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Abstract 

 

 

At this paper, are studied the existing technologies and the research systems, which are 

dedicated for the analysis of huge amounts of data, also known and often referred with the 

words “Big Data”. These large datasets could be, recorded data, or streaming data from 

Internet of Things devices that need to get analyzed with an upper purpose, such as the 

derivation of knowledge, in terms of learning a behavior.  

At first, the focus is on the everyday rapid generation of data and how it can be managed by 

taking advantage of the Big Data analytics systems. The Apache Hadoop Java framework is 

the benchmark of these systems. Afterwards, there is a review of the existing technologies 

that are utilized and exploited for the processing of Big Data. The most of these technologies 

can integrate with the Hadoop framework and produce an enriched Big Data analytics 

ecosystem. In the next chapter, it is described the flexibility offered by a Hadoop cluster, in 

terms of adding nodes, in order to empower the distributed processing. Then, it is presented 

the installation procedure that should be followed, so as to create a Hadoop cluster, 

integrated with several components/technologies. Subsequently, there are a number of 

experiments that examine and evaluate the performance of a Hadoop cluster and some 

components of the Hadoop ecosystem, according to the number of the active data nodes. 

Finally, all the observation, conclusions and comments are concentrated in the last chapter, 

with thoughts for future exploitations of Big Data analytics systems. 
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1. Introduction 

 

Every day, people generate millions of data only by using the social media websites. For 

instance, Facebook hosts billions of photos, with a growing rate of 7 petabytes per month 

(Source: The book Hadoop: The Definitive Guide, 4th Edition, by Tom White, April 2015, 

O'Reilly) [1]. Moreover, the Internet of Things (IoT) devices become more popular day by day 

and the increasing number of these devices means more data to process. More specifically, a 

set of IoT devices can produce tones of data in a day. The IoT sensors in some cases retrieve 

data uninterruptedly, with an upper purpose, such as the generation of knowledge, after a 

data processing activity. In order to be able, the data processing, to process large amounts of 

data, a Big Data Analysis is required as a pre-phase, in order to classify and filter the data. 

These facts were unpredictable, even by big companies and organizations before some 

years. The production of data nowadays has led to a reconfiguration of the infrastructure of 

many companies and organizations. The cost of the resources for the rescaling of the 

infrastructure is high enough. Another problem is that the scaling up has a physical limit, 

such as the size of the machine, the CPU, RAM, etc. [4] 

 

The data being produced can be categorized according to three characteristics:  

 Volume  

 Variety 

 Velocity 

 

(Copyright 1995-2015 GRT Corporation) 



8 

 

Figure 1.1: The three V’s of Big Data. [5] 

Volume is the main concept of big data. It is the large amount of data to be stored and 

analysed. Velocity is the execution time, in terms of the time required to access the data and 

find something specific, in a dataset that consists of exabytes or even more. Variety is about 

the inconsistency of the data. To analyse, the data generated nowadays, can be from various 

sources, heterogeneous, so the most of the data to be stored and processed is unstructured. 

The Big Data gives solutions to these three V’s mentioned above, by managing and analysing 

such datasets. [4], [5] 

 

1.1 Big Data 

 

The three V’s mentioned above gave the trigger for the creation of Big Data tools and 

frameworks. The target is to handle situations that older systems cannot. The capabilities of 

the Big Data tools and frameworks are empowered by some specific characteristics.  

 

1. Firstly, the data distribution is about the division of the data to smaller blocks and 

the distribution of these blocks to the available nodes of the cluster.  

 

2. The data exists in the Distributed FileSystem (DFS) and after the distribution is ready 

for parallel processing. Every node of the cluster is a powerful server which can 

analyse the block of data residing in it. Every node processes the data simultaneously, 

in order to classify and filter the data to achieve the required result. 

 

3. Fault tolerance is another important characteristic. Every block of data is being kept 

in many nodes, as a replica, so as to ensure that the data is available at any time, 

even if a node server is down for any reason.  

 



9 

 

 
(Copyright 2013, BigData Planet) 

Figure 1.1.1: Replication of data blocks [4] 

 
4. Big Data tools and frameworks are economy efficient as they only need common 

hardware in order to operate, with no special demands. 

 

5.  Last but not least, concerns the flexibility and the scalability they offer. The cluster 

architecture is offered for addition of nodes in order to increase the space and the 

process power and efficiency.  

 

Regarding all these characteristics, complex problems, such as the three V’s can be 

eliminated. [4] 

 

1.2 Document Organization 

 

This master thesis consists of the following chapters. There is also, a small description for 

every chapter. 

 

Chapter 2: The Apache Hadoop framework will be analysed, in terms of architecture and the 

mechanisms included for the classification of the big data, through a built-in example, 

explaining also the Map-Reduce procedure. 

 

Chapter 3: There will be a theoretical reference to components/technologies that can be 

combined with the Hadoop and offer an enriched ecosystem for the better data analysis, 
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storage and workflow creation. In order to create workflows we use the Apache Oozie, 

which is a workflow scheduler for managing Hadoop jobs. We will use Hue as a Web 

interface for the creation of a workflow, that will manage Hadoop jobs. 

 

Chapter 4: In this chapter it is described the procedure of scaling up the Hadoop Cluster and 

what are the benefits of this action. Also, the removal of a Node from the cluster will be 

described. 

 

Chapter 5: This chapter is dedicated to the installation procedure that should be followed in 

order to create a Hadoop cluster, setup Apache Pig and Oozie components and install Hue as 

a web user interface for the Hadoop Distributed filesystem, which also offers editors for the 

components of the Hadoop ecosystem. 

 

Chapter 6: In this chapter there are some experiments, in terms of running workflows with 

oozie job scheduler. The jobs will be Pig scripts that will analyse a large file in a specific 

approach, defined in the scripts. The same experiments will run in a four node cluster and 

then, in a three node cluster, so as to evaluate the results and compare the required time to 

run a workflow before the scaling of the Hadoop cluster and after the scaling on demand. To 

prove the benefits of scaling up a Hadoop Cluster on demand, there is also a Map Reduce 

job that will run on a file with a million lines. 

 

Chapter 7: Finally, there is a report of the conclusions conducted during the writing of this 

master thesis and through the implementation and testing of the experiment.  
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2. Apache Hadoop framework 

2.1 What is Hadoop? 

 

Hadoop is an open source framework, implemented in Java, which offers parallel and 

distributed data processing. It is the most commonly used framework in the industry for the 

analysis of big datasets. The first releases of Hadoop, Hadoop 1.X, started with two main 

components, the Hadoop Distributed FileSystem (HDFS) and the MapReduce. There were 

some drawbacks by using Hadoop 1.X.  

For example, there was only one, centralized, JobTracker, which had to perform many 

activities like Resource Management and Allocation, Job scheduling and execution etc. In 

case of a failure, the jobs in the system had to start all over again. Also, there was only one 

Name Node that stored all the metadata about the files/blocks stored in the HDFS. In 

addition, Hadoop 1.X was mainly Unix based and big companies running Windows Microsoft 

servers could not use Hadoop. [2] 

In order to overcome the limitations of Hadoop 1, the architecture changed by adding a new 

component. The upgrade to Hadoop 2 led to a more flexible system, in terms of availability 

and scalability. Hadoop 2 is characterized and always followed by the abbreviation YARN 

which will be explained in the next subsection.  

 

2.1.1 Yet Another Resource Negotiator (YARN) 

 

In Hadoop 1.X the main supported model was MapReduce. The adoption of Hadoop by the 

enterprise led to the need of Hadoop to offer more than MapReduce features. The initial 

target of YARN was to separate the resource management from the job/application 

execution. In this way, more applications could be added to a Hadoop computing cluster. The 

architecture of YARN abstracts out the Resource Manager, which is responsible for the 

monitoring of the resource usage in the cluster, the activities taking place and also, allocates 

the resources. The planning and the execution of Hadoop jobs are handled by the 

Application Master. Every application has its own Application Master. In the YARN 

architecture the MapReduce is considered as an application, so if there are three 
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MapReduce jobs running, every one of them will have their own Application Master. [2] 

 

 

(Copyright 2014, Sandeep Karanth, Mastering Hadoop) 

Figure 2.1.1.1: Difference of architecture between Hadoop 1.X and 2.X. [2] 

In order to run any application (e.g. MapReduce, Pig, Hive) the Application Master will 

request resources from the Resource Manager, in terms of RAM, CPU and memory.  

In every node of the Hadoop cluster there is a daemon running, called Node Manager. The 

Node Manager is the contact point between the Resource Manager and the available nodes. 

The jobs to run are scheduled by the Resource Manager, keeping metadata in order to 

recover in case of any Resource Manager crash. The Application Master then, requests 

resources, executes the tasks and handles any job failures. [2] 

So the new processing models in Hadoop are offered by YARN in Hadoop 2. It consists of a 

cluster with a resource management system, allowing every distributed program to run and 

analyse big datasets in a Hadoop cluster. 

 

2.2 Hadoop Distributed File System (HDFS) 

 

The HDFS is a filesystem, composed by the machines of a cluster that run in commodity 

hardware, dedicated for the storage of very large files, such as petabytes of data. HDFS also 
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offers a streaming process to access the data, which is useful for the reading of such large 

datasets. When a large file is saved in HDFS, it first breaks in block-sized chunks that finally 

stored as independent units. The default block size in HDFS is 128 MB, which is a respectful 

amount of data comparing to the 512 bytes stored in disks. The block abstraction is useful in 

a distributed filesystem because this means that a single file can be larger than the disk of 

any machine in the network. Moreover, it is easy to manage storage subsystem, as the blocks 

are fixed sized and with simple math a calculation can show how many blocks can be stored 

in the given disks. Also, the metadata holding e.g. permission information can be stored 

separately from the blocks, in another system. Furthermore, blocks offer fault tolerance and 

availability at any time, as they replicated in more than one nodes. The replication factor can 

be set by the owner of the cluster. So when a client asks for a specific block, if this block is 

corrupted, it can be retrieved by an alternative location, seamlessly to the client and re-

replicated so as to keep the replication factor to the normal level. [1] 

 

2.2.1 Hadoop Name Node and Data Nodes 

 

A Hadoop cluster has two types of nodes. The Name Node, known as master and the Data 

Nodes, known as slaves – workers. The namespace of the filesystem is managed by the 

Name Node. This node is aware of the filesystem tree and the metadata of every data in the 

tree. Every Data Node is registered in the Name Node and also knows where to request the 

blocks of a given file. Once the system is up and running, the Data Nodes report to the Name 

Node which blocks are stored in their disks. Also, Data Nodes store or retrieve blocks on 

Name Node’s demand.  
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(Copyright 2015, Tom White, Hadoop: The Definitive Guide, 4
th

 Edition) 

Figure 2.2.1: HDFS client reads data from HDFS [1] 

 

The Name Node is the most important node, because without it the filesystem is useless. 

