
 Page | 1

University of Piraeus
Department of Digital Systems

THESIS

A Practical Approach for Web Application Security

Panagiotis Kritikos

Postgraduate Programme in "Techno-economic Management
and Digital Systems Security"

Associate Professor

Xenakis Christos

May 2016

 Page | 2

 Page | 3

Table of Contents

ABSTRACT .. 6

1. INTRODUCTION .. 6

2. LINUX OPERATING SYSTEM ... 6

3. CENTOS 7 INSTALLATION .. 7

4. CENTOS 7 CONFIGURATION .. 8

4.1 CONFIGURE NETWORK WITH STATIC IP ADDRESS ... 8
4.2 SET HOST AND HOSTNAME OF SERVER ... 10
4.3 UPDATE OR UPGRADE CENTOS MINIMAL INSTALL .. 10
4.4 INSTALL COMMAND LINE WEB BROWSER ... 11
4.5 INSTALL AND CONFIGURE SSH SERVER ... 12
4.6 INSTALL GCC (GNU COMPILER COLLECTION) .. 12
4.7 INSTALL JAVA ... 13
4.8 INSTALL APACHE TOMCAT .. 13
4.9 INSTALL NMAP TO MONITOR OPEN PORTS .. 16
4.10 FIREWALLD CONFIGURATION ... 16
4.11 INSTALLING WGET ... 19
4.12 INSTALLING WEBMIN ... 20
4.13 ENABLE THIRD PARTY REPOSITORIES ... 20
4.14 INSTALL 7-ZIP UTILITY ... 20
4.15 INSTALL AND ENABLE SELINUX ... 21
4.16 INSTALL LINUX MALWARE DETECT (LMD).. 21

5. INSTALLING LAMP (LINUX, APACHE, MARIADB, PHP/PHPMYADMIN) IN CENTOS 7.0 22

5.1 INSTALL APACHE HTTP SERVER .. 22
5.2 INSTALL PHP ... 24
5.3 INSTALL MARIADB DATABASE .. 25
5.4 INSTALL PHPMYADMIN .. 27

6. HOW TO INSTALL MOD_SECURITY WITH APACHE ON CENTOS 7 .. 29

6.1 INSTALLATION AND CONFIGURATION OF MOD_SECURITY & MOD_EVASIVE .. 30

7. RISK ASSESSMENT & MITIGATION .. 33

7.1 INSTALLATION OF WEB APPLICATION DVWA –DAMN VULNERABLE WEB APPLICATION- ... 33
7.2 SPLUNK SECURITY INSTALLATION ... 36
7.3 NETWORK & WEB APPLICATION SCAN ... 38

7.3.1 Mod_Security Audit Logs ... 38
7.3.2 Mod_Security Audit Log Example .. 41
7.3.3 Web Application Scan with Acunetix Vulnerability Scanner .. 46
7.3.4 Web Application Scan with Nessus Vulnerability Scanner ... 48

7.4 IDENTIFICATION AND MITIGATION OF WEB ATTACKS ... 51
7.4.1 Handling Mod_Security Rules and False Positives ... 51
7.4.2 SQL Injection Attacks ... 55

7.4.3 Cross-site Scripting (XSS) Attacks .. 57
7.4.4 File Inclusion Attacks .. 60
7.4.5 Cross-Site Request Forgery (CSRF) Attacks .. 63
7.4.6 Total Attacks .. 65

8. CONCLUSIONS .. 66

9. REFERENCES ... 68

 Page | 4

Table of Images

IMAGE 4.1 SETTING THE HOST FILE WITH OUR STATIC IP ADDRESS .. 10
IMAGE 4.2 JAVA INSTALLATION ... 13
IMAGE 4.3 TOMCAT INSTALLATION .. 15
IMAGE 4.4 SETTING NEW USER FOR TOMCAT ... 15
IMAGE 5.1 PHP INSTALLATION ... 25
IMAGE 5.2 MARIADB INSTALLATION .. 26
IMAGE 5.3 PHPMYADMIN CONFIGURATION A ... 28
IMAGE 5.4 PHPMYADMIN LOGIN .. 28
IMAGE 5.5 PHPMYADMIN CONFIGURATION B ... 29
IMAGE 6.1 INSTALLATION OF MOD_SECURITY AND MOD_EVASIVE .. 31
IMAGE 7.1 DVWA INTERFACE .. 35
IMAGE 7.2 SPLUNK SECURITY ... 37
IMAGE 7.3 LOGS EXAMPLE OF SQLI ATTACK .. 41
IMAGE 7.4 ACUNETIX WEB SCAN 1 ... 47
IMAGE 7.5 ACUNETIX WEB SCAN 2 ... 47
IMAGE 7.6 MONITORING LOGS WITH SPLUNK SECURITY .. 48
IMAGE 7.7 TEMPLATES OF NESSUS SCANS ... 49
IMAGE 7.8 BASIC NETWORK SCAN ... 49
IMAGE 7.9 WEB APPLICATION SCAN .. 50
IMAGE 7.10 TOP VALUES OF HTTP STATUS CODES PER TIME... 50
IMAGE 7.11 INCLUDE CUSTOM RULES WITH APACHE INCLUDE DIRECTIVE ... 53
IMAGE 7.12 CREATED NEW CUSTOM RULES FILES .. 53
IMAGE 7.13 LOGS FROM SPLUNK OF SQL INJECTION ATTACKS .. 55
IMAGE 7.14 TOP URI FROM THE SQL INJECTION ATTACKS ... 56
IMAGE 7.15 SUCCESS RATE OF SQL INJECTION ATTACKS BEFORE AND AFTER OUR WAF IMPLEMENTATION 56
IMAGE 7.16 CUSTOM FILE FOR RULES DETECTING SQL INJECTION ATTACKS .. 57
IMAGE 7.17 XSS ATTACKS OVERVIEW BEFORE WAF IMPLEMENTATION ... 58
IMAGE 7.18 XSS ATTACKS OVERVIEW AFTER WAF IMPLEMENTATION ... 58
IMAGE 7.19 LOGS FROM SPLUNK OF XSS ATTACKS ... 59
IMAGE 7.20 CUSTOM FILE FOR RULES DETECTING XSS ATTACKS ... 59
IMAGE 7.21 LOGS FROM SPLUNK OF RFI ATTACKS ... 61
IMAGE 7.22 LFI ATTACKS OVERVIEW BEFORE AND AFTER WAF IMPLEMENTATION ... 61
IMAGE 7.23 CUSTOM FILE FOR RULES DETECTING LFI ATTACKS .. 62
IMAGE 7.24 CUSTOM FILE FOR RULES DETECTING RFI ATTACKS .. 62
IMAGE 7.25 CSRF ATTACKS OVERVIEW BEFORE AND AFTER WAF IMPLEMENTATION .. 63
IMAGE 7.26 LOGS FROM SPLUNK OF CSRF ATTACKS .. 64
IMAGE 7.27 CUSTOM FILE FOR RULES DETECTING CSRF ATTACKS ... 64
IMAGE 7.28 TOTAL ATTACKS OVERVIEW BEFORE AND AFTER WAF IMPLEMENTATION ... 65

Table of Tables

TABLE 5.1 WEB SERVER DEVELOPERS: MARKET SHARE OF ACTIVE SITES [3] .. 23
TABLE 7.1 AUDIT LOG DIRECTIVES [8] ... 39
TABLE 7.2 AUDIT LOG PARTS [8] ... 40
TABLE 7.3 WEB APPLICATION SECURITY CONSORTIUM ... 45
TABLE 7.4 OWASP .. 45
TABLE 7.5 PCI STANDARDS .. 46

 Page | 5

 Page | 6

Abstract
Protecting Web Applications is quite challenging. Both web applications and web server
platforms that run them, are a big source of security vulnerabilities. Policy based
confinement and conventional access control policies, firewalls as well as intrusion
detection and prevention systems are effective in detecting a majority of attacks.
However, they are unable to detect attacks that “hijack” access to web applications.
This paper presents a practical approach to achieve security goals, to eliminate common
security exploits, to identify various threats and to secure the important and ubiquitous
Web Applications.

1. Introduction

In this paper, we are demonstrating how we can fortify and at what extent our web
servers and web applications by using the Mod_Security Web Application Firewall (WAF)
module and the Splunk Enterprise Security solution for monitoring, analyzing and
managing security information and events.

For the purposes of this paper, we decided to use a Linux Operating System (OS) and
more specifically the CentOS version 7, Linux distribution. In chapters 2, 3 and 4, we
first explain the reasons why we selected to deploy a Linux OS and amongst those the
CentOS distribution as well as how to install it and configure it properly up to some
degree.

In chapters 5 and 6, we describe how we deployed and configured our web server with
all the essential modules and Mod_Security WAF module in CentOS 7 respectively.
Furthermore, in chapter 7 we install our web application and Splunk Security, perform a
risk assessment on our web application by using vulnerability scanners tools and exhibit
how we can identify and mitigate some well-known web attacks. Finally, in chapter 8
we summarize with our findings and conclusions.

2. Linux Operating System

Linux is a computer operating system (OS) quite similar to the Unix OS and it is mostly
POSIX-compliant assembled under the model of free and open-source software
development and distribution. Linux was originally created to be similar to Unix. Both
have similar tools for interfacing with the systems, programming tools, file system
layouts, and other key components. However, Unix is not free. Over the years, a
number of different operating systems have been created that attempted to be “unix-
like” or “unix-compatible,” but Linux has been the most successful, far surpassing its
predecessors in popularity.

 Page | 7

Linux is the best-known and most-used open source operating system. It lies
underneath all of the other software on a computer, receiving requests from those
programs and relaying these requests to the computer‟s hardware. For the purposes of
this paper, we use the term “Linux” to refer to the Linux kernel, but also the set of
programs, tools, and services that are typically bundled together with the Linux kernel
to provide all of the necessary components of a fully functional operating system.

