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Introduction 
  

 Most data in macroeconomics and finance come in the form of time series, a 

set of repeated observations of the same variable. Time series analysis has a 

fundamental difference with structural econometric analysis. In the latter case 

the object of interest is the effect of a set of explanatory variables  1 2 3:{ , , ,...}x x xΧ  

on a dependent variable Y, where changes in X are only associated with a 

particular structural event. 

 On the other hand, time series analysis involves stochastic processes, 

indexed collections of random variables 1 2 3:{ , , ,...}t t tx x xΧ , creating an ordering 

among the observations. In this case changes in X are expected whenever the 

index, usually time, evolves. Ordering is very important in time series, because 

it indicates the dependence of our data from one period to another. 

 In this paper, we consider stationary first order autoregressive models 

assuming that the errors that generate our process exhibits polynomial trend in 

their variance. We organize this work into three major sections: theory, Monte 

Carlo simulations and empirical work.   

 In the first part, basic theoretical concepts of first order autoregressive 

models are presented. Limiting results, statistical inference and forecasting using 

the ordinary least squares estimator in AR (1) regressions are discussed.  We 

continue with a discussion on heteroskedasticity. We describe it in details by 

defining it, presenting the generated difficulties and suggesting existing methods 

for dealing with this violation of the classical linear regression assumptions. 

Next, we focus on our hypotheses for the conditional variance of the error. The 

exact required properties of the error driving the model are stated and discuss 

the limiting behavior of our series under the existence of polynomial trend in the 

second moment of the AR (1) errors. Then we make some preliminary 
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comments on how these theoretical results is expected to affect the discussed 

concepts (statistical inference, forecasting and limiting results) of AR(1) models. 

 In the next section we present the results of Monte Carlo simulations. We 

conducted these experiments in order to demonstrate the effect of polynomial 

trend in the variance of the AR(1) disturbances in the least squares test statistic 

and compare alternative methods of correcting the suggested kind of 

heteroskedasticity. 

 The last section of this paper demonstrates empirical results. For the purposes 

of this work, we created a database which consists of a variety of 

macroeconomic and financial data. These time series are tested for the presence 

of a polynomial way trend in the variance of the fitted residuals by an AR(1) 

regression. We aim in locating whether real data exhibits or not such a behavior 

in their disturbances. Afterwards, we conclude with a discussion on how our 

results changes existing results on the efficiency of the tested markets. 
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PART I 

 

1. The first order autoregressive process 
 

 A first order autoregression model, denoted AR (1), satisfies the following 

difference equation: 

1t t ty c yρ ε−= + +  

 The process tε is assumed to be a white noise process, which is historically, 

the most common building block in time series analysis. A white noise process 

is quite restrictive, has mean zero, finite variance 2σ  and errors uncorrelated 

across time: 

2 2
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=

=
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 In this paper we are particularly interested in stationary first autoregressive 

processes which indicates that |ρ|<1. 

Under these assumptions, we can see that the unconditional mean of a stationary 

AR (1) process is: 

1
c

µ
ρ

=
−

, 

 the unconditional variance is: 

 , 

 while the j-th autocovariance is: 

2
21

j

j
ρ

γ σ
ρ

=
−

. 

We can see that a positive value of ρ implies positive correlation between 

ty and 1ty − , while negative value of ρ implies negative correlation. The absolute 

value of ρ, indicates us the size of information we can get from previous values 
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of ty  in order to create an expectation for future prices of ty : the bigger the value 

of |ρ| the more information we get about the value of the next observation. 

 

1.1 Estimating coefficients for AR (1) model 

 

A first order autoregression has the form of the classical standard 

regression model 
'

t t ty X uβ= +  

with '
1(1, )t tX y −= ,β = ρ and t tu ε= . The assumption that tε is a white noise process 

indicates that tε is uncorrelated to ty  but this will no be the case for lagged values 

of ty , that is [ ]1| 0t tE yε − ≠ .   Without this independence the ordinary least squares 

coefficient 

1
1

2
1

1

ˆ

T

t t
t

T T

t
t

y y

y
ρ

−
=

−
=

=
∑

∑
 

gives a biased estimate of ρ for an autoregression in small samples. 

However, we can derive asymptotic results for the OLS estimator, even under 

the presence of such dependence.  If the regression model is the stationary AR 

(1) model, with |ρ|<1, tε  is a white noise process with finite fourth moment 4µ  

then: 
2ˆ( ) (0,1 )L

T T Nρ ρ ρΤ − → −  

and 
2 2 4

4( ) (0, )L
TS Nσ µ σΤ − → −  

 

1.2 Statistical Inference in AR (1) model 

 

In order to be able to compile hypotheses testing in our model, we need 

the appropriate test statistics and their distributions. Because of the dependence 
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between tε  and lagged values of ty , the standard t and F statistics can only be 

justified asymptotically. In classical linear regression we know that t statistic is 

distributed as t (T-k), where k: number of explanatory variables and F statistic is 

distributed as F (m, T-k). To justify the usual OLS inference rules, we have to 

appeal to asymptotic results, for which they take under consideration the 

mentioned dependence. In the case of first order autoregressive model t and F 

statistic convergence only in law and changes in asymptotic criteria are required: 

(0,1)L
Tt N→  

and 
2 ( )L

TmF mχ→ . 

 

1.3 Forecasting an AR (1) process 

 

In time series analysis we are interested in forecasting the value of a 

variable 1tY +  based on a set of variables tX  observed at date t. In AR (1) models 

we want to forecast ty  based on its most recent value 1ty − . To evaluate the 

usefulness of this forecast we need to specify a loss function,  a summary of how 

concerned we are if our forecast is off by a particular amount. For this reason a 

measure is defined as the mean squared error associated with our forecast as: 
2

11| 1|( ) ( )F F
tt t t tMSE Y E Y Y++ += −  

The forecast with the smallest mean squared errors turns out to be the 

expectation of 1ty + conditional on ty .  

A very common forecast method is based on linear projection; we define 

the forecasted variable 1ty +  to be a linear function of ty , meaning *
1| ' tt ty a y+ = . 

The linear projection that produces the smallest mean squared error among the 

class of linear forecasting rules is the one such that the forecast error 
*

1|( ' )tt ty a y+ − is uncorrelated with ty . 
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In order to obtain the forecast of  ty  as a function of its first lagged value 

1ty −  we use the Wiener-Kolmogorov prediction formula: 

1,...
( ) 1ˆ | , ( )

( )t s t t ts
LE Y Y Y Y

L L
ψ

µ µ
ψ+ −

+

   = + −    
,  

where L is the lag operator and ψ(L) is a polynomial of lag operators. 

For the covariance-stationary AR (1) process of our concern we have: 

2 2 3 31( ) 1 ...
1

L L L L
L

ψ ρ ρ ρ
ρ

= = + + + +
−

 

and 

1 1 2 2( ) ...
1

s
s s s

s
L L L

L L
ψ ρ

ρ ρ ρ
ρ

+ +

+

  = + + + =  − 
. 

Substituting the above results in the Wiener-Kolmogorov prediction 

formula, we get the optimal linear one s-period-ahead forecast for a stationary 

AR (1) process: 

1,...
ˆ | , (1 )( ) ( )

1

s
s

t s t t t tE Y Y Y L Y Y
L

ρ
µ ρ µ µ ρ µ

ρ+ −  = + − − = + −  −
 

The forecast decays geometrically from ( )tY µ−  toward μ as the forecast 

horizon s increases, because |ρ|<1. The mean squared s-period-ahead forecast 

error is: 
2 4 2( 1) 21 ... sρ ρ ρ σ− + + + +   

We can see that the MSE grows with s and asymptotically approaches  
2

21
σ

ρ−
, 

the unconditional variance of ty . 

From what we have seen so far, the assumption of homoskedasticity plays 

a crucial role in the structure of the AR (1) model. It is used in order to obtain 

the asymptotic behavior of both the ordinary least squared coefficient  t and F-

statistic and we have seen that the mean squared s-period-ahead forecast error of 
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ty is a function of  2σ . However, the assumption of homoskedasticity is very 

restrictive and unreal for macroeconomic and financial data. 

Changes in the variance is a very common increment of time series data 

and are quite important for understanding financial markets since investors 

require higher expected returns as compensation for holding riskier assets. A 

variance that changes over time has major implications for the validity and 

efficiency of statistical inference about the parameters that describe the 

dynamics of the level of ty  and in addition forecasting future values of ty .  

  We proceed now by trying to describe in general the concept of 

heteroskedasticity. We will demonstrate the existence of heteroskedasticity in 

the generalized regression model and modify the results of the classical model. 

We will consider the consequences for the least squares estimator and examine 

alternative estimation approaches that can make better use of the characteristics 

of the model. 

 

2. A general discussion on heteroskedasticity 
 

2.1 Introduction 

 

Under classical assumptions of homoskedasticity, no serial correlation 

among the disturbances and regressors either fixed in repeated samples or 

stochastic but uncorrelated with the disturbances , the OLS estimator is Best, 

Linear, Unbiased (BLU), consistent and asymptotically normally distributed 

(CAN) and if disturbances are in addition normally distributed, asymptotically 

efficient among all CAN estimators. In the following table we present the finite 

and large-sample –properties of the least squares estimator under classical 

assumptions: 
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Finite Sample 

Properties 
Large Sample Properties 

Disturbances are 

normally distributes 
2 1| [ , ( ) ]b X N ΄β σ −Χ Χ  

Distribution of 

disturbances is 

unknown 

E[b|X]=E[b]=β  

Var[b|X]=σ2(Χ΄Χ)-1 

2
1,b b Q

n
α σ − 

→ Ν  
 

 where 

11lim ( ) p

n
X΄X Q

n
−

→∞
→  

and Q a positive defined 

matrix 

 

The limiting distribution of the least squares estimator for an AR (1) 

model under more general assumptions on the error of the regression and 

alternative values of ρ has attracted a lot of research efforts during the last thirty 

five years or so. All initial studies were restricted by the assumption of i.i.d. 

errors, or further that is 2. . . (0, )t i i d Nε σ therefore assuming that the disturbances 

of the regression have a constant variance over time. 

 

2.2 The generalized regression model 

 

The violation of this assumption arise the problem of heteroskedasticity. 

