

Oblivious RAM from

Theory to Practice
Master Thesis

 Submitted in Partial Fulfillment of the Requirements for the Degree of Master

of Science in the Department of Digital Systems at University of Piraeus

UNIVERSITY OF PIRAEUS
 DEPARTMENT OF DIGITAL SYSTEMS

DIGITAL SYSTEMS SECURITY DIRECTION

PIRAEUS, MARCH 2017

By Tsaktsiras Dimitris

 Oblivious RAM from theory to practice

University of Piraeus 1

 Abstract

Outsourcing storage/computation has been gaining popularity because its elasticity.

However, this new type of storage model also brings security concerns. Privacy of data

storage has long been a central problem in computer security. The most common

technique to protect our data is to encrypt it. However, encryption does not prevent

information disclosure about where we read or write in our data. This additional

information, the access pattern, can be used to reverse-engineer proprietary

programs as they run, reveal a user's physical location or health information, and

more, even if data is correctly encrypted.

A cryptographic primitive, which provably hides a client’ access pattern as seen by

untrusted storage, called Oblivious RAM (ORAM). ORAM was introduced by Goldreich

and Ostrovsky [1], where in the key motivation was stated as software protection

from an adversary who can observe the memory access pattern (but not the contents

of the memory). ORAM incurs a large performance overhead and can require a large

amount of client, who is considered trusted, storage. In particular, ORAM schemes

require the client to continuously shuffle the data stored in the untrusted storage,

using the trusted storage. Early work on ORAM proves that this operation must incur

a client-storage bandwidth blowup that is logarithmic in the dataset size, which can

translate to > 100× in practice. This thesis studies several ORAM schemes that could

make feasible the use of ORAM in practice by reducing performance overhead and in

some cases client storage.

We address this challenge by presenting ORAM schemes that make both theoretical

and practical contributions. Those schemes are categorized based on their

characteristics. The 4 main categories are Path ORAM, Constant worst-case

bandwidth blowup, ObliviStore, and Applied ORAM. In the Path ORAM family we

present the schemes Path ORAM [2], Path Oblivious RAM in Secure Processors [7],

Circuit ORAM [8], Bucket ORAM [44] and Ring ORAM [11] and a comparison between

them. The Constant worst-case bandwidth blowup ORAM family includes Onion

ORAM [14] and C – ORAM [22] and we present the respective comparison. In Chapter

5 we present and compare ObliviStore ORAM [5], Burst ORAM [13] and CURIOUS

ORAM [35], which are included in the ObliviStore ORAM Family. Finally, we present

two Applied ORAM schemes ObliviSync [50] and Tiny ORAM [33]. ObliviSync is an

oblivious cloud storage system that specifically targets one of the most widely-used

personal cloud storage paradigms. Tiny ORAM is a hardware ORAM with small client

storage, integrity verification, or encryption units.

 Oblivious RAM from theory to practice

University of Piraeus 2

Acknowledgments

I would like to thank my advisor Konstantinos Lambrinoudakis, and Panagiotis

Rizomiliotis (my de facto co-advisor) for help, advice, inspiration and guidance.

Furthermore, I want to thank Marianna and my parents for their patience,

understanding and support during my postgraduate studies and the development of

my master thesis.

July 2017

Tsaktsiras Dimitris

 Oblivious RAM from theory to practice

University of Piraeus 3

Table of Contents
Abstract ... 1

Acknowledgments ... 2

1 Introduction ... 8

1.1 Challenges in Protecting Access Pattern ... 9

1.2 The Case for Oblivious RAM .. 10

1.3 Thesis overview ... 11

2 Preliminaries .. 13

2.1 Problem Definition .. 13

2.2 ORAM Definition.. 13

2.2.1 Tree-based ORAM Framework .. 14

2.2.2 Security Definition ... 15

2.2.3 Termination Channel Leakage ... 16

2.3 Metrics ... 18

2.4 Settings .. 20

2.5 ORAM History .. 21

2.5.1 Square root ORAM (1987) ... 21

2.5.2 Hierarchical ORAM (1996) ... 22

2.5.3 Tree ORAM (2011) ... 22

3 Path ORAM Family ... 24

3.1 Path ORAM .. 24

3.1.1 The Path ORAM Protocol ... 24

3.1.2 Security Analysis .. 26

3.1.3 Recursion ... 27

3.2 Optimization of Path Oblivious RAM in Secure Processors 27

3.2.1 Background Eviction .. 27

 Oblivious RAM from theory to practice

University of Piraeus 4

3.2.2 Super Blocks .. 29

3.3 Circuit ORAM ... 30

3.3.1 The Circuit ORAM Protocol .. 31

3.4 Bucket ORAM .. 35

3.4.1 The Bucket ORAM Protocol ... 36

3.4.2 Bucket ORAM Construction with No Position Map ... 38

3.4.3 Security Analysis .. 43

3.5 Ring ORAM .. 46

3.5.1 The Ring ORAM Protocol ... 46

3.5.2 Security Analysis .. 51

3.6 Comparison ... 51

3.6.1 Path ORAM vs Optimization of Path Oblivious RAM in Secure Processors 51

3.6.2 Path ORAM vs Circuit ORAM ... 54

3.6.3 Path ORAM vs Bucket ORAM... 55

3.6.4 Path ORAM vs Ring ORAM ... 56

4 Constant worst-case bandwidth blowup .. 57

4.1 Onion ORAM .. 57

4.1.1 Overview of Techniques .. 57

4.1.2 Onion ORAM Protocol (Additively Homomorphic Encryption) 59

4.1.3 Security Analysis .. 60

4.2 C – ORAM... 62

4.2.1 Overview of C – ORAM .. 63

4.2.2 C – ORAM: First Construction .. 64

4.2.3 C – ORAM: Second Construction ... 68

4.2.4 Security Analysis .. 71

4.3 Comparison ... 71

5 ObliviStore ORAM Family .. 73

5.1 ObliviStore ORAM .. 73

5.1.1 The ObliviStore ORAM Protocol .. 73

5.1.2 Detailed Distributed ORAM Construction ... 73

5.1.3 Dynamic Scaling Up ... 74

 Oblivious RAM from theory to practice

University of Piraeus 5

5.1.4 Security Analysis .. 76

5.2 Burst ORAM ... 76

5.2.1 The Burst ORAM Protocol.. 77

5.2.2 Security Analysis .. 81

5.3 CURIOUS ORAM ... 85

5.3.1 The CURIOUS ORAM Protocol ... 85

5.3.2 Security .. 88

5.4 Comparison ... 89

5.4.1 ObliviStore ORAM vs Burst ORAM... 89

5.4.2 ObliviStore ORAM vs CURIOUS ORAM .. 93

6 Applied ORAM Schemes .. 95

6.1 ObliviSync .. 95

6.1.1 ObliviSync Setting Overview .. 95

6.1.2 ObliviSync Scheme ... 96

6.1.3 Security Analysis .. 98

6.1.4 Evaluation .. 99

6.2 Tiny ORAM ... 101

6.2.1 Design Challenges .. 102

6.2.2 Frontend .. 103

6.2.3 Backend ... 111

6.2.4 Evaluation (FPGA Prototype) ... 116

7 Conclusion ... 120

8 Bibliography ... 121

 Oblivious RAM from theory to practice

University of Piraeus 6

Content of Figures and Tables
Figure 1: Generic Access Algorithm ... 14

Figure 2: Path ORAM Access Algorithm .. 25

Figure 3: EvictOnceSlow Algorithm ... 32

Figure 4: PrepareDeepest Algorithm ... 34

Figure 5: PrepareTarget Algorithm .. 34

Figure 6: EvictOnceFast Algorithm .. 35

Figure 7: EvictRandom Algorithm .. 35

Figure 8: EvictDeterministic Algorithm .. 35

Figure 9: Bucket ORAM Request Algorithm ... 37

Figure 10: Bucket ORAM Evict Algorithm ... 38

Figure 11: Improved Bucket ORAM Access Algorithm ... 40

Figure 12: Randomly distribute mask blocks to buckets during level rebuilding..................... 42

Figure 13: Obliviously rebuild Bloom filter in synchrony with a newly rebuilt level 42

Figure 14: Ring ORAM Access Algorithm ... 47

Figure 15: Ring ORAM ReadPath Algorithm .. 49

Figure 16: Ring ORAM EvictPAth Algorithm .. 50

Figure 17: Overhead breakdown for 8 GB hierarchical ORAMs with 4 GB working set 52

Figure 18: Hierarchical ORAM latency in DRAM cycles assuming 1/2/4 channel(s) 53

Figure 19: SPEC benchmark performance ... 54

Figure 20: SPEC benchmark slowdown ... 56

Figure 21: Onion ORAM ReadPath Algorithm ... 60

Figure 22: Onion ORAM EvictAlongPath Algorithm .. 60

Figure 23: C-ORAM 1st Access Algorithm .. 67

Figure 24: C-ORAM PIR-Read Algorithm .. 67

Figure 25: C-ORAM Evict Algorithm... 67

Figure 26: C-ORAM GenPerm Algorithm ... 68

Figure 27: C-ORAM 2nd Access Algorithm... 70

Figure 28: C-ORAM Evict-Clone Algorithm .. 70

Figure 29: C-ORAM PIR-Write Algorithm ... 70

Figure 30: Burst ORAM Client and ORAM Main Algorithm ... 83

Figure 31: Burst ORAM Requester Algorithm ... 83

Figure 32: Burst ORAM Shuffler Algorithm ... 84

Figure 33: CURIOUS ORAM Framewotk .. 87

Figure 34: CURIOUS ORAM - subORAM design ... 88

Figure 35: Endless Burst – Online Bandwidth Cost .. 90

Figure 36: Endless Burst – Effective Bandwidth Cost ... 90

Figure 37: 99.9% Reponse Time Comparison on NetApp Trace .. 91

Figure 38: Comparison of Burst ORAM and Baseline .. 92

Figure 39: NetApp Trace Bandwidth Costs .. 92

 Oblivious RAM from theory to practice

University of Piraeus 7

Figure 40: ObliviSync high-level design ... 97

Figure 41: Illustration of subtree locality .. 112

Figure 42: PushToLeaf Algorithm .. 113

Figure 43: The relative memory and encryption bandwidth overhead of RAW ORAM 115

Figure 44: Evaluation between Path ORAM and RAW ORAM ... 119

Table 1: Comparison of Circuit ORAM and Path ORAM .. 54

Table 2: Comparison of Circuit ORAM, Path ORAM and Binary-tree ORAM 55

Table 3: Comparison of Bucket ORAM and Path ORAM .. 56

Table 4: Comparison of Onion ORAM and C-ORAM .. 72

Table 5: Comparison of CURIOUS and ObliviStore .. 94

Table 6: Comparison of Tiny ORAM and two Baselines .. 117

 Oblivious RAM from theory to practice

University of Piraeus 8

1 Introduction

Security of data storage is a huge problem in nearly all aspects of the Internet

connected world. Consider several ubiquitous settings: outsourced storage,

computation outsourcing and the Internet of Things (IoT).

In outsourced storage, users outsource private data storage from their private

infrastructure to remote cloud servers. Data can now be stolen at any point in the

cloud infrastructure; for instance, at the server itself (e.g., by insiders [56]), at the

internet-server boundary (based on the Snowden revelations [57]) or in transit (e.g.,

[58]).

Further, in computation outsourcing and IoT, sensitive information is stored on cloud

servers, or other potentially hostile environments, as it is being computed upon.

Despite the promise of tamper-resistant systems (e.g., [59]) and bootstrapping trust

from a known CPU state (e.g., [60]), which protect data while it resides on-chip (or on-

package), data can still be stolen via software or physical attacks when it is stored on-

chip (e.g., in main memory or disk). For instance, it has been shown how memory can

be accessed by exploiting cloud resource sharing [61] and vulnerable firmware [39,

41]. In IoT, the attacker may have physical access to devices, which it can use to

extract data using (for example) test cards [37], bus probing [38] or technology-

specific techniques [36].

A natural starting point to address this issue is to encrypt all data written to untrusted

storage. For example, consider client-side encryption which defines two parties: a

trusted client and untrusted server (storage). When data passes to/from the server, it

is encrypted/ decrypted by the client. Only the client holds the secret key. Thus, the

server cannot decrypt the data it stores unless it is able to break the encryption

scheme. Client-side encryption is used today. For example, it is implemented at the

chip boundary in remote processors to protect main memory (e.g., Intel SGX [62]) and

at the client boundary to protect outsourced storage applications (e.g., [63]).

A big problem with client-side encryption (and other systems that protect only the

data itself) is that it does not protect all aspects of how the client interacts with the

server's storage. Where storage is accessed, the access pattern, can also reveal secret

information. For example, consider the following:

 Suppose a patient stores his/her genome on a remote server and wishes to

check if he/she has an allele/SNP (i.e., which is located at a specific point on

the genome) which corresponds to cancer. If an observer (e.g., an insurance

company) learns where that patient is looking in its genome, the observer can

infer that the patient was concerned about cancer. Similar examples can be

 Oblivious RAM from theory to practice

University of Piraeus 9

drawn from users requesting geo-location, financial and database queries

over other sensitive information (e.g., [47, 64]).

 A common task in personal and cloud computing is to run a proprietary

program on a remote processor. One of the open challenges with this

deployment is to prevent software IP theft: the program distributor wants to

avoid malicious parties from being able to reverse-engineer the program as it

runs. Unfortunately, an observer capable of monitoring how a program

accesses main memory can, in fact, reverse engineer the program's

conditional and loop structure, simply by monitoring address requests to

main memory [65, 66, 47].

 In the inverse of the software IP theft setting, a user may wish to outsource

private data to a remote processor to compute some result. In this case, the

program may be selected by the server hosting the processor (e.g., a cloud

service which cannot be attested by the user) and is therefore untrustworthy

[67, 68]. Untrusted programs running on sensitive data are a serious concern:

the program may directly or inadvertently leak the user's data.

1.1 Challenges in Protecting Access Pattern

The underlying problem in the above examples is inherent in how programs are

written today: to be performant, program control flow and memory access behavior

depends on the sensitive information we wish to hide. Indeed, a strawman solution

to eliminate all access pattern leakage is to perform the same amount of work,

regardless of the program's sensitive inputs. In the worst case, this requires that the

program scan all of memory on every access {e.g., download the entire genome to

analyze a single allele {incurring huge performance overheads.

A natural question to ask is: can encryption solve this problem? Generally, the answer

is no, considering practical constraints. Encrypting an address makes that address

unusable by the memory unless the remote memory has the corresponding

decryption key or the system is using certain cryptographic schemes. First, distributing

decryption keys has serious limitations. In particular, the trust boundary now includes

all of remote storage and the burden is on memory manufacturers to re-design their

products to (safely) perform key exchange. Second, certain encryption schemes (e.g.,

private information retrieval [23] or homomorphic encryption [69]) can securely

search over encrypted data. However, these schemes have an inherent problem: the

scheme must compute over every element in the database. Otherwise, an observer

trivially knows what elements were not selected. This has even worse overheads than

scanning memory due to these schemes' computational complexities. To summarize,

we desire address pattern protection that doesn't make assumptions on the

untrusted storage, and is asymptotically more efficient than scanning memory.

 Oblivious RAM from theory to practice

University of Piraeus 10

Another question is: can we get away with incomplete protection? Incomplete access

pattern protection is implicit in the state of the art hardware extensions from Intel,

called Intel SGX [62, 41]. In that system, the access pattern may be called ‘partially

hidden’ because the subset of memory accesses that cause page faults are directly

revealed to the untrusted operating system. Recently, however, researchers showed

how even this amount of leakage can be used to reconstruct the outline of medical

images in medical applications [70]. Another example in this vein is the HIDE

framework, by Zhuang et al. [65]. HIDE provides access pattern protection assuming

constraints on the spatial locality in the program access pattern. But HIDE makes no

guarantees for programs with arbitrary access patterns and, in particular, leaks non-

negligible information for even a single access if there are no restrictions on where

that access may occur. To summarize, we desire a general solution that doesn't make

assumptions about the program access pattern, or about how much privacy is leaked

on a particular memory access.

Another way to see the danger in the above attacks is to look at society's move from

deterministic to randomized encryption schemes. In the University and Industry,

students learn not to use deterministic encryption because it is “insecure”, in

particular it is subject to frequency analysis attacks. The access pattern can be viewed

in a similar light: as client-side encryption becomes ubiquitous, frequency attacks on

the remaining un-encrypted information (the access pattern) can become the new

low-hanging fruit.

1.2 The Case for Oblivious RAM

To address the above problems, this thesis studies a cryptographic primitive called

Oblivious RAM (ORAM), which provably eliminates all information leakage in memory

access patterns [1, 3].

As with client-side encryption, an ORAM scheme is made up of a client and server with

data blocks residing on the server. Consider two sequences of storage requests and

𝐴′ made to the server, where each sequence is made up of read (𝑟𝑒𝑎𝑑, 𝑎𝑑𝑑𝑟) and

write (𝑤𝑟𝑖𝑡𝑒, 𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎) tuples. ORAM guarantees that from the server's

perspective: if |𝐴| = |𝐴′|, then 𝐴 is computationally indistinguishable from 𝐴′.

Informally, this hides all information in 𝐴 and 𝐴′: whether the client is reading/writing

to the storage, where the client is accessing, and the underlying data that the client is

accessing.

ORAM addresses all the weaknesses discussed in the previous section. First, ORAM is

asymptotically efficient: for a database of size 𝑁, modern ORAM schemes only need

to download/re-upload 𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑁) data blocks from untrusted memory, per

access (as opposed to the 𝑂(𝑁) cost of scanning memory). Second, ORAM makes no

 Oblivious RAM from theory to practice

University of Piraeus 11

assumptions on the external memory. Memory is considered untrusted, or actively

malicious, and need not manage private keys. Finally, ORAM provides the same level

of protection regardless of the access pattern and assumes all memory accesses are

visible to the adversary.

Since its proposal by Goldreich and Ostrovsky [1, 3], ORAM has become an important

part of the cryptographic “swiss army” knife, and has been proposed to secure

numerous settings, both practical and theoretical. On the practice side, ORAM has

been proposed to secure outsourced storage (e.g., [71]), hide secure processor

behavior to external memory (e.g., [68, 47]) and implement searchable encryption

with small leakage (e.g., [72]). Additionally on the cryptography side, ORAM has

become an important building block in constructing efficient secure multi-party

computation protocols (e.g., [73]), proofs of retrievability [74], and Garbled RAM [75].

Despite recent advancements and numerous potential applications, however, the

primary impedance to ORAM adoption continues to be its practical efficiency. To

achieve privacy as advertised, ORAM schemes require that the client continuously

shuffle (i.e., physically re-locate) data as it is stored on the server. This shuffling has

incurred 𝛺(log 𝑁) bandwidth blowup between client and server in all ORAM

proposals – which translates to 25× > 100× overhead in practice. In fact, the seminal

work by Goldreich and Ostrovsky [1, 3] proved that the shuffling bandwidth must be

at least logarithmic in 𝑁 for an ORAM scheme to be secure.

To confound the problem, the shuffling requires a potentially large amount of trusted

storage on the client side, and the most performant schemes require more storage. It

is especially challenging to reduce bandwidth overhead while maintaining small client

storage. This is obviously desirable: ORAM exists to securely outsource storage.

Indeed, the most performant ORAM schemes (e.g., [13]) require GBytes (to tens of

GBytes) of client storage to handle TByte-range ORAMs. This immediately rules out

their applicability to settings where the client storage must be small; for example, if it

must fit in the on-chip memory of a remote processor (which is the case with the

software IP theft and computation outsourcing settings discussed above). On the

other hand, the state of the art construction that can be deployed in a remote

processor (i.e., requires only KBytes to MBytes of client storage) incurs > 8× the

bandwidth overhead of the most performant schemes [2].

1.3 Thesis overview

We now give an overview of each chapter.

Chapter 2 – Preliminaries. We start by introducing security definitions for ORAM in

several settings and efficiency metrics which will be studied later in the thesis. We

then describe the usage settings for ORAM most related to the thesis and give a

 Oblivious RAM from theory to practice

University of Piraeus 12

history of prior work in ORAM starting with the first ORAM schemes by Goldreich and

Ostrovsky.

Chapter 3 – Path ORAM Family. We present Path ORAM [2] and several ORAM

schemes, which were based on Path ORAM and a comparison between them. The

schemes that presented on this section are a) Optimization of Path Oblivious RAM in

Secure Processors [7], b) Circuit ORAM [8], c) Bucket ORAM [44], and d) Ring ORAM

[11].

Chapter 4 – Constant worst-case bandwidth blowup. We present ORAM schemes,

which achieve Constant worst-case Bandwidth blowup and a comparison between

them. The ORAM schemes are Onion ORAM [14] and C – ORAM [22].

Chapter 5 – ObliviStore ORAM Family. We present ObliviStore ORAM [5] and ORAM

schemes, which were based on ObliviStore ORAM and a comparison between them.

The schemes that presented on this section are a) Burst ORAM [13], and b) CURIOUS

ORAM [35].

Chapter 6 – Applied ORAM Schemes. In this section, we present two applied ORAM

schemes (ObliviSync [50] and Tiny ORAM [33]) that could be used in real world.

ObliviSync is an oblivious cloud storage system that specifically targets one of the

most widely-used personal cloud storage paradigms: synchronization and backup

services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. Tiny

ORAM is a hardware ORAM with small client storage, integrity verification, or

encryption units.

Chapter 7 – Conclusion. We summarize the results of the thesis.

 Oblivious RAM from theory to practice

University of Piraeus 13

2 Preliminaries

In this chapter, we give formal definitions for ORAM. We first give a strong and general

security definition, which achieves simulator-based security against a malicious

adversary. We then discuss ORAM metrics and how they impact practice, and give a

history of ORAM schemes.

2.1 Problem Definition

We consider a client that wishes to store data at a remote untrusted server while

preserving its privacy. While traditional encryption schemes can provide data

confidentiality, they do not hide the data access pattern which can reveal very

sensitive information to the untrusted server. In other words, the blocks accessed on

the server and the order in which they were accessed is revealed. We assume that the

server is untrusted, and the client is trusted, including the client's processor, memory,

and disk. The goal of ORAM is to completely hide the data access pattern (which

blocks were read/written) from the server. From the server's perspective, the data

access patterns from two sequences of read/write operations with the same length

must be indistinguishable.

2.2 ORAM Definition

Following Apon et al. [28], we define ORAM as a reactive two-party protocol between

the client and the server, and define its security in the Universal Composability model

[29]. We use the notation

((c_out, c_state), (s_out, s_state)) ←protocol((c_in, c_state), (s_in, s_state))

to denote a (stateful) protocol between a client and server, where c_in and c_out are

the client’s input and output; s_in and s_out are the server’s input and output; and

c_state and s_state are the client and server’s status before and after the protocol.

Definition 1 An ORAM scheme consists of the following interactive protocols

between a client and a server.

((⊥,𝒞),(⊥, 𝒟)) ← Setup(1λ, (D, ⊥),(⊥,⊥)): An interactive protocol where the client’s input

is a memory array D[1..N] where each memory block has bit-length Β; and the server’s

input is ⊥. At the end of the Setup protocol, the client has secret state 𝒞, and the

server’s state is 𝒟 (which typically encodes the memory array D).

((data,𝒞′), (⊥, 𝒟′)) ← Access((op, 𝒞), (⊥,𝒟)): To access data, the client starts in state 𝒞,

with an input op where op := (read, addr) or op := (write, addr, data); the server starts

 Oblivious RAM from theory to practice

University of Piraeus 14

in state 𝒟, and has no input. In a correct execution of the protocol, the client’s output

data is the current value of the memory 𝒟 at location addr (for writes, the output is

the old value of D[addr] before the write takes place). The client and the server also

update their state to 𝒞′ and 𝒟′ respectively. The client outputs data := ⊥ if the protocol

execution aborted.

We say that the ORAM scheme is correct, if for any initial memory D ∈ {0, 1}ΒΝ, for any

operation sequence op1, op2, …, op𝓂 where 𝓂 = poly(λ), an op := (read, addr)

operation would always return the last value written to the logical location addr

(except with negligible probability).

2.2.1 Tree-based ORAM Framework

Shi et al. [4] proposed a new tree-based framework, which was adopted subsequently

by several improved constructions [9, 12, 30, 2, 31]. We now briefly review the

framework.

Notation. We use N to denote the number of (real) data blocks in ORAM, Β to denote

the bit-length of a block in ORAM, Z to denote the capacity of each bucket in the

ORAM tree, and λ to denote the ORAM’s statistical security parameter. For

convenience in algorithm descriptions, we sometimes treat the stash as a depth-0

bucket with some capacity R that is the imaginary parent of the root. We assume that

leaves are numbered sequentially from 0 to N -1. We also denote [a…b] := {a, a+1, …,

b}.

Figure 1: Generic Access Algorithm

Data structure. The server organizes blocks into a binary tree of height L = log N + 1;

each node of the tree is a bucket containing Z blocks. Each block is of the form:

{idx||label||data},

where idx is the index of the block, e.g. the (logical) address of desired block; label is

a leaf identifier specifying the path on which the block resides; and data is the payload

of the block, of Β bits in size.

Access(op) // wher op = (“read”, idx) or op = (“write”, idx, data*)

1: label := PositionMap[idx]
2: {idx||label||data} := ReadAndRm(idx, label)
3: PositionMap [idx] := UniformRandom(0…N – 1)
4: If op is “read” : data* := data
5: stash.add({idx||PositionMap[idx]||data*})
6:Evict()
7:Return darax ← position[a]

 Oblivious RAM from theory to practice

University of Piraeus 15

The client stores a stash for buffering overflowing blocks. In certain schemes such as

the original binary-tree scheme [4], a stash is not necessary. In this case, we can simply

treat this as a degenerate stash of size 0.

The client also stores a position map, mapping a block’s idx to a leaf label. As described

later, position map storage can be reduced to O(1) by recursively storing the position

map in a smaller ORAM. These leaf labels are assigned randomly and are reassigned

as blocks are accessed. If we label the leaves from 0 to N - 1 then each label is

associated with a path from the root to the corresponding leaf.

Main path invariant. Three-based ORAMs maintain the invariant that a block marked

label resides on the path from the stash (to the root) to the lead node marked label

Operations. Tree-based ORAMs all follow a similar recipe as shown in Figure 1. In

particular, the ReadAndRm operation would read every block on the path leading to

the leaf node marked label, and fetches and removes the block idx from the path.

Various tree-based ORAMs are differentiated by the eviction algorithm denoted

Evict(). For example, the original binay-tree ORAM adopts a simple eviction algorithm

engineered to make their proof easy: with each data access, two distinct buckets are

chosen at random from each level to evict from. By contrast, the Path ORAM

algorithm performs eviction on the read path, and the eviction strategy is aggressive:

pack all blocks as close to the leaf as possible respecting the main invariant. In Path

ORAM, a O(log N) ∙ 𝜔 (1) stash is necessary to buffer overflowing blocks.

Recursion. Instead of storing the entire position map in the client’s local memory, the

client can store it in a smaller ORAM on the server. In particular, this position map

ORAM needs to store N labels each of log N bits. We can apply this idea recursively

until we get down to a constant amount of metadata, which the client could store

locally.

2.2.2 Security Definition

We will adopt two security definitions throughout this thesis. The first follows a

standard simulation-based definition of secure computation [32], requiring that a

real-world execution “simulate” an ideal-world (reactive) functionality ℱ.

Ideal world. We define an ideal functionality ℱ that maintains an up-to-date version

of the data D on behalf of the client, and answers the client’s access queries.

 Setup. An environment 𝒵 gives an initial database D to the client. The client sends

D to an ideal functionality ℱ. ℱ notifies the ideal-world adversary 𝒮 of the fact

that the setup operation occurred as well as the size of the database N = | D |, but

 Oblivious RAM from theory to practice

University of Piraeus 16

not of the data contents D. The ideal-world adversary 𝒮 says ok or abort to ℱ.

ℱ then says ok or ⊥ to the client accordingly.

 Access. In each time step, the environment 𝒵 specifies an operation op := (read,

addr) or op := (write, addr, data) as the client’s input. The client sends op to ℱ.

ℱ notifies the ideal-world adversary 𝒮 (without revealing to 𝒮 the operation op).

If 𝒮 says ok to ℱ, ℱ sends D[addr] to the client, and updates D[addr] := data

accordingly if this is a write operation. The client then forwards D[addr] to the

environment 𝒵. If 𝒮 says abort to ℱ, ℱ sends ⊥ to the client

Real world. In the real world, an environment 𝒵 gives an honest client a database D.

The honest client runs the Setup protocol with the server 𝒜. Then, at each time step,

𝒵 specifies an input op := (read, addr) or op := (write, addr, data) to the client. The

client runs the Access protocol with the server. The environment 𝒵 gets the view of

the adversary 𝒜 after every operation. The client outputs to the environment the

data fetched or ⊥ (indicating abort).

Definition 2 (Simulation-based security: privacy + verifiability). We say that a protocol

Π𝒵 securely computes the ideal functionality ℱ if for all probabilistic polynomial-time

real-world adversaries (i.e. server) 𝒜, there exists an ideal-world adversary 𝒮, such

that for all non-uniform, polynomial-time environments 𝒵, there exists a negligible

function negl such that

|Pr [𝑅𝐸𝐴𝐿Π𝒵 ,𝒜,𝒵(λ) = 1] – Pr[𝐼𝐷𝐸𝐴𝐿ℱ,𝒮,𝒵(λ) = 1]| ≤ negl(λ)

At an intuitive level, our definition captures the privacy and verifiability requirements

for an honest client (the client is never malicious in our setting), in the presence of a

malicious server. The definition simultaneously captures privacy and verifiability.

Privacy ensures that the server cannot observe the data contents or the access

pattern (the contents of any opi). Verifiability ensures that the client is guaranteed to

read the correct data from the server.

2.2.3 Termination Channel Leakage

The two outcomes from running the protocol in the previous section are: (1) the

adversary deviates from the protocol, which may cause the client to prematurely

abort, or (2) the adversary lets the protocol complete. In (1), which we call the

termination channel, there is no privacy leakage since we require the existence of 𝒮

that, for all 𝒵, can predict when the termination occurs a-priori (i.e. independent of

the access pattern given by 𝒵). In (2), there is some leakage: the adversary learns how

many accesses were requested by 𝒵. However we are not interested in preventing

 Oblivious RAM from theory to practice

University of Piraeus 17

this leakage since it once again does not depend on the operations (the access

pattern) submitted by 𝒵.

In this section. We want to provide a more relaxed definition, which permits

some small, but access pattern-related, leakage through the termination channel.

Doing so will enable several performance optimizations on Tiny ORAM scheme

(hardware ORAM) [33]. Informally, the change to the real world adversary's view is

the following. If the adversary is semi-honest, the protocol terminates when 𝒵 stops

submitting operations and the adversary only learns (2) above, as with the previous

definition. If the adversary is malicious, the protocol may terminate before (2) occurs,

but when it terminates will be a function of the adversary's strategy, randomness in

the protocol, and importantly the access pattern specified by 𝓩. For the purposes of

satisfying the definition, we wish to show that this termination channel leakage is the

only new information the adversary is able to learn. More formally,

Definition 3 (Termination channel security: privacy). An ORAM scheme is secure by

the termination channel definition if for every (malicious) adversary 𝒜, there exists a

simulator 𝒮′ such that the following two distributions are computationally

indistinguishable.

1. (Real world). 𝒜 choose D. The experiment runs ((⊥,𝒞0), (⊥, , 𝒟0)) ← Setup(1λ, (D, ⊥),

(⊥,⊥)). 𝒜 then adaptively makes read/write queries through 𝒵, which runs the

protocol (for i=0, 1, …)

((datai+1,𝒞𝑖+1), (⊥, 𝒟𝑖+1)) ← Access((opi, 𝒞𝑖), (⊥,𝒟𝑖))

Denote the transcript of events visible to 𝒜 during this call to Access as ti. After the i-

th call to Access, there are one of two outcomes. First, the client aborts with ⊥ and

the protocol terminates. Second, the client makes the (i + 1)-th call to Access, during

which 𝒜 may adaptively change its strategy based on its current view, namely

{D0,t0, …, ti}. (Implicit in the adversary’s view is that the client did not abort during the

first i calls.)

Repeat this procedure for 𝓂′ calls to Access, which denotes the point when the client

aborts or 𝒵 stops submitting operations (whichever comes first). The distribution

output by the experiment is then {D0,t0, …, 𝑡𝓂′} or {D0,t0, …, 𝑡𝓂′, ⊥} depending on

whether an abort occurred.

2. (Ideal world). Repeat the experiment in the real world with 𝒮′, except for the

following: Replace the transcript of events visible to 𝒮′ during each call to Access

with the symbol Τ (if the client does not abort) and ⊥ (otherwise). Suppose the

experiment terminates or concludes after 𝓂′′ calls to Access. The distribution

 Oblivious RAM from theory to practice

University of Piraeus 18

output by the experiment is {D0, {Τ𝓂′′
}} or {D0, Τ𝓂′′− 1, ⊥} depending on whether

an abort occurred.

Definition 4 (Termination channel security: verifiability/integrity). Consider the

following correctness experiment. The client and 𝒜 run 𝓂′ rounds of the Access

protocol, at which point the protocol naturally terminates or prematurely aborts as

described above. Correctness requires that except with negligible probability:

1. If the client aborted: op1, op2, …, op𝓂′−1are correct.

2. Otherwise (if the protocol naturally concluded): op1, op2, …, op𝓂′ are correct.

Correctness of each trace follows the definition from Section 2.2 and is from the

perspective of 𝒵.

2.3 Metrics

We will gauge ORAM schemes primarily on the following performance metrics. Note

regarding notation: Metrics are in bits unless otherwise specified.

Client/server storage. The client/server's storage, given by |𝒞| and |𝒟| in the above

definitions, refers to the number of blocks held by the client and server at the start of

an Access operation. In all the schemes we describe, the client/server storage after

and during each call to Access will be the same asymptotically as the starting size, so

we will not distinguish these cases. Following conventions from related work, we say

client storage is small if it is O(Β polylog N) and large if it is Ω(Β√𝑁) – where Β is the

data block size in bits. We consider an insecure block storage system to require O(ΒN)

server storage and O(Β) client storage, thus this is optimal for an ORAM as well.

Bandwidth cost and bandwidth blowup. An ORAM's bandwidth cost refers to the

average number of bits transferred for accessing each block of Β bits. An ORAM's

bandwidth blowup is defined as its bandwidth cost divided by Β (i.e., the bit-length of

a data block). Effectively, the bandwidth blowup means the multiplicative factor in

bandwidth one needs to pay to get obliviousness.

Client-server bandwidth. Client-server bandwidth (bandwidth for short) refers to the

number of blocks sent between the client and server to serve all Access operations,

over the number of accesses made (i.e., is amortized). Insecure block storage systems

require O(Β) bandwidth. When we say an ORAM requires O(Β logN) bandwidth, this

may also be interpreted as O(logN) bandwidth blowup/overhead relative to the

insecure system. Note that some ORAM schemes only achieve their best bandwidth

given large-enough blocks. If the allowed block size is larger than the client

application's desired block size, the bandwidth blowup increases proportionally.

 Oblivious RAM from theory to practice

University of Piraeus 19

In addition to the primary metrics, we will analyze the following as they become

relevant to different constructions.