In many ways Linux is similar to other operating systems such as Windows, OS X, or
iOS. Like other operating systems, Linux has also a graphical interface, and types of
software we are accustomed to using on other operating systems, such as word
processing applications. Most likely, a Linux version of the same program you use on
other systems also exists. If you can use a computer or other electronic device, you can
use Linux.

Nevertheless, Linux also is different from other operating systems in many important
ways. Primarily, Linux is open source software; the code used to create Linux is free
and available to the public to view, edit, and, for users with the appropriate skills, to
contribute to it.

Finally, Linux is also different in that, although the core pieces of the Linux OS are
generally common, there are many distributions of Linux, which include different
software options. This means that Linux is incredibly customizable, because Linux users
can swap not just applications out but they can also choose core components, such as
which system displays graphics they prefer, and other user-interface components. That
is the reason why we chose to use Linux for our purposes.

3. CentOS 7 Installation

Amongst a wide variety of Linux distributions, we chose for our project to be based on
the CentOS Linux operating system. Since, it offers a consistent manageable platform
that suits a wide variety of deployments, as well as a solid, predictable base to build
upon, along with extensive resources to build, test, release, and maintain open source
code.

The CentOS Project [1] is a community-driven free Linux software distribution focused
on delivering a robust open source ecosystem. It is a stable, predictable, manageable
and reproducible platform derived from the sources of Red Hat Enterprise Linux (RHEL).

In this tutorial, we downloaded and installed the minimal ISO image, CentOS-7-x86_64-
Minimal-1511.iso, from the official site (https://www.centos.org/download/). Also, the
CentOS Project is modeled on the structure of the Apache Foundation and will match
with our Apache web server installation.

 Page | 8

Web servers are used to serve Web pages requested by client computers. The Apache
HTTP Server, informally called Apache, is the world's most used web server software
and more specifically the most commonly used Web server on Linux systems. Originally,
it was based on the NCSA HTTPd server.

The Apache HTTP Server Project [2] is an effort to develop and maintain an open-
source HTTP server for modern operating systems including UNIX and Windows. The
goal of this project is to provide a secure, efficient and extensible server that provides
HTTP services in sync with the current HTTP standards.

4. CentOS 7 Configuration

4.1 Configure Network with Static IP Address

The first thing needs to be done is to configure Static IP address, Route and DNS to the
CentOS Server. This can be done by either the ip command or the ifconfig command.
The ifconfig command is still available for most of the Linux distributions and can be
installed from default repository.

yum install net-tools

So, to configure static IP address, make sure you first check the current IP address.

ip addr show
or
ifconfig

Now open and edit file /etc/sysconfig/network-scripts/ifcfg-eno167777736 using your
choice of editor. Here, we are using VI editor and of course with root privileges to make
changes…

vi /etc/sysconfig/network-scripts/ifcfg-eno167777736

Inside the file, we will be editing four fields. Note the below four fields and leave
everything else untouched.

IPADDR = “Enter your static IP here”
GATEWAY = “Enter your Default Gateway”
DNS1 = “Your Domain Name System 1”

After making the changes „ifcfg-eno167777736 „, looks something like the image below.

 Page | 9

Notice your IP, GATEWAY and DNS will vary, please confirm it with your ISP. Save and
Exit.

Restart service network

#service network restart

After restarting network, make sure to check the IP address and network status…

ip addr show
ping -c4 google.com

 Page | 10

4.2 Set Host and Hostname of Server

The next thing to do is to change the Host and Hostname of the CentOS sever. Check
the currently assigned HOSTNAME.

echo $HOSTNAME

To set new HOSTNAME we need to edit „/etc/hostsname„ and replace old hostname
with the desired one.

vi /etc/hostname

After setting hostname, make sure to confirm hostname by logout and login again.
To set the host we need to edit „/etc/hosts„ file and put our one with the static IP
address of our host.

vi /etc/hosts

Image 4.1 Setting the host file with our static IP address

4.3 Update or Upgrade CentOS Minimal Install

This will not install any new packages other than updating and installing the latest
version of installed packages and security updates. Moreover Update and Upgrade are
pretty same except the fact that Upgrade = Update + enable obsoletes processing
during updates.

yum update && yum upgrade

Important: You can also run the below command which will not prompt for the
packages update and you do not need to type „y„ for accepting the changes.However it

 Page | 11

is always a good idea to review the changes which is going to take place on the sever
specially in production. Hence using the below command may automate the update and
upgrade for you but it is not recommended.

yum -y update && yum -y upgrade

4.4 Install Command Line Web Browser

In most cases, especially in production environment, we usually install CentOS as
command line with no GUI; in this situation we must have a command line browsing
tool to check websites via terminal. For this, we going to install a most famous tool
called „links„.

yum install links

For some people around the globe, a web browser that renders text along with graphics
is important since it gives an easy to use and attractive interface, glossy look, nice
visibility, easy navigation, and after all click-initiated control. On the other hand there
exist some people who want a web browser that render text only.

For System Administrators who generally don‟t have X-windows as a safety measure on
their server, the text based web browser comes to rescue. Some OS comes bundled
with the text based browser, viz., the „links‟ web comes bundled with Gentoo GNU/Linux
where installation proceeds with tar ball.

If a command-line browser is more (speedy, better, interface, etc) then it makes a
sense to use such text based browsers. In reality, for some features the text based
browser gives better access to encoded information in the page, than the graphical
interface.

Links Browser Properties

 Free and Open source (Foss)
 Text and graphical web browser with a pull down menu.
 Built in support for color and monochrome terminal with the facility of horizontal

scrolling.

 Inherits a lot of features from graphical user interface e.g., pop-ups, Menus, etc
in textual-fashion.

 Capable of font rendering in different sizes and JavaScript support.

 Page | 12

4.5 Install and Configure SSH Server

SSH stands for Secure Shell which is the default protocol in Linux for remote
management. SSH is one of those essential piece of software which comes default with
CentOS Minimal Server.

Check Currently Installed SSH version.

ssh –V
Use Secure Protocol over the default SSH Protocol and change port number also for
extra Security. Edit the SSH configuration file „/etc/ssh/ssh_config„.

Uncomment the line below line or delete 1 from the Protocol string, so the line seems
like:

Protocol 2,1 (Original)
Protocol 2 (Now)

This change force SSH to use Protocol 2 which is considered to be more secure than
Protocol 1 and also make sure to change the port number 22 to any in the
configuration.

Disable SSH „root login„ and allow to connect to root only after login to normal user
account for added additional Security. For this, open and edit configuration file
„/etc/ssh/sshd_config„ and change PermitRootLogin yes t PermitRootLogin no.

PermitRootLogin yes (Original)
PermitRootLogin no (Now)

Finally, restart SSH service to reflect new changes..

systemctl restart sshd.service

4.6 Install GCC (GNU Compiler Collection)

GCC stands for GNU Compiler Collection is a compiler system developed by GNU Project
that support various programming languages. It is not installed by default in CentOS
Minimal Install. To install gcc compiler run the below command.

yum install gcc

Check the version of installed gcc.

 Page | 13

gcc –version

4.7 Install Java

Java is a general purpose class based, object-oriented Programming language. It is not
installed by default in CentOS Minimal Server. Install Java from repository as below.

yum install java

Check version of Java Installed.

java –version

Image 4.2 Java Installation

4.8 Install Apache Tomcat

Tomcat is a servlet container designed by Apache to run Java HTTP web server. Install
tomcat as below but it is necessary to point out that you must have installed Java prior
of installing tomcat.

yum install tomcat

 Page | 14

After tomcat has been installed, star the tomcat service.

systemctl start tomcat

Check Version of tomcat.

/usr/sbin/tomcat version

Add service tomcat and default port (8080) through firewall and reload settings.

firewall-cmd --zone=public --add-port=8080/tcp --permannet
firewall-cmd --reload

Now it‟s time to secure tomcat server, create a user and a password to access and
manage. We need to edit file „/etc/tomcat/tomcat-users.xml„. See the section which
looks like:

<tomcat-users>
....
</tomcat-users>

<role rolename="manager-gui"/>
 <role rolename="manager-script"/>
 <role rolename="manager-jmx"/>
 <role rolename="manager-status"/>
 <role rolename="admin-gui"/>
 <role rolename="admin-script"/>
 <user username="tecmint" password="tecmint" roles="manager-gui,manager-
script,manager-jmx,manager-status,admin-gui,admin-script"/>
</tomcat-users>

Here we added user “tecmint” to administer/manage tomcat using password “tecmint”.
Stop and start the service tomcat so that the changes are taken into effect and enable
tomcat service to start at system boot.

systemctl stop tomcat
systemctl start tomcat
systemctl enable tomcat.service

 Page | 15

Image 4.3 Tomcat Installation

Image 4.4 Setting new user for Tomcat

 Page | 16

4.9 Install Nmap to Monitor Open Ports

Nmap for Network Mapper creates a map of the network by discovering host on which
it is running as well as by analyzing network. nmap is not included in the default
installation and you have to install it from repository.

yum install nmap

List all open ports and corresponding services using them on host.

nmap 127.0.01

You may also use firewall-cmd to list all the ports, however I find nmap more useful.

firewall-cmd --list-ports

4.10 FirewallD Configuration

Net-filter it is a firewall in Linux. Firewalld is a dynamic daemon to manage firewall with
support for networks zones. In RHEL/CentOS 7 and Fedora 21 iptables interface is
being replaced by firewalld. Firewalld is installed by default on RedHat Enterprise Linux
and its derivatives by default. With iptables every change in order to be taken into
effect needs to flush all the old rules and create new rules.

