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Abstract

The comprehension of phenomena related to movement - not only of people and vehicles
but also of animals and other moving objects - has always been a key issue in many areas
of scientific investigation and social analysis. The spread of tracking technology, not only
provide us with a considerable tracking data source that enables us to study the habits of
people, but also introduces open research challenges with respect to the exploitation of
such wealth of data.

In the last years there is a growing popularity over the eye tracking data. Eye tracking
is the recording of the eye movements and is the process of measuring either the point of
gaze (where one is looking) or the motion of an eye relative to the head. The recording and
the analysis of eye movements constitute an effective method for the exploration of sev-
eral aspects related to human vision,perception and visual behaviour. It provides objective
and quantitative evidences towards the examination of visual attention and a way to exami-
ne processes related to visual search, visual perception and cognitive process, which occurs
during the observation of a stimulus.

Tracking data have similar structure with eye tracking data. Τhe main difference is that
tracking data are defined by coordinates (in geographical space) andmaybe some additional
attributes thatmay also be present and eye tracking data are defined by gaze coordinates on
a screen. The structural similarity suggests that both classes of data may be analysed using
the same methods.

When working with eye tracking data, the determination of some measurement of sim-
ilarity between many subjects gaze is desirable. Object similarity or object dissimilarity or
object matching or shape matching is the decision of the resemblance (similarity) between
two objects. The object similarity functions of tracking data can be used in eye tracking data
for extracting similarities between the gazes of two subjects. However, not all methodsmay
be relevant since the movement properties are not the same for eye movements and for
road or sea traffic, human mobility, or animal migration.

In this thesis we examine how the object similarity functions can be applied to eye tra-
ckingdata anda toolkit is developed for this purpose. Also a case study, that use the software
is presented and the results of this case study are shown.
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Περίληψη

Η κατανόηση φαινομένων που σχετίζονται με την κίνηση - όχι μόνο των ανθρώπων και
των οχημάτων αλλά επίσης και τον ζώων και άλλων κινούμενων αντικειμένων - ήταν πάντα
ένα επίκαιρο θέμα στην επιστημονική και κοινωνική έρευνα. Η εξάπλωση της τεχνολογίας
καταγραφής των ιχνών, όχι μόνο μας προσφέρουν μία πληθώρα πηγών από ίχνη αλλά μας
επιτρέπουν και την μελέτη των συνηθειών του ανθρώπου, αλλά και εισάγουν ερευνητικές
προκλήσεις που αφορούν την εκμετάλλευση μιας τόσο πλούσιας πηγής δεδομένων.

Τα τελευταία χρόνια υπάρχει ένα αυξανόμενο ενδιαφέρον όσο αφορά τα δεδομένα από
την καταγραφήοφθαλμικών κινήσεων. Η καταγραφή τωνοφθαλμικών κινήσεων είναι η δια-
δικασία μέτρησης είτε του σημείου του βλέμματος (όπου κάποιος κοιτάει) είτε της κίνηση
του οφθαλμού σε σύγκριση με το κεφάλι. Η καταγραφή και η ανάλυση των οφθαλμικών
κινήσεων αποτελεί ένα αποτελεσματικό τρόπο για την εξερεύνηση διαφόρων πτυχών που
σχετίζονται με την ανθρώπινη όραση, αντίληψη και συμπεριφορά. Παρέχει ένα αντικειμε-
νικό και ποσοτικό τρόπο εξέτασης των διαδικασιών που σχετίζονται με την οπτική προσοχή,
την οπτική αντίληψη και τις γνωστικές διαδικασίες, οι οποίες λαμβάνουν κατά την διάρκεια
της παρατήρησης ενός ερεθίσματος.