The files can be found only through this node, otherwise they are lost and the 

reconstruction of a file from the blocks is impossible. This is extremely dangerous so the 

Hadoop provides two solutions to overcome this risk.  

The first one is to write the filesystem metadata persistently to the Name Node and 

synchronize the persistent state with the local disk or a remote NFS mount. 

The second solution is to have a secondary Name Node, which will not work as a Name 

Node if not needed. The secondary Name Node runs in a separate physical machine and is 

available in case of a Name Node failure. [1] 

 

2.3 MapReduce 

 

MapReduce is a data processing programming model, which can process large amounts of 

data, stored in HDFS. Through the MapReduce procedure there are two functions taking 

place. The first phase is the Map function and the second the Reduce. [6] 

The Map function receives as input data lines of a file, rows of a database and so on, as key-
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value pairs and produces a result in the same way. A single Map task instance is created for 

every data block in the HDFS, which is relevant to the input data. The Map functions inside a 

Map task instance are equal to the number of data records of the input block. The 

computation is executed in parallel. After the mapping procedure, the output data is 

grouped and sorted by key and is ready to get as input data to the Reduce function. This 

phase of handing over the data from map function to reduce function is called Shuffle Phase. 

The reduce function iterates through the key-value pair list, so as to implement 

summarization operations on data. [1], [2], [6] 

 

 

(Copyright 2015, Thilina Gunarathne, Srinath Perera, Hadoop MapReduce v2 Cookbook, Second Edition) 

Figure 2.3.1: MapReduce procedure phases. [6] 

 

In Hadoop 1.X the MapReduce components were the JobTracker and the TaskTrackers. The 

first one was running on the Name Node and was responsible for the cluster management 

and the jobs coordination. The other one was running in every Data Node and it was the task 

launcher and coordinator, for the tasks being executed to each node. These processes no 

longer exist in the Hadoop 2.X. The Application Master coordinates the jobs and the cluster 

management and job scheduling is handled by the YARN Resource Manager. There is also a 

JobHistoryServer which provides information about the completed jobs.  

Through the above statements we can understand that the Hadoop 2 has changed the way 

that the MapReduce application runs on a cluster. In order to keep compatibility with 

MapReduce applications written in Hadoop 1, the YARN team has written a MapReduce 

framework, which runs on top of YARN. In this way, companies that have wrote MapReduce 
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algorithms in Hadoop 1, through a simple procedure can reproduce these algorithms to 

Hadoop 2. It only needs a recompilation of the existing program. [3], [6] 

 

2.3.1 YARN MapReduce Examples 

 

After the installation of Hadoop, there are available some MapReduce examples. In our 

current Hadoop installation the MapReduce examples are in the folder path 

/usr/local/hadoop/share/hadoop/mapreduce. The most common example is the 

WordCount.  

 

The WordCount example takes as input a file with text and produces an output file which has 

a list with every word that exists in the whole text followed by a number that shows the 

frequency of appearance of every word. The procedure starts by splitting the file to different 

parts. Then these parts will be distributed in the Data Nodes and will be parallel processed 

by the Map function. The output of the Map procedure will be a file with the words as a key 

and the frequency of appearance as a value. These key-value pairs, from every Data Node, 

will be the input to the Reduce function which will add the frequency of appearance for the 

words that are the same, coming from different Map functions. The final output will be a file 

with the words and their frequency of the appearance in the text given as input. 

 

Another example is the Pi that computes the value of mathematical pi. By running the 

following command in the command line, the pi is calculated with 16 map functions and 

100,000 samples. Finally, we take the result shown in the Figure below. 

$ yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

examples-2.7.2.jar pi 16 100000 
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Figure 2.3.1.1: Pi MapReduce example. 
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In order to run the Pi MapReduce example and produce the above result, I created a Hadoop 

Cluster with three nodes, one Name Node and two Data Nodes, in the ~Okeanos cloud, 

which offers the Infrastructure as a Service (IaaS) for creating Virtual Machines (VMs), that 

are used for the formation of a Hadoop Cluster and a HDFS where the example/job runs. The 

executed command is based on an example from the [3] book reference.  
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3. Hadoop Ecosystem 

 

Hadoop is a framework for managing and analysing Big Data, but it also offers more than 

that. There are many technologies that can be combined with the Hadoop framework, for 

the processing of different types of data. All these technologies were built in order to offer a 

powerful Big Data Platform, which can be used by big corporations for many cases, such as 

the creation of a database table with billions of rows and millions of columns. When the 

Hadoop is combined with these technologies, the result is a Hadoop Ecosystem. [7]  

The components of the ecosystem can be Apache Hive, Apache Pig, Apache Oozie, Apache 

HBase and many more. In order to create the ecosystem, it is necessary to create a Hadoop 

installation first. Then, one by one the components will be added, by configuring the cluster 

to accept the changes. 

 

 

(Copyright 2016, Stratapps Inc.) 

Figure 3.1: Hadoop Ecosystem. [8] 

 

As depicted in the above figure, there are three types of data under the Big Data Platform. 

Structured data is the easiest to be handled data, as it has a proper structure and can be 

stored traditionally in relational databases, such as MySQL. [7] 

Semi-Structured data has some structure, but it is not possible to be saved in relational 
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databases because the table format is not suitable for such data. For instance, XML data or 

email messages will not be stored in a table. 

Unstructured data does not have any structure at all. Relational databases are out of the 

question. An example of this data is a video file. [7] 

 

Below, the components of the ecosystem displayed in the figure, will be analysed. The 

Hadoop core components, Hadoop Distributed FileSystem (HDFS) and MapReduce, are 

studied in previous sections, so the focus is on the rest technologies. 

 

3.1 Apache Hive 

 

In order to use Hadoop, companies needed to have expert Java developers specialized in 

MapReduce coding, even for simple tasks. This led to the creation of Hive, which would be 

accessible to a wider set of developers. As many programmers are familiar with Structured 

Query Language, Hive provides an interface similar to the common SQL interfaces. This is 

why Hive is also known as Hive Query Language or HiveQL. Hive queries are used for the 

extraction of data out of the Hadoop system. [7], [9] 

Hive works as a converter, from SQL queries, to a series of MapReduce jobs for execution on 

a Hadoop Cluster. The data is organized in tables and by this way, Hive offers some kind of 

structure to the data stored in HDFS. These table schemas are the Metadata, which are 

stored in a database called The Metastore. [1] 

Due to the conversion of the SQL queries to MapReduce jobs, Hive has a higher latency 

comparing to the traditional databases, because of the start-up overhead. But Hive is meant 

to be used for the processing of jobs on huge immutable data, such as Application Logs. [9] 

 

Hive is a distributed data warehouse, design for easy data aggregation, ad-hoc querying and 

analysis of large amount of data. Hive also provides some services that will be discussed in 

the next subsection. [9] 
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3.1.1 Hive Services 

 

The hive shell is the primary way of interaction with Hive, by writing commands in HiveQL, 

which is a query language similar to MySQL. [1]  

For instance, in order to list the available tables the proper command is: 

 hive> SHOW TABLES; 
 OK 
 Time taken: 0.473 seconds 
 
The first time that the Hive command runs, it takes a few more seconds, because it creates 

also The Metastore database. To access the hive shell, the user only runs the command hive. 

[1] 

 

Except for the above service there are also some more useful hive services.  

 

The Hiveserver2 runs Hive as a server supporting authentication and multi-user 

concurrency. It is accessible by clients written in many different languages. It uses the Thrift 

service, which is an interface definition language, to bridge communication between the 

Hive server and Hive. [1] 

 

Another Hive command line interface is the beeline. It is available in embedded mode or 

through a connection with a Hiveserver2 using JDBC (Java Database Connectivity), which is 

an application programming interface (API) for the interconnection of the programming 

language Java with an SQL database. [1] 

 

There is also the possibility to access Hive through a simple web interface. HWI (Hive Web 

Interface) is an alternative to the CLI, without having to install any client software. In a 

following section is presented also Hue, which is a Hadoop web interface for the whole 

ecosystem, including Hive. It offers applications for running hive queries and browsing the 

hive Metastore. [1] 

 

The hive also provides the command jar, equivalent to the Hadoop command `hadoop jar`, 

which runs Java applications with Hadoop and Hive classes on the classpath.  
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Finally, the Metastore runs in the same process as the Hive service. The Metastore can also 

run as a standalone process, as a server and the user can set the port to listen on. [1] 

 

 

(Copyright 2015, Tom White, Hadoop: The Definitive Guide, 4
th

 Edition) 

Figure 3.1.1.1: Hive Architecture. [1] 

 

The central repository of Hive metadata is The Metastore. By default, the Metastore service 

runs on the same JVM (Java Virtual Machine) as the Hive service and contains an embedded 

Derby database, which does not support multiple Hive sessions open at the same time 

accessing the same Metastore. Of course, by applying no complex configurations everything 

can change and multi user sessions on the same Metastore can be supported. [1] 

 

3.2 Apache Pig 

 

Pig is a high-level platform for developing programs, in Pig Latin language, that run on 

Hadoop. Pig Latin is a data flow programming language, which has an execution 

environment and runs on HDFS and MapReduce Clusters. It is used for the exploration of 

very large datasets. It is similar to Hive, in terms of dealing with structured data. Pig was 

developed at Yahoo for the same reason as Hive. It provides an alternative to developers 

who prefer scripting languages, such as Python, to interact with the Hadoop. A pig program 
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applies a series of operations and transformations to the input data, which in the backend 

runs MapReduce processes to produce the desired result. The Pig after the script execution, 

it prepares a series of MapReduce jobs, which in local mode run on JVM and in MapReduce 

mode run on the Hadoop Cluster. [1], [7], [8] 

 

 

(Copyright 2013, Rajesh Nadipalli, HDInsight Essentials) 

Figure 3.2.1: Pig Architecture. [10] 

 

The Pig command line is called Grunt. A statement is considered to be an operation or a 

command. A Pig Latin program consists of many statements. These statements are parsed by 

the Pig platform. The above figure shows that the Pig Latin Scripts or the Pig commands 

inserted and executed in the Grunt shell will be parsed by the Pig platform. After the parsing, 

the Pig will compile, optimize and fire MapReduce statements. Finally, MapReduce accesses 

HDFS and returns the results. [10] 

 

3.3 Apache Oozie 

 

« Oozie is a workflow scheduler system to manage Apache Hadoop jobs ». 