However with firewalld, no flushing and recreating of new rules required and only
changes are applied on the fly.

Check if Firewalld is running or not.

systemctl status firewalld
OR
firewall-cmd --state

Before heading up for firewalld configuration, I would like to discuss about each zones.
By default there are some zones available. We need to assign the interface to the zone.
A zone define that the zone was trusted or denied level to the interface to get
connection. A zone can contain services & ports. Here, we‟re going describe each zones
available in Firewalld.

1. Drop Zone: Any incoming packets are dropped, if we use this drop zone. This is
same as we use to add iptables -j drop. If we use the drop rule, means there is
no reply, only outgoing network connections will be available.

 Page | 17

2. Block Zone: Block zone will deny the incoming network connections are rejected
with an icmp-host-prohibited. Only established connections within the server will
be allowed.

3. Public Zone: To accept the selected connections we can define rules in public
zone. This will only allow the specific port to open in our server other
connections will be dropped.

4. External Zone: This zone will act as router options with masquerading is enabled
other connections will be dropped and will not accept, only specified connection
will be allowed.

5. DMZ Zone: If we need to allow access to some of the services to public, you can
define in DMZ zone. This too have the feature of only selected incoming
connections are accepted.

6. Work Zone: In this zone, we can define only internal networks i.e. private
networks traffic are allowed.

7. Home Zone: This zone is specially used in home areas, we can use this zone to
trust the other computers on networks to not harm your computer as every
zone. This too allow only the selected incoming connections.

8. Internal Zone: This one is similar to work zone with selected allowed
connections.

9. Trusted Zone: If we set the trusted zone all the traffic are accepted.

Now you‟ve better idea about zones, now let‟s find out some basic commands:

Get a list of all the zones.

firewall-cmd --get-zones

To get details on a zone before switching.

firewall-cmd --zone=work --list-all

To get default zone.

firewall-cmd --get-default-zone

To switch to a different zone say „work„.

firewall-cmd --set-default-zone=work

To list all the services in the zone.

firewall-cmd --list-services

 Page | 18

To add a service say http, temporarily and reload firewalld.

firewall-cmd --add-service=http
firewall-cmd –reload

To add a service say http, permanently and reload firewalld.

firewall-cmd --add-service=http --permanent
firewall-cmd --reload

To remove a service say http, temporarily.

firewall-cmd --remove-service=http
firewall-cmd –reload

To remove a service say http, permanently.

firewall-cmd --zone=work --remove-service=http --permanent
firewall-cmd --reload

To allow a port (say 331), temporarily.

firewall-cmd --add-port=331/tcp
firewall-cmd --reload

To allow a port (say 331), permanently.

firewall-cmd --add-port=331/tcp --permanent
firewall-cmd --reload

To block/remove a port (say 331), temporarily.

firewall-cmd --remove-port=331/tcp
firewall-cmd --reload

To block/remove a port (say 331), permanently.

firewall-cmd --remove-port=331/tcp --permanent
firewall-cmd –reload

 Page | 19

If I want to allow the services such as http and https, you use the following rules. First
add the rule and make it permanent and reload the rules and check the status.

firewall-cmd --add-rich-rule 'rule family="ipv4" source address="192.168.0.0/24"
service name="http" accept'
firewall-cmd --add-rich-rule 'rule family="ipv4" source address="192.168.0.0/24"
service name="http" accept' --permanent

firewall-cmd --add-rich-rule 'rule family="ipv4" source address="192.168.0.0/24"
service name="https" accept'
firewall-cmd --add-rich-rule 'rule family="ipv4" source address="192.168.0.0/24"
service name="https" accept' --permanent

Now, the Network range 192.168.0.0/24 can use the above service from my server. The
option –permanent can be used in every rule, but we have to define the rule and check
with the client access after that we have to make it permanent.

To disable firewalld.

systemctl stop firewalld
systemctl disable firewalld
firewall-cmd --state

To enable firewalld.

systemctl enable firewalld
systemctl start firewalld
firewall-cmd --state

To know more about Firewalld.

man firewalld

4.11 Installing Wget

wget is a Linux command line based utility that retrieves (downloads) content from web
servers. It is an important tool you must have to retrieve web contents or download any
files using wget command.

yum install wget

 Page | 20

For more usage and practical examples on how to use wget command to download files
on the terminal, read 10 Wget Command Examples.

4.12 Installing Webmin

Webmin is a Web based configuration tool for Linux. It acts as a central system to
configure various system configuration like users, disk quota, services and
configurations of HTTP server, Apache, MySQL, etc.

wget http://prdownloads.sourceforge.net/webadmin/webmin-1.740-1.noarch.rpm
rpm -ivh webmin-*.rpm

After webmin installation, you will get a message on terminal to login to your host
(http://ip-address:10000) using your root password on port number 10000. If running a
headless server you can forward the port and access it on a machine/server that is
headed.

4.13 Enable Third Party Repositories

It is not a good idea to add untrusted repositories specially in production and it may be
fatal. However just for example here we will be adding a few community approved
trusted repositories to install third party tools and packages.

Add Extra Package for Enterprise Linux (EPEL) Repository.

yum install epel-release

Add Community Enterprise Linux Repository.

rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm

4.14 Install 7-zip Utility

In the CentOS Minimal Install you don‟t get utility like unzip or unrar. We have the
option to install each utility as required or an utility that servers for all. 7-zip is such an
utility which compress and extract files of all known types.

yum install p7zip

http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm

 Page | 21

4.15 Install and Enable SELinux

SELinux which stands for Security-Enhanced Linux is a security module at kernel
level.

yum install selinux-policy

Check SELinux Mode.

getenforce

The output is enforcing mode which means SELinux policy is in effect.

For debugging, set selinux mode to permissive temporarily. No need to reboot.

setenforce 0

After debugging set selinux to enforcing again without rebooting.

setenforce 1

4.16 Install Linux Malware Detect (LMD)

Linux Malware Detect (LMD) is an open source Linux malware scanner released
under the GNU GPLv2 license, that is specially designed for threats faced in hosting
environments.

LMD is not available from online repositories, but is distributed as a tarball from the
project‟s web site. The tarball containing the source code of the latest version is always
available at the following link, where it can be downloaded with:

wget http://www.rfxn.com/downloads/maldetect-current.tar.gz

Then we need to unpack the tarball and enter the directory where its contents were
extracted. There we will find the installation script, install.sh.

tar -xvf maldetect-current.tar.gz

ls -l | grep maldetect

If we inspect the installation script, which is only 75 lines long (including comments),
we will see that it not only installs the tool, but also performs a pre-check to see if the

 Page | 22

default installation directory (/usr/local/maldetect) exists. If not, the script creates the
installation directory before proceeding.

Finally, after the installation is completed, a daily execution via cron is scheduled by
placing the cron.daily script in /etc/cron.daily. This helper script will, among other
things, clear old temporary data, check for new LMD releases, and scan the default
Apache and web control panels (i.e., CPanel, DirectAdmin, to name a few) default data
directories.

That being said, we run the installation script as usual:

./install.sh

You can also install and Use (LMD) with ClamAV as Antivirus Engine

yum install clamd

5. Installing LAMP (Linux, Apache, MariaDB,
PHP/PhpMyAdmin) in CentOS 7.0

A "LAMP" stack is a group of open source software that is typically installed together to
enable a server to host dynamic websites and web apps. This term is actually an
acronym which represents the Linux operating system, with the Apache web server.
The site data is stored in a MySQL database (using MariaDB), and dynamic content is
processed by PHP.

In this guide, we'll get a LAMP stack installed on the last release of Red Hat Enterprise
Linux 7.0 and CentOS 7.0, with the mention that both distributions have upgraded
httpd daemon to Apache HTTP 2.4. CentOS will fulfill our first requirement: a Linux
operating system.

5.1 Install Apache HTTP Server

No matter for what purpose you will be using the server, in most of the cases you need
a HTTP server to run websites, multimedia, client side script and many other things.
The Apache web server is currently the most popular web server in the world, which
makes it a great default choice for hosting a website.

 Page | 23

Developer March 2016 Percent April 2016 Percent Change

Apache 83,825,658 49.16% 82,446,619 49.15% -0.01

nginx 28,026,677 16.44% 28,196,262 16.81% 0.37

Microsoft 17,228,197 10.10% 16,887,242 10.07% -0.04

Google 13,545,864 7.94% 12,968,162 7.73% -0.21

Table 5.1 Web server developers: Market share of active sites [3]

We can install Apache easily using CentOS's package manager, yum.

yum install httpd

If you would like to change default port (80) of Apache HTTP Server to any other port.
You need to edit the configuration file „/etc/httpd/conf/httpd.conf„ and search for the
line that starts typically like:

LISTEN 80

Change port number „80„ to any other port (say 3221), save and exit.
Add the port you just opened for Apache through firewall and then reload firewall.