Τα δεδομένα ιχνών έχουν παρεμφερήμορφήμε τα δεδομένααπό την καταγραφήοφθαλ-
μικών κινήσεων με την κύρια διαφορά να είναι ότι τα δεδομένα ιχνών ορίζονται από συντε-
ταγμένες (στο γεωγραφικό χώρο) και ίσως από μερικά επιπρόσθετα χαρακτηριστικά ενώ τα
οφθαλμικά δεδομένα ορίζονται από συντεταγμένες βλέμματος πάνω σε μία οθόνη. Αυτή η
δομική ομοιότητα υποδηλώνει ότι και οι δύο κατηγορίες δεδομένων μπορούν να αναλυθούν
χρησιμοποιώντας τις ίδιες μεθόδους.

Πολλές φορές, ο προσδιορισμός της ομοιότητας μεταξύ των οφθαλμικών κινήσεων από
πολλούς παρατηρητές είναι επιθυμητή. Η ομοιότητα των αντικειμένων ή η ομοιότητα σχη-
μάτων είναι η απόφαση της ομοιότητας μεταξύ δύο αντικειμένων. Οι μέθοδοι που χρησιμο-
ποιούνται στα ίχνη για τον προσδιορισμό της ομοιότητας τους μπορούν να χρησιμοποιηθούν
και στις οφθαλμικές κινήσεις. Ωστόσο, δεν είναι όλες οι μέθοδοι κατάλληλες, μίας και οι ιδιό-
τητες της κίνησης δεν είναι ίδιες για τις οφθαλμικές κινήσεις και τις κινήσεις που παρατηρού-
νται στους δρόμους ή στην θάλασσα, στην ανθρώπινη κινητικότητα και στις μεταναστεύσεις
των ζώων.

Σε αυτή την διπλωματική, εξετάζουμε πως οι μέθοδοι ομοιότητας των ιχνών μπορούν
να χρησιμοποιηθούν στις οφθαλμικές κινήσεις και γι‘ αυτό το σκοπό αναπτύχθηκε ένα πρό-
γραμμα. Ακόμα, τα αποτελέσματα μίας μελέτης περίπτωσης παρουσιάζονται στην οποία χρη-
σιμοποιείται το πρόγραμμα και οι μέθοδοι ομοιότητας των ιχνών.
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Preface

This thesis was prepared at the Department of Informatics of the University of Piraeus, in
partial fulfillment of the requirements for acquiring the MSc degree in Informatics. This
studyhas been conductedunder the supervisionof Professor Yannis Theodoridis andVasilios
Vescoukis.

This thesis presents a new approach of visualizing and analyzing eye tracking data using
the APL and the TraceBundle algorithm. It comprises of 5 chapters and their structures is as
follows:

Chapter 1: is the introduction of the thesis and defines the problem that this thesis tries to
solve.

Chapter 2: describes what is object similarity and proceeds with describing the mathemati-
cal background of distance functions.

Chapter 3: proceeds with an analysis of the eye movements and eye tracking data.

Chapter 4: describes the toolkit that was develop during this thesis for the comparison of
eye tracking data.

Chapter 5: which is the final chapter of this thesis, presents the conclusions that were ex-
ported from this thesis.

From this thesis the following paper was submitted to Spatial Cognition & Computation
Journal:

V. Vescoukis, S. Karagiorgou, V. Anagnostopoulos, and V. Krassanakis. “Introducing APLs -
average polylines for visualisation and analysis of eye-tracking data”. Manuscript submitted
for publication. 2015
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2 CHAPTER 1. INTRODUCTION

1.1 Problem definition

The comprehension of phenomena related to movement - not only of people and vehicles
but also of animals and other moving objects - has always been a key issue in many areas
of scientific investigation and social analysis. Advances in technology and particularly the
miniaturization of electronic components, have allowed thewidespread adoption and use of
GPS enable devices which have opened up new opportunities for tracking the movement of
various types of entities, including vehicles, humans and animals.

The spread of the tracking technology, such as the smart phones (and watches) applica-
tions, the GPS navigation applications, the social-media check-ins applications, activity track-
ers, e.t.c, not only provide us with a considerable tracking data source that enables us to
study the habits of people, but also introduces new research challenges with respect to the
exploitation of such wealth of data.

Trajectorydata and similarity-based retrieval has attracted increasing interest indatabase
and knowledge discovery communities because of its wide use in various applications. For
example in figure 1.1 a path in city is shown. The question that nowadays researchers want
to answer is how similar are the tracks shown in figure 1.2.