(Source: the official Apache Oozie website, Last Published: 2016-08-17, Online available: 

http://oozie.apache.org/, Accessed at 19-Sept-2016) [22]. 

http://oozie.apache.org/
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 It is a server-based system for running workflows of dependent jobs. It is composed of a 

workflow engine and a coordinator engine. The first one stores and runs workflows 

composed of different types of Hadoop jobs, such as MapReduce, Pig, Hive and so on. This 

proves that oozie is fully integrated with the rest of the Hadoop ecosystem. The coordinator 

engine runs workflow jobs based on predefined schedules and data availability. [1] 

Oozie has high scalability and can execute a large number of workflows in a Hadoop Cluster, 

even if each workflow is composed of many jobs dependent to each other. [1] 

Oozie is implemented as a Java web-application (Source: Wikipedia , the free encyclopedia, 

Online available: https://en.wikipedia.org/wiki/Apache_Oozie, Accessed at 19-Sept-2016) 

[23] and it is useful when a big data programmer needs to use the output of a Hadoop job A, 

as input to a Hadoop job B and the output of job B as input to a job C and so on. To 

automate this sequence of jobs, Apache Oozie is utilized. [7] 

 

Oozie comes with the benefit of rerunning failed workflows, which is important in order to 

get the desired result. It runs as a service in the cluster and clients can submit their workflow 

requests for instant or later execution. After the workflows are completed, Oozie informs the 

client through an HTTP call back about the workflow status. [1] 

 

3.3.1 Workflows 

 

In order to define an oozie workflow, the programmer has to write an XML (Extensible Mark-

up Language) according to the Hadoop Process Definition Language, which is specified on 

the Oozie Website. A workflow is a series of actions encoded by XML nodes. Some nodes are 

responsible for the execution if some actions and others are responsible for the flow control, 

according to what has been defined in the XML file. Every workflow node has a unique 

identifier, because every node has a specific action to execute and the order they appear in 

the XML is important. The below XML file shows an oozie workflow. [11] 

 

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1"> 

  <start to="firstJob"/> 

  <action name="firstJob"> 

    <pig>...</pig> 

    <ok to="secondJob"/> 

    <error to="kill"/> 

  </action> 

https://en.wikipedia.org/wiki/Apache_Oozie
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  <action name="secondJob"> 

    <map-reduce>...</map-reduce> 

    <ok to="end" /> 

    <error to="kill" /> 

  </action> 

  <end name="end"/> 

  <kill name="kill"> 

    <message>"Killed job."</message> 

  </kill> 

</workflow-app> [11] 
 

In the above workflow example there are three control-flow nodes, handling the start, end 

and kill and two action nodes which represent the execution of an application or a 

command. [11] 

As the above XML depicts, the first node is a control-flow node that redirects the workflow 

to the first action node, which will run a Pig script or command. If the first job completes 

with no errors then the workflow will continue to the second action node for the execution 

of a MapReduce application. Finally, if the second job is successful, the workflow will 

continue to the end control-flow node and will report that the whole workflow job was 

successful. In case any of the action nodes fails to execute the corresponding job, the 

workflow will transition to the kill node, which will report back the specified error message. 

 

It is necessary for all workflows to have one start and one end node. The initial step of a 

workflow job is the transition to the node that is specified by its unique identifier in the start 

section in the XML. A workflow job is considered successful when it reaches the end node. In 

case a workflow job transitions to a kill node, it automatically means that the workflow job 

has failed and the error message specified in the corresponding XML section is reported back 

to the user/programmer. [1] 

 

Another way of creating workflows is with Hue, which is a Hadoop Web Interface and will be 

described in a following section. Hue provides a graphical user interface where the 

user/programmer can easily drag and drop jobs, for example a pig script, in the workflow 

editor. After the workflow job creation there is the possibility to execute it or even save it in 

order to re-execute it another time. The Oozie workflow editor offered by Hue is depicted in 

the figure below. 
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(Copyright 2015, Hue Team, gethue.com) 

Figure 3.3.1: Hue – Oozie workflow editor. [12] 

 

The figure depicts a workflow job with two control-flow nodes, start and end and three 

action nodes. The action nodes consist of a fork job as the initial action node, which means 

that the start node will redirect the workflow to the fork node and after the node’s success 

the workflow will transition to the next action node, which consists of a workflow and a sub-

workflow. The main workflow is the execution of the Pig script and the WordCount job and 

the sub-workflow is the execution of the Hive query for the Top Countries. The main 

workflow will wait for the sub-workflow to be completed, so as to continue and use the 

output produced. Finally, the workflow job will reach the end node and will report the status 

of the procedure. 

 

3.4 Apache Mahout 

 

Apache Mahout is an open source Machine Learning library, for scalable algorithms, written 

in Java. It is implemented on top of Hadoop and uses the MapReduce. The algorithms it 

offers are machine learning or collective intelligence. The main purpose of Mahout is to 

provide to developers a machine learning tool, which has the characteristics of filtering, 
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clustering and classification, for the cases where the data to be processed is so huge, that 

cannot be processed by a single machine. [7], [8] 

Also it provides a programming environment and framework for the creation of scalable 

algorithms. [7], [8] 

 

3.5 Apache Spark 

 

Apache Spark is a cluster computing framework that offers fast data processing and analysis 

on large datasets. Although spark has built on HDFS, it does not use MapReduce as an 

execution engine but it uses its own distributed data processing framework. [1], [13] 

The strong characteristic of spark is the ability of keeping huge working datasets in memory 

between running jobs. This benefit makes spark to have a better performance than 

MapReduce workflows, which needs to load every time the datasets from the disk. Spark is 

most suitable for applications that run iterative algorithms, where there is a function being 

applied repeatedly to a large dataset, and applications for interactive analysis, where a user 

creates many ad hoc queries for the exploration of a dataset. [1] 

Apart from the in-memory caching, that spark offers, it also is a Directed Acyclic Graph (DAG) 

engine. As a result, it can process numerous pipelines of operators and translate them into a 

single job for the user, something that MapReduce is not able to achieve. [1] 

These special characteristics make Apache Spark to be a suitable platform for applications 

which include real-time queries, as it provides the Spark SQL module for SQL operations, 

machine learning with the MLlib module, event stream processing with the Spark Streaming 

module, graph processing with the GraphX and complex operations. [1], [13] 

Also, Spark provides to the developer/user an enriched set of APIs for the execution of many 

common data processing tasks and APIs for the creation of programs in three different 

languages: Scala, Java and Python. Scala is a general-purpose programming language. [1] 

 

In order to run a job, which in this case is made of an arbitrary directed acyclic graph (DAG) 

of stages, Spark splits these stages into tasks that run in parallel across the cluster. Spark is 

based on the concept of RDDs (Resilient Distributed Datasets). The processes running for the 

execution of a job are handled as they are a local collection of operations. RDDs are 
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operating in parallel on a Hadoop cluster and handled the same way as Scala treat 

sequences. RDDs are fault tolerant, but if an RDD operation fails, it has to start all over again. 

There are two RDD categories: the transformations and the actions. Transformations create 

new RDDs, such as map(), filter(), groupBy() and they are executed only when needed. The 

actions include the result returning and the output saving to the storage system. The 

functions included are for example, collect(), count() and save(). [14], [1] 

 

Below figures show the different processing of data of Spark and MapReduce without Spark. 

 

 

(Copyright 2016, tutorialspoint.com) 

Figure 3.5.1: Map Reduce procedure without Spark. [15] 

 

 

(Copyright 2016, tutorialspoint.com) 

Figure 3.5.2: Map Reduce procedure with Spark RDD. [15] 

 

In the above figures the in-memory caching concept of Spark is clarified. The exploitation of 

Spark, make the system clearly faster, due to the distributed memory where the results of 

the iterations are saved. [15] 
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In order to integrate the Apache Spark with the rest of the Hadoop components, it should 

run on YARN of an existing Hadoop Cluster. Spark can be deployed on YARN through the 

YARN client mode or the YARN cluster mode. In the first case the driver runs on the client 

and in the second one, on the YARN application Master. [1] 

YARN client mode is most suitable when using interactive components, such as spark-shell in 

the console and pyspark, or when writing spark programs. [1] 

YARN cluster mode is dedicated in production jobs. The reason is that the application runs 

completely on the cluster and it is fault tolerant, as the YARN will retry the execution of an 

application if the application master fails. [1] 

 

3.6 Apache HBase 

 

HBase is an online key – value store built on top of HDFS. It is a column-oriented database 

that uses the HDFS as its underlying storage. [1]  

HBase is the most suitable component of the Hadoop ecosystem for applications that 

require real-time read/write operations with random access to huge amounts of data. It is 

multidimensional and in order to get a value, the user should provide a combination of a 

row key and a column key. It also supports millions of columns per row. The stored values 

are under a version, so when a value is replaced, it is not really deleted but a new version 

entry is being created. [1], [14] 

Considering the HBase table row keys, they are byte arrays, so any type of data can be a row 

key, from strings to binaries. [1], [14] 
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(Copyright 2015, Tom White, Hadoop: The Definitive Guide, 4
th

 Edition) 

Figure 3.6.1: The HBase Data Model. [1] 

 

The columns of a row are grouped and they called column families. Every column family has 

a specific prefix. The family members of a column have a common prefix, as shown in the 

figure, such as the columns “info:format” and “info:geo”. Moreover, the sorting of the table 

rows are according to a primary key. [1] 

 

HBase is categorized in NoSQL (Not Only SQL) Databases. More information about NoSQL 

databases are presented below, by comparing the Relational Data-Base Management 

Systems (RDBMSs), such as MySQL, with the HBase NoSQL database. 