Allow service http through firewall (Permanent).

firewall-cmd --add-service=http

Allow port 3221 through firewall (Permanent).

firewall-cmd -permanent -add-port=3221/tcp

Reload firewall.

firewall-cmd --reload

After making all above things, now it‟s time to restart Apache HTTP server, so that the
new port number is taken into effect.

systemctl restart httpd.service

 Page | 24

Now add the Apache service to system-wide to start automatically when system boots.

systemctl start httpd.service
systemctl enable httpd.service

Now verify the Apache HTTP Server by using links command line tool as shown in the
below screen.

links “your static IP address”

5.2 Install PHP

PHP is a server-side scripting language for web based services. It is frequently used as
general-purpose programming language as well. Install PHP on CentOS Minimal Server
as.

yum install php

After installing php, make sure to restart Apache service to render PHP in Web Browser.

systemctl restart httpd.service

Next, verify PHP by creating following php script in the Apache document root directory.

echo -e "<?php\nphpinfo();\n?>" > /var/www/html/phpinfo.php

Now view the PHP file, we just created (phpinfo.php) in Linux Command Line as below.

php /var/www/html/phpinfo.php
OR
links http:// “your static IP address”/phpinfo.php

 Page | 25

Image 5.1 PHP Installation

5.3 Install MariaDB Database

MariaDB is a fork of MySQL. RedHat Enterprise Linux and its derivatives have shifted to
MariaDB from MySQL. It is the Primary Database management System. It is again one
of those tools which is necessary to have and you will need it sooner or later no matter
what kind of server you are setting. Install MariaDB on CentOS Minimal Install server as
below.

yum install mariadb-server mariadb

Start and configure MariaDB to start automatically at boot.

systemctl start mariadb.service
systemctl enable mariadb.service

Allow service mysql (mariadb) through firewall.

firewall-cmd --add-service=mysql

 Page | 26

Now it‟s time to secure MariaDB server.

/usr/bin/mysql_secure_installation

To test database functionality login to MariaDB using its root account and exit using quit
statement.

mysql -u root -p
MariaDB > SHOW VARIABLES;
MariaDB > quit

Image 5.2 MariaDB Installation

 Page | 27

5.4 Install PHPMyAdmin

By default official RHEL 7.0 or CentOS 7.0 repositories doesn‟t provide any binary
package for PhpMyAdmin Web Interface. If you are uncomfortable using MySQL
command line to manage your database you can install PhpMyAdmin package by
enabling CentOS 7.0 rpmforge repositories using the following command.

yum install http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-
1.el7.rf.x86_64.rpm

After enabling rpmforge repository, next install PhpMyAdmin.

yum install phpmyadmin

Next configure PhpMyAdmin to allow connections from remote hosts by editing
phpmyadmin.conf file, located on Apache conf.d directory, commenting the following
lines.

vi /etc/httpd/conf.d/phpmyadmin.conf

Use a # and comment this lines.

Order Deny,Allow
Deny from all
Allow from 127.0.0.1

To be able to login to PhpMyAdmin Web interface using cookie authentication
method add a blowfish string to phpmyadmin config.inc.php file like in the screenshot
below using the generate a secret string, restart Apache Web service and direct your
browser to the URL address http://server_IP/phpmyadmin/.

nano /etc/httpd/conf.d/phpmyadmin.conf
systemctl restart httpd

Enable LAMP System-wide

If you need MariaDB and Apache services to be automatically started after
reboot issue the following commands to enable them system-wide.

systemctl enable mariadb
systemctl enable httpd

http://www.question-defense.com/tools/phpmyadmin-blowfish-secret-generator

 Page | 28

Image 5.3 PhpMyAdmin Configuration A

Image 5.4 PhpMyAdmin Login

 Page | 29

Image 5.5 PhpMyAdmin Configuration B

That is all it takes for a basic LAMP installation on CentOS 7.0.

6. How to Install Mod_Security with Apache on
CentOS 7

Mod_Security is a Web Application Firewall that execute as a Module on your Web
Server and provides protection against various attacks to our web applications. It
monitors HTTP traffic and performs real time analysis. It‟s a product developed by
Breach Security and is available a free software under the GNU License. It is Available
for Apache, Nginx and IIS.

Mod_Security can be deployed and integrated in our current Web Servers
infrastructure, meaning that we do not have to modify our internal Network, we don‟t
add any point of failure, we can benefit from load balancing and scalability and we
would not have any issues with compress or encrypted Data. Mod_Security is a valuable
security tool and have proven to be effective. If we want to protect our web
applications this is a tool that deserves your attention.

Important files to Remember:
Mod Security Config File – /etc/httpd/conf.d/mod_security.conf
Debug Log – /var/log/httpd/modsec_debug.log

 Page | 30

Audit log – /var/log/httpd/modsec_audit.log
Rules – /etc/httpd/modsecurity.d/activated_rules

6.1 Installation and Configuration of mod_security &
mod_evasive

It is important to have enabled the EPEL repository in the CentOS/RHEL server before
the installation of the following packages,

rpm -ivh http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-
5.noarch.rpm

And since we already have, we can proceed:

Log in to the server as user „root‟ and make sure that all packages are up to date:

yum -y update

Before we start the installation of mod_security, we need to install the following
dependencies first

yum install gcc make httpd-devel libxml2 pcre-devel libxml2-devel curl-devel git

Then install these packages [4]

yum install mod_security
yum install mod_evasive

After the installation is complete, you will find the main configuration files inside
/etc/httpd/conf.d

http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm
http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm

 Page | 31

Image 6.1 Installation of mod_security and mod_evasive

Or download the mod_security source code (this includes only the mod_security, not
the mod_evasive module) from their official website to your server

cd /opt/
wget https://www.modsecurity.org/tarball/2.9.1/modsecurity-2.9.1.tar.gz

Extract the downloaded archive and change the current working directory to the newly
extracted directory

tar xzfv modsecurity-2.9.1.tar.gz
cd modsecurity-2.9.1

Now, let‟s configure, compile and install mod_security from the source code

./configure
make
make install

https://www.modsecurity.org/

 Page | 32

Copy the default mod_security configuration and the unicode.mapping file to the
necessary Apache directory

cp modsecurity.conf-recommended /etc/httpd/conf.d/modsecurity.conf
cp unicode.mapping /etc/httpd/conf.d/

With this step, mod_security is installed on your server. Now we need to configure the
Apache web server. Open the web server configuration file and add the following line

nano /etc/httpd/conf/httpd.conf
LoadModule security2_module modules/mod_security2.so
LoadModule unique_id_module modules/mod_unique_id.so

Now you need to make sure that Apache loads both modules when it starts. Look for
the following lines (or add them if they are not present) in mod_security.conf and
mod_evasive.conf, respectively:

LoadModule security2_module modules/mod_security2.so
LoadModule evasive20_module modules/mod_evasive20.so

Save the changes and restart Apache

/etc/init.d/httpd restart

Download and configure OWASP (Open Web Application Security Project) core rule set
for a base configuration

cd /etc/httpd
git clone https://github.com/SpiderLabs/owasp-modsecurity-crs.git
mv owasp-modsecurity-crs modsecurity-crs
cd modsecurity-crs
cp modsecurity_crs_10_setup.conf.example modsecurity_crs_10_config.conf

Open the Apache configuration file again, and add the following lines at the end of the
flie

Include modsecurity-crs/modsecurity_crs_10_config.conf
Include modsecurity-crs/base_rules/*.conf

Save the file and restart the web server again

/etc/init.d/httpd restart

 Page | 33

7. Risk Assessment & Mitigation

7.1 Installation of Web Application DVWA –Damn Vulnerable
Web Application-

Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web application that

is damn vulnerable. Its main goal is to be an aid for security professionals to test their
skills and tools in a legal environment and help web developers better understand the
processes of securing web applications. By using DVWA, you can practice and exploit
some of the most common web vulnerabilities, with various difficultly levels, with a
simple interface [5].

Simply unzip dvwa.zip, place the unzipped files in your public html folder, then point
your browser to:

http://[IP address of your machine]/dvwa/setup.php.

The most recent version can be found at http://www.dvwa.co.uk/, so we will start by
downloading and installing the DVWA into this file,

cd /var/www/html
wget https://github.com/RandomStorm/DVWA/archive/v1.9.zip
unzip v1.9.zip
rm –rf v1.9.zip

The configuration directory for DVWA is,

cd /var/www/html/dvwa/config

Also, the configuration file for DVWA that handles the database communication from
the Web App is,

nano config.inc.php

To set up the database, simply click on the Setup DVWA button in the main menu, then
click on the Create / Reset Database button. This will create / reset the database for
you with some data in.

If you receive an error while trying to create your database, make sure your database
credentials are correct within ./config/config.inc.php.

The variables are set to the following by default:

http://www.dvwa.co.uk/
https://github.com/RandomStorm/DVWA/archive/v1.9.zip

 Page | 34

$_DVWA['db_user'] = 'root';
$_DVWA['db_password'] = 'p@ssw0rd';
$_DVWA['db_database'] = 'dvwa';

Some other configurations may be needed depending on your Operating System as well
as your PHP version, so you may wish to alter the default configuration. The location of
the files will be different on a per-machine basis. Note that you are unable to use PHP
v7.0 or later with DVWA.

Regarding the User Credentials:

Change the default variables and set to them to yours:

$_DVWA['db_user'] = 'root'; - Or your mysql user with root privileges
$_DVWA['db_password'] = ' ‟; - Leave it empty or set it to your mysql password

Also, specifically for CentOS 7 version due to some connectivity issues, the following
modifications needed to be done:

Open the main database configuration file /ect/my.conf:

nano /ect/my.conf

Add the following line in order mariadb to accept connections from any address:

bind-address=0.0.0.0

And put in comments:

#socket=/var/lib/mysql/mysql.sock

Also set the db_server IP address within ./config/config.inc.php to “localhost”:

$_DVWA['db_server'] = 'localhost';

Regarding the Folder Permissions:

./hackable/uploads/ - Needs to be writable by the web service (for File Upload).
./external/phpids/0.6/lib/IDS/tmp/phpids_log.txt - Needs to be writable by the web
service (if you wish to use PHPIDS).

