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Abstract 
 

This study presents a reliable and easily applicable method for the estimation of 

pair-wise default correlations. In order to achieve our goal we apply the notion of copula 

which simplifies the procedure and allows us to estimate more precisely the dependence 

structure. The appropriate dependence structure is applied on sectors’ default probabilities 

to derive the joint default probabilities. The sectors’ default probabilities are derived 

through the first-passage approach of asset value models. We examine the impact of 

individual default probabilities and dependence structure on joint default probability and 

consequently on default correlation. Finally the implications for a loan portfolio are 

exhibited.  
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I.   INTRODUCTION 
 

Banks play an important role in the economy as intermediaries in the financial 

system. One of the core services that banks provide is the granting of credit. Thus 

their regulation guarantees the healthy operation of the financial system. Among the 

types of regulations exist capital requirements. But regulations also impose important 

restrictions on the workings of banks. Excessive capital requirements restrain credit 

provision needlessly and may have the opposite, than the desired, impacts on the 

function of the financial system. For these reasons an equilibrium point between 

banking supervision and bank’s practices had to be found. 

 Basel II, which has been released from the Basel committee on Banking 

Supervision, brings us more closely towards this target. The instructions that are 

given by Basel II ensure that a bank is able to withstand both expected and 

unexpected losses while simultaneously show respect to good provisioning practices 

and internal control that banks employ. Usually banks determine the required amount 

of capital through a portfolio credit risk model which they use to estimate the loss 

distribution for a specific time horizon. 

Proposed credit risk modeling techniques range from microeconomic models 

(e.g. CreditMetrics) to top down actuarial models (e.g. CreditRisk+). There has been 

extensive research in this area which showed that modeling differences are immaterial 

and so one model can be expressed in terms of the other (see Frey and McNeil 2000).  

However as Koyluoglu [1999] and Gordy [2000] show, even frequently used models 

of portfolio credit risk can vary widely in their estimates of economic capital due to 

parameter inconsistencies.  According to Mingo [2000] such variation would 

naturally incite regulatory capital arbitrage by banking institutions. 

 Among the parameters that have to be estimated, so that loss distribution is 

rightly estimated, are those which concern the dependence structure of a loan-

portfolio. This is due to the fact that we cannot assume independence of default 

events. Cyclical correlation and contagion effects are responsible for the absence of 

independence. Thus, it is important to derive default correlation.  

This study focus on the estimation of sectors’ default correlation. It is an 

attempt which is undertaken for the first time in Greece. An attempt which presents 

special difficulties. First of all there is not any organized primary or secondary market 
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for the issuing and trading of debt. The losses that each bank faces from non-served 

loans most times are not disclosed. But even state organizations do not hold data on 

the loans or other securities that have not been settled. 

 But even if these data existed, we would have to make a number of 

assumptions and ignore some of the properties of default correlation in order to 

extract default correlation. 

The most common practice both in literature and industry that is used for the 

derivation of default correlations, is to apply an asset value model. In asset value 

models default occurs if the value of a firm’s assets falls below a default threshold 

which is given by firm’s liabilities. These asset value models make assumptions about 

the distribution that assets follow in order to extract  default probabilities. Joint 

default probability of two firms, is the probability that both firms’ assets fall below a 

default threshold, the same or different for each firm. This means that joint default 

probability is given by a bivariate distribution. It is common practice in financial 

literature and practice to assume that this distribution is the normal. So the joint 

default probability is determined by linear correlation of assets. Zhou (2001) with the 

application of Bessel functions provides an analytical solution for this case and so he 

derives joint default probability and default correlation.  Thus if we adopt linear 

correlation as dependence measure we also adopt the assumption about normally 

distributed assets. However it has been observed that assets exhibit extreme co-

movements [21]. These extreme co-movements and especially those concerned with 

the lower tail of assets distribution cannot be captured by a normal dependence 

structure. It must be stated that we are particularly interested in the lower tail 

dependence of assets as it is the one that will determine the probability of joint 

defaults and normal dependence does not exhibit tail dependence. Nevertheless, it is 

known that the dependence structure of the joint distribution is captured from copulas 

[12]. Copulas are functions which associate the marginal distributions to the joint and 

can be viewed as a tool that can help us to model more efficiently the real data. In 

particular they help us to separate the margins and their dependence structure. So we 

can assume that one of the margins follows a particular distribution, the other margin 

the same distribution or another else and the dependence structure corresponds to a 

different distribution. This means that copulas are a general tool which can model 

every kind of dependence. For example, bivariate normal distribution corresponds to 

two normal margins with Gaussian copula. Moreover we can extract from copulas 
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dependence measures that can depict even better the underlying dependence structure. 

These dependence measures include tail dependence, rank correlation etc. A further 

advantage of copulas is that once we estimate the appropriate one, it can be applied to 

arbitrary marginal distributions. A very interesting property in our case that we want 

to derive the joint default probability. Moreover, copulas remain the same under 

strictly increasing transformations of the variable of interest. Thus many authors 

restrict themselves to copulas in order to estimate the distribution of losses of a loan 

portfolio. Some of them even propose to use some other dependence measures which 

are derived from copulas, in contrast to those who propose asset correlation as a 

proxy for the default correlation. However we have to state that most models which 

are used for the estimation of loss distribution of a loan portfolio require strictly 

default correlation. This is the appropriate dependence measure for the defaults which 

affects the distribution of loan losses. We also have to state that default correlation is 

necessary for the pricing of credit derivatives.  

In this study we rely on the first-passage approach of asset value models to 

derive the sectoral individual default probabilities. We implement the notion of 

copula in order to model the underlying dependence structure of asset processes. We 

use the copula which fits better the empirical data in order to derive the joint default 

probability of two sectors. Thus, the whole process is reversed. Naturally we would 

like to have the default correlation in order to exact the joint default probability. But 

under this framework joint default probability is determined by assets’ dependence.  

 Once we have derived the individual default probabilities and the joint default 

probability we are in position to estimate default correlations. We shed light on the 

impact that individual default probabilities and different copulas have on the joint 

default probability and default correlation .We proceed further and reveal the 

implications that default correlation has on a loan portfolio. 

 So our study comes to cover a gap in the financial literature and industry of 

our country despite the difficulties that are present. Our results are of particular 

interest for financial institutions that need default correlation in order to compute the 

loss distribution of their loan portfolios, regulators which want to have a view of 

financial institutions’ risk, state organizations which might wish the development of a 

secondary market or to individual firms which may wish to know how their financial 

condition is affected from suppliers or clients. Our findings contribute to the 

disclosure of data that ought to be publicly available and present a method which is 
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relatively easily applicable from every interested part. Moreover the estimation of 

default correlations for the Greek sectors may urge on the establishment of financial 

instruments which at the moment are unknown for the Greek reality such as CDOs.   

 Thus this study can help in the attempts for a more competitive financial 

system, more competitive procedures of raising capital and consequently for a more 

competitive Greek economy.  

  

  The remainder of the study has a cyclical structure: Section 2 introduces the 

basic definitions that are concerned with a loan portfolio, default correlation, its 

importance, the problems that posses and the main attempts to model it. Section 3 

introduces the asset value models and compares the different approaches that have 

been developed into their framework. Section 4 is devoted to copulas and their 

families, parameter estimation and the selection of the appropriate one. Section 5 after 

presenting the procedure that was followed and the intermediate findings, returns to 

the notion of default correlation. 

 

 

 II.LOAN PORTFOLIO AND DEFAULT CORRELATION 
 

Consider a portfolio of N loans subject to default. There are essentially two 

possible states a firm can be in after this time period, default or non-default. Thus we 

can model the state of each company i at our time horizon T as a Bernoulli random 

variable Χi, a so called “default indicator” defined by 

  { T at timedefault at  is i  firm if     1
else   0=iX  

and  pi shall denote the corresponding default probability (DP), i.e. 

 pi := P [Χi =1] for i = 1,2,..N. 

In the event of default, the lender receives only a percentage of the total debt. 

This percentage, called the recovery rate r, depends on the seniority of the loan. The 

total debt will be called exposure at default (EAD).  

The loss of any obligor is then defined by a loss variable :                      

   Li = EADi*(1-ri )* Xi  (1). 
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Now in this setting is very natural to define the expected loss (EL) of any 

costumer as the expectation of its corresponding loss variable L, namely  

ELi= E [Li] =EADi *(1-ri) * E[Xi] (2). 

 The EL can be viewed as an insurance or loss reserve in order for a financial 

institution to cover its losses. But holding capital as a cushion against expected losses 

is not enough. In fact the financial institution should also hold money for covering 

unexpected losses from the EL. This quantity which is called unexpected loss [UL] is 

defined as  

UL = ]**[)( iiii XLGDEADVarLVar =  (3) 

Without loss  of generality let us assume that EADi = EAD and ri = r for i=1,2,…N. 

The portfolio loss is then defined as the random variable 

 LPF = ∑
=

N

i

iL
1

=∑
=

N

i 1
EAD *(1-r )* Xi = EAD *(1-r )*  ∑

=

N

i 1
Xi. (4)  

Analogously we have ELPF = ∑
=

N

i
iEL

1
=. EAD *(1-r )* ∑

=

N

i
iXE

1
][  (5). 

In the case of the UL, we have 

 ULp = )(
1
∑
=

N

i
iXVar   =  ]*)1(*[∑ − iXrEADVar  = EAD*(1-r )*  )(

1
∑
=

N

i

iXVar  (6) 

       

However, defining the UL of a portfolio as the risk capital saved for cases of 

financial distress is not the best choice, because there might be a significant likelihood 

that losses will exceed the portfolio’s EL by more than one standard deviation of the 

portfolio loss. Therefore one seeks other ways to quantify risk capital, hereby taking a 

target level of statistical confidence into account. The most common way to quantify 

risk capital is the concept of economic capital (EC). For a prescribed level of 

confidence α it is defined as the α-quantile of the portfolio loss LPF minus the ELPF . 

Hence the joint default probability determines the entire risk of our portfolio. 

For example suppose we know that each of the loans in the portfolio has a 10% 

probability of default over the next five years. It could be that all loans in the portfolio 

always default together. So there is 10% probability that all loans in the portfolio will 

default and 90% probability that none of them will default. This is an example of 

“perfect” positive default correlation. At the other extreme it could be the case that 

loans in the portfolio always default separately, which means that if one of them 
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defaults, no other defaults. This would be an example of perfect negative correlation. 

So there is 100% probability that one and only one (if any) loan in the portfolio will 

default. It is obvious that the former portfolio is much more risky than the latter, even 

though the default probabilities of bonds in the portfolios are the same. The difference 

in risk profiles, which is only due to default correlation, has profound implications to 

investors, lenders, rating agencies and regulators. Debt backed by the former portfolio 

should bear a higher premium for credit risk and be rated lower. If this is a regulated 

entity, it should be required to have more capital. 

In general while examining the joint default probability of two firms it is 

reasonable that when one entity defaults, the other entity may have a higher likelihood 

of defaulting. Perhaps both firms are experiencing pressures from the general 

economy, their region or their industry. It is obvious from the previous example that 

default correlation is very important in understanding and predicting the behavior of 

credit portfolios. It directly affects the profile of investors in credit risky assets and is 

therefore important to the creditors and regulators of these investors. Default 

correlation also has implications for industrial companies that expose themselves in 

the credit risk of their suppliers and customers through the normal course of business. 

Thus we always need to take into account default correlation. Default 

correlation is the phenomenon that one obligor defaulting on its debt is affected by 

whether or not another obligor has defaulted on its debts. 

 

We define default correlation Corr(X1,X2) as  

Corr(X1,X2)=
][][

][*][]*[
21

2121

XVarXVar
XEXEXXE − =

2/1
22

2/1
11

2121

)]}1(1[*)1({*)]}1(1[*)1({
)1(*)1()11(
=−==−=

==−==
XPXPXPXP

XPXPandXXP    ( 7) 

 The equation holds because X1 and X2 are Bernoulli random variables and so we 

have  E(Xi)= P (Xi=1), Var(Xi)= P (Xi=1)[1- P (Xi=1)] and E (X1 * X2) = P (X1 =1 

and X2 =1). 

 

Default correlation analysis plays a critical role in determining joint default 

probability-the probability of multiple defaults. From equation (7) we have 
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 P (X1=1 and X2=1) = E(X1* X2)= E(X1)* E(X2) + Corr(X1, X2) 

)()( 21 XVarXVar .  ( 8 ) 

We must have in mind that the joint default probability of  two firms is   

P (X1=1 and X2=1) = P (X1=1)*P(X2=1) 

 if and only if we assume independence of default events. 

 We discern three cases 

● If  Corr( X1, X2) = 0 the third term it vanishes and there is independence of  

    defaults 

● If   Corr( X1, X2) > 0  the two counterparties are interrelated in the sense   

    that the default of one party increases the likelihood that the other will  

    default too 

●  If   Corr( X1, X2) < 0 we can treat the two counterparties as a hedge of the  

    ther since if one of them defaults the possibility that the other will default  

    is decreased.  

 

Theoretically correlation can range from -1 to 1. But for binomial events like 

default, the range of possible default correlations is dictated by the default 

probabilities of the two credits. If both credits do not have the same default 

probability, they cannot have perfect correlation. Only if the default probability of two 

credits were 50% would it be mathematically possible for default correlation to range 

fully from -1 to +1. In the case that the default probabilities were 20% default 

correlation would be equal to one if and only if the joint default probability was 20%. 

If joint default probability was zero, then default correlation would be equal to -0.25.  

Thus default correlation would have a range of possible values [-0.25, 1] since the 

probability of any event cannot take negative values. 

   The number of the correlations that we have to estimate in a loan portfolio is     

(N-1)N/2 . An impossible task if N ∞→ , as it happens with a bank’s portfolio. So 

emerges naturally the idea to group the loans having as criterion the creditworthiness 

of the customer. This is possible through the internal ratings of banks or the publicly 

available ratings from the rating agencies. Now the default correlations that we have 

to estimate are reduced dramatically. 
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With enough data and the strong assumption that default probability is 

constant in each rating class not only for its members but also from period to period 

we can calculate historic default correlations. 

To compute say the default correlation of two B-rated companies over one 

year, we set P(A) and P(B) equal to the historic average one year default rate for B-

rated companies. We compute P(A and B) by first counting the number of companies 

rated B at the beginning of a year that subsequently defaulted over the particular year. 

We then calculate all possible pairs of such defaulting B-rated companies. If X is the 

number of B-rated companies defaulting in a year, the possible pairs are:
2

)1(* −XX . 

We next calculate all possible pairs of B-rated companies whether or not they default, 

using the same formula 
2

)1(* −YY  where Y is the number of B-rated companies 

available to default. The joint default probability of B-rated companies in a particular 

year is:
2/)]1(*[
2/)]1(*[

−
−

YY
XX .  

The average of this statistic is taken over available years to determine P(A and B). 

However the assumption of  constant default probability turns out to be 

unsupportable. In fact default probabilities for different rating categories change from 

year to year. Varying default probability, a simple and plausible alternative 

explanation of fluctuating default rates throws doubt to the empirical default 

correlations. 

Analysts’ of Credit Suisse First Boston (CSFB) take into account this problem 

by assuming zero default correlation, while they allow default probability to fluctuate. 

In particular in CreditRisk+ the default indicator Χi of each firm i is taken 

conditionally independent on its Bernoulli parameter pi ,where  pi itself is random and 

described by a factor model. That is (Χi | p1… pn )   independent ~Ber (pi ). It is 

assumed that there exist K risk factors R1, R2,… ,RK which describe the variability of 

the default probabilities pi. These factors are taken to be independent Gamma 

distributed.           

The link between the (pi ) and the ( Rj) is given by the following factor model: 

pi = ∑
=

K

j
jiji Rap

1
, i=1,2,…N and (Rj)j~Gam(1,σ 2

j ), ∑
=

∀=
K

j
ij ia

1
  1 . 
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It is clear that the factor loadings aij,measure the sensitivity of obligor i to the 

risk Rj. In order to perfom a sector analysis, the authors of CreditRisk+ propose 

apportioning an obligor’ s systematic risk across a mixture of independent sectors. 

These sectors could be industry, regional sectors or rating groups. However such an 

approach is difficult to realize in practice. Moreover the correct modeling of 

correlations of default risk between sectors is very important for examining the effects 

of diversification on active portfolio management.  

The extension of CreditRisk+ model by examining correlations between 

industries and the derivation of a formula for the unexpected loss and risk 

contributions has been done with the method of Bürgisser et al.[1998] 

Particularly they defined the expected and unexpected loss for a sector as 

follows: EL = ∑
A

AA vp .  (9)         and  

UL = σ2 EL2 +∑
A

AA vp 2
.  (10) 

Futrher on they derived the unexpected loss for N industry sectors. 

UL2 = ∑∑ +Ε
lk

kk
K

k ELELCorL
.

         ,
22    σσσ κκ  +∑

A
AA vp 2

.   (11) 

Where σ2 the relative default variance of the equivalent sector, Ap the default 

probability of the portfolio and Av  the analogue exposure. 

The first two sums of equation (11) represent the risk due to systematic 

changes in the industries, reflected by the relative default variances, and the 

correlations between them. The third sum is the risk contribution due to statistical 

nature of default events, which is important for small portfolios or for cases with low 

systematic risk. 

The relative default variance σ2 is determined by the following equation: 

    σ2 ΕL2 = ∑∑ +Ε
lk

k
K

k ELELCorL
.

         
22    ),( σσγγσ κκκ . (12)  

The relative default variance σ2 is used in the Gamma-distribution in 

CreditRisk+ in order to calculate the portfolio loss distribution and the overall 

economic capital. 