 

The main characteristics of a RDBMS are that it is schema-oriented, it has normalized data 

and it contains thin tables. [14] 

 Concerning the first characteristic, it means that the tables have a fixed schema, with 

a predefined type of data to be saved. The definition takes place during the creation 

of the table. The data to be inserted in the table is highly structured data. [14] 

 RDBMSs store normalized data, but when they work as data warehouses the data can 

be de-normalized. [14] 
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 RDBMSs have a maximum number of columns that is limited to hundreds of columns. 

This results in the creation of multiple tables, which have different relationships with 

its other. More specifically, one-to-one, one-to-many and many-to-many. [14] 

 

In contrast, the NoSQL databases, therefore HBase, are schema-less and they can handle  

de-normalized type of data. [14] 

 The schema-less characteristic is achieved through the mapping of the data. More 

specifically, the columns can be defined at runtime and every row has its own 

columns. The application handles the interpretation of the values to be stored or 

retrieved from the HBase or any other NoSQL database. This offers a flexible schema 

which is useful in many cases where the data to be saved varies in many ways. [14] 

 The de-normalized type of data offers, for example, the possibility to retrieve a very 

large document with all the metadata and pages, by a single HBase row. This means 

that from an HBase table, the maximum amount of information can be retrieved by a 

request, which reduces server round trips. So, de-normalization improves the 

performance of the system, even if the server has to deal with many simultaneous 

requests. [14] 

 

HBase partitions horizontally the tables into, the so called, regions. Every region has a set of 

table rows. As a start, a table is a single region, but when it grows and overcomes a specific 

threshold, the region is split into two new regions of almost equal size. Every region is 

hosted by a Region Server. Region servers run on the data nodes of a Hadoop cluster. As a 

HBase table grows, the number of the regions grows as well. This results in the distribution 

of the regions in the HBase cluster. So, if a table is very large to accommodate in one server, 

it breaks in regions which are distributed through a Hadoop cluster and every node – server 

hosts a subset of the whole table. [14] 

 

Apart from the Region Server, there are some other vital components that HBase uses. 

Apache Zookeeper is one of them. It is the Hadoop coordinator for the distributed 

applications. HBase Master is another component which is responsible for the 

administrative operations, such as keeping track of the data of each node, according to the 

row key, control the load balancing through the cluster and managing any failover. There are 
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many HBase Masters, but only one is actually the Master node and the others exist for 

backup, in case the Master fails. The choice of which node will be the Master is taken by the 

Zookeeper. [1], [14] 

 

3.7 Apache Flume 

 

The large dataset that Hadoop is processing, at first they were in another filesystem and 

then moved to HDFS.  In many cases the data needs to be streamed in the HDFS, for reasons 

such as the analysis of data deriving from systems that produce only streams. When data is 

contained in high throughput streams, Apache Flume enables the aggregation, storage and 

analysis of this data with Hadoop. Flume is specialized for the insertion, in the Hadoop, of 

data produced during an event. Events such as application logs, social media updates or data 

retrieval from IoT sensor devices, are aggregated into new files in HDFS, in order to get 

processed. The destination of the files is called sink, in Flume parlance, and it is usually the 

HDFS. Apart from HDFS, Flume is flexible and can also write to other systems, such as HBase. 

[1] 

 

Flume is available when it runs with a Flume agent, which is a Java process and chains all the 

components of the Flume architecture: sources connected via channels to sinks. Agents 

collect data from different applications and integrate this data into Hadoop. 

 

 

(Copyright 2013, Dan McClary, drdobbs.com) 

Figure 3.7.1: Flume agent’s components [16] 
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Sources in Flume are event producers. A Flume agent can have one or more sources. Each 

source has a name and a type. After the definition of these two, additional configuration can 

be achieved through the type. The events are delivered from the various sources to the 

channel. [1], [16] 

Channel is a mechanism, which is responsible for storing the events and transferring them 

from their sources to the sinks. Events are removed from channels only when sinks 

command this action, which occurs when they have written successfully the data to an 

external repository, such as HDFS. Channels are distinguished in two types. The first category 

stores events in memory, offering high throughput, and the second concerns channels that 

are file or database-backed. In case of an agent failure, the first category cannot recover the 

data, but the second can not only recover but also reproduce the event. [1], [16] 

Sinks plug to the output storage system, by writing a suitable Java class with the necessary 

classes. Such storage systems could be for instance HDFS and HBase. Sinks are responsible 

for the transaction of events to the output and after the success, to remove the written 

events from the channel. [1], [16] 

 

3.8 Apache Sqoop 

 

SQOOP is a combination of the words SQL and Hadoop. It is a tool that offers connectivity 

between relational databases or data warehouses with Hadoop. Users can specify the 

location in HDFS where the data being moved from RDBMS, such as MySQL, will be saved. 

Sqoop is also used for the extraction of data, out of Hadoop, into external structured 

datastores. [7], [8] 
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(Copyright Deepesh Kumbhare, HadoopTutorials.co.in) 

Figure 3.8.1: Data transaction between RDBMS and HDFS [7] 

 

Sqoop is used in order to import structured data from RDBMSs to HDFS. When this happens 

a file is created in HDFS representing the data to be processed, with a MapReduce or other 

program or component from the Hadoop ecosystem. After the data processing and analysis, 

the structured data is ready to be transferred and saved back to a table in a RDBMS through 

Sqoop. [7], [8] 

 

3.9 Hue (Hadoop Web Interface) 

 

Hue is an open-source Hadoop Web Interface, which provides a very friendly Graphical User 

Interface (GUI) for handling the transaction of data/files between the local disk and HDFS. 

Additionally, it offers a GUI for each component of the ecosystem. For example, for oozie, as 

mentioned to the corresponding section above, there is a drag and drop option to create 

workflows. It also includes editors and dashboards for other components, such as Pig, where 

the user can write scripts or hive, where the editors can be filled with SQL queries and 

execute them by pressing the related button.  
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Figure 3.9.1: Pig script written in Hue’s Pig Editor. 

 

The above figure depicts the Hue’s Pig Editor. For the sake of the example, I have written a 

Pig script, which takes as input (Loads) a text file, it places the words in an array and 

transforms the case of every word to uppercase. Finally, the result is saved in HDFS, to the 

specified directory. In order to execute the script, we press the play button in the right top 

corner of the screen. During the execution, a progress bar is displayed, showing the status of 

the job. If we open the oozie dashboard, we will see that the execution of the pig script is a 

single job, which is considered as a simple workflow. 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

4. Scale Hadoop Cluster 

 

As data grows in a Hadoop Cluster, the performance of the processing and analysis, and the 

capacity is decreased. However, Hadoop can handle larger data by scaling-up or scaling-out. 

When there is need for extra storage or processing power, the two solutions mentioned will 

resolve any difficulties, even without changing the hardware of the existing machines at all, 

by taking advantage of the distributed nature of HDFS. This will be described below in the 

scaling-out paragraph. The non-distributed way of resolving the issue examined in this 

section, is to enhance the existing hardware.  

 

Scaling-up or Vertical Scaling, means to change the hardware, by increasing the CPU, RAM 

and/or Disk. This solution is not the most suitable in Big Data platforms because there are 

some limitations when changing the hardware. Even if the capacity of the physical machine 

increase enough to suit the larger hardware with the higher capabilities, there is a maximum 

technology limit, in terms of production. For instance, the disk capacity cannot increase 

above a limit in a physical machine. Furthermore, vertical scaling includes the purchasing 

and installing new hardware, which is not cost efficient. [17] 

 

 

(Copyright 2016, Pivotal Software, Inc, Pivotal Documentation) 

Figure 4.1: Vertical scaling of Hadoop cluster [18] 

 

In contrast, Scaling-out or Horizontal Scaling is the addition of new nodes in the Hadoop 

Cluster, when it is necessary. This action does not require any change, software or hardware, 

to the platform, because it is actually a connection of the existing cluster of machines, with 
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new ones. These new nodes, is not necessary to be high performance machines, in terms of 

characteristics such as CPU, as they will be integrated with the rest Hadoop Cluster and the 

total performance will be increased. Every new node is another commodity hardware added 

in the network ready to offer its computational abilities for data processing. Horizontal 

scaling takes advantage of the distributed processing, which is the reason why it harmonizes 

more with the Hadoop concept. [17] 

 

 

(Copyright 2016, Pivotal Software, Inc, Pivotal Documentation) 

Figure 4.2: Horizontal scaling of Hadoop cluster [18] 

 

Hadoop framework is empowered by the distributed characteristic, so we will focus on the 

horizontal scaling, which follows the distributed nature of HDFS. In the next sections it will 

be analysed the exact way of adding and removing nodes to/from an existing Hadoop 

Cluster.  

 

4.1 Adding nodes to an existing Hadoop Cluster 

 

The procedure of adding a node, and more precisely a Name Node, to an existing Hadoop 

Cluster, in order to increase the storage and the computing capabilities, has been 

investigated and will be analysed in this section. The analysis is based on specific steps, 

which are going to be applied to a three node Hadoop Cluster, created for the specific 

master thesis for the proof of concept. The procedure of creating a Hadoop Cluster is not in 

the scope of this section, so it is not included, but it is going to be analysed in the next 

chapter.  
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Concerning the node addition, the main purpose described below is to add a Name Node to 

the three node Hadoop Cluster. Initially, by hitting the URL http://<IP>:50070 , where the 

<IP> is the IP (Internet Protocol) of the Hadoop cluster’s Name Node, an overview about the 

cluster is displayed in the screen, and by choosing the “Datanodes” tab the following result is 

produced. 

 

 

Figure 4.1.1: Initial Name Node Information and status. 