Regarding PHP configurations:

 Page | 35

allow_url_include = on - Allows for Remote File Inclusions (RFI) [allow_url_include]
allow_url_fopen = on - Allows for Remote File Inclusions (RFI) [allow_url_fopen]
safe_mode = off - (If PHP <= v5.4) Allows for SQL Injection (SQLi) [safe_mode]
magic_quotes_gpc = off - (If PHP <= v5.4) Allows for SQL Injection (SQLi)
[magic_quotes_gpc]
display_errors = off - (Optional) Hides PHP warning messages to make it less verbose
[display_errors]

Regarding the ReCaptcha Keys go into the file config/config.inc.php:

$_DVWA['recaptcha_public_key'] & $_DVWA['recaptcha_private_key'] - These values
need to be generated from:

https://www.google.com/recaptcha/admin/create

The Default Credentials, which can easily be brute forced, are:

Default username = admin
Default password = password

Finally, Login URL: http://[IP address of your machine]/dvwa/login.php

Image 7.1 DVWA Interface

https://secure.php.net/manual/en/filesystem.configuration.php#ini.allow-url-include
https://secure.php.net/manual/en/filesystem.configuration.php#ini.allow-url-fopen
https://secure.php.net/manual/en/features.safe-mode.php
https://secure.php.net/manual/en/security.magicquotes.php
https://secure.php.net/manual/en/errorfunc.configuration.php#ini.display-errors
https://www.google.com/recaptcha/admin/create

 Page | 36

7.2 Splunk Security Installation

You can install Splunk Enterprise on Linux using RPM or DEB packages or a tar file [6].

For tar file installation of Splunk Enterprise on a Linux system, expand the tar file into
an appropriate directory using the tar command:

tar xvzf splunk_package_name.tgz

The default installation directory is /splunk in the current working directory. To install
into /opt/splunk, use the following command:

tar xvzf splunk_package_name.tgz -C /opt

Note that when you install Splunk Enterprise with a tar file:

 Splunk Enterprise does not create the splunk user. If you want Splunk Enterprise to run as a
specific user, you must create the user manually before you install.

 Ensure that the disk partition has enough space to hold the uncompressed volume of the data
you plan to keep indexed.

Now for RedHat RPM installation, ensure that the splunk build rpm package you want is
available locally on the target server. Verify that the file is readable and executable by
the Splunk user. If needed change access:

chmod 744 splunk_package_name.rpm

To install the Splunk RPM in the default directory /opt/splunk:

rpm -i splunk_package_name.rpm

To install Splunk in a different directory, use the --prefix flag:

#rpm -i --prefix=/opt/new_directory splunk_package_name.rpm

To enable Splunk Enterprise to start the system at boot by adding it to /etc/init.d/ Run
this command as root or sudo and specify the user that Splunk Enterprise should run
as.

./splunk enable boot-start -user splunkuser

You can start Splunk Enterprise as any user on the local system. If you run it as a non-
root user, make sure that it has the appropriate permissions to read the inputs that you
specify. Refer to the instructions for running Splunk Enterprise as a non-root user.

http://docs.splunk.com/Documentation/Splunk/6.0.3/installation/RunSplunkasadifferentornon-rootuser

 Page | 37

To start Splunk Enterprise from the command-line interface, run the following
commands from $SPLUNK_HOME/bin directory, where $SPLUNK_HOME is the directory
into which you installed Splunk Enterprise:

./splunk start

By convention, this document uses:

$SPLUNK_HOME to identify the path to your Splunk Enterprise installation.
$SPLUNK_HOME/bin/ to indicate the location of the command-line interface.

There are also some Startup options. The first time you start Splunk Enterprise after a
new installation, you must accept the license agreement. To start Splunk Enterprise and
accept the license in one step:

$SPLUNK_HOME/bin/splunk start --accept-license

To launch Splunk Web and log in follow these 2 steps below. After you start Splunk
Enterprise and accept the license agreement, you can launch Splunk Web:
 In a browser window, access Splunk Web at http://<hostname>: port.

Hostname is the host machine. Port is the port you specified during the
installation (the default port is 8000).

 Splunk Web prompts you for login information before it launches. The default is
user name admin and password “changeme”. If you switch to Splunk Free, you
bypass this logon page in future sessions.

Image 7.2 Splunk Security

http://docs.splunk.com/Documentation/Splunk/6.0.3/Admin/MoreAboutSplunkFree

 Page | 38

7.3 Network & Web Application Scan

Before we start scanning our system for vulnerabilities with our vulnerabilities scanners,
first we need to have a good understanding of the audit logs, not only from the system
and Apache but also those that produced by the Mod_Security waf module.

7.3.1 Mod_Security Audit Logs

Before we start scanning our system for vulnerabilities, first we need to have a good
understanding of the audit logs, not only from the system and Apache but also those
that produced by the mod_security waf module.

Apache uses two kinds of logs: error logs and access logs. Access logs record requests
made to the server, while the error log records problems with the server.
On CentOS systems, the location of the error log is specified in
/etc/httpd/conf/httpd.conf by the directive ErrorLog logs/error_log. And, because
CentOS is configured so that /etc/httpd/logs is a symbolic link to /var/log/httpd, the
error logs are sent to

/var/log/httpd/error_log.

Like syslog messages, Apache generates error messages at different levels: debug, info,
notice, warn, error, crit, alert, and emerg. The level recorded in the error log is set by
the value of LogLevel; all of the discussed distributions set this to warn by default.
The access log(s) record requests made of the server. The format of these logs is
customizable via the LogFormat directive. In its most common use, LogFormat takes
two arguments: a format string to determine what is logged, and a name for that
logging format. On CentOS, in /etc/httpd/conf/httpd.conf, we have four common
formats: combined, common, referer, and agent with the directives [7]:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

Note: The word “referer” is, in fact, misspelled. It was misspelled in the

original 1996 RFC for HTTP/1.0, RFC 1945, available at

http://tools.ietf.org/html/rfc1945, and the new spelling has stuck. It is

still in use in the June 2014 RFC 7231 (http://tools.ietf.org/html/rfc7231),

which notes that referer has been misspelled.

Components of a format string include the following [7]:

 Page | 39

• %b Response size (bytes) not including headers
• %h Name or IP address of the remote host
• %l The reported remote log name (generally just “-”)
• %p The port on the server
• %r The first line of the request
• %s The status code returned
• %t Time
• %u The reported remote user name (generally just “-”)
• %U The URL path requested
• %v The server name
• %{Referer}i The referer4 reported by the client
• %{User-Agent}i The user-agent reported by the client

If a format string directive includes “>” like %>s, then whenever the request has been
internally redirected, the log entry should contain the final value.

The CustomLog directive takes as arguments file location and a defined log format,
then tells Apache to record logs to that file with that format. On CentOS, the primary
configuration file /etc/httpd/conf/httpd.conf contains the line

CustomLog logs/access_log combined

Thus, the log file /var/log/httpd/access_log records requests in the combined log
format.

The table that follows shows how to capture full HTTP transaction data by using the
Mod_Security audit engine and its directives.

Directive Description

SecAuditEngine Controls the audit log engine; possible values On, Off, or
RelevantOnly

SecAuditLog Path to an audit log file

SecAuditLog2 Path to another audit log file (copy)

SecAuditLogParts Specifies which part of a transaction will be logged

SecAuditLogRelevantStatus Specifies which response statuses will be considered relevant

SecAuditLogStorageDir Path there concurrent audit log files will be stored

SecAuditLogType Specifies the type of audit log to use: Serial or Concurrent

Table 7.1 Audit log directives [8]

 Page | 40

If you want to provide the greatest amount of data for incident response processes, you
should enable full audit logging of both HTTP request and response traffic. However,
because requests with bodies will increase the amount of data that needs to be logged,
as well as the logging of response bodies, we will not enable full audit logging.

Logically, each audit log entry is a single file. When serial audit logging is used, all
entries will be put within one file, but with concurrent audit logging, one file per entry is
used. Looking at a single audit log entry, you will find that it consists of multiple
independent segments (parts). A segment begins with a boundary and ends when the
next segment begins. The only exception is the terminating segment (Z), which consists
only of the boundary. The idea behind the use of multiple segments is to allow each
audit log entry to contain potentially different information. Only the parts A and Z are
mandatory; the use of the other parts is controlled with the SecAuditLogParts directive.

Directive SecAuditLogParts defines the separate transactional elements that are
captured. The Table below, “Audit log parts”, contains the list of all audit log parts,
along with a description of their purpose.

Part letter Description

A Audit log header (mandatory)

B Request headers

C Request body

D Reserved

E Response body

F Response headers

G Reserved

H Audit log trailer, which contains additional data

I Compact request body alternative (to part C), which excludes files

J Information on uploaded files (available as of version 2.6.0)

K Contains a list of all rules that matched for the transaction

Z Audit log footer - Final boundary (mandatory)

Table 7.2 Audit log parts [8]

 Page | 41

7.3.2 Mod_Security Audit Log Example

As an example of typical access log entries, here are the results of protocol violation
and sql injection attack, as captured from the security event manager Splunk:

Image 7.3 Logs example of SQLi attack

Every audit log entry begins with part A, which contains the basic information about the
transaction: time, unique ID, source IP address, source port, destination IP address,
and destination port:

[Fri May 27 01:06:23.084662 2016] [:error] [pid 3408] [client 192.168.1.5]

Part B contains the request headers and nothing else:

[hostname "192.168.1.6"]
[uri "/DVWA-1.9/index.php"]
[unique_id "V0dzX8IJtrLiws84wCLkrgAAAAU"]

Part C contains the raw request body, typically that of a POST request:

ModSecurity: Warning. Pattern match
"(?i:([\\\\s'\\"`\\xc2\\xb4\\xe2\\x80\\x99\\xe2\\x80\\x98\\\\(\\\\)]*?)\\\\b([\\\\d\\\\w]
++)([\\\\s'\\"`\\xc2\\xb4\\xe2\\x80\\x99\\xe2\\x80\\x98\\\\(\\\\)]*?)(?:(?:=|<=>|r?lik
e|sounds\\\\s+like|regexp)([\\\\s'\\"`\\xc2\\xb4\\xe2\\x80\\x99\\xe2\\x80\\x98\\\\(\\\\
)]*?)\\\\2\\\\b|(?:!=|<=|>=|<>|<|>|\\\\^|is\\\\s+not ..." at
REQUEST_COOKIES:splunkd_8000. [file
"/etc/httpd/modsecurity.d/sqlcustomrules.conf"]

 Page | 42

Part F contains the response headers.