Online bandwidth. The online bandwidth during each access refers to the blocks

transferred before the access is completed from the client's point of view. By the

“client's point of view," we are mainly interested in the case when the access type is

read: i.e., online bandwidth represents the critical-path operation, the time between

when the client requests a block and receives that block. To hide whether the

operation type is read or write, however, ORAM schemes typically make Access

perform the same operations from the server's perspective, regardless of operation

type. So, for the rest of the thesis online bandwidth will refer to the blocks transferred

before data is returned to the client, as if every client operation was a read. After the

online phase of Access, more block transfers may be required before the access is

complete, which we call the offline phase.

Worst-case bandwidth. The worst-case bandwidth refers to the per-Access

bandwidth if amortization is not possible. For certain ORAM schemes, the bandwidth

per call to Access is naturally the same for every call (in which case worst-case equals

bandwidth). In other schemes, offline bandwidth can be pushed to future calls to

Access to improve the online bandwidth of multiple consecutive requests. This is to

improve performance of “bursty workloads:" if the client must make two read

requests before proceeding in its computation, the effective online bandwidth is the

online bandwidth of both calls to Access and the offline bandwidth of the first call to

Access.

Server computation. The server computation is the amount of untrusted, local

computation performed by the server, in addition to performing simple memory

read/write operations. In the first ORAM papers [1, 34], the server is assumed to only

perform read and write operations to untrusted storage. In practice, many recent

constructions have implicitly assumed the server is able to perform some amount of

computation on data to reduce client-server bandwidth. Depending on the amount of

computation, the computation may become the system bottleneck.

Number of round-trips. The number of round-trips refers to the round-trip block

traffic between client and server during each call to Access. As in regular systems

design, more roundtrips means worse performance since future operations must wait

for the interconnect latency between client and server.

Number of accesses. The “number of accesses" metric characterizes how many times

the ORAM client must access physical memory on average to satisfy each ORAM

request. Two blocks at different addresses count as two distinct accesses even if they

are accessed in the same roundtrip. This was the original metric considered by

Goldreich and Ostrovsky in their original ORAM work (where they equivalently call it

 Oblivious RAM from theory to practice

University of Piraeus 20

the runtime blowup comparing the Oblivious RAM simulation and the original non-

oblivious RAM).

We note that the “number of accesses metric" is in fact the same as bandwidth

blowup if block sizes are uniform. However, these metrics do not necessarily agree

when blocks have non-uniform sizes, e.g., in recent tree-based ORAM schemes [2, 4],

a “big data block, little metadata block" trick is commonly used to achieve better

bandwidth costs.

Circuit size. The circuit size metric for ORAMs was first raised by Wang et al. [31], and

is defined as the total circuit size of the ORAM client algorithm Next over all execution

rounds during each ORAM request.

2.4 Settings

Many of the techniques presented in the thesis are general and help improve any

ORAM deployment.

Outsourced storage. Here, a client (e.g., a mobile device or in-house data

management system) wishes to securely store data on a remote storage provider. We

assume the storage provider acts as block storage (e.g., Amazon S3): the operations

exposed to the client are to read/write blocks of data [35]. The trusted computing

base (TCB) is the client machine: we wish to eliminate access pattern leakage, given a

potentially malicious adversary, at all points beyond the client (e.g., the network,

server, etc).

Secure processor. Here, a client wishes to outsource computation to a server or to

obfuscate its execution in an Internet-of-Things (IoT) environment. In the outsourcing

setting, there is a remote client, a secure processor on the server, and the rest of the

server state (e.g., its DRAM / disk hierarchy). In a setup phase, the client loads data

and (possibly) a program into the secure processor using conventional secure

channels and attestation techniques. Once setup, the secure processor computes the

result of running the program on the provided data, and sends it back to the client

(also using secure channels). In the IoT setting, a processor collects and computes on

data in a hostile environment where the adversary may have physical access to the

device. The TCB is the secure processor and the remote client (if one exists).

As the program runs, we wish to eliminate access pattern leakage to main memory,

given a potentially malicious adversary, when last-level cache (LLC) misses occur.

Several possible attacks include cold boot [36], intercepting data on the memory bus

[37, 38], BIOS flashing [39, 40], and in general multiple processors (or helper modules

such as the Intel Management Engine [41]) sharing main memory in space or time.

 Oblivious RAM from theory to practice

University of Piraeus 21

2.5 ORAM History

We now review prior ORAM work more generally. We start by describing the three

main families of ORAM schemes. The goal is to show the progression of ideas over

time. The three schemes detailed below all require O(B) client storage (asymptotically

optimal).

2.5.1 Square root ORAM (1987)

The study of ORAM was initiated by Goldreich [34], who sought to address the

problem of software IP theft. This problem is similar to our secure processor setting:

for a program running on a remote secure processor, one wishes to hide a program's

control flow as determined by the address pattern to main memory. The trivial

solution is to scan all of memory on each access, which has O(BN) online/overall

bandwidth.

To address the high online bandwidth in the trivial scheme, Goldreich proposed the

square root ORAM. In this design, the server memory is into two regions: a main O(N)

block region and a shelter of size O(√𝑁) blocks. The main region is filled with O(N) real

blocks and O(√𝑁) dummy blocks. All blocks are encrypted using a semantically secures

scheme and shuffled together. How the permutation is selected is implementation

dependent; the square root ORAM uses a random oracle / hash function followed by

an oblivious sort.

To make an access, the client first scans the entire shelter. If the block is found there,

the client reads a random, previously unread dummy block from the main region.

Otherwise, the client uses the hash function to determine the address of the block of

interest in the main region. Finally, the real or dummy block is re-encrypted and

appended to the shelter. Thus, the online bandwidth is O(B√𝑁). The intuition for

security is that each read scans the shelter, and performs a read to a random,

previously unread slot in the main region.

Every O(√𝑁) accesses, the main region runs out of dummies and must be fully re-

permuted by the client. [34] achieves this eviction step by using an oblivious sort and

a new keyed hash function to re-mix the shelter into the main region and re-permute

the main region. Using the sorting algorithm described in the paper, this step requires

O(B) client storage, and O(ΒN logN) bits to be transferred every O(√𝑁) accesses, giving

the scheme a O(Β√𝑁 logN) amortized bandwidth.

 Oblivious RAM from theory to practice

University of Piraeus 22

2.5.2 Hierarchical ORAM (1996)

Goldreich and Ostrovsky proposed the hierarchical ORAM [1] to improve the online

and overall bandwidth of the square root algorithm. The key idea is to, instead of

having one main memory region and shelter, organize the server as a pyramid of

permuted arrays where each array is geometrically (e.g., a factor of 2) larger than the

previous array. Each permuted array acts as the main region in the square root ORAM,

and thus is parameterized by a hash function and has space reserved for dummy

blocks.

To access a block, each level in the pyramid is accessed as if it were the main region

in the square root ORAM. To avoid collisions in the hash function for the smaller levels,

each slot in each permuted array is treated as a bucket of size O(logN) blocks. The

hash function now maps blocks to random buckets. Buckets are downloaded

atomically by the client when read/written to, and the bucket size is set to make

overflow probability negligible. Thus, online bandwidth is O(𝑙𝑜𝑔2N): the cost to access

O(logN) buckets (one per level in the pyramid) of O(logN) blocks each.

Instead of scanning a shelter, each block accessed is appended to the smallest level

of the pyramid after that access. Eventually (like the shelter), the top (or root) of the

pyramid will fill, and an eviction step must merge it into the second pyramid level.

When the second level fills, it along with the first level is merged into the third level,

so on to the largest level of O(N) blocks. In general, merging levels 0 through i involves

completely re-shuffling the contents of those levels into a new array which becomes

level i + 1. The worst case and amortized bandwidth cost of this operation is O(N

𝑙𝑜𝑔2N) and O(𝑙𝑜𝑔3N) blocks, respectively.

2.5.3 Tree ORAM (2011)

Shi et al. [4] proposed the tree ORAM to decrease the worst-case bandwidth cost of

the hierarchical ORAM to be O(polylog N) blocks.

The key idea in the tree ORAM is that, instead of blocks stored in level i having

complete freedom on where they will be re-shuffled into in level i+1 (as with the

hierarchical solution), blocks may only live in a single pre-ordained bucket per level.

This is accomplished by connecting the buckets in the hierarchical ORAM pyramid as

if they were nodes in a binary tree, and associating each block to a random path of

buckets from the top bucket (the root bucket) to a leaf in the tree.

To access a block the client first looks up a position map, a table in client storage

which tracks the path each block is currently mapped to, and then reads all the

buckets on the block's assigned path. The scheme achieves access pattern privacy by

 Oblivious RAM from theory to practice

University of Piraeus 23

re-mapping the accessed block to a new random path when it is accessed. Similar to

[1], the tree ORAM requires buckets to be size O(logN) for reasons that will be

described below. Thus, online bandwidth is also O(B 𝑙𝑜𝑔2N).

Similar to the hierarchical ORAM, each block accessed is appended to the root bucket

at the end of each access. To prevent the root bucket (or any other bucket) from

overflowing, an eviction procedure downloads O(1) buckets per level per access to try

and push blocks down the tree subject to blocks needing to stay on their assigned

paths. This operation has an amortized and worst-case bandwidth overhead of O(B

𝑙𝑜𝑔2N).

 Oblivious RAM from theory to practice

University of Piraeus 24

3 Path ORAM Family

3.1 Path ORAM

We present Path ORAM, an extremely simple Oblivious RAM protocol with a small

amount of client storage. Partly due to its simplicity, Path ORAM is one of the most

practical ORAM scheme known to date with small client storage. In paper [2] is proven

that Path ORAM has a O(logN) bandwidth cost for blocks of size B = (𝑙𝑜𝑔2N) bits. For

such block sizes, Path ORAM is asymptotically better than the best known ORAM

schemes with small client storage. Due to its practicality, Path ORAM has been

adopted in the design of secure processors since its proposal.

3.1.1 The Path ORAM Protocol

We give an informal overview of the Path ORAM protocol. The client stores a small

amount of local data in a stash. The server-side storage is treated as a binary tree

where each node is a bucket that can hold up to a fixed number of blocks.

Main invariant. We maintain the invariant that at any time, each block is mapped to

a uniformly random leaf bucket in the tree, and unstashed blocks are always placed

in some bucket along the path to the mapped leaf.

Whenever a block is read from the server, the entire path to the mapped leaf is read

into the stash, the requested block is remapped to another leaf, and then the path

that was just read is written back to the server. When the path is written back to the

server, additional blocks in the stash may be evicted into the path as long as the

invariant is preserved and there is remaining space in the buckets.

3.1.1.1 Server Storage

Data on the server is stored in a tree consisting of buckets as nodes. The tree does not

have to necessarily be a binary tree, but we use a binary tree in our description for

simplicity.

Binary tree. The server stores a binary tree data structure of height L and 2L leaves.

The tree can easily be laid out as a flat array when stored on disk. The levels of the

tree are numbered 0 to L where level 0 denotes the root of the tree and level L

denotes the leaves.

Bucket. Each node in the tree is called a bucket. Each bucket can contain up to Z real

blocks. If a bucket has less than Z real blocks, it is padded with dummy blocks to

always be of size Z. It suffices to choose the bucket size Z to be a small constant such

as Z = 4.

 Oblivious RAM from theory to practice

University of Piraeus 25

Path. Let x ∈ {0, 1, ..., 2L -1} denote the x-th leaf node in the tree. Any leaf node x

defines a unique path from leaf x to the root of the tree. 𝒫(x) is used to denote set of

buckets along the path from leaf x to the root. Additionally, 𝒫(x, ℓ) denotes the bucket

in 𝒫(x) at level ℓ in the tree.

Server storage size. Since there are about 𝑁 buckets in the tree, the total server

storage used is about Z ∙𝑁 blocks.

3.1.1.2 Client Storage and Bandwidth

The storage on the client consists of 2 data structures, a stash and a position map.

Stash. During the course of the algorithm, a small number of blocks might overflow

from the tree buckets on the server. The client locally stores these overflowing blocks

in a local data structure S called the stash.

Position map. The client stores a position map, such that x := position[a] means that

block a is currently mapped to the x -th leaf node – this means that block a resides in

some bucket in path 𝒫(x), or in the stash. The position map changes over time as

blocks are accessed and remapped.

3.1.1.3 Path ORAM Initialization

The client stash S is initially empty. The server buckets are initialized to contain

random encryptions of the dummy block (i.e., initially no block is stored on the

server). The client's position map is filled with independent random numbers between

0 and 2L – 1.

Figure 2: Path ORAM Access Algorithm

Access(op, a, data*)

1: x ← position[a]
2: position[a] ← UniformRandom (0…2L – 1)
3: for ℓ ∈ {0,1, …., L} do
4: S ← S ∪ ReadBucket(𝒫(x, ℓ))
5: end for
6: data ← Read block a from S
7: if op := write then
8: S ← (S – {(a,data)}) ∪ {(a, data*)}

9: end if
10: for ℓ ∈ {L, L-1, …, 0} do
11: S’ ← {(a’, data’) ∈ S : 𝒫(x, ℓ) = 𝒫(position[a’], ℓ)}
12: S’ ← Select min(|S’|,Z) blocks from S’
13: S ← S – S’
14: WriteBucket(𝒫(x, ℓ),S’)
15: end for
16: return data

 Oblivious RAM from theory to practice

University of Piraeus 26

3.1.1.4 Path ORAM Reads and Writes

In Path ORAM construction, reading and writing a block to ORAM is done via a single

protocol called Access described in Figure 2. Specifically, to read block a, the client

performs data ← Access(read, a, None)and to write to write data* to block a, the client

performs Access(write, a, data*). The Access protocol can be summarized in 4 simple

steps:

1. Remap block: Randomly remap the position of block a to a new random

position. Let x denote the block's old position.

2. Read path: Read the path 𝒫(x) containing block a.

3. Update block: If the access is a write, update the data stored for block a.

4. Write path: Write the path back and possibly include some additional blocks

from the stash if they can be placed into the path. Buckets are greedily filled

with blocks in the stash in the order of leaf to root, ensuring that blocks get

pushed as deep down into the tree as possible. A block a' can be placed in the

bucket at level ℓ only if the path 𝒫(position[a']) to the leaf of block a'

intersects the path accessed 𝒫(x) at level ℓ. In otherwords, if 𝒫(x, ℓ)=

𝒫(position[a'], ℓ).

Note that when the client performs Access on a block for the first time, it will not find

it in the tree or stash, and should assume that the block has a default value of zero.

Subroutines. We now explain the ReadBucket and theWriteBucket subroutine. For

ReadBucket(bucket),the client reads all Z blocks (including any dummy blocks) from

the bucket stored on the server. Blocks are decrypted as they are read. For

WriteBucket(bucket, blocks), the client writes the blocks into the specified bucket on

the server. When writing, the client pads blocks with dummy blocks to make it of size

Z - note that this is important for security. All blocks (including dummy blocks) are re-

encrypted, using a randomized encryption scheme, as they are written.

Computation. Client's computation is O(logN) ∙ ω(1) per data access. In practice, the

majority of this time is spent decrypting and encrypting O(logN) blocks per data

access. We treat the server as a network storage device, so it only needs to do the

computation necessary to retrieve and store O(logN) blocks per data access.

3.1.2 Security Analysis

To prove the security of Path-ORAM, let �⃗� be a data request of size M. By the

definition of Path-ORAM, the server sees A(�⃗�) which is a sequence

p = (positionM[aM], positionM-1[aM-1], ..., position1[a1])

 Oblivious RAM from theory to practice

University of Piraeus 27

where positionj[aj] is the position of the address aj indicated by the position map for

the j-th load/store operation, together with a sequence of encrypted paths

𝒫(positionj(aj)), 1 ≤ j ≤ M, each encrypted using randomized encryption. The

sequence of encrypted paths is computationally indistinguishable from a random

sequence of bit strings by the definition of randomized encryption (note that

ciphertexts that correspond to the same plaintext use different randomness and are

therefore indistinguishable from one another).

Notice that once positioni(ai) is revealed to the server, it is remapped to a completely

new random label, hence, positioni(ai) is statistically independent of 𝒫(positionj(aj) for

i < j with aj = ai. Since the positions of different addresses do not affect one another in

Path ORAM, positioni(ai) is statistically independent of positionj(aj) for i < j with aj ≠ ai.

This shows that positioni(ai) is statistically independent of positionj(aj) for i < j,

therefore, (by using Bayes rule) Pr(p) = ∏ PrM
𝑗=1 (positionj(aj)) = (

1

2𝐿
)M. This proves that

A(�⃗�) is computationally indistinguishable from a random sequence of bit strings.

3.1.3 Recursion

In the non-recursive scheme described in the previous section, the client must store

a relatively large position map. We can leverage the same recursion idea as described

in the ORAM constructions of Stafanov et al. [3] and Shi et al. [4] to reduce the client-

side storage. The idea is simple: instead of storing the position ma on the client side,

we store the position on the server side in a smaller ORAM, and recurs.

More concretely, consider a recursive Path ORAM made up of series of ORAMs called

ORAM0, ORAM1, ORAM2, ..., ORAMX where ORAM0 contains the data blocks, the

position map of ORAMi ORAMi+1, and the client stores the position map for ORAMX.

To access a block in ORAM0 the client looks up its position in ORAM1, which triggers a

recursive call to look up the position of the position in ORAM2, and so on until finally

a position of ORAMX is looked up in the client storage.

3.2 Optimization of Path Oblivious RAM in Secure Processors

In this section, we present techniques that proposed at [7] and make Path ORAM

practical in a secure processor setting. The first technique is called background

eviction scheme to prevent Path ORAM failure and allow for a performance-driven

design space exploration. The second technique is called super blocks to further

improve Path ORAM’s performance, and also show an efficient integrity verification

scheme for Path ORAM.

3.2.1 Background Eviction

To be usable, a background eviction scheme must:

 Oblivious RAM from theory to practice

University of Piraeus 28

a) Not change the ORAM’s security guarantees,

b) Make the probability of stash overflow negligible and

c) Introduce as little additional overhead to the ORAM’s normal operation as

possible.

For instance, a strawman scheme could be to read/write every bucket in the ORAM

tree when stash occupancy reaches a threshold – clearly not acceptable from a

performance standpoint. Unfortunately, the strawman scheme is also not secure. If

background evictions occur when stash occupancy reaches a threshold, the fact that

background evictions occurred can leak privacy because some access patterns fill up

the stash faster than others. For example, if a program keeps accessing the same block

over and over again, the requested block is likely to be already in the stash – not

increasing the number of blocks in the stash. In contrast, a program that scans the

memory (i.e., accesses all the blocks one by one) fills up the stash much faster. If an

attacker realizes that background evictions happen frequently, the attacker can infer

that the access pattern of the program is similar to a memory scan and can possibly

learn something about private data based on the access pattern.

One way to prevent attacks based on when background evictions take place is to make

background evictions indistinguishable from regular ORAM accesses. The proposed

background eviction scheme prevents Path ORAM stash overflow using dummy

load/stores. To prevent stash overflow, it stops serving real memory requests and

issue dummy requests whenever the number of blocks in the stash exceeds C – Z(L+1).

(Since there can be up to Z(L+1) real blocks on a path, the next access has a chance to

overflow the stash at this point.) A dummy access reads and decrypts a random path

and writes back (after re-encryption) as many blocks from the path and stash as

possible. A dummy access will at least not add blocks to the stash because all the

blocks on that path can at least go back to their original places (note that no block is

remapped on a dummy access). Furthermore, there is a possibility that some blocks

in the stash will find places on this path. Thus, the stash cannot overflow and Path

ORAM cannot fail, with this background eviction scheme. It keeps issuing dummy

accesses until the number of blocks in the stash drops below the C – Z(L+1) threshold,

at which point the ORAM can resume serving real requests again.

This background eviction scheme can be easily extended to a hierarchical Path ORAM.

If the stash of any of the ORAMs in the hierarchy exceeds the threshold, it issues a

dummy request to each of the path ORAMs in the same order as a normal access, i.e.,

the smallest Path ORAM first and the data ORAM last.

Liveclock. The proposed background eviction scheme does have an extremely low

probability of livelock. Livelock occurs when no finite number of background evictions

is able to reduce the stash occupancy to below C –Z(L+1) blocks. For example, all

 Oblivious RAM from theory to practice

University of Piraeus 29

blocks along a path may be mapped to the same leaf ℓ and every block in the (full)

stash might also map to leaf ℓ. In that case no blocks in the stash can be evicted, and

dummy accesses are continually performed (this is similar to a program hanging).

However, the possibility of such a scenario is similar to that of randomly throwing 32

million balls (blocks) to 16 million bins (leafs) with more than 200 balls (stash size)

landing into the same bin—astronomically small (on the 10−100 scale). Therefore, we

do not try to detect or deal with this type of livelock. It is noted that livelock does not

compromise security.

3.2.1.1 Security of the background eviction

Background eviction scheme does not leak any information. Recall that the original

Path ORAM (with an infinite stash and no background eviction) is secure because,

independent of the memory requests, an observer sees a sequence of random paths

being accessed, denoted as

P = {p1, p2, …,pk,…},

where pk is the is the path that is accessed on k - th memory access. Each pk, (k = 1, 2,

…) follows a uniformly random distribution and is independent of any other pj in the

sequence. Background eviction interleaves another sequence of random paths qm

caused by dummy accesses, producing a new sequence

Q = {p1, p2, …, pk1, q1, …, qk2,q2, …},

since qm follows the same uniformly random distribution with pk and qm is independent

of any pk and any qn (n ≠ m), Q also consists of randomly selected paths, and thus is

indistinguishable from P. This shows the security of the proposed background

eviction.

3.2.2 Super Blocks

Another way to improve Path ORAM’s efficiency is to increase the amount of useful

data per ORAM access, by loading multiple useful blocks on an ORAM access.

However, this is almost impossible in the original Path ORAM, since blocks are

randomly dispersed to all the leaves and are unlikely to reside on the same path.

To load a group of blocks on a single access, these blocks have to be intentionally

mapped to the same leaf in the ORAM tree. Such a group of blocks is called as super

block. It is important to note that the blocks within a super block S do not have to

reside in the same bucket. Rather, they only have to be along the same path so that

an access to any of them can load all the blocks in S.

 Oblivious RAM from theory to practice

University of Piraeus 30

When a block b ∈ S is evicted from on-chip cache, it is put back into the ORAM stash

without waiting for other blocks in S. At this point it can find its way to the ORAM tree

alone. When other blocks in S get evicted from on-chip cache at a later time, they will

be assigned and evicted to the same path as b. We remark that this is the reason why

super blocks are not equivalent to having larger blocks (cache lines): a cache line is

either entirely in on-chip cache, or entirely in main memory.

Super blocks create other design spaces for Path ORAM, such as super block size,

which blocks to merge, etc. In paper [7], only adjacent blocks are merged in the

address space into super blocks. This can exploit most of the spatial locality in an

application, while keeping the implementation simple. The following scheme is used.

Static merging scheme. Only merge adjacent blocks (cache lines) into super blocks of

a fixed size. The super block size is determined and specified to the ORAM interface

before the program starts. At initialization stage, data blocks are initially written to

ORAM, and the ORAM interface simply assigns the same leaf label to the blocks from

the same super block. The additional hardware required is small.

3.2.2.1 Security of Super Blocks

For the same reasons as background eviction, an access to a super block must be

indistinguishable from an access to a normal block for security reasons. In the scheme

above, a super block is always mapped to a random leaf in the ORAM tree in the same

way as a normal block. If any block in the super block is accessed, all the blocks are

moved from ORAM to on-chip cache and also remapped to a new random leaf. A

super block access also reads and writes a path, which is randomly selected at the

previous access to this super block. This is exactly the Path ORAM operation.

Splitting/merging super blocks is performed on-chip and is not revealed to an

observer.

3.3 Circuit ORAM

In this section we present the tree-based ORAM scheme called Circuit ORAM [8].

Circuit ORAM shows that the well-known Goldreich-Ostrovsky logarithmic ORAM

lower bound is tight under certain parameter ranges, for several performance

metrics. From a practical perspective, Circuit ORAM earns its name because it

achieves (almost) optimal circuit size both in theory and in practice for realistic choices

of block sizes. Thus, Circuit ORAM is ideal for secure multi-party computation

applications.

 Oblivious RAM from theory to practice

University of Piraeus 31

3.3.1 The Circuit ORAM Protocol

Circuit ORAM follows the tree-based ORAM framework, by building a binary tree

containing N nodes (referred as buckets), where each bucket can store Z = O(1)

number of blocks. We provide two definitions Legally side and Deepness w.r.t eviction

path before below before we provide a detailed scheme description.

Definition 5 (Legally reside). We say that a block B can legally reside in path[ℓ] if by

placing B in path[ℓ], the main path invariant is satisfied.

Definition 6 (Deepness w.r.t eviction path). For a given eviction path, block B0 is

deeper that block B1 (with respect to path), if there exists some path[ℓ] such that B0

can legally reside in path[ℓ], but B1 cannot; in the case when both blocks can legally

reside in the same buckets along path, the block with smaller index idx will be

considered deeper.

 In other word B0 is deeper on the current eviction path than B1 if it can legally reside

nearer to the leaf along path. If two blocks have the same deepness, we use their

indices idx to resolve ambiguity. The notion of deepness and greedy eviction choice

of the deepest block on a path came by the novel ideas of the CLP ORAM [9], but it is

applied in a different manner.

3.3.1.1 Intuition

The main idea is to have an eviction algorithm that is easy to implement as a small

circuit. Ideally it should make a single scan of the data blocks on the eviction path from

the stash to leaf (and only a constant number of metadata scans), and still try to push

blocks towards the leaf as much as possible.

During the one-pass scan of the data blocks, the client “picks up" (i.e., remove from

path) and holds onto one block, which can later be “dropped" somewhere further

along the path. At any point of time, the client should hold onto at most one block.

Further, it makes sense for the client to hold onto the currently deepest block when

it does decide to hold a block. This way, the block in holding will have the maximum

chance of being dropped later. On encountering a deeper block, the client could swap

it with the one in holding.

However, a dilemma arises. How does the client decide when it should pick up a block

and hold onto it? Maybe this block will never get a chance to be dropped later, in

which case there will be two equally bad choices: 1) put the block into the stash -

which results in rapid stash growth; and 2) go back and revisit the path to write the

block back. However, doing this obliviously results in high cost.

 Oblivious RAM from theory to practice

University of Piraeus 32

Remedy: lookahead mechanism with two metadata scans. The above issues result

from the lack of foresight. If the client could only know when to pick up a block and

place it in holding, and when to write the block back into an available slot, then these

issues would have been resolved. Instead of that the idea is to rely on two metadata

scans prior to the real block scan, to compute all the information necessary for the

client to develop this foresight. These metadata scans need not touch the actual

blocks on the eviction path, but only metadata information such as the leaf label for

each block, and the dummy bit indicator for each block. If the bucket size is O(1), then

the bandwidth blowup is O(logN).

Figure 3: EvictOnceSlow Algorithm

3.3.1.2 Detailed Scheme Description

A slow and non-oblivious version of the eviction algorithm. To aid understanding,

we first describe a slow, non-oblivious version of the Circuit eviction algorithm,

EvictOnceSlow, as shown in Figure 3. This slow version only serves to illustrate the

effect of the eviction algorithm, but does not describe how the algorithm can be

efficiently implemented in circuit. Furthermore, this slow, non-oblivious version of the

Circuit eviction algorithm gives a simpler way to reason about the stash usage of the

algorithm. Later in this section, we describe how to implement the Circuit eviction

algorithm efficiently and obliviously by making use of two metadata scans and a one

real block scan; this can be readily converted into a small-sized circuit. The

EvictOnceSlow algorithm makes a reverse (i.e., leaf to stash) scan over the current

eviction path. When it first encounters an empty slot in path[i], it will try to evict the

deepest block B in path[0..i – 1] to this empty slot, provided that the block B can legally

reside in path[i]. Suppose this deepest block B resides in path[ℓ] where ℓ< i. After

relocating the block B to path[i], the algorithm now skips levels path[ℓ+1.. i – 1], and

continues its reverse scan at level ℓ instead (Line 8 in Algorithm 1). In case no block in

path[0..i – 1] can fill the empty slot in path[i], the scan simply continues to level path[i

– 1].

EvictOnceSlow(path)

1: := 𝐿
2: while 𝑖 ≤ 1 do:
3: if path[𝑖] has empty slot then
4: (B, ℓ) := Deepest block in path[0.. 𝑖 - 1] that can legally reside in path[𝑖]
5: end if
6: if B ≠ ⊥ then
7: Move B from path[ℓ] to path[𝑖]
8: 𝑖 := ℓ

9: else
10: 𝑖 := 𝑖 – 1
11: end if
12: end while

 Oblivious RAM from theory to practice

University of Piraeus 33

Circuit ORAM eviction algorithm. In Figure 3, Line 4 is inefficient, and Line 8 is non-

oblivious. We now present how to implement the same EvictSlow algorithm

obliviously and efficiently, but using two metadata scans (Algorithms PrepareDeepest

and PrepareTarget) plus a single real block scan (Algorithm 4). Since metadata is

typically much smaller than real data blocks, a metadata scan is faster than a real block

scan. The two metadata scans will generate two helper data structures:

 An array deepest[1..L], where deepest[i] = ℓ means that the deepest block in

path[0..i – 1] that can legally reside in path[i] is now in level ℓ < i. If no block

in path[0..i – 1] can legally reside in path[i], then deepest[i] := ⊥. In the pre-

processing state, one metadata scan will be used, namely the PrepareDeepest

subroutine (see Figure 4), to populate the deepest array. This allows us to avoid

Line 4 in Figure 3 causing an additional Θ(L) overhead.

 An array target [0..L], where target[i] stores which level the deepest block in

path[i] will be evicted to. This target array is prepopulated using a backward

metadata scan as depicted in the PrepareTarget algorithm (see Figure 5).

Observe that the prepopulated target array basically gives a precise prescription of

the client's actions (including when to pick up a block and when to drop it) during the

real block scan At this moment, the client performs a forward block scan from stash

to leaf, as depicted in the EvictOnceFast algorithm (see Figure 6). The high level idea

here is to “hold a block in one's hand" as one scans through the path, where the block-

in-hand is denoted as hold in the algorithm. This block hold will later be written to its

appropriate destination level, when the scan reaches that level.

Eviction rate and choice of eviction path. For each data access, two paths are chosen

for eviction using the EvictOnceFast algorithm. While other approaches are

conceivable, we describe two simple ways for choosing the eviction paths:

 A random-order eviction strategy denoted EvictRandom() (see Figure 7). The

randomized strategy chooses two random paths that are non-overlapping

except at the stash and the root. This means that one path is randomly chosen

from each of the left and the right branches of the root.

 A deterministic-order strategy denoted EvictDeterministic() (see Figure 8). The

deterministic-order strategy is inspired by Gentry et al. [12] and several

subsequent works [42, 43].

Recursion. So far, we have assumed that the client stores the entire position map.

Based on a standard trick [2, 3, 4], we can recursively store the position map on the

server. In the position map recursion levels, Circuit ORAM uses a different block size

than the main data level as suggested by Stefanov et al. [2]. Specifically, a group c

number of labels in one block for an appropriate constant c > 1. In other words, the

 Oblivious RAM from theory to practice

University of Piraeus 34

block size for position map levels is set to be D’ = O(logN), resulting in O(logN) depth

of recursion. In this way, the total bandwidth cost over all recursion levels would be

O(D logN + log3 N) ∙ ω(1) (for negligible failure probability), assuming that the stashes

reside on the server side, and the hence client only needs to hold a constant number

of blocks at any time. For inverse polynomial failure probability, the total bandwidth

cost is O(D logN + log3 N).

Security Proof. The security proof is trivial. First, as in all tree-based ORAMs, every

time a block is read or written, a random path is read, where the random choice has

not been revealed to the server before. This part of the proof is trivial, and the same

as Shi et al. [4]. It remains to show that the eviction process is oblivious too. As we

can see from Algorithms PrepareDeepest, PrepareTarget and EvictOnceFast, eviction

on a selected path always reads blocks or metadata (stored on the server) in a

sequential manner, either from leaf to root or from root to leaf. Clearly this does not

depend on the logical address being read or written. In fact, saying that the eviction

algorithm (Figure 6) is oblivious is the same as saying that it can be implemented

efficiently in circuit representation. Finally, no matter whether it is used random-

order eviction (Figure 7) or deterministic order eviction (Figure 8), the choice of the

eviction path is also independent of the logical address sequence being read/written.

Figure 4: PrepareDeepest Algorithm

Figure 5: PrepareTarget Algorithm

PrepareDeepst(path)

1: Initialize deepest := (⊥, ⊥, …, ⊥), src := ⊥, goal := ⊥
2: if stash not empty then
3: src := 0
4: goal := Deepest level that a block in path[0] can legally reside on path
5: end if
6: for 𝑖 = 1 to L do
7: if goal ≥ 𝑖 then deepest[𝑖] := src
8: end if
9: ℓ := Deepest level that a block in path[𝑖] can legally reside on path
10: if ℓ > goal then
11: goal := ℓ, src := 𝑖
12: end if
13: end while

PrepareTarget(path)

1: dest := ⊥, src := ⊥, target := (⊥, ⊥, …, ⊥)
2: for 𝑖 = L downto 0 do
3: if (𝑖 == src) then
4: target[𝑖] := dest, dest := ⊥, src := ⊥
5: end if
6: if ((dest = ⊥ and path[𝑖] has empty slot) or (target[𝑖] ≠ ⊥) and (deepest[𝑖] ≠ ⊥) then
7: src := deepest[𝑖]
8: dest := 𝑖
9: end if
10: end for

 Oblivious RAM from theory to practice

University of Piraeus 35

Figure 6: EvictOnceFast Algorithm

Figure 7: EvictRandom Algorithm

Figure 8: EvictDeterministic Algorithm

3.4 Bucket ORAM

Bucket ORAM [44] protocol designed to achieve bandwidth efficiency, and at the

same time to be compatible with known techniques for both single online roundtrip

as well as constant bandwidth blowup. Bucket ORAM is a hybrid between two ORAM

frameworks and enjoys nice properties of both.

Roughly speaking, two types of ORAM constructions have been proposed in the past,

1) those based on the hierarchical framework initially proposed by Goldreich and

Ostrovsky [1]; and 2) those based on the tree-based framework initially proposed by

Shi et al. [4].

Both hierarchical ORAMs and tree-based ORAMs share the common feature of having

exponentially growing levels. One fundamental difference between the two

frameworks is whether they impose restrictions on a block's location within a level,

and how they treat shuffling of data blocks (also referred to as eviction).