 

The picture depicts the information about the Name Nodes, accessed by the Name Node of 

the cluster. There are two sections: “In operation” and “Decommissioning”. The first section 

is about the active Name Nodes with information about their hostname, capacity, versions 

etc. The hostname is “snf-<id>” (“snf” stands for “synnefo”), because the Hadoop Cluster is 

composed of virtual machines (VMs) created on GRNET’s ~Okeanos IaaS (Infrastructure-as-a-

Service), powered by “Synnefo” (Greek word for “Cloud”) which is an open source cloud 

software designed and developed by GRNET. The “Version” is referred to the Hadoop 

version, which is the 2.5.2.  

 

1) The first step of the procedure is to create a new Virtual Machine from ~Okeanos 

IaaS and install a Hadoop distribution, same as the rest nodes of the existing cluster, 

which in our case is a Hadoop 2.5.2. The created machine is allowed to have greater, 

lower or the same storage, and more, fewer or the same number of CPUs. The only 
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feature that is of great concern is the memory, which is important to not be lower 

than the preconfigured memory in the Hadoop XML files. 

 

2) During the first step it is important to add the created machine to the cluster’s 

network. This can be achieved in our case through the ~okeanos GUI (Graphical User 

Interface). The new machine will have an internal IP, in our case 192.168.0.5, as the 

rest nodes start from 192.168.0.2 to 192.168.0.4. The external IP, from which the 

cluster can be accessed, resides in the Name Node.  

 

3) The next step is to update the Name Node’s “hosts” file, which is in the location 

“/etc/hosts”, with the new Name Node’s private IP and hostname. 

 

 

Figure 4.1.2: Adding new Name Node’s IP and hostname in “hosts” file of every node. 

 
As the figure depicts, the /etc/hosts file has opened with the “nano” editor and the 

line in the red box has been added. The private IP of the new Name Node is 

192.168.0.5 and the hostname is snf-719987. The “hosts” file should be the same in 

every node. 
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4) Continuing, it is necessary to perform a rerouting from the Name Node to the Name 

Node, which is achieved with port forwarding in the Name Node machine. The 

commands that fulfil the above state are “iptables -A PREROUTING -t nat -i eth1 -p 

tcp --dport 10002 -j DNAT --to 192.168.0.5:22” and “iptables -A FORWARD -p tcp -d 

192.168.0.4 --dport 22 -j ACCEPT” which are executed in the command line of the 

Name Node. The ports 10000 and 10001 are already bound by the first two Name 

Nodes, so in the above command we bind the port 10002 for the new Name Node. 

The Name Node will try to find the new Name Node to the given internal IP at port 

22 (which is the port forwarding action). More specifically, every request in Name 

Node’s port 10002 will be rerouted to the new Name Node at port 22, which is 

achieved through a translation offered by the DNAT (Destination Network Address 

Translation) method. Also, we must perform an action to the Name Node, so as to 

receive the incoming requests at port 22. By running the command “route add 

default gw 192.168.0.2”, we enable a link between the Name Node, which has the 

stated internal IP, and the Name Node. This link between those two machines is also 

known as gateway.  

 

5) In the new Name Node we create a user “hduser” and a “hadoop” group. Also, for 

our convenience we rename the directory “/usr/local/hadoop-2.5.2” to 

“/usr/local/hadoop”. Finally, we change the owner of this directory to hduser, by 

running the command “chown –R hduser:hadoop /usr/local/hadoop”. 

 

6) The next step is divided in two parts. The first one is to navigate to the 

“/usr/local/hadoop/etc/hadoop” directory and modify the “slaves” file, by adding the 

hostname of the new added Name Node into it. This action must be performed in the 

Name Node of the cluster. It should be noted, as a reminder, that “slaves” is another 

word for referring to the Name Nodes. The second part of this step is to copy all the 

configuration XML files from the “/usr/local/hadoop/etc/hadoop” directory of Name 

Node to the same directory of the newly added Name Node. The “slaves” file in the 

new added data node should only contain the word “localhost”. 

 

7) The Name Node needs to interact with the Name Nodes many times during a 
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workflow. Every machine is protected by a password. In order to avoid typing the 

password of every node for every interaction, we use ssh (Secure SHell) keys, which 

are the intermediate to operate network services securely over the Hadoop cluster’s 

network, with the use of ssh cryptographic network protocol. These keys are saved in 

a file in every machine. In the “~/.ssh” directory the file “authorized_keys” has the 

ssh keys. We copy this file from the Name Node to the Name Node, so as to achieve 

a trusted communication between these two machines, without password 

requirements. This action should be performed by the hduser. 

 

8) In the newly added Name Node, it is important for the directories 

“/app/hadoop/tmp”, “/app/hadoop/tmp/namenode” and 

“/app/hadoop/tmp/datanode” (if they do not exist they should be created) to have 

appropriate permissions and owner. In order to change the owner to “hduser” and 

the group to “hadoop”, we run the command “chown –R hduser:hadoop 

/app/hadoop/tmp” and the same for the other two directories. Furthermore, to 

change the permissions to these directories we run the command “chmod 750 

/app/hadoop/tmp” and the same for the other two directories. The number 750 

indicates that the hduser can fully modify these directories, the hadoop group can 

read and access these directories, and the rest users have no access to these 

directories. 

 

9) Continuing, the file “regionservers” in the ““/usr/local/hadoop/etc/hadoop” 

directory should be updated with the hostname of the new added node. This action 

must be performed in every node of the cluster. The last file to be configured is the 

“include” file, in the same directory as regionservers. This file will be updated only in 

the Name Node of the cluster, with the hostname of the new data node. 

 

10) Finally, a Hadoop Cluster restart is required in order to apply the configurations 

across the Hadoop Cluster. In the Name Node we run the following commands as 

hduser. Firstly, we stop the distributed filesystem by typing “stop-dfs.sh”. Then, we 

stop the YARN: “stop-yarn.sh”, and the job history server: “mr-jobhistory-daemon.sh 

stop historyserver”. These commands are actually UNIX shell scripts that run in the 
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background many tasks. In order to start again the Hadoop services we rerun the 

above commands by replacing the word stop with start.  

 

 

After following the above instructions a new data node has successfully been added to the 

initial three node cluster, created for this master thesis. The nodes have increased to four, 

from which the three nodes are slaves, or data nodes, and the other one is the master, or 

the name node.  

 

 

Figure 4.1.3: Name Node Information and status after the addition of the new node. 

 

Comparing the above figure with the 4.1.1, we can see that the newly added data node is 

recognised by the Name Node and it is an active part of the Hadoop Cluster. As a result, the 

processing power of the Hadoop has increased, along with the storage of the HDFS. [19] 

 

4.2 Removing nodes from a Hadoop Cluster 

 

One of the greatest advantages of the Hadoop framework is that it utilizes commodity 

hardware, reducing the costs of enterprise companies, which analyse huge amounts of data 

with many machines working in parallel. However, this does not offer stability in a Hadoop 



43 

 

Cluster, as the data nodes that run many tasks may crash irrecoverably. In that case the 

Hadoop framework gives a handy solution. The removal of the crashed data node is a 

procedure where the problematic machine is decommissioned from the cluster, without 

losing any blocks of data stored in HDFS. Before the procedure of decommission, the data 

blocks are rebalanced to the existing nodes so as not to get lost. Below it is described 

analytically the procedure of removing (decommissioning) a Name Node from the Hadoop 

Cluster. For the proof of instructions, the four node (after the node addition) cluster will be 

used for the execution of the commands and the appliance of the configuration files. 

 

1) The first step of the procedure is to add a list of the hostnames of the data nodes, 

which are necessary to be decommissioned, to the “exclude” file located in the 

“/usr/local/hadoop/etc/hadoop” directory. This action will take place in the Name 

Node exclusively. In our case we assume that the data node that we no longer need is 

the node with the hostname “snf-718073” and internal network IP “192.168.0.4”. 

 

2) The next step is to update two configuration files of the Name node, located in the 

“/usr/local/hadoop/etc/hadoop” directory. The first one is the “hdfs-site.xml”, which 

should be updated with the property “dfs.hosts.exclude” that informs the name node 

about the nodes to be decommissioned. The lines to be added are: 

<property> 

      <name>dfs.hosts.exclude</name> 

      <value>/usr/local/hadoop/etc/hadoop/exclude</value> 

      <description> List of nodes to decommission </description> 

      </property> 

In this way the HDFS knows which hostnames will be excluded from the Hadoop 

cluster. The second configuration file to be updated is the “mapred-site.xml” and the 

property that should be added is the “mapred.hosts.exclude”. The lines to be added 

are: 

<property> 

      <name>mapred.hosts.exclude</name> 

      <value>/usr/local/hadoop/etc/hadoop/exclude</value> 

      <description> List of nodes to decommission </description> 

</property> 

 

3) The name node will get updated by running the command “hadoop dfsadmin –

refreshNodes”. After executing this command the name node will start the 
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decommission process for the data nodes included in the “exclude” file.  

 

Figure 4.2.1: Decommissioning of Data Node in Progress. 

 

The above figure depicts the administration UI of the Name Node, at the PORT 

50070. We can see that the state of the data nodes included in the “exclude” list has 

changed to “Decommission in Progress”, which in our case is the “snf-718073”. The 

background task running in a decommissioning node comprises of the copy of its 

blocks to other data nodes. This process may take from minutes to hours to 

complete, depending on the data volumes of the decommissioned node. During the 

decommissioning procedure, the column “Under replicated blocks” number 

decreases, according to the replication of the blocks to the other data nodes. 

 

4) When a data node completes the replication of the blocks to the other data nodes of 

the cluster, it reports its state as “Decommissioned” which indicates that the node is 

ready to leave the cluster with no danger for data loss.  
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Figure 4.2.2: Data Node decommissioned.  

 

Afterwards, the decommissioned node is no longer part of the Hadoop cluster and 

the user can shut down or restart the machine.  

 

5) The next step is to remove the hostname of the decommissioned data node from the 

“slaves” file, which is in the directory “/usr/local/hadoop/etc/hadoop”. Also, in the 

same folder the file “include” needs to get updated by removing the hostname, same 

as the “slaves” file. These two actions should happen only in the Name Node. The 

last file that should be updated is the “regionservers” in the same folder as the two 

previous files mentioned, in which we perform the same action, but for every node 

of the Hadoop Cluster. 