Part E contains the response body.

The final part, H, contains additional transaction information.

Part K contains a list of rules that matched in a transaction. It is not rare for this part to
be empty, but if you have a complex rule set, it may show quite a few rules. Audit logs
that record transactions on which there were warnings, or those that were blocked, will
contain at least one rule here. In this example you‟ll find a rule that emits a warning on
every request:

[line "64"] [id "27950901"] [rev "2"] [msg "SQL Injection Attack: SQL Tautology
Detected by PanosWaf"] [data "Matched Data:
1Ae^fhNrIGP8RqD_u9E7LUdfgaVoecHZZwo16gfUZ found within
REQUEST_COOKIES:splunkd_8000:
1Ae^fhNrIGP8RqD_u9E7LUdfgaVoecHZZwo16gfUZ^2WjzriB1EZfC92jCzuhSF_pqrdrFnu
WStPoecU02FVKRPUDcz8gsVdM2CvphpYLr_yilFxPpRmK^gOD47mzXar7FPLtFF"]
[severity "CRITICAL"] [ver "OWASP_CRS/2.2.9"] [maturity "9"] [accuracy "8"] [tag
"OWASP_CRS/WEB_ATTACK/SQL_INJECTION"] [tag "WASCTC/WASC-19"] [tag
"OWASP_TOP_10/A1"] [tag "OWASP_AppSensor/CIE1"] [tag "PCI/6.5.2"]

Finally, every audit log file ends with the terminating boundary, which is part Z.

As you can see, the ModSecurity audit log file captures the entire HTTP transaction. So
now, let us explain more in detail some of the waf produced log fields.

[:error]: The flag and type of the log, meaning this is an error log.

[pid 3408]: The process id that handled the request.

[client 192.168.1.5]: The source/attacker IP address.

ModSecurity: Warning. Pattern match
"(?i:([\\\\s'\\"`\\xc2\\xb4\\xe2\\x80\\x99\\xe2\\x80\\x98\\\\(\\\\)]*?)\\\\b([\\\\d\\\\w]
++)([\\\\s'\\"`\\xc2\\xb4\\xe2\\x80\\x99\\xe2\\x80\\x98\\\\(\\\\)]*?)(?:(?:=|<=>|r?lik
e|sounds\\\\s+like|regexp)([\\\\s'\\"`\\xc2\\xb4\\xe2\\x80\\x99\\xe2\\x80\\x98\\\\(\\\\
)]*?)\\\\2\\\\b|(?:!=|<=|>=|<>|<|>|\\\\^|is\\\\s+not ..." at
REQUEST_COOKIES:splunkd_8000: The matches based on regular expressions that
checks the mod_security waf.

[file "/etc/httpd/modsecurity.d/sqlcustomrules.conf"]: The source file that contains
the triggered rule.

 Page | 43

[line "64"]: The specific line in the aforementioned file.

[id "27950901"]: The unique id of the triggered rule.

[rev "2"]: Rule revision, how many times it has changed.

[msg "SQL Injection Attack: SQL Tautology Detected by PanosWaf"]: Human-
readable message, as specified by the msg action

[data "Matched Data: 1Ae^fhNrIGP8RqD_u9E7LUdfgaVoecHZZwo16gfUZ found
within
REQUEST_COOKIES:splunkd_8000:1Ae^fhNrIGP8RqD_u9E7LUdfgaVoecHZZwo16gfUZ^
2WjzriB1EZfC92jCzuhSF_pqrdrFnuWStPoecU02FVKRPUDcz8gsVdM2CvphpYLr_yilFxPpR
mK^gOD47mzXar7FPLtFF"]: The request data that matched with the rule.

[severity "CRITICAL"]: Event severity as text, as specified by the severity action. The
possible values (with their corresponding numberical values in brackets) are
EMERGENCY (0), ALERT (1), CRITICAL (2), ERROR (3), WARNING (4), NOTICE (5),
INFO (6) and DEBUG (7).

[ver "OWASP_CRS/2.2.9"]: The version of the rules.

[maturity "9"]: How old is the rule.

[accuracy "8"]: How many false positives it produces. The higher the number the
fewer the false positives are. The range is from 1-9.

[hostname "192.168.1.6"]: The IP address of the target machine.

[uri "/DVWA-1.9/index.php"]: The request uri.

[unique_id "V0dzX8IJtrLiws84wCLkrgAAAAU"]: Unique event ID, generated
automatically.

[tag "OWASP_CRS/WEB_ATTACK/SQL_INJECTION"] [tag "WASCTC/WASC-19"] [tag
"OWASP_TOP_10/A1"] [tag "OWASP_AppSensor/CIE1"] [tag "PCI/6.5.2"]: These field
tags are referring to the attack categorization by some global accepted organizations.
More specifically:

 Page | 44

 Web Application Security Consortium.

Item WASC ID

Insufficient Authentication WASC-01

Insufficient Authorization WASC-02

Integer Overflows WASC-03

Insufficient Transport Layer Protection WASC-04

Remote File Inclusion WASC-05

Format String WASC-06

Buffer Overflow WASC-07

Cross-site Scripting WASC-08

Cross-site Request Forgery WASC-09

Denial of Service WASC-10

Brute Force WASC-11

Content Spoofing WASC-12

Information Leakage WASC-13

Server Misconfiguration WASC-14

Application Misconfiguration WASC-15

Directory Indexing WASC-16

Improper Filesystem Permissions WASC-17

Credential/Session Prediction WASC-18

SQL Injection WASC-19

Improper Input Handling WASC-20

Insufficient Anti-Automation WASC-21

Improper Output Handling WASC-22

XML Injection WASC-23

HTTP Request Splitting WASC-24

HTTP Response Splitting WASC-25

HTTP Request Smuggling WASC-26

HTTP Response Smuggling WASC-27

Null Byte Injection WASC-28

LDAP Injection WASC-29

Mail Command Injection WASC-30

OS Commanding WASC-31

Routing Detour WASC-32

Path Traversal WASC-33

Predictable Resource Location WASC-34

SOAP Array Abuse WASC-35

SSI Injection WASC-36

Session Fixation WASC-37

URl Redirector Abuse WASC-38

XPath Injection WASC-39

 Page | 45

Insufficient Process Validation WASC-40

XML Attribute Blowup WASC-41

Abuse of Functionality WASC-42

XML External Entities WASC-43

XML Entity Expansion WASC-44

Fingerprinting WASC-45

XQuery Injection WASC-46

Insufficient Session Expiration WASC-47

Insecure Indexing WASC-48

Insufficient Password Recovery WASC-49
Table 7.3 Web Application Security Consortium

 OWASP

OWASP Top 10 Testing Requirement

A1

Injection (For example, SQL injection; command injection; CRLF
injection;
SSI injection; XPath injection)

A2 Broken authentication and session management (For example, weak
passwords;
cleartext password transmission; session IDs in URL; session fixation)

A3 Cross Site Scripting

A4 Insecure direct object references

A5 Security misconfiguration (For example, software patches; default
passwords;
error message information leakage)

A6 Sensitive data exposure (For example, unencrypted content; cleartext
password
transmission; SSL weak algorithms; session cookies without "secure"
flag;
invalid certificates)

A7 Missing function level access control (For example, direct URL access)

A8 Cross-site request forgery (CSRF)

A9 Using components with known vulnerabilities (For example, vulnerable
framework libraries)

A10 Unvalidated redirects and forwards

Table 7.4 OWASP

 Page | 46

 PCI Security Standards

PCI Standard Testing Requirement

6.5.1 Injection (SQL, LDAP, and Xpath flaws)

6.5.2 Buffer overflows

6.5.3 Insecure cryptographic storage

6.5.4 Insecure communications/transport layer protection

6.5.5 Information leakage and improper error handling

6.5.6 All high vulnerabilities (Reference: PCI Req. 6.2)

6.5.7 Cross site scripting (XSS)

6.5.8 Improper access controls

6.5.9 Cross site request forgery (CSRF)

Table 7.5 PCI Standards

7.3.3 Web Application Scan with Acunetix Vulnerability Scanner

Acunetix is a powerful and well-known Vulnerability Scanner that automatically crawls
and scans off-the-shelf and custom-built websites and web applications for over 3000
web vulnerabilities. It also features its own crawling and scanning engine that fully
replicates user interaction inside of a browser by executing and analyzing JavaScript.
Acunetix is the industry leader in detecting the largest variety of SQL Injection and XSS
vulnerabilities, including Out-of-band SQL Injection and DOM-based XSS. Finally, in
order to keep track of the vulnerabilities detected, Acunetix includes various extensive
reports, a set of Internal Management reports as well as a range of Compliance and
Classification reports for regulatory standards and best practice guidelines to help
manage escalation and remediation of vulnerabilities while assisting in task prioritization
[9].

The images below illustrate the results of a web vulnerability scanning of DVWA and on
how Splunk Security logs the events as well as the fact that Mod_Security detects it.
Acunetix identifies vulnerabilities of different threat levels; for example, the issue that
the user credentials are sent in clear text which is a threat level Medium (2).

