS and ObliviStoreTable 5, show 

that CURIOUS is better in supporting the selected applications, i.e., its slowdown is 

either the same or less than ObliviStore, despite the more than doubled bandwidth 

usage in some cases (e.g., for  fileserver, the bandwidth usage of tree-based CURIOUS 

is 4500.4 KB/req vs. only 2159:8 KB/req for ObliviStore). Further, it is shown that the 

monetary expense incurred by CURIOUS is between 1/2 and 2/3 that of ObliviStore. 

In terms of applications, both varmail and webproxy are easily supported by both 

schemes, but CURIOUS has slightly higher response time (e.g., 266 ms vs. 200ms for 

webproxy). This is due to the background shuffling of ObliviStore which, for less 

demanding applications, is beneficial because the shuffling cost is not paid upfront. 

For such applications, minimizing the response time below a certain threshold may 

not be required; instead in such cases, monetary expenses may outweigh small 

differences in response times. For these applications, CURIOUS' operating monetary 

cost is almost half of ObliviStore. For the demanding applications (i.e., webserver and 

fileserver) which stressed ORAMs, CURIOUS is a better fit than ObliviStore. Indeed, 

due to background shuffling, and high upload cost, ObliviStore experienced high 

response times and larger slowdown. Take webserver as an example, the response 

time is almost 4 times that of CURIOUS (i.e., 7.950 sec/req for ObliviStore vs. only 

2.004 sec/req for CURIOUS) but the slowdown is comparable; both schemes are close 

to being able to fully support the application. For fileserver, though neither scheme is 

even close to satisfying the demands of this application, nevertheless CURIOUS 

significantly outperformed ObliviStore both in response time and slowdown. 



    Oblivious RAM from theory to practice 

 

University of Piraeus  94 

 
Table 5: Comparison of CURIOUS and ObliviStore 
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6 Applied ORAM Schemes 

6.1 ObliviSync 

ObliviSync [50] is an oblivious cloud storage system that specifically targets one of the 

most widely-used personal cloud storage paradigms: synchronization and backup 

services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. This 

solution is asymptotically optimal and practically efficient, with a small constant 

overhead of approximately 4x compared with non-private file storage, depending only 

on the total data size and parameters chosen according to the usage rate, and not on 

the number or size of individual files. This construction also offers protection against 

timing-channel attacks, which has not been previously considered in ORAM protocols. 

In [50] built and evaluated a full implementation of ObliviSync that supports multiple 

simultaneous read-only clients and a single concurrent read/write client whose edits 

automatically and seamlessly propagate to the readers. It has been shown that the 

system functions under high workloads, with realistic file size distributions, and with 

small additional latency (as compared to a baseline encrypted file system) when 

paired with Dropbox as the synchronization service. The main goal in [50] was to 

present an efficient solution for oblivious storage on a personal cloud 

synchronization/backup provider such as (but not limited to) Dropbox or Google 

Drive. 

6.1.1 ObliviSync Setting Overview 

The setting consists of an untrusted cloud provider and one or more clients which 

backup data to the cloud provider. If there are multiple clients, the cloud provider 

propagates changes made by one client to all other clients, so that they each have the 

same version of the filesystem. Even if “Dropbox” is used as a shorthand for the 

scenario, the solution is not specific to Dropbox and will work with any similar system. 

This setting used because: 

1. It is one of the most popular consumer cloud services used today, and is often 

colloquially synonymous with the term “cloud”. 

2. The interface for Dropbox and similar storage providers is “agnostic,” in that 

it will allow you to store any data as long as you put it in the designated 

synchronization directory. This allows for one solution that works seamlessly 

with all providers. 

3. Synchronization and backup services do not require that the ORAM hide a 

user’s read accesses, only the writes. This is because (by default) every client 

stores a complete local copy of their data, which is synchronized and backed 

up via communication of changes to/from the cloud provider. 
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Write-Only ORAM. The third aspect of the setting above (i.e., it doesn’t need to hide 

read accesses) is crucial to the efficiency of ObliviSync system. Each client already has 

a copy of the database, so when they read from it they do not need to interact with 

the cloud provider at all. If a client writes to the database, the changes are 

automatically propagated to the other clients with no requests necessary on their 

part. Therefore, the ORAM protocol only needs to hide the write accesses done by the 

clients and not the reads. This is important because [51] have shown that write-only 

ORAM can be achieved with optimal asymptotic communication overhead of O(1). In 

practice, write-only ORAM requires only a small constant overhead of 3-6x compared 

to much higher overheads for fully-functional ORAM schemes, which asymptotically 

are Ω(logN). In [51] is presented a detailed description of the write-only ORAM, in 

which ObliviSync scheme based.  

6.1.2 ObliviSync Scheme 

ObliviSync system uses the idea of write-only ORAM on top of any file backup or 

synchronization tool in order to give multiple clients simultaneous updated access to 

the same virtual filesystem, without revealing anything at all to the cloud service that 

is performing the synchronization itself, even if the cloud service is corrupted to 

become an honest-but-curious adversary. Write-only ORAM is ideal for this setting 

because each client stores an entire copy of the data, so that only the changes (write 

operations) are revealed to the synchronization service and thus only the write 

operations need to be performed obliviously. 

Improvements over write-only ORAM. Compared to the previous write-only ORAM 

construction [51], the authors in [50] made significant advances and improvements 

to fit this emergent application space: 

 Usability: Users interact with the system as though it is a normal system 

folder. All the encryption and synchronization happens automatically and 

unobtrusively. 

 Flexibility: A real filesystem is supported and innovative methods are used to 

handle variable-sized files and changing client roles (read/write vs. read-only) 

to support multiple users. 

 Strong obliviousness: The design of OblivicSync system not only provides 

obliviousness in the traditional sense, but also protects against timing channel 

attacks. It also conceals the total number of write operations, a stronger 

guarantee than previous ORAM protocols. 

 Performance: The system well matches the needs of real file systems and 

matches the services provided by current cloud synchronization providers. It 

can also be tuned to different settings based on the desired communication 

rate and delay in synchronization. 



    Oblivious RAM from theory to practice 

 

University of Piraeus  97 

Basic architecture. The high-level design of ObliviSync is presented in Figure 40. There 

are two types of clients in the system: a read/write client (ObliviSync-RW) and a read-

only client (ObliviSync-RO). At any given time, there can be any number of ObliviSync-

RO’s active as well as zero or one ObliviSync-RW clients. It is noted that a given device 

may work as a read-only client in one period of time and as a write-only client in other 

periods of time. Both clients consist of an actual backend folder as well as a virtual 

frontend folder, with a FUSE client running in the background to seamlessly translate 

the encrypted data in the backend to the user’s view in the frontend virtual filesystem. 

The system relies on existing cloud synchronization tools to keep all clients’ backend 

directories fully synchronized. This directory consists of encrypted files that are 

treated as generic storage blocks, and embedded within these storage blocks is a file 

system structure loosely based on i-node style file systems which allows for variable-

sized files to be split and packed into fixed-size units. Using a shared private key (which 

could be derived from a password) the job of both clients ObliviSync-RO and 

ObliviSync-RW is to decrypt and efficiently fetch data from these encrypted files in 

order to serve ordinary read operations from the client operating in the frontend 

directory. 

The ObliviSync-RW client, which will be the only client able to change the backend 

files, has additional responsibilities: (1) to maintain the file system encoding 

embedded within the blocks, and (2) to perform updates to the blocks in an oblivious 

manner using ObliviSync ORAM. 

 
Figure 40: ObliviSync high-level design 
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User transparency with FUSE mount. From the user’s perspective, however, the 

interaction with the frontend directory occurs as if interacting with any files on the 

host system. This is possible because the FUSE mount (file system in user space) 

interface displays the embedded file system within the backend blocks to the user as 

if it were any other file system mount. Under the covers, though, the ObliviSync-RO 

or ObliviSync-RW clients are using the backend directory files in order to serve all data 

requests by the client, and the ObliviSync-RW client is additionally monitoring for file 

changes/creations in the FUSE mount and propagating those changes to the backend. 