Bucket ORAM adopts the level-rebuild-style data shuffling of hierarchical ORAMs,

where larger levels are rebuilt exponentially less often than smaller levels. At the

EvictOnceFast(path)

1: Call the PrepareDeepest and PRepareTarget subroutins to pre-process arrays deepest and target
2: hold := ⊥, dest := ⊥
3: for 𝑖 = 0 to L do
4: towrite := ⊥ (B, ℓ) := Deepest block in path[0.. 𝑖 - 1] that can legally reside in path[𝑖]
5: if (hold ≠ ⊥) and (𝑖 == dest) then
6: towrite := hold
7: hold := ⊥, dest := ⊥
8: end if
9: if (target[𝑖] ≠ ⊥) then
10: hold := read and remove deepest block in path[𝑖] dest :=
11: dest := target[𝑖]
12: end if
13: Place towrite into bucket patjh[𝑖] if towrite ≠ ⊥
14: end for

EvictRandom()

1: Choose a leaf from each of the left and the right branches of the root independently, and denote the two
corresponding (stash-to-leaf) paths by path0 path1

2: Call EvictOnceFast(path0) and EvictOnceFast(path1)

EvictDeterministic()

In timestep t:
1: Choose two paths, path0 and path1, corresponding to the leaves labeled with integers bitrev(2t mod N) and

bitrev((2t + 1) mod N), respectively. In the above bitrev(𝑖) denotes the integer obtained by reversing the bit
order of 𝑖 when expressed in binary

2: Call EvictOnceFast(path0) and EvictOnceFast(path1)
3: Increase t by 1 for the next access

 Oblivious RAM from theory to practice

University of Piraeus 36

same time, Bucket ORAM also places restrictions where blocks can reside in a level

much as in tree-based ORAMs. In this way, Bucket ORAM's level rebuild eviction

involves the client performing local operations on O(1) number of buckets at a time,

and there is no need to perform global oblivious sorting on entire levels.

3.4.1 The Bucket ORAM Protocol

Bucket ORAM features level-rebuild style shuffling just like in hierarchical ORAMs, but

avoids having to perform oblivious sorts globally on all blocks within a level. Instead,

blocks within a level are divided into ω(logN)-sized buckets, and the client works on

four buckets at a time during the level rebuild.

Server layout. Sever storage is organized into 𝐿 = O(logN) levels where level ℓ

contains 2ℓ buckets for ℓ ∈ {0, 1, … , 𝐿 − 1}. Each bucket stores 𝑍 blocks, and each

block is of 𝐵 bits in length. Each block is either a real block or a dummy block, and if

the number of real blocks is < 𝑍, we fill the rest of the bucket with dummies. To help

achieve local shuffles, the server storage is treated as a binary tree where each bucket

is a node in the tree. We get a tree structure by first labeling each bucket in level ℓ

with a unique identifier 𝑖 ∈ {0, 1, … , 2ℓ − 1}. This way, each bucket in level ℓ < 𝐿 − 1

has two distinct child buckets in level ℓ + 1, whose respective identifiers are 2𝑖 and 2𝑖

+ 1.

Client Storage. Like in tree-based ORAM schemes, the client stores an O(N logN)-bit

position map that maps each block to a bucket in level 𝐿 − 1. The client also stores an

eviction buffer of size 𝑍′ = 𝑍/O(1) (denoted ebuffer) containing blocks that have not

been evicted yet.

Block metadata. To enable all ORAM operations, each block carries with it some

metadata besides it payload. For the purpose of this section, each block's metadata

include its type (either “real" or “dummy"), and for a real block, its logical address idx

and path label it's mapped to. Therefore, block formats are as below:

Real Block: (“real”, data, idx, label)

Dummy Block: (“dummy”, data=_, idx=_, label=_)

Main Invariant. Like in tree-based ORAMs, every block is assigned a position label

indicating a leaf node in the tree, and the mapping is stored in the position map. A

block always resides along the path to its designated leaf node.

Recursion. The position map is the O(N logN)-bit. The client can reduce this local

storage to O(1) bits by recursively storing the position map in other smaller ORAMs

using the standard recursion technique [4, 2].

 Oblivious RAM from theory to practice

University of Piraeus 37

Requesting a block. In the basic Bucket ORAM construction, a client requests (either

to read or to update) a block like in any tree-based ORAM (Figure 9). To request a block

with logical address idx, the client looks up the position map to identify the path

where the block resides. The client then reads every block in the eviction buffer and

on the corresponding path. The client is guaranteed to find the block idx in the

process. Finally, the requested block (possible updated by the client) is appended to

the client's local eviction buffer.

Eviction. After 𝑍′ requests, the client-side eviction buffer may be full and called an

eviction routine (Figure 10). The goal of the eviction step is to write the blocks in the

eviction buffer back to the server. In [44] is described a novel eviction routine that

achieves hierarchical ORAM's level rebuild using only local reshuffle. Therefore,

Bucket ORAM does not require large client storage or global oblivious sorting on a

large set of blocks.

Figure 9: Bucket ORAM Request Algorithm

ORAM.Request(op, idx, data)

// Precondition: ebuffer is not full

1: label* ← UniformRandom({0,1}2𝐿−1)
2: label ← position[idx], position[idx] ← label*
3: block ← ⊥
4: for each block0 ∈ {ebuffer ∪ 𝒫(label)} do //path from leaf label to root
5: if blocko.idx = idx then
6: block ← block0

7: end if
8: end for
9: if op is “write”: block.data ← data
10: block.label ← label*
11: ebuffer ← ebuffer ∪ {block}
12: return block.data

ORAM.Eviction(block)

// Happens every 𝑍′ requests
1: Pad ebuffer with 𝑍 − 𝑍′ or more dymmy blocks such that its size is 𝑍
2: if AllLevels[0] is empty on server then
3: Write back ebuffer to AllLeves[0]
4: return
5: end if
6: Let level ← (ebuffer)

7: Let ℓ* := first empty level or 𝐿 − 1 if all levels are full
8: for ℓ = 0 to ℓ* – 1 do
9: level ← Merge(level, AllLevels[ℓ])
10: end for
11: if AllLevels[ℓ*] is empty then
12: AllLevels[ℓ*] := level
13: else // ℓ* must be 𝐿 − 1
14: AllLevels[ℓ*] := MergeInPlace(AllLevels[ℓ*], level)
15: end if

 Oblivious RAM from theory to practice

University of Piraeus 38

Figure 10: Bucket ORAM Evict Algorithm

3.4.2 Bucket ORAM Construction with No Position Map

The standard recursion techniques [2-4, 8, 14] in the basic construction requires

multiple O(logN) interactions with the server for the online phase. In this section, we

describe techniques that will allow to get rid of the client-side position map (hence

recursion is not needed). In this section, the described techniques require that the

server perform computation. Therefore, strictly speaking, we are in the setting of

(Verifiable) Oblivious Storage as phrased by Apon et al. [28].

Intuition. In this new scheme, developed techniques so that the client can read

exactly one block per level (thereby improving online bandwidth) yet be able to

execute the entire request operation in a single roundtrip. For this purpose, we need

each block to be one of three types, a real block, a mask block, and a dummy block. A

dummy block signals an empty slot in the level data structure. Real blocks are the

same as before. However, a new type of block introduced that called a mask block.

Upon being rebuilt, a level will have 𝑍′ ∙ 2ℓ mask blocks (as many as there are real

blocks), and every mask block has a counter maskcnt ∈ {1, 2, … , 𝑍′ ∙ 2ℓ}. The format

of different blocks are summarized below where _ denotes “don't care" fields for each

type of block:

Merge(level, level̅̅ ̅̅ ̅̅)

// level and level̅̅ ̅̅ ̅̅ each contains 𝑚 buckets and resides on server
1: Initialize an empty new levelnew of size 2𝑚 on server
2: for 𝑖 ∈ {0, 1, … , 𝑚 − 1} do

3: Fetch level[𝑖] and level̅̅ ̅̅ ̅̅ [𝑖] from server
4: 𝑚𝑖𝑑 ← (2𝑖 + 1)𝑁/2𝑚

5: 𝑆𝐿 ← Left(level[𝑖], 𝑚𝑖𝑑) ∪ Left(level̅̅ ̅̅ ̅̅ [𝑖], 𝑚𝑖𝑑)

6: 𝑆𝑅 ← Right(level[𝑖], 𝑚𝑖𝑑) ∪ Right(level̅̅ ̅̅ ̅̅ [𝑖], 𝑚𝑖𝑑)

7: bucket𝐿 ← ConstructBucket(𝑆𝐿), bucket𝑅 ← ConstructBucket(𝑆𝑅)
8: Write back bucket𝐿 to levelnew[2𝑖]
9: Write back bucket𝑅 to levelnew[2𝑖 + 1]
10: Return (a pointer to) levelnew

11: end for

MergeInPlace(level, level̅̅ ̅̅ ̅̅)

// level and level̅̅ ̅̅ ̅̅ each contains 𝑚 buckets
1: Initialize an empty new levelnew of size 𝑚 on server
2: for 𝑖 ∈ {0, 1, … , 𝑚 − 1} do

3: Fetch level[𝑖] and level̅̅ ̅̅ ̅̅ [𝑖] from server

4: bucket𝐿 ← ConstructBucket(level[𝑖] ∪ level̅̅ ̅̅ ̅̅ [𝑖])
5: Write back bucket to levelnew[𝑖]
6: end for

Left(bucket, 𝑚𝑖𝑑)

1: Return {block ∈ bucket: (block is “real”) ∧ (block.label < 𝑚𝑖𝑑)}

Right(bucket, 𝑚𝑖𝑑)

1: Return {block ∈ bucket: (block is “real”) ∧ (block.label ≥ 𝑚𝑖𝑑)}

 Oblivious RAM from theory to practice

University of Piraeus 39

Real Block: (“real”, data, idx, label, maskcnt = _)

Mask Block: (“mask”, data =_, idx = _, label = _, maskcnt)

Dummy Block: (“dummy”, data = _, idx = _, label = _, maskcnt = _)

As in hierarchical ORAM and Ring ORAM [11], during each request the client will

download the requested (real) block from a level if it is present, or a previously un-

read mask block otherwise. For security, the distribution of the mask blocks within

the level must be identical to the distribution of real blocks in the level. And obviously

each level must be rebuilt before all the mask blocks can possibly be consumed.

Dummy blocks simply fill in the remaining empty spaces.

Server stores blocks in a hash table. To find the real block (or next mask block) in each

level, we leverage a server-side hash table technique first proposed by Williams and

Sion [45, 46]. For every (encrypted) block stored on the server, either real, mask, or

dummy, the client uses a pseudo-random function to compute a hash key (denoted

hkey), and reveals hkey to the server. The server builds a hash table over the blocks,

such that blocks can be looked up by their hkey. Now, to read a block from a level, the

client would perform a sequence of actions at the end of which produces the hkey of

the block to be retrieved. Specifically, if the block to be retrieved is within the current

level, the client computes the real hkey of the block. If the block is not in the current

level, the client would compute the hkey for the next mask block. As in the previous

paragraph, for security we guarantee that the client will ask for each hkey only once

before the hash table is rebuilt. The client now reveals the hkey to the server to fetch

this block. In this way, the client only fetches a single block from each level instead

of 𝑍. For security, it is important that hkey be pseudorandom and time-dependent. In

other words, the same block will have a different hkey when it is written to the server

again in the future.

Bloom filter. Accompanying the hash table trick, in this constructions adopted a

standard Bloom Filter trick first introduced by Williams and Sion [45, 46]. To allow the

client to determine whether a level contains the desired block, each level has an

auxiliary (encrypted) Bloom filter. To look up a block in a level, the client looks up 𝑘

locations in the the Bloom filter first to determine if the level contains the desired

block. For security, if the desired block has been found in smaller levels, the client

looks up 𝑘 random locations in the Bloom filter. Otherwise, it looks up 𝑘 real locations.

Oblivious sorts on metadata during level rebuilding. During a level rebuilding, the

client performs O(1) number of oblivious sorts on metadata to achieve the following

goals:

 Rebuild the encrypted Bloom filter in synchrony with the new level being

rebuilt.

 Oblivious RAM from theory to practice

University of Piraeus 40

 Randomly distribute mask blocks to all buckets in a level, and assign unique

mask counters.

Pseudo-random hash keys for blocks. Level ℓ has 𝑍′ ∙ 2ℓ mask blocks, and every mask

block has a unique mask counter denoted maskcnt ∈ {1, … , 𝑍′ ∙ 2ℓ}. This guarantees

that each level has at least as many mask blocks as there are real blocks. The mask

counters for all mask blocks within a level must be (pseudo-)randomly distributed to

buckets for security reasons. Then the every block has a hash key defined as follows:

Hkey(block) := {

𝑃𝑅𝐹𝐻(𝑠𝑘, 𝑇‖𝑏𝑙𝑜𝑐𝑘. 𝑖𝑑𝑥)

𝑃𝑅𝐹𝐻(𝑠𝑘, 𝑇‖"𝑚𝑎𝑠𝑘"‖𝑚𝑎𝑠𝑘𝑐𝑛𝑡)
𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

𝑖𝑓 𝑟𝑒𝑎𝑙 𝑏𝑙𝑜𝑐𝑘
𝑖𝑓 𝑚𝑎𝑠𝑘 𝑏𝑙𝑜𝑐𝑘

𝑜. 𝑤.

where 𝑇 denotes the time step when the level has rebuilt, 𝑃𝑅𝐹𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛denotes

different pseudo-random functions employed by the client, and 𝑠𝑘 denotes a client

secret key that is kept confidential from the server. The level number can be uniquely

inferred by the timestamp 𝑇, and therefore we do not separately include the level

number in the 𝑃𝑅𝐹’s input.

Leverage a per-level Bloom filter to compute the hkey of block to fetch. To allow the

client to efficiently query whether a block is contained in a specific level, the client

stores an auxiliary data structure, an encrypted Bloom filter on the server. The check

if a block is within a specific level, the client computes 𝑘 locations in the Bloom filter

as

𝑙𝑜𝑐𝑖 := 𝑃𝑅𝐹𝐵𝐹(𝑠𝑘, 𝑇‖𝑏𝑙𝑜𝑐𝑘. 𝑖𝑑𝑥‖𝑖) (1)

Figure 11: Improved Bucket ORAM Access Algorithm

Access Algorithm that fetches only one block per-level

For each level ℓ, the client stores a current mask counter denoted 𝑚𝑎𝑠𝑘𝑐𝑛𝑡ℓ. When a level ℓ is rebuilt, its
𝑚𝑎𝑠𝑘𝑐𝑛𝑡ℓ is reset to 0.
To look up a block idx, the client does the following:
Initialize found := false, Next, for each level ℓ = 0 to 𝐿 − 1:
Look up Bloom filter:

 If not found, look up 𝑘 real locations in this level’s Bloom filter, where location 𝑖 is computed as in
Equation above (1). If all 𝑘 locations are 1, conclude that the block is in this level, and set found :=
true.

 Else if found, lookup 𝑘 random locations in this level’s Bloom filter.

Compute and reveal hash key to server:

 If block idx is in level ℓ, then reveal the real hkey := 𝑃𝑅𝐹𝐻(𝑠𝑘, 𝑇‖𝑏𝑙𝑜𝑐𝑘. 𝑖𝑑𝑥) to the server, where
𝑇 denotes the last time level ℓ was rebuilt.

 If bloci idx is not in level ℓ, reveal a mask hkey := 𝑃𝑅𝐹𝐻(𝑠𝑘, 𝑇‖𝑏𝑙𝑜𝑐𝑘. 𝑖𝑑𝑥‖𝑚𝑎𝑠𝑘𝑐𝑛𝑡ℓ) to the server,
and then increment 𝑚𝑎𝑠𝑘𝑐𝑛𝑡ℓ.

Retrieve block:

 The server now returns the block with the specified hkey to the client (along with the block’s
location within the level). The online phase ends here.

 In an offline roundtrip, the client marks the block fetched invalid, by setting block.type := “dummy”.

 Oblivious RAM from theory to practice

University of Piraeus 41

where 1 ≤ 𝑖 ≤ 𝑘 and 𝑇 denotes tha last time this level was rebuilt. However, the

moment that a block is found in a level, for all future levels, the client looks up 𝑘

random locations instead.

Putting everything together, the new algorithm for requesting a block is described in

Figure 11. In this algorithm, the client fetches only one block per-level during a request.

Eviction/Level-rebuild. The algorithm for evicting back blocks to the server and

rebuilding levels proceeds in a similar fashion as in Section 3.4.1. However, now the

client has to additionally 1) obliviously rebuild metadata for this level; and 2) randomly

distribute mask blocks to buckets, and assign a unique mask counter maskcnt from

the range {1, … , 𝑍′ ∙ 2ℓ} to each mask block. The random redistribution of mask blocks

to buckets is required to ensure the mask blocks in the rebuilt level have the same

distribution as real blocks from the server's perspective. We note that only the rebuilt

level requires the above two steps, i.e., rebuilding of metadata and redistribution of

mask blocks. Intermediate levels created during the cascading merge will be empty

after the eviction completes and will not be touched during request operations until

they themselves are rebuilt. At a high level, the new level rebuild algorithm works as

follows.

Quadruplet merges on data blocks. First, the client performs quadruplet merges as

in Figure 10. At this moment, observe that 1) the hkeys of the blocks have not been

revealed to the server; and 2) the rebuilt level contains only real and dummy blocks

(i.e., no mask blocks).

Assign mask counters, and randomly distribute mask blocks to buckets. When a

rebuilt level is being accessed in the future, it is crucial for security that from the

server's perspective, every real or mask block is assigned to a random bucket, and

then a random location within the bucket. Real blocks that get merged in the level

have random leaf labels whose values have not been revealed to the server earlier.

And this guarantees that every real block is residing in a random bucket from the

server's perspective. Mask blocks should have this same distribution over the buckets

in the level. Every mask block must also be assigned a unique maskcnt from a

contiguous range {1, … , 𝑍 ∙ 2ℓ}. It is described an oblivious procedure for achieving

the above in Figure 12. This algorithm relies on O(1) oblivious sorting operations on

metadata to distribute all mask blocks to random buckets. Finally, at the end of this

step, hkeys of blocks are revealed sequentially to the server.

Rebuild Bloom filter. Whenever a level is being rebuilt, the client rebuilds the level's

Bloom filter in synchrony with the new level. Doing so would require O(1) oblivious

sorts on metadata only as shown in Figure 13. This algorithm is standard and a similar

version was described by William and Sion [45, 46].

 Oblivious RAM from theory to practice

University of Piraeus 42

Figure 12: Randomly distribute mask blocks to buckets during level rebuilding

Figure 13: Obliviously rebuild Bloom filter in synchrony with a newly rebuilt level

Randomly distribute mask blocks to buckets

Input: A level containing m buckets, where each bucket contains Z blocks, either real or dummy (there is no
mask block in a newly built level after the quadruplet merge step).
Output: A new level, where real blocks reside at random locations in the same bucket. Let 𝑛1, …,𝑛2ℓ be random

variables denoting the number of balls in each bin when we throw 𝑍′ ∙ 2ℓ balls into 2ℓ bins. Each bucket 𝑖 ∈
[2ℓ] has exactly 𝑛𝑖 mask blocks residing at random locations, where each mask block has a unique mask

counter maskcnt ∈ {1, … , 𝑍′ ∙ 2ℓ}. The remainder empty slots in each bucket are populated with dummy
blocks.

1. Metadata array creation. Create an array containing all blocks' metadata. Make a linear scan over the level
and for each bucket 𝑖 = 0 to 2ℓ − 1, append (“dummy”, _, 𝑖) for each dummy block and (“real", _, 𝑖) for each

real block. Then, for 𝑗 = 1 to 𝑍 ∙ 2ℓ: pick a random bucket 𝑖 within this level, and append the metadata entry
(“mask", 𝑗, 𝑟) to the array. The tuple stipulates the “mask" block with maskcnt = 𝑗 will end up in bucket 𝑟.
Note that the number of metadata entries assigned to each bucket is guaranteed to be ≥ 𝑍 at this point.

2. O-sort metadata. Oblivious sort the above array based on increasing order of bucket number (the last

element in the tuple). For the same bucket number, place real block before mask blocks before dummy
blocks.

3. Linear scan. Make a linear scan over the array, and for each bucket number: preserve the first 𝑍 entries and
rewrite all remaining entries as (“dummy", _, ∞).

4. O-sort metadata. Oblivious sort the above array based on increasing order of bucket number. When sorted,

preserve the first 𝑍 ∙ 2ℓ entries and discard the remainder of the array.

5. Permute blocks within each bucket. One bucket at a time, read the next 𝑍 entries from the array (metadata
for real, dummy and mask blocks) and all 𝑍 data blocks in the bucket (some of which will be real blocks).
Randomly permute blocks and metadata within the bucket (on the client side), and write the bucket back.

Obliviously rebuild Bloom filter

Input: The metadata of the real, mask, and dummy blocks within a level, residing on the server side.
Output: A Bloom filter for this level, residing on the server side.

1. Initialization. Make a linear scan over the metadata. For each block:

 If block is real: create 𝑘 pairs (on server): {(𝑙𝑜𝑐𝑖 , 1)}𝑖∈[𝑘] where 𝑙𝑜𝑐𝑖 denotes a location

in the Bloom filter that should be set to 1.

 Else if block is mask or dummy: create 𝑘 pairs (on server): {(⊥, ⊥), …, (⊥, ⊥)}

2. Padding. Let 𝑚 be the total number of blocks (all three types) in a level. At the end of the last step, we have

an array containing 𝑘 ⋅ 𝑚 pairs. Pad this array with the pairs (1, ⊥), (2, ⊥), …, (𝐵𝐹𝑆𝑖𝑧𝑒, ⊥), where 𝐵𝐹𝑆𝑖𝑧𝑒 is
the Bloom filter size.

3. O-sort array. Oblivious sort the padded array lexigraphically where ⊥ is considered lexigraphically larger
than everything else. In the sorted array, all entries (𝑖, _) appear before (𝑗, _) if 𝑖 > 𝑗 where _ denotes
wildcard. Further, all (𝑖, 1) pairs appear before the (𝑖, ⊥) pair. All (⊥, ⊥) pairs appear at the end.

4. Deduplicate pairs. In the linear scan, preserve only the first occurrence of each (𝑖, _) and rewrite all other
occurrences as (⊥, ⊥).

5. O-sort array. Oblivious sort the resulting array lexigraphically. The sorted result should be of the format.

(1,_), (2,_), …, (𝑚, _), (⊥, ⊥), …, (⊥, ⊥)
where each (𝑖, _) is either (𝑖, 1) denoting that the 𝑖-th bit of the Bloom filter should be set, or (𝑖, ⊥) denoting
that the 𝑖-th bit of the Bloom filter should be clear.

6. Finalize Bloom filter. In a synchronized scan of the above array and the Bloom filter, sequentially set all bits
of the Bloom filter as indicated.

 Oblivious RAM from theory to practice

University of Piraeus 43

3.4.3 Security Analysis

In this sections we present the security of the Bucket ORAM protocol and show that

satisfies malicious security.

Lemma 1 (Distribution of block locations within a level). From the server's perspective,

after a level is rebuilt, every real and mask block resides in an independent, random

bucket.

Proof. First, every real block is assigned a fresh, random leaf label when the block was

last fetched. This random choice of leaf label is kept hidden from the server until the

block is next requested. This leaf label places a real block in a random bucket within

the level. Second, mask blocks are distributed to random buckets during the level

rebuild procedure.

Lemma 2 (Every hkey is fetched only once from the server). Every hash key hkey for a

real or mask block is fetched only once by the server before the level is rebuilt.

Further, the request phase will not run out of mask blocks, i.e., will not attempt to

read a mask block whose maskcnt is greater than the number of mask blocks within

the level.

Proof. First, the mask counter for a given level is always incremented whenever a mask

block is fetched, such that the next time, the client would be trying to fetch the next

mask block. Second, when a real block is fetched from a level ℓ, it is logically removed

from the level ℓ. Until the next time the level ℓ is rebuilt, the same block will be found

in a level ℓ′ < ℓ. Therefore, the next time the client seeks the same real block, it will

have been found in a smaller level ℓ′, and the client would be reading the next mask

block from level ℓ. As mentioned earlier, each level ℓ is rebuilt with 𝑍′ ∙ 2ℓ mask blocks.

We also know that level ℓ will be rebuilt every 𝑍′ ∙ 2ℓ time steps. Therefore, the mask

blocks will not run out before the next rebuild. When the next rebuild happens, the

level's mask counter is reset to 0, and all blocks within the level obtain fresh new

hkeys, since the hkeys are time-dependent.

Lemma 3 (Bloom filter reads are oblivious). From the perspective of the server, the

client reads 𝑘 independent, (pseudo-)random locations in the Bloom filter every time.

Proof. If a block has been found in a smaller level, the client reads 𝑘 fresh, random

locations in a level's Bloom filter. If the block has not been found in smaller levels, the

client reads 𝑘 real locations computed with a pseudorandom function 𝑃𝑅𝐹𝐵𝐹.

Assuming security of the 𝑃𝑅𝐹𝐵𝐹, we can pretend that these are random locations, and

further it is important to observe that these locations have not been disclosed to the

server before. In particular, observe that if the client reads 𝑘 real locations in level ℓ's

Bloom filter looking for a specific block idx. This means that block idx resides in a level

 Oblivious RAM from theory to practice

University of Piraeus 44

ℓ′ ≥ ℓ. At the end of the present read operation, the block idx will be relocated to a

level ℓ∗ ≥ ℓ. Until the next time level ℓ is rebuilt, block idx will always exist in a smaller

level than ℓ. This means that the client will never look for block idx in level ℓ again till

the next time level ℓ is rebuilt. As a result, when the client discloses the real Bloom

filter locations to the server, these locations cannot have been disclosed before.

Lemma 4 (Offline shuffling is oblivious). The level rebuilding algorithm has

deterministic, predictable access patterns.

Proof. Straightforward from the description of the algorithms.

Theorem 1 (Obliviousness of the ORAM scheme). Assume that the symmetric-key

encryption scheme used to encrypt data and metadata satisfies semantic security and

that 𝑃𝑅𝐹𝐻 and 𝑃𝑅𝐹𝐵𝐹 are secure pseudorandom functions. Then, the ORAM scheme

described in this section satisfies semi-honest security.

Proof. Based on the set of lemmas above, it is straightforward to construct an ideal-

world simulator for a semi-honest, real-world adversary. Since the symmetric-key

encryption scheme is semantically secure, the simulator simulates all ciphertexts by

random encryptions of 0 of appropriate length. The time step 𝑇 and the

occupied/empty status of each level is known by the simulator, and the access

patterns of the offline shuffling is deterministic and predictable. Therefore, the

simulator can easily simulate the offline shuffling. For the online request phase, the

simulator simulates by reading 𝑘 random locations in the Bloom filter in each level.

The simulator also discloses the hkey of a random block in this level to the real-world

adversary. Each block's hkey is simulated by picking a fresh random string of

appropriate length. It is not hard to argue that no polynomial-time environment can

distinguish the real- and the ideal-worlds.

3.4.3.1 Malicious Security

Malicious security can be obtained in Bucket ORAM scheme with standard

techniques. Most of the data and metadata satisfy predictive time, i.e., the client can

efficiently compute the time at which this block (or metadata) was last written to the

server during a level rebuild.

With the exception of some metadata, can, for the most part, be used time- and

location-aware message authentication codes to achieve malicious security (and

there is no need for building a Merkle-hash tree). Upon retrieving a block from the

server, the client always verifies the message authentication code, and rejects block

if the verification fails.

In Bucket ORAM scheme in this section, block data can be accessed in two modes:

 Oblivious RAM from theory to practice

University of Piraeus 45

1. By their hkeys during the online phase of the block access algorithm.

2. By their explicit physical addresses on the server (typically containing the level

number, the bucket number, and the offset within the bucket) during the offline

shuffling phase.

All auxiliary metadata (including the per-level bloom filters and transient metadata

created during level rebuilding, not including metadata attached to blocks) are always

accessed by their explicit physical addresses. Therefore, below we discuss how to

authenticate auxiliary metadata and block data separately.

Authenticating auxiliary metadata. Observe that in our scheme described in this

section, all auxiliary metadata (including the per-level bloom filters and transient

metadata created during level rebuilding, not including metadata attached to blocks)

are accessed by their explicit addresses. Further, all metadata touched during level

rebuilding is written to the server via linear scans or oblivious sorting. Both of these

operations perform each write to each physical location at public and pre-determined

times. Putting the above observations together, the client can attach a time- and

location-sensitive message authentication code MAC(𝑠𝑘, 𝑇‖𝑝ℎ𝑦𝑠_𝑎𝑑𝑑𝑟‖𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎)

to every auxiliary metadata chunk, where 𝑇 is the time metadata was last written to

the server.

Authenticating block data. Block data (including most directly attached to the block,

such as idx the leaf label) can be accessed by either their hkey or their physical address

on the server. Block data are authenticated also using a time- and location-aware

MAC:

MAC(𝑠𝑘, 𝑇‖𝑝ℎ𝑦𝑠_𝑎𝑑𝑑𝑟‖𝑏𝑙𝑜𝑐𝑘)

where 𝑇 denotes the last time the block was written, and phys_addr typically contains

the level number, bucket number, and offset within the bucket. The only subtlety is

that when the block is accessed by its hkey, the server needs to additionally return

the block's phys_addr to the client, such that the client is able to verify the MAC.

Subtlety. The only exception to this “predictive time” rule is the client invalidating

blocks fetched in the online phase, by setting block.type := “dummy”. Therefore, the

client can employ a merkle hash tree to authenticate dummy bits attached to blocks.

Corollary. Assuming that the underlying ORAM scheme described in Section 3.4.2 has

semi-honest security and that MAC is a secure message authentication scheme, then

the augmented scheme with time- and location-aware message authentication codes

(as described above) satisfies malicious security.

Proof. The simulator is simulating interactions with a real-world adversary 𝒜. For

every block (or metadata) the semi-honest simulator intends to send to the semi-

 Oblivious RAM from theory to practice

University of Piraeus 46

honest real-world adversary, now the simulator interacting with a malicious 𝒜

additionally authenticates the block (or metadata) with time- and location-aware

message authentication code. Whenever 𝒜 returns a block (or metadata), the

simulator verifies the message authentication code. If the verification fails, the

simulator simply aborts. Effectively, any deviation of from the correct behavior by 𝒜

can be detected except with negligible probability. Therefore, any deviation from the

correct behavior translates to an aborting attack in the ideal world.

3.5 Ring ORAM

Ring ORAM [11] is considered the most bandwidth-efficient ORAM scheme for the

small client storage setting. At the core of the construction is an ORAM that achieves

“bucket-size independent bandwidth", which unlocks numerous performance

improvements. In practice, Ring ORAM's overall bandwidth is 2.3× to 3× better than

the prior-art scheme for small client storage. Further, if memory can perform simple

untrusted computation, Ring ORAM achieves constant online bandwidth (∼ 60×

improvement over prior art for practical parameters). On the theory side, Ring ORAM

features a tighter and significantly simpler analysis than prior art.

3.5.1 The Ring ORAM Protocol

We first describe Ring ORAM in terms of its server and client data structures.

Server storage is organized as a binary tree of buckets where each bucket has a small

number of slots to hold blocks. Levels in the tree are numbered from 0 (the root) to L

(inclusive, the leaves) where L = O(log N) and N is the number of blocks in the ORAM.

Each bucket has Z + S slots and a small amount of metadata. Of these slots, up to Z

slots may contain real blocks and the remaining S slots are reserved for dummy blocks.

Client storage is made up of a position map and a stash. The position map is a

dictionary that maps each block in the ORAM to a random path in the ORAM tree

(each path is uniquely identified by the path's leaf node). The stash buffers blocks that

have not been evicted to the ORAM tree and additionally stores Z(L + 1) blocks on the

eviction path during an eviction operation. The position map stores N * L bits, but can

be squashed to constant storage using the standard recursion technique [4].

Main invariants. Ring ORAM has two main invariants:

1. Every block is mapped to a path chosen uniformly at random in the ORAM

tree. If a block α is mapped to path ℓ, block α is contained either in the stash

or in some bucket along the path from the root of the tree to leaf ℓ.

 Oblivious RAM from theory to practice

University of Piraeus 47

2. (Permuted buckets) For every bucket in the tree, the physical positions of the

Z + S dummy and real blocks in each bucket are randomly permuted with

respect to all past and future writes to that bucket.

Since a leaf uniquely determines a path in a binary tree, leaves/paths will be used

interchangeably when the context is clear, and denote path ℓ as 𝒫(ℓ).

Figure 14: Ring ORAM Access Algorithm

Access and Eviction Operations. The Ring ORAM access protocol is shown in Figure 14.

Each access is broken into the following four steps:

1) Position Map lookup (lines 3-5): Look up the position map to learn which path ℓ

the block being accessed is currently mapped to. Remap that block to a new

random path ℓ’. This first step is identical to other tree-based ORAMs [2, 4], but

the rest of the protocol differs substantially from previous tree-based schemes.

2) Read Path (lines 6-18): The ReadPath(ℓ, α) operation reads all buckets along

𝒫(ℓ) to look for the block of interest (block α), and then reads that block into

the stash. The block of interest is then updated in stash on a write, or is

returned to the client on a read. We remind that both reading and writing a

fata block are served by a ReadPath operation. Unlike prior tree-based

schemes, this ReadPath operation only reads one block from each backet-the

block of interest if found or a previously-unread dummy block otherwise. This

is safe because of Invariant 2, above: each bucket is permuted randomly, so

the slot being read looks random to an observer. This lowers the bandwidth

overhead of ReadPath (i.e., online bandwidth) to L+1 blocks (the number of

levels in the tree) or even a single block if the XOR trick is applied.

3) Evict Path (Lines 19-22): The EvictPath operation reads Z blocks (all the

remaining real blocks, and potentially some dummy blocks) from each bucket

Access(op, a, data*)

1: Global/persistent variables: round
2: ℓ′ ← UniformRandom (0, 2L – 1)
3: ℓ ← PositionMap[a]
4: PositionMap[a]← ℓ’
5: data ← ReadPath(ℓ, a)
6: data ← Read block a from S
7: if data := ⊥ then
8: If block a is not found on path ℓ, it must be in Stash
9: data ← read and remove a from Stash
10: if op := read then
11: return data to client
12: if op := write then
13: data ← data’
14: Stash ← round + 1 mod A
15: if round ≠ 0 then
16: EvictPath()
17: EarlyReshuffle(ℓ)

 Oblivious RAM from theory to practice

University of Piraeus 48

along a path into the stash, and then fills that path with blocks from the stash,

trying to push blocks as far down towards the leaves as possible. The sole

purpose of an eviction operation is to push blocks back to the ORAM tree to

keep the stash occupancy low. Unlike Path ORAM, eviction in Ring ORAM

selects paths in the reverse lexico-graphical order, and does not happen on

every access [12]. Its rate is controlled by a public parameter A: every A

ReadPath operations trigger a single EvictPath operation. This means Ring

ORAM needs much fewer eviction operations than Path ORAM.

4) Early Reshuffles (Line 23): Finally, EarlyReshuffle on 𝒫(ℓ), is performed to the

path accessed by ReadPath. This step is crucial in maintaining blocks randomly

shuffled in each bucket, which enables ReadPath to securely read only one

block from each bucket.

3.5.1.1 Read Path Operation

The ReadPath operation is shown in Figure 15. For each bucket along the current path,

ReadPath selects a single block to read from that bucket. For a given bucket, if the

block of interest lives in that bucket, we read and invalidate the block of interest.

Otherwise, we read and invalidate a randomly-chosen dummy block that is still valid

at that point. The index of the block to read (either real or random) is returned by the

GetBlockOffset. Reading a single block per bucket is crucial for bandwidth

improvements. In addition to reducing online bandwidth by a factor of Z, it allows to

use larger Z and A to decrease overall bandwidth. Without this, read bandwidth is

proportional to Z, and the cost of larger Z on reads outweighs the benefits.