 Page | 47

Image 7.4 Acunetix Web Scan 1

Image 7.5 Acunetix Web Scan 2

 Page | 48

Image 7.6 Monitoring Logs with Splunk Security

7.3.4 Web Application Scan with Nessus Vulnerability Scanner

Nessus has been the most widely deployed solution for vulnerability, configuration and
compliance assessments. Nessus prevents network attacks by identifying the
vulnerabilities and configuration issues that hackers use to penetrate your network. It
supports the widest range of network devices, operating systems, databases,
applications in physical, virtual and cloud infrastructures.

Nessus also supports non-credentialed, remote scans; credentialed, local scans for
deeper, granular analysis of assets; and offline auditing on a network device‟s
configuration. Regarding threat detection, Nessus scans for viruses, malware,
backdoors, hosts communicating with botnet-infected systems, known/unknown
processes as well as web services linking to malicious content. Lastly, it creates reports
with exploitability, severity modification and scan scheduling [10].

The images below illustrate the different scanning options provided by Nessus, the
results of a basic network and a web application scanning of DVWA. Using Splunk, we
create a timely visualization of the logs that parsed according to HTTP status codes.
Nessus, in both scans, identifies vulnerabilities of different threat levels; for example,
vulnerabilities in MySQL database, SSH protocol, HTTP type and version, etc.

 Page | 49

Image 7.7 Templates of Nessus Scans

Image 7.8 Basic Network Scan

 Page | 50

Image 7.9 Web Application Scan

Image 7.10 Top values of HTTP status codes per time

 Page | 51

7.4 Identification and Mitigation of Web Attacks

Before we continue with some of the most widely used web attacks, first we need to
explain the Mod_Security rules, their characteristics and how they operate as well as
how to modify them or create new ones.

7.4.1 Handling Mod_Security Rules and False Positives

Since Mod_Security rules are open source, this allows us the capability to see exactly
what the rule is matching on as well as to create our own rules. At the start of the
installation, we set Mod_Security to DetectionOnly mode using the SecRuleEngine
DetectionOnly command. We run Mod_Security in a detection only mode for a while
and simultaneously we review the events generated and the way the rules are
triggered. Then, we decide if any modification to the rule set should be made before
moving to protection mode, setting SecRuleEngine On.

It is inevitable that we will run into some false positive hits when using web application
firewalls. This is not something that is unique to Mod_Security. All web application
firewalls will generate false positives from time to time. The following information will
help to guide you through the process of identifying, fixing, implementing and testing
new custom rules to address false positives.

Every rule set can have false positive in new environments False Positives happen with
Mod_Security Core Rules (CRS) mainly of the fact that the rules are "generic" in nature
for successfully detecting the vast majority of attacks. Also due to the versatility of each
web application and the different services that run on them there cannot be a “holy
grail” of rule sets. In most cases, we need to customize our rule set according to the
web applications we want to protect.

However, we need to be cautious and not be too hasty to remove a rule. If a particular
rule is generating a few false positives that does not mean that we should remove the
rule entirely. Remember, these rules were created for a reason. They are intended to
block a known attack. But, for the purposes of this paper, we will use mainly our own
customized rules based on Mod_Secuirty Core Rule Set (CRS).

In order to verify if we indeed have a false positive, we need to review our logs. This
means that we need to look in the audit_log or error_log file first to see what the
Mod_Security message states. It will provide information as to which rule triggered. The
last place to look, and actually the best source of information, is the modsec_debug.log
file. This file can show everything that Mod_Security is doing, especially if you turn up
the SecDebugLogLevel to 9. Keep in mind, however, that increasing the verboseness of
the debug log does affect performance. So in this paper, it was decided to keep the
debug logs to a minimum.

 Page | 52

In general, it is recommended to try to limit the alteration of the Core Rules as much as
possible. The more the rule files are altered, the less likely and harder it will be to
upgrade to the newer releases since all the customizations will need to be recreated.
What is proposed in this paper, is that to try to contain the changes to our own custom
rules file(s) that are particular to web application. This is where we would want to add
new signatures and also create rules to exclude false positives from the normal Core
Rules files. There are two main ways to integrate the custom rules so that they work
with the Core Rules.

1. Adding new white-listing rules

If you need to add new white-listing rules so that you can, for instance, allow a specific
client IP address to pass through all of the Mod_Security rules you should place this
type of rule after the modsecurity_crs_10_config.conf file but before the other Core
Rules. This is accomplished by creating a new rule file e.g.
modsecurity_customrules.conf and place it in the same directory as the other Core
Rules. This is assuming you are using the Apache Include directive to call up the Core
Rules like this,

<IfModule security2_module>

Include mod_security.conf/rules/*.conf

</IfModule>

2. Adding new negative policy rules

If you need to add new negative policy rules, such as when you need to update a Core
Rule that is causing a false positive, you should add these rules to a new rule file that
come after all of the other Core Rules. Call this new file something like
modsecurity_crs_60_customrules.conf. Just make sure that number in the filename is
higher than any other rules file so it is read last. The rationale for placing these types of
rules after the other rules is that you can then match up these new replacement rules
with corresponding SecRuleRemoveByID directives that will then disable the specific
Core Rule(s) that are causing false positives. It is important to note that you need to
use SecRuleRemoveById after ModSecurity has knowledge of the Rule ID you are
actually removing. That is why this directive should be called up in your custom rules
file that comes at the end.

In this paper, we chose for our purposes the first way and added new white-listing rules
as the images that follow illustrate:

 Page | 53

Image 7.11 Include Custom Rules with Apache Include Directive

Image 7.12 Created New Custom Rules Files

 Page | 54

At this point, let us present an example of a custom rule for Cross-site Scripting (XSS)
Attacks based on the Mod_Security core rule set:

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|REQUEST_HEADERS

"(?:\b(?:on(?:(?:mo|key(?:press|down|up)|c(?:hange|lick)|s(?:elec|ubmi)t|(?:un)?load|
dragdrop|resize|focus|blur)\b\W*?=|abort\b)|(?:l(?:owsrc\b\W*?\b(?:(?:java|vb)script

|shell)|ivescript)|(?:href|url)\b\W*?\b(?:(?:java|vb)script|shell)|mocha):
|type\b\W*?\b(?:text\b(?:\W*?\b(?:j(?:ava)?|ecma)script\b| [vbscript])
|application\b\W*?\bx(?:java|vb)script\b)|s(?:(?:tyle\b\W*=.*\bexpression\b\W*
|ettimeout\b\W*?)\(|rc\b\W*?\b(?:(?:java|vb)script|shell|http):)|(?:c(?:opyparentfolder
|reatetextrange)|get(?:special|parent)folder
|<(?:(?:body\b.*?\b(?:backgroun|onloa)d|input\b.*?\\btype\b\W*?\bimage)\b|!\[CDAT
A\[|script|meta)|.(?:(?:execscrip|addimpor)t|(?:fromcharcod|cooki)e|innerhtml)\b)" \

"log, id:27950014,severity:2,msg:'Cross-site Scripting (XSS) Attack Vectors in Cookie
Values Detected by PanosWaf'"

This rule is inspecting the variables REQUEST_FILENAME, ARGS, ARGS_NAMES and
REQUEST_HEADERS in the entire html cookie and it is checking the cookie values for
matches with a variety of possible combinations of vectors used on XSS attack.

For example, it looks for strings like:
c(?:hange|lick): A string that starts with “c” and ends with either “hange” or “lick”, like
change or click
(?:(?:java|vb)script|shell|http):): Strings that include and starts with “java” or “vb” and
ends with “script”, “shell” or “http”, like javascript, javashell or vbscript.

Finally, we are also updating the “id” meta-data action by changing to a new number
that represents our custom rule range and we present our own message.

 Page | 55

7.4.2 SQL Injection Attacks

SQL injection is a code injection technique, used to attack data-driven applications, in
which nefarious SQL statements are inserted into an entry field for execution (e.g. to
dump the database contents to the attacker). SQL injection must exploit a security
vulnerability in an application's software, for example, when user input is either
incorrectly filtered for string literal escape characters embedded in SQL statements or
user input is not strongly typed and unexpectedly executed. SQL injection is mostly
known as an attack vector for websites but can be used to attack any type of SQL
database.

SQL injection attacks allow attackers to spoof identity, tamper with existing data, cause
repudiation issues such as voiding transactions or changing balances, allow the
complete disclosure of all data on the system, destroy the data or make it otherwise
unavailable, and become administrators of the database server [11].

The images below illustrate the way we can monitor and analyze the logs by using the
Splunk Security as well as create dashboards for identifying attack patterns, successful
attack rates and how well are our waf rules working.

Image 7.13 Logs from Splunk of SQL Injection Attacks

 Page | 56

This image below shows the top uri found among the SQL injection attempts in 1 day
span.

Image 7.14 Top URI from the SQL Injection Attacks

Finally, the images below show the success rate of the SQL Injection attacks before and
after our Mod_Security waf implementation, where clearly most of the attempts are
blocked successfully as well as the new file that we created containing our custom rules
for detecting SQL Injection Attacks.

Image 7.15 Success Rate of SQL Injection Attacks before and after our WAF Implementation

 Page | 57

Image 7.16 Custom File for Rules Detecting SQL Injection Attacks

7.4.3 Cross-site Scripting (XSS) Attacks

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are
injected into otherwise benign and trusted web sites. XSS attacks occur when an
attacker uses a web application to send malicious code, generally in the form of a
browser side script, to a different end user. Flaws that allow these attacks to succeed
are quite widespread and occur anywhere a web application uses input from a user
within the output it generates without validating or encoding it.

An attacker can use XSS to send a malicious script to an unsuspecting user. The end
user‟s browser has no way to know that the script should not be trusted, and will
execute the script. Because it thinks the script came from a trusted source, the
malicious script can access any cookies, session tokens, or other sensitive information
retained by the browser and used with that site. These scripts can even rewrite the
content of the HTML page [12].