The correlation between sectors –if positive as usually observed in the 

economy-increases the systematic risk contribution and becomes very important when 

working with many sectors. From now on, when refer to sector we mean industry 
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sector. From a risk management perspective, the definition of industry sectors allows 

to diversify credit risk. The degree to which this diversification is successful depends 

on the strength of correlation between the sectors. Moreover the correlations between 

sectors PDs crucially influence the CreditVaR and hence the economic capital. 

As Bürgisser et al recommend in order to estimate the risk parameters –the 

relative default variance and the correlation of default events between sectors-one can 

choose between three approaches (1) using industry specific time series of historically 

observed default events,(2)using asset values of firms to derive asset correlations, 

which are then linked to the relevant default correlations through the Merton’s model 

and (3)using a factor model that relates the relative number of default events to 

macro-economic drivers 

   When we estimate default correlations from historical data there are not 

enough time-series data available to accurately estimate them. The estimation of 

cross-correlations is difficult due to the “curse of dimensionality”. If the length T of 

the available time series is comparable to the number K of industry sectors, the 

number of estimated correlation coefficients is of the same order as the number of 

input parameters with the result of large estimation errors. Rosenow et al present 

evidence that the PD correlations for K=20 industry sectors are well captured by a 

one-factor model. However, even for the one-factor model the parameter estimation is 

subject to large statistical fluctuations and gives rise to a considerable uncertainty in 

the CreditVaR. Moreover, we cannot be sure that past history reflects the current 

reality. Not only default probability, but also default correlation changes through time. 

Last but not least in order to model default we need firm-specific information.  

The problem when using an econometric model of firm value is that it depends 

on how well the econometric model captures firm’s potential market value changes. 

We are faced always with the danger that we have omitted an important factor. 

Moreover we cannot be sure that the sensitivity to a factor is stable through time. 

Additionally a factor can become significant while it had not been in the past or 

another may not be important any more.   

At the other hand, asset value models provide us with a stable through time 

method that explains default and they use firm specific information. They also provide 

us with an intuitive perspective about the causes of default. In order to model default 

correlation in this study we will be based on asset value models.  

 



 13

III. ASSET VALUE MODELS 
In 1974, Merton wrote a seminal paper that explained how the then recently 

presented Black-Scholes model could be applied to the pricing of corporate debt. 

Many extensions of this model followed. This family of models is sometimes referred 

to as the family of structural models of corporate bond prices, and views prices of 

corporate debt and equity as portfolios of options on the fundamental value or asset 

value of the firm. Extensions of the original model relate to e.g. sub-ordination 

arrangements, indenture provisions and default before maturity (Black and Cox 1976), 

 stochastic interest rates ( Longstaf and Schwartz 1995) or an optimally chosen capital 

structure (e.g. Leland 1994), to name but a few. 

Structural models have found applications in risk management, in central 

banks, or in pricing. 

 

 

 

Classical approach 

On his seminal work   Merton R. makes the following assumptions in order to 

make use of the Black-Scholes pricing model in valuing corporate securities. 

1) There are no transactions costs, taxes or problems with indivisibilities of       

assets. 

2) There are a sufficient number of investors with comparable wealth levels 

so that each investor believes that he can buy and sell as much of an asset 

as he wants at the market price. 

3) There exists an exchange market for borrowing and lending at the same 

rate of interest. 

4) Short-sales of all assets, with full use of the proceeds, are allowed. 

5) Trading in assets takes place continuously in time. 

6) The Modigliani-Miller theorem that the value of the firm is invariant to its 

capital structure obtains. 

7) The Term-structure is “flat” and known with certainty i.e., the price of a 

riskless discount bond which promises a payment of one dollar at time τ in 

the future is P(τ) = exp[-rτ] where r is the (instantaneous) riskless rate of 

interest,  the same for all time. 
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To calculate the probability of default, we make assumptions about the 

distribution of assets at debt maturity under the physical probability P. The standard 

model for the evolution of asset prices over time is geometric Brownian motion. 

t
t

t dWdt
V
dV σμ += , V0 > 0.   

Where μ ℜ∈  is a drift parameter, σ >0 is a volatility parameter, and W is a standard 

Brownian motion. Setting m= μ-1/2 σ2 , Ito’ s lemma implies that Vt=V0emt+σWt . 

Since WT is normally distributed with mean zero and variance T , default probabilities 

P(T) are given by  

P( T )= P( VT <K )= P(σWT <logL –mT )= ⎟
⎠

⎞
⎜
⎝

⎛
Τ
−

Φ
σ

mTLlog   (13) 

Where L = K/V0 is the initial leverage ratio and Φ is the standard normal distribution 

function. 

Hence the default time is a discrete random variable given by 

 

{ KV if         
else if         

 T <
∞= Tτ   

 

If a firm goes default the limited liability feature of equity means that the 

equity holders have the right but not the obligation, to pay off the debt holders and 

take over the remaining assets of a firm. That is the debt holders essentially own the 

firm until their liabilities are paid off in full by the equity holders. Thus equity can be 

viewed as a call option on the firm’s assets with strike price equal to the book value of 

the firm’s debts (payable at time T). 

Assuming that the firm can neither repurchase shares nor issue new senior 

debt, we discern the following situations: 

1) if the asset value VT exceeds or equals the face value K of the bonds, the 

bond holders will receive their promised payment K and the shareholders will get the 

remaining VT –K. 

2) if the asset value   VT is less than K, the ownership of the firm will be 

transferred to the bondholders, who lose the amount K- VT . Equity is worthless 
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because of limited liability. Summarizing, the value of the bond issue BT
T  at time T is 

given by  

BT
T  =min (K, VT ) =K- max (0,K- VT ). 

This payoff is equivalent to that of a portfolio composed of a default free-loan 

with face value K maturing at T and a short European put position on the assets of the 

firm with strike K and maturity T. 

The value of the equity ET at time T is given by ET = max(0, VT – K), 

which is equivalent to the payoff of a European call option on the assets of the firm 

with strike K and maturity T. 

Pricing equity and credit risky debt reducing to pricing European options. We 

consider the classical Black-Scholes setting. The financial market is frictionless, 

trading takes place continuously in time risk-free interest rates r>0 are constant and 

firm assets follow geometric Brownian motion. Also, the value of the firm is a traded 

asset. The equity value is given by the Black-Scholes call option formula C: 

E0 = C ( σ,Τ,Κ,r, V0 ) = V0 Φ ( d+) – e-rT K Φ ( d-)   (14) ,  

where d ± =
Τ

−Τ±

σ

σ Lr log)
2
1( 2

  

We note that the equity pricing function is monotone in firm volatility σ: equity 

holders always benefit from an increase in firm volatility. 

 While riskfree zero coupon bond prices are just kept K exp (-rT) with T being 

the bond maturity, the value of the corresponding credit-risky bonds is  

B T
0 = K exp (-rT ) – P ( σ,Τ,Κ,r, V0 ) (15) 

where P is the the Black-Scholes vanilla put option formula. 

 The credit spread is the difference between the yield on a defaultable bond and 

the yield an otherwise equivalent default-free zero bond. It gives the excess return 

demanded by bond investors to bear the potential default losses. Since the yield y(t,T) 

on a bond with a price b(t,T) satisfies b(t,T) = exp(-y (t,T)(T-t)), we have for the 

credit spread S(t,T) at time t, S(t,T) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

− T
t

T
t

B
B

tT
log1  where T

tB  is the price of a 

default-free bond maturing at T. The term structure of credit spreads is the schedule of 

S(t,T) against T, holding t fixed.  
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In the classical approach, a firm defaults if its value is below the face value of 

the debt at maturity.Thus Ai =
i

i
ii mVV

σ
−)/log( 01 < Bi = 

i

ii mL
σ
−log  where Ai is the 

standardized asset return and Bi is the standardized face value of the debt, which is 

called the distance to default. The vector (A1 … An ) is Gaussian with mean vector 

zero and covariance matrix Σ =pij , pij =Cov (W i
1  ,W j

1 ) being the asset correlation. 

We obtain for the joint probability of firm 1 to default at time T1 (the fixed debt 

maturity)and firm 2 to default at T2 . 

P(T1, T2 ) = P(V1
iT <K1,V 2

2t < K2) = ⎟
⎠

⎞
⎜
⎝

⎛
Τ
−

Τ
−

Φ
22

222

11

111
2

log,log,
σσ

TmLTmLp   (16) 

 where Li= K1/ V i
0  and Φ2 = (r,.,.) is the bivariate standard normal distribution 

function with linear correlation parameter |r| <1 given by 

dxdy
r

yxrxy
r

bar
ba

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−

−
=Φ ∫∫ ∞−∞− )1(2

2exp
12
1),,( 2

22

2
2

π
   (17) 

It is important to note that the industry credit portfolio models provided by 

Moody’s KMV (“PortfolioManager”) and RiskMetrics (“CreditMetrics”) which 

belong in the category of asset-value models particularly adopt the classical approach 

. Their mathematical structure can briefly described in the following way. Let the state 

of the economy be described by a random vector X = (X1,…, Xm) with m<< n and 

define the conditional default probability pi (X) = E[Yi|X] = P[Yi=1|X]. Then Y is 

called a Bernoulli mixture model with factor vector X , if conditionally on X , the Yi 

are independent Bernoulli random variables with success probability pi (X). We 

introduce the multifactor linear model iii
i ZbXaW +′=1  for asset returns. Here X is 

normal with zero mean vector and covariance matrix Σ , the Zi are independent and 

standard normal, αi = (αi1 ,…, αim ) is a vector of constant factor weights, and bi is a 

constant as well. 
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First-passage approach 

 

In the classical approach, firm value can dwindle to almost nothing without 

triggering default. This is unfavourable to bondholders. Bond indenture provisions 

often include safety covenants that give bond investors the right to reorganize a firm if 

its value falls bellow a given barrier. Suppose the default barrier D is a constant 

valued in ( 0, V0 ). Then the default time τ is a continuous random variable valued in 

(0,∞] given by τ = inf { t >0: VT < D}.The default probabilities are calculated as 

P( T )= P( MT <D )= P[mins≤t(ms+σWs )<log(d/Vo )]    (18) 

where M is the historical low of firm values Mt = mins≤t Vs  

 

Since the distribution of the historical low of an arithmetic Brownian motion is 

inverse Gaussian, we have 

P(T) = ⎟
⎠

⎞
⎜
⎝

⎛
Τ
+

Φ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠

⎞
⎜
⎝

⎛
Τ
−

Φ
σσ

σ mTVD
V
DmTVD o

m

o

o )/log()/log(
2/2

   (19) 

Assuming that the firm can neither repurchase shares nor issue new senior 

debt, we discern the following situations: 

1)if the historical low of firm  value MT exceeds or equals the fefault point D, 

the bond holders will receive their promised payment K and the shareholders will get 

the remaining VT –K. 

2) if   MT is less than D, the firm defaults. In this case the firm stops 

operating,bond investors take over its assets D and equity investors receive nothing.  

The value B of debt is given by  B(V,T) = min (V,D) while equity is equal to 

max (V-d,0). Thus in this setting pricing a firm’s securities is reduced to European 

style barrier options formula, taking as granted that the default point is constant.   

We must make the important remark that the above analysis took as granted 

that default barrier D is set by debtholders. However  in the model of Leland and Toft 

the decision to default is made by the managers who act to maximize the value of 

equity. At each moment equity holders are faced with the question if it is worth 

meeting the promised payments. If the asset value exceeds the default boundary, the 

firm will continue to meet debt payments even if asset value is less than debt principal 

value and even if the cash flows are insufficient for debt service. If the asset value lies 

below the default boundary the firm defaults. If the default barrier is endogenously 
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determined it will affect the equity value. So in such a setting the MM theorem does 

not hold.     

  In the first passage approach, a firm defaults if its value falls below the default 

barrier Di before maturity. Thus Ai =mins≤1(mis+σiW i
s ) < Bi =log(Di/V i

0 ), where Ai is 

the running minimum log-value of firm i at time 1 and Bi is the standardized default 

barrier. The vector (A1 … An ) is inverse Gaussian with mean vector zero and 

covariance matrix Σ =pij  pij =Cov (W i
1  ,W j

1 ) being the asset correlation. 

Letting M i
t = mins≤tV i

s  be the running minimum value of firm i at time t, we get for 

the joint default probability of firm 1 to default before T1 and the firm 2 to default 

before T2   P(T1, T2 ) = P(M1
iT <D1,M 2

2t < D2) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ 2

0

2

1
0

1
212 log,log;,,

V
D

V
DTTp (20) 

where Di is the constant default barrier of firm i and holding x,y≤0 fixed, Ψ2 

(r;.,.;x,y)is the bivariate inverse Gaussian distribution function with correlation r.This 

function is given in closed form in Zhou.(2001) 

  

 

Estimation techniques 

 
The direct procedure 

The first attempt at implementing structural models on corporate bonds 

was conducted by Jones, Mason, and Rosenfeld (1984) who suggested the following 

method:  

First, estimate the asset value (V ) as the sum of the value of equity (E), the 

observed value of traded debt and the estimated value of non-traded debt (assuming 

that the book to market ratio of traded and non-traded debt is the same). The volatility 

of the asset value is then calculated directly from the returns of the estimated asset 

value. They also proposed refining this by using the following relationship (derived 

from the equity pricing equation FE using Ito’s lemma): 

V
F

E
V E

VE ∂
∂

= σσ  (21) 

Note that here, FE depends on the particular structural model to be estimated, 
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of course. An equity volatility is estimated from historical equity returns, and a second 

estimate of the asset volatility is obtained by plugging this and the first-pass estimate 

of the asset value into this equation. 

The essential feature is that the asset value is estimated by a  calculation based 

on book values and some observed market values of components of the total 

liabilities. Note that this has no statistical basis, and that it does not involve the 

assumptions of the model. Although possibly a reasonable educated guess, there is no 

reason to expect that this method will yield particularly reliable estimates of asset 

values, asset value volatilities, or to predict bond prices well. 

 

 

The calibration procedure 

The most common approach to implementing structural models to date, 

sometimes termed `calibration' has been to solve a set of two equations relating the 

observed price of equity and estimated (i.e. usually historical) equity volatility to asset 

value and asset value volatility (this method was first used in the context of deposit 

insurance by Ronn and Verma 1986). The equations used for this are the option-

pricing equation describing the value of equity as an option on the underlying asset 

value (FE), and the equation describing the relationship between equity volatility and 

asset value volatility derived from the equity pricing equation via Ito's lemma. 

(22) 

Once the equity-implied asset value and asset value volatility have been 

obtained,we can use them to estimate the default probability etc. This approach is 

common in the commercial world see e.g.  KMV 

 

 We have to state that both approaches can be used to translate a time seies of 

equity values into a time series of asset values. So we can estimate asset correlation. 
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Comparison of the two approaches 
              

 Although the two approaches  belong to the same category of models, they 

have some important differences that must be taken into account. As Zhou (2001) 

comments: 

1) By ignoring the possibility of early default, the Merton approach 

underestimates both the probability of default of a single party and 

the probability of joint default. 

2) The Merton-type approach as used by the financial industry is 

inconsistent for multiple horizons. For example to calculate two-

year default correlations, the approach does not allow firms to 

default in the first year.The first-passage approach avoids this 

inconsistency. 

3) The likelihood of early default increases rapidly with time horizon. 

For this reason, the Merton approach is mainly used by the financial 

industry to estimate default correlations or default probabilities over 

a one year horizon.The first-passage approach can be used to 

estimate them over any horizon. 

However both models, classical and first passage posses some of the same 

problems. In particular they don’t allow for contagion effects whose influence is very 

important now that the markets are integrated more than ever before. Moreover 

defaults are predictable meaning that they are not surprise events any more. This 

implies that investors would not demand a default-premium for short-term debt, 

which is not plausible and also at odds with empirical observations. Furthermore 

default correlations for non-tradable firms cannot be derived under these models, 

because a prerequisite for this is the ability to observe market values. These flaws can 

be faced from reduced –form models. However these models, although good enough 

for modeling credit spreads, provide us with no accurate estimations of default 

correlations. The results they generate, when compared with the historical default 

correlations prove this fact. Moreover, the formulas that reduced form models provide 

don’t always have a closed form solution. 

 A promising relatively new approach, though not tested much, is given from 

incomplete information models. However both reduced –form and incomplete 
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information models require for their implementation liquid debt markets so that credit 

spreads or credit default swap spreads are available. Unfortunately, this is far from 

reality for Greece.  

Another disadvantage of asset value models as they have been presented in 

this study until now is the assumption of normally distributed assets. 

 

 

A common fallacy 
In Finance dominates the assumption of normality. Even the term asset 

correlation proves this. The term asset correlation refers to the classical linear 

correlation. So it will be useful to delve into the properties of this particular 

dependence measure. 

 Let (X,Y)T be a vector of random variables with nonzero finite variances. The linear 

correlation coefficient for  (X,Y)T is 

p (X,Y) =
)()(

),(

YVarXVar

YXCov  , (23) 

where Cov(X,Y) = E(XY)-E(X)E(Y) is the covariance of (X,Y)T and  Var(X) and 

Var(Y) are the variances of X and Y. 

Linear correlation is a measure of linear dependence. In the case of perfect linear 

dependence, i.e. Y=αX+β almost surely for α ℜ∈ \{0},β  ℜ∈ , we have 

|p(X,Y)|=1.More important is that the converse also holds. Otherwise -1<p(X,Y)<1. 

Linear correlation is invariant under strictly increasing linear transformations, 

and is easily manipulated under linear operations. Linear correlation is a popular but 

also misunderstood measure of dependence. The popularity of linear correlation stems 

from the ease with which it can be calculated and it is a natural scalar measure of 

dependence in elliptical distributions. However most random variables are not jointly 

elliptically distributed and using linear correlation as a measure of dependence in such 

situations might prove very misleading. 