To address these new challenges this thesis deals with object similarity in tracks and
presents a case study in eye tracking data.

1.2 Tracks

Trackingdata is usually acquiredbyGPSenableddevices such as vehicleswithGPSnavigation,
smart-phones and smart-watches. This sections proceeds by first explaining the Geodetic
coordinate system which is used in GPS.

1.2.1 Geodetic coordinates

GPS tracking data is at least three dimensional, consisting of coordinates in space, a coor-
dinate in time and occasionally, other associated informations are included, such as speed,
direction, etc. Most of the modern GPS receivers provide the tracking data in geodetic coor-
dinates followed by a timestamp of the recording. A typical example of data collected from
GPS device is show below:

1 Time,X,Y
2 19.127,1138.5,657.87
3 19.277,837.07,602.43
4 19.444,727.82,640.31
5 .
6 .
7 .

The Earth‘s surface is approximated by an ellipsoid and locations near the surface are
described in terms of geodetic coordinates (see fig. 1.3) and specifically:

longitude (ϕ): According to Wikipedia [63] longitude of a point on the Earth’s surface is the
angle between the equatorial plane and the straight line that passes through that point
and through (or close to) the center of the Earth [63].

latitude (λ): According to Wikipedia [63] latitude of a point on the Earth’s surface is the an-
gle east or west from a reference meridian to another meridian that passes through
that point [63].
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Figure 1.1: Example path in a city
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Figure 1.2: Tracking data in an example path
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Figure 1.3: Geodetic coordinates [20].

height (h): of a point is the distance between the point and the earth‘s ellipsoid

The ellipsoid is a circular coordinate system and themain disadvantage of the coordinate
system is that it is not rectangular, hence, the calculation of the distance between any two
points identified by latitude and longitude is not straightforward. The advantage of this
coordinate system is that it is continuous for the entire world.

1.2.2 Trajectories

A trajectory is the continuous path that a moving object follows through space as a function
of time. However, due to the limitation of location positioning devices (e.g, sensors, GPS
devices), a trajectory in the real world is a sequence of positions observed at discrete time
instances. If t0 is the time moment when the object starts moving and tend is the moment
when it ended it‘s movement, for any moment ti, t0 ≤ ti ≤ tend, there is a position in space
that was occupied by the entity at this moment, although the position may not be known.
The trajectory of a continuous curve can be represented by a finite point sample, given as a
finite sequence T = {p0, . . . , pn} with pi = (xi, yi, ti) and xi, yi ∈ R, ti ∈ R+ for i = 0, 1, . . . , n
and t0 < t1 < . . . < tm. Each pi minimally consists of a time stamp as well as a position
measurement, but depending on the application may contain additional data such as speed
or acceleration. [70, 28, 59, 5].

Trajectories are subject to different kinds of noise and themeasurements of the position
samples are only accurate within certain bounds (measurement error). The movement tran-
sition between position samples can be modeled with varying accuracies depending on the
application (sampling error) [28].

1.3 Problems arising from tracks

In the following sections, we discuss related work in the area of moving objects and spa-
tiotemporal data, outlining the problems arising from tracks.
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1.3.1 Inference of Road Networks from Tracking Data

Road networks and generally transportation networks are of fundamental importance in a
number of applications, in that they represent the principal data set in these applications,
including GIS, location-based services and transportation systems.

In the past, the production of street maps required expensive field surveying and labor-
intensive postprocessing. Although, the vast amount of existing trackingdata producedover
the last years, has given thepossibility of inference the roadnetwork fromtrackingdata. This
problem has two broad categories of application scenarios. The fist potential refers to cases
where the map of the network exists but needs to be maintained and updated, or enhanced
with additional properties and the second scenario refers to cases where the entities move
along specific trails, which, however, are not already mapped.