The first two images below illustrate the dashboards that we created to identify the XSS
attack patterns and successful attack rates before and after our WAF implementation.
We can clearly discern form the Max XSS Attacks dashboard that after our WAF
implementation the max(XSS) – top number of successful XSS attacks – has
significantly decreased.

 Page | 58

Image 7.17 XSS Attacks Overview before WAF Implementation

Image 7.18 XSS Attacks Overview after WAF Implementation

 Page | 59

While, in these last two images we see some logs as was parsed from the Splunk
Security and the new file that we created containing our custom rules for detecting XSS
Attacks.

Image 7.19 Logs from Splunk of XSS Attacks

Image 7.20 Custom File for Rules Detecting XSS Attacks

 Page | 60

7.4.4 File Inclusion Attacks

File inclusion vulnerability allows an attacker to access unauthorized or sensitive files
available on the web server or to execute malicious files on the web server by making
use of the „include‟ functionality. This vulnerability is mainly due to a bad input
validation mechanism, wherein the user‟s input is passed to the file include commands
without proper validation. The impact of this vulnerability can lead to malicious code
execution on the server or reveal data present in sensitive files, etc [13]. There are two
types of file inclusion, Remote File Inclusion (RFI) and Local File Inclusion (LFI).

Remote File Inclusion (RFI) is a type of vulnerability most often found on websites. It
allows an attacker to include a remote file, usually through a script on the web server.
The vulnerability occurs due to the use of user-supplied input without proper validation.

The Local File Inclusion (LFI) vulnerability is a process of including the local files
available on the server. This vulnerability occurs when a user input contains the path to
the file that has to be included. When such an input is not properly sanitized, the
attacker may give some default file names and access unauthorized files, or an attacker
may also make use of directory traversal characters and retrieve sensitive files available
in other directories.

The first image that follows shows some of the logs that captured from the Splunk
where we can identify the RFI attack that took place. The second image is of the
dashboard that we created to identify the LFI attack patterns by monitoring the Query
statistics and successful attack rates before and after our WAF implementation. We can
clearly discern form the Top LFI Attacks dashboard that after our WAF implementation
the top number of successful LFI attacks has drastically declined.

 Page | 61

Image 7.21 Logs from Splunk of RFI Attacks

Image 7.22 LFI Attacks Overview before and after WAF Implementation

 Page | 62

Furthermore, the last two images illustrate the new files that we created containing our
custom rules for detecting the LFI and RFI Attacks respectively.

Image 7.23 Custom File for Rules Detecting LFI Attacks

Image 7.24 Custom File for Rules Detecting RFI Attacks

 Page | 63

7.4.5 Cross-Site Request Forgery (CSRF) Attacks

Cross-site request forgery, also known as one-click attack or session riding and
abbreviated as CSRF or XSRF, is a type of malicious exploit of a website where
unauthorized commands are transmitted from a user that the website trusts. Unlike
cross-site scripting (XSS), which exploits the trust of a user that has for a particular site,
CSRF exploits the trust that a site has in a user's browser.

CSRF forces an end user to execute unwanted actions on a web application in which
they are currently authenticated. CSRF attacks specifically target state-changing
requests, not theft of data, since the attacker has no way to see the response to the
forged request. With a little help of social engineering (such as sending a link via email
or chat), an attacker may trick the users of a web application into executing actions of
the attacker's choosing. If the victim is a normal user, a successful CSRF attack can
force the user to perform state changing requests like transferring funds, changing their
email address, and so forth. If the victim is an administrative account, CSRF can
compromise the entire web application [14].

The first image that follows illustrates the dashboard that we created to identify the
CSRF attack patterns and successful attack rates before and after our WAF
implementation, mentioned in the middle of the image as “PanosWaf”. We can clearly
discern form the Top CSRF Attacks dashboard that after our WAF implementation the
top number of successful CSRF attacks has significantly decreased. We have underlined
the two top numbers 90 and 15 in each case.

Image 7.25 CSRF Attacks Overview before and after WAF Implementation

 Page | 64

The second image below shows some of the logs that captured from the Splunk where
we can identify the SCRF attack that took place.

Image 7.26 Logs from Splunk of CSRF Attacks

Finally, the last image illustrates the new file that we created containing our custom
rules for detecting the CSRF Attacks.

Image 7.27 Custom File for Rules Detecting CSRF Attacks

 Page | 65

7.4.6 Total Attacks

At this point, we can totally summarize the different attacks that took place in a
dashboard called “Total Attacks”. The image that follows illustrates the dashboard that
we created to identify the successful attack rates from all the attacks that took place
before and after our WAF implementation. We can clearly distinguish how greatly the
top number of successful attacks has dropped after our WAF implementation. We have
marked the two top numbers 196,193 and 3,294 in each case.

Image 7.28 Total Attacks Overview before and after WAF Implementation

 Page | 66

8. Conclusions

In the presence of multiple known and unknown threats from widespread vulnerabilities
on web applications and attackers continuously attempting to exploit them, the need for
robust, universal, flexible, efficient and easy to use defensive tools is more than
obvious. Mod_Security module and generally Web Application Firewalls are an excellent
addition to secure web servers from application layer attacks.

A well configured WAF can protect web servers from almost all kind of
application layer attacks including XSS, SQL Injection, and Parameter Manipulation
attacks. With its ability to filter on any HTTP, HTTPS GET and POST request, we can
address all malicious requests targeting our web servers. Support of Regex (Regular
Expressions) allows security admin to create more powerful rule base. WAF is not
intended to take place of Firewalls, IDS or IPS, it has an ability to filter HTTP traffic.
Moreover, all data is security relevant and should be indexed. IT security teams need to
properly investigate security incidents and identify threats as well as to include more
than security data from traditional security products such as firewalls, IDS or anti-
malware. The data indexed also needs to include “non-security” data from sources such
as OS logs, LDAP/AD, DNS, NetFlow and email/web servers. To detect advanced
threats, all non-security and security data must reside in a single repository that is
monitored in real time. Real-time analytics can accelerate incident investigations and
automatically detect the anomalies that may or not be advanced threats. Statistics can
help with this detection by looking for events that are standard deviations off the norm.
Correlations can also help by detecting combinations of events that are rarely seen and
are suspicious. Solutions for information and event monitoring and management such
as Splunk Security can provide exactly all that.

Overall, WAF is a great concept to secure web servers from Layer 7 attacks and it can
secure badly coded applications to some extent. Also, solutions like Splunk can provide
information and aid in security incidents handling which otherwise may be impossible.
However, we have merely scratched the surface of what is possible with using
Mod_Security WAF module and Splunk as defensive mechanisms. They may become
some of your favorite tools in your arsenal. Not only they do make attackers visible, but
they also let you respond with a tangible impact on the malicious client. So let us
summarize in a few bullets our findings.

Regarding Splunk,

 All the original data is retained and can be searched on without reliance on
vendors

 Its search language can do automated base lining and the calculation of
anomalies as well as advanced correlations.

 It is easy to operate and create appropriate reports and various visualizations of
data.

 Page | 67

 It has the capability to help you detect know threats but also unknown through
the indexing of “non-security” data.

Regarding Mod_Security,

 It is necessary to adapt the WAF filter (rules & exclusions) to the particular web
application that is being protected.

 WAF does not eliminate vulnerabilities; it just screens the attacks vector and
helps mitigating the security risks.

 It has functional limitations; WAF is not able to protect a web application from all
possible vulnerabilities, especially if not configured correctly.

 It is certainly a huge asset for fortifying your web security, however creating
custom rules, exclusions and fixing false positives is not simple enough. It
requires deep knowledge as well as a lot of and constant tuning before it can be
used to block attacks effectively and efficiently.

 Page | 68

9. References

[1]. https://www.centos.org/
[2]. https://httpd.apache.org/
[3]. http://news.netcraft.com/archives/2016/04/21/april-2016-web-server-

survey.html
[4]. http://xmodulo.com/harden-apache-web-server-mod_security-mod_evasive-

centos.html
[5]. https://github.com/RandomStorm/DVWA
[6]. http://docs.splunk.com/Documentation/Splunk/6.0.3/Installation/InstallonLinux
[7]. Cyber Operations: Building, Defending, and Attacking Modern Computer

Networks, Chapter 11 – Logs & Logging, Mike O‟ Leary, Department of Mathematics,
Towson University, Towson, MD, US, 2015

[8]. ModSecurity Handbook, Chapter 4 - Logging, by Ivan Ristiæ, 2010
[9]. http://www.acunetix.com/
[10]. http://www.tenable.com/products/nessus/nessus-professional
[11]. https://en.wikipedia.org/wiki/SQL_injection
[12]. https://www.owasp.org/index.php/Cross-site_scripting
[13]. http://resources.infosecinstitute.com/file-inclusion-attacks/
[14]. https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

https://www.centos.org/
https://httpd.apache.org/
http://news.netcraft.com/archives/2016/04/21/april-2016-web-server-survey.html
http://news.netcraft.com/archives/2016/04/21/april-2016-web-server-survey.html
http://xmodulo.com/harden-apache-web-server-mod_security-mod_evasive-centos.html
http://xmodulo.com/harden-apache-web-server-mod_security-mod_evasive-centos.html
https://github.com/RandomStorm/DVWA
http://docs.splunk.com/Documentation/Splunk/6.0.3/Installation/InstallonLinux
http://www.acunetix.com/
http://www.tenable.com/products/nessus/nessus-professional
https://en.wikipedia.org/wiki/SQL_injection
https://www.owasp.org/index.php/Cross-site_scripting
http://resources.infosecinstitute.com/file-inclusion-attacks/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

