

A study on Software Defined
Networks

Traffic Engineering

Master Thesis

Postgraduate programme “Technology Education & Digital Systems” – Digital

Communications and networks

Charalampos Patras, University Of Piraeus 2013-2015

Supervisor: Prof. Panagiotis Demestichas

Master Thesis | Patras Charalampos

2

Software Defined Networks | Traffic Engineering

Master Thesis | Patras Charalampos

3

Software Defined Networks | Traffic Engineering

Dedicated to my parents

and my sister

Master Thesis | Patras Charalampos

4

Software Defined Networks | Traffic Engineering

ACKNOWLEDGEMENTS

I would like to thank my advisor, Konstantinos Tsagkaris for guiding and
supporting me. You have set an example of excellence as a researcher, mentor,
instructor, and role model. Also I would like to thank Mr. Prof. Panagiotis
Demestichas for the support that he dedicated to me.

I would especially like to thank my amazing family for the love, support, and
constant encouragement I have gotten over the years. In particular, I would like to
thank my parents and my sister Helen. You are the salt of the earth, and I undoubtedly
could not have done this without you.

Master Thesis | Patras Charalampos

5

Software Defined Networks | Traffic Engineering

Master Thesis | Patras Charalampos

6

Software Defined Networks | Traffic Engineering

Table of Contents
Table of Contents ... 6

List of Figures .. 7

List of Tables .. 8

Acronym analysis ... 11

Περίληψη ... 13

Abstract .. 15

1. Introduction .. 18

2. Software Defined Networks ... 20

2.1 Openflow Protocol ... 23

2.1.1 Flow-table ... 25

2.1.2 Secure Channel ... 29

2.1.3 Controller-to-switch messages .. 31

2.1.3 Asynchronous messages ... 31

2.1.4 Symmetric messages ... 32

2.1.5 Switch – Controller connection & Encryption ... 33

2.1.6 Read State messages ... 34

2.1.6 Assigning Packages - Flow Registration .. 35

2.2 Controller .. 37

2.2.1 NOX Controller .. 39

2.2.2 Beacon Controller ... 42

2.3 Mininet software ... 43

2.3.1 Topologies in Mininet ... 45

2.3.2 Setting performance parameters ... 46

2.3.3 Run programs in virtual terminals .. 47

2.3.4 Mininet File System .. 48

2.3.5 Configuration methods of hosts .. 49

2.3.6 Mininet CLI .. 50

2.3.7 Mininet API .. 51

2.3.8 Measurement tools .. 53

3. Traffic Engineering & SDN ... 54

3.1 OpenFlow and custom routing ... 55

Master Thesis | Patras Charalampos

7

Software Defined Networks | Traffic Engineering

3.2 Floodlight controller ... 56

3.3 Topology example .. 57

4. SDN/Traffic Engineering based on Kruskal ... 59

4.1 Kruskal algorithm ... 59

4.1.1 Dynamic programming ... 59

4.1.2 Defining the problem .. 60

4.1.3 Kruskal algorithm description .. 60

4.1.4 Kruskal theoretical examples .. 62

4.1.5 Comparison of Kruskal with other algorithms ... 68

4.1.6 Complexity ... 69

4.2 Traffic engineering with Kruskal on Floodlight ... 69

5. Minimum Spanning Tree in Floodlight ... 72

5.1 System Analysis ... 83

5.2 Installation of system .. 84

6. Execution Test & Results .. 86

6.1 Show topology and edge costs ... 89

6.2 Minimum spanning trees .. 92

6.3 Setting new costs .. 94

6.4 Running time .. 96

6.5 Ports manage via rest API for energy efficient .. 97

7. Conclusions ... 100

8. References ... 101

List of Figures
Figure 1. OpenFlow switch that communicates with Controller via a secure channel
using OpenFlow protocol ... 24

Figure 2. Packet Flow in an OpenFlow switch .. 36

Figure 3. Packet matching with Flow Table in OpenFlow .. 37

Figure 4. A Controller manages multiple OpenFlow switches 38

Figure 5. Beacon controller with bundles code. ... 42

Figure 6. Floodlight controller and REST applications ... 56

Master Thesis | Patras Charalampos

8

Software Defined Networks | Traffic Engineering

Figure 7. Undirected busy coherent graph for Kruskal example 62

Figure 8. Minimum spanning tree after Kruskal application. 63

Figure 9. Graph for application of Minimum spanning tree -1. 66

Figure 10. Graph for application of Minimum spanning tree -2. 67

Figure 11. Start Mininet topology with 5 switches .. 86

Figure 12. Quit Mininet topology with 5 switches .. 87

Figure 13. Start Mininet topology with 10 switches .. 87

Figure 14. Show Mininet topology with 5 switches .. 89

Figure 15. Show Mininet link costs with 5 switches ... 89

Figure 16. Show Mininet topology with 10 switches – not good initial values. 90

Figure 17. Set Mininet topology costs for 10 switch network. 90

Figure 18. Show new Mininet link costs with 10 switches .. 90

Figure 19. Show new Mininet topology with 10 switches ... 91

Figure 20. Show redundant edges 5-switch topology .. 91

Figure 21. Show redundant edges 10-switch topology .. 92

Figure 22. Show MST for 5-switch topology .. 92

Figure 23. Show MST for 10-switch topology .. 92

Figure 24. Show s1 features in 5-switch topology ... 93

Figure 25. Show s1 features in 10-switch topology ... 93

Figure 26. Set new costs in 10-switch topology .. 94

Figure 27. Controller updates links in real time for 10-switch topology 94

Figure 28. Show Mininet topology with 10 switches - 2 ... 95

Figure 29. Show Mininet edge costs with 10 switches – 2 .. 95

Figure 30. Show Mininet redundant edges with 10 switches – 2 95

Figure 31. Mininet topology termination. .. 96

List of Tables
Table 1. Information constitute a criterion for assigning a packet to a particular flow
are included in the records of the flow-table .. 25

Table 2. List of available counters ... 27

Table 3. Set of actions that can be supported by an OpenFlow switch 28

Table 4. Field-Modify actions .. 30

Master Thesis | Patras Charalampos

9

Software Defined Networks | Traffic Engineering

Table 5. Events due to OpenFlow messages received from NOX and events created
from NOX applications. ... 41

Master Thesis | Patras Charalampos

10

Software Defined Networks | Traffic Engineering

Master Thesis | Patras Charalampos

11

Software Defined Networks | Traffic Engineering

Acronym analysis

SDN: Software Defined Networks

LSPs: Label-switched Paths

MST: Minimum Spanning Tree

http://www.dummies.com/how-to/content/label-switching-and-labelswitched-paths-lsps.html

Master Thesis | Patras Charalampos

12

Software Defined Networks | Traffic Engineering

Master Thesis | Patras Charalampos

13

Software Defined Networks | Traffic Engineering

Περίληψη

Ο σκοπός αυτής της διατριβής είναι η ανάπτυξη και παρουσίαση ενός προγράμματος
λογισμικού (εφαρμογής), που εφαρμόζεται σε έναν controller δικτύου ηλεκτρονικών
υπολογιστών, με στόχο την δρομολόγηση των δεδομένων στο δίκτυο με ελάχιστο
κόστος και με τη λειτουργία συνεχούς ενεργοποίησης (on / off) των προϊόντων του το
δίκτυο. Βελτιστοποίηση του δικτύου, επιλέγοντας το σωστό μονοπάτι δεδομένων
(LSP) βασίζεται στην εφαρμογή του αλγορίθμου Kruskal (greedy algorithm). Για την
ανάπτυξη αυτής της εφαρμογής χρησιμοποιείται ένα ερευνητικό πρωτόκολλο
επικοινωνίας δικτύων, το OpenFlow. Η χρήση του OpenFlow είναι σημαντική διότι
έχει τη δυνατότητα χωρισμού του πεδίου δεδομένων (data) και τον έλεγχο του
δικτύου (network control). Για την υλοποίηση αυτή χρησιμοποιείτε ο controller
Floodlight, έτσι υπάρχει ένα δίκτυο, που βασίζει τη λειτουργία του σε αυτόν τον
controller, και όχι σε μεμονωμένες συσκευές (switches, routers κτλ.). Επιπλέον,
χρησιμοποιείται το λογισμικό Mininet για να δημιουργηθεί η τοπολογία του δικτύου.
Η εφαρμογή υλοποιείται σε γλώσσα προγραμματισμού Java. Το λογισμικό που
χρησιμοποιείται αποτελεί ένα εξομοιωτή δικτύου. Με τη βοήθεια αυτού του
λογισμικού δημιουργείται ένα σύνολο τερματικών (hosts), δρομολογητών (routers),
διακοπτών (switches) και άλλα αντίστοιχα links Ethernet σε ένα ενιαίο πυρήνα του
Linux (kernel).

Master Thesis | Patras Charalampos

14

Software Defined Networks | Traffic Engineering

Λέξεις κλειδιά: SDN, openflow, mininet, traffic engineering, kruskal, minimum

spanning tree

Master Thesis | Patras Charalampos

15

Software Defined Networks | Traffic Engineering

 Abstract

The aim of this thesis is the development and presentation of a software program

(application) that is applied to a computer network controller, aimed at routing the

data to the network with minimal costs and the continuous switching operation (on /

off) of devices of the network. Optimization of the network by choosing the right data

path is based on the application of Kruskal algorithm. For the development of this

application a research communications protocol is used, ie OpenFlow. Using

OpenFlow is important because it offers the possibility of disconnection of the data

field and the network control. The Floodlight controller protocol is used and there is a

centralized network that bases its operation on a central controller, rather than to

individual devices. In addition Mininet software is used to create the network

topology. The application is implemented in Java programming language. The

software used constitutes a network emulator. It can simultaneously perform a set of

terminals, routers, switches and other Ethernet respective links on a single Linux

Kernel (core).

Master Thesis | Patras Charalampos

16

Software Defined Networks | Traffic Engineering

Key words: SDN, openflow, mininet, traffic engineering, kruskal, minimum spanning

tree

Master Thesis | Patras Charalampos

17

Software Defined Networks | Traffic Engineering

Master Thesis | Patras Charalampos

18

Software Defined Networks | Traffic Engineering

1. Introduction

Currently, the use and exploitation of the Internet is growing rapidly. Network

computing and IT devices have become an integral part of every day life. This has

resulted in phenomenal growth of network infrastructure and waste of energy

consumed by the network devices. The need to find energy and cost saving solutions

is a reflection that concerns the computing community. The solutions and methods can

be found at different levels of the network structure, but most important of them is the

same of the infrastructure, which consists of all the devices, such as routers, switches,

hubs, servers and clients.

Routing of network devices to this day remains static. Routers and switches create

routes to the network using various algorithms (eg minimum distance - Dijkstra) for

communications between the various devices. These algorithms are constructed so as

to choose the shortest path. Nowadays, when there is a variation in connection speeds

and applications with different speed needs, these methods are considered unorthodox

as they may lead to a large increase of load processed in one device while another

remains inactive.

This thesis aims to investigate a mechanism to dynamically control the routing of

packets calculating periodically the optimized route. We use a new architecture,

OpenFlow, which provides the ability to create virtual networking infrastructures to

routers and create multiple paths to a physical network without being necessary to re-

run connections creation algorithm for each path from the router.

The second Chapter presents OpenFlow technology. The structure of the architecture

and the reasons for which it was developed are presented. Then we presents variety of

controllers that have been developed. This Chapter also includes a description of

Mininet software for network topology creation.

The third chapter deals with the path control process through which the traffic is

handled in the network, or else Traffic Engineering. Managers wish to influence the

Master Thesis | Patras Charalampos

19

Software Defined Networks | Traffic Engineering

characteristics of a path for optimization of network resources. The aim is to avoid the

situation of certain parts congestion when others are underutilized.

The fourth Chapter describes Kruskal algorithm, the basis of traffic engineering in our

application. Kruskal algorithm is analyzed and compared with other optimization

algorithms. Several theoretical examples are presented for better understanding of

Kruskal operation.

The fifth Chapter provides a description of the implemented application, developed in

Java programming language. The software used for creating the virtual topology and

performing the minimum spanning tree (MST) function is described. Additionally

there is a presentation and explanation of topology used in this work. The sixth

Chapter provides the tests and results of MST package.

Master Thesis | Patras Charalampos

20

Software Defined Networks | Traffic Engineering

2. Software Defined Networks

The Internet as we know it today, shows limitations due to the widespread and rapid

expansion, thus limiting the scope for developing and implementing innovations. The

"software-defined" networks (Software-Defined Networks) are the future of computer

networking. This architecture provides researchers an easier method to test new

technologies and protocols. The most important thing is that SDN can be a main

substrate for Cloud Computer networking (Cloud Computing) [1].