 

Desired properties of dependence measures.(as they are given in Nelsen [25] )  

A measure of dependence, like linear correlation, summarizes the dependence 

structure of two random variables in a single number. We consider the properties that 

would like to have from this measure. Let δ(.,.) be a dependence measure which 
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assigns a real number to any pair of real valued random variables X and Y. Ideally we 

desire the following properties: 

1) δ(X,Y) = δ(Y,X) symmetry 

2)  -1≤ δ(X,Y)  ≤ 1     normalisation 

3) δ(X,Y)=1  comonotonic   δ(X,Y)= -1 countermonotonic 

4) For T: ℜ→ℜ strictly monotonic on the range of X: 

δ(Τ((Χ),Υ)= { increasing Τ   ),(
decreasing  Τ   ),(

ΥΧ
ΥΧ−

δ
δ  

Linear correlation fulfils properties 1, 2 only.Rank correlation also fulfils 3 and 4 if 

X,Y are continuous.These obviously represent a selection and the list could be altered 

or extended in a various ways. 

Let X and Y be random variables with distribution functions F1and  F2 and 

joint distribution function F.Spearman’s rank correlation is given by: 

ρs(Χ,Υ) = ρs(F1 (Χ), F2 (Υ))  (24),       where ρ is the usual linear correlation. 

  

  Let (X1, Y1 ) and (X2, Y2 ) be two independent pairs of random variables from 

F, then Kendall’s rank correlation is given by 

ρτ(Χ,Υ) =P [(X1-X2) (Y1-Y2 )>0] - P [(X1-X2) (Y1-Y2 )<0]   (25) 

The relationship that connects linear correlation and rank correlation is the 

following: : τ = 2/π * arcsin( p) ⇔ p = sin (τ * π/2)   ( 26 ) 

 The assumption of normally distributed assets can be removed in the 

framework of asset value models too. In fact we can introduce a more general 

multivariate normal mixture model for the asset returns W, which accommodate a 

wide range of more realistic distributions, such as the t-distribution. For some 

independent random variable U, we set  

W i
1 =ci (U)+d(U)( ia′ Χ +bi Zi),          where ci : ℜ→ℜ ,d : ),0( ∞→ℜ .  

The distribution of the vector (W1,… Wn) depends on the the choices for ci,d and the 

distribution of U.  

 Suppose Ci(u) and d(u) = uv /  for some v >0 and U~χ2 (ν).In this case the 

factor vector (W1,… Wn) is a multivariate t-distributed with zero mean vector, 

covariance matrix 
2−v

v Σ  and ν >2 degrees of freedom. It is obvious that the joint  

default probabilities under these assumption will be t-distributed. 
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However the assumptions about the marginal distributions don’t solve the 

dependence structure that the joint distribution exhibits, as it could be different from 

the margins.  

  For example Roy Mashal and Asaaf Zeevi use a t-dependence model which 

can a) detect whether the presence of extreme co-movements is statistically 

significant, while concurrently indicating the extent of this extremal dependence via 

the DoF parameter and b) test the validity of the Gaussian dependence structure. The 

main idea that underlies their testing procedure may be described informally as 

follows. They set the null hypothesis to correspond to some fixed value of the DoF 

parameter (vo ) in the t-dependence structure, while this is a free parameter in the 

alternative hypothesis. They vary the null parameter (vo ) in order to ascertain the 

range of values of the DoF which cannot be rejected, based on the corresponding p-

values test.Since the Gaussian dependence structure is nested within the t-family 

(DoF=∞)they use p-values obtained for arbitrary large values of  vo as a proxy that 

indicates whether a Gaussian dependence structure is likely to be supported on the 

basis of the observed empirical asset co-movements. Recall that the multivariate t-

distribution is a generalization of the multivariate Normal in the sense that the normal 

distribution can be considered as a t-distribution with infinite degrees of freedom.   

 Their findings show that asset returns exhibit extreme co-movements that 

cannot be captured by normal dependence structure and thus rendering t-dependence 

structure more appropriate for modeling their dependence. It is worthwhile to stress 

that they make no assumption about the distribution of the margins.   

 Thus it will be exciting to make ourselves common with the notion of copula 

which refers exclusively to the dependence structure without having to make any 

assumption about the marginal distributions.  

 

 

 

. 
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IV.   COPULAS 
 

Definition:A function C:[0,1]n → [0,1] is a n-dimensional copula if it satisfies 

the following properties: 

1) For all ui ∈[0,1], C (1,….,1, ui,1,…,1)= ui . 

2) For all u ∈  [0,1]N, C(u1,…., uN) = 0 if at least one of the coordinates ui equals zero. 

3) C is grounded and N-increasing, ie, the C-measure of every box whose vertices lie 

in [0,1]N is non-negative. 

 

A copula is a function that links univariate marginals to their joint multivariate 

distribution.If  F1,… Fn, are univariate distributions functions, C (F1(x1), …Fi(xi)… 

FN(xN)) is a multivatiate distribution function with margins F1,… Fn because ui = 

Fi(xi) is a uniform random variable. Copulas are then an adapted tool to construct 

multivariate distributions. Sklar established also the opposite which is even more 

important and is used in all applications of copulas.  

 

Sklar’s Theorem: Let F be a N-dimensional distribution function with continuous 

margins F1,… FN. Then F has a unique copula representation: F(x1, …xi… xN) =          

C (F1(x1), …Fi(xi)… FN(xN)). (27) 

From Sklar’s theorem we see that for continuous multivariate distribution 

functions, the univariate margins and the multivariate dependence structure can be 

separated and the dependence structure can be represented by a copula. This theorem 

is very important, because it provides a way to analyse the dependence structure of 

multivariate distributions without studying marginal distributions. As a direct 

consequence of Sklar’s theorem copula properties are invariant under strictly 

increasing transformations of the underlying random variables. 

 

       Let F be a n N-dimensional distribution function with continuous margins F1,… 

FN, and copula C. Then for any u in [0,1]N ,C(u1, … uN)=H(F1
-1(x1), … ,F 1−

N (xN)). (28) 

For example let us have a bivariate distribution function H with continuous margins 

F1, F2. Then we have C (x,y) = H ( F 1
1
− (x), F 1

2
− (y)).With this copula new bivariate 

distributions with arbitrary margins say K and L can be constructed H’(u,v) =           

C( K(x), L(y)).  
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Copula invariance theorem:Let (X1, …Xn… XN)T be a vector of continuous random 

variables with copula C. If (a1, …an… aN) are strictly increasing on RanX1, 

…RanXn… RanXN respectively then also  (a1(X1), … an (Xn)… aN (XN))T has copula 

C. 

A very interesting property that stems from copula is tail dependence. It is 

related to the amount of dependence in the upper-right-quadrant tail or lower-left-

quadrant tail of a bivariate distribution.It is a concept that is relevant for the study of 

dependence between extreme values. 

 Let (X,Y)T be a vector of continuous random variables with marginal 

distribution functions F and G. The coefficient of upper tail dependence dependence 

of  (X,Y)T is  : limu→1P{Y>G-1(u)|X>F-1(u)}=λU  (29) 

provided that the limit λU ∈[0,1] exists. If λU ∈(0,1] , X and Y are said to be 

asymptotically dependent in the upper tail; if λU =0 X and Y are said to be 

asymptotically independent in the upper tail.  

If a bivariate copula C is such that 

 limu→1(1-2u+C(u,u))/(1-u)= )=λU (30)     exists, 

then C has upper tail dependence if λU ∈[0,1] and upper tai independence if λU. = 0. 

The concept of lower tail dependence can be defined in a similar way. 

If the limit limu→0C(u,u)/u=λL  (32)  exists,then C has lower tail dependence if λL 

∈(0,1] and lower tail independence if λL =0. 

 

 

                Copula representation of default dependence 
 

Copulas are a powerful and very useful tool for measuring default dependence. 

As Giesecke (2004) states if we assume that Hi(t,Di)is continuous in t and let Ji = Hi
-1 

(.,Di) denote its generalized inverse the copula Cτ of the default times is for all ui 

]1,0[∈ given by: Cτ (u1,…, un)= M
uJuJ nC )(),...,( 111  (u1,…, un)   (33). 

Given the marginal default probabilities iF0 ( T ) = Hi(T,Di), the default 

dependence structure Cτ is given by the copula CM of the historical asset low. This 

means that the statistical properties of  CM determine the likelihood of joint defaults, 
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and in particular the tail of the aggregate default loss distribution, cf. Frey and McNeil 

(2001). 

 For example  suppose that there has been no default by time t. Assuming that 

assets V follow a Markov process with stationary increments we get  

Ft ( T1,…,Tn) = )),(),...,,(( 111,..,1 tTVDHtTVDHC n
n

tnn
i

t
M

tTtT n −−−−−− for Ti > t . 

This formula offers in fact a general multivariate copula representation of Zhou’s 

(2001) result who directly computed F0( T,T ), in case n=2. 

 It is important to note that  as the variable of interest is taken the running 

minimum asset process ( M i
t ) 0≥t which is defined by M i

t = min { V i
s | 0≤s≤t }, so that 

M i
t  denotes the historical low of the asset value in the period [0,t]. The random 

default time is thus given by τi = min{ t>0 | V i
t ≤ Di }. The thresholds D are assumed 

to be independent of assets V. With the running minimum asset process Mi we obtain 

immediately { τi ≤ t} =  { M i
t ≤ Di }meaning that the event of default before time t is 

equivalent to the event that the assets of the firm have been below the default barrier 

at  least once in [0,t]. Thus the problem of modeling dependent defaults is reduced to 

finding the dependence structure of sectors’  processes of assets minimum over a 

given time period! 

 We should state that if we replace the process of assets minimum of the 

various sectors with their asset’s process V we can model their dependence according 

to the classical approach. In this project we will follow Giesecke’s approach which 

both simplifies the dependence structure of defaults between the industry sectors and 

makes use of the first passage approach.    

 Now we are ready to focus on the copulas families which we will use to model 

the dependence of sectors’ asset minimum process. 

 

Elliptical Copulas 
The class of elliptical distributions provides a rich source of multivariate 

distributions which share many of the tractable properties of the multivariate normal 

distribution and enables modeling of multivariate extremes and other forms of non-

normal dependences. In the world of elliptical distributions correlation and covariance 

are natural measures of dependence. Linear combinations, marginal distributions and 

conditional distributions of elliptical random variables can largely be determined by 
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linear algebra using knowledge of covariance matrix, mean and generator. Elliptical 

copulas are simply the copulas of elliptical distributions. Simulation from elliptical 

distributions is easy and as a consequence of Sklar’s theorem so is simulation from 

elliptical copulas. Furthermore rank correlation and tail dependence coefficients can 

be easily calculated. 

 

If X is a n-dimensional random vector and for some μ nℜ∈  and some negative n*n 

nonnegative definite, symmetric matrix Σ, the characteristic function φ μ−X (t) of X-μ 

is a function of the quadratic form tTΣt, φ μ−X (t) = tt TΣ(φ ) we say that X has an 

elliptical distribution with parameters μ, Σ and φ and we write X~En (μ,Σ,φ). 

 

 

 

Gaussian Copulas 

The copula of the n-variate normal distribution with linear correlation matrix R is 

CGa
R (u) = Φn

R (Φ-1(u1),… Φ-1(un)) ( 34 ) 

where Φn
R  denotes the joint distribution function of the n-variable standard normal 

distribution with linear correlation matrix R, and Φ-1 denotes the inverse of the 

distribution function of the univariate standard normal distribution. Copulas of the 

above form are called Gaussian copulas.In the bivariate case the copula expression 

can be written as : 

CGa
R (u,v) = ∫∫

−− Φ
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dsdt
R

tstRs
Rπ

.(35)  

Note that R12 is simply the usual linear coefficient of the corresponding bivariate 

normal distribution.  

The following example shows that Gaussian copulas do not have upper tail 

dependence. Since elliptical distributions are radially symmetric, the coefficient of 

upper and lower tail dependence are equal. Hence Gaussian copulas do not have lower 

tail dependence too. 

Let (X,Y)T have the bivariate standard normal distribution function with linear 

correlation coefficient p. That is (X,Y)T ~ C (Φ(x),Φ(y)), where C is a member of the 

Gaussian family with R12 = p. Since copulas in this family are exchangeable, λU = 2 
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limu→1P{V>u|U=u} and because Φ is a distribution function with infinite fight 

endpoint, 

 limu→1P{V>u|U=u}=limx→∞ P{Φ-1(V)>x| Φ-1(U)=x}= limx→∞ P{X>x| Y=x}.  

Using the well known fact that Y|X =x~ N(px,1-p2) we obtain  

λU = 2 λU = 2 limx→∞ )1/)(( 2ppxx −−Φ =2 limx→∞ )1/1( ppx +−Φ  (36) 

from which it follows that λU = 0 for R12 < 1.  

Hence Gaussian copula C with p<1 does not have upper tail dependence. 

The problem of random variate generation from the Gaussian copula CGa
R is 

now addressed. For our purpose it is sufficient to consider only strictly positive 

matrices R Write R= AAT for some n*n matrix A, and if Z1,…, Zn,~N(0,1) are 

independent, then μ+AZ~Nn(μ,R). One natural choice of A is the Cholesky 

decomposition of R. The Cholesky decomposition of R is the unique lower-triangular 

matrix L with LLT = R. 

● Find the Cholesky decomposition A of R. 

● Simulate n independent random variates z1,…, zn, from N(0,1) 

● Set x=Az  

● Set ui = Φ(xi ), i=1,..,n 

● (u1,…, un)T~ CGa
R 

 

t-copulas 

If  X  has the stochastic representation  X =d μ + 
S
v Ζ, where μ nℜ∈ , S~χ 2

v and 

Z~Nn (0,Σ ) are independent, then X  has an n-variate tv-distribution with mean μ (for 

v>1) and covariance matrix 
2−v

v Σ (for v>2).If v≤2 then Cov (X  ) is not defined. In 

this case we just interpret Σ as being the shape parameter of the distribution of X. The 

copula of X  can be written as 

 Ct
v,R (u) = tn

v,R (tv
-1(u1),… tv

-1( un)) ( 37 ) 

 where Rij = ∑∑∑
ii jjij

for i,j ∈  {1,…,n) and where tn
v,R denotes the distribution 

function of SYv /  where S~χ 2
v and Y~Nn (0,R ) are independent. Here tv denotes 

the margins of tn
v,R i.e. the distribution function of SYv /1 .  In the bivariate case the 

copula expression can be written as : 
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Ct
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Note that Rij is simply the usual linear correlation coefficient of the corresponding 

bivariate tv-distribution if v>2. 

If  (X1, X2)T has a standard bivariate t-distribution with v degrees of freedom 

and linear correlation matrix R, then X2| X1 = x is t-distributed with v+1 degrees of 

freedom and E(X2| X1 = x) = R12 x , Var (X2| X1 = x) = (
1

2

+
+

v
xv ) (1- 2

12R ).  

This can be used to show that the t-copula has upper ( and because of radial 

symmetry ) equal lower tail dependence. 
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From this it is also seen that the coefficient of upper tail dependence is increasing in 

R12 and decreasing in v , as one would expect. Furthermore the coefficient of upper 

(lower) tail dependence tends to zero as the number of degrees of freedom tends to 

infinity for R12 <1. 

  It follows an algorithm for random variate generation from the t-copula Ct
v,R  

● Find the Cholesky decomposition A of R. 

● Simulate n independent random variates z1,…, zn, from N(0,1) 

● Set y=Az  

● Set x =
s
v  y 

● Set ui = tv(xi ), i=1,..,n 

● (u1,…, un)T~ Ct
v,R  
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Archimedean Copulas 
This class of copulas is worth studying for a number of reasons. Many 

interesting parametric families of copulas are Archimedean and the class of 

Archimedean copulas allow for a great variety of different dependence structures. 

Unlike elliptical copulas they can model asymmetries. This is very useful in finance 

where it seems reasonable that there is a stronger dependence between big losses than 

between big gains. Furtermore, in contrast to elliptical copulas are not derived from 

multivariate distributions functions using Sklar’s theorem. A consequence of this is 

that we need somewhat technical conditions to assert that multivariate extensions of 

Archimedean 2-copulas are proper n-copulas. A further disadvantage is that 

multivariate extensions of  copulas in general suffer from lack of free parameter 

choice in the sense that some of the entries in the resulting rank correlation matrix are 

forced to be equal. 

 Let φ be a continuous, strictly decreasing function from [0,1] to [0,∞], such 

that φ(1)=0. The pseudo-inverse of φ is the function φ[-1] : [0,∞]→[0,1] given by 

{ (0)t0      )(
t(0)      0

]1[ 1 ϕϕ
ϕϕ ≤≤

∞≤≤
− −

= t
(40) 

Note that φ[-1] is continuous and decreasing on [0,∞] and strictly decreasing on  

[0, φ(0)]. Furtermore φ[-1] (φ(u ))= u on [0,1] and  

=− ))(( ]1[ tϕϕ { (0)t0            
t(0)    )0(
ϕ

ϕϕ
≤≤

∞≤≤
t

(41) 

 

Let φ be a continuous, strictly decreasing function from [0,1] → [0,∞] such 

that φ(1) =0, and let φ[-1] be the pseudo-inverse of φ.  

Let C be the function from [0,1]2→[0,1] given by C( u,v) = φ[-1](φ(u)+φ(ν)).  

Then C is a copula if and only if φ is convex. 