Bucket Metadata. Because the position map only tracks the path containing the block

of interest, the client does not know where in each bucket to look for the block of

interest. Thus, for each bucket we must store the permutation in the bucket metadata

that maps each real block in the bucket to one of the Z + S slots (Lines 3, GetBlockO

set) as well as some additional metadata. Once we know the offset into the bucket,

Line 4 reads the block in the slot, and invalidates it. We should mention that the

metadata is small and independent of the block size. One important piece of metadata

to mention now is a counter which tracks how many times it has been read since its

last eviction (Line 8). If a bucket is read too many (S) times, it may run out of dummy

blocks (i.e., all the dummy blocks have been invalidated). On future accesses, if

additional dummy blocks are requested from this bucket, we cannot reread a

previously invalidated dummy block: doing so reveals to the adversary that the block

of interest is not in this bucket. Therefore, we need to reshuffle single buckets on-

demand as soon as they are touched more than S times using EarlyReshuffle.

XOR Technique. During ReadPath operation, each block returned to the client is a

dummy block except for the block of interest. This means Ring ORAM scheme can also

 Oblivious RAM from theory to practice

University of Piraeus 49

take advantage of the XOR technique introduced in [13] to reduce online bandwidth

overhead to O(1). To be more concrete, on each access ReadPath returns L + 1 blocks

in ciphertext, one from each bucket, Enc(b0, r0), Enc(b1, r1), …, Enc(bL, rL). Enc is a

randomized symmetric scheme such as AES counter mode with nonce ri. With the XOR

technique, ReadPath will return a single ciphertext – the ciphertext of all the blocks

XORed together, namely Enc(b0, r0) ⨁ Enc(b1, r1) ⨁ … ⨁ Enc(bL, rL). The client can

recover the encrypted block of interest by XORing the returned ciphertext with the

encryptions of all the dummy blocks. To make computing each dummy block's

encryption easy, the client can set the plaintext of all dummy blocks to a fixed value

of its choosing (e.g., 0).

Figure 15: Ring ORAM ReadPath Algorithm

3.5.1.2 Evict Path Operation

The EvictPath routine is shown in Figure 16. As mentioned, evictions are scheduled

statically: one eviction operation happens after every A reads. At a high level, an

eviction operation reads all remaining real blocks on a path (in a secure fashion), and

tries to push them down that path as far as possible. The leaf-to-root order in the

writeback step (Lines 8) reflects that we wish to fill the deepest buckets as fully as

possible (EvictPath is like a Path ORAM access where no block is accessed and

therefore no block is remapped to a new path). We emphasize two unique features

of Ring ORAM eviction operations. First, evictions in Ring ORAM are performed to

paths in a specific order called the reverse-lexicographic order, first proposed by

Gentry et al. [12]. The reverse-lexicographic order eviction aims to minimize the

overlap between consecutive eviction paths, because (intuitively) evictions to the

same bucket in consecutive accesses are less useful. This improves eviction quality

and allows to reduce the frequency of eviction. Second, buckets in Ring ORAM need

ReadPAth(ℓ, a)

1: data ← ⊥
2: for 𝑖 = 0 to L do
3: offset ← GetBlockOffset(𝒫(ℓ, 𝑖), a)
4: data’ ← 𝒫(ℓ, 𝑖, offset)
5: Invalidate 𝒫(ℓ, 𝑖, offset)
6: if data’ ≠ ⊥ then
7: data ← data’
8: 𝒫(ℓ, 𝑖).count ← 𝒫(ℓ, 𝑖).count + 1
9: return data

EvictPAth()

1: Global/persistent variable G initialized to 0
2: ℓ ← G mod 2L

3: G← G + 1
4: for 𝑖 = 0 to L do
5: Stash ← Stash∪ReadBucket(𝒫(ℓ, 𝑖))
6: for 𝑖 = L to 0 do
7: WriteBucket(𝒫(ℓ, 𝑖), Stash)
8: 𝒫(ℓ, 𝑖).count ← 0

 Oblivious RAM from theory to practice

University of Piraeus 50

to be randomly shuffled (Invariant 2), and we mostly rely on EvictPath operations to

keep them shuffled. An EvictPath operation reads Z blocks from each bucket on a path

into the stash, and writes out Z + S blocks (only up to Z are real blocks) to each bucket,

randomly permuted.

Figure 16: Ring ORAM EvictPAth Algorithm

3.5.1.3 Early Reshuffle Operation

Due to randomness, a bucket can be touched > S times by ReadPath operations before

it is reshuffled by the scheduled EvictPath. If this happens, we call EarlyReshuffle on

that bucket to reshuffle it before the bucket is read again. More precisely, after each

ORAM access EarlyReshuffle goes over all the buckets on the read path, and reshuffles

all the buckets that have been accessed more than S times by performing ReadBucket

and WriteBucket. ReadBucket and WriteBucket are the same as in EvictPath: that is,

ReadBucket reads exactly Z slots in the bucket and WriteBucket re-permutes and

writes back Z + S real/dummy blocks. Though S does not affect security, it clearly has

an impact on performance (how often we shuffle, the extra cost per reshuffle, etc.).

3.5.1.4 Bucket Structure

We would like to make two remarks. First, only the data fields are permuted and that

permutation is stored in ptrs. Other bucket fields do not need to be permuted because

when they are needed, they will be read in their entirety. Second, count and valids

are stored in plaintext. There is no need to encrypt them since the server can see

which bucket is accessed (deducing count for each bucket), and which slot is accessed

in each bucket (deducing valids for each bucket). In fact, if the server can do

computation and is trusted to follow the protocol faithfully, the client can let the

server update count and valids. All the other structures should be probabilistically

encrypted.

Having defined the bucket structure, we can be more specific about some of the

operations in earlier sections. For example, in Algorithm 2 Line 5 means reading

𝒫(ℓ,i).data[offset], and Line 6 means setting 𝒫(ℓ,i).valids[offset] to 0.

Now, we describe the helper functions in detail. GetBlockOffset reads in the valids,

addrs, ptrs fields, and looks for the block of interest. If it finds the block of interest,

meaning that the address of a still valid block matches the block of interest, it returns

the permuted location of that block (stored in ptrs). If it does not find the block of

interest, it returns the permuted location of a random valid dummy block.

ReadBucket reads all of the remaining real blocks in a bucket into the stash. For

security reasons, ReadBucket always reads exactly Z blocks from that bucket. If the

bucket contains less than Z valid real blocks, the remaining blocks read out are

 Oblivious RAM from theory to practice

University of Piraeus 51

random valid dummy blocks. Importantly, since we allow at most S reads to each

bucket before reshuffling it, it is guaranteed that there are at least Z valid (real +

dummy) blocks left that have not been touched since the last reshuffle.

WriteBucket evicts as many blocks as possible (up to Z) from the stash to a certain

bucket. If there are z’ ≤ Z real blocks to be evicted to that bucket, Z + S – z’ dummy

blocks are added. The Z + S blocks are then randomly shuffled based on either a truly

random permutation or a Pseudo Random Permutation (PRP). The permutation is

stored in the bucket field ptrs. Then, the function resets count to 0 and all valid bits

to 1, since this bucket has just been reshuffled and no blocks have been touched.

Finally, the permuted data field along with its metadata are encrypted (except count

and valids) and written out to the bucket.

3.5.2 Security Analysis

Claim 1. ReadPath leaks no information. The path selected for reading will look

random to any adversary due to Invariant 1 (leaves are chosen uniformly at random).

From Invariant 2, we know that every bucket is randomly shuffled. Moreover, because

we invalidate any block we read, we will never read the same slot. Thus, any sequence

of reads (real or dummy) to a bucket between two shuffles is indistinguishable. Thus

the adversary learns nothing during ReadPath.

Claim 2. EvictPath leaks no information. The path selected for eviction is chosen

statically, and is public (reverse-lexicographic order). ReadBucket always reads exactly

Z blocks from random slots. WriteBucket similarly writes Z + S encrypted blocks in a

data-independent fashion.

Claim 3. EarlyShuflle leaks no information. To which buckets EarlyShuffle operations

occur is publicly known: the adversary knows how many times a bucket has been

accessed since the last EvictPath to that bucket. ReadBucket and WriteBucket are

secure as per observations in Claim 2.

The three subroutines of the Ring ORAM algorithm are the only operations that cause

externally observable behaviors. Claims 1, 2, and 3 show that the subroutines are

secure. We have so far assumed that path remapping and bucket permutation are

truly random, which gives unconditional security. If pseudorandom numbers are used

instead, we have computational security through similar arguments.

3.6 Comparison

3.6.1 Path ORAM vs Optimization of Path Oblivious RAM in Secure Processors

Path ORAM overhead drops by 41.8%, and SPEC benchmark execution time improves

by 52.4% in relation to a baseline configuration due to the optimizations that

 Oblivious RAM from theory to practice

University of Piraeus 52

presented at [7]. In [7], they used DRAMSim2 [54] to simulate ORAM performance on

commodity DRAM, assuming that the data ORAM is 8 GB with 50% utilization

(resulting in 4 GB working set); position map ORAMs combined are less than 1 GB. So

it was considered a 16 GB DRAM. DRAMSim2’s default DDR3_micron configuration

was used with 16-bit device width, 1024 columns per row in 8 banks, and 16384 rows

per DRAM-chip. So the size of a node in the 2k-ary tree was 𝑐ℎ × 128 × 64 bytes,

where 𝑐ℎ is the number of independent channels. The evaluation was between

baseORAM and the 4 best configuration with the Overhead breakdown for 8 GB

hierarchical ORAMs with 4 GB working set based on Figure 17Figure 17: Overhead breakdown

for 8 GB hierarchical ORAMs with 4 GB working set. DZ3Pb12 means data ORAM uses Z=3 and

position map ORAMs have 12-byte block. The final position map is smaller than 200

KB.

Figure 17: Overhead breakdown for 8 GB hierarchical ORAMs with 4 GB working set

Figure 18: Hierarchical ORAM latency in DRAM cycles assuming 1/2/4 channel(s)Figure 18 shows the

data latency (not counting decryption latency) of hierarchical Path ORAMs using the

naïve memory placement and the subtree strategy of Section 3.2, and compares these

with the theoretical value, which assumes DRAM always works at its peak bandwidth.

The figure shows that ORAM can benefit from multiple independent channels,

because each ORAM access is turned into hundreds of DRAM accesses. But this also

brings the challenge of how to keep all the independent channels busy. On average,

the naïve scheme’s performance becomes 20% worse than the theoretical result

when there are two independent channels and 60% worse when there are four. The

subtree memory placement strategy is only 6% worse than the theoretical value with

two channels and 13% worse with four. The remaining overhead comes from the few

row buffer misses and DRAM refresh. Even though a 12-byte position map ORAM

block size has lower theoretical overheads, it is worse than the 32-byte design. We

remark that it is hard to define Path ORAM’s slowdown over DRAM. On one hand,

DDR3 imposes a minimum ~26 (DRAM) cycles per access, making Path ORAM’s

latency ~30× over DRAM assuming 4 channels. On the other hand, the Path ORAM

that presented to Section 3.2 consumes almost the entire bandwidth of all channels.

 Oblivious RAM from theory to practice

University of Piraeus 53

Its effective throughput is hundreds of times lower than DRAM’s peak bandwidth (≈

access overhead). But the actual bandwidth of DRAM in real systems varies greatly

and depends heavily on the applications, making the comparison harder.

Figure 18: Hierarchical ORAM latency in DRAM cycles assuming 1/2/4 channel(s)

In order to evaluate the SPEC benchmark performance Path ORAM was connected to

a processor and evaluated the optimizations over a subset of the SPEC06-int

benchmarks. The processors are modeled with a cycle-level simulator based on the

public domain SESC [55] simulator that uses the MIPS ISA. Instruction/memory

address traces are first generated through SESC’s rabbit (fast forward) mode and then

fed into a timing model. Each experiment uses SPEC reference inputs, fast-forwards 1

billion instructions to get out of initialization code and then monitors performance for

3 billion instructions. It was also compared against a conventional processor that uses

DRAM. Path ORAMs and DRAMs are both simulated using DRAMSim2. Figure 19 shows

the SPEC benchmark running time using different Path ORAM configurations and

super blocks, normalized to the insecure processor with DRAM. DZ3Pb32 reduces the

average execution time by 43.9% compared with the baseline ORAM. As expected,

the performance improvement is most significant on memory bound benchmarks

(mcf, bzip2 and libquantum).

In that experiment, used only super blocks of size two (consisting of two blocks). On

average, DZ4Pb32 with super blocks outperforms DZ3Pb32 without super blocks (the

best configuration without super blocks) by 5.9%, and is 52.4% better than the

baseline ORAM. There is a substantial performance gain on applications with good

spatial locality (e.g., mcf) where the prefetched block is likely to be accessed

subsequently. Using static super blocks with DZ3Pb32 slightly improves the

performance on most benchmarks, but has worse performance on certain

benchmarks because it requires too many dummy accesses, canceling the

performance gain on average.

 Oblivious RAM from theory to practice

University of Piraeus 54

Figure 19: SPEC benchmark performance

3.6.2 Path ORAM vs Circuit ORAM

Circuit size. In Table 1, the circuit sizes is compared for Circuit ORAM and Path ORAM

scheme. Results in this table are obtained for a 4GB dataset with the following

concrete parameters: 𝑁 = 230, 𝐷 = 32𝑏𝑖𝑡𝑠 𝑎𝑛𝑑 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝛿 = 2−80,

“Rand." stands for randomly chose eviction paths; “Det.” stands for eviction with

reverse-lexicographical-ordered paths. For Path ORAM [2], considered a naive

implementation. For both schemes, considered two strategies for choosing the

eviction path: random-order eviction and deterministic-order eviction (based on digit-

reversed lexicographic order [12]). The table shows that Circuit ORAM results in 8.2×

to 48.6× smaller circuit size than Path ORAM. Circuit ORAM's speedup will become

even bigger when the total data size 𝑁 is greater.

Table 1: Comparison of Circuit ORAM and Path ORAM

Circuit ORAM also outperforms previous schemes in terms of bandwidth costs and

number of accesses under wide parameter ranges. Circuit ORAM achieves the

following bandwidth cost and number of accesses for a negl(𝑁) statistical failure

probability.

 Suppose the position map levels adopt a block size 𝐷′ = 𝑂(𝑙𝑜𝑔𝑁), then

Circuit ORAM achieves 𝑂(𝐷𝑙𝑜𝑔𝑁 + 𝑙𝑜𝑔3𝑁)𝜔(1) bandwidth cost

 Oblivious RAM from theory to practice

University of Piraeus 55

and𝑂(𝑙𝑜𝑔2𝑁) number of accesses. In particular, for a 𝐷 = 𝛺(𝑙𝑜𝑔2𝑁) block

size, the bandwidth cost is 𝑂(𝐷𝑙𝑜𝑔𝑁)𝜔(1).

 Suppose all levels adopt a uniform block size of 𝐷 = 𝜒 𝑙𝑜𝑔𝑁, then Circuit

ORAM achieves 𝑂(𝐷𝑙𝑜𝑔𝑁𝑙𝑜𝑔𝜒𝛮)𝜔(1) bandwidth cost, and

𝛰(𝑙𝑜𝑔𝑁𝑙𝑜𝑔𝜒𝛮)𝜔(10) number of accesses. Of particular interest is when

𝐷 = 𝑁𝜀 for some constant 0 < 휀 < 1. In this case, Circuit ORAM achieves

𝑂(𝐷𝑙𝑜𝑔𝑁)𝜔(1) bandwidth cost, and 𝑂(𝑙𝑜𝑔𝑁)𝜔(1) number of accesses.

Table 2: Comparison of Circuit ORAM, Path ORAM and Binary-tree ORAM

3.6.3 Path ORAM vs Bucket ORAM

The cost of Oblivious RAM constructions can be characterized by several related but

different metrics. Two of the most important metrics are:

 Bandwidth blowup. For the client to access a single block, how many blocks

on average must be transmitted between the client and the server to hide the

true block of intent. This metric accounts for both online and offline traffic,

and hence is also referred to as overall bandwidth blowup

 Response time or latency. The minimum delay from a client's request till the

block is retrieved

Bucket ORAM scheme gives a positive answer to the above challenge. Bucket ORAM

+ AHE (with the use of additively homomorphic encryption) achieves a single online

roundtrip, and 𝑂(1) bandwidth blowup. Without additively homomorphic

encryption, Bucket ORAM has �̃�(𝑙𝑜𝑔𝑁) bandwidth blowup. We refer the reader to

Table 3 for a more detailed comparison with ORAM schemes. �̃�𝑎𝑛𝑑 �̃� hides 𝑙𝑜𝑔𝑙𝑜𝑔𝑁

to poly(𝑙𝑜𝑔𝑙𝑜𝑔𝑁) factors. Asymptotical costs listed here are for malicious security.

The security of all schemes are parameterized to have negligible in 𝑁 failure

probability. Server I/O counts the amortized number of blocks the server touches per

access.

 Oblivious RAM from theory to practice

University of Piraeus 56

Table 3: Comparison of Bucket ORAM and Path ORAM

3.6.4 Path ORAM vs Ring ORAM

In this section, it is shown how Ring ORAM improves the performance of secure

processors over Path ORAM. It was evaluated a 4 GB ORAM with 64-Byte block size

(matching a typical processor’s cache line size). Due to the small block size, Ring ORAM

had the parameters 𝑍 = 5; 𝐴 = 5; 𝑋 = 2 to reduce metadata overhead. Recursion

was applied three times with 32-Byte position map block size and get a 256 KB final

position map. It was evaluated the performance for SPEC-int benchmarks and two

database benchmarks, and simulate 3 billion instructions for each benchmark.

Assuming a flat 50-cycle DRAM latency, and compute ORAM latency with 128

bits/cycle processor memory bandwidth. It was not used a tree-top caching since it

proportionally benefits both Ring ORAM and Path ORAM. Today’s DRAM DIMMs

cannot perform any computation, but it is not hard to imagine having simple XOR logic

either inside memory, or connected to O(logN) parallel DIMMs so as not to occupy

processor memory bandwidth. Thus, it is shown results with and without the XOR

technique. Figure 20 shows program slowdown over an insecure DRAM. The high order

bit is that using Ring ORAM with XOR results in a geometric average slowdown of 2.8×

relative to an insecure system. This is a 1.5× improvement over Path ORAM. If XOR is

not available, the slowdown over an insecure system is 3.2×. The experiment had also

repeated with the unified ORAM recursion technique. The geometric average

slowdown over an insecure system is 2.4× (2.5× without XOR).

Figure 20: SPEC benchmark slowdown

 Oblivious RAM from theory to practice

University of Piraeus 57

4 Constant worst-case bandwidth blowup

4.1 Onion ORAM

Onion ORAM [14] is the first ORAM with constant worst-case bandwidth blowup

under standard cryptographic assumptions. Onion ORAM leverages poly-logarithmic

server computation to circumvent the logarithmic lower bound on ORAM bandwidth

blowup. Unlike prior work, Onion ORAM does not require fully homomorphic

encryption, but re-quires only certain additively homomorphic encryption schemes.

Onion ORAM utilizes novel techniques to achieve security against a malicious server,

without resorting to expensive and non-standard techniques.

4.1.1 Overview of Techniques

In Onion ORAM schemes, the client “guides" the server to perform ORAM accesses

and evictions homomorphically by sending the server some “helper values". With

these helper values, the server's main job will be to run a sub-routine called the

“homomorphic select" operation (select operation for short), which can be

implemented using either AHE or SWHE. We can achieve constant bandwidth blowup

because helper value size is independent of data block size: when the block size

sufficiently large, sending helper values does not affect the asymptotic bandwidth

blowup. We now explain these ideas along with pitfalls and solutions in more detail.

 Building block: homomorphic select operation. The select operation, which

resembles techniques from private information retrieval (PIR) [15], takes as input m

plaintext data blocks 𝑝𝑡1, …,𝑝𝑡𝓂 and encrypted helper values which represent a user-

chosen index 𝑖*. The output is an encryption of block 𝑝𝑡𝑖∗. Obviously, the helper

values should not reveal 𝑖*.

All ORAM operations can be implemented using homomorphic select operations. In

Onion scheme, for each ORAM operation, the client read/writes per-block metadata

and creates a select vector(s) based on that metadata. The client then sends the

encrypted select vector(s) to the server, who does the heavy work of performing

actual computation over block contents.

Specifically, on top of tree-based ORAMs [2, 4] will be built a standard type of

ORAM without server computation. Metadata for each block includes its logical

address and the path it is mapped to. To request a data block, the client first reads

the logic addresses of all blocks along the read path. After this step, the client knows

which block to select and can run the homomorphic select protocol with the server.

ORAM eviction operations require that the client sends encrypted select vectors to

indicate how blocks should percolate down the ORAM tree. As explained above, each

select operation adds an encryption layer to the selected block.

 Oblivious RAM from theory to practice

University of Piraeus 58

Achieving constant bandwidth blowup. To get constant bandwidth blowup, we must

ensure that select vector bandwidth is smaller than the data block size. For this, we

need several techniques. First, we will split each plaintext data block into 𝒞 chunks

𝑝𝑡𝑖 = (𝑝𝑡𝑖[1], …, 𝑝𝑡𝑖[𝒞]), where each chunk is encrypted separately, i.e., 𝑐𝑡𝑖 = (𝑐𝑡𝑖[1],

…, 𝑐𝑡𝑖[𝒞]) where 𝑐𝑡𝑖[j] is an encryption of 𝑝𝑡𝑖[j]. Crucially, each select vector can be

reused for all the 𝒞 chunks. By increasing 𝒞, we can increase the data block size to

decrease the relative bandwidth of select vectors.

Second, we require that each encryption layer adds a small additive ciphertext

expansion (even a constant multiplicative expansion would be too large). Fortunately,

we do have well established additively homomorphic encryption schemes that meet

this requirement, such as the Damgård–Jurik cryptosystem [16]. Third, the “depth" of

the homomorphic select operations has to be bounded and shallow.

Bounding the select operation depth. This issue addressed in [14] by constructing a

new tree-based ORAM, which is called “bounded feedback ORAM". By “feedback",

we refer to the situation where during an eviction some block α gets stuck in its

current bucket b. When this happens, an eviction into b needs select operations that

take both incoming blocks and block α as input, resulting in an extra layer on bucket

b (on top of the layers bucket b already has). The result is that buckets will accumulate

layers (with AHE) on each eviction, which grows unbounded over time.

This bounded feedback ORAM breaks the feedback loop by guaranteeing that

bucket b will be empty at public times, which allows upstream blocks to move into b

without feedback from blocks already in b. It turns out that breaking this feedback is

not trivial: in all existing tree-based ORAM schemes [4, 2, 8], blocks can get stuck in

buckets during evictions which means there is no guarantee on when buckets are

empty.

Techniques for malicious security. The main idea is to rely on probabilistic checking,

and to leverage an error-correcting code to amplify the probability of detection. As

mentioned before, each block is divided into 𝒞 chunks. We will have the client

randomly sample security parameter λ ≪ 𝒞 chunks per block (the same random

choice for all blocks), referred to as verification chunks, and use standard memory

checking to ensure their authenticity and freshness. On each step, the server will

perform homomorphic select operations on all 𝒞 chunks in a block, and the client will

perform the same homomorphic select operations on the λ verification chunks. In this

way, whenever the server returns the client some encrypted block, the client can

check whether the corresponding chunks match the verification chunks.

Unfortunately, the above scheme does not guarantee negligible failure of

detection. For example, the server can simply tamper with a random chunk and hope

that it's not one of the verification chunks. Clearly, the server succeeds with non-

 Oblivious RAM from theory to practice

University of Piraeus 59

negligible probability. The fix is to leverage an error-correcting code to encode the

original 𝒞 chunks of each block into 𝒞’’ = 2 𝒞 chunks, and ensure that as long as
3

4
 𝒞’’

chunks are correct, the block can be correctly decoded. Therefore, the server knows

a priori that it will have to tamper with at least
1

4
 𝒞’’ chunks to cause any damage at

all, in which case it will get caught except with negligible probability.

4.1.2 Onion ORAM Protocol (Additively Homomorphic Encryption)

In this section, we describe how to leverage an AHE scheme with additive ciphertext

expansion to transform the bounded feedback ORAM into a semi-honest secure

Onion ORAM scheme. Recall that each block is tagged with the following metadata:

the block's logical address and the leaf it is mapped to, and that the size of the

metadata is independent of the block size.

Initialization. The client runs a key generation routine for all layers of encryption, and

gives all public keys to the server.

Read Path. ReadPath(ℓ, a) Figure 21 can be done with the following steps:

1. Client downloads and decrypts the addresses of all blocks on path l, locates

the block of interest a, and creates a corresponding select vector �⃗⃗� ∈ {0,1}Z(L+1).

2. Client and server run the homomorphic select sub-protocol with client's input

being encryptions of each element in �⃗⃗� and server's input being all encrypted

blocks on path l. The outcome of the sub-protocol block a is sent to the client.

3. Client re-encrypts and writes back the addresses of all blocks on path l, with

block a now invalidated. This removes block a from the path without revealing

its location. Then, the client re-encrypts block a (possibly modified) under 1

layer, and appends it to the root bucket.

Eviction. To perform EvictAlongPath(ℓ e), do the following for each level k from 0 to L–

1:

1. Client downloads all the metadata (addresses and leaf labels) of the bucket

triplet. Based on the metadata, the client determines each block's location

after the bucket-triplet eviction.

2. For each slot to be written in the two child buckets:

a. Client creates a corresponding select vector �⃗⃗� ∈ {0,1}2Z.

b. Client and server run the homomorphic select sub-protocol with the

client's input being encryptions of each element in �⃗⃗�, and the server's

input being the child bucket (being written to) and its parent bucket.

Note that if the child bucket is empty (which is public information to

the server), it conceptually has zero encryption layers.

 Oblivious RAM from theory to practice

University of Piraeus 60

c. Server overwrites the slot with the outcome of the homomorphic

select sub-protocol.

Figure 21: Onion ORAM ReadPath Algorithm

Figure 22: Onion ORAM EvictAlongPath Algorithm

4.1.3 Security Analysis

We now show that the scheme is secure against a fully malicious server who can

deviate arbitrarily from the protocol. We start by describing several abstract

properties of the Onion ORAM scheme from the previous section. We will call any

server computation ORAM scheme satisfying these properties an abstract server

computation ORAM.

Data blocks and metadata. The server storage consists of two types of data: data

blocks and metadata. The server performs computation on data blocks, but never on

metadata. The client reads and writes the metadata directly, so the metadata can be

encrypted under any semantically secure encryption scheme.

Operations on data blocks. Each plaintext data block is divided into 𝒞 chunks, and

each chunk is separately encrypted 𝑐𝑡𝑖 = (𝑐𝑡𝑖[1], …, 𝑐𝑡𝑖[𝒞]). The client operates on the

data blocks either by: (1) directly reading/writing an encrypted data block, or (2)

instructing the server to apply a function f to form a new data block 𝑐𝑡𝑖, where 𝑐𝑡𝑖[j]

only depends on the j-th chunk of other data blocks, i.e., 𝑐𝑡𝑖[j] = f(𝑐𝑡1[j], …, 𝑐𝑡𝑚[𝑗]))

for all j ∈ [1..C]. It is easy to check that the Onion ORAM scheme is instance of the

above abstraction. The metadata consists of the encrypted addresses and leaf labels

of each data block, as well as additional space needed to implement ORAM recursion.

The data blocks are encrypted under a layered AHE scheme. Function f is a

“homomorphic select operation", and is applied to each chunk.

We now describe a generic compiler that takes any “abstract server computation

ORAM" that satisfies honest-but-curious security and compiles it into a “verified

server computation ORAM" which is secure in the fully malicious setting.

ReadPAth(ℓ, a)

1: Read all blocks on path 𝒫(ℓ)
2: Select and return the block with address a
3: Invalidate the block with address a

EvictAlongPath (ℓe)

1: for 𝑘 = 0 to L – 1 do
2: Read all blocks in 𝒫(ℓe, 𝑘) and its two children
3: Move all blocks in 𝒫(ℓe, 𝑘) and its two children
4: 𝒫(ℓe, 𝑘) is empty at this point
5: end for

 Oblivious RAM from theory to practice

University of Piraeus 61

Verifying metadata. We can use standard “memory checking" [17] schemes based on

Merkle trees [18] to ensure that the client always gets the correct metadata, or aborts

if the malicious server ever sends an incorrect value. A generic use of a Merkle tree

would add an O(log N) multiplicative overhead to the process of accessing metadata

[19], which is good enough. This O(log N) Integrity verification for Path Oblivious

overhead can also be avoided by aligning the Merkle tree with the ORAM tree [20], or

using generic authenticated data structures [21]. In any case, verifying metadata is

basically free in Onion ORAM.

Challenge of verifying data blocks. Unfortunately, we cannot rely on standard

memory checking to protect the encrypted data blocks when the client doesn't

read/write them directly but rather instructs the server to compute on them. The

problem is that a malicious server that learns some information about the client's

access pattern based on whether the client aborts or not. Consider Onion ORAM for

example. The malicious server wants to learn if, during the homomorphic select

operation of a ORAM request, the location being selected is i. The server can perform

the operation correctly except that it would replace the ciphertext at position i with

some incorrect value. In this case, if the location being selected was indeed i then the

client will abort since the data it receives will be incorrect, but otherwise the client

will accept. This violates ORAM's privacy requirement. A more general way to see the

problem is to notice that the client's abort decision above depends on the decrypted

value, which depends on the secret key of the homomorphic encryption scheme.

Therefore, we can no longer rely on the semantic security of the encryption scheme

if the abort decision is revealed to the server. To fix this problem, we need to ensure

that the client's abort decision only depends on ciphertext and not on the plaintext

data.

Verifying data blocks. The solution is as follows, the client selects a random subset 𝑉

consisting of λ chunk positions. This set 𝑉 is kept secret from the server. The subset

of chunks in positions {j : j ∈ 𝑉} of every encrypted data block are treated as additional

metadata, which called the “verification chunks". Verification chunks are encrypted

and memory checked in the same way as the other metadata. Whenever the client

instructs the server to update an encrypted data block, the client performs the same

operation himself on the verification chunks. Then, when the client reads an

encrypted data block from the server, he can check the chunks in V against the

ciphertexts of verification chunks. This check ensures that the server cannot modify

too many chunks without getting caught. To ensure that this check is sufficient, it is

applied an error-correcting code which guarantees that the server has to modify a

large fraction of chunks to affect the plaintext. In more detail:

 Every plaintext data block 𝑝𝑡 = (𝑝𝑡 [1], …, 𝑝𝑡 [𝒞]) is first encoded via an error-

correcting code into a codeword block 𝑝𝑡_ecc = ECC(𝑝𝑡) = (𝑝𝑡_ecc [1], …,

 Oblivious RAM from theory to practice

University of Piraeus 62

𝑝𝑡_ecc[𝒞’]). The error-correcting code ECC has a rate 𝒞/ 𝒞’= a < 1and can

efficiently recover the plaintext block if at most a δ-fraction of the codeword

chunks are erroneous. For concreteness, we can use a Reed-Solomon code,

and set α =
1

2
, δ = (1 – α)/2 =

1

4
 . The client then uses the “abstract server

computation ORAM" over the codeword blocks 𝑝𝑡_ecc(instead of 𝑝𝑡).

 During initialization, the client selects a secret random set 𝑉 = {𝑣1, …, 𝑣λ} ⊆

 [𝒞’]. Each ciphertext data block 𝑐𝑡𝑖 has verification chunks 𝑣𝑒𝑟𝐶ℎ𝑖 =

(𝑣𝑒𝑟𝐶ℎ𝑖[1], …, 𝑣𝑒𝑟𝐶ℎ𝑖[λ]). We ensure the invariant that, during an honest

execution, 𝑣𝑒𝑟𝐶ℎ𝑖[j] = 𝑐𝑡𝑖[sj] for j ∈ [1…λ].

 The client uses a memory checking scheme to ensure the authenticity and

freshness of the metadata including the verification chunks. If the client

detects a violation in metadata at any point, the client aborts (it is called

abort0).

 Whenever the client directly updates or instructs the server to apply the

aforementioned function f on an encrypted data block 𝑐𝑡𝑖, it also updates or

applies the same function f on the corresponding verification chunks

𝑣𝑒𝑟𝐶ℎ𝑖[j] for j ∈ [1...λ], which possibly involves reading other verification

chunks that are input to f.

 When the client reads an encrypted data block 𝑐𝑡𝑖, it also reads 𝑣𝑒𝑟𝐶ℎ𝑖 and

checks that 𝑣𝑒𝑟𝐶ℎ𝑖 [j] = 𝑐𝑡𝑖[sj] for j ∈ [1…λ] and aborts if this is not the case

(it is called abort1). Otherwise the client decrypts 𝑐𝑡𝑖 to get 𝑝𝑡_ecci and

performs error-correction to recover 𝑝𝑡𝑖. If the error-correction fails, the

client aborts (it is called abort2)

If the client ever aborts during any operation with abort0; abort1 or abort2, it refuses

to perform any future operations.

Security Intuition. Notice that in the above scheme, the decision whether abort1

occurs does not depend on any secret state of the abstract server computation ORAM

scheme and therefore can be revealed to the server without sacrificing privacy. We

will argue that, if abort1 does not occur, then the client retrieves the correct data (so

abort2 will not occur) with overwhelming probability. Intuitively, the only way that a

malicious server can cause the client to either retrieve the incorrect data or trigger

abort2 without triggering abort1 is to modify at least a (by default, δ = 1/4) fraction of

the chunks in an encrypted data block, but avoid modifying any of the λ chunks

corresponding to the secret set 𝑉. This happens with probability at most (1 – δ)λ over

the random choice of 𝑉, which is negligible.

4.2 C – ORAM

Onion ORAM uses homomorphic encryption to increase the efficiency of Oblivious

RAM protocols and achieves O(1) communication overhead with polylogarithmic

 Oblivious RAM from theory to practice

University of Piraeus 63

server computation. However, it has two drawbacks. It requires a large block size of B

= Ω(log6 N) with large constants. Moreover, while it only needs polylogarithmic

computation complexity, that computation consists mostly of expensive

homomorphic multiplications. C – ORAM [22] addresses these problems and reduces

the required block size to Ω(log4 N). The main idea is to replace Onion ORAM

homomorphic eviction routine with a new, much cheaper permute-and-merge

eviction which eliminates homomorphic multiplications and maintains the same level

of security. In turn, this removes the need for layered encryption that Onion ORAM

relies on and reduces both the minimum block size and server computation.

4.2.1 Overview of C – ORAM

To achieve the increased efficiency and lower block size, in C – ORAM [22] presented

a novel, efficient, oblivious bucket merging technique for Onion ORAM that replaces

its expensive layered encryption. Bucket merging is applied during ORAM eviction.

The content of a parent node/bucket and its child node/bucket can be merged

obliviously, i.e., the server does not learn any information about the load of each

bucket. The idea is that the client sends a permutation Π to the server. Using this

permutation, the server aligns the individual encrypted blocks of the two buckets and

merges them into a destination bucket. The client chooses the permutation such that

blocks containing real data in one bucket are always aligned to empty blocks in the

other bucket. As each block is encrypted with additively homomorphic encryption,

merging two blocks is a simple addition of ciphertexts. For the server, merging is

oblivious, because, informally, any permutation Π from the client is indistinguishable

from a randomly chosen permutation. For buckets of size O(z), oblivious merging

evicts elements from a parent bucket to its child with O(z log z) bits of communication

instead of O(γz2) of Onion ORAM. As a result of applying this merging technique, it is

only needed a constant number of PIR reads and writes for ORAM operations. As a

warm up, in [22] is presented a technique allowing amortized constant

communication complexity with a smaller block size B in Ω(z log z log N + γz log N).