We need to specify how heteroskedasticity affects the properties of OLS 

estimator. We use the generalized linear regression model: 

2

[ | ] 0
[ | ]

y Xb

΄

ε
ε

εε σ

= +
Ε Χ =

Ε Χ = Ω = Σ

 

 where Ω is a positive definite matrix. We can see that for Ω=Ι we get the 

classical model as a special case of the generalized linear regression model. This 

kind of assumptions allows both heteroskedasticity and disturbances to be 

correlated across observations, therefore 2σ Ω would be: 
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2
1 1 2 1

2
2 2 1 2 2

2
1 2

n
i

n

n n n

σ ε ε ε ε
ε ε σ ε ε

σ

ε ε ε ε σ

 
 
 
 
 
  

Ω = Σ =

L

L

M M O M

L

 

If the regressors and disturbances are uncorrelated, then the unbiased-ness 

of least squares in finite samples is unaffected by the presence of 

heteroskedasticity: 

( )1 1

1 1 1

ˆ | ( ' ) ' | ( ' ) ' |

(( ' ) ' ( ' ) ' ) | ( ' ) ' ( | )

E X X X Y E X X X X

E X X X X X X X

E

X X X E

β β ε

β ε β ε β

− −

− − −

     Χ = Χ = + Χ =    
 = + Χ = +  Χ =

 

We have already seen that the former cannot be the case for an 

autoregressive model since the vector X of the regressors contains lagged values 

of Y where we saw that  though, under our stated assumptions tε  is independent 

of ty , it will no be the case that tε is independent for lagged values of ty .  

The finite sample variance of the generalized least squares estimator is: 

( )( )
( )( )

( )( ) ( )( )

( )( )

'

'1 1

'1 1

'1 1

1 1

2 1 1

ˆ ˆ ˆ| |

( ' ) ' ( ' ) ' |

( ' ) ' ( ' ) ' |

( ' ) ' ( ' ) ' |

( ' ) ' ( ' ) |

(

var

( ' ) ' )( ' )

E

E X X X Y X X X Y

E X X X X X X X X

E X X X X X X

E X X X ΄X X X

X X X X X X

β β β β β

β β

β ε β β ε β

ε ε

εε

σ

− −

− −

− −

− −

− −

  Χ = − − Χ =    
 = − − Χ =  
 = + − + − Χ =  
 = Χ =  
 = Χ = 

= Ω

 

If the regressors are stochastic, then the unconditional variance is: 

ˆvar |E β  Χ    

The LS estimator is a linear function of ε. Therefore, if ε is in addition 

normally distributed, then: 
2 1 1, ( ' ) ( ' )( ' )ˆ | X X X X X Xβ σβ − − Ω Χ Ν  
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Regarding the asymptotic properties of generalized least squares, the 

existing literature demands that the regressors are sufficiently well behaved, that 

is: 

'lim

'lim

p

n

p

n

X X Q
n

X X V
n

→∞

→∞

  → 
 

Ω  → 
 

 

where Q and V are both finite positive definite matrices, then the generalized 

least squares  

estimator is asymptotically distributed with mean β and covariance 

matrix
2

1 1Q VQ
n

σ − − : 

2
1 1ˆ , Q VQ

n
α σ

β β − − 
→  

 
Ν . 

From what we have seen so far, unless V=I, this is not the same 

covariance matrix of the OLS estimator derived in the classical linear regression 

model, so the t statistic associated with this estimator will not have the same 

interpretation as a Gaussian variable divided by an estimate of its standard 

deviation. Thus, the OLS statistic for testing the null hypothesis 0
ˆ: β βΗ = : 

ˆ

ˆ

ˆ
t

β

β β
σ
−

=  

will not have a t(T-k) distribution in small samples, nor will it even 

asymptotically be N(0,1), since the standardization will not be the appropriate 

one any more. 

However, the choice whether we should use or not the ordinary least 

squares estimator under heteroskedasticity is not so clear. Our final decision 

depends on the knowledge or ignorance of Ω matrix. Certainly if Ω is known 

then the generalized least squares method which we will describe now gives an 

efficient estimator of the regression.  
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2.3 The generalized least squares method 

 

Since Ω is a positive definite matrix, it can be factored into: 

Ω=CΛC’ 

where the columns of C are the characteristic vectors of Ω and the characteristic 

roots of Ω are arrayed in the diagonal matrix Λ. Let 1/ 2Λ  be the diagonal matrix 

with ith diagonal element iλ , and let 1/ 2T C= Λ . Then Ω=ΤΤ’. Also let 1/ 2'P C= Λ  , 

so 1 '−Ω = Ρ Ρ . Premultiple the general regression model by P we obtain: 
y β εΡ = ΡΧ + Ρ  

or 

* * *y X β ε= +  

Then, the variance of *ε  is: 
' 2 2

* * 'E P P Iε ε σ σ  = Ω =   

so the classical regression model applies to this transformed model. Since Ω is 

known, *y  and *X are observed data.  

 

The generalized least squares estimator will be: 
' 1 '
* * * *

' ' 1 ' '

' 1 1 ' 1

ˆ ( )

( )
( )

y
P P P PY

Y

β −

−

− − −

= Χ Χ Χ =

= Χ Χ Χ =

= Χ Ω Χ Χ Ω

 

and will be efficient. 

 

2.4 The feasible generalized least squares method 

 

Even if the matrix Ω is not known, but we have knowledge of its structure 

and can estimate it using sample data, then we can use feasible generalized least 

squares method, which is similar with the generalized least squares method with 
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the only difference of using the estimated matrix Ω̂ . In this case the feasible 

generalized least squares estimator can be denoted: 
' 1 1 ' 1ˆ ˆ ˆ( ) Yβ − − −= Χ Ω Χ Χ Ω  . 

The third possibility is that Ω is completely unknown, both as to its 

structure and the specific values of its elements. In this situation least squares 

may be the only estimator available, and as such, the only available strategy is to 

try to devise an estimator for the appropriate asymptotic covariance matrix. 

 

2.5 White’s heteroskedasticity consistent estimator 

 

Halbert White (1980) presented a covariance matrix estimator which is 

consistent in the presence of heteroskedasticity, but does not depend on 

supposed specific formal model of the structure of heteroskedasticity. 

Nevertheless, White does not relaxes the assumption of no serial correlation 

among the disturbances. We saw that the asymptotic variance of the least 

squares estimator in the generalized regression model is 
2

1 1Q VQ
n

σ − − where 

'

1

1 1( ' ) ( )
n

i i
i

Q E x x
n n =

= Χ Χ = ∑  and 2 '

1

1 1( ' ) ( )
n

i i i
i

V E x x
n n

σ
=

= Χ ΣΧ = ∑  . Under his stated 

assumptions, White concludes that we can calculate consistent estimators of V 

from the sample observations using the OLS fitted residuals: 

2 '

1

1ˆ ˆ
n

i i i
i

V x x
n

ε
=

= ∑  

 

and therefore extract an estimation for the asymptotic covariance matrix of the 

OLS estimator: 

White heteroskedasticity consistent estimator: 1 1ˆ( ' ) ( ' )n V− −Χ Χ Χ Χ  
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This result is extremely important and useful. It implies that without 

actually specifying the type of heteroskedasticity, we can still make appropriate 

inferences based on the results of least squares. 

 

2.6 Newey-West autocorrelation consistent covariance estimator 

 

The next step would be to extend White’s result to the more general case 

where the disturbances would be both heteroskedastic and serial correlated. This 

application is more likely to arise in time series models. In this case we would 

need an estimator for: 

'
*

1 1

1 n n

ij i i
i j

V x x
n

σ
= =

= ∑∑  

Whitney K. Newey and Kenneth D. West (1987a) proposed a 

heteroskedasticity and autocorrelation consistent covariance matrix: 

' '
*

1 1

1ˆ ˆ ˆ ˆ ( )
L n

l t t l t t l t l t
l t l

V V w x x x x
n

ε ε − − −
= = +

= + +∑ ∑  

11
( 1)lw
L

= −
+

 

This formulation of the weights of the off the diagonal elements of *̂V , 

makes them smaller as we move away from the diagonal. The only question 

needed to be answered is to determine in advance how large L is to be.  

 

2.7 Modeling heteroskedasticity 

 

A different approach for dealing with heteroskedasticity was introduced 

by Robert Engel (1982) who suggested a modeling path for the conditional 

variance of the disturbances. The increased importance played by risk and 

uncertainty considerations in modern economic theory, however, has 

necessitated the development of new econometric time series techniques that 
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allow for the modeling of time varying variances and covariances. The 

autoregressive conditional heteroskedastic (ARCH) class of models introduced 

by Engle supports that the conditional variance of the errors of time series 

models is a function of the variance of the previous period. The ARCH(r) 

regression model is obtained by assuming that the mean of the dependent 

variable ty  is given as tx β , a linear combination of lagged endogenous and 

exogenous variables in the information set 1tψ −  with β a vector of unknown 

parameters. The parameter r indicates the number of observations in th . 

Formally, 

1

1 2

| ( , )
( , ,...., , )

t t t t

t t t t p

t t t

y N x h
h h

y x

ψ β

ε ε ε α

ε β

−

− − −=

= −



 

The ordinary least squares estimator of β is consistent under these 

assumptions as x and ε are uncorrelated through the definition of the regression 

as a conditional expectation. If the x’s where to be treated as fixed constants 

then the least squares standard errors would be correct. However, in time series 

analysis, there are lagged dependent variables in tx  and the standard errors as 

conventionally computed will not be consistent, since the squares of the 

disturbances will be correlated squares of the x’s. 

In 1986 Bollerslev proposed the generalized autoregressive conditional 

heteroskedasticity model denoted ( , )tu GARCH r m . GARCH models are en 

extension of the ARCH models where the conditional variance of ty  is not only 

one function of th  but in addition it depends on “lagged” functions of th , that is  

1 1 2| ( , ( , , ,...., ))t t t t t t t my N x f h h h hψ β− − − −  

It is obvious that ARCH(r) models are a special case of GARCH(r, m) 

models for m=1  

Volatility clustering is the optical indicator in order to assume GARCH 

models in our series and is immediately apparent when time series are plotted 
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through time. Figure 1 plots daily returns of the one month forward rate among 

Germany and New Zealand.  
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Figure 1 

 

It is clear from visual inspection of the figure, and any reasonable 

statistical test, that the returns are not i.i.d. through time. In this figure we can 

observe three different periods based on the volatility, a high volatility period at 

the beginning, then a decrease and then again high volatility. 