(a) Vehicle tracking data (b) Corresponding road network

Figure 1.4: Berlin road network [28]

According to Karagiorgou [28] besides deriving road networks, the proposed approach
can be used to identify implicit movement patterns in any kinds of spatiotemporal tracking
data, e.g., animal migration, historic trade routes, etc.

1.3.2 Movement patterns in tracking data

Apattern is a discernible regularity in theworld. Movement patterns are generally conceptu-
alized as salient movement events or episodes in the geospatial representation of a certain
number of moving entities. Pattern starts and ends at certain times (temporal footprint),
and it might be restricted to a subset of space (spatial footprint) [66, 23].

For example in the case of moving animals, movement patterns can be viewed as the
spatio-temporal expression of behaviours such as seasonal migration or in a transportation
context, a movement pattern could be a traffic jam (see fig. 1.5).

The massive volumes of movement data currently available offer new insights in many
dynamic processes of high socio-economic relevance and help us understand where, when
and ultimately why the objects move the way they do [22]. For example, according to Gud-
mundsson, Laube, and Wolle [22], grazing sheep, may perform a certain movement pattern
only when they are on a certain vegetation type and sea gulls may show certain flight pat-
terns only when they are close to a salient landscape feature such as a river or a highway.
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Figure 1.5: Moving patterns [23]

Figure 1.6: The temporal profiles of the traffic jam occurrences [3]

1.3.3 Determining point of interests

According toWikipedia [67] a point of interest, or POI, is a specific point location that some-
onemay find useful or interesting. Many problems need to determine places in which move-
ments patterns of certain typeoccur repeatedly and thenuse theseplaces in further analysis.
One of the possible criteria for recognizing significant locations is the frequency of certain
movement-related events occurring in these locations. Another possible criterion for asses-
sing the significance of a location is the amount of time spent in it by visitors [3, 2].

For example, using tracks of multiple cars in a city, a traffic analyst can extract the places
where traffic jams occurs (see fig. 1.6). From trails of migratory birds, an ornithologist may
wish to extract places where the birds stop for resting and feeding. Andrienko et al. [3] has
developed a generic procedure for analyzing mobility data, where relevant places are deter-
mined in order to study place-related patterns of events and movements.

1.3.4 Wildlife tracking data

According to Wikipedia [64] wildlife tracking is a process where researchers can remotely
observe relative fine-scale movements or migratory patterns in a free-ranging wild animal
using the GPS and optional environmental sensors or automated data-retrieval technologies
such as GPRS and a range of analytical software tools.
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Figure 1.7: Plot of hooded seal track data [26]

In recent years, newwildlife tracking and telemetry technologies have become available,
leading to substantial growth in the volume of wildlife tracking data. Large data sets gene-
rated by wildlife tracking equipment pose a number of challenges such as: a) coping with
huge amount of data, b) automatic data acquisition, c) long-term storage, d) efficient man-
agement of spatial and temporal information.

More information about wildlife data can be found on [41]

1.3.5 Eye tracking data

In the last years there is a growing popularity over the eye tracking data. Eye tracking is the
recording of the eye movements and is the process of measuring either the point of gaze
(where one is looking) or the motion of an eye relative to the head. It provides objective
and quantitative evidences towards the examination of visual attention and a way to exami-
ne processes related to visual search, visual perception and cognitive process, which occurs
during the observation of a stimulus (for more details see chapter 3).

Eye tracking data consist of vectors about the positions and times of gaze data (see fig.
1.8). Tracking data have similar structure with eye tracking data with the main difference
being that tracking data are defined by coordinates (in geographical space) andmaybe some
additional attributes that may also be present and eye tracking data is defined by gaze co-
ordinates on a screen. The structural similarity suggests that both classes of data may be
analyzed using the same methods.

A great deal of research [36, 35, 29] has gone into studies trying to analyzed eye tracking
data and draw conclusions on several aspects related to visual behavior. Eye tracking has
been used in psychology, in cognitive linguistics, marketing, as an input device for human
computer interaction, and in product design.
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Figure 1.8: An Example of Eye Gaze Trace Overlay [61]
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2.1 Introduction

Object similarity or object dissimilarity or object matching or shape matching is the decision
of the resemblance (similarity) between two objects. In general, two objects A,B are given
and the resemblance to each other is extracted. This can be quantitatively expressed as a
distance between the two objects [48, 47, 55].