Strong obliviousness through buffered writes. In order to maintain obliviousness, 

these updates are not immediately written to the backend filesystem by the 

ObliviSync-RW client. Instead, the process maintains a buffer of writes that are staged 

to be committed. At regular timed intervals, random blocks from the backend are 

loaded, repacked with as much data from the buffer as possible, and then re-

encrypted and written back to the backend folder. From there, the user’s chosen file 

synchronization or backup service will do its work to propagate the changes to any 

read-only clients. Moreover, even when there are no updates in the buffer, the client 

pushes dummy updates by rewriting the chosen blocks with random data. In this way, 

as the number of blocks written at each step is fixed, and these writes (either real or 

dummy) occur at regular timed intervals, an adversary operating at the network layer 

is unable to determine anything about the file contents or access patterns. Without 

dummy updates, for example, the adversary can make a reasonable guess about the 

size of the files that the client writes; continued updates without pause is likely to 

indicate that the client is writing a large file. Note that in some cases, revealing 

whether a client stores large files (e.g., movies) may be sensitive. The full source code 

of ObliviSyn implementation is available on GitHub [52]. 

6.1.3 Security Analysis 

Security definitions are presented below, before the detailed security analysis of the 

system.  

Notation. Here, the parameter 𝐿 is the maximum number of bytes that may be 

modified, and 𝑡 is the latest time that is allowed. Also, recall the parameters 𝐵: block 

pair size, 𝑁: number of backend block pairs, and 𝑘: drip rate. 

Definition 9. ((𝐿, 𝑡)-𝒇𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆). A sequence of non-read operations for a block 

filesystem is a (𝐿, 𝑡)-𝒇𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 if the total number of bytes to be modified in the 

filesystem metadata and file data is at most 𝐿, and the last operation takes place 

before or at time 𝑡.  
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Definition 10. (Write-only strong obliviousness) Let 𝐿 and 𝑡 be the parameters 

for 𝑓𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. A block filesystem is write-only strongly-oblivious with running time 

𝑇, if for any two (𝐿, 𝑡)-𝑓𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑃0 and 𝑃1, it holds that: 

 The filesystem finishes all the tasks in each 𝑓𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 within time 𝑇 with 

probability 2 − 𝑛𝑒𝑔(𝜆), where 𝜆 is the security parameter. 

 The access pattern of 𝑃0 is computationally indistinguishable to that of 𝑃1. 

Time to write all files. The Theorem 5 below shows the relationship between the 

number of sync operation, the drip rate, and the size of the buffer. Specifically, it 

shows that, with high probability, a buffer with size s is completely cleared and synced 

to the backend after 𝑂(
𝑠

𝐵𝑘
) sync operations. This is optimal up to constant factors, 

since only 𝐵𝑘 bytes are actually written during each sync. 

Theorem 5. For a running ObliviSync-RW client with parameters 𝐵, 𝑁, 𝑘 as above, let 

𝑚 be the total size (in bytes) of all non-stale data currently stored in the backend, and 

let 𝑠 be the total size (in bytes) of pending write operations in the buffer, and suppose 

that 𝑚 + 𝑠 ≤ 𝑁𝐵/4. Then the expected number of sync operations until the buffer is 

entirely cleared is at most 4𝑠/(𝐵𝑘). Moreover, the probability that the buffer is not 

entirely cleared after at least 
48𝑠

𝐵𝑘
+ 18𝑟 sync operations is at most exp (−𝑟). 

The proof of Theorem 5 is presented in [50]. 

Theorem 6. Let λ be the security parameter. Consider ObliviSync-RW with parameters 

𝐵, 𝑁, 𝑘 as above, and with drip time 𝑡. For any 𝐿 and 𝑡 as fsequence parameters, 

ObliviSync-RW is strongly-secure write-only filesystem with running time 𝑇 = 𝑡 +
48𝐿𝑡

𝐵𝑘
+ 18𝜆𝑡. 

The proof of Theorem 6 is presented in [50]. 

6.1.4 Evaluation 

The ObliviSync was evaluated against the following properties: 

a. Throughput with fixed-size files 

o Bandwidth overhead: 2x until 25% of the load. With drip rate 3 (the 

solid line for 𝑘 = 3), it takes about ~120 epochs on average to sync 

25% of the frontend files. Note that the number of bytes that would 

be transferred to the cloud storage during 120 epochs is 120 ∙ (𝑘 + 1) 

∙ 𝐵 = 480 MB, and 25% of the frontend files amounts to 250 MB. So, 

the experiment shows that the system needs only 2x bandwidth 

overhead, when the front-end files occupies at most 25% of the total 

cloud storage, with the parameters chosen in this experiment. This is 
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better performance than what is shown in Theorem 5, which provably 

guarantees 4x bandwidth overhead. 

o Linear costs until 33% of the load. The inflection point, between 

linear and super-linear, is particularly interesting. Apparent 

immediately is the fact that the inflection point is well beyond the 

25% theoretic bound; even for a drip rate of 𝑘 = 3, it manages to get 

at least 1/3 full before super-linear tendencies take over. Further, 

notice that for higher drip rates, the inflection point occurs for higher 

percentage of fullness for the backend. 

b. Throughput with variable-size files 

o Good performance for variable-size files. After three runs, the 

average number of epochs needed to synchronize the two file loads 

is the same, 100 epochs. This clearly shows that ObliviSync systems is 

dependent on the total number of bytes to synchronize and not the 

size of the individual files. 

c. Latency 

o About 1 epoch to sync, even for high fill rates. First, for lower fill 

rates, the time to complete a single file synchronization is roughly one 

epoch. At higher fill rates, it starts to take more epochs, on average, 

to sync a single file; however, even for the most conservative 𝑘 = 3, it 

only takes at most 5 epochs even for very high fill rates. For more 

aggressive drip rates, 𝑘 = 9,12 the impact of higher filler rates is 

diminished, still only requiring about 2 epochs to synchronize a single 

file. 

d. The size of pending writes buffer 

o Reasonable buffer size: at most 2 MB. Clearly, as the fill rate 

increases, the amount of uncommitted data in the buffer increases; 

however, the relationship is not strictly linear. For example, with 20% 

full and 50% full, we see only a small difference in the buffer size for 

this extreme thrashing rate. At a fill rate of 75%, however, there is a 

noticeable performance degradation. Because most of the blocks 

selected at each epoch are either full or do not have enough space, 

due to fragmentation, the buffer cannot always be cleared at a rate 

sufficient to keep up with incoming writes. Thus, the size of the buffer 

doubles in comparison with the other workloads. 

6.1.4.1 Functionality with Dropbox backend 

Here, ObliviSync performance is measured on a real cloud synchronization service, 

namely Dropbox. Additionally, it is provided a baseline comparison of the overhead 

of ObliviSync, and so similar experiments were performed in [50] using EncFS [53] as 

the data protection mechanism. 
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Throughput over Dropbox. For both EncFS and ObliviSync, the interest is in a large 

number of files, namely 20% full or ~200MB, and then was measured how long it took 

for the buffer to clear and all files to become available. Like before, a read and write 

computer is used, and the difference in the local and remote propagation delays of 

file synchronization is measured. For EncFS on the write computer, the propogation 

delay for all the files is nominal with files appearing nearly immediately. On the read 

computer, there is a propagation delay associated with Dropbox remote 

synchronization, and all files are accessible within 100 seconds. For ObliviSync on the 

write computer, a very similar throughput trend-line as in the prior experiments. In 

total, it takes just under 800 seconds (or 80 epochs) for all the files to synchronize. 

Interestingly, on the read computer, the propagation delay is relatively small, with 

respect to the overall delay, and files are accessible within an additional epoch or two. 

In total, these results clearly demonstrate that ObliviSync is functional and efficient to 

use over cloud synchronization services like Dropbox. 