The SDN is a new emerging computer network architectures. In a computer network

we have the concepts of data plane and control plane. Today, the interface between the

control plane and the data plane is closed and is inside routers and switches so that no

one can easily change the routing protocols used on a computer network. The basic

idea of the SDN architecture is the decoupling of the control plane from the data plane

and the creation of an open interface between them. The control plane runs outside of

the routers over a so-called network operating system (NOS), which manages the

forwarding tables of the routers and switches of a network. This approach is much

easier to implement innovative routing and traffic management techniques since a new

routing protocol can be implemented very quickly, simply by using new software over

the NOS, without requiring changes to routers and switches. The SDN architecture has

approached much interest from industry in the last 2-3 years, already supported by

many companies producing routers and switches, such as Cisco and Juniper, and is

already used in some networks, such as Google inter-data-center network [1].

An important role in this direction plays the OpenFlow protocol. Via OpenFlow, the

separation can be achieved between the level of control and forwarding packets in a

network. Additionally, using the FlowVisor the discriminant policy of network

resources can be achieved to isolated fragments [2].

Today, each of the manufacturers of computer networking devices allows a different

degree of planning and control of routers and switches from administrators. This often

leads to reduced usability of these devices, as well as heterogeneity in the

management mechanisms of network traffic from different manufacturers devices.

Master Thesis | Patras Charalampos

21

Software Defined Networks | Traffic Engineering

Furthermore, the management of computer networks requires customization,

separately for each device used [2].

The basic idea is that we can exploit the fact that most Ethernet switches (switches)

now contain flow record data tables (flow-tables) required to implement services of

Network Address Translation (NAT), Quality of Service (QoS), Firewall, etc.. These

tables are implemented using multiple Ternary Content Addressable Memories

(TCAMs), containing access-lists to filter packets based on the MAC address, and

QoS access-lists for the priority of network traffic. OpenFlow provides a free protocol

for the programming of these flow-tables. Each OpenFlow switch is controlled by a

researcher or by the network administrator through a Controller (Controller). A key

feature of the Controller is the fact that it can add or remove data flows (flows) in the

flow-table of OpenFlow switch. Finally, using the FlowVisor we can create isolated

network resources (slices), each of which will be controlled by a particular Controller

[2].

With these methods researchers perform experiments in heterogeneous switches or

routers (routers). But it is important that this is achieved without requiring

manufacturers to expose the inner workings of their products. In the following

paragraphs we will explain in detail these methods, based on version OpenFlow

Protocol [1].

Master Thesis | Patras Charalampos

22

Software Defined Networks | Traffic Engineering

Examples of SDN uses

There are a lot of cases that Software Defined Networks can find application. We are

going to report some of them and we will describe the cases. Some of them are

Network Access Control, Network Virtualization, Virtual Customer Edge, Dynamic

Interconnects, Virtual Core and Aggregation, Datacenter Optimization

 Network Access Control

It is an ability that sets the appropriate privileges for any user or device of the

network. It controls how someone accessing the networks, including access control

limits, and the incorporation of service chains as well as appropriate quality of service

(QoS).

 Network Virtualization (NV)

It is an ability to create a virtual network on top of a physical network, allowing a

large number of multi-tenant networks to run over a physical network, spanning

multiple racks in the datacenter or locations if necessary, including fine-grained

controls and isolation as well as insertion of acceleration or security services.

 Virtual Customer Edge

It is the ability to virtualize the customer edge either through creation of a virtualized

platform on customer premises or by pulling in the functions closer to the core on a

virtualized multi-tenant platform hosted either in a carrier point-of-presence, regional

datacenter, central datacenter.

 Dynamic Interconnects

It is the ability that creates dynamic links between locations, including between DCs,

enterprise and DCs, as well as dynamically applying appropriate QoS for those links.

https://www.sdxcentral.com/sdn-nfv-use-cases/network-access-control/
https://www.sdxcentral.com/sdn-nfv-use-cases/network-virtualization/
https://www.sdxcentral.com/sdn-nfv-use-cases/virtual-customer-edge/
https://www.sdxcentral.com/sdn-nfv-use-cases/dynamic-interconnects/
https://www.sdxcentral.com/sdn-nfv-use-cases/dynamic-interconnects/
https://www.sdxcentral.com/sdn-nfv-use-cases/virtual-core-and-aggregation/
https://www.sdxcentral.com/sdn-nfv-use-cases/data-center-optimization/
https://www.sdxcentral.com/resources/network-virtualization/whats-network-virtualization/

Master Thesis | Patras Charalampos

23

Software Defined Networks | Traffic Engineering

 Virtual Core and Aggregation

It is the ability that virtualized core systems for service providers including support

infrastructure, as well as dynamic mobile backhaul.

 Data Center Optimization

It is the ability that uses SDN and NFV, optimizing networks to improve application

performance by detecting and taking into account affinities, this it is made by

orchestrating workloads with networking configuration.

2.1 Openflow Protocol

An OpenFlow switch consists of a flow-table, which is used for mapping and packet

forwarding, and a secure communication channel (secure channel) to a Controller.

Finally, the Controller manages the OpenFlow switch through the secure channel

using the OpenFlow protocol (Figure 1).

The flow-table contains entries for flows, counters and actions for each record. Each

packet that enters the OpenFlow switch is checked against the records of flow-table.

In the case it matches with any record, the actions that accompany this registration are

applied, otherwise the packet is forwarded on the Controller via the secure channel.

The Controller is now responsible to reach a decision for the route that will follow the

pack, adding or removing entries from the flow-table of the switch [3].

Master Thesis | Patras Charalampos

24

Software Defined Networks | Traffic Engineering

Figure 1. OpenFlow switch that communicates with Controller via a secure channel using

OpenFlow protocol

Generally, the OpenFlow protocol was created to provide a standard way of

OpenFlow switch communication with the Controller. This protocol supports three

types of messages, Controller-to-switch, asynchronous (asynchronous), and symmetric

(symmetric). Still, for every kind of message we can distinguish several subcategories,

which are detailed below. The Controller-to-switch messages are the source of the

Controller and allow to directly manage, or supervise, the state of a switch. The

asynchronous messages start from the switch and its purpose is to inform the

Controller or events (events) that occur in the network, or changes in the status of

soitch. Finally, symmetrical messages from either the Controller or the switch and sent

without before to have been a request [3].

Master Thesis | Patras Charalampos

25

Software Defined Networks | Traffic Engineering

2.1.1 Flow-table

Each entry of the flow-table contains header fields which are contrasted with the

corresponding fields of each packet entering the OpenFlow switch. It also contains

counters that are updated each time a packet is assigned to a particular record. Finally

containing actions to be implemented in case of packet matching with some record.

Table 1. Information constitute a criterion for assigning a packet to a particular flow are included

in the records of the flow-table

Ιn Table 1 and twelve header fields are shown that can be stored in each record of the

flow-table. These twelve fields will be compared with the corresponding fields of each

packet entering the OpenFlow switch. It is worth noting that every field can have

either a specific value or the value "ANY" so and compare with the corresponding

field of a packet will always be true [3].

In each OpenFlow switch, counters are maintained for each table for flows, and for

switch ports, as well as for queues. Table 2 shows the total counters held by an

OpenFlow switch. Each entry flow is associated with a list of actions (this list can

contain from zero to any number of actions). The actions contained in such a record

indicating how the switch handles packages that will respond to that entry. If there is

no forward action in the list, then the packet is discarded (drop).

A switch can reject the creation of a new registration flow in case it can not edit the

list of actions it encompasses. Considering this situation, an OpenFlow switch is not

required to support all kinds of actions supporting the OpenFlow protocol (Table 3),

but must support at least those marked "REQUIRED", which are both necessary for

the realization of the basic functions. When a switch is connected to the Controller,

then it gives information about the optional actions (display "OPTIONAL" in table 3)

supported [4].

Master Thesis | Patras Charalampos

26

Software Defined Networks | Traffic Engineering

The basic set of OpenFlow switch actions, based on which packet forwarding is

implemented, is the FORWARD set. Each switch must promote a package to any

physical port, and with these virtual ports:

• ALL: Promoting a packet to all interfaces of the switch, except the input

interface.

• CONTROLLER: Send 128 bits (or whole) of the package to the Controller

• LOCAL: Send the package to the networking stack's own switch

• TABLE: It performs some actions in flow-table of the same switch. Action

concerns the only packet-out messages

• IN_PORT: Promotes the package from the entrance door

Besides these five virtual doors, a switch can optionally supports the following two:

• NORMAL: packet forwarding with the "normal" way forward packets

(traditional forwarding path) that supports each switch

• FLOOD: promotion package with the minimum Spanning Tree, without

including the port of entry of the package

Generally, the OpenFlow switch is divided into the following two categories:

• OpenFlow-only or Dedicated OpenFlow switch: A "spineless" datapath which

forwards packets according to the suggestions the Controller controlling it.

• OpenFlow-enabled switch: Specifically commercially switch, routers and

access points modified with the addition of OpenFlow firmware. Firmware

consists of the Flow Table, the Secure Channel, and the OpenFlow Protocol.

Master Thesis | Patras Charalampos

27

Software Defined Networks | Traffic Engineering

Table 2. List of available counters

A critical difference between the two is that the Dedicated OpenFlow switch only

supports FORWARD actions of Table 3 labeled REQUIRED. Instead, OpenFlow-

enabled can support the FORWARD action NORMAL. Both types, however, can

support the action FLOOD.

Perhaps the most important set of "voluntary" actions is the "Modify-Field" as it may

change the value of a packet header, greatly increasing the usefulness, and improving

the functioning of the OpenFlow switch. Table 4 shows the total "Modify-Field"

actions.

Master Thesis | Patras Charalampos

28

Software Defined Networks | Traffic Engineering

Action Function Necessity

FORWARD

Forward packet to any physical port,
and to the visuals below:

• ALL

• CONTROLLER

• LOCAL

• TABLE

• IN_PORT

REQUIRED

FORWARD

Packet forwarding to ports:

• NORMAL

• FLOOD

OPTIONAL

ENQUEUE Packet forwarding to port tail OPTIONAL

DROP

A flow profile without any action
specified, indicates that the packet
should be

rejected

REQUIRED

MODIFY-FIELD Enables an OpenFlow soitch alter the
values of the header of a packet OPTIONAL

Table 3. Set of actions that can be supported by an OpenFlow switch

Master Thesis | Patras Charalampos

29

Software Defined Networks | Traffic Engineering

2.1.2 Secure Channel

The Secure Channel is one interface (interface) connecting each OpenFlow switch to a

Controller. Through this interface, the Controller regulates and manages the switch,

informed of events (events) via the switch and sends packets through it. The interface

may vary depending on the implementation of OpenFlow switch, but each message

destined to be sent through the secure-channel must be standardized with OpenFlow

protocol [3].

Master Thesis | Patras Charalampos

30

Software Defined Networks | Traffic Engineering

Table 4. Field-Modify actions

Master Thesis | Patras Charalampos

31

Software Defined Networks | Traffic Engineering

2.1.3 Controller-to-switch messages

Messages of Controller-to-switch type start from the Controller to the switch, without

being required to send a message in response. These messages are divided into the

following subcategories [3]:

• Features: Since the start of the session between the Controller and the switch

through Transport Layer Security (TLS), the Controller sends a message to the

switch requesting information on capabilities (features request), and expects a

relative answer (features reply).

• Configuration: The Controller can configure the switch settings that controls,

or request information about them. In this case the switch is required to

respond with a note.

• Modify-State: These messages are used by the Controller mainly for addition,

deletion, or modification of the flow-table that exists in the switch, or to adjust

the properties of the ports.

• Read-State: Used by the Controller to gather statistics on the table of flows, the

ports, as well as for each record flow separately.

• Send-Packet: The send-packet messages are used to indicate the Controller to

switch via which specific port to promote a package.

• Barrier: Messages Barrier request / reply are used to confirm the Controller

that the requirements for a particular message apply. They are even used to

ascertain the Controller for the completion of a process.

2.1.3 Asynchronous messages

The asynchronous messages are sent by the switch, without first having been

requested by the Controller. Their purpose is to inform the controller of packet

arrivals, changes in the state of switch, or an error that has occurred [3].