Copulas of the above form are called Archimedean copulas. The function φ is 

called the generator of the copula.If φ=∞ we say that φ is a strict generator. In this 

case, φ[-1] =  φ-1 and C(u,ν)= φ-1(φ(u)+φ(ν)) is said to be a strict Archimedean copula. 

Let C be an Archimedean copula with generator φ. Then 

1. C is symmetric, i.e. C(u,ν)= C(ν,u)for all u,ν in [0,1]. 

2. C is assosiative , i.e. C(C(u,ν),w)= C(C(u,(ν,w)) for all u,ν,w in [0,1].  

 

For example let φ(t) = (-lnt)θ ,where θ≥1.Clearly φ(t) is continuous and φ(1)=0. 
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φ΄(t) = -θ(-lnt)θ-1
t
1

 , so φ is a strictly decreasing function from [0,1] to [0,∞ ].φ΄΄≥0 on 

[0,1], so φ is convex. Moreover φ(∞ ) =0 , so φ is a strict generator. This is the 

Gumbel family of copulas. 

 

Corollary:Let C be an Archimedean copula generated by φ and let  

KC(t)= VC({(u,v) 2]1,0[∈ | C(u.v)≤t}). Then for any t in [0,1] KC(t) =
)(

)(
+′

−
t
tt

ϕ
ϕ  (42) 

If ( U,V)T has distribution function C, where C is an Archimedean copula generated 

by φ, then the function KC given by the above theorem is the distribution function of 

the random variable C ( U,V). 

When C is absolutely continuous its density is given by 

3

2

))],(([
)()()),((),(

vuC
vuvuCvuC

vu ϕ
ϕϕϕ

′
′′′′

−=
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∂   (43)  

 

Theorem:Under the hypothesis of the corollary the joint distribution function H(s,t) 

of the random variables S= φ(u)/[φ(U)+φ(V)] and T= C(U,V)is given by H(s,t)=s 

KC(t) for all (s,t) in [0,1]2. Hence S and T are independent and S is uniformly 

distributed in [0,1]. 

An application of the above theorem is the following algorithm for generating 

random variates (u,v)T whose joint distribution is an Archimedean copula C with 

generator φ. 

● Simulate two independent U(0,1) random variates s and q. 

● Set t = KC
-1(q), where KC is the distribution function of C(U,V) 

● Set u =φ[-1](sφ(t)) and v= φ[-1]((1-s)φ(t)) 

 

 We note also that Archimedean copulas are related to multivariate 

distributions generated by mixtures. Consider a latent variable model ( Xi, Di ) where 

Xi is the value of assets and  Di is the equivalent default threshold.Suppose that X has 

an exchangeable Archimedean copula. The default indicators Xi = 1 }{ ix DX <  follow an 

exchangeable Bernouli mixture model. This means that Archimedean copulas 

generate parsimonious models for relatively homogeneous portfolios. 
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The Kendall’s tau for a copula C can be expressed as a double integral of 

C.This double integral is in most cases not straightforward to evaluate. However for 

an Archimedean copula, Kendall’s tau can be expreesed as an (one-dimensional) 

integral of the generator and its derivative. 

Let X and Y be random variables with an Archimedean copula C generated by 

ϕ .Kendall’s tau of X and Y is given by 

∫ ′
+=

1

0
  

)(
)(41 dt
t
t

ϕ
ϕτ  (44) 

For each Archimedean copula we need to wit: 

A) Kendal’s τ 

B) Theta θ  

C) Generator φ(t) 

D) Generator’s first derivative φ΄(t) 

E) Generator’s Inverse φ-1 (t) 

F) The distribution function of C (u,v) = KCopula = 
)(
)(
t
tt

ϕ
ϕ
′

−   

G) Distribution function inverse 1−
CopulaK  (When it has not a closed form 

solution it can be obtained through the equation q
t
tt −
′

− )
)(
)((

ϕ
ϕ by 

numerical root finding. For doing this we need the first derivative regard 

to t of  
)(
)(
t
tt

ϕ
ϕ
′

−  ). 

 

For the Gumbel copula we have: B) 
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The Gumbel Copula can be expressed as 
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The Clayton Copula which can be expressed as ( )θθθ ν
1

1),(
−

−− −+= uvuC  is 

determined if we have knowledge of the following. 
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B) 
τ
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−

=
1
2      C ) t-θ-1       D) –θ t – θ-1            E ) (1+ t ) θ
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θ
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+
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From the above it is prevalent that if we find the Kendal’s tau for a distribution we 

can estimate the parameters of the above Archimedean copulas and thus they are 

fully determined. 

 

 

 

   

 
ESTIMATION & SELECTION OF COPULAS 

 

               PARAMETRIC ESTIMATION WITHIN A GIVEN FAMILY 

 

The method of maximum likelihood 

Let the copula C and the margins FN be continuous.The density of the joint 

distribution F is given by the following expression 

f (x1, …xn… xN) =c(F1(x1), …Fn(xn)… FN(xN)) ∏
=

N

n

nn xf
1

)(  (45) 

where fn is the density of the margin Fn and c is the density of the copula  

c (u1, …un… uN) = N

Nn
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1 ),...,..,
 

Let X= {(x t
1 ,…, x t

N )} T
t 1=  denote a sample.The expression of the log likelihood is also  

(θ) =∑
=

T

t 1
ln c(F1(x t

1 ), …Fn(x t
n )… FN(x t

N )) + ∑
=

T

t 1
)(ln

1
∑
=

N

n

t
nn xf (46) 

With θ the K*1 vector of parameters. Let MLθ be the maximum likelihood estimator. 

Then it verifies the property of asymptotic normality and we have 

T ( MLθ -θο)→ Ν (0, F  -1(θο)) with F (θο) the information matrix of Fisher. 
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For example we could assume that the marginals follow the normal 

distribution, while the copula function is Clayton copula. If we assumed that not only  

the marginals follow the normal distribution but also the copula is gaussian then this 

method would be equivalent to extracting the maximum likelihood estimator of the 

multivariate normal distribution. Nevertheless this method which we call the exact 

maximum likelihood method or EML,could be computational intensive in the case of 

high dimension, because it requires to estimate jointly the parameters of  the margins 

and the parameters of the dependence structure. However, the copula representation 

splits the parameters into specific parameters for marginal distributions and common 

parameters for the dependence structure ( or the parameters of the copula)The log-

likelihood equation could then be written as: 

 (θ) =∑
=

T

t 1
ln c(F1(x t

1 ), …Fn(x t
n )… FN(x t

N );α) + ∑
=

T

t 1
)(ln

1
∑
=

N

n

t
nn xf    (47) 

With θ = (θ1,…, θΝ,α). Θn and α are the vectors of parameters of the parametric 

marginal distribution FN and the copula C. We could also perform the estimation of 

the univariate marginal distributions in a first time  nθ  = arg max  n(θn):=arg max 

)(ln
1
∑
=

T

t

t
nn xf  and then estimate α given the previous estimates 

a = c(α):=arg max ∑
=

T

t 1
ln c(F1(x t

1 ; 1θ ), …Fn(x t
n ; nθ )… FN(x t

N ; Νθ );α). (48) 

This two step method is called the method of inference functions for margins 

or IFM method. The IFM estimator IMFθ  is then defined as the vector ( 1θ ,…, Nθ ; a ). 

Like the ML estimator, we could show that it verifies the property of asymptotic 

normality and we have  

T ( IMFθ -θο)→ Ν (0,ν-1 (θο)) with ν(θο) the information matrix of Godambe.  

Let us define a score function in the following way:  

g(θ)= ( 1
1θ∂ ,…, Ν

Ν∂θ , c
a∂ ).  

The Godambe information matrix takes the form :  

ν(θο)= D-1M (D-1)΄ where D = E [ ∂ g(θ)Τ/∂ θ ] and M = E [g(θ)Τ  g(θ)].  

The estimation of the covariance matrix requires to compute many derivatives. Note 

also that the IFM method can be viewed as a special case of the generalized method of 

moments with an identity weight matrix. 
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Using a close idea of the IFM method, the parameter vector α of the copula 

could be estimated without specifying the marginals. The method consists in 

transforming the data  (x t
1 ,…, x t

N ) into uniform variables –using the empirical 

distributions-and then estimate the parameter in the following way: 

a = arg max ∑
=

T

t

c
1

ln ( tu1 ,…, t
nu ,… t

Nu ;α)              (49) 

In this case, a could be viewed as the ML estimator given the observed 

margins(without assumptions on the parametric form of the marginal distributions). 

Because this method is based on the empirical distributions, it is called the canonical 

maximum likelihood method or CML. Note that the IFM method could be viewed as a 

CML method with t
nu = Fn(x t

n ; nθ ). One of the important issue for the estimation is 

the existence of analytic solution of  the CML estimator because they reduce 

computational aspects. And as we know this is a key point in Finance Industry.  

To estimate the parameter p of the Gaussian copula with the CML method 

we proceed as follows: 

1) Transform the original data into Gaussian data: 

a) Estimate the empirical distribution functions (uniform 

transformation) using order statistics. 

b) Then generate Gaussian values by applying the inverse of the 

normal distribution to the empirical distribution functions. 

2) Compute the correlation of the transformed data. 

 

To estimate the parameter p of the t-copula we can use the following algorithm: 

1) Let 0
~p  be the CML estimate of the p matrix for the Gaussian copula 

2) 1
~

+mp  is obtained using the following equation 

1
~
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−+

⎟
⎠
⎞

⎜
⎝
⎛ Ν+ T

t

tm
T
t

t
T
t

p
v

T 1
111

1

ςς

ςς
ν

ν  

3) Repeat the second step until convergence  1
~

+mp mp~=  )~(: ∞= p  

4) The CML estimate of the p matrix for the Student copula is 

CMLp~ ∞= p~  
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Non parametric estimation 

 

The Deheuvels or empirical copula 

 

Any copula Ĉ ∈  C defined on the lattice  
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is an empirical copula. 

We introduce the notation Ĉ(T) in order to define the order of the copula, that is the 

dimension of the sample used to construct it. Deheuvels obtains then the following 

conclusions: 

1) The empirical measure  μ (or the empirical distribution function F ) is 

uniquely and reciprocally defined by both 

(a) the empirical measures of each coordinate nF ; 

(b) the values of an empirical copula Ĉ on the set ℑ . 

    2) The empirical copula Ĉ defined on ℑ is in distribution independent of the 

margins of F. 

    3) If Ĉ(T) is any empirical copula of order T, then Ĉ(T)→C. with the topology of C. 

 

Selecting a copula among a given subset of copulas 

Let us have now an empirical copula whose values lie on the lattice ℑ . We 

can compute its values thanks to the data. We assume that we have a finite subset of 

copulas C ∈C and we are interested in knowing which one of the copulas in C fits 

best the data ( there might be parametric copulas or non parametric copulas ). For this 

reason we consider the distance between each considered copula and the empirical 

copula. It is suggested to take a distance based on the discrete L p  norm 
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The best copula in the family C  is the copula which minimizes 2d  (Ĉ(T)  Ck ) 

The advantage of this method is that it does not depend on the behavior of the 

empirical copula out of the lattice 
⎭
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V. RESULTS & FINDINGS 

ESTIMATION PROCEDURE 
The procedure that we followed for the estimation of default correlations 

between sectors is the following: First estimate the individual default probabilities 

of each sector. Then estimate the copula that fits better the dependence structure of 

assets’ minimum processes. After we have specified the dependence structure, we 

use it in order to compute bivariate joint default probabilities. Finally we turn to the 

expression that constitutes the definition of default correlation (equation 7) in order 

to estimate them. 

In order to compute individual default probabilities for each sector we used 

the first-passage approach of asset value models. The estimation technique that we 

used is the calibration procedure. Thus we estimated asset volatility and mean 

growth rate of assets and by applying to equation (19) we were able to derive the 

individual default probabilities. 

 For the determination of sectors we adopted the ASE industry classification 

of the various firms that are traded. Each sector was treated as a portfolio. These 

sectors are: Banks, Insurance, Financial services, Industrial goods-services, Retail,  

Food-beverage, Basic Resources, Construction-Materials, Oil-Gas, Chemicals, 

Travel-Leisure, Technology, Telecommunications, Utilities, Health Care. We have 

not estimated the default correlation of banks with the other sectors due to the fact 

that if a default takes place in the banking sector the implications about the health of 

the financial system would have a greater impact in the whole of the economy 

which cannot be captured only by default correlation. The addition or omission of a 

firm from a specific sector we don’t think that it will cause any problems. 

Fundamentally more (less) assets mean bigger (smaller) liabilities. Furthermore 

ASE‘s Ground rules for the management of indices guarantee that their values 

remain unaffected from such events. 

The period of study starts from 2005 and finishes the March of 2006. The 

reason is that from 2006 the base for the industry indexes became the 5.000 and 

the adapted values are publicly available only from the beginning of 2005 for all 

sectors. Thus the data don’t cover a business cycle, as they should. If the time 
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period studied covers the entire ebb and flow of the business cycle, defaults caused 

by general economic conditions average out over the period, thus lowering default 

correlation. At the other hand default correlation is maximized when the time 

period tested most closely approximates the length of economic recession or 

expansion. This is quite reasonable because during a business cycle the 

dependence structure of assets is weakened while during a particular phase of the 

business cycle is increased. As a result we cannot estimate the default correlations 

among sectors for different time periods and see how they are affected from time, 

assuming that default probabilities and default correlation are constant through the 

examined period.  

Moreover if we had time series of equity values that cover many years we 

could see from empirical data how the varying default probability influences 

default correlation for given sud-periods over the whole examined period. 

For each particular sector we formed the unified balance of statements of the 

firms that belong to it. The balances of statements that we used are the ones that 

were issued in 2005. The financial structure of each sector was assumed to be 

constant. The data that we used despite the fact that are older than the desired, are 

a good proxy for the financial structure of a particular sector, as it cannot be 

altered dramatically from year to year. 

The default point is determined by each sector’s liabilities. It is assumed to 

be constant during the period under study. It was set to be equal to the short-term 

liabilities plus the half of the long-term. 

The risk-free rate is assumed to be constant during the period under study 

and it was set to be equal to 3,5%. An interesting extension of asset value models 

concerns the case where the risk-free rate is stochastic. We avoided doing this as it 

would demand much more effort. 

In order to find the dependence structure of joint defaults we need to observe 

each sector’s assets’ minimum process. This is necessary because we implement 

first-passage approach as Giesecke interprets it, i.e. the probability that the 

minimum of assets over a given sub-period falls below a given default threshold. 

Thus the whole period that is covered by the data it will be divided to subperiods in 

order to find the minimum of assets for these sub-periods. The ideal situation would 

be to have a time series of many years so that we could compute the dependence 

structure from yearly data. So the sub-periods could be equal to a month or a year. 
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However, these sub-periods will be by necessity equal to a week as the period that 

we have available data is relatively small. So there is a kind of “discrepancy” 

between the default probability which is computed for a year and the data set from 

which we extract dependence structure. This “discrepancy” would not occur if we 

computed weekly default probabilities. Nevertheless, it is true that during a week 

the conditions in the market cannot change dramatically and the computation of 

weekly default probabilities makes no sense especially to asset value models where 

default is not a surprise event. We could somehow avoid this discrepancy if existed 

an organized secondary market where we could observe the value of debt. But now 

the debt value is computed mainly from the given financial structure which remains 

relatively the same at least for a year period. However this “discrepancy” is not a 

problem as we use the same data set both for computing default probabilities and 

estimating the dependence structure. Thus from the value of the sector index as is 

given at the end of a day’s transaction we will take the lower one that is observed 

during the week. This will be the data set that it will be used in order to find the 

parameters of the corresponding copula. This copula will represent the dependence 

structure of the joint probability to default. 

The copula parameters are either dependence measures such as asset 

correlation as it happens with elliptical copulas either are derived from dependence 

measures as it happens with Archimedean copulas. Many authors propose to use a 

factor model in order to estimate asset correlation. Asset correlation is estimated 

through the sensitivity of assets to certain factors. However this way of estimating 

has many disadvantages. In particular we cannot know in advance which are the 

common factors that affect assets. Moreover we cannot estimate different 

dependence measures which are necessary for other copulas than elliptical. Thus we 

use the “calibration” procedure to generate a process of asset values and estimate the 

dependence structure between each pair of assets processes.   

In our study we wanted to raise the assumption of normally distributed 

assets. This could be done by applying a multivariate normal mixture. However 

even with such a model we would assume that assets follow a particular distribution 

and the joint distribution is determined by the marginals. So it would be useful to 

separate the dependence structure from the marginals. We could make various 

assumptions about the marginal distributions and the underlying dependence 

structure until we find the appropriate combination which would allow us to model 
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more efficiently the real data. However this would be time consuming and 

computationally difficult. Thus we decided to make no assumption about the 

marginal distribution and to focus our attention to the dependence structure. We 

derived the Gaussian, the t copula and two types of Archimedean copulas, the 

Gumbel and the Clayton. The estimation method that we adopt is the CML as we 

don’t want to make any particular assumptions about the distributions of the 

underlying assets. Furthermore the dependence structure that we  are looking for 

will be applied to default probabilities which are binomial events. 

We use bivariate copulas to estimate the dependence structure between every 

possible pair of sectors. As the estimation method of the parameters for each 

specific copula is the CML we can use the standard algorithms that have been 

developed for the estimation of normal’s and t-studend’s cdf  but using the CML 

estimators. The fact that we did not make any assumptions about the distribution 

that the margins follow allows us to speak about Gaussian and t –copula. The 

algorithms that we used are Drezner’s algorithm about normal cumulative 

distribution function and Genz’s code for t-student cdf. ( For more information see 

Appendix). If we did not use the CML estimator for e.g. the Gaussian copula but the 

classical linear correlation we would have made the assumption that the marginal 

distributions follow the normal distribution. Thus we would have spoken about 

normal copula. This particular distinction it would play an important role in the 

analysis of the results that follows. 