 

2.8 A new approach on dealing with heteroskedasticity 

 

In this paper, following suggestions from a paper by Kourogenis N. and 

Pittis N. (2005) we are studying series which are heteroskedastic in a specific 

way. The variance of the disturbances appears to grow without a limit in a 

polynomial way. Like the case of GARCH models, a trending variance can 

easily be detected from the t-plot of the time series data we are observing. 

Figure 2 plots daily returns of the foreign exchange rate between Canadian and 

US dollar for the last thirty five years. 
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Figure 2 

 

We can see that the volatility of returns increase as we proceed in time.  

In the next section we proceed by presenting the exact assumptions of the 

innovation sequence tε  of our AR (1) model and the concluding limiting 

distribution for both the least squares estimator of ρ and the associated t statistic 

for the stable case |ρ|<1. We then make a reference on how these results can 

differentiate currently inference results about this category of time series data. 

 

3. Asymptotic theory for stationary first-order autoregressions 

with trending variance. 

  
3.1 Stating the model 

 

In this section we present the work of Nikolaos Kourogenis and Nikitas 

Pittis in their paper “Asymptotic theory for first-order autoregressions with 

asymptotically unbounded error variance” (2005). All assumptions, propositions 

and theorems are adopted from their work. 
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Our model of interested is stationary AR (1) models. That is 

1t t ty c y uρ −= + +  with |ρ|<1. 

For this case, we assume that tu is a stochastic process that satisfies the 

following assumption: 

Assumption U1: 

a. ( )t tu f t v= , where ( ) ( ) 0kf t t g tκβ= + >  with 1( ) ( )kg t O t −= if 1k ≥ and ( ) 0g t = if 

0 1k≤ < ; 

and 1{ }t tv ≥  is a stochastic process such that: 

b. [ ]1| 0t tE v X − = a.s., where 1tX −  is the σ-algebra generated by 0 1 2 1, , ,..., ty v v v −  

c. 2 2
1|

t tE v X σ−  = < ∞   and 

d. 2sup | | , 2r
t tE v r  ≤ Β < ∞ >   

Assumption U1 can be simplified as follows: Let '( ) tv t vκβ= . Consider 

that for a well defined setting κβ must be assumed positive. Then if we set 

1 1( ) ( )kf t t g t= +  where 1
1( ) ( )

k

g t g t
β

= , we have '
1( ) tut f t v= . Moreover 

'
'2 2 2 2

1 1

1 T T
pk

t t k v v
t t

v u
T T

β
β σ σ

= =

= → =∑ ∑  

and 
2 2

'

1 1 2

T T

t k t
t t

k

E v E v

T T

β

β σ
= =

      
      
         = →
∑ ∑

= 2'σ  

Therefore, without any loss of generality and for the rest of the paper we 

can assume that in assumption U1 we have 1kβ = . 

This particular set of assumptions regarding tu  does not allow tv being 

conditionally heteroskedastic. Higher unconditional moments of tv  are assumed 

to be bounded although not necessarily identical.  

Finally the assumption on the initial value of the process 0y is the following: 
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Assumption S1: 0y is an arbitrary constant or a random variable 

with 2
0| | rE y B  ≤  , where, without any loss of generality the constants r and B are 

the ones defined in assumption U1 . 

 

Under these assumptions, the matrix Σ defined in the generalized 

regression model will have the follow structure: 
2

1 2 1
2

2 2 1 2

2
1 2

1
2

k

k

i

k

t

t

t t t

σ ε ε ε ε
ε ε σ ε ε

σ

ε ε ε ε σ

 
 
 
 
 
  

Ω = Σ =

L

L

M M O M

L

 

 

For the case of f(t)=1, i.e. k=0, β0=1, that is when the variance of the 

innovations ( )t tu v= is bounded, the asymptotic behavior is well know under both 

ρ=1 and |ρ|<1, that is 

( ) 2ˆ (0, (1 )LT Nρ ρ ρΤ − → −  

and 

10,
1

Lt Nρ
ρ
ρ

 +
→  − 

 

as Τ → ∞ . 

In the next section we generalize the existing result by allowing for 

asymptotically unbounded m-th moment of tu , with m>1. 

 

3.2 Asymptotic results for the stable root case, |ρ|<1 

 

When |ρ|<1 our set of assumptions allows sequence tu  to be a martingale 

difference sequence. 

Assumptions U1(b),(c) and (d) can be found in Davidson (2000). These 

assumptions are sufficient for obtaining limiting results for the OLS 
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estimator ρ̂Τ , when |ρ|<1 and k=0. Moreover, if tu satisfies assumption U1(a), 

then the requirements of the following proposition are satisfied: 

Proposition 1: If { } 1t tu
≥

 satisfies assumption U1 (a) and (b) then: 
2

2
1

1

1
1

T
p v

tk
t

u
T k

σ
+

=

→
+∑ . 

The previous result is necessary in order to obtain the asymptotic behaviour of 

the OLS estimator ρ̂ . 

Before presenting the main result for this case, we need to take an intermediate 

step, stated in the form of the following proposition: 

Proposition 2: If |ρ|<1, 0y  satisfies assumption S1 and { } 1t tu
≥

 satisfies 

assumption U1 then 
4

11/ 2 2
1

1 (0, )
(2 1)(1 )

T
L

t t
t

u y N
kκ

σ
ρ−+

=

→
Τ + −∑  

The result of the previous proposition is based on the fact that the series 

2

1

j k d

j
jρ

∞
−

=
∑  converges for every d. In fact, the increase of the variance of tu is 

eliminated by the continuous multiplication by ρ, whose absolute value is 

strictly less than unity. 

Now we are ready to state the main result of this section: 

Theorem 2: If |ρ|<1, 0y  satisfies assumption S1 and { } 1t tu
≥

 satisfies 

assumption U1 then 

( )
2 2( 1) (1 )ˆ (0,

(2 1)
)L kT N ρ

ρ ρ
κΤ

+ −
− →

+
 

and 

 

 

as Τ → ∞ . 

2( 1) (1 )0,
(2 1)(1 )

Lt Nρ

κ ρ
κ ρ

 + +
→  + − 
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2( 1) (1 )0,
(2 1)(1 )

N κ ρ
κ ρ

 + +
 + − 

(1 )0,
(1 )

N ρ
ρ

 +
 − 

/ 2tα− / 2tα

The estimator of k̂  is given by: 1
ˆ

ˆ
ln*

2ln
1

2/

1

2

1

2

−



















∑

∑

=

=
T

t
t

T

t
t

u

u
 

It can been seen that for the bounded variance case, k=0, the above 

relationships become ( ) 2ˆ (0, (1 )LT Nρ ρ ρΤ − → −  and 10,
1

Lt Nρ
ρ
ρ

 +
→  − 

already 

shown from the existing literature. Again, the more general theory developed for 

this case accommodates the existing results as special cases. As far as the effects 

of k on the limiting distributions are concerned, it is clear that their variances are 

proportional to the ratio 
2( 1)

(2 1)
κ
κ
+
+

which is an increasing function of k, k>0. 

 

3.3 A preliminary discussion on the new approach. 

 

By comparing the above limiting results for test statistic of the OLS 

coefficient estimator, 
2( 1) (1 )0,

(2 1)(1 )
L kt N

kρ
ρ
ρ

 + +
→  + − 

and 

    10,
1

Lt Nρ
ρ
ρ

 +
→  − 

, 

in combination with the fact that 2 2( 1) 2 1 2 1k k k k+ = + + > + , for k>0, we can 

conclude that the asymptotic variance of the t-statistic when we adjust for 

polynomial trend will be bigger than the asymptotic variance of the t-statistic in 

the known boundary case. This conclusion is presented in the following figure: 
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If we had the critical value tα  for a statistical level of significance α for 

the test statistic 10,
1

Lt Nρ
ρ
ρ

 +
→  − 

, this would define a rejection area of α% for 

the null hypothesis (the sum of the light grey areas). We can see that this critical 

value / 2tα  corresponds to a wider rejection area of the null hypothesis in the case 

there is polynomial trend of k order. Therefore, if we do not detect polynomial 

trend while this exists, our hypothesis testing results will be misleading since 

our statistical level of significance won’t be the desired one. 

Suppose we want to test the statistical significance of the OLS coefficient 

estimator ρ̂Τ  of our AR (1) model, that is:  

0 ˆ: 0H ρΤ =  

Since the asymptotic distribution for both cases (with or with no trend) is the 

mean zero Normal distribution, we have to standardize appropriately these 

statistics in order to converge to N (0, 1). Therefore: 

ˆ (0,1)
1
1

Lt
Nρ

ρ
ρ

→
+
−

and 

ˆ*
ˆ (0,1)

1 1( )
12 1

Lt
t N

k
k

ρ
ρ ρ

ρ

= →
+ +

−+

 

Since 1 1
2 1
k

k
+

>
+

, we can say that *
ˆ ˆt tρ ρ> for k>0. If now we define our desired 

level of significance α according to which we obtain the critical value tα  of the 

test statistic from the tables of standard Normal distribution, we can reach three 

different results: 

• 
*

ˆ ˆt t tαρ ρ> ≥  

• 
*

ˆ ˆt t tα ρ ρ≥ >  

• 
*

ˆ ˆt t tαρ ρ≥ ≥  
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In the first two cases, the finding of polynomial trend in the conditional 

variance of time series will no affect our conclusions in statistical inference. In 

the first case, both test statistics suggest us to reject the null hypothesis, while in 

the second case both test statistics indicate the opposite.  

The case that we are interested in is the third one. If this is the case we 

will have conflicting results in our hypothesis testing, i.e. we may decide no to 

reject the null due to the presence of polynomial trend. Because of this, we can 

say that if we do not correct our test for the presence or trend, there is a 

possibility to over reject the null hypothesis. 

  Another point we wish to emphasize, is the relationship between ˆtρ and 

the estimate of kappa. As we have seen, calculating the adjusted to kappa test 

statistic *
ˆtρ we have to divide ˆtρ  by the ratio 1( )

2 1
k

k
+

+
, that is: 

ˆ*
ˆ

*
ˆ ˆ

1( )
2 1

1( )
2 1

t
t k

k
kt t

k

ρ
ρ

ρ ρ

=
+

+
+

= ×
+

or 

Therefore, we expect to locate in  our macroeconomic and financial time 

series a positive relationship between ˆtρ  and kappa, since the ratio 1( )
2 1
k

k
+

+
 

increases with k and ˆtρ is influenced positively by the ratio. 