The four main sub asynchronous messaging types are:

• Packet-in: Any new package that enters the switch and is not mapped to any

existing entries flow, causes the creation and sending a message Packet-in to

Master Thesis | Patras Charalampos

32

Software Defined Networks | Traffic Engineering

the Controller (packet-in event). If the switch has enough available memory to

cache (buffer) this package, then the message that will be sent will contain 128

bytes with the necessary information that the Controller. The information

relates to the values of the header of the packet entered, and a one

identification value (buffer ID) of the package. If the switch does not support

caching packets, or does not have enough available memory, then the message

to be sent on the Controller will include the entire original package.

• Flow-removed: When a record is added to the flow switch from the Controller

via a flow-modify message, dictated the switch after how much idle time

should erase that entry. It is even dictated when to shut off the general,

regardless of the activity associated with this entry. Simultaneously dictate the

switch if you should notify the Controller after such a deletion, which is a

message-type flow-removed.

• Port-status: To switch uses these messages in cases of change of state of a port,

for example, if a user disables a specific switch port. Additionally, it is used in

cases of change in state of a port as defined by Protocol 802.1D.

• Error: With these messages, the switch can inform the Controller for problems

or errors that may arise.

2.1.4 Symmetric messages

Symmetrical messages may be sent either by a switch, or a Controller, without the

other party having requested such an action, and are separated into the following three

categories [3]:

• Hello: Messages of this type are exchanged between the switch and the

Controller the moment you finish the connection between them.

• Echo: Posts of type echo request / reply can be sent either sides and is used for

measurements of delay (latency) or frequency range (bandwidth). It also is

used to verify whether the connection between them is active.

• Vendor: The purpose of these messages is to provide a space for further

functionality, those for types of OpenFlow messages. They have been

implemented primarily for future versions of OpenFlow.

Master Thesis | Patras Charalampos

33

Software Defined Networks | Traffic Engineering

2.1.5 Switch – Controller connection & Encryption

The switch must be able to establish communication with the Controller, via an IP

address and a port, which are set by the user of the switch and remain stable. The

movement through the secure channel is not checked against entries in the table of

flows, and for this reason, the switch must recognize the rest of network traffic as

local, in order to compare with recordings of the flow-table [4].

The communication between the switch and the Controller is via a connection TLS.

Linking this initiates the switch to the Controller, who usually expects this to TCP

port 6633. Then the authentication takes place via exchange certificates with private

key. For this reason, each switch must have a certificate certifying the Controller and

another for his certification to the Controller [4].

If after some time the connection is lost, the switch attempts to connect with him, or

spare Controllers that have been defined. If this connection fails after a specified

number of attempts, the switch automatically enters a safety mode (emergency state)

and returns a list of flows to its original state (reset). From that moment, and until it

again reaches its connection to a Controller, the mapping and forward process of

packets entering the switch, dictated by a flow table security (emergency), which will

be determined by the user. So, once recovered the connection to a Controller is

possible to maintain or abolish these safety records [4].

Master Thesis | Patras Charalampos

34

Software Defined Networks | Traffic Engineering

2.1.6 Read State messages

Messages of type Read-State, used by the auditor to gather statistics from the router.

Finding the desired path in the routing algorithm, it is necessary to collect statistical

data on various network elements and store these data into a database that will be

updated frequently [4].

The OpenFlow protocol enables such data collection through Read-State. More

specifically, the controller sends at regular intervals messages of type

OFPT_STATS_REQUEST to the network devices. Routers respond with one or more

messages of type OFPT_STATS_REPLY.

The only value specified as flag in a reply message is the value 0x0001, and is defined

only if you follow more than one replies. To facilitate implementation, the routers

may send replies without additional entries. However, they should always be sent after

a message containing flag field values. The identities of the transactions (xid) replies

must always match the request. Both in requests and replies, the field type determines

the type of information provided and determines how the field is interpreted.

In all types of statistics, if a counter value is not available on the router, its value is set

to -1.

Master Thesis | Patras Charalampos

35

Software Defined Networks | Traffic Engineering

2.1.6 Assigning Packages - Flow Registration

For each new packet received, the OpenFlow switch performs the procedure shown in

Figure 2, to decide how to manage it and where to promote it. Of course, the control /

comparison process of the header of the new packet (Figure 3) depends on the type of

package, as described below [5].

• Rules that are characterized by a specific port of entry, contrasted with the

natural port that received the packet.

• The Ethernet headers, as shown in Table 2, are used for all packages.

• If the packet has VLAN tag (that is type 0x8100), then the VLAN ID and PCP

fields take part in the match.

• For ARP packages (Ethernet type 0x8606), the matching process can be used

and source IP addresses and destination.

• For IP packets (Ethernet type 0x8000), the matching fields include those of the

IP header.

• For IP packets using TCP or UDP (IP protocol 6 or 17), in matching the

transport ports are used.

• For IP packets using ICMP protocol (IP protocol 1) in pairing Type and Code

fields are used.

• For IP packets with non-zero fragment offset, or more Fragments bit set, the

transport ports are considered to be zero for the mapping process.

If the values of the packet headers match those specified in any recorded flow, then

the packet is assigned to the particular recording. Then, if the packet after the

comparison with the records of the flow-table is matched with some records, then the

meters comprising the particular record are renewed. If the package is not assigned

any entry, then it is forwarded to the Controller via the secure channel.

Finally, it is important to remember that packets are mapped to flow entries based on

some priority. Each package can be paired with multiple entries, but the order of

matching is dictated by the priority of registration. Thus, a record that exactly matches

the headers of a packet (that is, for example it contains no wildcards), always has the

Master Thesis | Patras Charalampos

36

Software Defined Networks | Traffic Engineering

highest priority. If for a package, multiple table records of flows match and have the

same priority, then the switch is free to choose any string for package matching [5].

Figure 2. Packet Flow in an OpenFlow switch

Master Thesis | Patras Charalampos

37

Software Defined Networks | Traffic Engineering

Figure 3. Packet matching with Flow Table in OpenFlow

2.2 Controller

Until recently, the management of computer networks was exclusively implemented

through low-level settings separately for each network element (eg, switch, router,

etc.). This practice is highly dependent on the physical topology of each network.

Plus, by separating the Data Plane from the Control Plane in OpenFlow protocol we

can talk about a Computer Network Operating System that provides a single,

centralized programming environment to control an entire network.

Such an operating system does not manage the network itself, but provides the ability

to monitor and control the processes, through the integrated programming

environment. So the management of the network can now be done by applications

built and "run" in the operating system. So two innovations in networks management

are changing the way it was done so far. Firstly the system supports applications

through a central programming model, which can manage an entire network of

computers. Second, these applications can be written to a higher level of

generalization (eg user and host names) rather than in low-level configurations (eg IP

addresses or MAC). All you need is the operating system that maintains mappings

between these two levels [5].

Master Thesis | Patras Charalampos

38

Software Defined Networks | Traffic Engineering

Thus the concept of the Controller was created, which is nothing more than a

Computer Operating System Network, responsible for their management. As already

mentioned, each OpenFlow switch is operated by a Controller. The Controller is

responsible for taking decisions on the state of the switch and the promotion of new

packages that enter into it. Thus a Controller that can be run on a single PC is able to

handle multiple OpenFlow switches and to have an optical entire network that controls

(Figure 4).

There is currently a limited but growing number of Controllers that we can use, but

here we will focus on NOX and Beacon Controllers, which are the most widespread.

Figure 4. A Controller manages multiple OpenFlow switches

Master Thesis | Patras Charalampos

39

Software Defined Networks | Traffic Engineering

2.2.1 NOX Controller

NOX Controller is a control platform and a computer network and provides a high-

level programming environment. This way it can create applications which could be

used by NOX to make decisions for the management and monitoring of the network.

The main purpose of these applications is to decide how and whether to launch each

package on a computer network, which is achieved by using flows [3].

Analyzing the network level flows, if some decision has been made for the packet, the

packets that will follow and have the same headers, could be treated in the same way

without intervention of the Controller. Thus, the NOX can be managed by a small

network of several hosts, or a large network of hundreds of switches, providing in

both cases an easily modifiable way to control these networks [4].

All that NOX requires to function is to have been connected with at least one

OpenFlow switch, using the OpenFlow protocol. As already mentioned in the

previous paragraph, if a new packet enters the switch and is not associated with any of

the existing entries in the table of flows, it will be sent to NOX. From this point

onwards, it is the responsibility of the applications running on NOX to decide the

route to follow [3].

Such a package is usually the reason for creating a new flow (flow – initiation).

Nevetheless, through applications that "run" in NOX, it can be decided to take all the

packets corresponding for example to the same protocol, which means that it will

never create a new flow. Generally the NOX uses the new import flows and the rest of

network traffic that is updated every time the status of the network and to decide

whether and which route will promote the movement.

At this time, the NOX is operable to user-space environment in an ordinary PC or

Server and can generate 100,000 new flows per second, ie more than enough to handle

the traffic of a whole university community. Applications of NOX are generated using

either Python's language or in C ++, and loaded dynamically, while the basic

infrastructure and functions that are considered critical to the speed have been

implemented in C ++.

Master Thesis | Patras Charalampos

40

Software Defined Networks | Traffic Engineering

The programming environment of NOX is basically quite simple, since it revolves

around events, network conditions, and assigning "names" to high level and low-level

functions. The NOX in the core, provides only low-level methods for interaction with

the rest of the network. All high-level methods and events, are created and supported

by its applications. In fact, an application is nothing more than a sum of methods [3].

Additionally, however, it has the possibility to define specific methods that can be

used by another application. So for example the process of routing of a packet can be

implemented in one application and another application that may need this procedure

can be declared as a dependency and use it freely. Table X below, showes some of the

main applications provided by the NOX. As shown in this table, these applications are

basically divided into three main categories according to the network management

type considered. These categories are:

• Core apps: They provide a set of functions used by the other two categories of

applications for managing the network.

• Network apps: These are applications that manage actually the network and is

responsible for taking decisions.

• Web apps: Used by the NOX to provide internet services (Web services) to its

users.

Big businesses or academic communities networks are not static and there is a need to

create or delete flows, add and remove users, and links whose condition may vary (up

/ down). An event is something that happens on the network managed by NOX, and

which may be of interest to some of its applications. To enable applications NOX face

this plethora of events and information, a set of event handlers is used. Various events

are associated with their event handlers. Event-handlers are used in accordance with

the turn they are declared during NOX startup, and the returned value indicates

whether the event-handlers that follow will continue processing the event or not.

Some facts are obtained directly through specific OpenFlow messages that NOX can

recieve, and other events may be generated by the applications themselves, as a result

of specific events such as connection or disconnection of a switch and receiving

Master Thesis | Patras Charalampos

41

Software Defined Networks | Traffic Engineering

package or statistics measurements from the switch. Tables 2.7 and 2.8 are shown

some of the key events that can be used by applications of NOX. It is worth noting

that the NOX administrator has the potential to create additional applications and

events, accompanied by their respective event handlers, to handle the NOX network in

the desired manner [4].

If we observe the applications of NOX from a more general perspective, it is nothing

more than a set of event handlers. Thus these events determine the entire operation of

NOX.

Event Trigger

Datapath_join_event Connect new switch network

Datapath_leave_event Disconnecting a switch from the network

Packet_in_event Receive new package from NOX

Flow_mod_event Adding or modifying a Flow from NOX

Flow_removed_event Deletion or termination of a flow

Port_status_event Change the status of a port

Port_stats_in Receiving a message from Port_stats Controller

Host_event
created by Authenticator each time a new host connects to the
network

Flow_in_event
created by Authenticator each time the Controller receives a
Packet_in_event

Link_event
created by Discovery with every addition or change of a link (link)
to the network

Table 5. Events due to OpenFlow messages received from NOX and events created from NOX

applications.

Master Thesis | Patras Charalampos

42

Software Defined Networks | Traffic Engineering

2.2.2 Beacon Controller

Beacon is an OpenFlow controller developed in Java environment and made available

for use in 2011. It can run on several platforms (Windows, Linux, Android OS) and

supports multithreaded (multithreaded) function. It is based on partial logic (modular)

so it is easily expandable using new parts (modules) to support additional functions.

Using code bundles, Beacon can perform dynamic applications that are not

interdependent, starting, stopping or pausing bundles code according to the user's

options without restarting the controller for each change. This architecture of the

Beacon is shown in Figure 5. Code can work together, to share the source packages

and command (Java packages) with other bundles, expand the repertoire of their

functions with another code (extend) or have multiple versions running at the same

time (versioning) [3].