Additionally the second and main technique achieves constant worst case

communication complexity with smaller block size in Ω(z log z log N + γz).

4.2.1.1 Oblivious Merging

Oblivious merging is a technique that obliviously lines up two buckets in a specific

order and merges them into one bucket. Using this technique, real data elements can

be evicted from a bucket to another by permuting the order of blocks of one of them

and then adding additively homomorphically encrypted blocks. Oblivious merging is

based on an oblivious permutation generation that takes as input the configurations

of two buckets and outputs a permutation Π. A configuration of a bucket specifies

which of the blocks in the bucket are real blocks and which are empty. Permutation

 Oblivious RAM from theory to practice

University of Piraeus 64

Π arranges blocks in such a way that there are no real data elements at the same

position in the two blocks.

C-ORAM keeps Onion ORAM’s main construction. That is, C – ORAM is a tree-based

ORAM composed of a main tree ORAM storing the actual data and a recursive ORAM

storing the position map. The position map consists of a number of ORAM trees with

linearly increasing height mapping a given address to a tag. For n elements stored in

the ORAM, the communication needed to access the position map is in O(log2 N). As

with all recent tree-based ORAMS, the recursive position map’s communication

complexity is dominated by the block size. Let N be a power of 2. C-ORAM is a binary

tree with L levels and 2L leave nodes. Each node/bucket contains μ ∙ z blocks. Here, z

is the number of slots needed to hold blocks as in Onion ORAM and μ is a

multiplicative constant that gives extra room in the buckets for noisy blocks, which is

important for C – ORAM construction. We maintain the same relation between N, L

and z as in Onion ORAM, namely N ≤ z ∙ 2L – 1. Each block in a C-ORAM bucket is

encrypted using an additively homomorphic encryption, e.g., Pailler’s or Damgard-

Jurik’s cryptosystem. Also each bucket contains IND-CPA encrypted meta-

information, headers, containing additional information about a bucket’s contents.

4.2.1.2 Headers

Bucket headers are an important component in C – ORAM as they determine how

oblivious permutations are generated. A bucket header is comprised of two parts: the

first part stores for each block whether it is noisy, contains real data or is empty. The

second part stores the block tags. More formally, the header is composed of two

vectors header1 and header2. Vector header1 has length μ ∙ z, and each element is

either noisy, empty or real. Thus, each element has a size of two bits. The total size of

this vector is in O (μz). header2 is a (μ ∙ z × log N) binary matrix. The rows represent

the address of the blocks. Finally, as with all tree based ORAMS, each block in a bucket

also contains the encryption of its address. That is, the address of each block is

encrypted separately from the block itself.

4.2.2 C – ORAM: First Construction

In this section we present a technique allowing amortized constant communication

complexity with a smaller block size.

To access an element in C-ORAM, i.e., read or write, the client first fetches the

corresponding tag from the position map. This tag defines a unique path starting from

the root of the ORAM tree and going to a specific leaf given by the tag. The element

might reside in any bucket on this path. To find this element, is used a PIR read [23]

that will be applied to each bucket. To verify whether the block exists in a bucket, the

client downloads the encrypted headers of each bucket. Therewith, the client can

 Oblivious RAM from theory to practice

University of Piraeus 65

generate a PIR read vector retrieving the block from a bucket. To preserve the

scheme’s obliviousness, the client sends PIR read vectors for each bucket on the path.

Once the block has been retrieved, the client can modify the block’s content if

required, then insert it back into the root of the C – ORAM tree using PIR write. This

is the standard Path-PIR behavior to read from or write into blocks [24].

Eviction takes place after every χ = O(z) access operations. As in Onion ORAM, a path

in C – ORAM is selected following deterministic reverse lexicographic order. Then, the

entire root of the ORAM tree is downloaded, randomly shuffled and written back

(additively homomorphically) encrypted. Finally, the eviction is performed by

repeatedly applying an oblivious merge on buckets along the selected path. Any

bucket belonging to this path is obliviously merged with its parent while the other

child of the parent will be overwritten by a copy of the parent bucket. Τhe former

bucket on the path is called the destination bucket and the latter one its sibling

bucket.

Before starting the eviction of a specific path, an invariant of the eviction process is

that siblings of buckets of this path are empty, except the leaves. After the eviction,

all buckets belonging to the evicted path will be empty except the leaf [14]. Note that

siblings of this path, after the eviction, will not be empty anymore.

Sibling buckets, since they are simply copies of their parents, will contain blocks with

tags outside the subtree of this bucket. These blocks are called noisy blocks as they

do not belong into this subtree and are essentially leftover “junk”. Now for

correctness, in this construction, is guaranteed that the number of noisy blocks in any

bucket is upper bounded. So, there will always be space for real elements in a bucket

and will not overflow.

Elements in each bucket are encrypted using additively homomorphic encryption,

respectively. Given two buckets B1 and B2, oblivious merging will permute the position

of blocks in B1 such that there are no real or noisy element at the same positions in B1

and B2. Consequently, if there is a real element in the ith position in B1, then for the

scheme to be correct, the ith position in B2 should be empty. The following addition of

elements at the same position in B1 and B2 will preserve the value of the real element.

After χ operations, we also download the leaf bucket to delete its noisy blocks.

4.2.2.1 Details and Analysis

Let 𝒫(tag) denote the path starting from the root and going to the leaf identified by

tag. The path is composed of L + 1 buckets including the root. 𝒫(tag, i) refers to the

bucket at the ith level of 𝒫(tag). For example, 𝒫(tag, 0) is the root bucket. 𝒫s(tag, i)

is the sibling of bucket 𝒫(tag, i). Let [N] be the set of integers {1, …, N}, x
$

← [N]

uniformly sampling a random element from set [N], and χ the period of eviction

 Oblivious RAM from theory to practice

University of Piraeus 66

which is in O(z). Identity is an empty bucket containing only encryptions of zero.

Figure 23 presents details of the access operation. An access can be either an ORAM

Read or a Write operation. The only difference between the two is that a write

changes the value of the block before putting it back in the root. The access

operation invokes a PIR read algorithm, see Figure 24 that obliviously retrieves a

block. Figure 25 shows the eviction where elements percolate towards their leaves

using oblivious permutations, see

Figure 26.

Block size. The following asymptotic analysis will be in function of z, N, and γ. z is the

size of the bucket, N the number of elements, and γ the length of the ciphertext of

the additively homomorphic encryption. The communication complexity induced by

an ORAM access operation comprises a PIR read operation and the eviction process

(happening every χ ∈ O(z) accesses). The size of the bucket is μ ∙ z, it is shown in

security analysis section later that μ is a constant. First, the client performs PIR reads

L + 1 times. For this, the client has to download all addresses in the path, i.e., O(z ∙ L ∙

log N) bits. Also, the client should send a logarithmic number of PIR read vectors 𝑉

with size O(γ ∙ z ∙ L) bits. Note that the computation of PIR read vectors outputs, for

all but one buckets’ block, encryption of zeros. Instead of sending back a logarithmic

number of blocks to the client, the server only sends a single block, the summation of

all the blocks output, cf. Figure 23. Thus, the client only retrieves a single block B. A PIR

read applied to all buckets of the path induces an overhead in O(z ∙ L ∙ log N + γ ∙ z ∙

L + B). For the eviction, the client downloads header1 and the ith column of header2

and sends permutations for all buckets in the path. Thus, the overhead induced by the

permutations is O(L ∙ z ∙ log z) bits. Also, after every χ = O(z) operations, the client

downloads the root and one leaf, which has O(zB) communication complexity.

Amortized, for each operation we have Oz(B) communication complexity (amortized

over z). In conclusion, each access has Oz(z ∙ L ∙ log N + γ ∙ z ∙ L + z ∙ log(z) ∙ L + B)

communication complexity. To have constant communication complexity in B, the

block size should be B ∈ Ω(z ∙ L ∙ log N + γ ∙ z ∙ L + L ∙ z ∙ log z) ∈ Ω(λ∙log2 N + γ∙λ∙

log N). This is a consequence of z = Θ(λ), λ ∈ ω(log n), and L ∈ Θ(log N). Based on

current attacks [25]. Therefore, λ∙ log2 N is dominated by γ ∙ λ ∙ log N, and B ∈ Ω(γ ∙ λ

∙ log N).

The main idea of the construction below is based on that the block size has exactly

the same asymptotic as transmitted vectors 𝑉. So to improve the block size, in the

next section we present a different way to access the ORAM that introduced in [22].

 Oblivious RAM from theory to practice

University of Piraeus 67

Figure 23: C-ORAM 1st Access Algorithm

Figure 24: C-ORAM PIR-Read Algorithm

Figure 25: C-ORAM Evict Algorithm

Access(op, adr, data, ctr, st)

1: tag = posMap(adr)

2: posMap(adr)
$

← [N]
3: if ctr = 0 mod (χ) then
4: Download root buckt, refresh encryption, randomize order of real elements
5: Evict(st)
6: else
7: for 𝑖 = 0 to L do B = B+RIP-Read(adr, 𝒫(tag, 𝑖)
8: end if
9: if op := write then set B = data
10: ctr = ctr + 1
11: Upload IND-CPA encrypted block to root 𝒫(tag, 0)

PIR-Read(addr, 𝒫(tag, level))

1: Retrieve and decrypt address Addr of the bucket 𝒫(tag, level)
2: if addr ∈ Addr then
3: a = Addr[addr]if ctr = 0 mod (χ) then
4: for 𝑖 = 1 to μ ∙ z do
5: if 𝑖 ≠ a then 𝑉i

← ENC(0) else

6: 𝑉i

← ENC(1)
7: end
8: else

9: for 𝑖 = 1 to μ ∙ z do 𝑉i

← ENC(0)
10: end if
11: Parse bucket 𝒫(tag, level) as (μ ∙ z × |B|) binary matrix 𝑀
12: B = (∑ 𝑉𝑖 ∙ ℳ1,𝑖

𝜇 ∙𝑧
𝑖=1 , …, ∑ 𝑉𝑖 ∙ ℳ|𝐵|,𝑖

𝜇 ∙𝑧
𝑖=1)

13: Update ℎ𝑒𝑎𝑑𝑒𝑟1
𝑙𝑒𝑣𝑒𝑙 of bucket 𝒫(tag, level)

Evict(st)

1: for 𝑖 = 0 to L -1 do

2: Retrieve ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖 and ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1

3: Retrieve Ci and Ci+1 respectively the ith and (i+1)th column of ℎ𝑒𝑎𝑑𝑒𝑟2
𝑖 and ℎ𝑒𝑎𝑑𝑒𝑟2

𝑖+1 of the bucket 𝒫(𝑠𝑡, 𝑖)
and 𝒫(𝑠𝑡, 𝑖 + 1)

4: π

← GenPerm((ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖, Ci), (ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1, Ci+1)) generate the oblivious permutation π
5: 𝒫(𝑠𝑡, 𝑖 + 1) = π(𝒫(𝑠𝑡, 𝑖)) + 𝒫(𝑠𝑡, 𝑖 + 1)
6: if 𝑖 < L – 1 then
7: 𝒫s(𝑠𝑡, 𝑖)) = 𝒫(𝑠𝑡, 𝑖) //Copy the parent bucket into its sibling
8: else

9: Retrieve ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖+1 and Ci+1 from the sibling leaf

10: π

← GenPerm((ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖, Ci), (ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1, Ci+1))
11: 𝒫(𝑠𝑡, 𝑖 + 1) = π(𝒫(𝑠𝑡, 𝑖)) + 𝒫(𝑠𝑡, 𝑖 + 1)
12: end if

13: Update(ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖) and store it with bucket 𝒫s(𝑠𝑡, 𝑖)

14: Update(ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖+1) and store it with bucket 𝒫(𝑠𝑡, 𝑖 + 1)

15: 𝒫(𝑠𝑡, 𝑖) = Identity
16: end

 Oblivious RAM from theory to practice

University of Piraeus 68

Figure 26: C-ORAM GenPerm Algorithm

4.2.3 C – ORAM: Second Construction

In this section we show how C – ORAM further reduces the block size – again by a

multiplicative factor of log N compared to the previous construction. Recall that in

the previous section, the worst case involves a blowup of O(z), because during

eviction the client needs to download O(z ∙ B) bits. In this construction, the eviction

remains exactly the same, and our focus will only be on ORAM access.

In 4.2.2, performed a PIR read per bucket during an access. Contrary, here is

performed an oblivious merge to find out the block to retrieve. For an ORAM access

to tag, our idea is to perform a special evict of path 𝒫(tag). All real elements pushed

in 𝒫(tag) towards the leaf and then simply access the leaf bucket. So, we preserve

access obliviousness and make sure that the element we want is pushed into leaf

bucket tag.

This approach comes with several challenges. The bucket distribution must be

preserved, i.e., maintaining sibling emptiness property, as guaranteed by the reverse

lexicographic eviction, before evicting any path. Instead of deterministically selecting

GenPerm(A, B)

1: Let 𝑥1, 𝑥2 be the number of empty and noisy slots in A
2: Let 𝑦1, 𝑦2 be the number of empty and noisy slots in B
3: 𝑑1 = 𝑥1 - 𝑦1
4: 𝑑2 = 𝑥2 - 𝑦2
5: for 𝑖 = 1 to μ ∙ z do

6: case B[𝑖] is full z
$

← all empty slots in A
7: case B[𝑖] is noisy
8: if 𝑑2 > 0 then

9: z
$

← all noisy slots in A
10: 𝑑2 = 𝑑2 – 1
11: else

11: z
$

← all noisy slots in A
12: end
13: case B[𝑖] is empty
14: if 𝑑1 > 0 then

15: z
$

← all non-assigned slots in A
16: 𝑑1 = 𝑑1 – 1
17: else

18: z
$

← all full slots in A
19: end
20: end
21: π(𝑖) = z

22: Α[z] = assigned
23: end
24: return π

 Oblivious RAM from theory to practice

University of Piraeus 69

a path for eviction, in this construction paths are chosen randomly. However, using

randomized eviction, should be guaranteed empty siblings on the evicted path. By

randomly evicting a path, might end to copy a bucket in its sibling which is not empty

resulting therefore in a correctness flaw.

Temporarily clone the path 𝒫(tag) due to challenges above. The clone of 𝒫(tag)

serves to simulate the eviction towards the leaf bucket, and we remove the clone

after the access operation. We apply the oblivious merging on the bucket of this

cloned path, and at the end we will have all real elements in the leaf bucket of the

cloned path. Finally, we apply a PIR read to retrieve the block.

Besides, to get rid of the amortized cost and have a scheme that only requires a

constant bandwidth in the worst case, we make use of a PIR write operation that will

be performed during every access. In the construction of 4.2.2, we have to shuffle the

root bucket since oblivious merging has to be performed on random buckets for

security purposes. Moreover, we need to eliminate noisy blocks from the leaf buckets

and therefore after each operations, the client downloads the evicted leaf to

eliminate all noisy blocks. In the second C – ORAM construction, we are evicting after

every access. Consequently, we can be certain that the root bucket is always empty

after an eviction. The first PIR write operation that we perform will randomly insert

the block in an empty root bucket after any access obliviously. The second use of PIR

write is to delete the retrieved element from the leaf. In fact, we can also delete noisy

blocks by the same tool but a PIR read is needed to retrieve first the noisy block that

we will overwrite with a PIR write.

4.2.3.1 Details and Analysis

Algorithm in Figure 27 presents the core of the second C – ORAM construction. Now,

instead of performing a logarithmic number of PIR reads, we only invoke an Evict-

Clone to read a block, cf. Figure 28. Evict-Clone uses oblivious merging of 4.2.1.1,

together with one PIR read to retrieve a block. Moreover, we evict after every access.

In order to eliminate noisy blocks that have been percolated to the leaf bucket, we

use a PIR write to delete the noisy block, cf. Figure 29.

Block size. The access operation in C – ORAM is composed of scheduled path eviction,

eviction in the cloned path, a PIR read, and two PIR writes. The size of the headers are

negligible compared to the PIR read and write vectors. First, the eviction always

involves an overhead of O(z L log z). Evict-Clone performs one PIR read in addition to

the regular evict. Finally, we retrieve the block of size B. Therefore, the overhead

induced by these steps is O(z L log z + z log N + γz + B). Adding the two PIR writes

and single PIR read operation will not change asymptotic behavior since the number

of these operations is constant in N. In conclusion, to have a bandwidth that is

constant in block size B, the block size should be B ∈ Ω(z ∙ L ∙ log z + γz). With z ∈

 Oblivious RAM from theory to practice

University of Piraeus 70

Θ(λ), λ ∈ ω(log N) and L ∈ (log N), we achieve B ∈ Ω(λ [log N ∙ log λ + γ]). In practice,

γ ∈ O(λ3), so dominates log N ∙ log λ. Therefore, block size B is B ∈ Ω(γλ). This C –

ORAM construction achieves worst-case constant blow-up, it also omits inefficient PIR

reads performed for ORAM access. This second construction improves the blocks size

by a multiplicative factor of log2 N compared to Onion ORAM in the worst case. As

you can see, the main overhead of C-ORAM’s block size comes from the size of

ciphertext. Recall that γ ∈ O(λ3). Therefore, the smaller the additively homomorphic

ciphertext will get, the smaller the block size of C-ORAM will be.

Figure 27: C-ORAM 2nd Access Algorithm

Figure 28: C-ORAM Evict-Clone Algorithm

Figure 29: C-ORAM PIR-Write Algorithm

Access(op, adr, data, st)

1: tag = posMap(adr)x ← position[a]

2: posMap(adr)
$

← [N]
3: B = Evict-Clone(adr, tag)
4: if op = write then set B = data

5: pos1
$

← [μ ∙ z]
6: PIR-Write(pos1, B, 𝒫(st, 0))
7: Evict(st)

8: pos2
$

← [ℎ𝑒𝑎𝑑𝑒𝑟
𝐿]

9: N = PIR-Read(pos2, 𝒫(st, 𝐿))
10: PIR-Write(pos2, -N,𝒫(st, 𝐿))

Evict-Clone(adr, tag)

1: Create a copy of the C-ORAM path 𝒫(tag)
2: for 𝑖 = 0 to L -1 do

3: Retrieve ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖 and ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1

4: Retrieve Ci and Ci+1 respectively the ith and (i+1)th column of ℎ𝑒𝑎𝑑𝑒𝑟2
𝑖 and ℎ𝑒𝑎𝑑𝑒𝑟2

𝑖+1 of the bucket
𝒫(𝑡𝑎𝑔, 𝑖) and 𝒫(𝑡𝑎𝑔, 𝑖 + 1)

5: π

← GenPerm((ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖, Ci), (ℎ𝑒𝑎𝑑𝑒𝑟1

𝑖+1, Ci+1))
6: 𝒫(𝑡𝑎𝑔, 𝑖 + 1) = π(𝒫(𝑡𝑎𝑔, 𝑖)) + 𝒫(𝑡𝑎𝑔, 𝑖 + 1)
7: end
8: B = PIR-Read(adr, 𝒫(𝑡𝑎𝑔, 𝐿))
8: for 𝑖 = 0 to 𝐿 do

10: Update(ℎ𝑒𝑎𝑑𝑒𝑟1
𝑖) in 𝒫(𝑡𝑎𝑔, 𝑖)

11: end

PIR-Write(pos, block, 𝒫(tag, level))

1: for 𝑖 = 1 to μ ∙ z do
2: if 𝑖 ≠ pos then 𝑉i

← ENC(0) else

3: 𝑉i

← ENC(1)
4: end
5: Parse bucket 𝒫(tag, level) as (μ ∙ z × |B|) binary matrix 𝑀
6: 𝑀𝑖,𝑗 = 𝒲𝑖 ∙ ℬ𝑗

7: 𝒫(tag, level) = 𝑀 + 𝒫(tag, level)

 Oblivious RAM from theory to practice

University of Piraeus 71

4.2.4 Security Analysis

The permutations generated by Algorithm Evict (Figure 25) are indistinguishable from

random permutations. Informally, the adversary cannot gain any knowledge about

the load of a particular bucket. Applying a permutation from Algorithm Evict (Figure 25)

is equal to applying any randomly chosen permutation. We denote the adversarial

permutation indistingui-shability experiment as PermG. Let ℳ denote a probabilistic

algorithm that generates permutations based on the configuration of two buckets and

𝒜 a PPT adversary. Let 𝓀 be the bucket size and 𝓈 the security parameter. By Perm

we denote the set of all possible permutations of size 𝓀. Let ℰ1 = (Gen, Enc, Dec) and

ℰ2 = (Gena, Enca, Deca) respectively denote an IND$-CPA encryption and an IND-CPA

additively homomorphic encryption schemes. Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈) refers to the

instantiation of the experiments by algorithm ℳ, ℰ1, ℰ2 and adversary 𝒜. The

experiment Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈) consists of:

 Generate two keys 𝓀1, 𝓀2 such that 𝓀1

$
←Gena(1𝓈) and 𝓀2

$
←Gena(1𝓈) and send

𝓃 buckets additively homomorphic encrypted with Enca(𝓀1,.) associated to

their headers encrypted with Enc(𝓀2,.) to the adversary 𝒜

 The adversary 𝒜 picks two buckets A and B, then sends the encrypted

headers header(A) and header(B)

 A random bit b
$

← {0,1} is chosen. If b = 1, π1
$

← ℳ(header(A), header(B)),

otherwise π0
$

← Perm. Send π2 to 𝒜

 𝒜 has access to the oracle 𝒪ℳ that issues permutations for any couple of

headers different from those in the challenge

 𝒜 outputs a bit b’

 The output of the experiment is 1 if b’ = b, and 0 otherwise. If

Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈, b’) = 1, we say that the adversary 𝒜 succeeded.

Definition 7 (Indistinguishable permutation) Algorithm ℳ generates

indistinguishable permutation iff for all PPT adversaries 𝒜 and all possible

configurations of buckets A and B, there exists a negligible function negl, such that

Pr[Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈, 1) = 1] – Pr[Perm𝐺ℳ, ℰ1, ℰ2

𝒜 (𝓈, 0) = 1] ≤ negl(𝓈)

Theorem 2. If ℰ1 is IND$-CPA secure, ℰ2 IND-CPA secure, then Algorithm Evict (Figure

25) generates indistinguishable permutations.

4.3 Comparison

In section 4.2 shown that the homomorphic multiplications, and in fact the nesting

“onion” nature of Onion ORAM solution, is not necessary. With careful application of

 Oblivious RAM from theory to practice

University of Piraeus 72

an oblivious merging algorithm, all movement of blocks through the tree can be done

with only homomorphic addition, resulting in a more computationally efficient

algorithm. This also reduced the required block size by a O(log2 N) factor and, allows

for O(1) communication complexity in the worst case. Finally, C – ORAM scheme

requires only a small storage overhead compared to Onion ORAM. For practical

parameter values, C – ORAM achieves significant improvement in block size and

number of homomorphic operations. Table 4 summarizes improvements of C – ORAM

when compared to Onion ORAM.

Scheme Block size B Simplified
block size

Worst-case
bandwidth

additions # multiplications

Onion ORAM Ω(γλ log2 N) Ω(log6 N) O(1) Θ(Bλ log N) Θ(Bλ log N)

C – ORAM Ω(λ[log N log λ+γ]) Ω(log4 N) O(1) Θ(Bλ log N) Θ (Bλ)
Table 4: Comparison of Onion ORAM and C-ORAM

 Oblivious RAM from theory to practice

University of Piraeus 73

5 ObliviStore ORAM Family

5.1 ObliviStore ORAM

ObliviStore [5] is a high performance, distributed ORAM-based cloud data store

secure in the malicious model. ObliviStore achieves high throughput by making I/O

operations asynchronous. Asynchrony introduces security challenges, i.e.,

information leakage must be prevented not only through access patterns, but also

through timing of I/O events. On [5] various practical optimizations are proposed

which are key to achieving high performance, as well as techniques for a data center

to dynamically scale up a distributed ORAM. The authors shown that with 11 trusted

machines (each with a modern CPU), and 20 Solid State Drives, ObliviStore achieves a

throughput of 31.5MB/s with a block size of 4KB.

5.1.1 The ObliviStore ORAM Protocol

One naive way to distribute an ORAM is to have a single trusted compute node with

multiple storage partitions. However, in this case, the computation and bandwidth

available at the trusted node can become a bottleneck as the ORAM scales up. In this

scheme is proposed a distributed ORAM that distributes not only storage, but also

computation and bandwidth.

Oblivistore ORAM consists of an oblivious load balancer and multiple ORAM nodes.

The key idea is to apply the partitioning framework twice. The partitioning framework

was initially proposed to reduce the worst-case shuffling cost in ORAMs [4, 3], but it

could leverage it to securely perform load balancing in a distributed ORAM.

Specifically, each ORAM node is a “partition” to the oblivious load balancer, which

relies on the partitioning framework to achieve load balancing amongst multiple

ORAM nodes. Each ORAM node has several storage partitions, and relies on the

partitioning framework again to store data blocks in a random storage partition with

every data access. One benefit of the distributed architecture is that multiple ORAM

nodes can perform shuffling in parallel.

5.1.2 Detailed Distributed ORAM Construction

To access a block, the oblivious load balancer first looks up its position map, and

determines which ORAM node is responsible for this block. The load balancer than

passes the request to this corresponding ORAM node. Each ORAM node implements

a smaller ORAM consisting of multiple storage partitions. Upon obtaining the

requested block, the ORAM node passes the result back to the oblivious load balancer.

The oblivious load balancer now temporarily places the block in its eviction caches.

With every data access, the oblivious load balancer chooses ν random ORAM nodes

 Oblivious RAM from theory to practice

University of Piraeus 74

and evicts one block (possibly real or dummy) to each of them, through an ORAM

write operation.

Each ORAM node also implements the shuffling functionalities. In particular, the

ORAM nodes can be regarded as a parallel processors capable of performing

reshuffling in parallel. The oblivious load balancer need not implement any shuffling

functionalities, since it does not directly manage storage partitions. Hence, even

though the load balancer is a central point, its functionality is very light-weight in

comparison with ORAM nodes which are in charge of performing actual cryptographic

and shuffling work.

Notice that each ORAM node may not be assigned an equal amount of storage

capacity. In this case, the probability of accessing or evicting to an ORAM node is

proportional to the amount of its storage capacity. For ease of explanation, we

assume that each storage partition is of equal size, and that each ORAM node may

have different number of partitions – although in reality, could be supported

partitions of uneven sizes in a similar fashion.

5.1.3 Dynamic Scaling Up

Adding compute nodes. When a new ORAM node processor is being added to the

system (without additional storage), the new ORAM node processor registers itself

with the load balancer. The load balancer now requests existing ORAM nodes to hand

over some of their existing their partitions to be handled by the new processor. To do

this, the ORAM nodes also need to hand over part of their local metadata to the new

processor, including part of the position maps, eviction caches, and partition states.

The load balancer also needs to update its local metadata accordingly to reflect the

fact that the new processor is now handling the reassigned partitions

Adding compute nodes and storage. The more difficult case is when both new

processor and storage are being added to the system. One naive idea is for the ORAM

system to immediately start using the new storage as one or more additional

partitions, and allow evictions to go to the new partitions with some probability.

However, doing so would result in information leakage. Particularly, when the client

is reading the new partition for data, it is likely reading a block that has been recently

accessed and evicted to this partition. In ORAM Scheme [5] is proposed a new

algorithm for handling addition of new ORAM nodes, including processor and storage.

When a new ORAM node joins, the oblivious load balancer and the new ORAM node

jointly build up new storage partitions. At any point of time, only one storage partition

is being built. Building up a new storage partition involves:

 Random block migration phase. The load balancer selects random blocks

from existing partitions, and migrates them to the new partition. The new

 Oblivious RAM from theory to practice

University of Piraeus 75

partition being built is first cached in the load balancer’s local trusted

memory, and it will be sequentially written out to disk when it is ready. This

requires about O(N/D) amount of local memory, where N is the total storage

capacity, and D is the number of ORAM nodes. During the block migration

phase, if a requested block resides within the new partition, the load balancer

fetches the block locally, and issues a dummy read to a random existing

partition (by contacting the corresponding ORAM node). Blocks are only

evicted to existing partitions until the new partition is fully ready.

 Marking partition as ready. At some point, enough blocks would have been

migrated to the new partition. Now the load balances sequentially writes the

new partition out to disk, and marks this partition as ready.

 Expanding the address space. The above two steps migrate existing blocks to

the newly introduced partition, but do not expand the capacity of the ORAM.

We need to perform an extra step to expand ORAM’s address space. Similarly,

the challenge is how to do this securely. Suppose the old address space is

[1, 𝑁], and the new address space after adding a partition is [1, 𝑁'], where 𝑁'

> 𝑁. One naive idea is to randomly add each block in the delta address space

[𝑁 + 1, 𝑁'] to a random partition. However, if the above is not an atomic

operation, and added blocks become immediately accessible, this can create

an information leakage. For example, after the first block from address space

[𝑁 + 1, 𝑁'] has been added, at this time, if a data access request wishes to

fetch the block added, it would definitely visit the partition where the block

was added. To address this issue, the algorithm first assigns each block from

address space [𝑁 + 1, 𝑁'] to a random partition – however, at this point, these

blocks are not accessible yet. Once all blocks from address space [𝑁 + 1, 𝑁']

have been assigned, the load balancer notifies all ORAM nodes, and at this

point, these additional blocks become fully accessible.

Initially, a new ORAM node will have 0 active partitions. Then, as new storage

partitions get built, its number of active partitions gradually increases. Suppose that

at some point of time, each existing ORAM node has c1, c2, ..., cm-1 partitions

respectively, and the newly joined ORAM node has cm active partitions, while one

more partition is being built. Suppose all partitions are of equal capacity, then the

probability of evicting to each active partition should be equal. In other words, the

probability of evicting to the i'-th ORAM (where i ∈ [m]) node is proportional to ci.

The remaining question is when to stop the migration and mark the new partition as

active. This can be done as follows. Before starting to build a new partition, the

oblivious load balancer samples a random integer from the binomial distribution k
$

←

Β(𝑁,ρ), where 𝑁 is the total capacity of the ORAM, and ρ =
1

𝑃+1
, where P denotes the

 Oblivious RAM from theory to practice

University of Piraeus 76

total number of active partitions across all ORAM nodes. The goal is now to migrate k

blocks to the new partition before marking it as active. However, during the block

migration phase, blocks can be fetched from the new partition but not evicted back

to it. These blocks fetched from the new partition during normal data accesses are

discounted from the total number of blocks migrated. The full node join algorithm is

in [6].

5.1.4 Security Analysis

Definition 8 (Oblivious accesses and scheduling). Let seq0 and seq1 denote two data

access sequences of the same length and with the same timing:

seq0 := [(𝑏𝑙𝑜𝑐𝑘𝑖𝑑1
 , 𝑡 1), (𝑏𝑙𝑜𝑐𝑘𝑖𝑑2

 , 𝑡 2), ..., (𝑏𝑙𝑜𝑐𝑘𝑖𝑑𝑚
 , 𝑡 𝑚)]

seq1 := [(𝑏𝑙𝑜𝑐𝑘𝑖𝑑1
′ , 𝑡 1), (𝑏𝑙𝑜𝑐𝑘𝑖𝑑2

′ , 𝑡 2), ..., (𝑏𝑙𝑜𝑐𝑘𝑖𝑑𝑚
′ , 𝑡 𝑚)]

Define the following game with an adversary who is in control of the network and the

storage server:

 The client flips a random coin b.

 Now the client runs distributed asynchronous ORAM is algorithm and plays

access sequence seqb with the adversary.

 The adversary observes the resulting event sequence and outputs a guess b’

of b.

We say that an asynchronous ORAM is secure, if for any polynomial-time adversary,

for any two sequences seq0 and seq1 of the same length and timing, |Pr[b’ = b] -
1

2
| ≤

negl(λ), where λ is a security parameter, and negl is a negligible function.

Theorem 3. ObliviStore (asynchronous) ORAM construction satisfies the security

notion described in Definition 8 above.

Both the physical addresses accessed and the sequence of events observed by the

server are independent of the data access sequence. In [6] is shown that an adversary

can perform a perfect simulation of the scheduler without knowledge of the data

request sequence. Specifically, both the timing of I/O events and the physical

addresses accessed in the simulation are indistinguishable from those in the real

world.

5.2 Burst ORAM

Burst ORAM [13] is an oblivious cloud storage system that achieves both practical

response times and low total bandwidth consumption for bursty work-loads by

reducing online bandwidth costs and aggressively rescheduling shuffling work to delay

the bulk of the IO until the idle periods. In this schema, authors focus on reducing

 Oblivious RAM from theory to practice

University of Piraeus 77

effective IO by reducing online IO and delaying offline IO. This approach achieves to

satisfy bursts of requests quickly, and delay most IO until idle periods. Moreover, it

allows many bursts to be satisfied with nearly a 1× effective bandwidth cost. That is,

during the burst, one block is transferred for every block requested. After the burst

extra IO executed to catch up on shuffling and prepare for future requests. Before we

proceed in details of this protocol we provide a short outline of Burst ORAM

techniques, challenges and what is considered as burst.

Bursts. Intuitively, a burst is a period of frequent block requests from the client

preceded and followed by relatively idle periods. Many real-world workloads exhibit

bursty patterns (e.g. [26, 27]). Often, bursts are not discrete events, such as when

multiple network file system users are operating concurrently. Thus Burst ORAM

handles bursts fluidly: the more requests issued at once, the more Burst ORAM tries

to delay offline IO until idle periods.

Challenges. When building a burst-friendly ORAM system there are several

challenges. The first is ensuring security maintenance. A naive approach to reducing

online IO may mark requests as satisfied before enough blocks are read from the

server, leaking information about the requested block’s identity. The second

challenge is ensuring that we maximally utilize client storage and available bandwidth

while avoiding deadlock. An excessively aggressive strategy that delays too much IO

may use so much client space that we run out of room to shuffle. It may also

underutilize available bandwidth, increasing response times. On the other hand, an

overly conservative strategy may under-utilize client space or perform shuffling too

early, delaying online IO and increasing response times.

Techniques. Burst ORAM addresses the challenges above by combining several novel

techniques. It is introduced a new XOR technique for reducing online bandwidth cost

to nearly 1×, Prioritizing online IO and delaying offline/ shuffle IO until client memory

is nearly full. Also, Burst ORAM prioritizes efficient shuffle jobs in order to delay the

bulk of the shuffle IO even further, ensuring that is minimized effective IO during long

bursts. Last but not least, available client space is used to cache small levels locally to

reduce shuffle IO.

5.2.1 The Burst ORAM Protocol

Burst ORAM achieves low response time by prioritizing online IO over shuffle IO. That

is, shuffle IO suppressed during bursts, delaying it until idle periods. Requests are

satisfied once online IO finishes, so prioritizing online IO allows to satisfy all requests

before any shuffle IO starts, keeping response times low even for later requests.