For each pair of sectors we estimated the empirical copula. The appropriate 

copula is the one that minimizes the distance 2d  (Ĉ(T)  Ck ) =║ Ĉ(T) - Ck ║ 2L
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said. We didn’t use any of the statistical tests that are proposed in the literature. 

Specifically χ2 and Anderson-Darling tests are proposed. But if the marginal 

distributions of the univariate time series are unspecified the existing critical values of 

these tests are no longer valid. As far as GoF tests that are based on the kernel 

smoothing approach are concerned, more research is needed.   
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After we have selected the appropriate dependence structure for every 

possible pair of sectors we can apply it to the equivalent individual default 

probabilities  in order to estimate the joint default probability. So if the appropriate 

copula of two sectors’ asset distributions is C, the joint default probability  

P ( A∩ B) will be equal to :  

P ( A∩ B) = C ( P(A) , P (B) ). 

 The derivation of  default correlation according to equation (7) between every 

possible pair of sectors is now a simple procedure.  

 

 

 

SECTORS’ DEFAULT PROBABILITIES 

 
The default probabilities that have been derived  are indicative of the 

financial health and business risk of each sector. They give the probability of the 

whole sector defaulting. This might make no sense at first as the default of a whole 

sector not only is very difficult to take place but moreover it would be equivalent to 

an economic disaster. However these probabilities must be interpreted as we 

interpret the average cost of capital of a company with many production lines. Each 

line has its own cost of capital but the average cost of capital is computed for the 

whole company and to each production line is attributed the average cost of capital. 

The individual cost of capital is only used for internal control and procedures. This 

exactly is the way that sectoral default probabilities must be translated. Each firm of 

the sector has its own default probability and sector’s default probability is the 

average of the firms that comprise the sector. These average default probabilities are 

going to be implemented in order to compute joint default probability of two sectors 

and their equivalent default correlation.  

The following table presents each sector’s default probability. 
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SECTOR      F.T.S.E./A.S.E.  

OIL & GAS 0,075781 

ΜEDIA 0,029773 

CHEMICALS 0,020149 

RETAIL 0,00417 

INSURANCE 0,841259 

HEALTH CARE 0,039659 

FINANCIALS 0,137235 

BASIC RESOURCES 0,120278 

TELECOMMUNICATIONS 0,003478 

TECHNOLOGY 0,083204 

FOOD & BEVERAGE 0,037431 

CONSTRUCTION & MATERIALS 0,008907 

TRAVEL & LEISURE 0,019654 

UTILITIES 8,32E-16 

INDUSTRIAL GOODS & SERVICES 0,150824 

 

 The majority of the industry sectors have low enough default probabilities. 

There are some sectors with default probabilities greater than 10%. But for most 

sectors the average default probabilities are low enough. We have to stress that asset 

value and asset volatility are equity implied. This means that sectors’ average 

default probability is also influenced from the enterprising perspectives of each 

sector. Thus traditional sectors such as basic resources may have a higher default 

probability if the market is not satisfied from the business initiatives that are taken. 

For the insurance sector in particular we have to state that its huge default 

probability is fascinating. However, it is indicative of the financial health of almost 

all firms that belong to the sector. We must state here that the financial statements 

that we used for the derivation of default probabilities were of 2005, a year that 

international accounting standards have been implemented. Thus the Insurance 

sector has been forced to include liabilities which they were not included previous 

years. There has been an increase of equity capital the previous year, which is going 

to be registered in the financial statements that will be announced this year. The 
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situation has been improved but if we take into account the truly bad financial health 

of the Insurance sector more actions must be taken. 

   

At the following diagram are illustrated the default probabilities of each 

sector assuming that all of them have the same characteristics e.g. leverage and the 

only variable which is allowed to vary in each sector is asset volatility. 
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From our analysis it comes out that the default probability of each sector is 

influenced mainly from the standard deviation of its assets, i.e. the business risk. For 

example Financial sector whose firms’ business activities are limited to the 

possession of securities, objectively presents a high business risk. Thus the greater 

the standard deviation is, the higher is the default probability. This finding confirms 

that equity value is a monotone function in firm volatility. Equity holders will 

always benefit from an increase in the business risk.  An increase in business risk 

results in a higher default probability, which leads in a higher risk premium for the 

debt and debt value is reduced. This fact is known from equity holders and plays an 

important role in the determination of default threshold as we will see next. 

 

 Leverage when it is present in moderate levels does not play such an 

important role in the determination of default probabilities. This means that for 

moderate levels of leverage the cost of borrowing remains relatively the same and 
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the MM theorem with taxes obtains. However when leverage becomes too high the 

default probability becomes too large. This means that exists a level of  leverage 

until which the tax advantages dominate, the cost of borrowing is relatively small, 

the consequences on the cost of capital negligible and thus the average cost of 

capital is reduced. The average cost of capital reaches its lowest level at the 

particular level of leverage and the value of the firm or sector reaches its highest. 

However, after this particular level of leverage the costs of financial distress become 

too big. The cost of debt becomes more and more high as it happens with the cost of 

equity and as a result the average cost of capital increases too. From that particular 

level of leverage the value of firm or sector begins to reduce. Thus rather the trade-

off theory better resembles economic and business reality than the theorems of 

Modigliani and Miller. 
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DEFAULT PROBABILITY OF EACH SECTOR

0,00E+00

1,00E-01

2,00E-01

3,00E-01

4,00E-01

5,00E-01

6,00E-01

7,00E-01

8,00E-01

9,00E-01

UTILI
TIES

TELE
COMMUNIC

ATIO
NS

RETAIL

CONSTRUCTIO
N

TRAVEL

CHEMIC
ALS

MEDIA
FOOD

HEALT
H

 O
IL 

& G
AS

TECHNOLOGY

BASIC
 R

ESOURCES

FIN
ANCIALS

IN
DUSTRIALS

IN
SURANCE

SECTOR
DEFAULT PROBABILITY
OF EACH SECTOR

 
 

 

Regardless of how big the leverage is, equity always worth something. This 

is due to the fact that even if the default probability is too high, the shareholders 

own the firm and determine its policy. So even if the costs of financial distress are 

too high there is always the hope that the financial health of the firm can be 

improved. On the other hand shareholders may take decisions that are against the 

debtors’ interests. They may issue more debt, an action which renders the old one 

subordinated, or to decide the granting of dividends. But even if these do not 

happen, the management of the firm has the tendency to undertake risky projects in 

order to save the company. These risky projects increase the business risk, i.e. the 

asset volatility and consequently default probability. So, a “battle” takes place 

between share and debt holders about the determination of the default threshold and 

so we can talk equivalently about an endogenously and exogenously set default 

threshold. It is easy to understand that it is for the share-holders best interests the 

default threshold to be as low as possible, while the debt-holders prefer the default 

threshold to be as high as possible. The high default threshold, which may be bigger 

than the present value of debt, guarantees that firm’s assets will always be enough to 

cover firm’s liabilities, while the low default threshold, e.g. lower than the present 
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value of firm’s debt, means that equity holders gain while debt holders lose as the 

firm value cannot cover the firm’s liabilities. The final result of the “battle” will be 

determined from the negotiation power of each part. 

 

 

DETERMINANTS OF DEFAULT CORRELATION 
The analysis that follows has as a twofold goal. First to show how individual 

default probabilities influence joint default probability and consequently default 

correlation given a dependence structure. And second to stress the importance of 

selecting the appropriate copula and its parameters as they influence default 

correlation through the determination of joint default probability.     

In order to find default correlation we had to estimate joint default probability 

between each pair of sectors. And for doing this we should estimate the appropriate 

dependence structure between each pair of sectors. In 90% of cases the appropriate 

dependence structure was found to be Gaussian copula. 

We have stated that the Gaussian copula is expressed via the following type: 

CGa
R (u) = Φn

R (Φ-1(u1),… Φ-1(un)), where Φn
R  denotes the joint distribution function 

of the n-variable standard normal distribution with linear correlation matrix R, and Φ-1 

denotes the inverse of the distribution function of the univariate standard normal 

distribution. In our study we used the CML estimator of the copula correlation which 

makes no assumption on the distribution of the margins. However if we assumed that 

the margins followed the normal distribution we could use the classical linear 

correlation as an estimate of the underlying correlation. In this case the copula that we 

would have derived would be quite different than the one that we ended. Particularly 

in our case classical correlation appears to be greater in absolute value than the 

absolute value of the CML estimator. So Gaussian dependence with the classical 

linear correlation results in higher joint default probability and consequently in higher 

default correlation. This could be justified from the fact that the dependence measure 

is greater. However we have stated that Gaussian dependence structure does not 

exhibit tail dependence. Default is a phenomenon that concerns the tail of assets’ 

distribution. Moreover default probabilities are low enough and as Gaussian 

dependence structure exhibits no tail dependence we would expect joint default 
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probability to be almost zero. However joint default probability not only does not 

equal zero, but moreover is increased when the dependence measure is increased. 

Thus the velocity with which the tail dependence tends to zero appears to 

depend on the estimate of the correlation that we use. Choosing as estimator of 

correlation the classical correlation has as impact the joint default probability to be 

extremely high. The reason is that asset correlation hinges on the correlation of the 

stock indices as the asset value models by construction treat the indices as options on 

the industry sectors’ assets. However in the ASE is observed great dependence on the 

movements of the indices. Part of this maybe a consequence of the period that we 

study which is a part of the economic cycle and particularly the development.  

 In order to examine the impacts of the copula estimator we compute the lower 

tail dependence of the Gaussian copula for the two estimators. In particular it is 

computed for u=0, 00001(see Appendix) The lower tail dependence is of special 

interest as the default probabilities of most sectors are too low. So it is the lower tail 

dependence that it will determine how big the joint default probability will be and 

consequently the default correlation. In order to have a better understanding about 

what our findings mean we also provide the lower tail dependence for the Gumbel and 

the Clayton copula(see Appendix) We observe that the Gaussian copula with the 

CML estimator has lower tail dependence which is like the lower tail dependence of 

the Gumbel copula. We must state here that Gumbel Copula has no lower tail 

dependence. Furthermore the lower tail dependence of the Gaussian copula with the 

classical correlation tries to catch the lower tail dependence of the Clayton copula 

which exhibits lower tail dependence. This means that for the Gaussian copula with 

the classical correlation we must minimize u even more in order to become zero. 

 This of course has tremendous implications for the banking institution as it 

may have needlessly high reserves. 

 The above findings show why the Gaussian copula is most times the 

appropriate one. The industry indices which are seen as an option on the sectors’ 

assets tend to move together especially while the ASE is in development. There are no 

extreme movements but a steady route of all sectors. The trend, which almost all 

sectors follow, is strictly increasing and strong. So the extreme values which may be 

present are very few. In 90% Gaussian copula depicts more accurately the dependence 

structure. For this 90% Kendal’s tau and consequently linear correlation between 

sectors is extremely high. The rest 10% concerns sectors that Kendal’s tau or linear 
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correlation is by far lower. This means that asset distributions exhibit tail dependence 

which can be captured by normal copula when dependence and consequently the 

dependence measure are great. However when dependence is weaker and 

consequently dependence measure smaller this tail dependence cannot be captured by 

normal copula and thus another copula is the appropriate. Such a strong dependence 

implies that Stock Exchange has a particular direction. So extreme movements are 

rarely observed. This may also have the implication that an asset value model may not 

be the appropriate one for the estimation of default probabilities in the case of Greece 

where the Stock Exchange is under control. 

 

Let us assume now that the dependence structure between the asset returns of 

two sectors is Gaussian. The following diagram shows the implications for default 

correlation. The default probability of one sector is stable while the default probability 

of the other sector is allowed to vary. The scenarios that are illustrated concern 

absolute negative dependence, independence and absolute positive dependence, i.e. 

asset correlation equal to -1, 0 and 1 equivalently. 
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What we can observe is that default correlation has the sign of asset 

correlation. However its absolute value varies. This is due to the impact that 
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individual default probabilities have. In particular we can see that when asset 

correlation is 1 default correlation reaches its maximum when both sectors have the 

same default probability i.e. 10%. When asset correlation is -1 default correlation 

reaches its minimum when default probabilities of sectors are complementary events 

i.e. when the one has 10% and the other 90% default probability. This diagram shows 

that default correlation is extremely sensitive to individual default probabilities. This 

has the very tremendous implication that default correlation must be estimated as 

often as default probabilities. When we think that default probability of a particular 

sector have changed, so has also been done with its default correlation with the other 

sectors. This is quite reasonable. If the default probability of a particular sector were 

lower than the default probability of another sector and then it is increased, it is 

expected that default correlation between these sectors will increase too. The reason is 

that the number of defaults that are expected to take place will be quite similar for the 

two sectors. On the other hand when two sectors have almost the same default 

probability and then the default probability of one from the two sectors is increased 

default correlation between them is expected to fall as defaults won’t be any more 

connected too much. Defaults in one sector will occur more frequently, i.e. will be 

more in number than in the other sector. 

When dependence between sectors can be characterized as negative, default 

correlation is reduced till the default probabilities between two sectors are 

complementary. This is quite reasonable because as default probability of one sector 

is increased defaults will occur more and more frequently which means that defaults 

will take place in the other sector more rarely. This happens because economic 

conditions have the opposite impact on the two sectors. So if default occurs in one 

sector, there is less chance that it will take place to the other until the default 

probabilities of the two sectors are complementary events. However when the default 

probability of one sector is higher than the complementary of the other, default may 

take place to both of them as the same market conditions may have the same impact to 

both of them and so there is a connection between the defaults that take place.  

 The following diagram of joint default probability sheds more light on the 

impact that individual and joint default probabilities have on default correlations. 

Particularly we compare the values that joint default probability can take when the 

default probability of one sector is 10% and the default probability of the other sector 

is allowed to vary. When asset correlation equals 1, we can see that from the moment 
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that default probability of the sector whose default probability varies reaches 10%, 

joint default probability is equal to its maximum i.e. the lower individual default 

probability. So till the two sectors have the same default probability, joint default 

probability increases as it happens too with default correlation. But from this point 

and on, joint default probability remains the same while default probability of one 

sector increases. So default correlation is reduced. These findings can be generalized 

for every positive value of the dependence measure, but will be different the value of 

the default probability for which the joint default probability will reach its maximum. 

When asset correlation is equal to -1 joint default probability is equal to 0, until the 

individual default probabilities are complementary events. Thus as the individual 

default probability of one of the sectors is increased, default correlation it is reduced 

till it is equal to -1. From the point that the default probability of one sector is 10% 

and the default probability of the other 90% joint default probability increases and 

reaches its maximum. This increase of joint default probability has as impact the 

default correlation to reach zero. 

Joint default probability for various asset correlations and one of the individual default 
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The diagram that follows shows what happens if both sectors have the same 

default probability for some extremes values of asset correlation. When asset 

correlation is bigger than, or equal to zero default correlation seems to remain the 

same independently of default probabilities. Particularly, as we have expected, for a 

positive dependence measure, default correlation is always at its maximum as default 

probabilities are the same. When correlataion is zero default correlation is also zero. 

However when asset correlation is smaller than zero default probabilities play an 

important role. We observe that when default probabilities are close to zero default 

correlations tend to be zero too.  

In this case, as the occasion where the default probability of one sector was 

allowed to vary, we can see that when asset correlation is negative, default correlation 

is negative too. However, its absolute value is very smaller than default correlation’s 

absolute value when asset correlation is positive but has the same absolute value. This 

has as a result the negative values that default correlation takes to be close to zero. 

The reason will be illustrated from the diagram that joint default probability is 

depicted. 

 .  
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For a positive dependence measure we see that joint default probability is 

analogue to the individual default probabilities which are the same. When correlation 

is zero which implies independence joint default probability is just the product of 
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individual default probabilities. However when the dependence measure is negative 

joint default probability is zero till the individual default probabilities overcome the 

point that are complementary. This point when individual default probabilities are the 

same is 50%. Then joint default probability begins to increase. That is why when asset 

correlation equals -1 default correlation reaches its minimum i.e. -1 when the default 

probabilities are complementary events i.e. 50% and then it starts to increase and 

reaches 0 when default probability of both sectors is equal to 1. So the following 

diagram is quite illustrative about the reasons that default correlation is altered 

according to individual default probabilities when dependence is negative.  
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The following diagram shows the values that default correlation takes for 

various values of asset correlation. The default probabilities of the two sectors are 

10% and 20% equivalently. As we can see a greater dependence measure implies a 

greater default correlation.  
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As the individual default probabilities remain the same and only dependence measure 

is altered, we expect that a higher dependence measure implies a higher joint default 

probability. Indeed, we can see that joint default probability has a range of values 

from [0, 0.1] and it is a strictly increasing function of the underlying correlation. A 

very interesting and important fact is that independently of the underlying asset 

correlation joint default probability cannot be greater than the lower of the two 

individual default probabilities.  
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Let us now compare different dependence structures in order to highlight what 

the impact on default correlations could be. In the diagram that follows we assume 

that the default probability of one sector is 10% while the default probability of the 

other sector it is allowed to vary. Kendal’s tau is assumed to be 0,5 which according 

to equation (26) means that asset correlation is 0,7. We can see that Clayton copula 

means a higher default correlation when the default probability of the other sector has 

a range of values from 10% to 40%. This means that for those values of default 

probabilities Clayton copula has as a result a stronger dependence between the 

defaults in these two sectors.   
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The diagram that follows compares the joint default probability under the 

assumption that dependence structure of assets is either Gaussian either Clayton 

Copula. From the diagram it is clear that when the default probability of the sector has 

a range of values between 0 and 40% Clayton copula implies a higher joint default 

probability than Gaussian copula. This renders clear why default correlation is higher 

when the dependence is Clayton copula in the particular range of default probabilities. 
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Joint default probability for different dependence structures
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Let us now assume that dependence measures remain the same but both 

sectors have the same default probability which is allowed to vary from 0,01% to 

99,9%. Clayton copula implies bigger default correlations till the sectors have default 

probability of 50%. Additionally the default correlation increases as the default 

probability tends to zero. This is of course due to the fact that Clayton copula exhibits 

lower tail dependence. 
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The next diagram is quite illustrative as it shows the values of joint default 

probability for different dependence measures. Particularly we can observe that joint 

default probability is greater when the dependence structure is given by Clayton 

copula till the point that sectors’ individual default probabilities are equal to 50%. 