 We continue now to the second part of this paper, the Monte Carlo 

simulations. We could say that a Monte Carlo simulation is for econometricians 

what a scientific lab is for physics and chemistry researches. It gives us the 

opportunity to verify different aspects of random variables.   At first, we 

describe the design of the experiment and then present and comment its results. 
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PART II 

 

4. Monte Carlo Simulation 

4.1 Design of the experiments 

 Our first set of results suggests that our data generating process will be a 

stationary driftless first order autoregressive model with errors which exhibits 

polynomial trend in their variance, that is: 

1t t ty y uρ −= +  and ( ) ( )t tu f t g t v= + . 

Without loss of generality we set ρ=0.5 and set 0y to be drawn from a Normal 

distribution ( )0 0
10, 0, 2

1
y N y N

ρ
 

⇒ − 
  . We choose functions f and g to be 

1( )
9

kf t t=  for k>0 and 1( ) *cos( ) 2
3

k tg t t −= + for 1k ≥  and ( ) 0g t = for 0 1k≤ < . 

Process tv  is assumed to be drawn from a Normal distribution (0,1)tv N . We run 

the experiments for different values of the sample size T and values of the order 

k of the polynomial of f. 

  We use values of T of 25, 50, and 100 and of k of 0, 1, 2, 3. We wish to 

examine if the presence of polynomial trend in the variance of the errors has fast 

influence that can affect our results in finite samples and if this velocity depends 

on the value of k. All simulations were based on 10,000 replications. 

Computations were done the econometric program EVIEWS 4.0, using the 

random seed generator 21. 

 For each replication we stored the OLS t-statistic, the t-statistic given by 

the weighted least squares estimator with weight being the series 1
k

w
t

= , the t-

statistic using White’s heteroskedasticity-consistent covariance matrix, the t-

statistic adjusted to the known k  and the t-statistic adjusted to the estimated k.  
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At the end of all executions, we calculated the percentiles of the t-statistics: 

1% 2.5% 5% 10% 90% 95% 97.5% 99% 
for each of the above results to be able to compare them with the Normal 

distribution and also the empirical size of rejections at the nominal  5% level.  

 Apart from the above set of experiments we have also conducted 

simulation for first order autoregressive models where the variance of the errors 

exhibits similar behavior as the studied case of polynomial trend, but is caused 

by a different structure of heteroskedasticity. 

 In the first case, we allow one break in the variance structure. We let 

T=100, ρ=0.5, ( )0 0,2y N  and set the errors of the regression for the first half of 

the sample to be (0,1)tu N and for the remaining sample to 

be (0, 2)tu N , (0,10)tu N  and (0,100)tu N . 

 In the second case, we allow two breaks in the variance structure. We let 

T=120, ρ=0.5, ( )0 0,2y N  and set the errors of the regression for the first 40 

observations of the sample to be (0,1)tu N , for the next 40 observations to be 

(0,3)tu N , and for the last 40 observations to be (0,6)tu N . 

 In the third case, we allow five breaks in the variance structure. We let 

T=100, ρ=0.5, ( )0 0,2y N  and set the errors of the regression for the first 20 

observations of the sample to be (0,1)tu N . Then for the next 20 observations 

the variance increases by one unit, concluding to be (0,6)tu N for the last 20 

observations. 

 Finally, we let the errors to be an exponential function of time of the 

form: 5
1( ) 0.1*

t
f t e= , that is 50.1*

t

t tu e v= , for T=50,100,200,500 and ρ=0.5. 

The aim of the additional experiments is to test how the test statistic 

adjusted to the estimated k is better or not than the competitive t-statistics in 

cases where although we do not have polynomial trend in the variance, the 

variance appears to increase in a different way as time evolves. 
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4.2 Results of the experiments 

   

 Our first set of experiments varies the sample size T and the value of k. In 

tables 1A and 1B we have the results for T=25, in tables 2A and 2B for T=50 

and in tables 3A and 3B for T=100. The indicator A refers to the tables of 

percentiles and the indicator B to the tables of empirical sizes of the test 

statistics. 

  An important first result to be stated is that the OLS t-statistic appears to 

give very misleading results as k increases for all three sample sizes. Therefore, 

from the start we get evidence for the need of correction heteroskedasticity. 

 Weighted least squares t-statistic in the small sample T=25 does not work 

at all. For T=50 and 100 it can “catch” heteroskedasticity and correct it in a 

small percent only for k>1. Nevertheless, it does not seem to be able to remove 

all the effect of heteroskedasticity. 

 White’s t-statistic appears to approximate Normal distribution much more 

than the OLS and WLS t-statistic. An expected result is that it works more 

appropriate as the sample size increases since the squared OLS residuals tend to 

underestimate the squares of the true disturbances (MacKinnon and White 

(1985)). The end result is that in small samples, the White estimator is a bit too 

consistent; the matrix is a bit too small, so asymptotic t ratios are a little too 

large, driving us to over-rejections. 

 The “best” t-statistic appears to be the one which is adjusted to the 

estimated k that approximates very closely the Normal distribution regardless 

the sample size or the value of k. We also observe that for 0k ≠ , we locate 

significant differences between the t-statistic adjusted to known k and the t-

statistic adjusted to the estimated k. The reason why this is happening is that in 

small samples the real k does not have the time to dominate the errors of the 

regression, while the estimated k, which is smaller than the known k, can 

describe better the polynomial trend effect in the variance of the errors.   
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TABLE 1A 

Percentiles of the Empirical Distributions of t Statistics. 
T=25. 

 
 k=0 

t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 
OLS -2.480 -2.074 -1.749 -1.382  1.198  1.593  1.914  2.363 
WLS -2.936 -2.327 -1.907 -1.491  1.324  1.800  2.252  2.791 
White -3.262 -2.632 -2.114 -1.599  1.333  1.786  2.229  2.717 

tρ*  (k-Known) -2.480 -2.074 -1.749 -1.382  1.198  1.593  1.914  2.363 
tρ*  (k-Estimated) -2.434 -2.041 -1.711 -1.349  1.170  1.557  1.895  2.331 

 k=1 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -2.607 -2.202 -1.831 -1.444  1.228  1.603  1.991  2.420 
WLS -2.826 -2.296 -1.877 -1.470  1.262  1.687  2.084  2.531 
White -3.084 -2.551 -2.093 -1.594  1.311  1.748  2.153  2.637 

tρ*  (k-Known) -2.258 -1.907 -1.586 -1.251  1.064  1.388  1.724  2.095 
tρ*  (k-Estimated) -2.502 -2.060 -1.721 -1.339  1.137  1.488  1.836  2.243 

 k=2 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -3.426 -2.865 -2.393 -1.877  1.530  2.073  2.559  3.178 
WLS -6.272 -4.145 -3.099 -2.179  1.891  2.666  3.566  4.878 
White -3.583 -2.928 -2.387 -1.800  1.354  1.870  2.308  2.899 

tρ*  (k-Known) -2.553 -2.136 -1.783 -1.399  1.140  1.545  1.907  2.369 
tρ*  (k-Estimated) -2.618 -2.156 -1.795 -1.362  1.107  1.505  1.880  2.391 

 k=3 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -3.824 -3.262 -2.691 -2.095  1.691  2.317  2.873  3.615 
WLS -10.391 -6.569 -4.487 -2.961  2.585  3.893  5.442  7.671 
White -3.977 -3.090 -2.505 -1.861  1.388  1.943  2.419  3.095 

tρ*  (k-Known) -2.530 -2.157 -1.780 -1.385  1.118  1.532  1.901  2.391 
tρ*  (k-Estimated) -2.497 -2.078 -1.702 -1.287  1.028  1.414  1.808  2.313 
 
 

TABLE 1B 
Empirical Sizes of t Statistics (nominal size =0.05). 

T=25.  
 

t-statistics: k=0 k=1 k=2 k=3 
OLS  5.61  6.67  14.67  19.22 
WLS  8.48  7.33  21.33  31.76 
White  10.03  9.49  12.68  14.02 

tρ*  (k-Known)  5.61  3.68  5.85  5.86 
tρ*  (k-Estimated)  5.14  5.25  5.92  4.83 
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TABLE 2A 
Percentiles of the Empirical Distributions of t Statistics. 

T=50. 
 

 k=0 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -2.483 -2.107 -1.741 -1.353  1.199  1.572  1.904  2.279 
WLS -2.759 -2.283 -1.908 -1.437  1.277  1.685  2.095  2.604 
White -2.869 -2.350 -1.912 -1.457  1.290  1.699  2.062  2.507 

tρ*  (k-Known) -2.483 -2.107 -1.741 -1.353  1.199  1.572  1.904  2.279 
tρ*  (k-Estimated) -2.444 -2.080 -1.720 -1.338  1.182  1.550  1.878  2.245 

 k=1 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -2.577 -2.162 -1.829 -1.445  1.242  1.673  2.037  2.376 
WLS -2.597 -2.210 -1.849 -1.451  1.260  1.668  2.011  2.454 
White -2.780 -2.318 -1.917 -1.483  1.272  1.676  2.052  2.433 

tρ*  (k-Known) -2.232 -1.872 -1.584 -1.251  1.075  1.449  1.764  2.058 
tρ*  (k-Estimated) -2.446 -2.033 -1.741 -1.373  1.172  1.585  1.912  2.273 

 k=2 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -3.151 -2.631 -2.232 -1.780  1.532  2.048  2.524  3.058 
WLS -3.629 -2.680 -2.189 -1.679  1.480  1.992  2.479  3.160 
White -2.968 -2.428 -2.035 -1.563  1.306  1.752  2.138  2.622 

tρ*  (k-Known) -2.349 -1.961 -1.663 -1.327  1.142  1.526  1.881  2.280 
tρ*  (k-Estimated) -2.507 -2.094 -1.761 -1.391  1.190  1.604  1.998  2.406 

 k=3 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -3.541 -2.960 -2.508 -1.992  1.715  2.301  2.818  3.403 
WLS -3.614 -2.762 -2.201 -1.705  1.488  2.012  2.498  3.137 
White -3.130 -2.547 -2.105 -1.619  1.330  1.776  2.193  2.735 

tρ*  (k-Known) -2.342 -1.958 -1.659 -1.318  1.135  1.522  1.864  2.251 
tρ*  (k-Estimated) -2.531 -2.081 -1.757 -1.384  1.189  1.591  1.971  2.438 
 

 
 

TABLE 2B 
Empirical Sizes of t Statistics (nominal size =0.05). 