 

6) In order to refresh the nodes, it is necessary to run the following command in the 

name node as user “hduser”: hadoop dfsadmin –refreshNodes. After the refresh the 

command “start-balancer.sh” will perform a sharing and reallocation of the blocks 

data, to the available Data Nodes. Last but not least command, is the “hadoop fsck –

blocks” which will show the status of the data replication.  

 

7) Finally, a Hadoop Cluster restart would be required, so as to make certain that the 

Hadoop Cluster is fully aware of the removal of the Data Node. 
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Figure 4.2.3: Data Node decommissioned and removed successfully. 

 

In the above figure it is clearly depicted that by following the steps of this subsection, a 

Hadoop administrator could remove successfully a Data Node from a Hadoop Cluster. In this 

way, any crashed machine in the cluster, could get removed and replaced by a new healthy 

machine, which can be added easy according to the steps described in the previous 

subsection. [19]  
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5. Installation of testing environment 

 

In this chapter it is presented a Hadoop installation in three virtual machines from which, the 

one will be the Name Node of the Hadoop Cluster and the other two are going to be the 

Data Nodes. Afterwards, some components of the Hadoop Ecosystem are going to be added, 

such as oozie (see chapter 3.3) and pig (see chapter 3.2), so as to create a simple workflow 

that will run a map/reduce job and some pig scripts. The purpose is to count the execution 

time of a workflow, before and after the addition of a Data Node, so as to examine the 

processing power and response time offered by an extra node in a Hadoop Cluster.  

 

5.1 Hadoop installation 

 

Initially, it will be presented the installation of the Hadoop framework as a step by step 

procedure. As a start, we create as many virtual machines as the desired size of the cluster. 

The operating system chosen for the Hadoop installation in this master thesis is Debian 

Linux. All the machines are in the same internal network and only the machine that will be 

the Name Node of the cluster has an external IP. In every machine we repeat the following 

procedure. 

 

1) The installation of Oracle Java 8 programming language is required, as the Hadoop is 

a Java framework. 

 

2) Linux systems support groups and users, so we created a “Hadoop” group and an 

“hduser” user to administrate and control the Hadoop related operations.  

 

3) The next step was to install the openssh-server, in order to allow secure 

communication between the nodes of the Hadoop Cluster, without the prompt for 

password, as the interactions will be many during the workflows. After the 

installation, it is important to generate a ssh key for the hduser and copy the 

id_rsa.pub to the “authorized_keys” file, which is in the “~/.ssh” directory. 
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4) Continuing, we disable the IPv6 by configuring (or adding) in the “sysctl.conf” file, 

which is in the “/etc” directory, the lines: 

net.ipv6.conf.all.disable_ipv6 = 1 

net.ipv6.conf.default.disable_ipv6 = 1 

net.ipv6.conf.lo.disable_ipv6 = 1 

 

5) Afterwards, we downloaded (for the installation of this master thesis) the Hadoop-

2.5.2.tar.gz and we extracted it to the folder “/usr/local”. We rename the extracted 

folder from hadoop-2.5.2 to hadoop, for convenience, and we create some 

temporary directories for the name node and the data nodes. 

 

6) Concerning the configurations, we need to update the file “~/.bashrc” with some 

environmental Hadoop variables. So, we add the next lines to the file: 

export JAVA_HOME=/usr/lib/jvm/java-8-oracle 

export HADOOP_HOME=/usr/local/hadoop 

export PATH=$PATH:$HADOOP_HOME/bin 

export PATH=$PATH:$HADOOP_HOME/sbin 

export HADOOP_MAPRED_HOME=$HADOOP_HOME 

export HADOOP_COMMON_HOME=$HADOOP_HOME 

export HADOOP_HDFS_HOME=$HADOOP_HOME 

export YARN_HOME=$HADOOP_HOME 

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native 

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib" 

 
Also, to the file “hadoop-env.sh” we need to write the java home path, so we add the 

line: 

export JAVA_HOME=/usr/lib/jvm/java-8-oracle 

 

We create the files “slaves”, “includes” and “regionservers” in the Name Node, in the 

“/usr/ local/hadoop/etc/hadoop/” directory, and we write inside them the 

hostnames of the Data Nodes of the cluster. 

In the “/usr/local/hadoop/etc/hadoop/” directory we open the “core-site.xml” 

configuration file and we add the lines: 

<property> 

  <name>hadoop.tmp.dir</name> 

  <value>/app/hadoop/tmp</value> 

  <final>true</final> 

  <description>A base for other temporary directories.</description> 

</property> 

<property> 

  <name>fs.default.name</name> 
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  <value>hdfs://snf-718071:9000</value> 

  <final>true</final> 

</property> 

 

The “snf-718071” shown above, is the hostname of the Name Node.  

In addition, in the same directory we add to the “hdfs.site.xml” file the lines: 

<property> 

  <name>dfs.namenode.name.dir</name> 

  <value>file:/app/hadoop/tmp/namenode</value> 

</property> 

<property> 

  <name>dfs.datanode.data.dir</name> 

  <value>file:/app/hadoop/tmp/datanode</value> 

</property> 

<property> 

  <name>dfs.blocksize</name> 

  <value>128m</value> 

  <description>Block size</description> 

</property> 

<property> 

  <name>dfs.hosts</name> 

  <value>/usr/local/hadoop/etc/hadoop/include</value> 

  <description> List of nodes that connect to namenode </description> 

</property> 

 

Above we can see the paths to the temporary directories for name node and data 

nodes, the size of a block of data that is going to be saved in the HDFS nodes and the 

path to the file (includes) which has a list with the nodes that connect with the name 

node.  

In the “yarn-site.xml” file we configure the resource manager by adding: 

<property> 

  <name>yarn.resourcemanager.hostname</name> 

  <value>snf-718071</value> 

  <final>true</final> 

  <description>host is the hostname of the resource manager. 

  </description> 

</property> 

<property> 

  <name>yarn.resourcemanager.resource-tracker.address</name> 

  <value>snf-718071:8025</value> 

  <final>true</final> 

  <description>host is the hostname of the resource manager and 

   port is the port on which the NodeManagers contact the Resource 

Manager. 

  </description> 

</property> 

<property> 

  <name>yarn.resourcemanager.scheduler.address</name> 

  <value>snf-718071:8030</value> 

  <final>true</final> 

  <description>host is the hostname of the resourcemanager and port 

is the port on which the Applications in the cluster talk to the 

Resource Manager. 
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  </description> 

</property> 

 

In the configurations above we can see that the resource manager’s hostname and 

ports are defined. The resource manager derives in the Name Node and the ports 

8025 and 8030 are responsible for the tracking and the scheduling of the resources 

for the execution of a workflow accordingly.  

And finally, we verify that in the “mapred-site.xml” file the next lines are present: 

<property> 

  <name>mapreduce.framework.name</name> 

  <value>yarn</value> 

</property> 

 

7) When the configuration is completed, we format the name node and we start all the 

Hadoop daemons by running the following commands in the name node’s terminal, 

as user hduser: 

hdfs namenode –format 

start-dfs.sh 

start-yarn.sh 

mr-jobhistory-daemon.sh start historyserver 

 

8) By running the command “jps” in the Name Node’s terminal, we can see a list of the 

running services and verify if everything is running as expected. 

 

The above steps performed in three machines and the final result was a fully functional 

three node Hadoop Cluster. In order to create a folder for the hduser in the HDFS we run the 

commands “hdfs dfs –mkdir /user” and “hdfs dfs –mkdir /user/hduser”.  

 

5.2 Installing Hue on Hadoop 

 

Hue is a Hadoop Web Interface and its friendly Graphical User Interface (GUI) will help us to 

create oozie workflows and execute them. The installation is comprised by the steps 

described below. 

 

1) Initially, we connect to the Name Node and we install the required dependencies by 
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running the following commands: 

sudo apt-get update 

sudo apt-get install -y ant 

sudo apt-get install -y gcc g++ 

sudo apt-get install -y libkrb5-dev libmysqlclient-dev 

sudo apt-get install -y libssl-dev libsasl2-dev libsasl2-modules-

gssapi-mit 

sudo apt-get install -y libsqlite3-dev 

sudo apt-get install -y libtidy-0.99-0 libxml2-dev libxslt-dev 

sudo apt-get install -y maven 

sudo apt-get install -y libldap2-dev 

sudo apt-get install -y python-dev python-simplejson python-

setuptools 

 

2) The next step is to download Hue with the command “wget 

https://dl.dropboxusercontent.com/u/730827/hue/releases/3.8.0/hue-3.8.0.tgz” 

 

3) After the download is complete we unzip the file and in the extracted folder we run 

the command “sudo make install” in order to start the Hue installation.  

 

4) Afterwards we create a user and a group “hue”. Also, we change the ownership of the 

“/usr/local/hue” directory to the newly created user and group.  

 

5) The Hadoop configurations are next, which will happen to the “hdfs-site.xml” and 

“core-site.xml” files. In the first file we add the lines: 

 
<property> 

  <name>dfs.webhdfs.enabled</name> 

  <value>true</value> 

</property> 

 

And in the second file we add the lines: 
 
<property> 

  <name>hadoop.proxyuser.hue.hosts</name> 

  <value>*</value> 

</property> 

<property> 

  <name>hadoop.proxyuser.hue.groups</name> 

  <value>*</value> 

</property> 

 
Then, we copy these two files to all data nodes of the Hadoop Cluster. 

 

6) In addition, we configure the hue.ini file, which is in the location 
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“/usr/local/hue/desktop/conf”. Firstly, we uncomment the line 

“default_hdfs_superuser=hduser” so as to add the hduser as superuser. Secondly, we 

set the Name Node’s IP to the “fs_defaultfs” and “webhdfs_url” sections. Also, we 

set the IP of the resource manager’s host, which in our case is the Name Node, to the 

sections “resourcemanager_host” and “resourcemanager_api_url” and the same for 

the sections “proxy_api_url” and “history_server_api_url”.  

 

7) Finally, we start the Hue service on Hadoop by running the commands: 

su - hue 

cd /usr/local/hue/build/env/bin/ 

./supervisor -d 

 

As hue user we start the Hue daemon. 