Latency over Dropbox. In the EncFS upon writing the file immediately it becomes 

available to write computer. However on the read computer, it takes a little under 5 

seconds for the synchronization with Dropbox to complete for the same file to be 

accessible. This measurement forms a baseline of performance for the rate of 

DropBox synchronization without ObliviSync. For ObliviSync, on the write computer, 

an expected performance metric of just under 10 seconds for each file to be visible to 

the read mount. The reason it is under 10 seconds and not exactly 10 seconds, as the 

setting of the drip time, is that a write occurring between epoch timers will take less 

than an epoch to sync. The propagation rate to the read computer takes a similar time 

as that of EncFS (~ 5 seconds); however, there is higher variance as more files need 

to be transferred by the Dropbox service per epoch (namely 4 = 𝑘 +1 with the 

superblock). Still, this added variance is within 3x in terms of epochs: it takes at most 

30 seconds for a file to sync (or 3 epochs of waiting), which is very reasonable 

considering the built-in overhead of the system. 

6.2 Tiny ORAM 

Tiny ORAM [33] is a hardware ORAM with small client storage, integrity verification, 

or encryption units. With these attributes, Tiny ORAM can be used by a single-chip 

secure processor to obfuscate its execution to an adversary watching the chip's I/O 

pins. As a proof of concept, it has been evaluated as the on-chip memory controller 

of a 25 core processor. Tiny ORAM design takes up 1/36-th the area (1 mm2 of silicon 

in 32 nm technology) of the chip, which is roughly equivalent to the area of a single 

core, and consumes an estimated 112 mW at a 1 GHz clock frequency. With a 128 

bits/cycle channel to main memory (roughly equivalent to 2 DRAM channels), Tiny 

ORAM can complete a 1 GByte non-recursive ORAM lookup for a 512 bit block in ~ 
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1275 processor cycles (An insecure DRAM access for a 512 bit block takes an average 

58 processor cycles). 

In the secure processor setting, the only implementation-level treatment of ORAM is 

a system called Phantom, by Maas et al. [47]. In [33] authors addressed the challenges 

had left open by the Phantom design. In this chapter, we will present a complete 

silicon tape-out of Tiny ORAM design - the first for any type of ORAM - and integrate 

it with general purpose processor cores to create the first single-chip secure processor 

able to hide its access pattern to main memory. 

6.2.1 Design Challenges 

In building Hardware ORAM, there are two major challenges areas where new ideas 

were proposed in [33]. 

Challenge 1: Position Map Management. The first challenge for hardware ORAM 

controllers is that they need to store and manage the Position Map (PosMap for 

short). Recall from prior chapters: the PosMap is a key-value store that maps data 

blocks to random locations in external memory. Hence, the PosMap's size is 

proportional to the number of data blocks (e.g., cache lines) in main memory and can 

be hundreds of MegaBytes in size. This is too large to fit in a processor's on-chip 

memory. 

To more efficiently manage the PosMap (Challenge 1), the following mechanisms 

were proposed in [33]. 

1. The PosMap Lookaside Buffer, or PLB for short, a mechanism that 

significantly reduces the memory bandwidth overhead of Recursive ORAMs 

depending on underlying program address locality. 

2. A way to compress the PosMap, which reduces the cost of recursion and 

improves the PLB's effectiveness. 

3. A new ORAM integrity scheme, called PosMap MAC or PMMAC for short, 

which is extremely efficient in practice and is asymptotically optimal. 

With the PLB and PosMap compression, PosMap-related memory bandwidth 

overhead reduced by 95%, overall ORAM bandwidth overhead reduced by 37% and 

SPEC performance improved by 1.27×. As a standalone scheme, PMMAC reduces the 

amount of hashing needed for integrity checking by ≥ 68× relative to prior schemes. 

Using PosMap compression and PMMAC as a combined scheme, an integrity checking 

mechanism for ORAM increases performance overhead by only 7%. 

Challenge 2: Throughput with Large Memory Bandwidth. The second challenge in 

designing ORAM in hardware is exactly how to maximize data throughput for a given 

memory (e.g., DRAM) bandwidth. For a given memory bandwidth, the factor limiting 
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data throughput should be the memory. Yet, as shown by the Phantom design, this 

may not be the case because of other factors (such as processor area constraints, etc). 

To improve design throughput for high memory bandwidths (Challenge 2), the 

following mechanisms were proposed in [33]. 

1. A subtree layout scheme to improve memory bandwidth of tree ORAMs 

implemented over DRAM. 

2. A bit-based stash management scheme to enable small block sizes. When 

implemented in hardware, Tiny ORAM scheme removes the block size 

bottleneck in the Phantom design. 

3. A new ORAM scheme called RAW ORAM, derived from Ring ORAM [11], to 

reduce the required encryption engine bandwidth. 

The subtree layout scheme ensures that over 90% of available DRAM bandwidth is 

actually used by Tiny ORAM. The stash management scheme prevents a performance 

bottleneck in Phantom when the block size is small, and allows Tiny ORAM to support 

any reasonable block size (e.g., from 64-4096 Bytes). In particular: with a 64 Byte block 

size, Tiny ORAM improves access latency by ≥ 40× in the best case compared to 

Phantom. On the other hand, RAW ORAM reduces the number of encryption units by 

~ 3× while maintaining comparable bandwidth to the original design. 

6.2.2 Frontend 

In this section we present mechanisms to optimize the PosMap. The techniques in this 

section only impact the Frontend and can be applied to any Position-based ORAM 

Backend (such as [3, 4, 12]). 

6.2.2.1 PosMap Lookaside Buffer  

Considering Recursive ORAM as a multi-level page table for ORAM, a natural 

optimization is to cache PosMap blockes so that LLC accesses exhibiting program 

address locality require less PosMap ORAM accesses on average. This idea is the 

essence of the PosMap Lookaside Buffer, or PLB, whose name obviousliy originates 

from the Translation Lookaside Buffer (TLB) in conventional systems. Unfortunately, 

unless case is taken, this idea totally breaks the security of ORAM. In this section, fixes 

of the security holes are presented.  

PLB Caches. The blocks in PosMap ORAMs contain a set of leaf labels for consecutive 

blocks in the next ORAM. Given this fact, some PosMap ORAM lookups can be 

eliminated by adding a hardware cache to the ORAM Frontend calles the PLB. Suppose 

the LLC requests block a0 at some point. PosMap ORAM block needs from ORami for 

a0 has address ai = a0 /Χ𝒾. If this PosMap block is in the PLB when block a0 is requested, 

the ORAM controller has the leaf needed to lookup ORami-1, and can skip ORami and 
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all the smaller PosMap ORAMs. Otherwise, block ai is retrieved from ORami and added 

to the PLB. When block ai is added to the PLB, another block may have to be evicted 

in which case it is appended to the stash of the corresponding ORAM. A minor but 

important detail is that ai may be valid address for blocks in multiple PosMap ORAMs; 

to disambiguate blocks in the PLB, block ai is stored with the tag i ∥ ai where ∥ denotes 

bit concatenation. 

PLB (In)security. Unfortunately, since each PosMap ORAM is stored in a different 

physical ORAM tree and PLB hits/misses correlate directly to a program's access 

pattern, the PosMap ORAM access sequence leaks the program's access pattern. To 

show how this breaks security, consider two example programs in a system with one 

PosMap ORAM ORam1 (whose blocks store Χ = 4 leaves) and a Data ORAM ORam0. 

Program A unit strides through memory (e.g., touches a, a + 1, a + 2,…). Program B 

scans memory with a stride of Χ (e.g., touches a, a + Χ, a + 2 Χ,…). For simplicity, both 

programs make the same number of memory accesses. Without the PLB, both 

programs generate the same access sequence, namely: 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, … 

where 0 denotes an access to ORam0, and 1 denotes an access to ORam1. However, 

with the PLB, the adversary sees the following access sequences (0 denotes an access 

to ORam0 on a PLB hit): 

 

Program A: 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, …  

Program B: 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, … 

Program B constantly misses in the PLB and needs to access ORam1 on every access. 