Beacon is supplied with all the essential code packages such as OpenFlow (OF 1.0

Protocol) for OpenFlow protocol packages for encoding and decoding packet

(Ethernet, ARP, IPv4, LLDP, TCP, UDP), packages for basic switch functions (Core,

Learning Switch, Hub, Device Manager) and sets of algorithms and finding topology

(Topology, Layer 2 Shortest Path Routing).

Figure 5. Beacon controller with bundles code.

Master Thesis | Patras Charalampos

43

Software Defined Networks | Traffic Engineering

2.3 Mininet software

The Mininet program is a network emulator. It has the ability to simultaneously

perform a set of terminals, routers, ethernet switches and respective links to a single

Linux Kernel (core). It uses virtualization technology to enable a single system to be

simulated as a complete network using the same core system and the same passwords.

Each virtual terminal in mininet works like a real terminal. Moreover it enables secure

connection (type SSH) in the terminal, executes any program (provided that it is

installed on the Linux system) .The running programs can send packets between the

terminals as well as recognizes the link between the interfaces as type Ethernet. While

sending of packets is carried out by a given connection speed and the required delay.

The packets are processed by devices that operate as routers (Ethernet swtiches,

routers) with a given time in queues. When two programs, such as the iperf (which

measures the capacity of the line between two points) between a client (client) and a

server (server) communicate via Mininet, the measured performance should be shared

with that of two native machines [6].

Briefly, in Mininet, terminals, routers, switches, controllers and connections are

created using software and not hardware. It is possible to create a Mininet network

similar to a real network based on hardware, or the creation of a hardware network

similar to that of Mininet, which performs the same binary code and applications on

each platform.

As can be seen Mininet is a handy and reliable tool to simulate networks garnering

significant advantages. Below the most notable advantages are summarized [6].

• The creation of a simplified network takes place in no time, making it possible

to quickly perform the process of debugging.

• The execution of all software supported by the Linux operating system is

possible.

• It may modify the packet forwarding: Mininet Routers can be programmed

using OpenFlow protocol.

• Mininet can run on any computer, server, virtual machine or even cloud-type

technology (cloud computing).

Master Thesis | Patras Charalampos

44

Software Defined Networks | Traffic Engineering

• The results of the software can be played back by any user as all that is

required is to run the same code in the corresponding terminal.

• The Mininet is a handy software. To create and perform experiments in

programming that require Python language.

• It is an open source project and is under active development. The Mininet

community consists of users and developers and can help to address any

problem that may be faced by each user.

Master Thesis | Patras Charalampos

45

Software Defined Networks | Traffic Engineering

2.3.1 Topologies in Mininet

Mininet supports the creation of customizable topologies. With the creation of the

corresponding Python code, it is possible to create flexible topology which can be

configured based on the information included in the code, and can be reused in

multiple experiments [6].

For example, the following illustrates a network topology consisting of a specified

number of users (hosts) and associated with a switch.

#!/usr/bin/python
from mininet.topo import Topo
from mininet.net import Mininet
from mininet.util import dumpNodeConnections
from mininet.log import setLogLevel
class SingleSwitchTopo(Topo):
"Single switch connected to n hosts."
def __init__(self, n=2, **opts):
Initialize topology and default options
Topo.__init__(self, **opts)switch = self.addSwitch('s1')
Python's range(N) generates 0..N-1
for h in range(n):
host = self.addHost('h%s' % (h + 1))
self.addLink(host, switch)
def simpleTest():
"Create and test a simple network"
topo = SingleSwitchTopo(n=4)
net = Mininet(topo)
net.start()
print "Dumping host connections"
dumpNodeConnections(net.hosts)
print "Testing network connectivity"
net.pingAll()
net.stop()
if __name__ == '__main__':
Tell mininet to print useful information
setLogLevel('info')
simpleTest()

Master Thesis | Patras Charalampos

46

Software Defined Networks | Traffic Engineering

Classes and functions used are explained further:

• Topo: The base class used in topologies Mininet

◦ addSwitch (): adds a router in the topology and returns the name of the

router

◦ addHost (): adds terminal in topology and returns the name

◦ addLink (): adds a two-way connection in topology. (Connections to

Mininet both ways unless otherwise stated.)

• Mininet: main class for the creation and management of the network

◦ start (): Enables the operation of the network.

◦ pingAll (): check the connectivity of the terminal by performing successive

ping requests between nodes.

◦ stop (): Terminates the network operation. net.hosts: Returns the name of

all

◦ dumpNodeConnections nodes (): Rejects connections to / from a set of

nodes

2.3.2 Setting performance parameters

Besides the basic functions of networking, Mininet provides configurable performance

and isolation of certain characteristics, through CPULimitedHost and TCLink classes.

#!/usr/bin/python
from mininet.topo import Topo
from mininet.net import Mininet
from mininet.node import CPULimitedHost
from mininet.link import TCLink
from mininet.util import dumpNodeConnections
from mininet.log import setLogLevel
class SingleSwitchTopo(Topo):
"Single switch connected to n hosts."
def __init__(self, n=2, **opts):
Topo.__init__(self, **opts)
switch = self.addSwitch('s1')
for h in range(n):
Each host gets 50%/n of system CPU
host = self.addHost('h%s' % (h + 1),

Master Thesis | Patras Charalampos

47

Software Defined Networks | Traffic Engineering

cpu=.5/n)
10 Mbps, 5ms delay, 10% loss, 1000 packet queue
self.addLink(host, switch,
bw=10, delay='5ms', loss=10, max_queue_size=1000, use_htb=True)
def perfTest():
"Create network and run simple performance test"
topo = SingleSwitchTopo(n=4)
net = Mininet(topo=topo,
host=CPULimitedHost, link=TCLink)
net.start()
print "Dumping host connections"
dumpNodeConnections(net.hosts)
print "Testing network connectivity"
net.pingAll()
print "Testing bandwidth between h1 and h4"
h1, h4 = net.get('h1', 'h4')
net.iperf((h1, h4))
net.stop()
if __name__ == '__main__':
setLogLevel('info')
perfTest()

The most important methods and parameters used are explained further:

• self.addHost (name, cpu = f): With the use of this command allows the

definition of the percentage of total system CPU that will use the virtual user.

• self.addLink (node1, node2, bw = 10, delay = '5ms', max_queue_size = 1000,

loss = 10, use_htb = True): Creates a bidirectional connection between two

nodes with specific characteristics such as capacity, delay, packet loss

tolerance, with a maximum queue size of 100 packets. The parameter bw is

expressed in Mb / s, while the delay is followed by the corresponding unit time

(s, ms, us) .Antitheta loos the parameter is expressed in percentage.

2.3.3 Run programs in virtual terminals

Running programs in terminals is the most memorable event during the execution of

the experiments, so further commands can be supported from the usual pingAll () and

iperf () type commands. This process is supported by the Mininet software. Each

terminal in Mininet is basically a bash shell type associated with one or more network

interfaces thus support running bash type commands. For this reason, to communicate

with each terminal is mainly used method type CMD. To execute a command from a

host and imprinting effect, through method cmd, the following code is used [6]

Master Thesis | Patras Charalampos

48

Software Defined Networks | Traffic Engineering

h1 = net.get('h1')
result = h1.cmd('ifconfig')
print result

In many cases the execution of an order in the spotlight for some time is required,

stopping or storing the result in a file.

from time import sleep
...
print "Starting test..."h1.cmd('while true; do date; sleep 1; done >
/tmp/date.out &')
sleep(10)
print "Stopping test"
h1.cmd('kill %while')
print "Reading output"
f = open('/tmp/date.out')
lineno = 1
for line in f.readlines():
print "%d: %s" % (lineno, line.strip())
lineno += 1
f.close()

Apart from the use of the shell waiting facility, Mininet enables lets you run a set of

commands using the command sendCmd (), and then, which is expected to be

completed at a later time using the command waitOutput ():

for h in hosts:

h.sendCmd('sleep 20')

…

results = {}

for h in hosts:

results[h.name] = h.waitOutput()

2.3.4 Mininet File System

Virtual hosts in Mininet share by default the root folder of the underlying server

system. Instead, creation of a new separate system (filesystem) is time consuming and

very difficult.

Master Thesis | Patras Charalampos

49

Software Defined Networks | Traffic Engineering

The shared file system provides the advantage that you will not need to copy data

between hosts as they have been already created. [5]

This, however, has one major drawback. If special configuration is required for a

program (eg. Httpd), creation of new configuration files for each host is required.

Furthermore it creates the risk of conflict files, if the same file is created in the same

directory.

2.3.5 Configuration methods of hosts

Hosts in mininet provide a number of processes that contribute to the ease of network

configuration [6].

• IP (): Returns the IP address of the terminal as a specific interface.

• MAC (): Returns the MAC address of the terminal as a specific interface.

• setARP (): Creates a static ARP entry in the ARP cache of the terminal.

• setIP (): Settings specific IP address for a terminal interface.

• setMAC (): Settings specific IP address for a terminal interface.

For example:

print "Host", h1.name, "has IP address", h1.IP(), "and MAC address", h1.MAC()

Master Thesis | Patras Charalampos

50

Software Defined Networks | Traffic Engineering

2.3.6 Mininet CLI

The Mininet includes Command Line Interface that can operate on a network. It

provides a variety of useful commands, and the ability to display xterm window for

execution on individual nodes of a network [5].

from mininet.topo import SingleSwitchTopo
from mininet.net import Mininet
from mininet.cli import CLI
net = Mininet(SingleSwitchTopo(2))
net.start()
CLI(net)
net.stop()

Using command-line helps to debug the network, displays the network topology

(using the command net), check the connectivity (with pingall command) and send

commands to all terminals independently.

*** Starting CLI:
mininet> net
c0
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
mininet> pingall
*** Ping: testing ping reachability
h1 -> h2
h2 -> h1
*** Results: 0% dropped (0/2 lost)
mininet> h1 ip link show
746: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
749: h1-eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP qlen 1000
link/ether d6:13:2d:6f:98:95 brd ff:ff:ff:ff:ff:ff

Master Thesis | Patras Charalampos

51

Software Defined Networks | Traffic Engineering

2.3.7 Mininet API

We call API or Application Programming Interface known as Application

Programming Interface, the interface of programming procedures that an operating

system, library or application provides to allow this to be done requests from other

programs and / or data exchange [6].

The previous paragraphs presented a number of classes of Python included the API of

Mininet, including headings Topo, Mininet, Host, Switch, Link and their

subcategories. Due to simplify and facilitate planning classes are divided into three

categories-levels: high-level API, medium-level API and low level API [6].

Low level API: It consists of the main classes relating to nodes and links (as Host,

Switch, and Link and its subclasses) are used to create a network. The way of setting

up a network with only headings of that level is particularly cumbersome process.

Moderate API: Adds Mininet type objects, which serve as additional information and

settings in knots and prudence. Provides a set of methods (such addHost (), addSwitch

(), and addLink ()) for the addition of nodes and links in the network, and the network

configuration, startup and shutdown (start (), stop ()).

High level API: Provides additional setting options of topology. Through topo Class

offers the possibility to create topology model that can be customized and reused.

Models of this type are defined via command mn (through argument - custom option)

and executed from the command line.

Generally for the direct control of nodes and routers, the low-level API used. Instead

of stopping the operation of a network used the API intermediate level.

The creation of a complete and very detailed network may be accomplished using any

standard API, but is usually selected in the mid and high level thanks to the classes

Master Thesis | Patras Charalampos

52

Software Defined Networks | Traffic Engineering

that contain greatly facilitate the creation. Here are three examples of creating a

complete network using a different API level each time [6].

Low-level API: nodes and links

h1 = Host('h1')
h2 = Host('h2')
s1 = OVSSwitch('s1', inNamespace=False)
c0 = Controller('c0', inNamespace=False)
Link(h1, s1)
Link(h2, s1)
h1.setIP('10.1/8')
h2.setIP('10.2/8')
c0.start()
s1.start([c0])
print h1.cmd('ping -c1', h2.IP())
s1.stop()
c0.stop()

Mid-level API: Network

net = Mininet()
h1 = net.addHost('h1')
h2 = net.addHost('h2')
s1 = net.addSwitch('s1')
c0 = net.addController('c0')
net.addLink(h1, s1)
net.addLink(h2, s1)
net.start()
print h1.cmd('ping -c1', h2.IP())
CLI(net)
net.stop()

High-level API: Topology example

class SingleSwitchTopo(Topo):
"Single Switch Topology"
def __init__(self, count=1, **params):
Topo.__init__(self, **params)
hosts = [self.addHost('h%d' % i)
for i in range(1, count + 1)]
s1 = self.addSwitch('s1')
for h in hosts:
self.addLink(h, s1)
net = Mininet(topo=SingleSwitchTopo(3))
net.start()
CLI(net)
net.stop()

Master Thesis | Patras Charalampos

53

Software Defined Networks | Traffic Engineering

To middle level API consists of simpler structure as shown in the above example

requires the creation of class topology. If the low- and medium-level API are flexible,

they have the disadvantage of being more cumbersome their reuse as opposed to the

high-level API.