 

After following the above steps, the Hue will get installed to the Hadoop and it will be 

available at the Name Node’s IP in the port 8888. It is important to login in Hue as user 

hduser so as to have full access to the HDFS. [20] 

 

5.3 Installing pig and oozie components 

 

In this subchapter it will be described the procedure of how to install oozie in a Hadoop 

Cluster. For more information about oozie see chapter 3.3. The oozie component will be 

used for the creation of workflows in the next chapter. It is necessary to install Pig before 

oozie so we will start describing the installation steps for this component first. 

 

5.3.1 Pig installation 

 

For the Pig installation, it is only needed to download the compressed file, that includes the 

necessary libraries and execution files, and add it to the Linux PATH. The Linux PATH is an 

environmental variable, which reports to UNIX operating systems “shell” in which directories 

it should search to find the executable files when a user types a specific command. The steps 
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for the installation are to change user to hduser by typing in terminal “su hduser” and 

download Pig with the command “wget http://mirrors.myaegean.gr/apache/pig/pig-

0.14.0/pig-0.14.0.tar.gz”. The next step is to unzip the downloaded file by typing “tar -zxvf 

pig-0.14.0.tar.gz”. Finally, we add Pig program in the PATH with the command “export 

PATH=/home/hduser/pig-0.14.0/bin/:$PATH”, so as to open the Pig editor in the Linux 

terminal by typing only the command “pig”. 

 

5.3.2 Oozie installation  

 

The oozie installation is more complex than Pig’s, because there are some configuration 

requirements that need to be fulfilled. In the steps below, it is described the procedure 

analytically. 

 

1) Initially, we download oozie from a mirror with the command “wget 

http://mirrors.myaegean.gr/apache/oozie/4.1.0/oozie-4.1.0.tar.gz”. We unzip the 

downloaded file by running “tar -xvzf oozie-4.1.0.tar.gz” and we access the oozie 

folder: “cd oozie-4.1.0”. 

 

2) The second step is to build oozie, which will be achieved by running the command 

“mvn clean package assembly:single -P hadoop-2 -DskipTests”. The “mvn clean” 

command tells Maven to build all the modules and install them in the local directory 

of the machine running the command. Maven is a project management tool that 

helps and makes more convenient the installation of projects/programs that have 

many dependencies. The option “-P hadoop-2” means that we choose the profile as 

hadoop 2, because we currently have installed Hadoop 2 in our virtual machines. 

 

3) Thereafter, it is necessary to setup the oozie server. We create a folder “Oozie” and 

we recursively copy the “oozie-4.1.0” from the “distro/target/oozie-4.1.0-distro” 

directory into the created folder, with the command “cp -R distro/target/oozie-4.1.0-

distro/oozie-4.1.0/ Oozie/”. Then, we change directory (cd) into “Oozie/oozie-4.1.0” 

and create a folder “libext”, where we will copy Hadoop libraries, by typing: “cp -R 

http://mirrors.myaegean.gr/apache/oozie/4.1.0/oozie-4.1.0.tar.gz
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../../hadooplibs/hadoop-2/target/hadooplibs/hadooplib-2.3.0.oozie-4.1.0/* libext/”. 

We access the libext directory and we download one more library with the 

command: “wget http://dev.sencha.com/deploy/ext-2.2.zip”.  

 

4) For this step we need to install zip in the system, so we run the command “sudo apt-

get install zip”. After the installation, we type in terminal “bin/oozie-setup.sh 

prepare-war”, which runs an oozie shell script that setups and prepares WAR (Web 

Archive) files for oozie. 

 

5) Afterwards, we update the configuration files. As a start, we edit the 

“/usr/local/hadoop/etc/hadoop/core-site.xml” file and we add the lines: 

<property> 

  <name>hadoop.proxyuser.hduser.hosts</name> 

  <value>*</value> 

</property> 

<property> 

  <name>hadoop.proxyuser.hduser.groups</name> 

  <value>*</value> 

</property> 

 

We save the changes and we copy the file to all data nodes of the cluster. Following, 

we create a directory “/etc/oozie/conf” and a file “oozie-site.xml” which should be 

completed with the lines: 

<?xml version="1.0" encoding="UTF-8"?> 

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

<configuration> 

<property> 

    <name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name> 

    <value>*</value> 

</property> 

<property> 

    <name>oozie.service.ProxyUserService.proxyuser.hue.groups</name> 

    <value>*</value> 

</property> 

</configuration> 

 

When the configurations are completed, we restart the HDFS. 

 

6) The next step is to create a share library directory that oozie needs in order to 

operate. In order to achieve this, we change directory to the path 

“/home/hduser/oozie-4.1.0/Oozie/oozie-4.1.0/bin” and we run the command “sudo 
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-u hduser ./oozie-setup.sh sharelib create -fs hdfs://<IP>:9000”, where the <IP> is the 

address of the Name Node.  

 

7) On the HDFS we create the directory oozie by running as hduser “hdfs dfs -mkdir 

/user/oozie” and we move the oozie share libraries to the default folder, which is the 

one just created, with the command “hdfs dfs -mv /user/hduser/share /user/oozie/”.  

 

8) Another oozie requirement is to create an oozie database, which is achieved by 

simply finding the location of the “ooziedb.sh” shell script and running the command 

“./ooziedb.sh create -sqlfile oozie.sql -run”. 

 

9) Finally, we start the oozie server by running the “oozied.sh” shell script, that deploys 

the oozie daemon, and giving as parameter the word “start”.  

 

10) An optional step, but necessary for our case, is to update the “hue.ini” file with some 

extra configurations, in order to recognize that the oozie component is part of the 

current Hadoop ecosystem. More specifically, we uncomment and update the section 

of the “hue.ini” file as it is depicted below: 

# Webserver runs as this user 

server_user=hduser 

server_group=hduser 

 

# This should be the Hue admin and proxy user 

default_user=hduser 

 

Also, in the section “*liboozie+” we uncomment the “oozie_url= 

http://<IP>:11000/oozie” and we replace the <IP> with the address of the Name 

Node.  

 

When the above installations are completed, we will have a Hadoop Cluster with a web 

graphical user interface and two components of the Hadoop ecosystem enabled. In the next 

chapter we will proceed to the creation of workflows, by using the Hue oozie editor. 
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6. Experiment – Workflows  

 

This chapter will focus on the creation of a workflow with Apache oozie and the execution of 

a Map Reduce job through the Name Nodes console. The workflow will include some Pig 

scripts. We will use Hue’s graphical user interface in order to create the workflow. The 

purpose is to create a workflow, run it in a four node Hadoop Cluster and examine the time 

required for the completion of the workflow. Afterwards, we will remove a node from the 

existing four node cluster and rerun the workflow, in order to examine the increment of time 

for the completion of the workflow and the task distribution over the decreased cluster. The 

same time examination will happen for the Map Reduce job. 

 

6.1 Evaluation – Results on a four node cluster  

 

Initially, we download a compressed file that includes many CSV (Comma-separated values) 

data files from the link http://hortonassets.s3.amazonaws.com/pig/lahman591-csv.zip, in 

order to choose one and process it with pig scripts. We choose the Batting.csv file, which has 

95195 lines with many columns, making it difficult to be processed in a fast way. The file 

includes players and their successful shots over the years. Our purpose is to find the player 

with the most successful shots per year. 

 

http://hortonassets.s3.amazonaws.com/pig/lahman591-csv.zip
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Figure 6.1.1: Data file to be processed. 

 

The figure depicts the data included in the Batting.csv file. In order to process this file we 

need to upload it from our local machine to the HDFS. To achieve that, we run the command 

“hadoop fs –copyFromLocal Batting.csv /user/hduser” which will copy the data to the folder 

/user/hduser on HDFS.  

 

The next step is to write the Pig scripts that will process this data file and produce some 

results. Our experiment will be a workflow composed of four pig scripts. The first and the 

last script’s purpose, is to print in a file, the start and the finish time of the workflow, in 

milliseconds, so as to record the duration of the procedure in a four node cluster. The Pig 

command for the current time is to run in the Pig terminal editor “grunt> CurrentTime()”. 

Although, getting the current time from a script on the HDFS we need to do a workaround. 

We create a text file on the HDFS and we write anything inside, such as “placeholder”. In our 

case we created a “random_text.txt” file. Then, the Pig script will load the text file and we 

will ask the current time during a dummy procedure running on the file. Below, we can see 

the script: 

random_text = load '/user/hduser/random_text.txt' using PigStorage(','); 

current_start_time_data = foreach random_text generate CurrentTime(); 

STORE current_start_time_data INTO 

'/user/hduser/pig/results/start_time.txt'; 

 

The last line commands to save the result of the CurrentTime() to the “start_time.txt” file, 
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which is in the “/user/hduser/pig/results” directory in the HDFS. The same script will be 

used for the end of the workflow, but the last line’s destination will be replaced by the 

“end_time.txt” file, where the finish time will be recorded. The first Pig script that will be 

created for the processing of the uploaded data file is represented below. 

 

Figure 6.1.2: Pig script. 

 

The first line loads the Batting.csv file in the batting variable. Then, we filter out the first row 

of the data. Afterwards, for every raw, we generate a description name for every column and 

more specifically, we name the first column as playerID, the second as year and the eighth as 

runs. In the next line we group the data by the years. Then, the max “runs” values are 

extracted and finally, we produce an output with three columns per year. The first column 

holds the year, the second holds the playerID and the third the runs. The output is going to 

be saved in the “pig_output_column_7” file in the “/user/hduser/pig/results” directory on 

HDFS. [21] 

The same script with some differentiations will be our second Pig script, which will process 

the Batting.csv file. We will follow the same procedure, but in order to extract the best 

players according to the runs from the ninth column. So, the only changes will happen to the 

third line of the script, by replacing the “$7” with “$8” and the last line, so as to change the 

destination file to “pig_output_column_8”.  

The scripts should be saved as <script name>.pig in the HDFS. 
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Figure 6.1.3: Pig scripts on HDFS. 

 

We are going to create a workflow with the Pig scripts displayed above. As a start, we visit 

the Hue Hadoop GUI, by typing in the browser the Name Node’s IP to the PORT 8888. After 

the login, we press the “Workflows” dropdown menu and we choose “Editors”. In this screen 

we press the “create” button and we actually create an oozie workflow. Initially, we add a 

title and a description in our workflow, and then we drag and drop the Pig icon in the 

workflow editor. There will appear a prompt window that will ask for the path in which the 

pig script is saved, in the HDFS.  