Clearly, the adversary can tell program A apart from program B in the PLB-enabled 

system.  

Security Fix: Unified ORAM tree. To hide PosMap access sequence, Recursive ORAM 

should be changed such that all PosMap ORAMs and the Data ORAM store blocks in 

the same physical tree which will be denoted ORamU. Organizationally, the PLB and 

on-chip PosMap become the new Path ORAM Frontend, which interacts with a single 

ORAM Backend. Security-wise, both programs from the previous section access only 

ORamU with the PLB and the adversary cannot tell them apart. 

TLB vs. PLB. While a traditional TLB caches single address transactions, the PLB caches 

entire PosMap blocks. The address locality exploited by both structures, however, is 

the same.   
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6.2.2.2 PosMap Compression 

In this section is shown how to compress the PosMap using pseudorandom functions 

(PRFs). The high level goal is to store more leaves per PosMap block, thereby reducing 

the number of the Recursive PosMaps. However, this scheme by itself does not 

dramatically improve performance.  

Main Idea. Following previous notation, suppose each PosMap block contains Χ leaf 

labels for the next ORAM. For example, some PosMap block contains leaf labels for 

the blocks with addresses {a, a + 1, …, a + Χ – 1}. With the compressed PosMap 

scheme, the PosMap block's contents are replaced with an α-bit group counter (𝐺𝐶) 

and Χ β-bit individual counters (𝐼𝐶): 

With this format, the current leaf label can be computed for block a + j through PRFK(a 

+ 𝑗 ∥ 𝐺𝐶 ∥ 𝐼𝐶𝑗) mod 2L. Note that with this technique, the on-chip PosMap is 

unchanged and still stores an uncompressed leaf per entry. 

Block Remap. For PRFK() to generate a uniform random sequence of leaves, it must 

be ensured that each 𝐺𝐶 ∥ 𝐼𝐶𝑗 strictly increases (i.e., the PRFK() must never see the 

same input twice). This was achieved by the following modified remapping operation: 

When remapping block a + 𝑗, the ORAM controller first increments its individual 

counter 𝐼𝐶𝑗. If the individual counter rolls over (becomes zero again), the ORAM 

controller will increment the group counter 𝐺𝐶. This changes the leaf label for all the 

blocks in the group, so we have to read each block through the Backend, reset its 

individual counter and remap it to the updated path given by PRFK(a + 𝑗 ∥ 𝐺𝐶 + 1 ∥ 0) 

mod 2L. In the worst-case where the program always requests the same block in a 

group, it is necessary to reset Χ individual counters in the group every 2β accesses. 

This reset operation is very expensive for baseline Recursive ORAM. In that case, the 

ORAM controller must make Χ full Recursive ORAM accesses to reset the individual 

counters in a certain PosMap ORAM block. Otherwise, it reveals that individual 

counters in a certain PosMap ORAM block. Otherwise, it reveals that individual 

counters have overflown in that certain ORAM, which is related to the access pattern. 

On the other hand, using a single Unified ORAM tree as is done to support the PLB 

reduces this to Χ accesses to ORamU. 

System Impact and the PLB. The compressed PosMap format can be used with or 

without a PLB and, like the PLB, does not require changes to the Backend. That is, 

PosMap blocks are stored in their compressed format inside the PLB and ORAM 

tree/Backend. Uncompressed leaves are generated using the PRF on-demand by the 

Frontend. Each block stored in the Backend or ORAM tree is still stored alongside its 

uncompressed leaf label (a one-time cost per block), to facilitate ORAM evictions. 



    Oblivious RAM from theory to practice 

 

University of Piraeus  106 

Benefit of Compressed Format. The scheme that proposed in [33] compresses the 

PosMap block by setting, α, β and Χ such that α/ Χ + β < 𝐿, implying that the 

(amortized) bits needed to store each leaf has decreased. A larger Χ means a fewer 

number of PosMap ORAMs are needed. Further, this scheme improves the PLB's hit 

rate since more blocks are associated with a given PosMap block. For concreteness, 

suppose the ORAM block size in bits is B = 512. The compressed PosMap scheme 

enables Χ′ = 32 by setting α = 64 and β = 14, regardless of ORAM tree depth 𝐿. In this 

configuration, the worst case block remap overhead is 𝑋′/2𝛽 = .2%. By comparison, 

the original PosMap representation only achieves 𝑋 = 16 for ORAM tree depths of 

𝐿 = 17 to 𝐿 = 32.  

6.2.2.3 PosMap MAC 

In this section is described a novel and simple integrity verification scheme for ORAM 

called PosMAp MAC or PMMAC, that is facilitated by PosMap compression technique 

from the previous section. PMMAC achieves asymptotic improvements in hash 

bandwidth over prior schemes and is easy to implement in hardware. 

Main Idea and Non-Recursive PMMAC. Clearly, any memory system including ORAM 

that requires integrity verification can implement the replay-resistant MAC scheme 

by storing per-block counters in a tamper-proof memory. Unfortunately, the size of 

this memory is even larger than the original ORAM PosMap making the scheme 

untenable. If PosMap entries are represented as non-repeating counters, as is the 

case with the compressed PosMap (Section 6.2.2.2), the replay-resistant MAC scheme 

can be implemented without additional counter storage.  

Firstly, described PMMAC without recursion and with simple/flat counters per-block 

to illustrate ideas. Suppose block 𝛼 which has data 𝑑 has access coun𝑡 𝑐. Then, the 

on-chip PosMap entry for block 𝛼 is 𝑐 and we generate the leaf 𝑙 for block 𝛼 

through 𝑙 = 𝑃𝑅𝐹𝐾(𝑎‖𝑐) 𝑚𝑜𝑑2𝐿. Block 𝛼 is written to the Backend as the tuple (ℎ, 𝑑) 

where 

ℎ = 𝑀𝐴𝐶𝐾(𝑎‖𝑐‖𝑑) 

When block 𝛼 is read, the Backend returns (ℎ ⋆, 𝑑 ⋆) and PMMAC performs the 

following check to verify authenticity/freshness: 

Assert ℎ ⋆ == 𝑀𝐴𝐶𝐾(𝑎‖𝑐‖𝑑 ⋆) 

where ⋆ denotes values that may have been tampered with. After the assertion is 

checked, 𝑐 is incremented for the returned block. 

Security follows if it is infeasible to tamper with block counters and no counter value 

for a given block is ever repeated. The first condition is clearly satisfied because the 
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counters are stored on-chip. The second condition is satisfied by making each counter 

wide enough to not overflow (e.g. 64 bits wide). 

PMMAC requires no change to the ORAM Backend because the MAC is treated as 

extra bits appended to the original data block. As with PosMap compression, the leaf 

currently associated with each block in the stash/ORAM tree is stored in its original 

(uncompressed) format. 

Adding Recursion and PosMap Compression. To support recursion, PosMap blocks 

(including on-chip PosMap entries) may contain either a flat (64 bits) or compressed 

counter (Section 6.2.2.2) per next-level PosMap or Data ORAM block. As in the non-

Recursive ORAM case, all leaves are generated via a PRF. The intuition for security is 

that the tamper-proof counters in the on-chip PosMap form the root of trust and then 

recursively, the PosMap blocks become the root of trust for the next level PosMap or 

Data ORAM blocks. Note that in the compressed scheme, and the components of each 

counter are already sized so that each block's count never repeats/overflows. It is 

given a formal analysis for security with Recursive ORAM in the next Section 6.2.2.4. 

For realistic parameters, the scheme that uses flat counters in PosMap blocks incurs 

additional levels of recursion. For example, using 𝐵 = 512 and 64 bit counters we 

have 𝑋 = 𝐵/64 = 8. Importantly, with the compressed PosMap scheme we can 

derive each block counter can be derived from 𝐵𝐺 𝑎𝑛𝑑 𝐼𝐶𝑗 (Section 6.2.2.2) without 

adding levels of recursion or extra counter storage. 