From that point and on the Gaussian copula implies a higher joint default probability. 
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 Comparison of Joint Default probabilities for different 
copulas 
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Let us now assume that Kendal’s tau of two sectors is -0,3 and the equivalent, 

according to equation (26), asset correlation is -0,45 . The default probability of one 

sector is 10% while the default probability of the other sector is allowed to vary. We 

observe that for all the various default probabilities Gaussian dependence implies 

lower default correlation.  
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In the next graph we compare joint default probability when dependence 

structure is Gaussian and Gumbel copula. Gumbel copula implies greater values for 

the joint default probability independently of the individual default probabilities. This 

fact justifies that default correlation is higher when dependence structure is given by 

Gumbel copula.  
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Again assume that the dependence measures are the same but moreover both 

sectors have the same default probability which is allowed to vary from 0,001% to 

99,9%. Gaussian copula implies lower default correlation until both sectors have 

default probability of 50% where it reaches its minimum. Then it begins to increase 

and when both sectors have default probabilities of 100% it is equal to 0. However 

Gumbel copula follows a decreasing root and reaches its minimum when both sectors 

have default probability equal to 100%. 
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From the following diagram that exhibits joint default dependence we can 

observe that until the point that both individual default probabilities are 60% Gaussian 

copula implies a little lower joint default probability. So default correlation is lower 

when dependence structure is given by Gaussian copula. However from that point and 

on Gaussian  copula implies a higher joint default probability and so a higher default 

correlation. The particular case is indicative of how sensitive is default correlation to 

assets’ underlying structure that determines joint default probability. A joint default 

probability which is few basis points lower than the expected can result to a a very 

lower default correlation!   
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Comparison of joint default probability for different copulas
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SECTORS’  DEFAULT CORRELATIONS 
Now we are ready to proceed to the presentation of the pair-wise default 

correlations between sectors. These default correlations vary. The vast majority of 

them is equal or greater than zero. We have to state that many of these default 

correlations may seem extremely high. However due to the fact that correspond to 

default events on an aggregated level and not to individual default events are quite 

reasonable. The main disadvantage is that default correlation is not based anymore to 

the number of defaults in each sector but on the dependence structure between equity-

implied sectors’ assets. If market participants believe that the equity value of a sector 

does not represent rightly the underlying asset value they will alter their beliefs and so 

equity and asset value will change. In our case they increase and this happens for 

almost all sectors of  ASE. Moreover this increase may be due to other factors such as 

investors’ optimism. Thus the dependence degree will depend on the degree of 

participation of a particular sector to the development of the whole market.  This 

means that default correlation is not based any more to the normal course of business 

between sectors, but rather to the beliefs of the market about the right market value of 

equity. So two sectors with many transactions and a high relationship between them 

may have a low default correlation. On the other hand, two sectors which theoretically 

have no relevance but the market believes that their equity value is underestimated 

and must be increased (or overestimated and so it must be decreased) may have a high 

default correlation.  

The results that we present are very important because it can help whoever 

posses a portfolio of debt securities to diversify it and eliminate its losses. At the 

moment the main interested part are the financial institutions in order to estimate more 

accurately the loss distribution of their loan portfolio and be able to diversify that risk. 

Our results are also of special interest for the regulators of our country who need 

default correlation in order to estimate the risk that each financial institution bears. 

 However the disclosure of information is an important factor for the 

development of an economy. In that way asymmetry of information is eliminated and 

innovations can take place .A such innovation could be the creation of a secondary 

market for the trading of debt where many investors can participate. Moreover big 

companies would like to know how the sector that they belong could be affected from 

a wave of defaults in the sectors that their suppliers or their clients belong. 
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 Hence default correlations are known and there is a reliable method for their 

computation which renders not only the estimation and diversification of a portfolio’s 

risk possible, but moreover it helps the appearance of new instruments for the hedging 

of credit risk. 

The estimation of default correlation is conducive to the establishment in the 

Greek market of credit derivatives such as default swaps or Collaterized Debt 

Obligations ( CDO). The hedger who participates in a default swap must know which 

is the default correlation of his counterparty with the party that issues the obligation in 

order to estimate the risk that he is going to bear. CDO is a way of allocating bond 

default risk to tranches. Default correlations lie at the heart of pricing CDO’s. So 

knowing default correlation allows us to evaluate CDO’s and the first or nth to default 

swaps. From all these we can deduce that a fast and reliable method for estimating 

default correlation can lead to the modernization of the Greek financial system.  
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      Default correlation         

 Chem Resources 
Constr& 
Mater Health Retail Utilities Technology Industrials Food Media Travel Financials Telecom Oil&Gas Insurance 

Chemicals 1,000 0,280 0,253 0,365 0,134 0,000 0,338 0,293 0,187 0,134 0,249 0,285 0,139 0,230 0,060 

Resources  1,000 0,235 0,357 0,172 0,000 0,570 0,493 0,410 0,092 0,341 0,452 0,157 0,152 0,159 
Constr& 
Mater   1,000 0,383 0,385 0,000 0,244 0,203 0,302 0,077 0,381 0,217 0,234 0,254 0,041 
Health    1,000 0,181 0,000 0,363 0,365 0,329 0,157 0,365 0,405 0,162 0,183 0,089 
Retail     1,000 -0,035 0,183 0,137 0,290 0,016 0,377 0,148 0,253 0,204 0,028 

Utilities      1,000 0,000 0,000 0,000 0,000
-

0,031 0,000 0,000 0,000 0,000 

Technology       1,000 0,517 0,353 0,126 0,413 0,359 0,164 0,408 0,131 
Industrials        1,000 0,259 0,213 0,271 0,399 0,117 0,343 0,184 
Food         1,000 0,018 0,490 0,351 0,210 0,385 0,084 
Media          1,000 0,025 0,112 0,012 0,026 0,072 
Travel           1,000 0,328 0,194 0,316 0,062 
Financials            1,000 0,123 0,393 0,170 
Telecom             1,000 0,206 0,026 
Oil&Gas              1,000 0,108 
Insurance               1,000 
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The above results that we have presented concern pair-wise default 

correlations. Thus for their derivation we used the bivariate copula, which most times 

stems from the bivariate cdf, in order to estimate joint default probability. After we 

have derived the bivariate joint default probability we proceeded to derive default 

correlation by implementing the formula that constitutes its definition.   

Nevertheless, as Lucas [20] states, unlike the framework of continuous 

random variables like stock returns, for a binomial variable like default we cannot 

explain the behavior of the entire portfolio when we know the standard deviation of 

each variable and the correlation of each pair of variables. If we have three credits 

A,B and C and assume that the default correlation between each pair of credits is 0, 

we cannot necessarily conclude that the default correlation between any pair of credits 

and the third credit is also zero. 

Lucas in order to test that higher orders of default correlation are also 

important for large portfolios computed the probabilities of zero to 100 credits 

defaulting in a 100-credit portfolio where each credit had 10% probability of default. 

He considered three correlation scenarios: 

● zero pairwise default correlation and zero higher correlations 

● zero pairwise default correlation and maximum negative higher correlations. 

●zero pairwise default correlation and maximum positive higher default correlations. 

His conclusion is that pairwise default correlations do not give all the information is 

needed to understand the behavior of a portfolio. Intuitively, increasing higher level of 

default correlation seems logical. Assuming that positive pairwise default correlation 

exists, the first default in the portfolio will cause us to revise our estimation of the 

default probability of remaining credits upwards. It seems logical that if a second 

credit defaults, we would want again to revise our estimation of the default 

probabilities of the remaining credits upwards. 

 We can compute also the trivariate default correlation, by treating the default 

of two sectors as one event and comparing that event to the default of a third sector. 

The equation that we would use in such an occasion would be: 

2/12/1 )]}(1[*)({*)]}(1[*)({
)(*)()(

CPCPBAPBAP
CPBAPCBAP
−∩−∩

∩−∩∩  

If we want to extend the computation of default correlation to n sectors we must also 

derive the joint default probability of n-1 sectors. Thus we must derive the n-1 

equivalent copula implementing the algorithms that have been developed for n-variate 
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cdf where n ≥ 2.  Moreover in our opinion it seems that the application of the n-copula 

it is more appropriate for the calculation of the nth to default swap. 

 

 

 

IMPLICATIONS FOR A LOAN PORTFOLIO 
We will now consider some situations with the aim to shed more light on the 

consequences that they have on the portfolio. We make use of equations (9)-(12) 

which are given by Bürgisser et al [6] . 

 Let us have a portfolio comprised of loans that are given to two sectors. The 

exposure to each sector is the same and equals 1.000.000 €. Let us assume that each 

sector has the same default probability which equals 10% and the same default 

variance which equals 25%. The expected loss and the unexpected loss is the same for 

both sectors and equivalently are 100.000 and 320.156. We compare five portfolios, 

Portfolio C, D, E, F and G. In Portfolio C, there is independence of the defaults in 

each sector which means that joint default probability is 1% and default correlation is 

0. In Portfolio D there is dependence between the defaults of each sector, the 

dependence structure of asset returns is Gaussian and asset correlation equals 0,7. The 

joint default probability is 4,67% and default correlation is equal to 0,4086. We 

observe that the two portfolios retain the same default probability and the same 

Expected Loss (EL). The Unexpected Loss (UL) for portfolio C is 452.760 while in 

portfolio D equals 455.020. There is also important difference in the default variance 

of the two portfolios. In the case where we have dependence equals 41,96% whereas 

in the case that we have independence is 35,35%. We have to highlight here that 

default variance of the portfolio is the one, together with the assumptions made about 

the distribution of the portfolio that determines the loss that is possible to occur in 

extreme conditions



 66

 

 
Sector 
A 

Sector 
B Portfolio C 

Portfolio 
D 

Portfolio 
E 

Portfolio 
F 

Portfolio 
G 

Exposure 1 m 1 m 2 m 2 m 2 m 2 m 2 m 
DP 0,1 0,1 0,1 0,1 0,1 0,1 0,1 
Default 
variance 0,25 0,25 0,3535 0,4196 0,3674 0,4569 0,383 
EL 0,1 0,1 0,2 0,2 0,2 0,2 0,2 

UL2 
102500 

m 
102500 

m 205000 m 
207043 

m 
205399 

m 
208350 

m 
205870 

m 

UL 
0,32015 

m 
0,32015 

m 0,45276 m 
0,45502 

m 
0,45321 

m 
0,45645 

m 
0,45373 

m 
Asset 
correlation    0,7 0,2 0,7 0,2 
Assets' 
Kendal's tau    0,4939 0,1283 0,4939 0,1283 
Dependence 
Structure   Independence

Gaussian 
copula 

Gaussian 
copula 

Clayton 
copula 

Clayton 
copula 

P(A∩B)   0,01 0,0467 0,0172 0,07 0,0256 

Default 
correlation   0 0,4086 0,0799 0,67 0,174 

 

Portfolio E is characterized from dependence between sectors’ defaults. The 

dependence structure of asset returns is Gaussian while asset correlation equals 0,2. 

The joint default probability is 1,72 % while default correlation equals 0,0799. Special 

attention must be paid to the fact that default variance is 36,74%. This means that 

although the dependence structure is the same the fact that the dependence measure is 

smaller renders portfolio E not as risky as portfolio D. The lower joint default 

probability and default correlation are indicative of the former ascertainment. 

Portfolio F is characterized from the existence of dependence between the 

sectors’ defaults. Asset correlation is the same as in portfolio D i.e. 0,7. However the 

dependence structure is given from Gumbel copula. So the appropriate dependence 

measure is Kendal’s tau which equals 0,5. Joint default probability is 7%, default 

correlation equals 0,67, default variance of the portfolio is 45,7% and unexpected loss 

456.454, the highest of all portfolios.       

  Finally in portfolio G, there is dependence between defaults. The dependence 

structure of assets is described by Gumbel copula. The appropriate dependence 

measure is Kendal’s tau and is equal to 0,128 when asset correlation is 0,2. Kendal’s 

tau in portfolio G is smaller than that of portfolio F  which has as a result joint default 

probability, default correlation and portfolio’s variation of defaults to be smaller than 

portfolio’s F, although they posses the same dependence structure. But simultaneously 
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portfolio’s G joint default probability, default correlation and variation of defaults are 

higher than those of portfolio’s E with which they have the same dependence 

measure, but different copulas.  

 We study next what happens when we increase the bank’s exposure to one of 

the sectors. Now the first sector has exposure 2.000.000, default probability 10% and 

default variance 0,25. The expected loss is 200.000 while the unexpected loss is 

640.312. Sector B retains the characteristics that it also had previously. 

 The expected loss is the same to all hypothetical portfolios as it also happens 

with default probability. However we observe differences in the unexpected loss and 

the default variance. Both of them are higher in portfolio F which posses the Gumbel 

copula as dependence structure and a high dependence measure. Next comes portfolio 

D which has the same dependence measure but its dependence structure is Gaussian. 

Then it follows portfolio G which is characterized by a lower dependence measure 

and Gumbel copula. Portfolio E which has a low dependence measure and Gaussian 

dependence structure has characteristics which are close to that of portfolio C which is 

characterized by independence. In comparison with the previous case that exposure is 

the same to all sectors we observe that unexpected loss appears to be a lot higher. This 

is logical as our portfolio is comprised only from two sectors and the benefits from 

diversification are relatively small. So the risk of our portfolio is influenced in a great 

level from the exposure to a particular sector.  

 
Sector 
A 

Sector 
B Portfolio C 

Portfolio 
D 

Portfolio 
E 

Portfolio 
F 

Portfolio 
G 

Exposure 2 m 1 m 3 m 3 m 3 m 3 m 3 m 
DP 0,1 0,1 0,1 0,1 0,1 0,1 0,1 
Default 
variance 0,25 0,25 0,3727 0,4293 0,3844 0,4619 0,3977 
EL 0,2 m 0,1 m  0,3 m 0,3 m 0,3 m 0,3 m 0,3 m 

UL2 
410000 

m 
102500 

m  512500 m 
516586 

m 
513299 

m 
519200 

m 
514240 

m 

UL 
0,6403 

m 
0,32015 

m 0,7159 m 0,719 m 0,716 m 0,72 m 0,717 m 
Asset 
correlation    0,7 0,2 0,7 0,2 
Assets' 
Kendal's tau    0,4939 0,1283 0,4939 0,1283 
Dependence 
Structure   Independence

Gaussian 
copula 

Gaussian 
copula 

Clayton 
copula 

Clayton 
copula 

P(A∩B)   0,01 0,0467 0,0172 0,07 0,0256 
Default 
correlation   0 0,4086 0,0799 0,67 0,174 
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The next situation shows what happens if exposure to both sectors is the same 

but one of them has higher default probability. Let us assume that sector A has default 

probability 20%. The expected loss is the same with the situation that the exposure is 

2.000.000 and default probability 10%. However the unexpected loss is lower for all 

portfolios in the case that we study now, than the unexpected loss of the equivalent 

portfolios when default probabilities are the same between sectors and there is greater 

exposure to one sector. 

 Default probability to all portfolios has been raised to 15%. The unexpected 

loss of all portfolios is smaller than in the case that the sectors had the same default 

probabilities but the exposure to one of them was 2.000.000. In the case that we have 

independence default variance is the same for both cases (greater exposure and greater 

default probability) and equal to 37,267%. In comparison with the portfolios that they 

exhibited greater exposure to one sector, default variance appears to be slightly 

increased in the case that the dependence structure is Gaussian while it is slightly 

reduced in the case that the dependence structure is Gumbel Copula. 

If we compare the following table with the one that turned up when the two 

sectors had the same default probability but the exposure was greater to one of them 

we see that the latter case is riskier. This is quite reasonable because a great exposure 

implies that if individual default occurs, the loss will be great. Thus the same 

exposure to sectors with different default probabilities is safer than having a great 

exposure to one sector when both have the same default probabilities. This happens 

because of the small number of sectors from which our portfolio is comprised.   

 
Sector 
A 

Sector 
B Portfolio C 

Portfolio 
D 

Portfolio 
E 

Portfolio 
F 

Portfolio 
G 

Exposure 1 m 1 m 2 m 2 m 2 m 2 m 2 m 
DP 0,2 0,1 0,15 0,15 0,15 0,15 0,15 
Default 
variance 0,25 0,25 0,3727 0,42925 0,3859 0,4506 0,3969 
EL 0,2 m 0,1 m 0,3 m 0,3 m 0,3 m 0,3 m 0,3 m 

UL2 
210000 

m 
102500 

m 312500 m 
316583 

m 
313407 

m 
318274 

m 
314182 

m 

UL 
0,45825 

m 
0,32015 

m 0,559 m 0,5626 m 0,5598 m 0,5641 m 
0,5605 

m 
Asset 
correlation   0 0,7 0,2 0,7 0,2 
Assets' 
Kendal's tau   0 0,4939 0,1283 0,4939 0,1283 
Dependence 
Structure   Independence

Gaussian 
copula 

Gaussian 
copula 

Clayton 
copula 

Clayton 
copula 

P(A∩B)   0,02 0,0689 0,0308 0,08929 0,04019 
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Default 
correlation   0 0,40832 0,0907 0,57744 0,168 

           

   

 

 

We study next what it happens if  we have the biggest exposure to the sector 

with the highest default probability. 