2.3.8 Measurement tools

Mininet contains command tools for recording measurements and help control the

network and debugging effort. Here are the most important tools along with their

respective commands [6].

• Bandwidth (bmw-ng, ethstats)

• Delay (via ping command)

• Queues (through the tc command included in Class monitor.py)

• Statistics TCP (tcp_probe)

• CPU use (top, cpuacct)

Master Thesis | Patras Charalampos

54

Software Defined Networks | Traffic Engineering

3. Traffic Engineering & SDN

The path control process through which the traffic is handled in the network is called

Traffic Engineering-TE. There are many reasons why network managers wish to

influence the characteristics of a path, one of which is the use of optimization of

network resources. The purpose is simple: avoid the situation of certain parts

congestion when other are underutilized. Other important reasons are the path to have

certain limitations -constraints (eg not to use long delay links), so in line collapse

cases to ensure fair priority in the distribution of motion. Through this process of

Traffic Engineering new services are offered with extensive Quality of Service

guarantees and investments decline in new network resources such as bandwidth, by

optimizing the use of existing ones. It has been shown in practice that the technology

of MPLS, and by extension the successor of the Generalized, offer the required

operational flexibility simultaneously with simplicity to implement complex policies

TE [8].

One of the most powerful and useful features of Mininet is that it uses Networks

Defined Software. By using the OpenFlow protocol the programming of routers is

allowed so that they can make decisions for packets that enter. The OpenFlow

technology makes simulators like Mininet more useful since the design of network

systems, including custom packet forwarding using OpenFlow, can be transferred to

OpenFlow routers functions on the line rate [8].

Master Thesis | Patras Charalampos

55

Software Defined Networks | Traffic Engineering

3.1 OpenFlow and custom routing

In performing an experiment mininet uses default ovsc type controller. The corresponding

equivalent command is [9]:

$ sudo mn --controller ovsk

A Controller of this type implements a simple Ethernet router learning, and supports

up to sixteen individual routers. When constructing a script (Script), when the class

Mininet () is executed, a corresponding class of the controller should be set and. If a

user of a specific controller class is not declared then it is called the default Controller

() class thus creating Stanford / OpenFlow type controllers [8].

Conversely, the possibility of use of different type of controller is provided, depending

on the needs of the application. The user can create a subclass Controller () and

transfer it in the Mininet system files [10].

RemoteController () functions as an intermediary for a controller that can operate

anywhere in the control network, except that uptime and downtime should be done in

a manual way or with a device that is not controlled by the Mininet. The controller is a

function and not an object. It is possible to create a building function in series using

the argument partial or lambda or creating a function that takes arguments and returns

the controller object. Finally the possibility is given of introducing the controller as

class (subclass of class RemoteController ()).

One also useful property is that it is possible to create multiple controllers and to

create a subclass of Class Switch () that allows connection to different controllers.

Master Thesis | Patras Charalampos

56

Software Defined Networks | Traffic Engineering

3.2 Floodlight controller

Floodlight Controller is based on Java, as Beacon, but has a different architecture and

operating mode. The controller comprises an autonomous collection of modules which

perform the main functions of Floodlight as OpenFlow controller and applications are

developed so as to overlap (on-top) the base unit controller (REST applications) or to

operate together with the controller (Module applications), as shown in the following

scheme [6]:

Figure 6. Floodlight controller and REST applications

As shown above, Floodlight consists of functional topology and link modules

(Topology Manager, Link Discovery), control devices and units (Device Manager,

Module Manager), OpenFlow services (OpenFlow Services), unit storage and

handling (Storage, Counter Store, Flow Cache, Packet Streamer, Thread Pool).

Applications that use Floodlight as an underlying layer are developed as independent

Java modules and use the programming REST interface of the controller (REST API -

Master Thesis | Patras Charalampos

57

Software Defined Networks | Traffic Engineering

application programming interface). Through its REST API applications Floodlight

communicates with the controller and can use the network for any function [8].

Also applications can be developed and adjusted to the level of Floodlight controller,

enough to develop and implement the controller modules as Java (Java modules). This

way, although more demanding and difficult than the use of the REST API's, has

significant benefits as regards the execution speed of the application and greater

communication bandwidth offer with Floodlight, since the coupling of application -

controller becomes more directly to the use of Java API's.

3.3 Topology example

Mininet API allows the users to create custom networks depending on their needs,

using a few lines of code in Python. In this section we will present a topology example

that is presented in the Mininet manual [6].

Custom topology example

Two directly connected switches plus a host for each switch:

 host --- switch --- switch --- host

Adding the 'topos' dict with a key/value pair to generate our newly defined

topology enables one to pass in '--topo=mytopo' from the command line.

from mininet.topo import Topo
class MyTopo(Topo):
 "Simple topology example."

 def __init__(self):
 "Create custom topo."

 # Initialize topology
 Topo.__init__(self)
 # Add hosts and switches
 leftHost = self.addHost('h1')
 rightHost = self.addHost('h2')
 leftSwitch = self.addSwitch('s3')
 rightSwitch = self.addSwitch('s4')

 # Add links
 self.addLink(leftHost, leftSwitch)
 self.addLink(leftSwitch, rightSwitch)
 self.addLink(rightSwitch, rightHost)

topos = { 'mytopo': (lambda: MyTopo()) }

Master Thesis | Patras Charalampos

58

Software Defined Networks | Traffic Engineering

According to this code above we see that our topology consists of three terminals and

four routers to the corresponding connections shown. The code includes the topology

and the elements that constitute it. In this way one can create the topology that meets

the needs of the application to be able to perform the simulations. Then to perform the

simulation we need to go back to mininet using the following command.

$ sudo mn -custom topology.py –topo mytopo – mac-controller=remote,
ip=[controller IP],port=[controller listening port]

At this point we will illustrate the above commands in order to understand the use of

each command. By sudo mn, the user gets administrator rights on mininet and instruct

the mininet to perform topology.py file located in the custom folder and create mytopo

topology with the corresponding links to govern as defined in file topology. py. The

reason for this label from the program is that the file may include more than one

topologies. In addition, the argument -mac sets the MAC address of each terminal

equal to the IP address. This is done for simplicity in the process of analyzing the

results. In addition, for creating traffic from terminal to terminal and general control

functions of terminals, we use argument -x which has resulted in the creation of

execution window (command prompt), one for each device. Finally the most

important argument is the -controller = remote, ip = []. With this command define the

topology controller (OpenFlow Controller) that is located in the ip address []. This

Controller can be a Floodlight controller. This fact allows the controller to be located

somewhere remotely as in this case where it is outside the virtual machine [6].

Master Thesis | Patras Charalampos

59

Software Defined Networks | Traffic Engineering

4. SDN/Traffic Engineering based on Kruskal
4.1 Kruskal algorithm

4.1.1 Dynamic programming

The term dynamic programming was introduced in 1953 by Richard Bellman in order

to describe the process of solving problems that are broken down into a sequence of

consecutive decisions.

It is a method that is applicable when sub problems are not independent. An algorithm

is a product of dynamic programming that solves each sub problem once and store this

solution in a table, in which the algorithm will resort every time this problem is met.

This is a very powerful technique for solving algorithmic problems [9].

Dynamic programming is applied generally to optimization problems. In these

problems it can give many different solutions.

Each solution has a specific value, and the aim is to find the solution with the optimal

(minimum or maximum) value. A solution that ensures optimum value is designated

as an optimal solution, since there may be different options that achieve the optimal

value [10].

The development of a dynamic programming algorithm can be decomposed into a

series of four steps.

1. We characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution working "bottom-up" or "by some to

general."

Master Thesis | Patras Charalampos

60

Software Defined Networks | Traffic Engineering

4. We construct an optimal solution from the data we have calculated.

Steps 1-3 are the basic stages of solving a problem with the method of potential

programming. Step 4 may be omitted if the aim is just the value of an optimal

solution.

4.1.2 Defining the problem

The "greedy" algorithms are useful tools for optimization solving. For example, the

problem of finding the shortest path between two vertices of a graph or finding the

optimum range to perform a set of works from a computer system [9].

Problem:

Let G = <N, A> a coherent non-directed graph, where N is the set of vertices and A

the set of edges, in each of which a number is assigned, its weight. A subset T of the

edges of G must be found, which connects all the vertices of the graph G and the sum

of the weights of T can be minimized [11].

T is called minimal overlapping tree (minimum spanning tree / MST). Overlapping is

the tree that contains all the nodes of the graph, and minimum is the one containing

the minimal edges on all nodes.

4.1.3 Kruskal algorithm description

A greedy algorithm has a simple structure consisting of the following elements [9]:

• a set of candidate choices (eg the top of a graph)

• a set of options that have already been used in the process of solving.

• a control function, which controls whether a particular set of candidate options

yields a solution. (not necessarily the best for the time considered)

Master Thesis | Patras Charalampos

61

Software Defined Networks | Traffic Engineering

• a function that checks whether a set of candidate choices possible, to give us a

solution to the problem.

• a selection function, which at all times shows what option is the best prospect

to be part of the solution.

• an objective function that gives the value of the solution. The objective

function is desired to be optimized. (The selection function is typically based

on the objective function, and indeed may also be the same).

One such algorithm proceeds in the next step with the decision that now seems to be

the best for problem solving. This does not mean that always delivers the optimum

solution.

Kruskal algorithm is described by the following basic principles [9]:

• The set T of the edges is initially empty. With the progress of the algorithm,

new edges are added to T one by one.

• At any time graphs formed by the vertices of G and edges of T may represent

more than one different connected trees. The edges of T contained in each of

them are poorly connected trees for all the vertices of each segment. At the end

of the algorithm we take only one bonded portion so T is the minimum

overlapping tree by G.

• To create larger and larger independent affiliated sections, we look at the

edges of the graph G in ascending weight order. If an edge is joining two

vertices from different departments, then it is inserted in T and the two parts

are now a single connected part. Else, it is rejected because its inclusion in T

would create a cycle.

Master Thesis | Patras Charalampos

62

Software Defined Networks | Traffic Engineering

4.1.4 Kruskal theoretical examples

Figure 7. Undirected busy coherent graph for Kruskal example

Consider the above undirected busy coherent graph G = (N, A). In order to show the

minimum overlapping tree (Minimum Spanning Tree-MST) that is obtained by

applying Kruskal algorithm. Where there is more than one option, the edge joining

vertices with the smallest sum of the weights is selected [11].

• Step 1: Add the edge (5,6) having a weight of 1

• Step 2: Add the edge (0.2) having a weight of 2

• Step 3: Add the edge (1,3) having a weight of 3

• Step 4: Add the edge (1.4) having a weight of 3

• Step 5: Add the edge (2,3) having a weight of 4

• Step 6: Acne (0,1) can not be added because it creates cycle

• Step 7: Add the edge (5,7) having a weight of 5

• 8th step: The edge (6,7) can not be added because it creates cycle

• 9th step: Add the edge (2,5) having a weight of 6

Master Thesis | Patras Charalampos

63

Software Defined Networks | Traffic Engineering

So we have the Minimum Spanning Tree-MST, after applying Kruskal algorithm:

Figure 8. Minimum spanning tree after Kruskal application.

The following code implements the Minimum Spanning Tree with Kruskal algorithm

in C++ [9]:

#include<stdio.h>
#include<stdlib.h>
int i,j,k,a,b,u,v,n,ne=0;
int min,mincost=0,c[9][9],parent[9];
int find(int);
int uni(int,int);
int main()
{
printf("Kruskal Algorithm\n");
printf("\nDwste ton arithmo twn komvwn\n");
scanf("%d",&n);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
c[i][j]=0;
}
}
//eisagwgh varwn
c[0][1]=0;
c[0][2]=2;
c[1][0]=0;
.
.