Key Advantage: Hash Bandwidth and Parallelism. Combined with PosMap 

compression, the overheads for PMMAC are the bits added to each block to store 

MACs and the cost to perform cryptographic hashes on blocks. The extra bits per block 

are relatively low-overhead – the ORAM block size is usually 64-128 Bytes and each 

MAC may be 80-128 bits depending on the security parameter. To perform a non-

Recursive ORAM access (i.e., read/write a single path), Path ORAM reads/writes 

𝑂(𝑙𝑜𝑔𝑁) blocks from external memory. Merkle tree constructions [20, 28] need to 

integrity verify all the blocks on the path to check/update the root hash. Crucially, 

PMMAC construction only needs to integrity verify (check and update) 1 block – 

namely the block of interest – per access, achieving an asympotic reduction in hash 

bandwidth. 

To give some concrete numbers, assume 𝑍 = 4 block slots per ORAM tree bucket 

following [2, 47]. Then, there are 𝑍 ∗ (𝐿 + 1) blocks per path in ORAM tree, and this 

construction reduces hash bandwidth by 68 × for 𝐿 = 16 and by 132 × for 𝐿 = 32. 

It is not included the cost of reading sibling hashes for the Merkle tree for simplicity. 

Integrity verifying only a single block also prevents a serialization bottleneck present 

in Merkle tree schemes. Consider the scheme from [20], a scheme optimized for Path 
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ORAM. Each hash in the Merkle tree node must be recomputed based on the contents 

of the corresponding ORAM tree bucket and its child hashes, and is therefore 

fundamentally sequential. If this process cannot keep up with memory bandwidth, it 

will be the system's performance bottleneck. 

Adding Encryption: Subtle Attacks and Defenses. Up to this point PMMAC has been 

discussed in the context of providing integrity only. ORAM must also apply a 

probabilistic encryption scheme (assuming AES counter mode as done in [7]) to all 

data stored in the ORAM tree. In this section is shown how the encryption scheme of 

[7] breaks under active adversaries because the adversary is able to replay the one-

time pads used for encryption. ([7] presented an integrity very cation scheme based 

on Merkle trees to prevent such attacks.) It is shown how PMMAC doesn't prevent 

this attack by default and then provide a fix that applies to PMMAC.  

Firstly is shown that the scheme used by [7] for reference: Each bucket in the ORAM 

tree contains, in addition to 𝑍 encrypted blocks, a seed used for encryption (the 

BucketSeed) that is stored in plaintext. (BucketSeed is synonymous to the “counter" 

in AES counter mode.) If the Backend reads some bucket whose seed is BucketSeed, 

the bucket will be re-encrypted and written back to the ORAM tree using the one-

time pad (OTP) 𝐴𝐸𝑆𝐾(𝐵𝑢𝑐𝑘𝑒𝑡𝐼𝐷‖𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑒𝑒𝑑 + 1‖𝑖), where 𝑖 is the current chunk 

of the bucket being encrypted.  

The above encryption scheme breaks privacy under PMMAC because PMMAC doesn't 

integrity verify BucketSeed. For a bucket currently encrypted with the pad 𝑃 =

𝐴𝐸𝑆𝐾(𝐵𝑢𝑐𝑘𝑒𝑡𝐼𝐷‖𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑒𝑒𝑑‖𝑖), suppose the adversary replaces the plaintext 

bucket seed to BucketSeed – 1. This modification will cause the contents of that 

bucket to decrypt to garbage, but won't trigger an integrity violation under PMMAC 

unless bucket BucketID contains the block of interest for the current access. If an 

integrity violation is not triggered, due to the replay of BucketSeed, that bucket will 

next be encrypted using the same one-time pad 𝑃 again. 

Replaying one-time pads obviously causes security problems. If a bucket re-encrypted 

with the same pad 𝑃 contains plaintext data 𝐷 at some point and 𝐷′ at another point, 

the adversary learns 𝐷⨁𝐷′. If 𝐷 is known to the adversary, the adversary immediately 

learns 𝐷′ (i.e., the plaintext contents of the bucket).  

The fix for this problem is relatively simple: To encrypt chunk 𝑖 of a bucket about to 

be written to DRAM, the pad 𝑃 = 𝐴𝐸𝑆𝐾(𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑒𝑑‖𝑖) will be used, where 

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑒𝑑 is now a single monotonically increasing counter stored in the ORAM 

controller in a dedicated register (this is similar to the global counter scheme in [48]). 

When a bucket is encrypted, the current 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑒𝑑 is written out alongside the 

bucket as before and 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑒𝑑 (in the ORAM controller) is incremented. Now it's 
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easy to see that each bucket will always be encrypted with a fresh OTP which defeats 

the above attack. 

6.2.2.4 Security Analysis 

We now give a security analysis for the PLB and PMMAC schemes.  

6.2.2.4.1 PosMap Lookaside Buffer 

It is given a proof sketch that PLB+Unified ORAM tree construction achieves satisfies 

Definition 2. To do this, is used the fact that the PLB interacts with a normal Path 

ORAM Backend. The following observations will be used to argue security: 

Observation 1. If all leaf labels 𝑙𝑖 used in {read, write, readrmv} calls to Backend are 

random and independent of other 𝑙𝑗 for 𝑖 ≠ 𝑗, the Backend achieves the security of 

the original Path ORAM.  

Observation 2. If the append is always preceded by a readrmv, stash overflow 

probability does not increase (since the net stash occurancy is unchanged after both 

operations). 

Theorem 7. The PLB+Unified ORAM tree scheme reduces to the security of the ORAM 

Backend.  

You could find the detailed Proof in [33]. Of course, the PLB may further influence the 

ORAM trace length (the number of calls to Access for a given 𝑍) by filtering out some 

calls to Backend for PosMap blocks. Now the trace length is determined by, and thus 

reveals, the sum of LLC misses and PLB misses. The processor cache and the PLB are 

both on-chip and outside the ORAM Backend, so adding a PLB is the same (security-

wise) to adding more processor cache: in both cases, only the total number of ORAM 

accesses leaks. By comparison, using a PLB without a Unified ORAM tree leaks the set 

of PosMap ORAMs needed on every Recursive ORAM access, which makes leakage 

grow linearly with the trace length. 

6.2.2.4.2 PosMap MAC (Integrity) 

It is shown that breaking the integrity verification scheme is as hard as breaking the 

underlying MAC. 

Observation 3. If the first 𝑘 − 1 address and counter pairs (𝑎𝑖 , 𝑐𝑖)’ s the Frontend 

receives have not been tampered with, then the Frontend seeds a MAC using a unique 

(𝑎𝑘 , 𝑐𝑘), i.e., (𝑎𝑖 , 𝑐𝑖)  ≠  (𝑎𝑘 , 𝑐𝑘) for 1 ≤ 𝑖 ≤ 𝑘. This further implies (𝑎𝑖 , 𝑐𝑖)  ≠  (𝑎𝑗,

𝑐𝑗) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. 
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This property can be seen directly from the algorithm description, with or without the 

PLB and/or PosMap compression. For every 𝑎, we have a dedicated counter, sourced 

from the on-chip PosMap or the PLB, that increments on each access. If we use 

PosMap compression, each block counter will either increment (on a normal access) 

or jump to the next multiple of the group counter in the event of a group remap 

operation. Thus, each address and counter pair will be different from previous ones. 

The Observation 3 is used to be proven the security of the integrity scheme. 

Theorem 8. Breaking the PMMAC scheme is as hard as breaking the underlying MAC 

scheme. 

You could find the detailed Proof in [33]. 

6.2.2.4.3 PosMap MAC (Privacy) 

The system's privacy guarantees require certain assumptions under PMMAC because 

PMMAC is an authenticate-then-encrypt scheme [49]. Since the integrity verifier only 

check the block of interest returned to the Frontend, other (tampered) data on the 

ORAM tree path will be written to the stash and later be written back to the ORAM 

tree. For example, if the adversary tampers with the block-of-interest's address bits, 

the Backend won't recognize the block and won't be able to send any data to the 

integrity verifier (clearly an error). The adversary may also coerce a stash overflow by 

replacing dummy blocks with real blocks or duplicate blocks along a path. To address 

these cases, certain assumptions are necessary about how the Backend will possibly 

behave in the presence of tampered data. It is required a correct implementation of 

the ORAM Backend to have the following property: 

Property 1. If the Backend makes an ORAM access, it only reveals to the adversary (𝑎) 

the leaf send by the Frontend for that access and (𝑏) a fixed amount of encrypted data 

to be written back to the ORAM tree.  