 
Sector 
A 

Sector 
B Portfolio C 

Portfolio 
D 

Portfolio 
E 

Portfolio 
F 

Portfolio 
G 

Exposure 2 m 1 m 3 m 3 m 3 m 3 m 3 m 
DP 0,2 0,1 0,1667 0,1667 0,1667 0,1667 0,1667 
Default 
variance 0,25 0,25 0,4123 0,45018 0,42102 0,46496 0,42832 
EL 0,4 0,1 0,5 0,5 0,5 0,5 0,5 

UL2 
840000 

m 
102500 

m 942500 m 
950666 

m 
944314 

m 
954048 

m 
945865 

m 

UL 
0,91651 

m 
0,32015 

m 0,9708 m 0,975 m 0,9717 m 0,9767 m 
0,97255 

m 
Asset 
correlation   0 0,7 0,2 0,7 0,2 
Assets' 
Kendal's tau   0 0,4939 0,1283 0,4939 0,1283 
Dependence 
Structure   Independence

Gaussian 
copula 

Gaussian 
copula 

Clayton 
copula 

Clayton 
copula 

P(A∩B)   0,02 0,0689 0,0308 0,08929 0,04019 
Default 
correlation   0 0,40832 0,0907 0,57744 0,168 

 

 

Sector A which has the higher default probability and the biggest exposure is 

observed to have four times bigger expected loss and almost three times higher 

unexpected loss than sector B. The default probability to all hypothetical portfolios is 

increased and reaches 16,67%. The expected  and the unexpected loss and default 

variance to all portfolios appear to be greater. The unexpected loss and default 

variance is bigger for portfolio F and next comes portfolio D ,G, E and last C. 
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Finally we see what happens if the greater exposure is to the sector with the 

lower default probability. Both sectors have the same expected loss while the 

unexpected loss is greater to the sector with the bigger exposure. Default probability 

to all constructed portfolios is lower than the case where the greater exposure was to 

the sector with the higher default probability. It is also lower than the case that the 

exposure was the same but the one sector had higher default probability than the 

other. The expected loss of the portfolios is the same. When compared with the case 

where the bigger exposure was to the sector with the higher default probability, we 

observe that expected loss is lower in the scenario that we study now. Default 

variance of the portfolios is very low and almost equal with those of the scenario that 

both sectors had the same exposure and default probability. However unexpected loss 

is lower only than the case that the greater exposure is on the sector with the higher 

default probability. 

This is rather expected because we have two sources that influence unexpected 

loss. The one is the great exposure to one sector which means that if default occurs the 

loss will be great while the other is the second’s sector great default probability which 

means that is more possible for a loss to occur. This is due to the fact that our 

portfolio is comprised from only two sectors. However we observe that default 

variance which is used in CreditRisk+ in order to compute the overall loss distribution 

appears to lessen. 

 

 

 
Sector 
A 

Sector 
B Portfolio C 

Portfolio 
D 

Portfolio 
E 

Portfolio 
F 

Portfolio 
G 

Exposure 2 m 1 m 3 m 3 m 3 m 3 m 3 m 
DP 0,1 0,2 0,1333 0,1333 0,1333 0,1333 0,1333 
Default 
variance 0,25 0,25 0,35355 0,41957 0,36924 0,444 0,3821 
EL 0,2 0,2 0,4 0,4 0,4 0,4 0,4 

UL2 
410000 

m 
210000 

m 620000 m 
628166 

m 
621814 

m 
631548 

m 
623365 

m 
UL 0,64031 0,4582 0,7874 0,7925 0,78855 0,7947 0,7895 
Asset 
correlation   0 0,7 0,2 0,7 0,2 
Assets' 
Kendal's tau   0 0,4939 0,1283 0,4939 0,1283 
Dependence 
Structure   Independence

Gaussian 
copula 

Gaussian 
copula 

Clayton 
copula 

Clayton 
copula 

P(A∩B)   0,02 0,0689 0,0308 0,08929 0,04019 
Default 
correlation   0 0,40832 0,0907 0,57744 0,168 
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In the situations that we examined, each portfolio included only two sectors. 

Thus the effects from the diversification did not show up and the risk due to statistical 

nature of default events, i.e. a crisis in a particular sector, plays an important role. 

This means that unexpected loss is mainly influenced from the exposure to a 

particular sector and the sector’s default probability. However, even in a portfolio 

with small diversification it is prevalent the role that default correlation plays. So in 

order to estimate the loss distribution of a loan portfolio we must always take into 

account default correlation which is defined from sectors’ default probabilities and 

from the underlying dependence structure of assets.  

In a diversified portfolio the statistical nature of default events is limited and 

the systematic change in industries as they are reflected from default correlation retain 

the crucial role. And the more diversified the portfolio is, the greater the role that 

default correlation plays… 

In order to illustrate this last statement we will study some more portfolios. 

We make the assumption that all sectors have the same characteristics. The exposure 

to each sector is equal to 1 million monetary units, their default probability is equal to 

10%, their default variance is 0,25  , their expected loss is 100.000 monetary units and 

the unexpected loss 320.156. 

 Portfolios A, B and C are comprised of loans to only two sectors. Their one 

and only difference concerns the value of default correlation between the sectors. In 

portfolio A there is independence of defaults and so default correlation is equal to 0, 

in portfolio B default correlation is equal to 0,2 and in portfolio D default correlation 

is equal to 0,4.  

  When we compare these three portfolios we observe that default variance and 

unexpected loss depend on the default correlation. So Portfolio C which has the 

higher default correlation it has also the greater default variance and unexpected loss. 

If default correlation was equal to 0,2 but we ignored it, the underestimation of default 

variance and unexpected loss would be equal to 9,5% and 0,2% equivalently. 

 If default correlation was equal to 0,4 but we ignored it, the underestimation of 

default variance and unexpected loss would be equal to 18,3% and 0,4% equivalently. 

We observe that the underestimation is twice grater in portfolio C which has a twice 

greater default correlation. 
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Portfolios D, E and F are comprised of loans to three sectors. Their one and 

only difference concerns the value of default correlation between the sectors which 

we assume that is the same for every possible pair-wise combination. In portfolio D 

there is independence of defaults and so default correlation is equal to 0, in portfolio E 

default correlation is equal to 0,2 and in portfolio F default correlation is equal to 0,4. 

Again we observe that default variance and unexpected loss is greater to the portfolio 

which has the greater default correlation. 

If default correlation was equal to 0,2 but we ignored it, the underestimation of 

default variance and unexpected loss would be equal to 26,5% and 0,4% equivalently. 

 If default correlation was equal to 0,4 but we ignored it, the 

underestimation of default variance and unexpected loss would be equal to 48,3% and 

0,98% equivalently. Again we observe that the underestimation is almost twice 

greater in portfolio C which has a twice greater default correlation. These findings 

confirm the intuition that the more diversified a portfolio is, the more attention must 

be paid on default correlation. And the higher the default correlation is, the greater the 

underestimation of potential loss would be. 

  Portfolios A, B and C have greater default variance than portfolios D, E and F.  

Thus, we see that the more diversified a portfolio is, the lower its default variance is.

 Portfolios D, E and F have a greater unexpected loss than portfolios A, B and 

C. This is due to the fact that exposure is greater and so expected and unexpected 

losses are greater too.   

 Let us now assume that a bank’s total exposure is 3.000.000 as in the case that 

the financial institution had granted loans to three sectors, but the total exposure in 

this case is divided equally to only two sectors. Thus portfolios G, H and K are 

constructed. We observe that default variance remains the same with those that 

portfolios A, B and C have. So we can deduce that default variance of a portfolio that 

determines the tail of loss distribution in CreditRisk+ is affected mainly from the 

number of sectors and the default correlation among them.  

Portfolios G, H and K have an unexpected loss which not only is greater than 

the equivalent ones of portfolios A, B and C, but moreover they are greater than the 

equivalent ones of portfolios D, E and F. This means that diversification reduces 

unexpected loss which is affected very much from the exposure to each sector and 

default correlation.  
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 Sector A 
Portfolio 
A Portfolio B 

Portfolio 
C 

Portfolio 
D Portfolio E Portfolio F 

Portfolio 
G 

Portfolio 
H 

Portfolio 
K 

Exposure 1000000 2000000 2000000 2000000 3000000 3000000 3000000 3000000 3000000 3000000

DP 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
Default variance 0,5 0,353553 0,38729833 0,41833 0,235703 0,2981429 0,3496033 0,353553 0,387298 0,41833
EL 100000 200000 200000 200000 300000 300000 300000 300000 300000 300000
UL 320156,2 452769,3 453872,229 454972,5 552268,1 554977,5 557673,76 679153,9 680808,3 682458,8
Default 
correlation  0 0,2 0,4 0 0,2 0,4 0 0,2 0,4
Underestimation 
of default 
variance   0,09544512 0,183216  0,2649099 0,4832377  0,095445 0,183216
Underestimation 
of UL   0,00243606 0,004866  0,004906 0,0097882  0,002436 0,004866
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CONCLUSION 
 

Our aim was to derive estimates of default correlation. For doing this, first we 

derived sectors’ default probabilities. These are determined mainly from the business 

risk of the sector. Our findings show that financial structure does not play such an 

important role as far as financial leverage is moderate. Thus for moderate levels of 

financial leverage the MM theorem with taxes obtains. But as financial leverage is 

increased the costs of financial distress are greater than the tax advantages. 

 Then we estimated the dependence structure between each pair of sectors in 

order to be able to derive the joint default probability. We used the notion of copula, 

without making assumptions about the marginal distributions. For 90% of sectors’ 

pairs the appropriate copula was found to be the Gaussian. We showed the 

implications of using different estimators of Gaussian copula in particular and the 

impact of a different dependence structure. 

 Knowing the individual default probabilities of sectors and their joint we were 

able to estimate default correlation. The method that we followed allows us to take 

into account the change in default probabilities when we estimate default correlations. 

The latter must be estimated in regular periods so loan loss distribution and credit 

derivatives’ price is correctly estimated. 

 Concluding, although asset value models allow us to estimate default 

probabilities and default correlation, they are based on the dependence of equity 

implied asset values. Thus, it is market participants’ beliefs about sectors’ 

perspectives and the future value  of sectors’ equity, rather than normal course of 

business, that determine default correlation. This fact renders the pair-wise default 

correlations that have been derived with this method questionable. 

   However these default correlations constitute good estimates that can be used 

in a number of financial applications such as the evaluation of credit derivatives. 

Moreover they are necessary for the estimation of a loan portfolio loss distribution. If 

default correlations are neglected, the loss that can take place in extreme conditions 

will be underestimated with catastrophic consequences for the survival of the financial 

institution.    
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 TAIL DEPENDENCE 
GAUSSIAN          

 
Chemica
ls 

 
Resourc
es 

Constr
& 
Mater 

Healt
h Retail 

Utiliti
es 

Technol
ogy 

Industria
ls Food 

Medi
a 

Trav
el 

Financi
als 

Teleco
m 

Oil&
Gas 

Insuran
ce 

Chemical
s                
 
Resource
s 0,107               

Constr& 
Mater 0,076 0,180              
Health 0,139 0,070 0,322             
Retail 0,023 0,171 0,289 0,041            
Utilities 0,000 0,000 0,000 0,000 0,000           
Technolo
gy 0,138 0,210 0,113 0,066 0,080 0,000          
Industrial
s 0,150 0,105 0,123 0,091 0,054 0,000 0,160         
Food 0,019 0,128 0,139 0,054 0,193 0,000 0,063 0,024        
Media 0,008 0,001 0,003 0,007 0,000 0,000 0,003 0,015 0,218       

Travel 0,053 0,158 0,223 0,096 0,244 0,000 0,218 0,071 0,341 0,000      
Financial
s 0,110 0,076 0,154 0,129 0,071 0,000 0,039 0,044 0,076 0,002 0,170     

Telecom 0,024 0,157 0,101 0,035 0,086 0,000 0,067 0,033 0,076 0,000 0,864 0,036    

Oil&Gas 0,107 0,061 0,119 0,042 0,119 0,000 0,487 0,036 0,082 0,000 0,073 0,059 0,069   
Insurance 0,193 0,059 0,199 0,133 0,035 0,000 0,098 0,263 0,022 0,005 0,074 0,048 0,060 0,062  
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     NORMAL TAIL DEPENDENCE          

 
Chemica
ls 

 
Resourc
es 

Constr
& 
Mater 

Healt
h Retail 

Utiliti
es 

Technol
ogy 

Industria
ls Food 

Medi
a 

Trav
el 

Financi
als 

Teleco
m 

Oil&Ga
s 

Insur
ance 

Chemical
s                
 
Resource
s 0,456               

Constr& 
Mater 0,464 0,529              
Health 0,578 0,548 0,492             
Retail 0,294 0,428 0,549 0,340            
Utilities 0,000 0,000 0,000 0,000 0,000           
Technolo
gy 0,307 0,476 0,367 0,360 0,262 0,000          

Industrial
s 0,445 0,522 0,459 0,416 0,331 0,000 0,327         

Food 0,088 0,206 0,205 0,156 0,252 0,000 0,209 0,077        
Media 0,036 0,011 0,014 0,018 0,006 0,000 0,006 0,059 0,339       
Travel 0,276 0,437 0,514 0,348 0,456 0,000 0,346 0,297 0,339 0,002      

Financial
s 0,607 0,569 0,514 0,663 0,375 0,000 0,306 0,464 0,136 0,022 0,342     

Telecom 0,103 0,227 0,170 0,141 0,147 0,000 0,289 0,088 0,383 0,000 0,464 0,113    

Oil&Gas 0,132 0,456 0,150 0,578 0,115 0,000 0,195 0,099 0,239 0,000 0,228 0,142 0,374   
Insurance 0,638 0,554 0,499 0,542 0,334 0,000 0,407 0,545 0,115 0,032 0,330 0,562 0,148 0,228  
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    TAIL DEPENDENCE OF GUMBEL COPULA        

 
Chemica
ls 

 
Resourc
es 

Constr
& 
Mater 

Healt
h Retail Utilities 

Techn
ology 

Industria
ls Food 

Medi
a 

Trav
el 

Financi
als 

Teleco
m 

Oil&Ga
s 

Insur
ance 

Chemical
s                
 
Resource
s 0,072               

Constr& 
Mater 0,056 0,153              
Health 0,089 0,106 0,125             
Retail 0,007 0,073 0,101 0,023            
Utilities 0,002 0,012 0,000 0,004 0,002           
Technolo
gy 0,124 0,165 0,093 0,107 0,023 0,004          

Industrial
s 0,121 0,049 0,051 0,030 0,010 0,000 0,051         
Food 0,009 0,090 0,066 0,032 0,086 0,016 0,030 0,007        
Media 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,003 0,118       
Travel 0,027 0,100 0,157 0,088 0,130 0,000 0,027 0,028 0,118 0,000      

Financial
s 0,068 0,119 0,071 0,148 0,023 0,002 0,043 0,044 0,034 0,000 0,062     

Telecom 0,103 0,188 0,072 0,053 0,062 0,019 0,072 0,020 0,120 0,000 0,044 0,047    
Oil&Gas 0,030 0,072 0,071 0,089 0,079 0,013 0,454 0,018 0,100 0,000 0,090 0,070 0,080   
Insurance 0,228 0,107 0,071 0,079 0,016 0,002 0,119 0,126 0,016 0,001 0,036 0,064 0,057 0,638  
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     TAIL DEPENDENCE OF CLAYTON COPULA      

 
Chemica
ls 

 
Resourc
es 

Constr
& 
Mater 

Healt
h Retail 

Utili
ties 

Technolo
gy 

Industria
ls Food 

Medi
a 

Trav
el 

Financi
als 

Teleco
m 

Oil&
Gas 

Insuran
ce 

Chemical
s                
 
Resource
s 0,864               
Constr& 
Mater 0,848 0,908              
Health 0,877 0,887 0,897             
Retail 0,696 0,864 0,884 0,788            

Utilities - - - - -           
Technolo
gy 0,896 0,912 0,879 0,888 0,786 -          
Industrial
s 0,895 0,840 0,842 0,806 0,725 - 0,842         

Food 0,716 0,878 0,859 0,811 0,875 - 0,806 0,695        

Media 0,511 0,127 0,242 0,229 0,001
0,1
07 0,251 0,609 0,893       

Travel 0,800 0,884 0,909 0,876 0,899 - 0,799 0,802 0,700 0,037      
Financial
s 0,861 0,894 0,863 0,906 0,786 - 0,831 0,832 0,814 0,294 0,855     

Telecom 0,890 0,919 0,864 0,845 0,855 - 0,864 0,778 0,894 0,011 0,832 0,836    
Oil&Gas 0,806 0,864 0,863 0,877 0,869 - 0,921 0,769 0,884 0,001 0,878 0,862 0,871   
Insurance 0,930 0,888 0,863 0,869 0,757 - 0,894 0,897 0,760 0,430 0,819 0,857 0,849 0,93  
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Kendal's t 
Chemica
ls 

 
Resourc
es 

Constr
& 
Mater 

Healt
h Retail Utilities 

Techn
ology 

Industria
ls Food 

Medi
a 

Trav
el 

Finan
cials 

Teleco
m 

Oil&Ga
s 

Insuran
ce 

Chemical
s 1,000               
 
Resource
s 0,703 1,000              
Constr& 
Mater 0,677 0,782 1,000             
Health 0,725 0,743 0,760 1,000            
Retail 0,489 0,704 0,738 0,592 1,000           

Utilities -0,377 -0,533 -0,385
-

0,438 -0,395 1,000          
Technolo
gy 0,759 0,790 0,730 0,744 0,590 -0,428 1,000         
Industrial
s 0,757 0,665 0,668 0,617 0,519 -0,241 0,668 1,000        
Food 0,509 0,727 0,695 0,623 0,721 -0,555 0,617 0,488 1,000       
Media 0,341 0,142 0,196 0,190 0,022 0,172 0,200 0,411 -0,046 1,000      
Travel 0,608 0,737 0,785 0,724 0,764 -0,432 0,754 0,611 0,754 0,079 1,000     

Financial
s 0,698 0,755 0,701 0,779 0,590 -0,378 0,652 0,654 0,627 0,221 0,689 1,000    

Telecom 0,602 0,804 0,703 0,672 0,689 -0,571 0,703 0,580 0,756 0,059 0,703 0,660 1,000   
Oil&Gas 0,617 0,703 0,702 0,725 0,712 -0,541 0,714 0,569 0,737 0,031 0,727 0,700 0,808 1,000  
Insurance 0,826 0,744 0,702 0,712 0,555 -0,394 0,755 0,761 0,559 0,190 0,724 0,692 0,679 0,826 1,000 
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Drezner (1978)  developed a computationally efficient method for the bivariate 
normal integral. 
The probability distribution of the normalized normal distribution is : 

 
If  we  substitute  
 

 
 
And define  
 

 
 
We have that  
 

 
 
 
By Gauss Quadrature : 

 
 
Where  

 
 
 
The method for calculating the double integral is the following: 

(1) 
 

(2) 
 

(3) 
Where  
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For h,k  ≠  0 

(4) 
 
Where  
 

 
 
And  

             
 
 
 Now  we can follow the following algorithm: 

i) If   h ≤0 , k ≤ 0, p ≤ 0 compute directly. 
ii) If   h ≤ 0, k  ≥ 0 , p ≥ 0 use 3. 
iii) If   h ≥ 0, k ≤ 0,   p ≥ 0 use 2. 
iv)  If   h ≥ 0, k ≥ 0 , p ≤ 0 use 1. 
v)  If   h*k*p > 0 use 4. 