During the burst, requests are processed by fetching blocks from the server, but since

shuffling is suppressed, no blocks are uploaded. Thus, we must resume shuffling once

client storage fills. When available bandwidths are large and bursts are short, the

 Oblivious RAM from theory to practice

University of Piraeus 78

response time saved by prioritizing online IO is limited, as most IO needed for the

burst can be issued in parallel. However, when bandwidth is limited or bursts are long,

the savings can be substantial. With shuffle IO delayed until idle times, online IO

dominates the effective IO, becoming the bottleneck during bursts. Here it comes the

new XOR technique, which introduced in [13] and reduces Online IO.

5.2.1.1 XOR Technique

The XOR technique allows the Burst ORAM server to combine the O(log N) blocks

fetched during a request into a single block that is returned to the client, reducing the

online bandwidth cost to O(1). If only the desired block was fetched, its identity would

be revealed to the server. Instead, XOR all the blocks together and return the result.

Since there is at most one real block among the O(log N) returned, the client can

locally reconstruct the dummy block values and XOR them with the returned block to

recover the encrypted real block.

In Burst ORAM, as in ObliviStore, each request needs to retrieve a block from a single

partition, which is a simplified hierarchical ORAM resembling those in [1]. The

hierarchy contains L ≈
1

2
 log2 N levels with real-block capacities 1, 2, 4, ..., 2L-1

respectively. To retrieve a requested block, the client must fetch exactly one block

from each of the L levels. The XOR technique requires that the client be able to

reconstruct dummy blocks, and that dummies remain indistinguishable from real

blocks. This property is achieved by encrypting a real block b residing in partition 𝑝,

level ℓ, and offset off as 𝐴𝐸𝑆𝑠𝑘𝑝,ℓ
(off ||B). An encrypted dummy block residing in

partition 𝑝, level ℓ, and offset off as 𝐴𝐸𝑆𝑠𝑘𝑝,ℓ
(off). The key 𝑠𝑘𝑝,ℓ is specific to partition

𝑝 and level ℓ, and is randomized every time ℓ is rebuilt.

For simplicity, we start by considering the case without early shuffle reads. In this

case, exactly one of the L blocks requested is the encryption of a real block, and the

rest are encryptions of dummy blocks. The server XORs all L encrypted blocks together

into a single block 𝑋𝒬 that it returns to the client. The client knows which blocks are

dummies, and knows 𝑝, ℓ, off for each block, so it reconstructs all the encrypted

dummy blocks and XORs them with 𝑋𝒬 to obtain the encrypted requested/real block.

Early Shuffle Reads. An early shuffle read occurs when we need to read from a level

with no more than half its original blocks remaining. Since such early shuffle reads

may be real blocks, they cannot be included in the XOR. Fortunately, the number of

blocks in a level is public, so the server already knows which levels will cause early

shuffle reads. Thus, the server simply returns early shuffle reads individually, then

XORs the remaining blocks, leaking no information about the access sequence. Since

each early shuffle read block must be transferred individually, early shuffle reads

increase online IO. Fortunately, early shuffle reads are rare, even while shuffling is

 Oblivious RAM from theory to practice

University of Piraeus 79

suppressed during bursts, so the online bandwidth cost stays under 2× and near 1× in

practice.

5.2.1.2 Scheduling and Reducing Shuffle IO

In this section, we show how Burst ORAM schedules shuffle IO so that jobs that free

the most client space using the least shuffle IO are prioritized. Thus, at all times, Burst

ORAM issues only the minimum amount of effective IO needed to continue the burst,

keeping response times lower for longer. We also show how Burst ORAM reduces

overall IO by locally caching the smallest levels from each partition. We start by

defining shuffle jobs.

In Burst ORAM, as in ObliviStore, shuffle IO is divided into per-partition shuffle jobs.

Each job represents the work needed to shuffle a partition 𝑝 and upload blocks

evicted to 𝑝. A shuffle job is defined by five entities:

 A partition 𝑝 to which the job belongs

 Blocks evicted to but not yet returned to 𝑝

 Levels to read blocks from

 Levels to write blocks to

 Blocks already read from 𝑝 (early shuffle reads)

Each shuffle job moves through three phases:

Creation Phase. We create a shuffle job for p when a block is evicted to p following a

request. Every job starts out inactive, meaning we have not started work on it. If

another block is evicted to p, we update the sets of eviction blocks and read/write

levels in p’s inactive job. When Burst ORAM activates a job, it moves the job to the

Read Phase, freezing the eviction blocks and read/write levels. Subsequent evictions

to p will create a new inactive shuffle job. At any time, there is at most one active and

one inactive shuffle job for each partition.

Read Phase. Once a shuffle job is activated, we begin fetching all blocks still on the

server that need to be shuffled. That is, all previously unread blocks from all the job’s

read levels. Once all such blocks are fetched, they are shuffled with all blocks evicted

to p and any early shuffle reads from the read levels. Shuffling consists of adding/

removing dummies, pseudo-randomly permuting the blocks, and then re-encrypting

each block. Once shuffling completes, we move the job to the Write Phase.

Write Phase. Once a job is shuffled we begin storing all shuffled blocks to the job’s

write levels on the server. Once all writes finish, the job is marked complete, and Burst

ORAM is free to activate p’s inactive job, if any.

 Oblivious RAM from theory to practice

University of Piraeus 80

5.2.1.2.1 Prioritizing Efficient Jobs

Since executing shuffle IO delays the online IO needed to satisfy requests, the

response time could be reduced by doing as little shuffling as is needed to free up

space. The hope is that the bulk could be delayed of the shuffling until an idle period,

so that it does not interfere with pending requests.

By the time client space fills, there will be many partitions with inactive shuffle jobs.

Since we can choose jobs in any order, we can minimize the up-front shuffling work

by prioritizing the most efficient shuffle jobs: those that free up the most client space

per unit of shuffle IO. According to [13] the space freed by completing a job for

partition p is the number of blocks evicted to p plus the number of early shuffle reads

from the job’s read levels. Thus, they define in [13] shuffle job efficiency as follows:

Job Efficiency =
𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑠+ # 𝐸𝑎𝑟𝑙𝑦 𝑆ℎ𝑢𝑓𝑓𝑙𝑒 𝑅𝑒𝑎𝑑𝑠

𝐵𝑙𝑜𝑐𝑘𝑠 𝑡𝑜 𝑅𝑒𝑎𝑑+# 𝐵𝑙𝑜𝑐𝑘𝑠 𝑡𝑜 𝑊𝑟𝑖𝑡𝑒

Job efficiencies vary substantially. Most jobs start with 1 eviction and 0 early shuffle

reads, so their relative efficiencies are determined strictly by the sizes of the job’s read

and write levels. If the partition’s bottom level is empty, no levels need be read, and

only the bottom must be written, for an overall IO of 2 an efficiency of 0.5. If instead

the bottom 4 levels are occupied, all 4 levels must be read, and the 5th level written,

for a total of roughly 15 reads and 32 writes, yielding a much lower efficiency of just

over 0.02. Both jobs free equal amounts of space, but the higher-efficiency job uses

less IO.

Since small levels are written more often than large ones, efficient jobs are common.

Further, by delaying an unusually inefficient job, it is given time to accumulate more

evictions. While such a job will also accumulate more IO, the added write levels are

generally small, so the job’s efficiency tends to improve with time. Thus, prioritizing

efficient jobs reduces shuffle IO during the burst, thereby reducing response times.

Unlike Burst ORAM, ObliviStore [5] does not use client space to delay shuffling, so

there are fewer shuffle jobs to choose from at any one time. Thus, job scheduling is

less important and jobs are chosen in creation order. Since ObliviStore is concerned

with throughput, not response times, it has no incentive to prioritize efficient jobs.

5.2.1.2.2 Level Caching

Burst ORAM spends a lot of time accessing small levels. If client space used to locally

cache the smallest levels of each partition, could be eliminated the shuffle IO

associated with those levels entirely. Since levels are shuffled with a frequency

inversely proportional to their size, each is responsible for roughly the same fraction

of shuffle IO. Thus, shuffle IO could be greatly reduced by caching even a few levels

 Oblivious RAM from theory to practice

University of Piraeus 81

from each partition. Further, since caching a level eliminates its early shuffle reads,

which are common for small levels, caching can also reduce online IO.

In Burst ORAM, cached only as many levels as are guaranteed to fit in the worst case.

More precisely, it is identified the maximum number such that the client could store

all real blocks from the smallest levels of every partition even if all were full

simultaneously. Levels are cached by only updating an inactive job when the number

of evictions is such that all the job’s write levels have index at least . Since each level

is only occupied half the time, caching levels consumes at most half of the client’s

space on average, leaving the rest for requested blocks.

5.2.2 Security Analysis

The server knows public information such as the values of each semaphore and the

start and end times of each request. The server also knows the level configuration of

each partition and the size and phase of each shuffle job, including which encrypted

blocks have been read from and written to the server. The server must not learn the

contents of any encrypted block, or anything about which plaintext block is being

requested. Thus, the server may not know the location of a given plaintext block, or

even the prior location of any previously requested encrypted block.

All of Burst ORAM’s publicly visible actions are, or appear to the server to be,

independent of the client’s sensitive data access sequence. Since Burst ORAM treats

the server as a simple block store, the publicly visible actions consist entirely of

deciding when to transfer which blocks. Intuitively, Burst ORAM must ensure that

each action taken is both deterministic and dependent only on public information, or

appears random to the server. Equivalently, the schema must be able to generate a

sequence of encrypted block transfers that appears indistinguishable from the actions

of Burst ORAM using only public information. We now show how each Burst ORAM

component meets these criteria.

ORAM Main and Client Security. ORAM Main (Figure 30) chooses whether to advance

the Requester or the Shuffler, and depends on the size of the request queue and the

Local Space semaphore. Since the number of pending requests and the semaphores

are public, ORAM Main is deterministic and based only on public information. For

each eviction, the choice of partition is made randomly, and exactly one block will

always be evicted. Thus, every action in Figure 30 is either truly random or based on

public information, and is trivial to simulate.

Requester Security. The Requester (Figure 31) must first identify the partition

containing a desired block. Since the block was assigned to the partition randomly and

this is the first time it is being retrieved since it was assigned, the choice of partition

appears random to the server. Within each partition, the requester deterministically

 Oblivious RAM from theory to practice

University of Piraeus 82

retrieves one block from each occupied level. The choice from each level appears

random, since blocks were randomly permuted when the level was created. The

Requester singles out early shuffle reads and returns them individually. The identity

of levels that return early shuffle reads is public, since it depends on the number of

blocks in the level. The remaining blocks are deterministically combined using XOR

into a single returned block. Finally, the request is marked satisfied only after all blocks

have been returned, so request completion time depends only on public information.

The Requester’s behavior can be simulated using only public information by randomly

choosing a partition and randomly selecting one block from each occupied level.

Blocks from levels with at most half their original blocks remaining should be returned

individually, and all others combined using XOR and returned. Once all blocks have

been returned, the request is marked satisfied.

Shuffler Security. As in ObliviStore, Shuffler (Figure 32: Burst ORAM Shuffler Algorithm)

operations depend on public semaphores. Job efficiency, which used for prioritizing

jobs, depends on the number of blocks to be read and written to perform shuffling,

as well as the number of early shuffle reads and blocks already evicted (not assigned).

The identity of early shuffle read levels and the number of evictions is public. Further,

the number of reads and writes depends only on the partition’s level configuration.

Thus, job efficiency and job order depend only on public information. Since the

Shuffler’s actions are either truly random (e.g. permuting blocks) or depend only on

public information (i.e. semaphores), it is trivial to simulate.

Client Space. Since fetched blocks are assigned randomly to partitions, but evicted

using an independent process, the number of blocks awaiting eviction may grow. The

precise number of such blocks may leak information about where blocks were

assigned, so it must be kept secret, and the client must allocate a fixed amount of

space dedicated to storing such blocks. ObliviStore [5] relies on a probabilistic bound

on overflow space provided in [2]. Since Burst ORAM uses ObliviStore’s assignment

and eviction processes, the bound holds for Burst ORAM as well. Level caching uses

space controlled by the Local Space semaphore, so it depends only on public

information.

 Oblivious RAM from theory to practice

University of Piraeus 83

Figure 30: Burst ORAM Client and ORAM Main Algorithm

Figure 31: Burst ORAM Requester Algorithm

Client and ORAM Main()

1: function ClientRead(𝑏)
2: Append b to RequestQueue
3: On RequestCallBack(D(𝑏)), return D(𝑏)
4: procedure Write(𝑏, 𝑑)
5: Append b to RequestQueue
6: On RequestCallBack(D(𝑏)), write d to D(𝑏)
7: procedure ORAM Main
8: RequestMade ← false
9: if RequestQueue ≠ ∅ then
10: b ← Peek(RequestQueue)
11: if Fetch(b) then ⊳ Request Issued
12: RequestMade ← true
13: Pop(RequestQueue)
14: MakeEvictions
15: if RequestMade = false then
16: TryShuffleWork
17: procedure MakeEvictions
18: PendingEvictions = PendingEvictions + v
19: while PendingEvictions ≥ 1 do
20: p ← random partition
21: Evict new dummy or assigned real block to p
22: Vp = Vp + 1
23: if shuffling p only writes levels ≥ λ then
24: Jp ← p’s inactive job ⊳ Create if needed
25: 𝑉𝐽𝑝

← Vp

26: if p has no active job then
27: NJQ = NJQ ∪ Jp
28: PendingEvictions = PendingEvictions – 1

Requester()

1: function Fetch(b)
2: P(𝑏), L(𝑏) ← position map lookup on 𝑏
3: 𝑄 = ∅, 𝐶 = ∅
4: for level ℓ ∈ P(b) do
5: if ℓ is non-empty then
6: 𝑏ℓ ← 𝑏 if ℓ = L(𝑏)

7: 𝑏ℓ ← ID of next dummy in ℓ if ℓ ≠ L(𝑏)
8: if ℓ more than half full then
9: 𝑄 ← 𝑄 ∪ S(𝑏ℓ) ⊳ Standard read
10: else
11: 𝐶 ← 𝐶 ∪ S(𝑏ℓ) ⊳ Early shuffle read
12: Ret ← | 𝐶 | + MAX(|Q|,1) ⊳ #blocks to return
13: if Not TryDec(Local Space, Ret) then
14: return false ⊳ Not enough space for blocks
15: Dec(Concurrent IO, Ret)
16: Issue async, request for (𝐶, 𝑄) to server
17: When done, server calls:
18: FetchCallBack(E(𝐶, XOR, of E(𝑄))
19: return true
20: procedure FetchCallBack({E(ci)},XQ)
21: INC(Concurrent IO, 1)
22: if 𝑏 ∈ 𝑄 then
23: 𝑋𝑄

′ ← ⨁{𝐸(𝑞𝑖)| 𝑆(𝑞𝑖) ∈ 𝑄, 𝑞𝑖 ≠ 𝑏} ⊳ Subtraction block, computed locally

24: 𝐸(𝑏) ← 𝑋𝑄
 ⨁ 𝑋𝑄

′

25: if 𝑏 ∈ 𝐶 then

26: 𝐸(𝑏) ← 𝐸(𝑐𝑖) where 𝑐𝑖 = 𝑏
27: D(𝑏) ← decrypt 𝐸(𝑏)
28: Assign 𝑏 for eviction to random partition
29: RequestCallBack(D(𝑏)

 Oblivious RAM from theory to practice

University of Piraeus 84

Figure 32: Burst ORAM Shuffler Algorithm

Shuffler()

1: procedure TryShuffleWork
2: if NOT TryDec(Concurrent IO, 1) then
3: return
4: ReadIssued, WriteIssued ← false
5: if All reads for jobs in RJQ issued then
6: TryActive ⊳ Try to add job to RJQ

7: if Jp ∈ RJQ has not issued read 𝑏𝑟 then
8: if TryDec(Shuffle Buffer, 1) then
9: Issue assync.request for 𝑆(𝑏𝑅)
10: When done: ReadCallBack(𝐸(𝑏𝑅))
11: ReadIssued ← true
12: if !ReadIssued and Jp ∈ WJQ has write 𝑏𝑊 then
13: Write E(𝑏𝑊) to server
14: When done, call WriteCallBack(𝑆(𝑏𝑊))
15: WriteIssued ← true
16: if Not ReadIssued and Not WriteIssued then
17: INC(Concurrent IO, 1) ⊳ No shuffle work
18: procedure TryActive
19: if NJQ ≠ ∅ then
20: Jp ← Peek(NJQ) ⊳ Most efficient job
21: if TryDec(Shuffle Bufferm 𝑉𝐽𝑝

 + 𝐴𝐽𝑝
) then

22: Mark Jp active ⊳ 𝑉𝐽𝑝
 frozen

23: INC(Local Space, 𝑉𝐽𝑝
 + 𝐴𝐽𝑝

)

24: Move Jp from NJQ to RJQ
25: procedure ReadCallBack(𝐸(𝑏𝑅))
26: INC(Concurrent IO, 1)

27: Decrypt 𝐸(𝑏𝑅), place 𝐷(𝑏𝑅) in Shuffle Buffer
28: if all writes in Jp have finished then
29: Mark Jp complete
30: Remove Jp from WJQ
31: Update 𝐶𝑝 ← 𝐶𝑝 + 𝑉𝐽𝑝

, 𝑉𝑝 ← 𝑉𝑝 − 𝑉𝐽𝑝

32: Add p’s inactive job, if any, to NJQ

 Oblivious RAM from theory to practice

University of Piraeus 85

5.3 CURIOUS ORAM

CURIOUS ORAM [35] based upon a new set of metrics for evaluating ORAM designs,

focusing more on latency, monetary expense, outsourcing ratio, elasticity and

reliability. Among all existing designs, ObliviStore, which is built on partitioning the

main ORAM into a set of smaller server-side ORAMs, turns out to be the most

promising one. However, ObliviStore except of the privacy weakness in its

implementation, it is overly complicated due to some of its specific performance

optimization (e.g., background shuffling). CURIOUS is characterized by a set of fixed-

size small ORAMs, offering a large constant outsourcing ratio, convenience for

supporting asynchronous operations and the capability to expand and shrink its cloud-

side storage. It has been built to ensure oblivious data access when serving multiple

requests concurrently, and adopt a simpler eviction strategy, making it easier to

implement. Also importantly, unlike ObliviStore, which is tied to a layered RAM

scheme [5, 3], CURIOUS allows its underlying small, fixed-size ORAMs to be easily

replaced. As a result, its performance will be continuously improved whenever a new

design of such a building-block ORAM is available. For applications easily supported

by ORAM, both ObliviStore and CURIOUS perform comparably. However, for

demanding applications that stressed ORAM, CURIOUS significantly outperforms

ObliviStore in response time (only its 25%), despite doubling the network traffic. In all

cases, CURIOUS incurred lower monetary expense than (1/2 ~ 2/3 of) ObliviStore.

5.3.1 The CURIOUS ORAM Protocol

We describe the design of CURIOUS, a modular partition-based framework which

despite being asymptotically worse (in terms of bandwidth overhead) is able to

outperform ObliviStore in both monetary expense and response time.

CURIOUS utilizes many small constant-size ORAMs (called subORAMs, or partition

ORAMs), and uses existing remote storage services in a black-box way. At a high level,

the framework consists of a position map, an eviction cache (both stored locally), and

a collection of m subORAMs (whose state is kept locally, but whose storage is

outsourced to the cloud). CURIOUS is modular: it cleanly separates the modules so

that modules (e.g., partitions) can be improved upon independently, and specific

modules may be replaced by others in order to suit a specific application scenario.

To process a request for block x, CURIOUS uses the position map to find which

subORAM contains x. It then calls the subORAM module to both retrieve x and evict

one or more (possibly dummy) blocks to that subORAM. Once retrieved, x is put into

the eviction cache, and associated with a random subORAM. This ensures x will be

 Oblivious RAM from theory to practice

University of Piraeus 86

evicted at a random time, preventing the cloud from learning information about the

requests from the subORAM access sequences.

Asynchronicity and concurrency. Oblivious processing of concurrent requests is

challenging, and can compromise security or correctness when done incorrectly. To

illustrate this, consider the sequence of requests get, put, get, all for the same block

x. If an asynchronous scheme processes these requests sequentially, whereas other

requests would be processed concurrently, it becomes vulnerable to certain attacks

[35]. However, naively processing the three requests concurrently can compromise

correctness or security, too. Indeed, naive processing would, for each request, lookup

the position of x (i.e., which subORAM) using the position map, and then it would

retrieve x. Now the cloud observes three concurrent requests to the same subORAM,

an event that would happen only with probability 1/m3 for m subORAMs (e.g., m =

210), if the three requests were independent. In addition, it is necessary to ensure

correctness, i.e., the last request (get) must return the data written to the block by

the 2nd request (put), and consistency, e.g., a request should not unexpectedly

override something written by a concurrent request. To address these requirements,

CURIOUS leverages modularity and adopts a simple concurrency model: the event

that any two requests are run concurrently is statistically independent of their

requests' parameters (i.e., type and block). To ensure this, CURIOUS uses a sequential

scheduling process that detects whether two requests are “in conflict" (e.g., they

access the same block). By keeping track of pending requests, the framework can

make such conflicts oblivious to the cloud (i.e., it appears as if such conflicting

requests are of any two random requests).

Construction. Figure 33 describes the modular construction of CURIOUS. The interface

includes scheduleGet and schedulePut, both of which are asynchronous (i.e., the call

returns immediately, but the callback is invoked upon completing the request).

To process requests concurrently as well as obliviously, CURIOUS ensures that the

event that any two requests are processed concurrently is statistically independent of

those requests. Each request will operate on a random subORAM so two requests are

only competing (i.e., must be executed sequentially) if they operate on the same

subORAM. When a request operates on a subORAM, it gets a lock on it and only

accesses blocks of that subORAM.

Two competing requests that scheduled sequentially, though the request processing

(i.e., accessing the subORAM) can be asynchronous and concurrent. The idea is that

when scheduling a request, the framework will mark the targeted block as “in transit",

indicating that a request is in the process of retrieving that block. Subsequent requests

for the same block are aware of the fact that the block is already being retrieved so

they perform a dummy access (to a random subORAM) to hide (to the cloud) the fact

 Oblivious RAM from theory to practice

University of Piraeus 87

that the two requests targeted the same block. Upon finishing the first request, the

block is put in the cache, and also delivered to each concurrent request targeting the

same block. This prevents the kind of leaks uncovered in this Section, at the cost of

disallowing requests to concurrently operate on the same subORAM.

To address correctness, i.e., it must appear (to the application) as if requests are

processed sequentially, CURIOUS maintains a version id in the header of each block.

This allows the framework to ensure that every get always retrieves the correct

version of the data, even in presence of concurrent puts to the same block.

Figure 33: CURIOUS ORAM Framewotk

Eviction. When a block is added to the eviction cache (e.g., as a result of a request) it

becomes associated with a uniformly randomly chosen subORAM, following the same

way as to ObliviStore. This random choice is integral to ensure obliviousness. CURIOUS

performs evictions right after each subORAM access, i.e., a constant number of blocks

associated with that subORAM (in the eviction cache) are re-written to it. Dummy

blocks are used for padding, if needed. The subORAM module decides how many

blocks are evicted. To the cloud, the eviction process is statistically independent of

the requests, because all it sees is a fixed number of blocks (some of which may be

CURIOUS ORAM Framework

Local state:
1. Position map, storing for each block 𝑘: a pair (𝑠, 𝑝), where 𝑠 is the subORAM, and 𝑝 the position

within that subORAM.
2. Eviction cache, storing pairs (𝑘, 𝑠), where 𝑘 is a block and 𝑠 is the index of the associated subORAM.
3. For each of the m subORAMs: their state.

sheduleGet(𝑘, callback)

1. Call schedule(𝑘, ⊥, callback)

shedulePut(𝑘, 𝑣,callback)

1. Call schedule(𝑘, 𝑣, callback)

lookupPos(𝑘)

1. Lookup (𝑠, 𝑝) for block 𝑘
2. If block 𝑘 is in cache, set 𝑠 and 𝑝 uniformly at random

evictBlocks(𝑠)

1. Pick and remove 𝑐 cache entries of the form (𝑘, 𝑠)
2. If there are less than 𝑐 such entries, add dummy blocks

addToCache(𝑘)

1. Pick 𝑠, the index of the subORAM, uniformly at random
2. Store (𝑘, 𝑠) in the cache

schedule(𝑘, 𝑣,callback)

1. Call lookupPos(𝑘) to get (𝑠, 𝑝)
2. Call evictBlocks(𝑠) to get 𝑒, te set of blocks to evict
3. Call 𝑠.retrieveBlockAndEvict(𝑝, 𝑒)
4. If 𝑣 ≠ ⊥, then overwrite then content of the block 𝑘 with 𝑣
5. If block 𝑘 is newly retrieved, call addToCache(𝑘)
6. Call callback

 Oblivious RAM from theory to practice

University of Piraeus 88

dummy) evicted to the same subORAM that was just accessed. This is guaranteed if

the subORAM's module eviction process (in terms of what the cloud sees) is also

independent of which blocks are evicted.

SubORAM. A subORAM module defines a single function: retrieveBlockAndEvict,

which retrieves a block (given its position information) and evicts a list of blocks in

one operation. The module is a tree-based ORAM, which resembles PathORAM [2].

The construction, shown in Figure 34, makes use of a 𝑏 -ary tree (for any 𝑏 ≥ 2) whose

nodes are buckets containing 𝑧 𝑏 blocks, for a small integer 𝑧. The security of this

subORAM design can be easily derived from that of PathORAM. Namely, blocks

written to a subORAM are associated with a uniformly random leaf, hence a random

path accessed per ORAM read/write. Note that, there is no stash associated with the

subORAM, instead when a path overflows, we add the over own blocks to the client

cache. We can choose values of 𝑏 and 𝑧, such that the outsource ratio remains

satisfactory. Additionally, in order to exploit the download/upload asymmetry, we can

deterministically re-write only the first half of the path some of the time, e.g., for the

first out of every two re-writes, so as to lower the average number of uploaded nodes

per request (at the cost of lowering the outsource ratio, since blocks are more likely

to overflow).

Figure 34: CURIOUS ORAM - subORAM design

5.3.2 Security

Part of the challenge to secure an asynchronous scheme involves timing. There are

two ways in which timing may leak information: (1) through the application running

on top of ORAM whose requests have input-dependent timing patterns, and (2) due

to a weakness in the ORAM design itself. Like ObliviStore, CURIOUS only addresses

the latter. The former is not meant to be prevented by ORAM, which was not designed

to hide application timing. Here is adopted the security definition of ObliviStore

(Definition 8 in Section 5.1.4), which roughly says that for any two applications with

the same timing pattern, the ORAM's timing and accesses must be statistically

indistinguishable. To prove the security of CURIOUS must shown that what is

observed by the cloud provider is statistically independent of the requests (i.e., type,

blocks, and timing). Consider a CURIOUS instance of a fixed capacity with m

subORAMs. The cloud sees: (1) the timing of operations to the storage, (2) the

subORAM

Storage organization:
1. A 𝑏-ary tree of depth 𝑑 where each node has a capacity of 𝑧 blocks.

retrieveBlockAndEvict(𝑝, 𝑒)

1. Retrieve path ending at leaf 𝑝 from storage
2. For each block ∈ 𝑒, pick a random leaf ℓ
3. For each block ∈ 𝑒, update the position map with its new leaf ℓ
4. Rewrite path 𝑝, pushing blocks down to the leaf as far as possible

 Oblivious RAM from theory to practice

University of Piraeus 89

sequence of subORAMs accessed, and (3) the exact operations to each subORAM's

raw storage. CURIOUS' concurrency model takes care of (1). SubORAM design takes

care of (3) due to the statistical independence of the requests. This leaves (2) to be

dealt with here.

Theorem 4. For any sequence of 𝓉 requests, the sequence of subORAMs accessed by

CURIOUS is statistically independent of the type and target block of those requests.

Proof. Consider an arbitrary request; there are three possibilities for the targeted

block: (1) it has not been requested before; (2) it has been requested before and is in

the cache; or (3) it has been requested before and is not in cache. Since during

initialization blocks are randomly assigned to a subORAM, for (1), from the point of

view of the cloud, a uniformly random subORAM will be accessed. For (2), the block

is in the cache, so a uniformly random subORAM will be accessed. Finally for (3), the

block is not in the cache, so it must have been evicted earlier, when a uniformly

random subORAM was visited.

5.4 Comparison

5.4.1 ObliviStore ORAM vs Burst ORAM

For ObliviStore and Burst comparison two experiments are presented to [13] the

Endless Burst Experiment and NetApp Workload Experiment.

Endless Burst Experiment. For the endless burst experiments, a 32TB ORAM was used

with 𝑁 = 233 4KB blocks and 100GB client space. 233 requests were issued at once,

then start satisfying requests in order using each scheme. The bandwidth costs of each

request was recorded, averaged over requests with similar indexes and over three

trials. Figure 35 and Figure 36 show online and effective costs, respectively. The insecure

baseline is not shown, since its online, effective, and overall bandwidth costs are all

1. Figure 35 shows that Burst ORAM maintains 5X– 6X lower online cost than ObliviStore

for bursts of all lengths. When Burst ORAM starts to delay shuffling, it incurs earlier

shuffle reads, increasing online cost, but stays well under 2X on average. Burst ORAM

effective costs can be near 1X because writes associated with requests are not

performed until blocks are shuffled. Burst ORAM defers shuffling, so its effective cost

stays close to its online cost until client space fills, while ObliviStore starts shuffling

immediately, so its effective cost stays constant (Figure 41). Thus, response times for

short bursts will be substantially lower in Burst ORAM than in ObliviStore. Eventually,

client space fills completely, and even Burst ORAM must shuffle continuously to keep

up with incoming requests. This behavior is seen at the far right of Figure 41, where

each scheme’s effective cost converges to its overall cost. Burst ORAM’s XOR

technique results in slightly higher overall cost than ObliviStore’s level compression,

so Burst ORAM is slightly less efficient for very long bursts. Without local level caching,

 Oblivious RAM from theory to practice

University of Piraeus 90

Burst ORAM spends much more time shuffling the smallest levels, yielding the poor

performance of Burst ORAM No Level Caching. If shuffle jobs are started in arbitrary

order, as for Burst ORAM No Prioritization, the amount of shuffling per request quickly

increases, pushing effective cost toward overall cost. However, by prioritizing efficient

shuffle jobs as in Burst ORAM proper, more shuffling can be deferred, keeping

effective costs lower for longer, and maintaining shorter response times.

Figure 35: Endless Burst – Online Bandwidth Cost

Figure 36: Endless Burst – Effective Bandwidth Cost

NetApp Workload Experiment. The NetApp experiments show how each scheme

performs on a realistic, bursty workload. Burst ORAM exploits the bursty request

patterns, minimizing online IO and delaying shuffle IO to achieve near-optimal

response times far lower than ObliviStore’s. Level caching keeps Burst ORAM’s overall

bandwidth costs low. Figure 37 shows 99.9-percentile response times for several

schemes running the 15-day NetApp workload for varying bandwidths. All

experiments assume a 50ms network latency. For most bandwidths, Burst ORAM

response times are orders of magnitude lower than those of ObliviStore and

comparable to those of the insecure baseline. Shuffle prioritization and level caching

noticeably reduce response times for bandwidths under 1Gbps.

 Oblivious RAM from theory to practice

University of Piraeus 91

Figure 37: 99.9% Reponse Time Comparison on NetApp Trace1

Figure 38 compares 𝑝-percentile response times for 𝑝 values of 90%, 99%, and 99.9%.

It gives absolute 𝑝-percentile response times for the insecure baseline, and

differences between the insecure baseline and Burst ORAM 𝑝-percentile response

times (Burst ORAM overhead). When baseline response times are low, Burst ORAM

response times are also low across multiple 𝑝.

Figure 39 shows the overall bandwidth costs incurred by each scheme running the

NetApp workload at 400Mbps. Costs for other bandwidths are similar. Burst ORAM

clearly achieves an online cost several times lower than ObliviStore’s. Level caching

reduces Burst ORAM’s overall cost from 42X to 29X. Burst ORAM’s higher cost is due

to a combination of factors needed to achieve short response times. First, Burst ORAM

uses the XOR technique, which is less efficient overall than ObliviStore’s mutually

exclusive level compression. Second, Burst ORAM handles smaller jobs first. Such jobs

are more efficient in the short-term, but since they frequently write blocks to small

1 (Top) Burst ORAM achieves short response times in bandwidth-constrained settings. Since
ObliviStore has high effective cost, it requires more available client-server bandwidth to
achieve short response times. (Bottom) Burst ORAM response times are comparable to those
of the insecure (without ORAM) scheme.

 Oblivious RAM from theory to practice

University of Piraeus 92

levels, they create more future shuffle work. In ObliviStore, such jobs are often

delayed during a large job, so fewer levels are created, reducing overall cost.

Figure 38: Comparison of Burst ORAM and Baseline2

Figure 39: NetApp Trace Bandwidth Costs

2 (Top) Insecure baseline (no ORAM) 𝑝-percentile response times for various 𝑝. (Bottom)
Overhead (difference) between insecure baseline and Burst ORAM’s 𝑝-percentile response
times. Marked nodes show that when baseline 𝑝-percentile response times are < 100ms, Burst
ORAM overhead is also < 100ms.

 Oblivious RAM from theory to practice

University of Piraeus 93

5.4.2 ObliviStore ORAM vs CURIOUS ORAM

CURIOUS was evaluated against ObliviStore using the following experimental setup.

Experiment settings. The experiments were conducted from a Linux server on a

university network. The machine ran an ORAM client to interact with S3; the S3

buckets were placed on the US EAST1 Standard (North Virginia) Amazon S3 region.

This region has the lowest round-trip time with the ORAM client. The bandwidth

between the client and S3 was 50 MB/s downstream and 10 MB/s upstream2. In those

particular experiments, an ORAM always started running in a warmed-up state (after

𝑂(𝑛) requests were processed where 𝑛 is the capacity of the ORAM instance).

The application traces were replayed, with capacity 256MB and block size 16KB, in all

cases. For a fair comparison, the number of sub-ORAMs of CURIOUS were set such

that either schemes have roughly the same outsource ratio (or ObliviStore has the

advantage). The results, displayed in Comparison of CURIOUS and ObliviStoreTable 5, show

that CURIOUS is better in supporting the selected applications, i.e., its slowdown is

either the same or less than ObliviStore, despite the more than doubled bandwidth

usage in some cases (e.g., for fileserver, the bandwidth usage of tree-based CURIOUS

is 4500.4 KB/req vs. only 2159:8 KB/req for ObliviStore). Further, it is shown that the

monetary expense incurred by CURIOUS is between 1/2 and 2/3 that of ObliviStore.

In terms of applications, both varmail and webproxy are easily supported by both

schemes, but CURIOUS has slightly higher response time (e.g., 266 ms vs. 200ms for

webproxy). This is due to the background shuffling of ObliviStore which, for less

demanding applications, is beneficial because the shuffling cost is not paid upfront.

For such applications, minimizing the response time below a certain threshold may

not be required; instead in such cases, monetary expenses may outweigh small

differences in response times. For these applications, CURIOUS' operating monetary

cost is almost half of ObliviStore. For the demanding applications (i.e., webserver and

fileserver) which stressed ORAMs, CURIOUS is a better fit than ObliviStore. Indeed,

due to background shuffling, and high upload cost, ObliviStore experienced high

response times and larger slowdown. Take webserver as an example, the response

time is almost 4 times that of CURIOUS (i.e., 7.950 sec/req for ObliviStore vs. only

2.004 sec/req for CURIOUS) but the slowdown is comparable; both schemes are close

to being able to fully support the application. For fileserver, though neither scheme is

even close to satisfying the demands of this application, nevertheless CURIOUS

significantly outperformed ObliviStore both in response time and slowdown.