If Property 1 is satisfied, it is straightforward to see that any memory request address 

trace generated by the Backend is indistinguishable from other traces of the same 

length. That is, the Frontend receives tamper-proof responses (by Theorem 8) and 

therefore produces independent and random leaves. Further, the global seed scheme 

trivially guarantees that the data written back to memory gets a fresh pad. 

If Property 1 is satisfied, the system can still leak the ORAM request trace length; i.e., 

when an integrity violation is detected, or when the Backend enters an illegal state. 

Conceptually, an integrity violation generates an exception that can be handled by the 

processor. When that exception is generated and how it is handled can leak some 

privacy. For example, depending on how the adversary tampered with memory, the 

violation may be detected immediately or after some period of time depending on 
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whether the tampered bits were of interest to the Frontend. Quantifying this leakage 

is outside the scope. 

6.2.3 Backend 

Now several mechanisms are presented to improve the ORAM Backend's throughput 

when memory bandwidth is high. The techniques in this section only impact the 

Backend and can be applied regardless of optimizations from the previous section 

6.2.2. 

The issue for Tree ORAMs (like Path ORAM) implemented over DRAM is that to be 

secure, ORAM accesses inherently have low spatial locality in memory. Yet, achievable 

throughput in DRAM depends on spatial locality: bad spatial locality means more 

DRAM row buffer misses which means time delay between consecutive accesses. 

Indeed, when naively storing the Path ORAM tree into an array, two consecutive 

buckets along the same path hardly have any locality, and it can be expected that row 

buffer hit rate would be low. The following technique that introduced in [33] can 

improve Path ORAM's performance on DRAM.  

Each subtree is packed with 𝑘 levels together, and are treated as the nodes of a new 

tree, a 2𝑘 -ary tree with ⌈
𝐿+1

𝑘
⌉ levels. Figure 44 is an example with 𝑘 = 2. It was adopted 

the address mapping scheme in which adjacent addresses first differ in channels, then 

columns, then banks, and lastly rows. The node size was set of the new tree to be the 

row buffer size times the number of channels, which together with the original bucket 

size determines 𝑘. 

Performance impact. With commercial DRAM DIMMs, 𝑘 = 6 or 𝑘 = 7 is possible which 

allows the ORAM to maintain 90 – 95% of peak possible DRAM bandwidth for every 

parameterization. Without the technique, achievable bandwidth may be < 50% 

depending on the data block size, recursion scheme used, number of DRAM channels, 

and other parameters. It should be noted that Phantom was able to achieve 94% of 

peak DRAM bandwidth [47] without the subtree packing technique as there was 

sufficient spatial locality given their large 4 KByte block size. 
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Figure 41: Illustration of subtree locality 

6.2.3.1.1 Stash Management 

Deciding where to evict each block in the stash is a challenge for Path ORAM hardware 

designs. Conceptually, this operation tries to push each block in the stash as deep 

(towards the leaves) into the ORAM tree as possible while keeping to the invariant 

that blocks can only live on the path to their assigned leaf.  

Phantom constructs an FPGA-optimized heap sort on the stash [47]. Unfortunately, 

this approach creates a performance bottleneck because the initial step of sorting the 

stash takes multiple cycles per block. For example, in a Phantom design, adding a 

block to the heap takes 11 cycle. If the ORAM block size and memory bandwidth is 

such that writing a block to memory takes less than 11 cycles, system performance is 

bottlenecked by the heap-sort-based eviction logic and not by memory bandwidth. 

In [33] proposed a new and simple stash eviction algorithm based on bit-level 

hardware tricks that takes a single cycle to evict a block and can be implemented 

efficiently in FPGA logic. This eliminates the above performance overhead for any 

practical block size and memory bandwidth. 

PushToLeaf With Bit Tricks. The PushToLeaf() routine, is shown in Figure 42: PushToLeaf 

Algorithm. PushToLeaf(𝑆𝑡𝑎𝑠ℎ, 𝑙) is run once during each ORAM access and populates 

an array of pointers 𝑜𝑐𝑐. Stash can be thought of as a single-ported RAM that stores 

data blocks and their metadata. Once populated, 𝑜𝑐𝑐[𝑖] points to the block in Stash 

that will be written back to the 𝑖-𝑡ℎ position along 𝑃(𝑙). Thus, to complete the ORAM 

eviction, a hardware state machine sends each block given by 𝑆𝑡𝑎𝑠ℎ[𝑜𝑐𝑐[𝑖]] for 𝑖 =

0, … , (𝐿 + 1) ∗ 𝑍 − 1 to be encrypted and written to external memory. 
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Notations. Suppose 𝑙 is the current leaf being accessed. The leaves are represented 

as 𝐿-bit words which are read right-to-left: the 𝑖-𝑡ℎ bit indicates whether path 𝑙 

traverses the 𝑖-𝑡ℎ bucket’s left child (0) or right child (1). On Line 3, each entry 

of 𝑜𝑐𝑐 𝑖𝑠 𝑠𝑒𝑡 𝑡𝑜 ⊥, to indicate that the eviction path is initially empty. Occupied is an 

𝐿 + 1 entry memory that records the number of real blocks that have been pushed 

back to each bucket so far. 

Figure 42: PushToLeaf Algorithm 

PushBack().The core operation in this proposal is the PushBack() subroutine, which 
takes as input the path 𝑙 we are evicting to, the path 𝑙′ a block in the stash is mapped 
to, and outputs which level on path 𝑙 that block should get written back to. 

Security. While the stash eviction procedure is highly-optimized for hardware 
implementation, it is algorithmically equivalent to the original stash eviction 
procedure with Path ORAM. Thus, security follows from the original Path ORAM 
analysis. 

Hardware Implementation and Pipelining. The algorithm above runs 𝑇 + (𝐿 + 1)𝑍 
iterations of PushBack per ORAM access, where 𝑇 is the stash size not counting the 
path length. In hardware, the Algorithm in Figure 42 is pipelined in three respects to 
hide its latency. 

6.2.3.1.2 Reducing Encryption Bandwidth 

Another serious problem for ORAM design is the area needed for encryption units. All 

data touched by ORAM must get decrypted and re-encrypted to preserve privacy. 