Master Thesis | Patras Charalampos

64

Software Defined Networks | Traffic Engineering

c[7][6]=5;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(c[i][j]==0)
c[i][j]=999;
}
}
printf("\n\nOi koryfes tou MST einai :\n");
while(ne<=n)
{
for(i=0,min=999;i<n;i++)
{
for(j=0;j<n;j++)
{
if(c[i][j]<min)
{
min=c[i][j];
a=u=i;
b=v=j;
}
}
}
u=find(u);
v=find(v);
if(uni(u,v))
{
printf("\n%d edge (%d,%d) =%d\n",ne,a,b,min);
mincost +=min;
}
c[a][b]=c[b][a]=999;
ne++;
}
printf("\n Elaxisto kostos = %d\n",mincost);
system("PAUSE");
}
int find(int i)
{
while(parent[i])
i=parent[i];
return i;
}
int uni(int i,int j)
{
if(i!=j)
{
if(i<j)
parent[i]=j;
else if (i>j)
parent[j]=i;
return 1;

Master Thesis | Patras Charalampos

65

Software Defined Networks | Traffic Engineering

}
return 0;
}

The results from running the above algorithm are the following:

For the graph of the theoretical example:

Number of vertices: 8

The tops of the MST are:

• 0 edge (5,6) = 1

• 1 edge (0,2) = 2

• 2 edge (1,3) = 3

• 3 edge (1,4) = 3

• 4 edge (2,3) = 4

• 5 edge (5,7) = 5 7 edge (2,5) = 6

Minimum Cost = 24

The results for application of the same algorithm for the graph of Figure 9 is shown in

the following.

Master Thesis | Patras Charalampos

66

Software Defined Networks | Traffic Engineering

Figure 9. Graph for application of Minimum spanning tree -1.

Number of vertices: 8

The tops of the MST are:

• 0 edge (0,1) = 12

• 1 edge (2,3) = 12

• 2 edge (0,7) = 13

• 3 edge (3,4) = 13

• 4 edge (1,6) = 14

• 5 edge (2,5) = 14 6 edge (4,7) = 15

Minimum Cost = 93

Master Thesis | Patras Charalampos

67

Software Defined Networks | Traffic Engineering

The results for application of the same algorithm for the graph of Figure 9 is shown in

the following.

Figure 10. Graph for application of Minimum spanning tree -2.

Number of vertices: 7

The tops of the MST are:

• 0 edge (0,3) = 5

• 1 edge (2,4) = 5

• 2 edge (3,5) = 6

• 3 edge (0,1) = 7

• 4 edge (1,4) = 7

• 5 edge (4,6) = 9

Minimum Cost = 39

Master Thesis | Patras Charalampos

68

Software Defined Networks | Traffic Engineering

4.1.5 Comparison of Kruskal with other algorithms

Kruskal algorithm selects edges, just trying to avoid creating cycles. This mode has

the effect of creating a forest of trees, which then grow in an irregular manner,

depending on the evolution of the algorithm [10].

On the other hand, Prim algorithm gradually develops the minimum connected tree

itself starting from a randomly chosen root. In each step, Prim adds a new branch of

the tree and the algorithm is complete when you have selected all the vertices of the

graph.

The algorithm of Dijkstra, finds the minimal path between two peaks while Kruskal

returns the minimum spanning tree that connects all vertices of a graph.

The algorithm of Bellman-Ford, solves the problem of its baseline light paths in the

general case, where the edges may have negative weights. If there are negative

weights, the algorithm indicates that the problem has no solution. If not, it calculates

the lighter paths and their weights [10].

The Boruvka algorithm, is a most demanding algorithm for finding the minimum

spanning tree in a graph in which all edges have different weights.

Master Thesis | Patras Charalampos

69

Software Defined Networks | Traffic Engineering

4.1.6 Complexity

The main loop of the Prim algorithm is performed n-1 times and in each run the loop

for enclosing has complexity O (|V|) . Hence, the algorithm has overall complexity O

(| V |2) [11].

Compared with Kruskal algorithm with complexity O (|E| log |V|), (where E: number

of edges and V: number of peaks) [11]:

• For "dense" graphs where the number of edges tends to |V| (|V|-1) / 2 Kruskal

algorithm has complexity O (|V| 2log |V|) and therefore the Prim algorithm is

better.

• For "dilute" graphs where the number of edges tends to V, the algorithm of

Kruskal [O (| V | log | V |)] is the most efficient.

The complexity of the Dijkstra algorithm, is O ((|V| + |E|) log |V|) whereas for sparse

graphs, complexity is reduced to O (|E| log |V|).

The Boruvka algorithm complexity is O (|E| log |V|).

4.2 Traffic engineering with Kruskal on Floodlight

In this thesis, we implemented the minimum spanning tree algorithm in a custom

module of Floodlight controller. The Floodlight controller implements the Openflow

protocol. This application aims to building loop topologies by utilization of

LearningSwitch and non-STP enabled OF switches, avoiding broadcast storm. This

implementation of Floodligth module applies the minimum spanning tree over a

network created by Mininet software. The application is implemented in Java.

In this section we will present the implementation of Kruskal and minimum spanning

tree in Java. The following code initiates the Kruskal algorithm, comparing the cost of

link pairs.

Master Thesis | Patras Charalampos

70

Software Defined Networks | Traffic Engineering

if
(reverse)
{

Collections.sort(topoEdges, new
Comparator<LinkWithCost>() {

public int compare(LinkWithCost link1,
LinkWithCost link2) {

return new
Integer(link2.getCost()).compareTo(link1.get
Cost());

 }
 });
 } else {

Collections.sort(topoEdges, new
Comparator<LinkWithCost>() {

public int compare(LinkWithCost link1,
LinkWithCost link2) {

return new
Integer(link1.getCost()).compareTo(link2.get
Cost());

 }
 });

The following code generates the nodes hashmap, with one entry for each switch.

Here, a set of connect components is created for each node.

if
(!nodes.containsKey(lt.getS
rc())) {

nodes.put(lt.getSrc(), new
HashSet<Long>());

nodes.get(lt.getSrc()).add(lt.g
etSrc());

 }

if
(!nodes.containsKey(lt.getDst()
)) {

nodes.put(lt.getDst(), new
HashSet<Long>());

nodes.get(lt.getDst()).add(lt.g
etDst());

 }

Master Thesis | Patras Charalampos

71

Software Defined Networks | Traffic Engineering

After the execution of the above code, the edges and node structure has been

generated, on which Kruskal will be implemented. Next, we enter the Kruskal cycle.

Here, the algorithm checks if the edge has already been computed, in order not to

compute the same edge twice.

if
(edgesDone.contains(cur
Edge)) {

logger.trace("Edge already computed by Kruskal.
Not computing again!");

 } else {
 edgesDone.add(curEdge);

Next the size of source and destination edges are compared. If the size of destination

edge is smaller than source edge, then destination edge along with all nodes have to be

transferred. Else, source edge and nodes are transferred.

if (nodes.get(curEdge.getSrc()).size() >
nodes.get(curEdge.getDst()).size()) {

src =
nodes.get(curEdge.getDst());

dst =
nodes.get(dstHashSetIndex =
curEdge.getSrc());

Then all nodes are moved from source set to distance set and the index in nodes array

is updated. The Kruskal cycle is ended and the minimum spanning tree is printed.

Master Thesis | Patras Charalampos

72

Software Defined Networks | Traffic Engineering

5. Minimum Spanning Tree in Floodlight

The it..msttraffic package that was implemented in this work includes the following

classes: IMSTTrafficService.java, TopologyCostsLoader.java and MSTTraffic.java.

Class TopologyCostsLoader.java is used to make import of type TopologyCosts from

the package it..msttraffic.types, and creates a new instance of this type. Class

IMSTTrafficService.java creates the homonymous interface which extends the

IfloodlightService.

public interface IMSTTrafficService extends IFloodlightService

The additional elements of the interface that created two essential methods, the

getCosts and setCosts which retrieve and set the cost of each route respectively.

public TopologyCosts getCosts();

public void setCosts(TopologyCosts costs);

We also have three new Sets within which we put the edges of the Minimum

Spanning Tree, the edges of our topology and edges for removal. These information

are gathered from the respective methods getMSTEdges, getTopoEdges and

getReduntantEdges of class LinkWithCost which will be explained below.

public Set<LinkWithCost> getMSTEdges();

public Set<LinkWithCost> getTopoEdges();

public Set<LinkWithCost> getRedundantEdges();

The MSTTraffic.java class is the main class of our program.

Master Thesis | Patras Charalampos

73

Software Defined Networks | Traffic Engineering

The it..msttraffic.algorithms package contains classes that implement the algorithm

used for traffic engineering.

The IminimumSpanningTreeAlgorithm.java is an interface containing the vector with

the costs and edges of topology, as defined by LinkWithCost class.

The KruskalAlgorithm.java is the class containing the Kruskal algorithm for

calculating the minimum coherent tree for our traffic engineering.

protected static Logger logger= LoggerFactory.getLogger(KruskalAlgorithm.class);

Here we define a logger where you stored any messages from the class.

Then we have the code

public Vector<LinkWithCost> perform(List<LinkWithCost> topoEdges,

boolean reverse) throws Exception {

 logger.debug("Starting to perform Kruskal algorithm...");

 if (reverse) {

 Collections.sort(topoEdges, new

Comparator<LinkWithCost>() {

 @Override

 public int compare(LinkWithCost link1,

LinkWithCost link2) {

 return new

Integer(link2.getCost()).compareTo(link1.getCost());

 }

 });

 } else {

Master Thesis | Patras Charalampos

74

Software Defined Networks | Traffic Engineering

 Collections.sort(topoEdges, new

Comparator<LinkWithCost>() {

 @Override

public int compare(LinkWithCost link1, LinkWithCost link2) {

return new Integer(link1.getCost()).compareTo(link2.getCost());

 }

 });

 }

where Kruskal algorithm is performed, to vector with the edges of our topology.

HashMap<Long, HashSet<Long>> nodes = new HashMap<Long, HashSet<Long>>();

 for (LinkWithCost lt: topoEdges) {

 if (!nodes.containsKey(lt.getSrc())) {

 nodes.put(lt.getSrc(), new HashSet<Long>());

 nodes.get(lt.getSrc()).add(lt.getSrc());

 }

 if (!nodes.containsKey(lt.getDst())) {

 nodes.put(lt.getDst(), new HashSet<Long>());

 nodes.get(lt.getDst()).add(lt.getDst());

 }

 }

Here we create a HashMap which will contain our switch, and a set of data with which

joined each switch.

logger.trace("Kruskal generated the following nodes structure: " +

printNodes(nodes));

Master Thesis | Patras Charalampos

75

Software Defined Networks | Traffic Engineering

Here the structure of the nodes is printed on logger as derived from Kruskal algorithm.

Vector<LinkWithCost> mstEdges = new Vector<LinkWithCost>();

 Vector<LinkWithCost> edgesDone = new Vector<LinkWithCost>();

 logger.trace("Entering Kruskal cycle...");

 for (LinkWithCost curEdge: topoEdges) {

 logger.trace("curEdge = {}", new Object[] { curEdge });

 if (edgesDone.contains(curEdge)) {

 logger.trace("Edge already computed by Kruskal. Not

computing again!");

 } else {

 edgesDone.add(curEdge);

 if

(nodes.get(curEdge.getSrc()).equals(nodes.get(curEdge.getDst()))) {

 logger.trace("Edge has source set equal to

destination set. Not considering for MST!");

 } else {

 HashSet<Long> src = null, dst = null;

 Long dstHashSetIndex = 0L;

 logger.trace("Comparing size of source and

destination of curEdge: (src = {}, dst = {}).", new Object[]

{nodes.get(curEdge.getSrc()).size(),

nodes.get(curEdge.getDst()).size()});

 if (nodes.get(curEdge.getSrc()).size() >

nodes.get(curEdge.getDst()).size()) {

 src = nodes.get(curEdge.getDst());

 dst = nodes.get(dstHashSetIndex =

curEdge.getSrc());

 } else {

 src = nodes.get(curEdge.getSrc());

Master Thesis | Patras Charalampos

76

Software Defined Networks | Traffic Engineering

 dst = nodes.get(dstHashSetIndex =

curEdge.getDst());

 }

 logger.trace("Set src = {}, dst = {}.", new

Object[] {printHash(src), printHash(dst)});

 Object[] srcArray = src.toArray();

 int transferSize = srcArray.length;

 logger.trace("Moving each node from set: src

into set: dst.");

 logger.trace("Updating appropriate index in

array: nodes.");

 for (int j = 0; j < transferSize; j++) {

 if (src.remove(srcArray[j])) {

 dst.add((Long) srcArray[j]);

 nodes.put((Long) srcArray[j],

nodes.get(dstHashSetIndex));

 } else {

 logger.error("Error while removing

element {} from array {}.", new Object[] {srcArray[j], src});

 throw new Exception("Kruskal -

Error performing Kruskal algorithm (set union).");

 }

 }

 logger.trace("Kruskal updated the nodes

structure: " + printNodes(nodes));

 logger.trace("Kruskal add the edge {} to

mstEdges.", new Object[] {curEdge});

 mstEdges.add(curEdge);

 }

 }

 }

 logger.trace("End of Kruskal cycle.");

 logger.debug("Computed MST by Kruskal: " + printEdges(mstEdges));

 logger.debug("End of Kruskal algorithm.");

Master Thesis | Patras Charalampos

77

Software Defined Networks | Traffic Engineering

The above code includes the steps for implementing the Kruskal algorithm, at each

stage of which we have detailed messages to the logger.

private static String printEdges(Iterable<LinkWithCost> edges) {

 String s = "\n";

 for (LinkWithCost e: edges) {

 s += e.toString() + "\n";

 }

 return s;

 }

This method prints the edges raised.

private static String printNodes(HashMap<Long, HashSet<Long>> nodes) {

 String s = "\n";

 for (Map.Entry<Long, HashSet<Long>> entry: nodes.entrySet()) {

 s += "Node (" + entry.getKey() + "): " +

printHash(entry.getValue()) + "\n";

 }

 return s;

 }

This method prints the nodes encountered.
private static String printHash(HashSet<Long> value) {

 String s = "(";

 for (Long set : value) {

 s += set + ", ";

 }

 s += ")";

 return s;

 }

This method prints the HashMap containing switches and links.