 Oblivious RAM from theory to practice

University of Piraeus 94

Table 5: Comparison of CURIOUS and ObliviStore

 Oblivious RAM from theory to practice

University of Piraeus 95

6 Applied ORAM Schemes

6.1 ObliviSync

ObliviSync [50] is an oblivious cloud storage system that specifically targets one of the

most widely-used personal cloud storage paradigms: synchronization and backup

services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. This

solution is asymptotically optimal and practically efficient, with a small constant

overhead of approximately 4x compared with non-private file storage, depending only

on the total data size and parameters chosen according to the usage rate, and not on

the number or size of individual files. This construction also offers protection against

timing-channel attacks, which has not been previously considered in ORAM protocols.

In [50] built and evaluated a full implementation of ObliviSync that supports multiple

simultaneous read-only clients and a single concurrent read/write client whose edits

automatically and seamlessly propagate to the readers. It has been shown that the

system functions under high workloads, with realistic file size distributions, and with

small additional latency (as compared to a baseline encrypted file system) when

paired with Dropbox as the synchronization service. The main goal in [50] was to

present an efficient solution for oblivious storage on a personal cloud

synchronization/backup provider such as (but not limited to) Dropbox or Google

Drive.

6.1.1 ObliviSync Setting Overview

The setting consists of an untrusted cloud provider and one or more clients which

backup data to the cloud provider. If there are multiple clients, the cloud provider

propagates changes made by one client to all other clients, so that they each have the

same version of the filesystem. Even if “Dropbox” is used as a shorthand for the

scenario, the solution is not specific to Dropbox and will work with any similar system.

This setting used because:

1. It is one of the most popular consumer cloud services used today, and is often

colloquially synonymous with the term “cloud”.

2. The interface for Dropbox and similar storage providers is “agnostic,” in that

it will allow you to store any data as long as you put it in the designated

synchronization directory. This allows for one solution that works seamlessly

with all providers.

3. Synchronization and backup services do not require that the ORAM hide a

user’s read accesses, only the writes. This is because (by default) every client

stores a complete local copy of their data, which is synchronized and backed

up via communication of changes to/from the cloud provider.

 Oblivious RAM from theory to practice

University of Piraeus 96

Write-Only ORAM. The third aspect of the setting above (i.e., it doesn’t need to hide

read accesses) is crucial to the efficiency of ObliviSync system. Each client already has

a copy of the database, so when they read from it they do not need to interact with

the cloud provider at all. If a client writes to the database, the changes are

automatically propagated to the other clients with no requests necessary on their

part. Therefore, the ORAM protocol only needs to hide the write accesses done by the

clients and not the reads. This is important because [51] have shown that write-only

ORAM can be achieved with optimal asymptotic communication overhead of O(1). In

practice, write-only ORAM requires only a small constant overhead of 3-6x compared

to much higher overheads for fully-functional ORAM schemes, which asymptotically

are Ω(logN). In [51] is presented a detailed description of the write-only ORAM, in

which ObliviSync scheme based.

6.1.2 ObliviSync Scheme

ObliviSync system uses the idea of write-only ORAM on top of any file backup or

synchronization tool in order to give multiple clients simultaneous updated access to

the same virtual filesystem, without revealing anything at all to the cloud service that

is performing the synchronization itself, even if the cloud service is corrupted to

become an honest-but-curious adversary. Write-only ORAM is ideal for this setting

because each client stores an entire copy of the data, so that only the changes (write

operations) are revealed to the synchronization service and thus only the write

operations need to be performed obliviously.

Improvements over write-only ORAM. Compared to the previous write-only ORAM

construction [51], the authors in [50] made significant advances and improvements

to fit this emergent application space:

 Usability: Users interact with the system as though it is a normal system

folder. All the encryption and synchronization happens automatically and

unobtrusively.

 Flexibility: A real filesystem is supported and innovative methods are used to

handle variable-sized files and changing client roles (read/write vs. read-only)

to support multiple users.

 Strong obliviousness: The design of OblivicSync system not only provides

obliviousness in the traditional sense, but also protects against timing channel

attacks. It also conceals the total number of write operations, a stronger

guarantee than previous ORAM protocols.

 Performance: The system well matches the needs of real file systems and

matches the services provided by current cloud synchronization providers. It

can also be tuned to different settings based on the desired communication

rate and delay in synchronization.

 Oblivious RAM from theory to practice

University of Piraeus 97

Basic architecture. The high-level design of ObliviSync is presented in Figure 40. There

are two types of clients in the system: a read/write client (ObliviSync-RW) and a read-

only client (ObliviSync-RO). At any given time, there can be any number of ObliviSync-

RO’s active as well as zero or one ObliviSync-RW clients. It is noted that a given device

may work as a read-only client in one period of time and as a write-only client in other

periods of time. Both clients consist of an actual backend folder as well as a virtual

frontend folder, with a FUSE client running in the background to seamlessly translate

the encrypted data in the backend to the user’s view in the frontend virtual filesystem.

The system relies on existing cloud synchronization tools to keep all clients’ backend

directories fully synchronized. This directory consists of encrypted files that are

treated as generic storage blocks, and embedded within these storage blocks is a file

system structure loosely based on i-node style file systems which allows for variable-

sized files to be split and packed into fixed-size units. Using a shared private key (which

could be derived from a password) the job of both clients ObliviSync-RO and

ObliviSync-RW is to decrypt and efficiently fetch data from these encrypted files in

order to serve ordinary read operations from the client operating in the frontend

directory.

The ObliviSync-RW client, which will be the only client able to change the backend

files, has additional responsibilities: (1) to maintain the file system encoding

embedded within the blocks, and (2) to perform updates to the blocks in an oblivious

manner using ObliviSync ORAM.

Figure 40: ObliviSync high-level design

 Oblivious RAM from theory to practice

University of Piraeus 98

User transparency with FUSE mount. From the user’s perspective, however, the

interaction with the frontend directory occurs as if interacting with any files on the

host system. This is possible because the FUSE mount (file system in user space)

interface displays the embedded file system within the backend blocks to the user as

if it were any other file system mount. Under the covers, though, the ObliviSync-RO

or ObliviSync-RW clients are using the backend directory files in order to serve all data

requests by the client, and the ObliviSync-RW client is additionally monitoring for file

changes/creations in the FUSE mount and propagating those changes to the backend.

Strong obliviousness through buffered writes. In order to maintain obliviousness,

these updates are not immediately written to the backend filesystem by the

ObliviSync-RW client. Instead, the process maintains a buffer of writes that are staged

to be committed. At regular timed intervals, random blocks from the backend are

loaded, repacked with as much data from the buffer as possible, and then re-

encrypted and written back to the backend folder. From there, the user’s chosen file

synchronization or backup service will do its work to propagate the changes to any

read-only clients. Moreover, even when there are no updates in the buffer, the client

pushes dummy updates by rewriting the chosen blocks with random data. In this way,

as the number of blocks written at each step is fixed, and these writes (either real or

dummy) occur at regular timed intervals, an adversary operating at the network layer

is unable to determine anything about the file contents or access patterns. Without

dummy updates, for example, the adversary can make a reasonable guess about the

size of the files that the client writes; continued updates without pause is likely to

indicate that the client is writing a large file. Note that in some cases, revealing

whether a client stores large files (e.g., movies) may be sensitive. The full source code

of ObliviSyn implementation is available on GitHub [52].

6.1.3 Security Analysis

Security definitions are presented below, before the detailed security analysis of the

system.

Notation. Here, the parameter 𝐿 is the maximum number of bytes that may be

modified, and 𝑡 is the latest time that is allowed. Also, recall the parameters 𝐵: block

pair size, 𝑁: number of backend block pairs, and 𝑘: drip rate.

Definition 9. ((𝐿, 𝑡)-𝒇𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆). A sequence of non-read operations for a block

filesystem is a (𝐿, 𝑡)-𝒇𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 if the total number of bytes to be modified in the

filesystem metadata and file data is at most 𝐿, and the last operation takes place

before or at time 𝑡.

 Oblivious RAM from theory to practice

University of Piraeus 99

Definition 10. (Write-only strong obliviousness) Let 𝐿 and 𝑡 be the parameters

for 𝑓𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. A block filesystem is write-only strongly-oblivious with running time

𝑇, if for any two (𝐿, 𝑡)-𝑓𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑃0 and 𝑃1, it holds that:

 The filesystem finishes all the tasks in each 𝑓𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 within time 𝑇 with

probability 2 − 𝑛𝑒𝑔(𝜆), where 𝜆 is the security parameter.

 The access pattern of 𝑃0 is computationally indistinguishable to that of 𝑃1.

Time to write all files. The Theorem 5 below shows the relationship between the

number of sync operation, the drip rate, and the size of the buffer. Specifically, it

shows that, with high probability, a buffer with size s is completely cleared and synced

to the backend after 𝑂(
𝑠

𝐵𝑘
) sync operations. This is optimal up to constant factors,

since only 𝐵𝑘 bytes are actually written during each sync.

Theorem 5. For a running ObliviSync-RW client with parameters 𝐵, 𝑁, 𝑘 as above, let

𝑚 be the total size (in bytes) of all non-stale data currently stored in the backend, and

let 𝑠 be the total size (in bytes) of pending write operations in the buffer, and suppose

that 𝑚 + 𝑠 ≤ 𝑁𝐵/4. Then the expected number of sync operations until the buffer is

entirely cleared is at most 4𝑠/(𝐵𝑘). Moreover, the probability that the buffer is not

entirely cleared after at least
48𝑠

𝐵𝑘
+ 18𝑟 sync operations is at most exp (−𝑟).

The proof of Theorem 5 is presented in [50].

Theorem 6. Let λ be the security parameter. Consider ObliviSync-RW with parameters

𝐵, 𝑁, 𝑘 as above, and with drip time 𝑡. For any 𝐿 and 𝑡 as fsequence parameters,

ObliviSync-RW is strongly-secure write-only filesystem with running time 𝑇 = 𝑡 +
48𝐿𝑡

𝐵𝑘
+ 18𝜆𝑡.

The proof of Theorem 6 is presented in [50].

6.1.4 Evaluation

The ObliviSync was evaluated against the following properties:

a. Throughput with fixed-size files

o Bandwidth overhead: 2x until 25% of the load. With drip rate 3 (the

solid line for 𝑘 = 3), it takes about ~120 epochs on average to sync

25% of the frontend files. Note that the number of bytes that would

be transferred to the cloud storage during 120 epochs is 120 ∙ (𝑘 + 1)

∙ 𝐵 = 480 MB, and 25% of the frontend files amounts to 250 MB. So,

the experiment shows that the system needs only 2x bandwidth

overhead, when the front-end files occupies at most 25% of the total

cloud storage, with the parameters chosen in this experiment. This is

 Oblivious RAM from theory to practice

University of Piraeus 100

better performance than what is shown in Theorem 5, which provably

guarantees 4x bandwidth overhead.

o Linear costs until 33% of the load. The inflection point, between

linear and super-linear, is particularly interesting. Apparent

immediately is the fact that the inflection point is well beyond the

25% theoretic bound; even for a drip rate of 𝑘 = 3, it manages to get

at least 1/3 full before super-linear tendencies take over. Further,

notice that for higher drip rates, the inflection point occurs for higher

percentage of fullness for the backend.

b. Throughput with variable-size files

o Good performance for variable-size files. After three runs, the

average number of epochs needed to synchronize the two file loads

is the same, 100 epochs. This clearly shows that ObliviSync systems is

dependent on the total number of bytes to synchronize and not the

size of the individual files.

c. Latency

o About 1 epoch to sync, even for high fill rates. First, for lower fill

rates, the time to complete a single file synchronization is roughly one

epoch. At higher fill rates, it starts to take more epochs, on average,

to sync a single file; however, even for the most conservative 𝑘 = 3, it

only takes at most 5 epochs even for very high fill rates. For more

aggressive drip rates, 𝑘 = 9,12 the impact of higher filler rates is

diminished, still only requiring about 2 epochs to synchronize a single

file.

d. The size of pending writes buffer

o Reasonable buffer size: at most 2 MB. Clearly, as the fill rate

increases, the amount of uncommitted data in the buffer increases;

however, the relationship is not strictly linear. For example, with 20%

full and 50% full, we see only a small difference in the buffer size for

this extreme thrashing rate. At a fill rate of 75%, however, there is a

noticeable performance degradation. Because most of the blocks

selected at each epoch are either full or do not have enough space,

due to fragmentation, the buffer cannot always be cleared at a rate

sufficient to keep up with incoming writes. Thus, the size of the buffer

doubles in comparison with the other workloads.

6.1.4.1 Functionality with Dropbox backend

Here, ObliviSync performance is measured on a real cloud synchronization service,

namely Dropbox. Additionally, it is provided a baseline comparison of the overhead

of ObliviSync, and so similar experiments were performed in [50] using EncFS [53] as

the data protection mechanism.

 Oblivious RAM from theory to practice

University of Piraeus 101

Throughput over Dropbox. For both EncFS and ObliviSync, the interest is in a large

number of files, namely 20% full or ~200MB, and then was measured how long it took

for the buffer to clear and all files to become available. Like before, a read and write

computer is used, and the difference in the local and remote propagation delays of

file synchronization is measured. For EncFS on the write computer, the propogation

delay for all the files is nominal with files appearing nearly immediately. On the read

computer, there is a propagation delay associated with Dropbox remote

synchronization, and all files are accessible within 100 seconds. For ObliviSync on the

write computer, a very similar throughput trend-line as in the prior experiments. In

total, it takes just under 800 seconds (or 80 epochs) for all the files to synchronize.

Interestingly, on the read computer, the propagation delay is relatively small, with

respect to the overall delay, and files are accessible within an additional epoch or two.

In total, these results clearly demonstrate that ObliviSync is functional and efficient to

use over cloud synchronization services like Dropbox.

Latency over Dropbox. In the EncFS upon writing the file immediately it becomes

available to write computer. However on the read computer, it takes a little under 5

seconds for the synchronization with Dropbox to complete for the same file to be

accessible. This measurement forms a baseline of performance for the rate of

DropBox synchronization without ObliviSync. For ObliviSync, on the write computer,

an expected performance metric of just under 10 seconds for each file to be visible to

the read mount. The reason it is under 10 seconds and not exactly 10 seconds, as the

setting of the drip time, is that a write occurring between epoch timers will take less

than an epoch to sync. The propagation rate to the read computer takes a similar time

as that of EncFS (~ 5 seconds); however, there is higher variance as more files need

to be transferred by the Dropbox service per epoch (namely 4 = 𝑘 +1 with the

superblock). Still, this added variance is within 3x in terms of epochs: it takes at most

30 seconds for a file to sync (or 3 epochs of waiting), which is very reasonable

considering the built-in overhead of the system.

6.2 Tiny ORAM

Tiny ORAM [33] is a hardware ORAM with small client storage, integrity verification,

or encryption units. With these attributes, Tiny ORAM can be used by a single-chip

secure processor to obfuscate its execution to an adversary watching the chip's I/O

pins. As a proof of concept, it has been evaluated as the on-chip memory controller

of a 25 core processor. Tiny ORAM design takes up 1/36-th the area (1 mm2 of silicon

in 32 nm technology) of the chip, which is roughly equivalent to the area of a single

core, and consumes an estimated 112 mW at a 1 GHz clock frequency. With a 128

bits/cycle channel to main memory (roughly equivalent to 2 DRAM channels), Tiny

ORAM can complete a 1 GByte non-recursive ORAM lookup for a 512 bit block in ~

 Oblivious RAM from theory to practice

University of Piraeus 102

1275 processor cycles (An insecure DRAM access for a 512 bit block takes an average

58 processor cycles).

In the secure processor setting, the only implementation-level treatment of ORAM is

a system called Phantom, by Maas et al. [47]. In [33] authors addressed the challenges

had left open by the Phantom design. In this chapter, we will present a complete

silicon tape-out of Tiny ORAM design - the first for any type of ORAM - and integrate

it with general purpose processor cores to create the first single-chip secure processor

able to hide its access pattern to main memory.

6.2.1 Design Challenges

In building Hardware ORAM, there are two major challenges areas where new ideas

were proposed in [33].

Challenge 1: Position Map Management. The first challenge for hardware ORAM

controllers is that they need to store and manage the Position Map (PosMap for

short). Recall from prior chapters: the PosMap is a key-value store that maps data

blocks to random locations in external memory. Hence, the PosMap's size is

proportional to the number of data blocks (e.g., cache lines) in main memory and can

be hundreds of MegaBytes in size. This is too large to fit in a processor's on-chip

memory.

To more efficiently manage the PosMap (Challenge 1), the following mechanisms

were proposed in [33].

1. The PosMap Lookaside Buffer, or PLB for short, a mechanism that

significantly reduces the memory bandwidth overhead of Recursive ORAMs

depending on underlying program address locality.

2. A way to compress the PosMap, which reduces the cost of recursion and

improves the PLB's effectiveness.

3. A new ORAM integrity scheme, called PosMap MAC or PMMAC for short,

which is extremely efficient in practice and is asymptotically optimal.

With the PLB and PosMap compression, PosMap-related memory bandwidth

overhead reduced by 95%, overall ORAM bandwidth overhead reduced by 37% and

SPEC performance improved by 1.27×. As a standalone scheme, PMMAC reduces the

amount of hashing needed for integrity checking by ≥ 68× relative to prior schemes.

Using PosMap compression and PMMAC as a combined scheme, an integrity checking

mechanism for ORAM increases performance overhead by only 7%.

Challenge 2: Throughput with Large Memory Bandwidth. The second challenge in

designing ORAM in hardware is exactly how to maximize data throughput for a given

memory (e.g., DRAM) bandwidth. For a given memory bandwidth, the factor limiting

 Oblivious RAM from theory to practice

University of Piraeus 103

data throughput should be the memory. Yet, as shown by the Phantom design, this

may not be the case because of other factors (such as processor area constraints, etc).

To improve design throughput for high memory bandwidths (Challenge 2), the

following mechanisms were proposed in [33].

1. A subtree layout scheme to improve memory bandwidth of tree ORAMs

implemented over DRAM.

2. A bit-based stash management scheme to enable small block sizes. When

implemented in hardware, Tiny ORAM scheme removes the block size

bottleneck in the Phantom design.

3. A new ORAM scheme called RAW ORAM, derived from Ring ORAM [11], to

reduce the required encryption engine bandwidth.

The subtree layout scheme ensures that over 90% of available DRAM bandwidth is

actually used by Tiny ORAM. The stash management scheme prevents a performance

bottleneck in Phantom when the block size is small, and allows Tiny ORAM to support

any reasonable block size (e.g., from 64-4096 Bytes). In particular: with a 64 Byte block

size, Tiny ORAM improves access latency by ≥ 40× in the best case compared to

Phantom. On the other hand, RAW ORAM reduces the number of encryption units by

~ 3× while maintaining comparable bandwidth to the original design.

6.2.2 Frontend

In this section we present mechanisms to optimize the PosMap. The techniques in this

section only impact the Frontend and can be applied to any Position-based ORAM

Backend (such as [3, 4, 12]).

6.2.2.1 PosMap Lookaside Buffer

Considering Recursive ORAM as a multi-level page table for ORAM, a natural

optimization is to cache PosMap blockes so that LLC accesses exhibiting program

address locality require less PosMap ORAM accesses on average. This idea is the

essence of the PosMap Lookaside Buffer, or PLB, whose name obviousliy originates

from the Translation Lookaside Buffer (TLB) in conventional systems. Unfortunately,

unless case is taken, this idea totally breaks the security of ORAM. In this section, fixes

of the security holes are presented.

PLB Caches. The blocks in PosMap ORAMs contain a set of leaf labels for consecutive

blocks in the next ORAM. Given this fact, some PosMap ORAM lookups can be

eliminated by adding a hardware cache to the ORAM Frontend calles the PLB. Suppose

the LLC requests block a0 at some point. PosMap ORAM block needs from ORami for

a0 has address ai = a0 /Χ𝒾. If this PosMap block is in the PLB when block a0 is requested,

the ORAM controller has the leaf needed to lookup ORami-1, and can skip ORami and

 Oblivious RAM from theory to practice

University of Piraeus 104

all the smaller PosMap ORAMs. Otherwise, block ai is retrieved from ORami and added

to the PLB. When block ai is added to the PLB, another block may have to be evicted

in which case it is appended to the stash of the corresponding ORAM. A minor but

important detail is that ai may be valid address for blocks in multiple PosMap ORAMs;

to disambiguate blocks in the PLB, block ai is stored with the tag i ∥ ai where ∥ denotes

bit concatenation.

PLB (In)security. Unfortunately, since each PosMap ORAM is stored in a different

physical ORAM tree and PLB hits/misses correlate directly to a program's access

pattern, the PosMap ORAM access sequence leaks the program's access pattern. To

show how this breaks security, consider two example programs in a system with one

PosMap ORAM ORam1 (whose blocks store Χ = 4 leaves) and a Data ORAM ORam0.

Program A unit strides through memory (e.g., touches a, a + 1, a + 2,…). Program B

scans memory with a stride of Χ (e.g., touches a, a + Χ, a + 2 Χ,…). For simplicity, both

programs make the same number of memory accesses. Without the PLB, both

programs generate the same access sequence, namely: 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, …

where 0 denotes an access to ORam0, and 1 denotes an access to ORam1. However,

with the PLB, the adversary sees the following access sequences (0 denotes an access

to ORam0 on a PLB hit):

Program A: 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, …

Program B: 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, …

Program B constantly misses in the PLB and needs to access ORam1 on every access.

Clearly, the adversary can tell program A apart from program B in the PLB-enabled

system.

Security Fix: Unified ORAM tree. To hide PosMap access sequence, Recursive ORAM

should be changed such that all PosMap ORAMs and the Data ORAM store blocks in

the same physical tree which will be denoted ORamU. Organizationally, the PLB and

on-chip PosMap become the new Path ORAM Frontend, which interacts with a single

ORAM Backend. Security-wise, both programs from the previous section access only

ORamU with the PLB and the adversary cannot tell them apart.

TLB vs. PLB. While a traditional TLB caches single address transactions, the PLB caches

entire PosMap blocks. The address locality exploited by both structures, however, is

the same.

 Oblivious RAM from theory to practice

University of Piraeus 105

6.2.2.2 PosMap Compression

In this section is shown how to compress the PosMap using pseudorandom functions

(PRFs). The high level goal is to store more leaves per PosMap block, thereby reducing

the number of the Recursive PosMaps. However, this scheme by itself does not

dramatically improve performance.

Main Idea. Following previous notation, suppose each PosMap block contains Χ leaf

labels for the next ORAM. For example, some PosMap block contains leaf labels for

the blocks with addresses {a, a + 1, …, a + Χ – 1}. With the compressed PosMap

scheme, the PosMap block's contents are replaced with an α-bit group counter (𝐺𝐶)

and Χ β-bit individual counters (𝐼𝐶):

With this format, the current leaf label can be computed for block a + j through PRFK(a

+ 𝑗 ∥ 𝐺𝐶 ∥ 𝐼𝐶𝑗) mod 2L. Note that with this technique, the on-chip PosMap is

unchanged and still stores an uncompressed leaf per entry.

Block Remap. For PRFK() to generate a uniform random sequence of leaves, it must

be ensured that each 𝐺𝐶 ∥ 𝐼𝐶𝑗 strictly increases (i.e., the PRFK() must never see the

same input twice). This was achieved by the following modified remapping operation:

When remapping block a + 𝑗, the ORAM controller first increments its individual

counter 𝐼𝐶𝑗. If the individual counter rolls over (becomes zero again), the ORAM

controller will increment the group counter 𝐺𝐶. This changes the leaf label for all the

blocks in the group, so we have to read each block through the Backend, reset its

individual counter and remap it to the updated path given by PRFK(a + 𝑗 ∥ 𝐺𝐶 + 1 ∥ 0)

mod 2L. In the worst-case where the program always requests the same block in a

group, it is necessary to reset Χ individual counters in the group every 2β accesses.

This reset operation is very expensive for baseline Recursive ORAM. In that case, the

ORAM controller must make Χ full Recursive ORAM accesses to reset the individual

counters in a certain PosMap ORAM block. Otherwise, it reveals that individual

counters in a certain PosMap ORAM block. Otherwise, it reveals that individual

counters have overflown in that certain ORAM, which is related to the access pattern.

On the other hand, using a single Unified ORAM tree as is done to support the PLB

reduces this to Χ accesses to ORamU.

System Impact and the PLB. The compressed PosMap format can be used with or

without a PLB and, like the PLB, does not require changes to the Backend. That is,

PosMap blocks are stored in their compressed format inside the PLB and ORAM

tree/Backend. Uncompressed leaves are generated using the PRF on-demand by the

Frontend. Each block stored in the Backend or ORAM tree is still stored alongside its

uncompressed leaf label (a one-time cost per block), to facilitate ORAM evictions.

 Oblivious RAM from theory to practice

University of Piraeus 106

Benefit of Compressed Format. The scheme that proposed in [33] compresses the

PosMap block by setting, α, β and Χ such that α/ Χ + β < 𝐿, implying that the

(amortized) bits needed to store each leaf has decreased. A larger Χ means a fewer

number of PosMap ORAMs are needed. Further, this scheme improves the PLB's hit

rate since more blocks are associated with a given PosMap block. For concreteness,

suppose the ORAM block size in bits is B = 512. The compressed PosMap scheme

enables Χ′ = 32 by setting α = 64 and β = 14, regardless of ORAM tree depth 𝐿. In this

configuration, the worst case block remap overhead is 𝑋′/2𝛽 = .2%. By comparison,

the original PosMap representation only achieves 𝑋 = 16 for ORAM tree depths of

𝐿 = 17 to 𝐿 = 32.

6.2.2.3 PosMap MAC

In this section is described a novel and simple integrity verification scheme for ORAM

called PosMAp MAC or PMMAC, that is facilitated by PosMap compression technique

from the previous section. PMMAC achieves asymptotic improvements in hash

bandwidth over prior schemes and is easy to implement in hardware.

Main Idea and Non-Recursive PMMAC. Clearly, any memory system including ORAM

that requires integrity verification can implement the replay-resistant MAC scheme

by storing per-block counters in a tamper-proof memory. Unfortunately, the size of

this memory is even larger than the original ORAM PosMap making the scheme

untenable. If PosMap entries are represented as non-repeating counters, as is the

case with the compressed PosMap (Section 6.2.2.2), the replay-resistant MAC scheme

can be implemented without additional counter storage.

Firstly, described PMMAC without recursion and with simple/flat counters per-block

to illustrate ideas. Suppose block 𝛼 which has data 𝑑 has access coun𝑡 𝑐. Then, the

on-chip PosMap entry for block 𝛼 is 𝑐 and we generate the leaf 𝑙 for block 𝛼

through 𝑙 = 𝑃𝑅𝐹𝐾(𝑎‖𝑐) 𝑚𝑜𝑑2𝐿. Block 𝛼 is written to the Backend as the tuple (ℎ, 𝑑)

where

ℎ = 𝑀𝐴𝐶𝐾(𝑎‖𝑐‖𝑑)

When block 𝛼 is read, the Backend returns (ℎ ⋆, 𝑑 ⋆) and PMMAC performs the

following check to verify authenticity/freshness:

Assert ℎ ⋆ == 𝑀𝐴𝐶𝐾(𝑎‖𝑐‖𝑑 ⋆)

where ⋆ denotes values that may have been tampered with. After the assertion is

checked, 𝑐 is incremented for the returned block.

Security follows if it is infeasible to tamper with block counters and no counter value

for a given block is ever repeated. The first condition is clearly satisfied because the

 Oblivious RAM from theory to practice

University of Piraeus 107

counters are stored on-chip. The second condition is satisfied by making each counter

wide enough to not overflow (e.g. 64 bits wide).

PMMAC requires no change to the ORAM Backend because the MAC is treated as

extra bits appended to the original data block. As with PosMap compression, the leaf

currently associated with each block in the stash/ORAM tree is stored in its original

(uncompressed) format.

Adding Recursion and PosMap Compression. To support recursion, PosMap blocks

(including on-chip PosMap entries) may contain either a flat (64 bits) or compressed

counter (Section 6.2.2.2) per next-level PosMap or Data ORAM block. As in the non-

Recursive ORAM case, all leaves are generated via a PRF. The intuition for security is

that the tamper-proof counters in the on-chip PosMap form the root of trust and then

recursively, the PosMap blocks become the root of trust for the next level PosMap or

Data ORAM blocks. Note that in the compressed scheme, and the components of each

counter are already sized so that each block's count never repeats/overflows. It is

given a formal analysis for security with Recursive ORAM in the next Section 6.2.2.4.

For realistic parameters, the scheme that uses flat counters in PosMap blocks incurs

additional levels of recursion. For example, using 𝐵 = 512 and 64 bit counters we

have 𝑋 = 𝐵/64 = 8. Importantly, with the compressed PosMap scheme we can

derive each block counter can be derived from 𝐵𝐺 𝑎𝑛𝑑 𝐼𝐶𝑗 (Section 6.2.2.2) without

adding levels of recursion or extra counter storage.

Key Advantage: Hash Bandwidth and Parallelism. Combined with PosMap

compression, the overheads for PMMAC are the bits added to each block to store

MACs and the cost to perform cryptographic hashes on blocks. The extra bits per block

are relatively low-overhead – the ORAM block size is usually 64-128 Bytes and each

MAC may be 80-128 bits depending on the security parameter. To perform a non-

Recursive ORAM access (i.e., read/write a single path), Path ORAM reads/writes

𝑂(𝑙𝑜𝑔𝑁) blocks from external memory. Merkle tree constructions [20, 28] need to

integrity verify all the blocks on the path to check/update the root hash. Crucially,

PMMAC construction only needs to integrity verify (check and update) 1 block –

namely the block of interest – per access, achieving an asympotic reduction in hash

bandwidth.

To give some concrete numbers, assume 𝑍 = 4 block slots per ORAM tree bucket

following [2, 47]. Then, there are 𝑍 ∗ (𝐿 + 1) blocks per path in ORAM tree, and this

construction reduces hash bandwidth by 68 × for 𝐿 = 16 and by 132 × for 𝐿 = 32.

It is not included the cost of reading sibling hashes for the Merkle tree for simplicity.

Integrity verifying only a single block also prevents a serialization bottleneck present

in Merkle tree schemes. Consider the scheme from [20], a scheme optimized for Path

 Oblivious RAM from theory to practice

University of Piraeus 108

ORAM. Each hash in the Merkle tree node must be recomputed based on the contents

of the corresponding ORAM tree bucket and its child hashes, and is therefore

fundamentally sequential. If this process cannot keep up with memory bandwidth, it

will be the system's performance bottleneck.

Adding Encryption: Subtle Attacks and Defenses. Up to this point PMMAC has been

discussed in the context of providing integrity only. ORAM must also apply a

probabilistic encryption scheme (assuming AES counter mode as done in [7]) to all

data stored in the ORAM tree. In this section is shown how the encryption scheme of

[7] breaks under active adversaries because the adversary is able to replay the one-

time pads used for encryption. ([7] presented an integrity very cation scheme based

on Merkle trees to prevent such attacks.) It is shown how PMMAC doesn't prevent

this attack by default and then provide a fix that applies to PMMAC.

Firstly is shown that the scheme used by [7] for reference: Each bucket in the ORAM

tree contains, in addition to 𝑍 encrypted blocks, a seed used for encryption (the

BucketSeed) that is stored in plaintext. (BucketSeed is synonymous to the “counter"

in AES counter mode.) If the Backend reads some bucket whose seed is BucketSeed,

the bucket will be re-encrypted and written back to the ORAM tree using the one-

time pad (OTP) 𝐴𝐸𝑆𝐾(𝐵𝑢𝑐𝑘𝑒𝑡𝐼𝐷‖𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑒𝑒𝑑 + 1‖𝑖), where 𝑖 is the current chunk

of the bucket being encrypted.

The above encryption scheme breaks privacy under PMMAC because PMMAC doesn't

integrity verify BucketSeed. For a bucket currently encrypted with the pad 𝑃 =

𝐴𝐸𝑆𝐾(𝐵𝑢𝑐𝑘𝑒𝑡𝐼𝐷‖𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑒𝑒𝑑‖𝑖), suppose the adversary replaces the plaintext

bucket seed to BucketSeed – 1. This modification will cause the contents of that

bucket to decrypt to garbage, but won't trigger an integrity violation under PMMAC

unless bucket BucketID contains the block of interest for the current access. If an

integrity violation is not triggered, due to the replay of BucketSeed, that bucket will

next be encrypted using the same one-time pad 𝑃 again.

Replaying one-time pads obviously causes security problems. If a bucket re-encrypted

with the same pad 𝑃 contains plaintext data 𝐷 at some point and 𝐷′ at another point,

the adversary learns 𝐷⨁𝐷′. If 𝐷 is known to the adversary, the adversary immediately

learns 𝐷′ (i.e., the plaintext contents of the bucket).

The fix for this problem is relatively simple: To encrypt chunk 𝑖 of a bucket about to

be written to DRAM, the pad 𝑃 = 𝐴𝐸𝑆𝐾(𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑒𝑑‖𝑖) will be used, where

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑒𝑑 is now a single monotonically increasing counter stored in the ORAM

controller in a dedicated register (this is similar to the global counter scheme in [48]).

When a bucket is encrypted, the current 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑒𝑑 is written out alongside the

bucket as before and 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑒𝑑 (in the ORAM controller) is incremented. Now it's

 Oblivious RAM from theory to practice

University of Piraeus 109

easy to see that each bucket will always be encrypted with a fresh OTP which defeats

the above attack.

6.2.2.4 Security Analysis

We now give a security analysis for the PLB and PMMAC schemes.

6.2.2.4.1 PosMap Lookaside Buffer

It is given a proof sketch that PLB+Unified ORAM tree construction achieves satisfies

Definition 2. To do this, is used the fact that the PLB interacts with a normal Path

ORAM Backend. The following observations will be used to argue security:

Observation 1. If all leaf labels 𝑙𝑖 used in {read, write, readrmv} calls to Backend are

random and independent of other 𝑙𝑗 for 𝑖 ≠ 𝑗, the Backend achieves the security of

the original Path ORAM.

Observation 2. If the append is always preceded by a readrmv, stash overflow

probability does not increase (since the net stash occurancy is unchanged after both

operations).

Theorem 7. The PLB+Unified ORAM tree scheme reduces to the security of the ORAM

Backend.

You could find the detailed Proof in [33]. Of course, the PLB may further influence the

ORAM trace length (the number of calls to Access for a given 𝑍) by filtering out some

calls to Backend for PosMap blocks. Now the trace length is determined by, and thus

reveals, the sum of LLC misses and PLB misses. The processor cache and the PLB are

both on-chip and outside the ORAM Backend, so adding a PLB is the same (security-

wise) to adding more processor cache: in both cases, only the total number of ORAM

accesses leaks. By comparison, using a PLB without a Unified ORAM tree leaks the set

of PosMap ORAMs needed on every Recursive ORAM access, which makes leakage

grow linearly with the trace length.