Bit operation-based stash scan. 2𝐶 stands for two’s complement arithmetic 

1: Inputs: the current leaf 𝑙 being accessed 
2: function PushToLeaf(𝑆𝑡𝑎𝑠ℎ, 𝑙) 
3:     𝑜𝑐𝑐 ← {⊥ 𝑓𝑜𝑟 𝑖 = 0, … , (𝐿 + 1) ∗ 𝑍 − 1} 
4:     Occupied ← {0 𝑓𝑜𝑟 𝑖 = 0, … , 𝐿}  
5:     for 𝑖 ← 0 𝑡𝑜 𝑇 + 𝐿 ∗ 𝑍 − 1 do 
6: (𝑎, 𝑙𝑖 , 𝐷) ← 𝑆𝑡𝑎𝑠ℎ[𝑖]  //Leaf assigned to 𝑖-𝑡ℎ block 
7: 𝑙𝑒𝑣𝑒𝑙 ← 𝑃𝑢𝑠ℎ𝐵𝑎𝑐𝑘(𝑙, 𝑙𝑖 , 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑) 
8: if 𝑎 ≠⊥ 𝑎𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 > −1 𝒕𝒉𝒆𝒏 
9:     𝑜𝑓𝑓𝑠𝑒𝑡 ← 𝑙𝑒𝑣𝑒𝑙 ∗ 𝑍 + 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑[𝑙𝑒𝑣𝑒𝑙] 
10:     𝑜𝑐𝑐[𝑜𝑓𝑓𝑠𝑒𝑡] ← 𝑖 
11:     𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑[𝑙𝑒𝑣𝑒𝑙] ← 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑[𝑙𝑒𝑣𝑒𝑙] + 1 
12: end if 
13:     end for 
14: end function 
15: function PushBack(𝑙, 𝑙′, 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑) 
16:    𝑡1 ← (𝑙⨁𝑙′‖0)   //Bitwise XOR 
17:    𝑡2 ← 𝑡1 & − 𝑡1   //Bitwise AND, 2𝐶 negation 
18:    𝑡3 ← 𝑡2 − 1   //2𝐶 sutraction 
19:    𝑓𝑢𝑙𝑙 ← {(𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑[1] = 𝑍)𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝐿} 
20:    𝑡4 ← 𝑡3 & ∼ 𝑓𝑢𝑙𝑙  //Bitwise AND/negation 
21:    𝑡5 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑡4)  //Bitwise reverse 
22:    𝑡6 ← 𝑡5 & − 𝑡5 
23:    𝑡7 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑡6) 
24:    𝒊𝒇 𝑡7 = 0 𝒕𝒉𝒆𝒏 
25: return -1   //Block is stuck in stash 
26:    𝒆𝒏𝒅 𝒊𝒇 
27:    return 𝑙𝑜𝑔2(𝑡7)   //Note: 𝑡7 must be one-hot 
28: end function 
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Encryption bandwidth hence scales with memory bandwidth and quickly becomes the 

area bottleneck. To address this problem in [33] it was proposed a new ORAM design, 

which is called RAW ORAM, optimized to minimize encryption bandwidth at the 

algorithmic and engineering level. 

RAW ORAM Algorithm. RAW ORAM is based on Ring ORAM [11] and splits ORAM 

Backend operations into two flavors: ReadPath and EvictPath accesses. ReadPath 

operations perform the minimal amount of work needed to service a client 

processor's read/write requests (i.e., last level cache misses/writebacks) and 

EvictPath accesses perform evictions (to empty the stash) in the background. To 

reduce the number of encryption units needed by ORAM, in [33] ReadPath accesses 

were optimized to only decrypt the minimal amount of data needed to retrieve the 

block of interest, as opposed to the entire path. EvictPath accesses require more 

encryption/decryption, but occur less frequently. 

Parameter 𝑨.  Like Ring ORAM [11], RAW ORAM uses the parameter 𝐴, set at system 

boot time. For a given 𝐴, RAW ORAM obeys a strict schedule that the ORAM controller 

performs one EvictPath access after every 𝐴 reads. 

Security. The security analysis is very similar (and simpler, even) to that in Ring ORAM 

[11]. ReadPath accesses always read paths in the ORAM tree at random, just like Path 

ORAM [2]. Further, EvictPath accesses occur at predetermined times and are to 

predictable/data-independent paths. 

Performance and Area Characteristics. Assume for simplicity that the bucket header 

is the same size as a data block. Then, each ReadPath access reads (𝐿 + 1)𝑍 blocks 

on the path, but only decrypts 1 block; it also reads/writes and decrypts/re-encrypts 

the 𝐿 + 1 headers/blocks. An EvictPath reads/writes and decrypts/re-encrypts all the 

(𝐿 + 1)(𝑍 + 1) blocks on a path. Thus, in RAW ORAM the relative memory bandwidth 

per bucket is 𝑍 + 2 +
2(𝑍+1)

𝐴
, and the relative encryption bandwidth per bucket is 

roughly 1 +
2(𝑍+1)

𝐴
. In Figure 43, virtualized the relative memory and encryption 

bandwidth of RAW ORAM with different parameter settings that have been shown 

[11] to give negligible stash overflow probability. Based on this 𝑍 = 5, 𝐴 = 5 (𝑍5𝐴5) 

is a good trade-off as it achieves 6% memory bandwidth improvemtns and ∼ 3 × 

encryption reduction over Path ORAM.  
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Figure 43: The relative memory and encryption bandwidth overhead of RAW ORAM 

Exploiting Path Eviction Predictability. Despite RAW ORAM's theoretic area savings 

for encryption units, careful engineering is needed to prevent that savings from 

turning into performance loss. The problem is that by reducing encryption units (i.e., 

AES) to provide “just enough" bandwidth for ReadPath accesses, it is forced to wait 

during EvictPath accesses for that reduced number of AES units to finish 

decrypting/re-encrypting the entire path. Further, since all AES IVs are stored 

externally with each bucket, the AES units can't start working on a new EvictPath until 

that access starts.  

To remove the above bottleneck while maintaining the AES unit reduction, authors in 

[33] made the following key observation: Since EvictPath operations occur in a 

predictable, fixed order, they can determine exactly how many times any bucket along 

any path has been written in the past. 

Using eviction predictability, could be pre-computed the AES-CTR initialization vector 

𝐼𝑉1. Simply put, this means the AES units can do all decryption/encryption work for 

EvictPath accesses “in the background" during concurrent ReadPath accesses. To 

decrypt the 𝑖-𝑡ℎ 128-bit ciphertext chunk of the bucket with unique ID BucketID at 

level 𝑗 in the tree, it is XOR with the following mask: 𝐴𝐸𝑆𝐾(𝑔𝑗‖𝐵𝑢𝑐𝑘𝑡𝐼𝐷‖𝑖) where 𝑔𝑗 

is the bucket eviction count defined above. Correspondingly, re-encryption of that 

chunk is done by generating a new mask where the write count has been incremented 

by 1. With this scheme, 𝑔𝑗 takes the place of 𝐼𝑉1 and since 𝑔𝑗 can be derived internally, 

so it is not necessary to store it externally. 

On both ReadPath and EvictPath operations, must be decrypted the program 

addresses and valid bits of all blocks in each bucket. For this could be applied the 

global counter scheme from Section PosMap MAC6.2.2.3 or used the mask as in Ren 

et al. [7], namely 𝐴𝐸𝑆𝐾(𝐼𝑉2‖𝐵𝑢𝑐𝑘𝑡𝐼𝐷‖𝑖), where 𝐼𝑉2 is stored externally as part of 

each bucket's header. 
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At the implementation level, an AES core was time-multiplexed between generating 

masks for 𝐼𝑉1 and 𝐼𝑉2. The AES core prioritizes 𝐼𝑉2 operations; when the core is not 

servicing 𝐼𝑉2 requests, it generates masks for 𝐼𝑉1 in the background and stores them 

in a FIFO. 

6.2.4 Evaluation (FPGA Prototype) 

Now is described a hardware prototype of Tiny ORAM on a Virtex-7 VC707 FPGA board 

and analyze its area and performance characteristics. The main reason for hardware 

prototyping is to tape-out in ASIC. With that in mind, the FPGA evaluation has two 

primary objectives. First, to compare against Phantom (which was optimized for 

FPGA) in as apples-to-apples a comparison as possible. Second, to demonstrate that 

the design is working under `high memory bandwidth' conditions. 

The entire design (as well as the extension to ASIC) is open source at http:// 

kwonalbert.github.io/oram. 

6.2.4.1.1 Metrics and Baselines 

The entire design was written in plain Verilog and was synthesized using the Xilinx 

Vivado flow (version 2013.4). Performance was measured as the latency (in FPGA 

cycles or real time) between when an FPGA user design requests a block and Tiny 

ORAM returns that block. Area is calculated in terms of FPGA lookup-tables (LUT), flip-

flops (FF) and Block RAM (BRAM), and is measured post place-and-route (i.e., 

represents final hardware area numbers). For the rest of the section BRAM is counted 

in terms of 36 Kbit BRAM. 