T=50.  
 

 T=50 
t-statistics: k=0 k=1 k=2 k=3 

OLS  5.50  6.74  13.23  17.63 
WLS  7.68  6.89  12.18  12.58 
White  7.67  7.74  9.10  10.16 

tρ*  (k-Known)  5.50  3.42  4.56  4.50 
tρ*  (k-Estimated)  5.17  5.23  5.98  5.94 
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TABLE 3A 
Percentiles of the Empirical Distributions of t Statistics. 

T=100. 
 

 k=0 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -2.424 -2.016 -1.718 -1.338  1.220  1.581  1.896  2.297 
WLS -2.547 -2.131 -1.782 -1.399  1.266  1.665  1.994  2.446 
White -2.558 -2.184 -1.807 -1.395  1.266  1.643  1.999  2.421 

tρ*  (k-Known) -2.424 -2.016 -1.718 -1.338  1.220  1.581  1.896  2.297 
tρ*  (k-Estimated) -2.396 -2.001 -1.704 -1.329  1.206  1.569  1.870  2.256 

 k=1 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -2.585 -2.159 -1.813 -1.444  1.304  1.750  2.102  2.569 
WLS -2.603 -2.204 -1.828 -1.428  1.322  1.750  2.118  2.577 
White -2.567 -2.133 -1.790 -1.397  1.239  1.660  2.001  2.504 

tρ*  (k-Known) -2.239 -1.870 -1.570 -1.250  1.129  1.516  1.820  2.225 
tρ*  (k-Estimated) -2.375 -1.984 -1.650 -1.315  1.189  1.598  1.932  2.371 

 k=2 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -3.134 -2.602 -2.244 -1.778  1.607  2.130  2.611  3.189 
WLS -3.968 -2.870 -2.242 -1.686  1.495  2.063  2.645  3.577 
White -2.644 -2.218 -1.867 -1.454  1.275  1.691  2.074  2.512 

tρ*  (k-Known) -2.336 -1.939 -1.672 -1.325  1.197  1.588  1.946  2.377 
tρ*  (k-Estimated) -2.372 -1.967 -1.689 -1.343  1.197  1.597  1.959  2.410 

 k=3 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -3.519 -2.940 -2.531 -2.021  1.796  2.400  2.899  3.559 
WLS -3.873 -2.746 -2.162 -1.634  1.466  2.001  2.557  3.549 
White -2.723 -2.266 -1.909 -1.502  1.282  1.719  2.109  2.531 

tρ*  (k-Known) -2.328 -1.944 -1.674 -1.337  1.188  1.587  1.918  2.354 
tρ*  (k-Estimated) -2.381 -1.984 -1.698 -1.343  1.194  1.599  1.937  2.383 
 
 

TABLE 3B 
 Empirical Sizes of t Statistics (nominal size =0.05). 

T=100.  
 

t-statistics: k=0 k=1 k=2 k=3 
OLS  5.01  7.11  14.35  19.16 
WLS  6.16  7.56  12.65  12.07 
White  6.49  6.31  7.36  7.83 

tρ*  (k-Known)  5.01  3.82  4.75  4.76 
tρ*  (k-Estimated)  4.87  5.00  5.03  5.02 
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 Next, we present the rest of the results created by different assumptions 

for the variance structure.  

In the case where variance changes only once (Tables 4 to 6), the OLS t-

statistic becomes less appropriate the bigger the increase in the variance. 

Although no very close to Normal distribution, White’s test statistic seems to 

correct efficiently the heteroskedasticity problem. Its ability to perform well 

seems to decrease but in a smaller rank as the OLS t-statistic while the jump in 

the variance is bigger. The t-statistic adjusted to the estimated k under-rejects 

the null hypothesis and the problem gets bigger as variance gets also bigger. 

This result was expected as the estimator of k uses the squared residuals of two 

samples: the full sample and the first half sample, therefore creating in this case 

unexpected large estimates of k. 

In the next two cases, where the variance breaks in two and five points 

respectively (Tables 7 and 8), t-statistic adjusted to estimated k seems to be the 

most appropriate way to conduct statistical inference. The difference we the 

previous case is that now, we imposed a structure of increasing variance more 

smoothly and therefore approximating more our basic form of 

heteroskedasticity. 

 Finally, in Tables 9A and 9B we present the results of the 

experiment where the errors were allowed to increase by time in an exponential 

way. We can see that as T gets larger the problem with the OLS t-statistic also 

gets less appropriate. However White’s t-statistic and t-statistic adjusted to 

estimated k seems to stay unaffected by the sample size. Even though, both of 

them fail to correct the presence of heteroskedasticity, the latter seems to be 

more appropriate for hypothesis testing.  

 In the appendix, there is table which presents all the “pseudo” 

estimations of k which we get for all the above cases. 
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TABLE 4 
Percentiles of the Empirical Distributions and Empirical Sizes of t Statistics. 

Variance Shifts.  T=100  
Subperiods Variance 

[1,50] 1 
[51,100] 2 

 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99  SIZE 

OLS -2.516 -2.091 -1.761 -1.395  1.266  1.683  2.015  2.431  6.08 
WLS -3.009 -2.432 -2.014 -1.544  1.415  1.890  2.353  2.954  10.02 
White -2.585 -2.132 -1.775 -1.383  1.237  1.652  1.985  2.492  6.09 

tρ*  (k-Estimated) -2.353 -1.941 -1.633 -1.290  1.172  1.550  1.876  2.284  4.41 
 

TABLE 5 
Percentiles of the Empirical Distributions and Empirical Sizes of t Statistics. 

Variance Shifts.  T=100 
Subperiods Variance 

[1,50] 1 
[51,100] 10 

 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99  SIZE 

OLS -3.058 -2.563 -2.190 -1.717  1.538  2.045  2.471  2.987  12.74 
WLS -17.634 -13.353 -10.313 -7.157  5.556  7.937  10.285  13.325  64.39 
White -2.589 -2.202 -1.853 -1.438  1.259  1.666  2.042  2.517  6.96 

tρ*  (k-Estimated) -2.196 -1.859 -1.563 -1.217  1.088  1.454  1.780  2.151  3.65 
 

TABLE 6  
Percentiles of the Empirical Distributions and Empirical Sizes of t Statistics. 

Variance Shifts.  T=100 
Subperiods Variance 

[1,50] 1 
[51,100] 100 

 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99  SIZE 

OLS -3.322 -2.857 -2.400 -1.897  1.665  2.231  2.663  3.244  16.23 
WLS -87.262 -58.851 -42.194 -28.053  18.220  25.856  34.531  46.057  89.14 
White -2.626 -2.224 -1.858 -1.460  1.260  1.676  2.047  2.509  7.22 

tρ*  (k-Estimated) -1.804 -1.532 -1.281 -1.004  0.883  1.191  1.428  1.739  1.02 
 

TABLE 7 
Percentiles of the Empirical Distributions and Empirical Sizes of t Statistics. 

Variance Shifts.  T=120 
Subperiods Variance 

[1,40] 1 
[41,80] 3 
[81,120] 6 

 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99  SIZE 

OLS -2.669 -2.326 -1.952 -1.539  1.421  1.856  2.236  2.735  9.16 
WLS -3.995 -3.091 -2.415 -1.793  1.672  2.252  2.974  3.957  15.46 
White -2.508 -2.133 -1.775 -1.387  1.271  1.669  1.995  2.475  6.24 

tρ*  (k-Estimated) -2.316 -2.038 -1.700 -1.335  1.239  1.620  1.955  2.388  5.40 
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TABLE 8 
Percentiles of the Empirical Distributions and Empirical Sizes of t Statistics. 

Variance Shifts.  T=120 
Subperiods Variance 

[1,20] 1 
[21,40] 2 
[41,60] 3 
[61,80] 4 
[81,100] 5 

[101,120] 6 
 

 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99  SIZE 

OLS -2.577 -2.214 -1.880 -1.499  1.340  1.770  2.183  2.562  7.96 
WLS -3.054 -2.403 -1.986 -1.524  1.438  1.890  2.265  2.865  9.71 
White -2.457 -2.098 -1.791 -1.411  1.255  1.687  2.027  2.406  6.24 

tρ*  (k-Estimated) -2.319 -1.983 -1.690 -1.338  1.193  1.601  1.954  2.304  5.14 
TABLE 9A 

Percentiles of the Empirical Distributions of t Statistics. 
veu t **1.0 5/=  

 
 T=50 

t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 
OLS -5.372 -4.442 -3.652 -2.889  2.506  3.455  4.345  5.447 

White -4.010 -3.086 -2.469 -1.874  1.490  2.070  2.674  3.386 
tρ*  (k-Estimated) -2.959 -2.396 -1.945 -1.514  1.301  1.804  2.286  2.970 

 T=100 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -7.617 -6.194 -5.180 -4.069  3.603  4.929  6.315  7.883 
White -3.892 -3.090 -2.469 -1.873  1.499  2.076  2.641  3.537 

tρ*  (k-Estimated) -2.895 -2.331 -1.929 -1.502  1.328  1.828  2.367  2.965 
 T=200 

t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 
OLS -10.672 -8.910 -7.463 -5.870  4.965  6.855  8.759  11.107 

White -3.962 -3.075 -2.478 -1.882  1.443  2.028  2.584  3.428 
tρ*  (k-Estimated) -2.841 -2.353 -1.970 -1.537  1.297  1.807  2.314  2.930 

 T=500 
t-statistics: 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

OLS -17.272 -13.962 -11.432 -8.933  8.078  11.168  14.335  17.768 
White -4.072 -3.098 -2.431 -1.832  1.509  2.124  2.736  3.496 

tρ*  (k-Estimated) -2.884 -2.332 -1.902 -1.488  1.345  1.860  2.384  2.968 
 
 

TABLE 9B 
Empirical Sizes of t Statistics (nominal size =0.05). 

veu t **1.0 5/=  
 
 

t-statistics: T=50 T=100 T=200 T=500 
OLS  34.68  50.16  64.12  76.63 

White  14.58  14.73  14.52  14.78 
tρ*  (k-Estimated)  8.95  8.82  9.06  8.92 
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PART III 

 

5. The construction of our database 

 
 We proceed this study to its final part which is an empirical work over the 

discussed theory so far. At the beginning, we give a full description of the 

database we constructed in order to test the so far theory and then describe 

briefly the history of the efficient market hypothesis (EMH).  