Master Thesis | Patras Charalampos

78

Software Defined Networks | Traffic Engineering

The it..msttraffic.types package contains two classes that define the network topology

and the cost of each move from node to node.

The LinkWithCost.java is a class that extends the known class Link and contains the

network topology. Accepts variables for the ID and Port of the original element, the

ID and Port of destination and root cost.

TopologyCosts costs = TopologyCostsLoader.getTopologyCosts();

The costs of the topology are stored in a TopologyCosts type variable defined in

another class package.

public int getCost() {

 TopologyCosts costs = TopologyCostsLoader.getTopologyCosts();

 return costs.getCost(this.getSrc(), this.getDst());

}

This function draws the costs of getTopologyCosts method Class TopologyCosts,

which we will see later.

public String toString() {

 return "Link (" + this.getSrc() + ", " + this.getDst() + ") with

cost: " + this.getCost();

 }

Printing the results, ie the source, the destination and cost.

public LinkWithCost getInverse() {

 return new LinkWithCost(this.getDst(), this.getDstPort(),

this.getSrc(), this.getSrcPort());

 }

Reverse destination and source.

Master Thesis | Patras Charalampos

79

Software Defined Networks | Traffic Engineering

The it..msttraffic.web package includes five classes responsible for the elaboration of

the topology of the network.

The MSTTrafficEdgesResource.java extends the known ServerResource and runs a

IMSTTrafficService to add to existing links, some new.

The MSTTrafficWebRoutable assumes data linking with a Router so that they are

available on the network and remote users using the JSON and Restlet

(http://restlet.com, http://json.org/)

router.attach("/topocosts/json", TopoCostsResource.class);

router.attach("/mstedges/json", MSTTrafficEdgesResource.class);

router.attach("/topoedges/json", TopoEdgesResource.class);

router.attach("/redundantedges/json", RedundantEdgesResource.class);

return router;

In this way, we connect the router variable to the cost of the topology, the topology

edges and edges that have been removed, using the relevant classes of the package

TopoCostsResource, MSTTrafficEdgesResource, TopoEdgesResource,

RedundantEdgesResource.

The it..msttraffic.web.serializers package contains classes that make data serialization.

This means converting the objects into a series of bytes, which contain information

and Object type. The LinkWithCostJSONSerializer.java and

TopologyCostsJSONSerializer.java contain classes for cost topology and costs of the

edges serialization, while we have the corresponding class for desirialization cost

topology, TopologyCostsJSONDeserializer.java.

The serialization is provided by a serializer of packet JSON.

 jGen.writeStringField("sourceSwitch",

HexString.toHexString(link.getSrc()));

http://json.org/

Master Thesis | Patras Charalampos

80

Software Defined Networks | Traffic Engineering

 jGen.writeNumberField("sourcePort", link.getSrcPort());

 jGen.writeStringField("destinationSwitch",

HexString.toHexString(link.getDst()));

 jGen.writeNumberField("destinationPort", link.getDstPort());

 jGen.writeNumberField("cost", link.getCost());

We see here the serialization of the source, destination and costs.

jGen.writeStartObject();

 HashMap<String, Integer> prop = costs.getCosts();

 for (Entry<String, Integer> curProp : prop.entrySet()) {

 jGen.writeNumberField(curProp.getKey(),

curProp.getValue());

 }

 jGen.writeEndObject();

 }

Here, we have the serialization of the whole HashMap that contains the switches and

connections.

Having seen the individual classes, we better understand the main class of our

program, ie MSTTraffic. Here, we define variables necessary for service.

protected HashSet<LinkWithCost> topoEdges = new HashSet<LinkWithCost>();

protected HashSet<LinkWithCost> redundantEdges = new

HashSet<LinkWithCost>();

private IMinimumSpanningTreeAlgorithm algorithm = new

KruskalAlgorithm();

Definition of data structures to store results.

Master Thesis | Patras Charalampos

81

Software Defined Networks | Traffic Engineering

The method

protected void updateLinks()

takes on to "listen" to change of topology according to the edges that were added or

removed. Uses LinkWithCost.I method that implements changes in topology,

removing edges were excluded by Kruskal.

This method saves the changes in a HashSet.

protected HashSet<LinkWithCost> findRedundantEdges(Vector<LinkWithCost>

mstEdges)

The method

protected void modPort(DatapathId datapathId, OFPort ofPort, boolean

open)

 finds the ports for hardware address identification and ID of switches.

protected String printEdges(Iterable<LinkWithCost> edges) {

 String s = "";

 for (LinkWithCost e: edges) {

 if (!s.equals("")) s += "\n";

 s += e.toString();

 }

 return s;

 }

Here we print all edges.

Next we define necessary classes since we extended interface from source code of

floodlight.

Master Thesis | Patras Charalampos

82

Software Defined Networks | Traffic Engineering

public void startUp(FloodlightModuleContext context) {

 if (topology != null) topology.addListener(this);

 if (restApi != null) restApi.addRestletRoutable(new

MSTTrafficWebRoutable());

 }

 @Override

 public Set<LinkWithCost> getTopoEdges() {

 return topoEdges;

 }

 protected void setTopoEdges(HashSet<LinkWithCost> topoEdges) {

 this.topoEdges = topoEdges;

 }

 @SuppressWarnings("unchecked")

 @Override

 public Set<LinkWithCost> getMSTEdges(){

 HashSet<LinkWithCost> mstEdges = (HashSet<LinkWithCost>)

topoEdges.clone();

 mstEdges.removeAll(redundantEdges);

 return mstEdges;

 }

 @Override

 public Set<LinkWithCost> getRedundantEdges(){

 return redundantEdges;

 }

 @Override

 public TopologyCosts getCosts() {

 return TopologyCostsLoader.getTopologyCosts();

 }

 @Override

 public void setCosts(TopologyCosts newCosts) {

 TopologyCosts costs = getCosts();

 //costs.getCosts().clear();

Master Thesis | Patras Charalampos

83

Software Defined Networks | Traffic Engineering

 costs.getCosts().putAll(newCosts.getCosts());

 updateLinks();

 }

Finally here we have the startup classes and init that are necessary for startup and

initialization of the program. Methods setTopoEdges, getMSTEdges,

getRedundantEdges, getCsosts and setCosts are defined here but their corresponding

classes are in separate files and their function is described above.

5.1 System Analysis

In this session we will use the floodlight controller to create a traffic engineering
application.

The project MSTTraffic calculate the minimum spanning tree of a network of four
switches. To do this we use the kruskal algorithm which calculate the cost of the edges
and links (more details we can find in java code).

Master Thesis | Patras Charalampos

84

Software Defined Networks | Traffic Engineering

5.2 Installation of system

In this session we can find the step-by-step tutorial to install and run the project
MSTTraffic.

Step 1

Before installing the floodlight controller, we have to install the JDK and Ant. We
write to the console as follows:

$sudo apt-get install build-essential default-jdk ant python-dev eclipse

Step 2

Now we have to install floodlight controller with the following commands (you need
to install git first)

$ git clone git://github.com/floodlight/floodlight.git

$ cd floodlight

$ ant

$ sudo mkdir /var/lib/floodlight

$ sudo chmod 777 /var/lib/floodlight

Step 3

 With the following command we install mininet

$ sudo apt-get install mininet

Master Thesis | Patras Charalampos

85

Software Defined Networks | Traffic Engineering

Step 4

The following action integrate the floodlight controller to eclipse

$ ant eclipse

Master Thesis | Patras Charalampos

86

Software Defined Networks | Traffic Engineering

6. Execution Test & Results

The package described in Chapter 5 has been implemented in various Mininet network

topologies. In this Chapter, step-by-step screenshots will be presented relative to the

execution of minimum spanning tree package on topologies with 5 and 10 switches.

Initially we start the Floodlight controller and then we define the custom Mininet

topology with 5 switches.

Figure 11. Start Mininet topology with 5 switches

In order to create a Mininet Topology of 10 switches we have to quit the 5-switch

topology and then start the 10-switch topology.

The topology can be shown with the following command:

$./viewMSTapis.sh -a topoedges

Master Thesis | Patras Charalampos

87

Software Defined Networks | Traffic Engineering

Figure 12. Quit Mininet topology with 5 switches

Figure 13. Start Mininet topology with 10 switches

Master Thesis | Patras Charalampos

88

Software Defined Networks | Traffic Engineering

After the initiation of each Mininet topology, the controller auto-calculates the

minimum spanning tree (executes the Mininet CLI).

Urls API Overview

We have implemented some scripts which help us to understand the results and the
performance of java code. We have the following scripts and curl commands:

 The url http://127.0.0.1:8080/wm/mst/mstedges/json gives us the computed
edges.

 The url http://127.0.0.1:8080/wm/mst/redundantedges/json gives us the
computed redundant edges which we will not take them account when we
make the traffic engineering.

 The url http://127.0.0.1:8080/wm/mst/topocosts/json gives us the computed
topology cost for all the topology and shows us the cost of every LSP.

 The url http://127.0.0.1:8080/wm/mst/topoedges/json gives us all the edges of
topology and each their cost.

To conclude the script viewMSTapis.sh allows us to know every computed cost of
topology via floodlight REST API. The script has 4 options. When we call the case of
mstedges, the script returns us all the cost of every edge in the network. When we call
the topocosts option, the script returns us the cost of all topology. Then we have the
option of topoedges which shows us the cost of edges which we will use to make the
TE. Final the option of redundantedges gives us the edges which will not be use to TE.

http://127.0.0.1:8080/wm/mst/mstedges/json
http://127.0.0.1:8080/wm/mst/redundantedges/json
http://127.0.0.1:8080/wm/mst/topocosts/json
http://127.0.0.1:8080/wm/mst/topoedges/json

Master Thesis | Patras Charalampos

89

Software Defined Networks | Traffic Engineering

6.1 Show topology and edge costs

The topology can be shown with the following command:

$./viewMSTapis.sh -a topoedges

The costs for all edges of the topology are as shown by command:

$./viewMSTapis.sh -a topocosts

Figure 14. Show Mininet topology with 5 switches

Figure 15. Show Mininet link costs with 5 switches

For the 10-switch topology link costs had to be set by the user, since the initial values

for the edges were not realistic.

Master Thesis | Patras Charalampos

90

Software Defined Networks | Traffic Engineering

Figure 16. Show Mininet topology with 10 switches – not good initial values.

Figure 17. Set Mininet topology costs for 10 switch network.

Figure 18. Show new Mininet link costs with 10 switches

Master Thesis | Patras Charalampos

91

Software Defined Networks | Traffic Engineering

Figure 19. Show new Mininet topology with 10 switches

After Kruskal algorithm implementation, there are some redundant edges for both

topologies.