  
 
The above algorithm has been translated into VBA code by Mario Melchiori.  
 
Function ND2(az As Single, bz As Single, rhoz As Single) As Single 
    If az * bz * rhoz > 0 Then 
        ND2 = biv2(az, bz, rhoz) 
    Else 
        ND2 = biv1(az, bz, rhoz) 
    End If 
         
End Function 
 Function biv1(az As Single, bz As Single, rhoz As Single) As Single 
    With Application 
        If rhoz = 0 Then 
            biv1 = .NormSDist(az) * .NormSDist(bz) 
        ElseIf az <= 0 And bz <= 0 And rhoz <= 0 Then 
            biv1 = phiz(az, bz, rhoz) 
        ElseIf az <= 0 And bz >= 0 And rhoz >= 0 Then 
            biv1 = .NormSDist(az) - phiz(az, -bz, -rhoz) 
        ElseIf az >= 0 And bz <= 0 And rhoz >= 0 Then 
            biv1 = .NormSDist(bz) - phiz(-az, bz, -rhoz) 
        ElseIf az >= 0 And bz >= 0 And rhoz <= 0 Then 
            biv1 = .NormSDist(az) + .NormSDist(bz) - 1 + phiz(-az, -bz, rhoz) 
        End If 
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    End With 
End Function 
Function biv2(az As Single, bz As Single, rhoz As Single) As Single 
    Dim signa As Integer 
    Dim signb As Integer 
    Dim rhoAB As Single 
    Dim rhoBA As Single 
    Dim delta As Single 
     
    If az >= 0 Then signa = 1 Else signa = -1 
    If bz >= 0 Then signb = 1 Else signb = -1 
    rhoAB = (rhoz * az - bz) * signa / Sqr(az ^ 2 - 2 * rhoz * az * bz + bz ^ 2) 
    rhoBA = (rhoz * bz - az) * signb / Sqr(az ^ 2 - 2 * rhoz * az * bz + bz ^ 2) 
    delta = (1 - signa * signb) / 4 
     
    biv2 = biv1(az, 0, rhoAB) + biv1(bz, 0, rhoBA) - delta 
End Function 
Function phiz(aa As Single, bb As Single, rhoo As Single) As Single 
    Dim w(1 To 5) As Single 
    Dim x(1 To 5) As Single 
    Dim a1 As Single 
    Dim b1 As Single 
    Dim fsum As Single 
    Dim f As Single 
    Dim i As Integer 
    Dim j As Integer 
     
    w(1) = 0.24840615 
    x(1) = 0.10024215 
    w(2) = 0.39233107 
    x(2) = 0.48281397 
    w(3) = 0.21141819 
    x(3) = 1.0609498 
    w(4) = 0.03324666 
    x(4) = 1.7797294 
    w(5) = 0.00082485334 
    x(5) = 2.6697604 
    a1 = aa / Sqr(2 * (1 - rhoo ^ 2)) 
    b1 = bb / Sqr(2 * (1 - rhoo ^ 2)) 
     
        For i = 1 To 5 
            For j = 1 To 5 
                f = Exp(a1 * (2 * x(i) - a1) + b1 * (2 * x(j) - b1) + 2 * rhoo * (x(i) - a1) * 
(x(j) - b1)) 
                fsum = fsum + w(i) * w(j) * f 
            Next j, i 
            phiz = 0.31830989 * Sqr(1 - rhoo ^ 2) * fsum 
    End Function 
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Dunnet and Sobel were the first who developed an algorithm for the calculation of 

bivariate t –distribution. They started to evaluate the following integral: 

 
At first made the transformation: 

  
And they obtained the expression  

 
 

Where 

  
And  

 

They observwd that the function ( )rnφ is immediately integrable and they 

simultaneously defined the function 

 
And they expressed the result of the integration as  

 

 
 

In order to reduce the above expression they used the recursion formula  

 

 
Where  
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 They ended to make the distinction between even and odd number of freedom 

degrees in order to present an outcome. Thus if the degrees of freedom is an even 

number the expression of the cdf is  

 

 
While the for odd number of freedom degrees the equinalent expression is  

 

 
 

Finally they used the reduction formula  

 
And they obtained the expressions  

 
Which they recommended to use for computational purposes. 

 

Alan Genz developed an algorithm in FORTRAN which is an application of Dunnet’s 

and Sobel’s results. The code is the following 
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DOUBLE PRECISION FUNCTION BVTL( NU, DH, DK, R )  which calculates the 

probability that X < DH and Y < DK. 

 

parameters 

* 

*   NU number of degrees of freedom 

*   DH 1st lower integration limit 

*   DK 2nd lower integration limit 

*   R   correlation coefficient 

* 

      INTEGER NU, J, HS, KS 

      DOUBLE PRECISION DH, DK, R 

      DOUBLE PRECISION TPI, PI, ORS, HRK, KRH, BVT, SNU, BVND, STUDNT 

      DOUBLE PRECISION GMPH, GMPK, XNKH, XNHK, QHRK, HKN, HPK, 

HKRN 

      DOUBLE PRECISION BTNCKH, BTNCHK, BTPDKH, BTPDHK, ONE, EPS 

      PARAMETER ( ONE = 1, EPS = 1D-15 ) 

      IF ( NU .LT. 1 ) THEN 

         BVTL = BVND( -DH, -DK, R ) 

      ELSE IF ( 1 - R .LE. EPS ) THEN 

            BVTL = STUDNT( NU, MIN( DH, DK ) ) 

      ELSE IF ( R + 1  .LE. EPS ) THEN 

         IF ( DH .GT. -DK )  THEN 

            BVTL = STUDNT( NU, DH ) - STUDNT( NU, -DK ) 

         ELSE 

            BVTL = 0 

         END IF 

      ELSE 

         PI = ACOS(-ONE) 

         TPI = 2*PI 

         SNU = NU 

         SNU = SQRT(SNU) 

         ORS = 1 - R*R   

         HRK = DH - R*DK   
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         KRH = DK - R*DH   

         IF ( ABS(HRK) + ORS .GT. 0 ) THEN 

            XNHK = HRK**2/( HRK**2 + ORS*( NU + DK**2 ) )  

            XNKH = KRH**2/( KRH**2 + ORS*( NU + DH**2 ) )  

         ELSE 

            XNHK = 0   

            XNKH = 0   

         END IF 

         HS = SIGN( ONE, DH - R*DK )   

         KS = SIGN( ONE, DK - R*DH )  

         IF ( MOD( NU, 2 ) .EQ. 0 ) THEN 

            BVT = ATAN2( SQRT(ORS), -R )/TPI  

            GMPH = DH/SQRT( 16*( NU + DH**2 ) )   

            GMPK = DK/SQRT( 16*( NU + DK**2 ) )   

            BTNCKH = 2*ATAN2( SQRT( XNKH ), SQRT( 1 - XNKH ) )/PI   

            BTPDKH = 2*SQRT( XNKH*( 1 - XNKH ) )/PI  

            BTNCHK = 2*ATAN2( SQRT( XNHK ), SQRT( 1 - XNHK ) )/PI   

            BTPDHK = 2*SQRT( XNHK*( 1 - XNHK ) )/PI  

            DO J = 1, NU/2 

               BVT = BVT + GMPH*( 1 + KS*BTNCKH )  

               BVT = BVT + GMPK*( 1 + HS*BTNCHK )  

               BTNCKH = BTNCKH + BTPDKH   

               BTPDKH = 2*J*BTPDKH*( 1 - XNKH )/( 2*J + 1 )   

               BTNCHK = BTNCHK + BTPDHK   

               BTPDHK = 2*J*BTPDHK*( 1 - XNHK )/( 2*J + 1 )   

               GMPH = GMPH*( 2*J - 1 )/( 2*J*( 1 + DH**2/NU ) )  

               GMPK = GMPK*( 2*J - 1 )/( 2*J*( 1 + DK**2/NU ) )  

            END DO 

         ELSE 

            QHRK = SQRT( DH**2 + DK**2 - 2*R*DH*DK + NU*ORS )   

            HKRN = DH*DK + R*NU   

            HKN = DH*DK - NU   

            HPK = DH + DK  

            BVT = ATAN2( -SNU*( HKN*QHRK + HPK*HKRN ), 
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     &                          HKN*HKRN-NU*HPK*QHRK )/TPI 

            IF ( BVT .LT. -EPS ) BVT = BVT + 1 

            GMPH = DH/( TPI*SNU*( 1 + DH**2/NU ) )   

            GMPK = DK/( TPI*SNU*( 1 + DK**2/NU ) )   

            BTNCKH = SQRT( XNKH )   

            BTPDKH = BTNCKH  

            BTNCHK = SQRT( XNHK )   

            BTPDHK = BTNCHK   

            DO J = 1, ( NU - 1 )/2 

               BVT = BVT + GMPH*( 1 + KS*BTNCKH )  

               BVT = BVT + GMPK*( 1 + HS*BTNCHK )  

               BTPDKH = ( 2*J - 1 )*BTPDKH*( 1 - XNKH )/( 2*J )   

               BTNCKH = BTNCKH + BTPDKH   

               BTPDHK = ( 2*J - 1 )*BTPDHK*( 1 - XNHK )/( 2*J )   

               BTNCHK = BTNCHK + BTPDHK   

               GMPH = 2*J*GMPH/( ( 2*J + 1 )*( 1 + DH**2/NU ) )  

               GMPK = 2*J*GMPK/( ( 2*J + 1 )*( 1 + DK**2/NU ) )  

            END DO 

         END IF 

         BVTL = BVT  

      END IF 

*     END BVTL 

      END 

 

Student t Distribution Function 

* 

*                       T 

*         STUDNT = C   I  ( 1 + y*y/NU )**( -(NU+1)/2 ) dy 

*                   NU -INF 

* 

      INTEGER NU, J 

      DOUBLE PRECISION T, ZRO, ONE, PI, PHID 

      DOUBLE PRECISION CSSTHE, SNTHE, POLYN, TT, TS, RN 

      PARAMETER ( ZRO = 0, ONE = 1 ) 
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      PI = ACOS(-ONE) 

      IF ( NU .LT. 1 ) THEN 

         STUDNT = PHID( T ) 

      ELSE IF ( NU .EQ. 1 ) THEN 

         STUDNT = ( 1 + 2*ATAN(T)/PI )/2 

      ELSE IF ( NU .EQ. 2 ) THEN 

         STUDNT = ( 1 + T/SQRT( 2 + T*T ))/2 

      ELSE  

         TT = T*T 

         CSSTHE = 1/( 1 + TT/NU ) 

         POLYN = 1 

         DO J = NU-2, 2, -2 

            POLYN = 1 + ( J - 1 )*CSSTHE*POLYN/J 

         END DO 

         IF ( MOD( NU, 2 ) .EQ. 1 ) THEN 

            RN = NU 

            TS = T/SQRT(RN) 

            STUDNT = ( 1 + 2*( ATAN(TS) + TS*CSSTHE*POLYN )/PI )/2 

         ELSE 

            SNTHE = T/SQRT( NU + TT ) 

            STUDNT = ( 1 + SNTHE*POLYN )/2 

         END IF 

         STUDNT = MAX( ZRO, MIN( STUDNT, ONE ) ) 

      ENDIF 

      END 

 

 

The above code was translated into VBA while taking for granted the needs of our 

application. 

 

Function tsc(dh As Double, dk As Double, r As Double, nu As Double, inte As 

Double) As Double 

tpi = 2 * Application.WorksheetFunction.Pi 

opi = Application.WorksheetFunction.Pi 
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ors = 1 - r * r 

hrk = dh - r * dk 

krh = dk - r * dh 

If Abs(hrk) + ors > 0 Then 

    xnhk = hrk ^ 2 / (hrk ^ 2 + ors * (nu + dk ^ 2)) 

    xnkh = krh ^ 2 / (krh ^ 2 + ors * (nu + dh ^ 2)) 

Else 

    xnhk = 0 

    xnkh = 0 

End If 

If hrk >= 0 Then hs = 1 Else hs = -1 

If krh >= 0 Then ks = 1 Else ks = -1 

If nu / 2 = inte Then 

    bvt = Application.WorksheetFunction.Atan2(ors ^ 0.5, -r) / tpi 

    gmph = dh / ((16 * (nu + dh ^ 2)) ^ 0.5) 

    gmpk = dk / ((16 * (nu + dk ^ 2)) ^ 0.5) 

    btnckh = 2 * Application.WorksheetFunction.Atan2((xnkh ^ 0.5), ((1 - xnkh) ^ 

0.5)) / opi 

    btpdkh = 2 * ((xnkh * (1 - xnkh)) ^ 0.5) / opi 

    btnchk = 2 * Application.WorksheetFunction.Atan2((xnhk) ^ 0.5, ((1 - xnhk) ^ 

0.5)) / opi 

    btpdhk = 2 * ((xnhk * (1 - xnhk)) ^ 0.5) / opi 

    For j = 1 To nu / 2 

        bvt = bvt + gmph * (1 + ks * btnckh) 

        bvt = bvt + gmpk * (1 + hs * btnchk) 

        btnckh = btnckh + btpdkh 

        btpdkh = 2 * j * btpdkh * (1 - xnkh) / (2 * j + 1) 

        btnchk = btnchk + btpdhk 

        btpdhk = 2 * j * btpdhk * (1 - xnhk) / (2 * j + 1) 

        gmph = gmph * (j - 1 / 2) / (j * (1 + dh ^ 2 / nu)) 

        gmpk = gmpk * (j - 1 / 2) / (j * (1 + dk ^ 2 / nu)) 

      Next j 

Else 

    qhrk = (dh ^ 2 + dk ^ 2 - 2 * r * dh * dk + nu * ors) ^ 0.5 
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    hkrn = dh * dk + r * nu 

    hkn = dh * dk - nu 

    hpk = dh + dk 

    bvt = Application.WorksheetFunction.Atan2(-(nu ^ 0.5) * (hkn * qhrk + hpk * 

hkrn), hkn * hkrn - nu * hpk * qhrk) / tpi 

    If bvt < -0.00000000001 Then 

        bvt = bvt + 1 

    End If 

      gmph = dh / (tpi * (nu ^ 0.5) * (1 + dh ^ 2 / nu)) 

      gmpk = dk / (tpi * (nu ^ 0.5) * (1 + dk ^ 2 / nu)) 

      btnckh = xnkh ^ 0.5 

      btpdkh = btnckh 

      btnchk = xnhk ^ 0.5 

      btpdhk = btnchk 

      For j = 1 To (nu - 1) / 2 

        bvt = bvt + gmph * (1 + ks * btnckh) 

        bvt = bvt + gmpk * (1 + hs * btnchk) 

        btpdkh = (2 * j - 1) * btpdkh * (1 - xnkh) / (2 * j) 

        btnckh = btnckh + btpdkh 

        btpdhk = (2 * j - 1) * btpdhk * (1 - xnhk) / (2 * j) 

        btnchk = btnchk + btpdhk 

        gmph = gmph * j / ((j + 1 / 2) * (1 + dh ^ 2 / nu)) 

        gmpk = gmpk * j / ((j + 1 / 2) * (1 + dk ^ 2 / nu)) 

      Next j 

End If 

tsc = bvt 

 

End Function 

 