  In this paper we are interested in macroeconomic and financial time series 

data. We aimed in collecting a wide range of data in order to correspond to a 

wide field of economists concerns. We searched for series that theory allows us 

to impose at them a first order autoregressive model. 

  From the field of finance we have focused our research on stock market 

indices. We examined both emerging and developed markets. We use yearly, 

daily and intraday data (every 10 seconds) to observe the behavior of these 

series. 

  From the field of macroeconomics we examined the behavior of foreign 

exchange markets, interest rates and prices of commodities. For these series we 

use yearly and daily data. 

  In order to have stationary processes, for level time series we generated 

their returns from one period to the other, by taking logarithmic differences. For 

interest rates we observed their level changes from one period to the other by 

taking differences in the level of the series. 

  Our concern was to emphasize in these series that exhibited a growing 

variance as time evolves with lack of outlays which could lead us to bad 

estimations of the parameter k. In table 10 we show the full collection of our 

chosen time series to apply the new approach discussed in this paper while in 

appendix there is a table of all data we have collected. 
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Table 10 

Selected data 

DESCRIPTION MNEMONIC SOURCE FREQUENCY STARTING 
DATE OBSERVATIONS 

Australia ASX All-Ordinaries (w/GFD extension) _aordd Global Financial Data Year 1875 130 
UK FT-Actuaries All-Share Index (w/GFD extension) _ftsad Global Financial Data Year 1800 205 
Australia Commonwealth 10-year Bonds igaus10d Global Financial Data Year 1858 147 
Canadian Government Bonds 10+ Years Maturity igcand Global Financial Data Year 1855 150 
UK 2 1/2% Consol Yield iggbrcw Global Financial Data Year 1800 205 
Japan 7-year Government Bond Yield igjpn7d Global Financial Data Year 1870 135 
USA 10-year Bond Constant Maturity Yield igusa10d Global Financial Data Year 1800 205 
Moody's Corporate AAA Yield mocaaad Global Financial Data Year 1857 148 
France SBF-250 Index (w/GFD extension) _sbf250d Global Financial Data Year 1856 149 
Silver Cash Price (US$/Ounce) __xag_hd Global Financial Data Year 1800 205 
USA 10-year Government Bond Total Return Index trusg10m Global Financial Data Year 1800 205 
Foreign Exchange Rates Canada $ to U.S. $ dexcaus Federal Reserve Bank of St. Louis Daily 4/1/1971 8551 
Foreign Exchange Rates Hong Kong $ To Australian $ hkaudsp Datastream Daily 31/5/1993 3025 
Stock Market: Cyprus Datastream Index totmkcp Datastream Daily 23/12/1992 3141 
Stock Market: Finland Datastream Index totmkfn Datastream Daily 25/3/1988 4381 
Stock Market: Dow Jones Industrial Index djindus Datastream Daily 1/1/1980 6331 
Stock Market: Dow Jones Industrial d&j-ind Dukascopy Trading Technologies Intraday(10sec) 22/3/2005 2340 
Stock Market: Dow Jones Industrial d&j-ind Dukascopy Trading Technologies Intraday(10sec) 12/4/2005 2295 
Stock Market: Dow Jones Industrial d&j-ind Dukascopy Trading Technologies Intraday(10sec) 3/5/2005 2340 
Stock Market: UK FTSE-100 futsee-100 Dukascopy Trading Technologies Intraday(10sec) 1/4/2005 3000 
Stock Market: UK FTSE-100 futsee-100 Dukascopy Trading Technologies Intraday(10sec) 19/4/2005 3000 
Stock Market: UK FTSE-100 futsee-100 Dukascopy Trading Technologies Intraday(10sec) 21/4/2005 3000 
Stock Market: UK FTSE-100 futsee-100 Dukascopy Trading Technologies Intraday(10sec) 16/5/2005 3000 
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6. A review on efficiency market hypothesis 
 

One of the earliest and most enduring questions of financial economics is 

whether future financial assets prices can be forecasted. The concept of efficient 

market hypothesis which asserts that the asset price changes are unpredictable 

can be traced back at least as far as the pioneering theoretical contribution of 

Bachelier (and the empirical research of Cowles). Bachelier (1900) was the first 

who attempted to formulate as a model the changes of stock exchange rates. He 

recognized the necessity of dependence / heterogeneity restrictions and should 

be credited with the first formulation of the stochastic process known today as a 

Brownian motion. 

The modern literature on financial market efficiency begins with 

Samuelson (1965) who in his landmark article tried to prove why properly 

anticipated prices fluctuate randomly. In a informationally efficient market price 

changes must be unforecastable if they are properly anticipated, i.e. if they fully 

incorporate the expectations and information of all market participants.  

Fama (1970) summarizes this idea by stating that:” A market in which prices 

always fully reflect available information is called efficient. His work divides 

market efficiency into three categories. In the first category, weak form tests, he 

is interested in how accurate can past returns predict future returns. Then, semi-

strong form tests in which the concern is whether prices efficiently adjust to 

other information that is obviously publicly available. Finally, strong form tests 

which tests if any investors have private information that is not fully reflected in 

market prices. 

Jensen (1978) gave a weaker and economically more sensible version of 

the efficient hypothesis by saying that prices fully reflect information to the 

point where the marginal benefits of acting on information, that is the profits to 

made, do not exceed the marginal costs. 
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Grossman and Stiglitz (1980) defined market efficiency as a status where 

information and trading costs, the costs of getting prices to reflect information, 

are always zero. 

More recently, Malkiel (1992) has given the definition of informational 

efficiency more explicitly, the economic implication of which is that is 

impossible to make economic profits by trading on the basis of the given 

information set. 

 In the following section we demonstrate empirical results over the 

selected time series. We use econometric program Eviews 4.0 for our statistical 

calculations. We divide the following section into two parts: first we give a 

summary regarding all data we used and make general comments. Then we take 

the case of the France SBF 250 index and make a more detailed analysis. 

 

7. Empirical Findings 

 
7.1 Summary Results 

 

In this section we describe the approach to be followed along with the 

tests to be used in our study. Our primary target is to locate the influence of the 

polynomial fashion trend in the variance of the fitted residuals that generates the 

regression.. 

We will check how the presence of polynomial trend can affect the final 

structure of our first order autoregressive model that is whether we should 

consider as statistical significant or not the coefficient of our regression. As we 

have already demonstrated, we know there is a tendency in the t-statistic of the 

OLS coefficient to approach zero, after adjusting it for the presence of a positive 

no zero kappa, where k is the grade of the deterministic polynomial trend that 

drives the variance.  Therefore taking under consideration the presence of kappa, 



 38 

helps in a facing the discussed problem of over rejecting the null hypothesis of 

zero coefficients. If this is the case, we can say that under the presence of 

polynomial trend in the variance of the error of the regression, we may have 

indication of market inefficiency, while the previous results suggested the 

opposite. For this purpose we will compare statistical inference results using the 

OLS t-statistic, the White’s corrected for heteroskedasticity t-statistic and the t-

statistic adjusted to estimated k. 

  

Table 11 shows our empirical findings according the discussed approach: 

 

Table 11 

Summary Results 

Series ˆLSρ  k̂  LSt  Whitet  *
k̂

t  

_aordd 0.079 1.193 0.897 0.765 0.753 
_ftsad 0.001 0.886 0.016 0.026 0.014 

igaus10d -0.014 2.283 -0.170 -0.096 -0.122 
igcand -0.112 2.616 -1.362 -0.637 -0.940 

iggbrcw -0.089 3.164 -1.273 -0.524 -0.828 
igjpn7d -0.405 2.852 -5.060 -2.924 -3.401 

igusa10d -0.203 1.869 -2.952 -1.543* -2.240 
mocaaad 0.031 1.297 0.385 0.253 0.318 
_sbf250d 0.191 2.295 2.346 2.779 1.683* 
__xag_hd 0.002 3.595 0.036 0.041 0.022 
trusg10m 0.451 1.333 7.205 4.746 5.913 
dexcaus 0.032 0.836 2.977 1.976 2.650 
hkaudsp -0.090 0.749 -5.014 -1.540* -4.531 
totmkcp 0.182 1.480 10.373 4.416 8.323 
totmkfn 0.046 1.355 3.087 1.956* 2.525 
djindus 0.063 1.286 5.083 2.361 4.202 

d&j-ind22mar 0.018 0.718 8.487 5.930 7.710 
d&j-ind12apr 0.077 0.846 3.597 1.495* 3.197 
d&j-ind3may 0.329 0.970 16.309 10.851 14.195 

futsee-1001apr 0.038 0.441 2.040 1.463* 1.942* 
futsee-10019apr -0.114 0.681 -6.166 -2.695 -5.637 
futsee-10021apr -0.175 1.103 -9.253 -2.888 -7.878 
futsee-10016may -0.038 0.484 -2.060 -2.235 -1.947* 
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As we can see in seven out of the total 23 series tested the OLS t-statistic 

gives conflicting results in comparison with Whitet  and *
k̂

t   while it rejects the null 

hypothesis while the other two tests do the opposite. We can see that in four 

cases Whitet conflicts with OLS t-statistic, while *
k̂

t   conflicts with OLS t-statistic 

two times. Another interested results is that Whitet and *
k̂

t works the same only in 

one case, and that for the cases that *
k̂

t  does not reject the null, White’s t-statistic 

gets bigger than OLS t-statistic. 

A final result we wish to present is the relationship between the OLS test 

statistic and the value of the estimation of k. Figure 3 demonstrates the scatter 

plot between these data: 

Figure 3 
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We can see that for values of k less than two there is a positive 

relationship between the value of k and the test statistic of OLS estimator, while 

in general view this relationship is not that clear. 

 

7.2 The case of France SBF-250 Index (w/GFD extension) 
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In figures 4 and 5 we can see the t-plot of _sbf250d and the residuals 

series for an AR (1) fitted model: 

Figure 4 

_sbf250d 

 

 

 

 

 

 

 

Figure 5 

Residuals series 

 

 

 

 

 

 

 

 

 We can observe that the variance of the fitted residuals appears to grow as 

time passes. Test statistics that we have presented so far, tested the null 

hypothesis 0 ˆ: 0LSH ρ = . For _sbf250d we have found that the OLS and White’s t-

statistic rejects the null. This result informs the investors that there the market is 

inefficient since from such a model he can get information about tomorrow’s 

price based on today’s. However, *
k̂

t   suggests the opposite that the market is 
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efficient and the appropriate decision for the investor should be not to take under 

consideration yesterday’s prices. 