Redundant edges can be shown with the following command:

$./viewMSTapis.sh -a redundantedges

Figure 20. Show redundant edges 5-switch topology

Master Thesis | Patras Charalampos

92

Software Defined Networks | Traffic Engineering

Figure 21. Show redundant edges 10-switch topology

6.2 Minimum spanning trees

MST (Minimum Spanning Tree) edges can be shown with the following command:

$./viewMSTapis.sh -a mstedges

Figure 22. Show MST for 5-switch topology

Figure 23. Show MST for 10-switch topology

As shown in the following figure, we can see the features of each switch by calling it

in Mininet.

Master Thesis | Patras Charalampos

93

Software Defined Networks | Traffic Engineering

Figure 24. Show s1 features in 5-switch topology

Figure 25. Show s1 features in 10-switch topology

Master Thesis | Patras Charalampos

94

Software Defined Networks | Traffic Engineering

6.3 Setting new costs

For the 10-switch topology we set new costs without quiting the network and we can

see that Floodlight controller updates the links in real time.

Figure 26. Set new costs in 10-switch topology

Figure 27. Controller updates links in real time for 10-switch topology

The resulting new edges and costs for the 10-switch topology and costs are shown in

the following.

Master Thesis | Patras Charalampos

95

Software Defined Networks | Traffic Engineering

We also present the redundant edges.

Figure 28. Show Mininet topology with 10 switches - 2

Figure 29. Show Mininet edge costs with 10 switches – 2

Figure 30. Show Mininet redundant edges with 10 switches – 2

After execution the topology is terminated in Mininet with exit command.

Master Thesis | Patras Charalampos

96

Software Defined Networks | Traffic Engineering

Figure 31. Mininet topology termination.

6.4 Running time

Kruskal algorithm has complexity O (|E| log |V|), where E is the number of edges and

V the number of graph peaks or switches. Kruskal’s algorithm performs:

• a heap building operation on an array of E entries, which takes O(E) time;

• at most E minimum exctraction operations on a heap with at most E entries,

each taking O(log E) = O(log V^2) = O(log V) time, for a total of O(E log V)

time

• V set making operations, each taking O(1) time, for a total of O(n) time

• at most 2E Find operations (two per edge), and at most V − 1 union operations,

for a total of O(E log V) time.

So, the total running time of the algorithm is O(E)+O(E log V)+O(V)+O(E logV) =

O(E log V).

The 5-switch topology contains 2 hosts and 5 switches. With this configuration, 12

links/edges are created. Hence execution time can be estimated as 12 * log7 = 10.14.

Master Thesis | Patras Charalampos

97

Software Defined Networks | Traffic Engineering

The 10-switch topology contains 2 hosts and 10 switches. With this configuration, 47

links/edges are created. Hence execution time can be estimated as 47 * log17 = 57.83.

6.5 Ports manage via rest API for energy efficient

The implementation of the code gives us the opportunity via traffic engineering to

open and close ports in order to have the minimum energy cost on the network.

This is the major point of the code and we are going to analyze below the scripts and

how they works.

When we execute the algorithm we get the MST that we can see below via mininet.

mininet> s4 dpctl show tcp:127.0.0.1:6637
features_reply (xid=0x4a7cacc5): ver:0x1, dpid:4
n_tables:255, n_buffers:256
features: capabilities:0xc7, actions:0xfff
1(s4-eth1): addr:a2:8f:c2:a8:6d:57, config: 0, state:0
 current: 10GB-FD COPPER
2(s4-eth2): addr:ba:d8:da:a1:26:5b, config: 0x1, state:0x1
 current: 10GB-FD COPPER
3(s4-eth3): addr:0e:1d:34:0a:18:b2, config: 0, state:0
 current: 10GB-FD COPPER
LOCAL(s4): addr:82:45:0b:bc:e8:44, config: 0x1, state:0x1
get_config_reply (xid=0xe67cf3b9): miss_send_len=0

From the above example it is possible to verify that the port on switch 4 has been

closed.

Master Thesis | Patras Charalampos

98

Software Defined Networks | Traffic Engineering

In the project it has been implemented a script which change the cost of the LSPs

./setTopoCosts.sh
{
 "status": "new topology costs set"
}

$./viewMSTapis.sh -a topocosts
[
 {
 "1,2": 10,
 "1,3": 40,
 "1,4": 20,
 "2,3": 30,
 "2,4": 10,
 "3,4": 40
 }
]

The code has recomputed the MST, and we can check this with the script:

$./viewMSTapis.sh -a mstedges
[
 {
 "cost": 10,
 "destinationPort": 1,
 "destinationSwitch": "00:00:00:00:00:00:00:02",
 "sourcePort": 1,
 "sourceSwitch": "00:00:00:00:00:00:00:01"
 },
 {
 "cost": 10,
 "destinationPort": 3,
 "destinationSwitch": "00:00:00:00:00:00:00:02",
 "sourcePort": 2,
 "sourceSwitch": "00:00:00:00:00:00:00:04"
 },
 {
 "cost": 30,
 "destinationPort": 2,
 "destinationSwitch": "00:00:00:00:00:00:00:03",
 "sourcePort": 2,
 "sourceSwitch": "00:00:00:00:00:00:00:02"
 }
]

Master Thesis | Patras Charalampos

99

Software Defined Networks | Traffic Engineering

The new MST has been deployed, as we can see below:

mininet> s4 dpctl show tcp:127.0.0.1:6637
features_reply (xid=0x461fa8c): ver:0x1, dpid:4
n_tables:255, n_buffers:256
features: capabilities:0xc7, actions:0xfff
 1(s4-eth1): addr:a2:8f:c2:a8:6d:57, config: 0x1, state:0x1
current: 10GB-FD COPPER
2(s4-eth2): addr:ba:d8:da:a1:26:5b, config: 0, state:0
 current: 10GB-FD COPPER
3(s4-eth3): addr:0e:1d:34:0a:18:b2, config: 0x1, state:0x1
 current: 10GB-FD COPPER
LOCAL(s4): addr:82:45:0b:bc:e8:44, config: 0x1, state:0x1
get_config_reply (xid=0x59b0cd47): miss_send_len=0

As we can see above we have the port 2 which is active while port 1 and 3 are down.

Master Thesis | Patras Charalampos

100

Software Defined Networks | Traffic Engineering

7. Conclusions

Energy saving nowadays is the most important concern in all societies. As understood,

the concerns and the effort to mitigate excess energy consumption from Internet and

its applications is an important fact, since its use has become an important part in

everyday life.

Software-defined network architecture is still a new method to create and manage

computer networks, which are still being developed and tested. Over time protocols

that support it (like OpenFlow) become more mature and reliable, and more

controllers are developed in different programming languages, in addition to NOX,

such as Beacon or Floodlight, offering more and more features to create centralized,

functional and reliable computer networks.

Hence, in seeking to address the phenomenon of resource optimization in the context

of this thesis, a mechanism was implemented by Floodlight controller, which

communicates interactively with the network devices and can continually exchange

messages. The controller regulates the topology of the network and collects statistics

on load through routers. Subsequently data are collected by an optimization software

that supports optimization through Kruskal algorithm and Minimum Spanning Tree, to

find the most economical routing.

Master Thesis | Patras Charalampos

101

Software Defined Networks | Traffic Engineering

8. References

1. ONF White Paper, "Software-Defined Networking: The New Norm for

Networks", April 2012

2. Open Networking Foundation (ONF), "SDN Architecture Overview", Version

1.0, December 2013

3. Fei Hu, "Network Innovation through Openflow and SDN Principles and

Design", CRC Press, 2014

4. OpenFlow Switch Specification, Version 1.4.0 (Wire Protocol 0x05), October

2013

5. Component- Based Software Defined Networking Framework: Build SDN

Agilely, http://osrg.github.io/ryu/

6. Introduction to Mininet https://github.com/mininet/mininet/wiki/Introduction-

to-Mininet

7. Ruud Louwersheimer, "Implementing Anycast in IPv4 Networks", INS, June

2004

8. Rob Sherwood, Glen Gibby, Kok-Kiong Yapy, Guido Appenzellery, Martin

Casado, Nick McKeowny, Guru Parulkary Flowvisor: A network virtualization

layer 2009

9. Saurav Das, Yiannis Yiakoumis, Guru Parulkar, Nick McKeown, Preeti Singh,

Daniel Getachew, Premal Dinesh Desai Application-Aware Aggregation and

Traffic Engineering in a Converged Packet-Circuit Network

10. Hilmi E. Egilmez, Burak Gorkemli, A. Murat Tekalp, Seyhan Civanlar

SCALABLE VIDEO STREAMING OVER OPENFLOW NETWORKS: AN

OPTIMIZATION FRAMEWORK FOR QOS ROUTING

11. Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, Rob

Sherwood On Controller Perormance in Software Defined Networks

Master Thesis | Patras Charalampos

102

Software Defined Networks | Traffic Engineering

URLS

[1] http://www.projectfloodlight.org/

[2] https://github.com

[3] http://en.wikipedia.org/

[4] http://www.networkcomputing.com/

[5] https://groups.google.com/

[6] http://searchsdn.techtarget.com/

[7] http://archive.openflow.org/

[8] http://networkstatic.net/

[9] http://thenewstack.io/

[10] http://ieeexplore.ieee.org/

[11] http://www.cisco.com/

[12] https://www.sdxcentral.com

[13] http://sdntutorials.com/

[14] http://www.webopedia.com

[15] http://sdn101.com/

[16] https://n40lab.wordpress.com/

[17] https://www.passeidireto.com

[18] http://algs4.cs.princeton.edu/

http://www.projectfloodlight.org/
http://en.wikipedia.org/
http://www.networkcomputing.com/
http://searchsdn.techtarget.com/
http://archive.openflow.org/
http://networkstatic.net/
http://thenewstack.io/sdn-series-part-v-floodlight/
http://ieeexplore.ieee.org/
http://www.cisco.com/
https://www.sdxcentral.com/
http://www.webopedia.com/
http://sdn101.com/2014/09/17/building-the-floodlight-controller/
https://n40lab.wordpress.com/
https://www.passeidireto.com/
http://algs4.cs.princeton.edu/

Master Thesis | Patras Charalampos

103

Software Defined Networks | Traffic Engineering

[19] http://cs.stackexchange.com/

[20] http://stackoverflow.com/

[21] http://www.channelworld.in/

[22] https://www.citrix.com/

[23] http://www.sciencedirect.com/

[24] https://www.opennetworking.org/

[25] https://www.coursera.org/

[26] http://ieeexplore.ieee.org/

[27] http://www.networkworld.com/

[28] http://archive.openflow.org/wp/learnmore/

[29] http://www.stoimen.com

[30] http://scanftree.com

[31] http://bigswitch.com/

[32] http://www.sciencedirect.com/

[33] http://flowgrammable.org/

http://cs.stackexchange.com/
http://stackoverflow.com/
http://www.channelworld.in/
http://bigswitch.com/products/open-source-projects
http://www.sciencedirect.com/

	Table of Contents
	List of Figures
	List of Tables
	Acronym analysis
	Περίληψη
	Abstract
	1. Introduction
	2. Software Defined Networks
	2.1 Openflow Protocol
	2.1.1 Flow-table
	2.1.2 Secure Channel
	2.1.3 Controller-to-switch messages
	2.1.3 Asynchronous messages
	2.1.4 Symmetric messages
	2.1.5 Switch – Controller connection & Encryption
	2.1.6 Read State messages
	2.1.6 Assigning Packages - Flow Registration

	2.2 Controller
	2.2.1 NOX Controller
	2.2.2 Beacon Controller

	2.3 Mininet software
	2.3.1 Topologies in Mininet
	2.3.2 Setting performance parameters
	2.3.3 Run programs in virtual terminals
	2.3.4 Mininet File System
	2.3.5 Configuration methods of hosts
	2.3.6 Mininet CLI
	2.3.7 Mininet API
	2.3.8 Measurement tools

	3. Traffic Engineering & SDN
	3.1 OpenFlow and custom routing
	3.2 Floodlight controller
	3.3 Topology example

	4. SDN/Traffic Engineering based on Kruskal
	4.1 Kruskal algorithm
	4.1.1 Dynamic programming
	4.1.2 Defining the problem
	4.1.3 Kruskal algorithm description
	4.1.4 Kruskal theoretical examples
	4.1.5 Comparison of Kruskal with other algorithms
	4.1.6 Complexity

	4.2 Traffic engineering with Kruskal on Floodlight

	5. Minimum Spanning Tree in Floodlight
	5.1 System Analysis
	5.2 Installation of system

	6. Execution Test & Results
	6.1 Show topology and edge costs
	6.2 Minimum spanning trees
	6.3 Setting new costs
	6.4 Running time
	6.5 Ports manage via rest API for energy efficient

	7. Conclusions
	8. References