 

Figure 6.1.4: Oozie workflow creation with Hue. 
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After loading all the Pig scripts that we need to run and putting them to the correct order, 

we save the workflow and run it, by pressing the play button. When the workflow starts the 

execution, we will redirect to the screen depicted below. 

 

Figure 6.1.5: Workflow running initial phase. 

 

In this screen we can see the progress of the workflow job execution. The first script is the 

first job to be executed and then the procedure will continue. 

 

Figure 6.1.6: Workflow running prefinished phase 

 

When a job is finished successfully, it is coloured with green. In case of a failure we would 

see red. The execution of the next Pig script is an automated procedure.  
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Figure 6.1.7: Workflow finished with success. 

 

This is the result produced when the workflow has succeeded. The status is success and the 

progress has reached the 100%. We now visit the files produced from the execution of the 

workflow. Firstly, we can see the “/user/hduser/pig/results/end_time/part-m-00000” and 

the same in the directory “start_time”, in order to see the timestamps and derive 

information about the duration of the execution in the current four node Hadoop cluster. 

The files contents are displayed below. 

 

 

Figure 6.1.8: Workflow duration in a four node Hadoop cluster. 

 

From the timestamps recorded during the procedure, we calculate that the workflow 

execution required 17 minutes to be completed, in a four node Hadoop cluster. 

The result produced by the execution of the other two scripts, “main_pig_script_1.pig” and 
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“main_pig_script_2.pig”, is depicted below. 

 

 

Figure 6.1.9: Pig scripts processing results. 

 

These two scripts have processed the Batting.csv file and have produced the above output, 

which lists by year the best player, with player’s ID, in terms of best score (depicted in the 

third column), considering the given input, which in the first script was the eighth column 

and in the second the ninth. 
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6.1.1 Running Map Reduce 

 

In order to compare the duration of a job running in a four node cluster to a job running in a 

three node cluster we will also perform a Map Reduce action. To achieve that combined with 

a print of a timestamp before and after the procedure, so as to calculate the duration of the 

job, we will create a Linux shell script. The script will contain the next lines: 

#!/bin/bash 

date 

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

examples-2.5.2.jar wordcount /user/hduser/thesis_in_plain_text.txt 

/user/hduser/thesis_wordcount_output 

date 

echo "SUCCESS" 

 

The first line indicates that this is a shell script. The “date” command produces a timestamp 

printed in the terminal screen. The hadoop jar command is a built-in example algorithm of 

Map Reduce offered by Apache Hadoop. In this command we specify that we will do a 

wordcount to the file “thesis_in_plain_text.txt” and the output will be saved in the folder 

“thesis_wordcount_output”. The input data (thesis_in_plain_text.txt) is a copy of this master 

thesis in plain text and replicated many times, until the lines reached a million lines. The 

purpose was to produce a huge amount of words, which is difficult to process without 

Hadoop. 

 

Figure 6.1.1.1: Input data for Map Reduce in a four node Hadoop cluster. 

 

The file is uploaded in the HDFS, the same way as the Batting.csv file in the previous 
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subsection. Finally, the last line of the Linux script prints in the terminal screen the word 

“SUCCESS”, indicating that the process has finished. The script is stored with the name 

“run_wordcount.sh” and can be executed by running “. run_wordcount.sh”. 
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Figure 6.1.1.2: Map Reduce job in a four node Hadoop cluster. 

 

In the above figure it is depicted the output from the execution of the Map Reduce job. We 

can see the mapping procedure more analytically with percentage during the action, as it 

requires more time to complete, and the reduce part, which completes very fast. The 

amount of time required for the execution of the job can be found by subtracting the finish 

timestamp, which is displayed above the SUCCESS line in the terminal screen of the figure 

and the start time, which is in the first line. So, the execution time of the Map Reduce job 

was 1 minute and 33 seconds, in a four node Hadoop cluster. 

 

6.2 Evaluation – Results on a three node cluster 

 

In this section we remove a node from the four node Hadoop cluster that we used 

previously, so now we will have a Name Node with two Data Nodes. The node removal 

procedure is explained in the chapter 4, section 4.2. In order to compare the previous results 

with those that are going to be produced, we will use the same input data file (Batting.csv) 

as in the previous section, as well as the same Pig scripts. Following the same method as 

previously we open the Hue’s oozie editor and we find the saved workflow, which includes 

our Pig scripts. We run the workflow and we wait until it is finished. The result will be the 

same as before, but the files in the folders “/user/hduser/pig/results/end_time” and 

“/user/hduser/pig/results/start_time” will contain different timestamps. 
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Figure 6.2.1: Workflow duration in a three node Hadoop cluster. 

 

From the timestamps recorded during the procedure, we calculate that the workflow 

execution required 17 minutes and 46 seconds to be completed, in a three node Hadoop 

cluster, which is 46 seconds more than previously. We can conclude that an extra node in a 

Hadoop cluster, offers velocity except for storage, thanks to its processing power. Of course, 

in order to achieve a remarkable result it is necessary to create a larger scale cluster, but this 

is not inevitable for big companies that will actually need to process great amounts of data 

to offer an application or contract an analysis. 

 

6.2.1 Running Map Reduce 

 

The Map Reduce job will run again in the “thesis_in_plain_text.txt” file, by using the script 

“run_wordcount.sh”, so as to compare the execution time, in the three node Hadoop cluster, 

with the previous one. 
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Figure 6.2.1.1: Map Reduce job in a three node Hadoop cluster. 

 

In the above figure it is depicted the output from the execution of the Map Reduce job in a 

three node Hadoop cluster. The amount of time required for the execution of the job can be 

calculated considering the finish timestamp, which is displayed above the SUCCESS line in 

the terminal screen of the figure and the start time, which is in the first line. So, the 

execution time of the Map Reduce job was 1 minutes and 45 seconds, in a three node 

Hadoop cluster, which is 12 seconds more than in the previous case. A sample of the output 

produced by the word count job is displayed in the next figure. 



68 

 

 

Figure 6.2.1.2: Map Reduce sample output. 

 

The file “thesis_in_plain_text.txt”, on which we run the Map Reduce word count job, is a 

copy of this master thesis, replicated many times until reaching a million lines. That is the 

reason why the words are appeared thousand times. 
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7. Conclusions 

 

From the experiments conducted during the composition of this master thesis, we conclude 

that the Apache Hadoop is a powerful framework for the processing and analysis of huge 

amounts of data. The data varies from scientific data, which could be measurements from 

sensors for any kind of science that needs to analyse occurrences and behaviours, to every 

day data, which could be taxes data for every person of a country per year or even football 

data, which holds the players performance and someone may need to run a statistical 

analysis on that dataset to find the best world player per year, according to a specific filter, 

such as the greatest number of goals.  

There are many components that can be combined with the Hadoop framework and create 

an enriched Hadoop ecosystem, such as Apache Oozie, Pig, Mahout, Hive etc. All these 

components offer great flexibility and usage, in terms of combining different technologies 

with the Big Data concept. For example, Apache Mahout enables the creation and mixture of 

machine learning algorithms and concepts with the Hadoop. Other components, such as 

HBase, enable the integration of the Hadoop Distributed FileSystem with NoSQL (Not only 

SQL) databases. Moreover, the Apache Oozie is a great workflow scheduler that offers the 

ability of running many Hadoop jobs, which could be Pig scripts, Hive queries, Map Reduce 

jobs, etc. Also, the oozie workflows can be stored in the Hadoop Distributed FileSystem and 

reproduce the workflow – experiment in the future, to a larger dataset which may contain 

new measurements added to the previous values. 

The oozie component has been used for the execution of the experiments conducted in the 

previous chapter. The experiments were consisted of some Pig scripts, which analysed a 

large dataset with a statistical purpose. The jobs of the workflow completed in 17 minutes 

and the results stored in the Hadoop Distributed FileSystem. The processing power of the 

Hadoop cluster was empowered by four machines from which the one had the role of the 

Name Node of the cluster and the other three were the Data Nodes.  

In order to prepare a benchmarking, the workflow file, which created in the oozie editor in 

section 6.1, was stored in the Hadoop Distributed FileSystem for later use. According to the 

steps described in the section 4.2, we managed to remove a data node from the four node 

Hadoop cluster, so as to examine the increment of the execution time of the same workflow. 
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By removing the Data Node, the processing power of the cluster is reduced. The workflow 

jobs are executed in a distributed way, by all the Data Nodes simultaneously, so the removal 

of a node could have a significant delay for the execution of a job that will process a file with 

a size of several petabytes. In our case, the decrement of the Hadoop cluster resulted in a 

delay of 46 seconds in a file with a size of several megabytes (~ 6 MB). So, we can conclude 

that big companies and organizations are benefited from the addition of a data node in an 

existing Hadoop cluster, because it uses commodity hardware and offers greater distributed 

processing power.  

As a second experiment we have run a Map Reduce job, in a file with a million lines, in order 

to compare the time required for the word count procedure with a four node cluster and 

then with a three node. The difference was only 12 seconds, but considering that the size of 

the file was only a few kilobytes, this means a lot. Even in a small sized file we can see a 

delay, when removing a node from a Hadoop cluster, which means that the processing of a 

large dataset would be significantly lower. Contradictory, the addition of a node is of great 

importance when companies have to deal with huge amounts of data within a deadline, as 

the procedure will complete a lot quicker.  

The general picture of the Big Data Analytics Systems is that they offer flexibility and the 

ability to process large datasets, by using commodity hardware. Although, smaller 

companies with datasets that do not comprise of files greater than 100 MB, should consider 

to use other technologies/solutions to process their data, as they could be efficient as well. 

The target group of the Big Data Analytics Systems is big companies like Google that deal 

with enormous data files. The reason is that these systems distribute the data, which is 

under processing, to the data nodes and this requires some time initially. This initial delay is 

insignificant when dealing with large datasets, because subsequently the lost time will be 

gained from the parallel processing power of the data nodes. But in case of small datasets, 

the initial delay will be a drawback and maybe other technologies would be more effective 

for the analysis of the data. However, even middle companies, year by year, increase their 

datasets rapidly and in some years the Big Data Analytics Systems will be part of everyday 

life. 
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