 In addition to testing the null hypothesis 0 ˆ: 0LSH ρ = , someone might be 

interested in testing a different null of the form: 0 0ˆ: LSH ρ ρ= . We will 

demonstrate below, that also in this case we will have conflicting results in 

statistical inference. Tables 12 and 13 shows OLS and *
k̂

t   tests statistics for 

alternative values of 0ρ : 

Table 12 

0 0ˆ: LSH ρ ρ=  
0ρ  

-0.04 
0ρ  

-0.03 
0ρ  

-0.02 
0ρ  

-0.01 
0ρ  

0 
0ρ  

0.01 
0ρ  

0.02 
0ρ  

0.03 
0ρ  

0.04 

LSt  2.836 2.714 2.591 2.469 2.346 2.224 2.101 1.979 1.856 

Whitet  3.341 3.197 3.053 2.908 2.764 2.620 2.475 2.331 2.187 
*
k̂

t  2.035 1.947 1.859 1.772 1.684 1.596 1.508 1.420 1.332 
 

Table 13 

0 0ˆ: LSH ρ ρ=  
0ρ  

0.35 
0ρ  

0.36 
0ρ  

0.37 
0ρ  

0.38 
0ρ  

0.39 
0ρ  

0.40 
0ρ  

0.41 
0ρ  

0.42 
0ρ  

0.43 

LSt  -1.942 -2.064 -2.187 -2.309 -2.432 -2.554 -2.677 -2.799 -2.922 

Whitet  -2.287 -2.432 -2.576 -2.720 -2.865 -3.009 -3.153 -3.298 -3.442 
*
k̂

t  -1.393 -1.481 -1.569 -1.657 -1.745 -1.833 -1.921 -2.009 -2.097 
As we can observe *

k̂
t  is possible to lead us in different inference results if 

we have knowledge of the real value of 0ρ and we wish to test the 

equality 0 0ˆ: LSH ρ ρ= .Figure 5 demonstrates all values of 0ρ for which LSt and *
k̂

t  

give different results: 
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Figure 5 
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8. Conclusions  

 

 This paper has studied a new approach on heteroskedasticity and 

the asymptotic properties of the stationary first order autoregressive model. The 

new theory has rested the assumption that the variances of the innovations 

driving the model are bounded, thus precluding trending moments. Innovations 

variance was allowed to be asymptotically unbounded, evolving in a 

polynomial-like fashion. 

 Monte Carlo simulations have shown that the new approach is able 

to correct statistical inferences when the disturbances of the regression exhibits 

polynomial trend in their variance. We also saw evidence that the new theory is 

appropriate to approach alternative forms of growing variance. 

 Empirical findings have supported the existence of macroeconomic 

and financial time series that includes the discussed behavior. In these time 

series we have encountered conflicting results in statistical inference between 

classical test statistics and the new test statistic adjusted to estimated k. 
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APPENDIX 
 
 

TABLE A 
“Pseudo” Kappa’s 

 
Variance Shifts Estimated “Pseudo” 

Kappa 
T=100  

)2,1(),( 2
2

2
1 =σσ  0.605 

)10,1(),( 2
2

2
1 =σσ  2.448 

)100,1(),( 2
2

2
1 =σσ  5.631 

T=120  
)6,3,1(),,( 2

3
2
2

2
1 =σσσ  1.007 

)6,5,4,3,2,1(),,,,,( 2
6

2
5

2
4

2
3

2
2

2
1 =σσσσσσ  0.819 

  
Exponential growing  

T=  50 5.978 
T=100 13.201 
T=200 27.626 
T=500 70.897 
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TABLE B 
Complete Database 

 
Source - Database Mnemonic Description 

Daily Data: Foreign Exchange Rates 
Federal Reserve Bank of St. Louis DEXCAUS Canada / U.S. 
Federal Reserve Bank of St. Louis DEXINUS India / U.S. 
Federal Reserve Bank of St. Louis DEXJPUS Japan / U.S. 
Federal Reserve Bank of St. Louis DEXNOUS  Norway / U.S. 
Federal Reserve Bank of St. Louis DEXSDUS Sweden / U.S. 
Federal Reserve Bank of St. Louis DEXSFUS South Africa / U.S. 
Federal Reserve Bank of St. Louis DEXSIUS Singapore / U.S. 
Federal Reserve Bank of St. Louis DEXSZUS Switzerland / U.S. 
Federal Reserve Bank of St. Louis DEXTHUS Thailand / U.S. 
Federal Reserve Bank of St. Louis DEXUSAL U.S. / Australia 
Federal Reserve Bank of St. Louis DEXUSNZ U.S. / New Zealand 
Federal Reserve Bank of St. Louis DEXUSUK U.S. / U.K. 
Federal Reserve Bank of St. Louis DEXTAUS Taiwan / U.S. 
Federal Reserve Bank of St. Louis DEXKOUS South Korea / U.S. 
Federal Reserve Bank of St. Louis DEXCHUS China / U.S. 

Datastream ARGUK Argentina / U.S. 
Datastream CHILEUK Chile / U.K. 
Datastream HKUK Hong Kong / U.K. 
Datastream KORUK Korea / U.K. 
Datastream MALUK Malaysia / U.K. 
Datastream SINGUK Singapore / U.K. 
Datastream DENUK Denmark / U.K. 
Datastream INDUK India / U.K. 
Datastream NORUK Norway / U.K. 
Datastream PHILUK Philippines / U.K. 
Datastream CANUK Canada / U.K. 
Datastream DENCAN Denmark / Canada 
Datastream DENJAP Denmark / Japan 
Datastream ARCADSP Canada / Argentine 
Datastream ARHKDSP Hong Kong / Argentine 
Datastream ARJPYSP Japan / Argentine 
Datastream ARNZDSP Argentine / New Zealand 
Datastream ARSEKSP Sweden / Argentine 
Datastream ARZARSP South Africa / Argentine 
Datastream BRAUDSP Brazil / Australia 
Datastream HKAUDSP Hong Kong / Australia 
Datastream HKCADSP Hong Kong / Canada 
Datastream HKCGFSP Hong Kong / Switzerland 
Datastream MXDEMSP Mexico / Germany 
Datastream MXFRFSP Mexico / France 
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Daily Data:Stock Price Indexes 
Datastream AMSTEOE AEX INDEX (AEX) 
Datastream AUSTOLD ASX ALL ORDINARIES 1971 
Datastream DAXINDX DAX (Germany) 
Datastream FTSE100 FTSE 100 (England) 
Datastream HNGKNGI Hang Seng NGI 
Datastream IFGMAR$ S&P/IFCG M ARGENTINA 
Datastream IFGWJO$ S&P/IFCG W JORDAN 
Datastream ISEQUIT RELAND SE OVERALL (ISEQ) 
Datastream JAPDOWA NIKKEI 225 STOCK AVERAGE 
Datastream PSECOMP PHILIPPINES SE COMPOSITE 
Datastream WIEIREL FTSE W IRELAND 
Datastream BEL BEL 20 (Belgium) 
Datastream US_S_P50001 S&P 500 (U.S.) 
Datastream DJ_TRSPT Dow Jones Transportation (U.S.) 
Datastream DJ_UTILS Dow Jones Utilities (U.S.) 
Datastream IT_30 MILAN MIB 30 
Datastream JP_NIKKEI Nikeei (Japan) 
Datastream NASCOMP NASDAQ COMPOSITE 
Datastream NYSE_ALL New York Stock Exchange All 
Datastream SNGPORI SINGAPORE STRAITS TIMES 
Datastream TOTMKAR Total Market: Argentina 
Datastream TOTMKAU Total Market: Australia 
Datastream TOTMKBR Total Market: Brazil 
Datastream TOTMKCA Total Market: China A 
Datastream TOTMKCH Total Market: China 
Datastream TOTMKCN Total Market: Canada 

Intraday Data 

Dukascopy Tradind Technologies Intraday data (10 sec) on stock market indices:  
Dow Jones Industrial - FTSE 100 UK – NYSE 
Yearly Data 

Global Financial Data 
aordd 

Australia ASX All-Ordinaries (w/GFD 
extension) 

Global Financial Data bbkad Germany All Government Securities 
Ohio State University britann Share Price  
Ohio State University britann1 Share Price and Interest Rate 
Ohio State University britmon Share Price  
Global Financial Data corn Corn Spot Price (US$/Bushel) 
Global Financial Data crb CRB Commodity Index 
Ohio State University dow1900 Dow Jones Industrial Average 
Ohio State University dowdaily Dow Jones Industrial Average 
Global Financial Data 

ftsad 
UK FT-Actuaries All-Share Index 
(w/GFD extension) 

Global Financial Data 
fwbxxd 

Germany CDAX Composite Index 
(w/GFD extension) 

Global Financial Data 
gold 

Gold Bullion Price-New York 
(US$/Ounce) 

Global Financial Data 
gsptsed 

Canada S&P/TSX 300 Composite 
(w/GFD extension) 

Global Financial Data ibusa3d USA 3-month EuroDollar Deposits 
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Global Financial Data 
idusad 

USA Federal Reserve Bank of NY 
Discount Rate 

Global Financial Data 
igaus10d 

Australia Commonwealth 10-year 
Bonds 

Global Financial Data 
igcand 

Canadian Government Bonds 10+ 
Years Maturity 

Global Financial Data 
igfra10d 

France 10-year Government Bond 
Yield 

Global Financial Data iggbrcw UK 2 1/2% Consol Yield 
Global Financial Data igjpn7d Japan 7-year Government Bond Yield 
Global Financial Data 

igusa10d 
USA 10-year Bond Constant Maturity 
Yield 

Global Financial Data inf_aus Australia Consumer Price Index 
Global Financial Data inf_can Canada Consumer Price Index 
Global Financial Data inf_ger Germany Consumer Price Index 
Global Financial Data inf_jp Japan Consumer Price Index 
Global Financial Data inf_uk UK Retail Price Index 
Global Financial Data inf_usa USA BLS Consumer Price Index 
Global Financial Data mocaaad Moody's Corporate AAA Yield 
Global Financial Data 

nasdaq 
NASDAQ Composite Index (w/NQB 
extension) 

Global Financial Data 
nikkei225 

Japan Nikkei 225 Stock Average 
(w/GFD extension) 