Tiny ORAM is compared with two baselines shown in Table 6. The first one is Phantom 

[47], which normalized to Tiny ORAM capacity and the 512 bits/cycle DRAM 

bandwidth of this particular VC707 board. Further, Phantom's tree top caching is 

disabled. Phantom's performance/area numbers are taken/approximated from the 

figures in their paper. The second baseline is a basic Path ORAM with the stash 

management technique that described above, to show the area saving of RAW ORAM. 
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 Table 6: Comparison of  Tiny ORAM and two Baselines 

6.2.4.1.2 Implementation 

Organization. The design was built hierarchically as three main components: the 

Frontend, stash (Backend) and AES units used to decrypt/re-encrypt paths (Backend). 

We evaluate both Path ORAM and RAW ORAM Backend designs (Section 6.2.3.1.1). 

The Path ORAM Backend is similar to the Phantom Backend.  

Unlike Phantom, this design does not have a DRAM buffer (see [47]). If such a 

structure is needed it should be much smaller than that in Phantom (<10 Kbytes as 

opposed to hundreds of KBytes) due to the 64 Byte block size. 

Parameterization. Both of the designs (Path ORAM and RAW ORAM) use 𝐵 = 512 bits 

per block and 𝐿 = 20 levels. The choice of 𝐵 = 512 (64 Bytes) shows that Tiny ORAM 

can run even very small block sizes without imposing hardware performance 

bottlenecks. There is a constraint to set 𝐿 = 20 because this setting fills the VC707's 1 

GByte DRAM DIMM.  

The Frontend which was evaluated is P_X16. Also, it was not evaluated the cost of 

integrity (PMMAC) in the FPGA prototype as integrity was not considered by the 

Phantom design and does not impact memory throughput. 

Clock regions. The DRAM controller on the VC707 board runs at 200 MHz and 

transfers 512 bits/cycle. To ensure that DRAM is Tiny ORAM's bottleneck, the design’s 

timing was optimized to run at 200 MHz. 

DRAM controller. The interface is a DDR3 DRAM through a stock Xilinx on-chip DRAM 

controller with 512 bits/cycle throughput. From when a read request is presented to 
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the DRAM controller, it takes ∼30 FPGA cycles to return data for that read (i.e., 

without ORAM). The DRAM controller pipelines requests. That is, if two reads are 

issued in consecutive cycles, two 512 bit responses arrive in cycle 30 and 31. As 

mentioned before, the subtree layout scheme allows to achieve near-optimal DRAM 

bandwidth. 

Encryption. “Tiny aes" is used, a pipelined AES core that is freely downloadable from 

http://opencores.org/. Tiny aes has a 21 cycle latency and produces 128 bits of output 

per cycle. One tiny aes core costs 2865/3585 FPGA LUT/FF and 86 BRAM. To 

implement the time-multiplexing scheme from Section 6.2.3.1.2, is simply added state 

to track whether tiny aes's output (during each cycle) corresponds to IV1 or IV2.  

Given the DRAM bandwidth, RAW ORAM requires 1.5 (has to be rounded to 2) tiny 

aes cores to completely hide mask generation for EvictPath accesses at 200 MHz. To 

reduce area further, the design was optimized to run tiny aes and associated control 

logic at 300 MHz. Thus, the final design requires only a single tiny aes core. Basic Path 

ORAM would require 3 tiny aes cores clocked at 300 MHz, which matches the 3× AES 

saving in the analysis from Section 6.2.3.1.2. The tiny aes clock was not optimized for 

basic Path ORAM, and used 4 of them running at 200 MHz. 

6.2.4.1.3 Access Latency Comparison 

For the rest of the FPGA evaluation, all access latencies are averages when running on 

a live hardware prototype. Table 6 gives a summary of results. RAW ORAM Backend 

can finish an access in 276 cycles (1.4𝜇𝑠) on average. This is very close to basic Path 

ORAM; it is not got the 6% theoretical performance improvement because of the 

slightly more complicated control logic of RAW ORAM.  

After normalizing to the DRAM bandwidth and ORAM capacity that presented in 

Section 6.2, Phantom should be able to fetch a 4 KByte block in ∼ 60𝜇𝑠. This shows 

the large speedup potential for small blocks. Suppose the program running has bad 

data locality (i.e., even though Phantom fetches 4 KBytes, only 64 Bytes are touched 

by the program). In this case, Tiny ORAM using a 64 Byte block size improves ORAM 

latency by 40× relative to Phantom with a 4 KByte block size. Phantom was run at 150 

MHz: if optimized to run at 200 MHz like the current design, the improvement is ∼

60 ×. Even with perfect locality where the entire 4 KByte data is needed, using a 64 

Byte block size introduces only 1.5 − 2 × slowdown relative to the 4 KByte design. 

6.2.4.1.4 Hardware Area Comparison 

In Table 4, is shown that the RAW ORAM Backend requires only a small percentage of 

the FPGA's total area. The slightly larger control logic in RAW ORAM dampens the area 

reduction from AES saving. Despite this, RAW ORAM achieves an ≥ 2 × reduction in 
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BRAM usage relative to Path ORAM. Note that Phantom [47] did not implement 

encryption: this area was extrapolated by adding 4 tiny aes cores to their design and 

estimate a BRAM savings of 4× relative to RAW ORAM. 

6.2.4.1.5 Full System Evaluation 

Now evaluate a complete ORAM controller by connecting RAW ORAM Backend to the 

optimized ORAM Frontend. For completeness, a baseline Recursive Path ORAM is 

implemented and evaluated. To our knowledge, authors in [33] implemented the first 

form of Recursive ORAM in hardware. They call configurations with the repsective 

optimized Frontend “Freecursive" to distinguish them from the baseline Frontend. 

For 𝐿 = 20, 2 PosMap ORAMs were added, to attain a small on-chip position map (< 

8 KB).  

Figure 44 shows the average memory access latency of several real SPEC06-int 

benchmarks. Due to optimizations from Section 6.2.2, performance depends on 

program locality. For this reason, also two synthetic traces were evaluated: scan 

which has perfect locality and rand which has no locality. Two extreme benchmarks: 

libq is known to have good locality, and on average the ORAM controller can access 

64 Bytes in 490 cycles. Sjeng has bad (almost zero) locality and fetching a 64 Byte block 

requires ∼950 cycles (4.75 𝜇𝑠 at 200 MHz). Benchmarks like sjeng reinforce the need 

for small blocks: setting a larger ORAM block size will strictly decrease system 

performance since the additional data in larger blocks won't be used. 

 
Figure 44: Evaluation between Path ORAM and RAW ORAM 
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7 Conclusion 

Security of data storage is a huge problem in nearly all aspects of the Internet 

connected world. Consider several ubiquitous settings: outsourced storage, 

computation outsourcing and the Internet of Things (IoT). The underlying problem is 

inherent in how programs are written today: to be performant, program control flow 

and memory access behavior depends on the sensitive information we wish to hide. 

This thesis studies a cryptographic primitive called Oblivious RAM (ORAM), which 

provably eliminates all information leakage in memory access patterns [1, 3]. ORAM 

schemes that are presented make both theoretical and practical contributions. Those 

schemes are categorized based on schemes characteristics. The 4 main categories are 

Path ORAM Family, Constant worst-case bandwidth blowup Family, ObliviStore 

Family, and Applied ORAM schemes. On Chapter 3, Path ORAM [2] and several ORAM 

schemes, which were based on Path ORAM are presented along with a comparison 

between them. On Chapter 4, we present ORAM schemes, which achieve Constant 

worst-case Bandwidth blowup also, we present a comparison between them. The 

ORAM schemes are Onion ORAM [14] and C – ORAM [22]. On Chapter 5, ObliviStore 

ORAM [5] and ORAM schemes, which were based on ObliviStore ORAM are presented 

along with a comparison between them. On Chapter 6, we present two applied ORAM 

schemes (ObliviSync [50] and Tiny ORAM [33]) that could be used in real world. 

ObliviSync is an oblivious cloud storage system that specifically targets one of the 

most widely-used personal cloud storage paradigms: synchronization and backup 

services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. Tiny 

ORAM is a hardware ORAM with small client storage, integrity verification, or 

encryption units. 
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