6.2.2.4.2 PosMap MAC (Integrity)

It is shown that breaking the integrity verification scheme is as hard as breaking the

underlying MAC.

Observation 3. If the first 𝑘 − 1 address and counter pairs (𝑎𝑖 , 𝑐𝑖)’ s the Frontend

receives have not been tampered with, then the Frontend seeds a MAC using a unique

(𝑎𝑘 , 𝑐𝑘), i.e., (𝑎𝑖 , 𝑐𝑖) ≠ (𝑎𝑘 , 𝑐𝑘) for 1 ≤ 𝑖 ≤ 𝑘. This further implies (𝑎𝑖 , 𝑐𝑖) ≠ (𝑎𝑗,

𝑐𝑗) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘.

 Oblivious RAM from theory to practice

University of Piraeus 110

This property can be seen directly from the algorithm description, with or without the

PLB and/or PosMap compression. For every 𝑎, we have a dedicated counter, sourced

from the on-chip PosMap or the PLB, that increments on each access. If we use

PosMap compression, each block counter will either increment (on a normal access)

or jump to the next multiple of the group counter in the event of a group remap

operation. Thus, each address and counter pair will be different from previous ones.

The Observation 3 is used to be proven the security of the integrity scheme.

Theorem 8. Breaking the PMMAC scheme is as hard as breaking the underlying MAC

scheme.

You could find the detailed Proof in [33].

6.2.2.4.3 PosMap MAC (Privacy)

The system's privacy guarantees require certain assumptions under PMMAC because

PMMAC is an authenticate-then-encrypt scheme [49]. Since the integrity verifier only

check the block of interest returned to the Frontend, other (tampered) data on the

ORAM tree path will be written to the stash and later be written back to the ORAM

tree. For example, if the adversary tampers with the block-of-interest's address bits,

the Backend won't recognize the block and won't be able to send any data to the

integrity verifier (clearly an error). The adversary may also coerce a stash overflow by

replacing dummy blocks with real blocks or duplicate blocks along a path. To address

these cases, certain assumptions are necessary about how the Backend will possibly

behave in the presence of tampered data. It is required a correct implementation of

the ORAM Backend to have the following property:

Property 1. If the Backend makes an ORAM access, it only reveals to the adversary (𝑎)

the leaf send by the Frontend for that access and (𝑏) a fixed amount of encrypted data

to be written back to the ORAM tree.

If Property 1 is satisfied, it is straightforward to see that any memory request address

trace generated by the Backend is indistinguishable from other traces of the same

length. That is, the Frontend receives tamper-proof responses (by Theorem 8) and

therefore produces independent and random leaves. Further, the global seed scheme

trivially guarantees that the data written back to memory gets a fresh pad.

If Property 1 is satisfied, the system can still leak the ORAM request trace length; i.e.,

when an integrity violation is detected, or when the Backend enters an illegal state.

Conceptually, an integrity violation generates an exception that can be handled by the

processor. When that exception is generated and how it is handled can leak some

privacy. For example, depending on how the adversary tampered with memory, the

violation may be detected immediately or after some period of time depending on

 Oblivious RAM from theory to practice

University of Piraeus 111

whether the tampered bits were of interest to the Frontend. Quantifying this leakage

is outside the scope.

6.2.3 Backend

Now several mechanisms are presented to improve the ORAM Backend's throughput

when memory bandwidth is high. The techniques in this section only impact the

Backend and can be applied regardless of optimizations from the previous section

6.2.2.

The issue for Tree ORAMs (like Path ORAM) implemented over DRAM is that to be

secure, ORAM accesses inherently have low spatial locality in memory. Yet, achievable

throughput in DRAM depends on spatial locality: bad spatial locality means more

DRAM row buffer misses which means time delay between consecutive accesses.

Indeed, when naively storing the Path ORAM tree into an array, two consecutive

buckets along the same path hardly have any locality, and it can be expected that row

buffer hit rate would be low. The following technique that introduced in [33] can

improve Path ORAM's performance on DRAM.

Each subtree is packed with 𝑘 levels together, and are treated as the nodes of a new

tree, a 2𝑘 -ary tree with ⌈
𝐿+1

𝑘
⌉ levels. Figure 44 is an example with 𝑘 = 2. It was adopted

the address mapping scheme in which adjacent addresses first differ in channels, then

columns, then banks, and lastly rows. The node size was set of the new tree to be the

row buffer size times the number of channels, which together with the original bucket

size determines 𝑘.

Performance impact. With commercial DRAM DIMMs, 𝑘 = 6 or 𝑘 = 7 is possible which

allows the ORAM to maintain 90 – 95% of peak possible DRAM bandwidth for every

parameterization. Without the technique, achievable bandwidth may be < 50%

depending on the data block size, recursion scheme used, number of DRAM channels,

and other parameters. It should be noted that Phantom was able to achieve 94% of

peak DRAM bandwidth [47] without the subtree packing technique as there was

sufficient spatial locality given their large 4 KByte block size.

 Oblivious RAM from theory to practice

University of Piraeus 112

Figure 41: Illustration of subtree locality

6.2.3.1.1 Stash Management

Deciding where to evict each block in the stash is a challenge for Path ORAM hardware

designs. Conceptually, this operation tries to push each block in the stash as deep

(towards the leaves) into the ORAM tree as possible while keeping to the invariant

that blocks can only live on the path to their assigned leaf.

Phantom constructs an FPGA-optimized heap sort on the stash [47]. Unfortunately,

this approach creates a performance bottleneck because the initial step of sorting the

stash takes multiple cycles per block. For example, in a Phantom design, adding a

block to the heap takes 11 cycle. If the ORAM block size and memory bandwidth is

such that writing a block to memory takes less than 11 cycles, system performance is

bottlenecked by the heap-sort-based eviction logic and not by memory bandwidth.

In [33] proposed a new and simple stash eviction algorithm based on bit-level

hardware tricks that takes a single cycle to evict a block and can be implemented

efficiently in FPGA logic. This eliminates the above performance overhead for any

practical block size and memory bandwidth.

PushToLeaf With Bit Tricks. The PushToLeaf() routine, is shown in Figure 42: PushToLeaf

Algorithm. PushToLeaf(𝑆𝑡𝑎𝑠ℎ, 𝑙) is run once during each ORAM access and populates

an array of pointers 𝑜𝑐𝑐. Stash can be thought of as a single-ported RAM that stores

data blocks and their metadata. Once populated, 𝑜𝑐𝑐[𝑖] points to the block in Stash

that will be written back to the 𝑖-𝑡ℎ position along 𝑃(𝑙). Thus, to complete the ORAM

eviction, a hardware state machine sends each block given by 𝑆𝑡𝑎𝑠ℎ[𝑜𝑐𝑐[𝑖]] for 𝑖 =

0, … , (𝐿 + 1) ∗ 𝑍 − 1 to be encrypted and written to external memory.

 Oblivious RAM from theory to practice

University of Piraeus 113

Notations. Suppose 𝑙 is the current leaf being accessed. The leaves are represented

as 𝐿-bit words which are read right-to-left: the 𝑖-𝑡ℎ bit indicates whether path 𝑙

traverses the 𝑖-𝑡ℎ bucket’s left child (0) or right child (1). On Line 3, each entry

of 𝑜𝑐𝑐 𝑖𝑠 𝑠𝑒𝑡 𝑡𝑜 ⊥, to indicate that the eviction path is initially empty. Occupied is an

𝐿 + 1 entry memory that records the number of real blocks that have been pushed

back to each bucket so far.

Figure 42: PushToLeaf Algorithm

PushBack().The core operation in this proposal is the PushBack() subroutine, which
takes as input the path 𝑙 we are evicting to, the path 𝑙′ a block in the stash is mapped
to, and outputs which level on path 𝑙 that block should get written back to.

Security. While the stash eviction procedure is highly-optimized for hardware
implementation, it is algorithmically equivalent to the original stash eviction
procedure with Path ORAM. Thus, security follows from the original Path ORAM
analysis.

Hardware Implementation and Pipelining. The algorithm above runs 𝑇 + (𝐿 + 1)𝑍
iterations of PushBack per ORAM access, where 𝑇 is the stash size not counting the
path length. In hardware, the Algorithm in Figure 42 is pipelined in three respects to
hide its latency.

6.2.3.1.2 Reducing Encryption Bandwidth

Another serious problem for ORAM design is the area needed for encryption units. All

data touched by ORAM must get decrypted and re-encrypted to preserve privacy.

Bit operation-based stash scan. 2𝐶 stands for two’s complement arithmetic

1: Inputs: the current leaf 𝑙 being accessed
2: function PushToLeaf(𝑆𝑡𝑎𝑠ℎ, 𝑙)
3: 𝑜𝑐𝑐 ← {⊥ 𝑓𝑜𝑟 𝑖 = 0, … , (𝐿 + 1) ∗ 𝑍 − 1}
4: Occupied ← {0 𝑓𝑜𝑟 𝑖 = 0, … , 𝐿}
5: for 𝑖 ← 0 𝑡𝑜 𝑇 + 𝐿 ∗ 𝑍 − 1 do
6: (𝑎, 𝑙𝑖 , 𝐷) ← 𝑆𝑡𝑎𝑠ℎ[𝑖] //Leaf assigned to 𝑖-𝑡ℎ block
7: 𝑙𝑒𝑣𝑒𝑙 ← 𝑃𝑢𝑠ℎ𝐵𝑎𝑐𝑘(𝑙, 𝑙𝑖 , 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑)
8: if 𝑎 ≠⊥ 𝑎𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 > −1 𝒕𝒉𝒆𝒏
9: 𝑜𝑓𝑓𝑠𝑒𝑡 ← 𝑙𝑒𝑣𝑒𝑙 ∗ 𝑍 + 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑[𝑙𝑒𝑣𝑒𝑙]
10: 𝑜𝑐𝑐[𝑜𝑓𝑓𝑠𝑒𝑡] ← 𝑖
11: 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑[𝑙𝑒𝑣𝑒𝑙] ← 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑[𝑙𝑒𝑣𝑒𝑙] + 1
12: end if
13: end for
14: end function
15: function PushBack(𝑙, 𝑙′, 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑)
16: 𝑡1 ← (𝑙⨁𝑙′‖0) //Bitwise XOR
17: 𝑡2 ← 𝑡1 & − 𝑡1 //Bitwise AND, 2𝐶 negation
18: 𝑡3 ← 𝑡2 − 1 //2𝐶 sutraction
19: 𝑓𝑢𝑙𝑙 ← {(𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑[1] = 𝑍)𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝐿}
20: 𝑡4 ← 𝑡3 & ∼ 𝑓𝑢𝑙𝑙 //Bitwise AND/negation
21: 𝑡5 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑡4) //Bitwise reverse
22: 𝑡6 ← 𝑡5 & − 𝑡5
23: 𝑡7 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑡6)
24: 𝒊𝒇 𝑡7 = 0 𝒕𝒉𝒆𝒏
25: return -1 //Block is stuck in stash
26: 𝒆𝒏𝒅 𝒊𝒇
27: return 𝑙𝑜𝑔2(𝑡7) //Note: 𝑡7 must be one-hot
28: end function

 Oblivious RAM from theory to practice

University of Piraeus 114

Encryption bandwidth hence scales with memory bandwidth and quickly becomes the

area bottleneck. To address this problem in [33] it was proposed a new ORAM design,

which is called RAW ORAM, optimized to minimize encryption bandwidth at the

algorithmic and engineering level.

RAW ORAM Algorithm. RAW ORAM is based on Ring ORAM [11] and splits ORAM

Backend operations into two flavors: ReadPath and EvictPath accesses. ReadPath

operations perform the minimal amount of work needed to service a client

processor's read/write requests (i.e., last level cache misses/writebacks) and

EvictPath accesses perform evictions (to empty the stash) in the background. To

reduce the number of encryption units needed by ORAM, in [33] ReadPath accesses

were optimized to only decrypt the minimal amount of data needed to retrieve the

block of interest, as opposed to the entire path. EvictPath accesses require more

encryption/decryption, but occur less frequently.

Parameter 𝑨. Like Ring ORAM [11], RAW ORAM uses the parameter 𝐴, set at system

boot time. For a given 𝐴, RAW ORAM obeys a strict schedule that the ORAM controller

performs one EvictPath access after every 𝐴 reads.

Security. The security analysis is very similar (and simpler, even) to that in Ring ORAM

[11]. ReadPath accesses always read paths in the ORAM tree at random, just like Path

ORAM [2]. Further, EvictPath accesses occur at predetermined times and are to

predictable/data-independent paths.

Performance and Area Characteristics. Assume for simplicity that the bucket header

is the same size as a data block. Then, each ReadPath access reads (𝐿 + 1)𝑍 blocks

on the path, but only decrypts 1 block; it also reads/writes and decrypts/re-encrypts

the 𝐿 + 1 headers/blocks. An EvictPath reads/writes and decrypts/re-encrypts all the

(𝐿 + 1)(𝑍 + 1) blocks on a path. Thus, in RAW ORAM the relative memory bandwidth

per bucket is 𝑍 + 2 +
2(𝑍+1)

𝐴
, and the relative encryption bandwidth per bucket is

roughly 1 +
2(𝑍+1)

𝐴
. In Figure 43, virtualized the relative memory and encryption

bandwidth of RAW ORAM with different parameter settings that have been shown

[11] to give negligible stash overflow probability. Based on this 𝑍 = 5, 𝐴 = 5 (𝑍5𝐴5)

is a good trade-off as it achieves 6% memory bandwidth improvemtns and ∼ 3 ×

encryption reduction over Path ORAM.

 Oblivious RAM from theory to practice

University of Piraeus 115

Figure 43: The relative memory and encryption bandwidth overhead of RAW ORAM

Exploiting Path Eviction Predictability. Despite RAW ORAM's theoretic area savings

for encryption units, careful engineering is needed to prevent that savings from

turning into performance loss. The problem is that by reducing encryption units (i.e.,

AES) to provide “just enough" bandwidth for ReadPath accesses, it is forced to wait

during EvictPath accesses for that reduced number of AES units to finish

decrypting/re-encrypting the entire path. Further, since all AES IVs are stored

externally with each bucket, the AES units can't start working on a new EvictPath until

that access starts.

To remove the above bottleneck while maintaining the AES unit reduction, authors in

[33] made the following key observation: Since EvictPath operations occur in a

predictable, fixed order, they can determine exactly how many times any bucket along

any path has been written in the past.

Using eviction predictability, could be pre-computed the AES-CTR initialization vector

𝐼𝑉1. Simply put, this means the AES units can do all decryption/encryption work for

EvictPath accesses “in the background" during concurrent ReadPath accesses. To

decrypt the 𝑖-𝑡ℎ 128-bit ciphertext chunk of the bucket with unique ID BucketID at

level 𝑗 in the tree, it is XOR with the following mask: 𝐴𝐸𝑆𝐾(𝑔𝑗‖𝐵𝑢𝑐𝑘𝑡𝐼𝐷‖𝑖) where 𝑔𝑗

is the bucket eviction count defined above. Correspondingly, re-encryption of that

chunk is done by generating a new mask where the write count has been incremented

by 1. With this scheme, 𝑔𝑗 takes the place of 𝐼𝑉1 and since 𝑔𝑗 can be derived internally,

so it is not necessary to store it externally.

On both ReadPath and EvictPath operations, must be decrypted the program

addresses and valid bits of all blocks in each bucket. For this could be applied the

global counter scheme from Section PosMap MAC6.2.2.3 or used the mask as in Ren

et al. [7], namely 𝐴𝐸𝑆𝐾(𝐼𝑉2‖𝐵𝑢𝑐𝑘𝑡𝐼𝐷‖𝑖), where 𝐼𝑉2 is stored externally as part of

each bucket's header.

 Oblivious RAM from theory to practice

University of Piraeus 116

At the implementation level, an AES core was time-multiplexed between generating

masks for 𝐼𝑉1 and 𝐼𝑉2. The AES core prioritizes 𝐼𝑉2 operations; when the core is not

servicing 𝐼𝑉2 requests, it generates masks for 𝐼𝑉1 in the background and stores them

in a FIFO.

6.2.4 Evaluation (FPGA Prototype)

Now is described a hardware prototype of Tiny ORAM on a Virtex-7 VC707 FPGA board

and analyze its area and performance characteristics. The main reason for hardware

prototyping is to tape-out in ASIC. With that in mind, the FPGA evaluation has two

primary objectives. First, to compare against Phantom (which was optimized for

FPGA) in as apples-to-apples a comparison as possible. Second, to demonstrate that

the design is working under `high memory bandwidth' conditions.

The entire design (as well as the extension to ASIC) is open source at http://

kwonalbert.github.io/oram.

6.2.4.1.1 Metrics and Baselines

The entire design was written in plain Verilog and was synthesized using the Xilinx

Vivado flow (version 2013.4). Performance was measured as the latency (in FPGA

cycles or real time) between when an FPGA user design requests a block and Tiny

ORAM returns that block. Area is calculated in terms of FPGA lookup-tables (LUT), flip-

flops (FF) and Block RAM (BRAM), and is measured post place-and-route (i.e.,

represents final hardware area numbers). For the rest of the section BRAM is counted

in terms of 36 Kbit BRAM.

Tiny ORAM is compared with two baselines shown in Table 6. The first one is Phantom

[47], which normalized to Tiny ORAM capacity and the 512 bits/cycle DRAM

bandwidth of this particular VC707 board. Further, Phantom's tree top caching is

disabled. Phantom's performance/area numbers are taken/approximated from the

figures in their paper. The second baseline is a basic Path ORAM with the stash

management technique that described above, to show the area saving of RAW ORAM.

 Oblivious RAM from theory to practice

University of Piraeus 117

 Table 6: Comparison of Tiny ORAM and two Baselines

6.2.4.1.2 Implementation

Organization. The design was built hierarchically as three main components: the

Frontend, stash (Backend) and AES units used to decrypt/re-encrypt paths (Backend).

We evaluate both Path ORAM and RAW ORAM Backend designs (Section 6.2.3.1.1).

The Path ORAM Backend is similar to the Phantom Backend.

Unlike Phantom, this design does not have a DRAM buffer (see [47]). If such a

structure is needed it should be much smaller than that in Phantom (<10 Kbytes as

opposed to hundreds of KBytes) due to the 64 Byte block size.

Parameterization. Both of the designs (Path ORAM and RAW ORAM) use 𝐵 = 512 bits

per block and 𝐿 = 20 levels. The choice of 𝐵 = 512 (64 Bytes) shows that Tiny ORAM

can run even very small block sizes without imposing hardware performance

bottlenecks. There is a constraint to set 𝐿 = 20 because this setting fills the VC707's 1

GByte DRAM DIMM.

The Frontend which was evaluated is P_X16. Also, it was not evaluated the cost of

integrity (PMMAC) in the FPGA prototype as integrity was not considered by the

Phantom design and does not impact memory throughput.

Clock regions. The DRAM controller on the VC707 board runs at 200 MHz and

transfers 512 bits/cycle. To ensure that DRAM is Tiny ORAM's bottleneck, the design’s

timing was optimized to run at 200 MHz.

DRAM controller. The interface is a DDR3 DRAM through a stock Xilinx on-chip DRAM

controller with 512 bits/cycle throughput. From when a read request is presented to

 Oblivious RAM from theory to practice

University of Piraeus 118

the DRAM controller, it takes ∼30 FPGA cycles to return data for that read (i.e.,

without ORAM). The DRAM controller pipelines requests. That is, if two reads are

issued in consecutive cycles, two 512 bit responses arrive in cycle 30 and 31. As

mentioned before, the subtree layout scheme allows to achieve near-optimal DRAM

bandwidth.

Encryption. “Tiny aes" is used, a pipelined AES core that is freely downloadable from

http://opencores.org/. Tiny aes has a 21 cycle latency and produces 128 bits of output

per cycle. One tiny aes core costs 2865/3585 FPGA LUT/FF and 86 BRAM. To

implement the time-multiplexing scheme from Section 6.2.3.1.2, is simply added state

to track whether tiny aes's output (during each cycle) corresponds to IV1 or IV2.

Given the DRAM bandwidth, RAW ORAM requires 1.5 (has to be rounded to 2) tiny

aes cores to completely hide mask generation for EvictPath accesses at 200 MHz. To

reduce area further, the design was optimized to run tiny aes and associated control

logic at 300 MHz. Thus, the final design requires only a single tiny aes core. Basic Path

ORAM would require 3 tiny aes cores clocked at 300 MHz, which matches the 3× AES

saving in the analysis from Section 6.2.3.1.2. The tiny aes clock was not optimized for

basic Path ORAM, and used 4 of them running at 200 MHz.

6.2.4.1.3 Access Latency Comparison

For the rest of the FPGA evaluation, all access latencies are averages when running on

a live hardware prototype. Table 6 gives a summary of results. RAW ORAM Backend

can finish an access in 276 cycles (1.4𝜇𝑠) on average. This is very close to basic Path

ORAM; it is not got the 6% theoretical performance improvement because of the

slightly more complicated control logic of RAW ORAM.

After normalizing to the DRAM bandwidth and ORAM capacity that presented in

Section 6.2, Phantom should be able to fetch a 4 KByte block in ∼ 60𝜇𝑠. This shows

the large speedup potential for small blocks. Suppose the program running has bad

data locality (i.e., even though Phantom fetches 4 KBytes, only 64 Bytes are touched

by the program). In this case, Tiny ORAM using a 64 Byte block size improves ORAM

latency by 40× relative to Phantom with a 4 KByte block size. Phantom was run at 150

MHz: if optimized to run at 200 MHz like the current design, the improvement is ∼

60 ×. Even with perfect locality where the entire 4 KByte data is needed, using a 64

Byte block size introduces only 1.5 − 2 × slowdown relative to the 4 KByte design.

6.2.4.1.4 Hardware Area Comparison

In Table 4, is shown that the RAW ORAM Backend requires only a small percentage of

the FPGA's total area. The slightly larger control logic in RAW ORAM dampens the area

reduction from AES saving. Despite this, RAW ORAM achieves an ≥ 2 × reduction in

 Oblivious RAM from theory to practice

University of Piraeus 119

BRAM usage relative to Path ORAM. Note that Phantom [47] did not implement

encryption: this area was extrapolated by adding 4 tiny aes cores to their design and

estimate a BRAM savings of 4× relative to RAW ORAM.

6.2.4.1.5 Full System Evaluation

Now evaluate a complete ORAM controller by connecting RAW ORAM Backend to the

optimized ORAM Frontend. For completeness, a baseline Recursive Path ORAM is

implemented and evaluated. To our knowledge, authors in [33] implemented the first

form of Recursive ORAM in hardware. They call configurations with the repsective

optimized Frontend “Freecursive" to distinguish them from the baseline Frontend.

For 𝐿 = 20, 2 PosMap ORAMs were added, to attain a small on-chip position map (<

8 KB).

Figure 44 shows the average memory access latency of several real SPEC06-int

benchmarks. Due to optimizations from Section 6.2.2, performance depends on

program locality. For this reason, also two synthetic traces were evaluated: scan

which has perfect locality and rand which has no locality. Two extreme benchmarks:

libq is known to have good locality, and on average the ORAM controller can access

64 Bytes in 490 cycles. Sjeng has bad (almost zero) locality and fetching a 64 Byte block

requires ∼950 cycles (4.75 𝜇𝑠 at 200 MHz). Benchmarks like sjeng reinforce the need

for small blocks: setting a larger ORAM block size will strictly decrease system

performance since the additional data in larger blocks won't be used.

Figure 44: Evaluation between Path ORAM and RAW ORAM

 Oblivious RAM from theory to practice

University of Piraeus 120

7 Conclusion

Security of data storage is a huge problem in nearly all aspects of the Internet

connected world. Consider several ubiquitous settings: outsourced storage,

computation outsourcing and the Internet of Things (IoT). The underlying problem is

inherent in how programs are written today: to be performant, program control flow

and memory access behavior depends on the sensitive information we wish to hide.

This thesis studies a cryptographic primitive called Oblivious RAM (ORAM), which

provably eliminates all information leakage in memory access patterns [1, 3]. ORAM

schemes that are presented make both theoretical and practical contributions. Those

schemes are categorized based on schemes characteristics. The 4 main categories are

Path ORAM Family, Constant worst-case bandwidth blowup Family, ObliviStore

Family, and Applied ORAM schemes. On Chapter 3, Path ORAM [2] and several ORAM

schemes, which were based on Path ORAM are presented along with a comparison

between them. On Chapter 4, we present ORAM schemes, which achieve Constant

worst-case Bandwidth blowup also, we present a comparison between them. The

ORAM schemes are Onion ORAM [14] and C – ORAM [22]. On Chapter 5, ObliviStore

ORAM [5] and ORAM schemes, which were based on ObliviStore ORAM are presented

along with a comparison between them. On Chapter 6, we present two applied ORAM

schemes (ObliviSync [50] and Tiny ORAM [33]) that could be used in real world.

ObliviSync is an oblivious cloud storage system that specifically targets one of the

most widely-used personal cloud storage paradigms: synchronization and backup

services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. Tiny

ORAM is a hardware ORAM with small client storage, integrity verification, or

encryption units.

 Oblivious RAM from theory to practice

University of Piraeus 121

8 Bibliography

[1] O. Goldreich and R. Ostrovsky. Software protection and simulation on Oblivious RAMs. Journal

of the ACM, 1996.

[2] Emil Stefanov, Marten van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher Fletcher, Ling Ren,

Xiangyao Yu and Srinivas Devadas. Path ORAM: An extremely simple Oblivious RAM protocol.

Cryptology ePrint Archive, Report2013/180.

[3] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. In NDSS, 2012.

[4] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O(logN3) worst-case cost. In

ASIACRYPT, pages 197{214, 2011.

[5] STEFANOV, E., AND SHI, E. ObliviStore: High performance oblivious cloud storage. In IEEE

Symposium on Security and Privacy (2013).

[6] E. Stefanov and E. Shi. ObliviStore: High performance oblivious cloud storage. Technical report.

[7] REN, L., YU, X., FLETCHER, C., VAN DIJK, M., AND DEVADAS, S. Design space exploration and

optimization of path oblivious ram in secure processors. In ISCA (2013)

[8] Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower Bound. Xiao Shaun Wang, T-H.

Hubert Chan, and Elaine Shi. Preprint, 2014.

[9] K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure oram with O (log2n) overhead. CoRR,

abs/1307.3699, 2013.

[10] Oblivious Network RAM. D Dachman-Soled, C Liu, C Papamanthou, E Shi, U Vishkin IACR

Cryptology ePrint Archive 2015, 73

[11] Constants Count: Practical Improvements to Oblivious RAM. Ling Ren, Christopher W. Fletcher,

Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and Srinivas Devadas. In Usenix Security

Symposium, 2015.

[12] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, and Daniel

Wichs. Optimizing ORAM and using it efficiently for secure computation. In PETS, 2013.

[13] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing ORAM response

times for bursty access patterns. In USENIX security, 2014.

[14] DEVADAS, S., VAN DIJK, M., FLETCHER, C. W., REN, L., SHI, E., AND WICHS, D. Onion oram: A

constant bandwidth blowup oblivious ram. Cryptology ePrint Archive, 2015.

http://eprint.iacr.org/2015/005.

[15] H. Lipmaa. An Oblivious Transfer protocol with log-squared communication. In ISC, 2005.

[16] Ivan Damgard and Mads Jurik. A generalisation, a simplification and some applications of

Paillier's probabilistic public-key system. In PKC, 2001.

http://eprint.iacr.org/2015/005

 Oblivious RAM from theory to practice

University of Piraeus 122

[17] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the

correctness of memories. In FOCS, 1991.

[18] Ralph C. Merkle. Protocols for public key cryptography. In Oakland, 1980.

[19] Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and Joshua Schiffman.

Shroud: Ensuring private access to large-scale data in the data center. In FAST, 2013.

[20] Ling Ren, Christopher Fletcher, Xiangyao Yu, Marten van Dijk, and Srinivas Devadas. Integrity

verification for Path Oblivious-RAM. In HPEC, 2013.

[21] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data structures,

generically. In POPL, 2014.

[22] Tarik Moataz , Travis Mayberry , Erik-Oliver Blass, Constant Communication ORAM with Small

Blocksize, Proceedings of the 22nd ACMSIGSAC Conference on Computer and Communications

Security, October 12-16, 2015

[23] E. Kushilevitz and R. Ostrovsky. Replication is not Needed: Single Database, Computationally-

Private Information Retrieval. In Proceedings of Foundations of Computer Science, pages 364–373,

Miami Beach, USA, 1997.

[24] T. Mayberry, E.-O. Blass, and A.H. Chan. Efficient Private File Retrieval by Combining ORAM and

PIR. In Proceedings of the Network and Distributed System Security Symposium, San Diego, USA,

2014.

[25] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. In Proceedings of

Information Security Conference, pages 314–328, Singapore, 2005.

[26] CHEN, Y., SRINIVASAN, K., GOODSON, G., AND KATZ, R. Design implications for enterprise

storage systems via multidimensional trace analysis. In Proc. ACM SOSP (2011).

[27] LEUNG, A. W., PASUPATHY, S., GOODSON, G., AND MILLER, E. L. Measurement and analysis of

large-scale network file system workloads. In Proc. USENIX ATC (2008), USENIX Association, pp. 213–

226.

[28] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable oblivious

storage. In PKC. 2014.

[29] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In

FOCS, 2001.

[30] T. Moataz, T. Mayberry, E.-O. Blass, and A. H. Chan. Resizable tree-based oblivious ram.

Financial Crypto, 2015.

[31] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi. Scoram: Oblivious ram for secure

computation. In ACM Conference on Computer and Communications Security (CCS), 2014.

 Oblivious RAM from theory to practice

University of Piraeus 123

[32] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of

Cryptology, 2000.

[33] FLETCHER, C., REN, L., KWON, A., VAN DIJK, M., STEFANOV, E., SERPANOS, D., AND DEVADAS,

S. A low-latency, low-area hardware oblivious ram controller. In FCCM (2015)

[34] O. Goldreich. Towards a theory of software protection and simulation on Oblivious RAMs. In

STOC, 1987.

[35] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and Yan Huang.

Practicing oblivious access on cloud storage: The gap, the fallacy, and the new way forward. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS,

2015.

[36] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A.

Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest we remember: Cold-

boot attacks on encryption keys. Commun. ACM, 52(5):91{98, May 2009.

[37] Andrew “bunnie" Huang. Hacking the xbox: An introduction to reverse engineering. 2003.

[38] Markus G. Kuhn. Cipher instruction search attack on the bus-encryption security

microcontroller ds5002fp. IEEE Trans. Comput., 47(10):1153{1157, October 1998.

[39] Sean Gallagher. Your usb cable, the spy: Inside the nsas catalog of surveillance magic. Ars

Technica.

[40] Rafal Wojtczuk and Alexander Tereshkin. Attacking intel bios. Blackhat, 2009.

[41] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, Report

2016/086, 2016.

[42] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, E. Stefanov, and S. Devadas. RAW Path ORAM: A

low-latency, low-area hardware ORAM controller with integrity verification. IACR Cryptology ePrint

Archive, 2014:431, 2014.

[43] C. Gentry, S. Halevi, C. Jutla, and M. Raykova. Private database access with he-over-oram

architecture. Cryptology ePrint Archive, Report 2014/345, 2014. http://eprint.iacr.org/

[44] Bucket ORAM: Single Online Roundtrip, Constant Bandwidth Oblivious RAM. CW Fletcher, M

Naveed, L Ren, E Shi, E Stefanov - IACR Cryptology ePrint Archive, 2015

[45] P. Williams and R. Sion. Single round access privacy on outsourced storage. In CCS, 2012.

[46] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: practical access pattern

privacy and correctness on untrusted storage. In CCS, 2008.

[47] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic, John

Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a secure processor. In

CCS, 2013.

http://eprint.iacr.org/

 Oblivious RAM from theory to practice

University of Piraeus 124

[48] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using address independent

seed encryption and bonsai merkle trees to make secure processors os- and performance-friendly.

In MICRO, 2007.

[49] Hugo Krawczyk. The order of encryption and authentication for protecting communications (or:

How secure is ssl?). In CRYPTO, 2001.

[50] ObliviSync: Practical Oblivious File Backup and Synchronization, Adam J. Aviv, Seung Geol Choi,

Travis Mayberry, Daniel S. RocheIACR Cryptology ePrint Archive2016.

[51] A. B. Downey. The structural cause of file size distributions. In Modeling, Analysis and

Simulation of Computer and Telecommunication Systems, 2001. Proceedings. Ninth International

Symposium on, pages 361–370, 2001.

[52] ObliviSync github repository. https://github.com/oblivisync/oblivisync.

[53] EncFS. https://vgough.github.io/encfs/

[54] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate memory system

simulator,” Computer Architecture Letters, vol. 10, no. 1, pp. 16 –19, jan.-june 2011.

[55] J. Renau, “Sesc: Superescalar simulator,” university of illinois urbana-champaign ECE

department, Tech. Rep., 2002. [Online]. Available: http://sesc.sourceforge.net/index.html

[56] Dan Hubbard and Michael Sutton. Top threats to cloud computing v1. 0. Cloud Security Alliance,

2010.

[57] Ewen Macaskill and Gabriel Dance. The nsa files: Decoded. The Guardian, 2013.

[58] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex

Halderman, Nadia Heninger, Drew Springall, Emmanuel Thome, Luke Valenta, Benjamin

VanderSloot, Eric Wustrow, Santiago Zanella-Beguelin, and Paul Zimmermann. Imperfect forward

secrecy: How Diffie-Hellman fails in practice. In CCS, 2015.

[59] IBM. Ibm 4765 description. Technical report, 2011.

[60] David Grawrock. The Intel Safer Computing Initiative: Building Blocks for Trusted Computing.

Intel Press, 2006.

[61] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of my

cloud: Exploring information leakage in third-party compute clouds. In CCS, 2009.

[62] Intel. Software guard extensions programming reference. Intel, 2013.

[63] Amazon. Amazon simple storage service developer's guide. Amazon, 2006.

[64] Mohammad Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on

searchable encryption: Ramification, attack and mitigation. In NDSS, 2012.

https://github.com/oblivisync/oblivisync
https://vgough.github.io/encfs/
http://sesc.sourceforge.net/index.html

 Oblivious RAM from theory to practice

University of Piraeus 125

[65] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide: An infrastructure for efficiently

protecting information leakage on the address bus. In ASPLOS, 2004.

[66] Alon Itai and Michael Slavkin. Detecting data structures from traces. In Workshop on

Approaches and Applications of Inductive Programming, 2007.

[67] Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. A software-hardware architecture for

self-protecting data. In CCS, 2012.

[68] Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. Secure processor architecture for

encrypted computation on untrusted programs. In STC, 2012.

[69] R. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homomorphisms.

Foundations of Secure Computation, 1978.

[70] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side channels for

untrusted operating systems. In IEEE Symposium on Security and Privacy, 2015.

[71] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file system. In CCS,

2012.

[72] Seny Kamara. How to search on encrypted data: Oblivious rams (part 4). Blog post, 2013.

[73] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana

Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time. pages

513-524, 2012.

[74] David Cash, Alptekin Kupcu, and Daniel Wichs. Dynamic proofs of retrievability via oblivious

ram. In Advances in Cryptology-EUROCRYPT 2013, pages 279-295. Springer, 2013.

[75] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In EUROCRYPT, 2013.