Global Financial Data nyse NYSE Composite 
British Petroleum oilprices CRUDE OIL PRICES 1861 - 1999 
Global Financial Data 

sbf250d 
France SBF-250 Index (w/GFD 
extension) 

Global Financial Data silver Silver Cash Price (US$/Ounce) 
Global Financial Data 

trusabim 
USA Total Return Commercial/T-Bill 
Index 

Global Financial Data 
trusg10m 

USA 10-year Government Bond Total 
Return Index 

Global Financial Data 
wheat 

Wheat #2 Cash Price (US 
Dollars/Bushel) 
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Description
Source Mnemonic aordd

Starting Date 1875 Observations 130 Frequency Years

Estimated K 1.193 Value of ρ 0.079648 t-stat 0.897645

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.120,-0.090] U  [0.259,0.289]

Australia ASX All-Ordinaries (w/GFD extension)

Fitted Residuals of AR(1) model over the returns

Australia ASX All-Ordinaries (w/GFD extension)
Global Financial Data
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Description
Source Mnemonic ftsad

Starting Date 1800 Observations 205 Frequency Years

Estimated K 0.886 Value of ρ 0.0011155 t-stat 0.0157964

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.148,-0.128] U  [0.141,0.161]

Fitted Residuals of AR(1) model over the returns

UK FT-Actuaries All-Share Index (w/GFD extension)

UK FT-Actuaries All-Share Index (w/GFD extension)
Global Financial Data
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Description
Source Mnemonic igaus10d

Starting Date 1858 Observations 147 Frequency Years

Estimated K 2.283 Value of ρ -0.0142437 t-stat -0.1701741

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.234,-0.174] U  [0.155,0.215]

Fitted Residuals of AR(1) model over the yearly changes of the rates

Australia Commonwealth 10-year Bonds

Australia Commonwealth 10-year Bonds
Global Financial Data
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Description
Source Mnemonic igcand

Starting Date 1855 Observations 150 Frequency Years

Estimated K 2.616 Value of ρ -0.112012 t-stat -1.3620109

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.342,-0.272] U  [0.057,0.127]

Fitted Residuals of AR(1) model over the yearly changes of the rates

Canadian Government Bonds 10+ Years Maturity

Canadian Government Bonds 10+ Years Maturity
Global Financial Data
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Description
Source Mnemonic iggbrcw

Starting Date 1800 Observations 205 Frequency Years

Estimated K 3.164 Value of ρ -0.0894311 t-stat -1.2739115

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.299,-0.219] U  [0.050,0.130]

Fitted Residuals of AR(1) model over the yearly changes of the rates

UK 2 1/2% Consol Yield

UK 2 1/2% Consol Yield
Global Financial Data
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Description
Source Mnemonic igjpn7d

Starting Date 1870 Observations 134 Frequency Years

Estimated K 2.851 Value of ρ -0.405055 t-stat -5.0604942

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.635,-0.555] U  [-0.245,-0.165]

Fitted Residuals of AR(1) model over the yearly changes of the rates

Japan 7-year Government Bond Yield

Japan 7-year Government Bond Yield
Global Financial Data
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Description
Source Mnemonic igusa10d

Starting Date 1800 Observations 205 Frequency Years

Estimated K 1.869 Value of ρ -0.2038043 t-stat -2.9523305

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.373,-0.333] U  [-0.063,-0.023]

Fitted Residuals of AR(1) model over the yearly changes of the rates

USA 10-year Bond Constant Maturity Yield

USA 10-year Bond Constant Maturity Yield
Global Financial Data
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Description
Source Mnemonic mocaaad

Starting Date 1857 Observations 148 Frequency Years

Estimated K 1.297 Value of ρ 0.0312244 t-stat 0.3853316

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.158,-0.118] U  [0.191,0.231]

Fitted Residuals of AR(1) model over the yearly changes of the rates

Moody's Corporate AAA Yield

Moody's Corporate AAA Yield
Global Financial Data
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Description
Source Mnemonic sbf250d

Starting Date 1856 Observations 149 Frequency Years

Estimated K 2.294 Value of ρ 0.19151 t-stat 2.346084

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.028,0.041] U  [0.351,0.421]

Fitted Residuals of AR(1) model over the returns

France SBF-250 Index (w/GFD extension)

France SBF-250 Index (w/GFD extension)
Global Financial Data
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Description
Source Mnemonic silver

Starting Date 1800 Observations 205 Frequency Years

Estimated K 3.594 Value of ρ 0.002542 t-stat 0.035986

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.217,-0.127] U  [0.142,0.232]

Fitted Residuals of AR(1) model over the returns

Silver Cash Price (US$/Ounce)

Silver Cash Price (US$/Ounce)
Global Financial Data
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Description
Source Mnemonic trusg10m

Starting Date 1800 Observations 205 Frequency Years

Estimated K 1.332 Value of ρ 0.450979 t-stat 7.204486

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.310,0.330] U  [0.580,0.600]

Fitted Residuals of AR(1) model over the returns

USA 10-year Government Bond Total Return Index

USA 10-year Government Bond Total Return Index
Global Financial Data
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Description
Source Mnemonic dexcaus

Starting Date 4/1/1971 Observations 8551 Frequency Daily

Estimated K 0.836 Value of ρ 0.032209 t-stat 2.977272

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.009,0.011] U  [0.054,0.056]

Fitted Residuals of AR(1) model over the returns

Foreign Exchange Rates Canada/U.S.

Foreign Exchange Rates Canada/U.S.
Federal Reserve Bank of St. Louis
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Description
Source Mnemonic hkaudsp

Starting Date 31/5/1993 Observations 3025 Frequency Daily

Estimated K 0.749 Value of ρ -0.090858 t-stat -5.014283

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.129,-0.125] U  [-0.054,-0.050]

Fitted Residuals of AR(1) model over the returns

Foreign Exchange Rates Hong Kong $ To Australian $

Foreign Exchange Rates Hong Kong $ To Australian $
Datastream
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Description
Source Mnemonic totmkcp

Starting Date 23/12/1992 Observations 3141 Frequency Daily

Estimated K 1.480 Value of ρ 0.182317 t-stat 10.3738

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.142,0.152] U  [0.222,0.232]

Fitted Residuals of AR(1) model over the returns

Stock Market: Cyprus Datastream Index

Stock Market: Cyprus Datastream Index
Datastream
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Description
Source Mnemonic totmkfn

Starting Date 25/3/1988 Observations 4381 Frequency Daily

Estimated K 1.355 Value of ρ 0.046651 t-stat 3.087529

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.016,0.026] U  [0.076,0.086]

Fitted Residuals of AR(1) model over the returns

Stock Market: Finland Datastream Index

Stock Market: Finland Datastream Index
Datastream
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Description
Source Mnemonic djindus

Starting Date 1/1/1980 Observations 6331 Frequency Daily

Estimated K 1.286 Value of ρ 0.063776 t-stat 5.083883

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.034,0.039] U  [0.088,0.093]

Fitted Residuals of AR(1) model over the returns

Stock Market: Dow Jones Industrial Index

Stock Market: Dow Jones Industrial Index
Datastream
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Description
Source Mnemonic d&j-ind

Starting Date 22 March 2005 Observations 2340 Frequency 10 sec

Estimated K 0.718 Value of ρ 0.178438 t-stat 8.487213

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.133,0.137] U  [0.220,0.224]

Fitted Residuals of AR(1) model over the returns

Stock Market: Dow Jones Industrial (Intraday Data)

Stock Market: Dow Jones Industrial (Intraday Data)
Dukascopy Trading Technologies
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Description
Source Mnemonic d&j-ind

Starting Date 12 Aprli 2005 Observations 2295 Frequency 10 sec

Estimated K 0.846 Value of ρ 0.077444 t-stat 3.597466

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.030,0.035] U  [0.120,0.125]

Fitted Residuals of AR(1) model over the returns

Stock Market: Dow Jones Industrial (Intraday Data)

Stock Market: Dow Jones Industrial (Intraday Data)
Dukascopy Trading Technologies
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Description
Source Mnemonic d&j-ind

Starting Date 3 May 2005 Observations 2340 Frequency 10 sec

Estimated K 0.970 Value of ρ 0.329191 t-stat 16.30952

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.284,0.290] U  [0.369,0.375]

Fitted Residuals of AR(1) model over the returns

Stock Market: Dow Jones Industrial (Intraday Data)

Stock Market: Dow Jones Industrial (Intraday Data)
Dukascopy Trading Technologies
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Description
Source Mnemonic futsee-100

Starting Date 1 Aprli 2005 Observations 3000 Frequency 10 sec

Estimated K 0.441 Value of ρ 0.038181 t-stat 2.040977

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [0.000,0.002] U  [0.075,0.077]

Fitted Residuals of AR(1) model over the returns

Stock Market: UK FTSE-100 (Intraday Data)

Stock Market: UK FTSE-100 (Intraday Data)
Dukascopy Trading Technologies
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Description
Source Mnemonic futsee-100

Starting Date 19 Aprli 2005 Observations 3000 Frequency 10 sec

Estimated K 0.681 Value of ρ -0.114768 t-stat -6.166664

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.153,-0.150] U  [-0.077,-0.074]

Fitted Residuals of AR(1) model over the returns

Stock Market: UK FTSE-100 (Intraday Data)

Stock Market: UK FTSE-100 (Intraday Data)
Dukascopy Trading Technologies
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Description
Source Mnemonic futsee-100

Starting Date 21 Aprli 2005 Observations 3000 Frequency 10 sec

Estimated K 1.103 Value of ρ -0.175646 t-stat -9.523356

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.217,-0.211] U  [-0.138,-0.132]

Fitted Residuals of AR(1) model over the returns

Stock Market: UK FTSE-100 (Intraday Data)

Stock Market: UK FTSE-100 (Intraday Data)
Dukascopy Trading Technologies
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Description
Source Mnemonic futsee-100

Starting Date 16 May 2005 Observations 3000 Frequency 10 sec

Estimated K 0.484 Value of ρ -0.038613 t-stat -2.060674

Values of ρ where exist conflicting results between common t-
stat and t*-stat adjusted to estimated k [-0.076,-0.074] U  [-0.001,0.000]

Fitted Residuals of AR(1) model over the returns

Stock Market: UK FTSE-100 (Intraday Data)

Stock Market: UK FTSE-100 (Intraday Data)
Dukascopy Trading Technologies
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