First it is necessary to formally define the notions of a) object and b) resemblance. There
are many definitions on what constitutes a shape. For example according to Alt and Guibas
[1] objects are a finite set of points (”point patterns”) or ”shapes” given in two dimensions
by polygons. According to Venkatasubramanian [56] shape is a set of properties of an object
that are invariant under rigid transformation (and scaling). Due to the nature of our data (i.e.
points) we incline to agree more with Alt and Guibas [1].

The notion of resemblance (similarity) between shapes is even more complicated by the
fact the similarity is based on the human perception and is not easily formalized [56]. Many
attempt have been made to formalize the notion of similarity and most of them are based
on metrics (or distance functions or shape similarity measures) that describe the degree of
resemblance (difference) between two shapes.

A distance function, on a collection of shapes S is a nonnegative real value function d :
SxS → R defined on pairs of patterns indicating the degree of resemblance of these patters
[48, 47, 24, 55]. Ifx, y ∈ S, thenx is similar to y if d(x, y) ≤ ϵ, where ϵ is a predefined threshold.

According to Veltkamp [54] and Veltkamp and Hagedoorn [55] some of the desirable
properties that a similarity measure should have are:

Metric properties: According to Mémoli and Sapiro [40] a setM is a metric space if for ev-
ery pair of points x, y ∈ M there is a well defined function dM (x, y) whose values are
non-negative real numbers, such that a) dM (x, y) = 0 ⇔ x = y (uniqueness), and
b) dM (x, y) ≤ dM (y, z) + dM (z, x) for any x, y, z ∈ M (strong triangle inequality). We
call the function dM : MxM → R the metric or distance.

More informations can be found by Hagedoorn [24] on the axioms of the metric and
pseudometric spaces on which the similarity measures are based.

Continuity properties: A similarity measure is desirable to be robust against the effects of
discretization [54].

Invariance: In some cases, it is often desirable that the similarity measure is invariant under
transformations. What kindof geometric transformations are allowed tomatchobjects
A and B depends on the application. The most simple kind are certainly translations.
The matching problem usually becomes much more difficult if we allow rotations and
translations (these transformations are called rigid motions, or Euclidean transforma-
tions). In most cases reflections can be included as well without any further difficulty
[1].

Distributive: A distance function is distributive in the shape space if the distance between
one pattern and another does not exceed the sum of distance between the one and
two parts of the other [54].

According to Chen [14] a distance function directly affects the matching quality of the
retrieved results and is application and data dependent. It needs to be carefully designed to
meet the application requirements.

The problem of object similarity arises in a variety of applications, including computer
graphics, cartography and pattern recognition and it has been approached in a number of
ways. It appears in various forms in many different domains such as a) model-based object
recognitionb) satellite image registration c) stockmarket trendanalysis andpredicitond) and
protein structure and functions determination

In the following sections some similarity measures are described.



2.2. LP NORM 11

2.2 LP norm

Many similaritymeasureson shapes arebasedon theLp distance. For twopoints r = (r1, . . . , rd)
and q = (q1, . . . , qd) in Rd the LP norm is calculated from equation 2.1.

LP (r, q) = ∥r − q∥p = (
d∑

i=1

|ri − qi|p)
1
p (2.1)

Equation (2.1) is also often called the Minkoswki distance. L1 norm (p = 1) is named the
Manhattandistanceor the city blockdistance andL2 norm (p = 2) is thewell knownEuclidean
distance. For p approaching ∞, we have the maximum norm: max(|ri − qi|). According to
Veltkamp [54] for all p ≥ 1 theLP norms aremetrics and for 0 < p < 1 it is not ametric, since
the triangle inequality is not satisfied.

Unless otherwise specified, in what follows, A and B will refer to point sets in Rd, where
|A| = k and |B| = n ≥ k and the underlying metric on points in Rd is that induced by the L2

norm.

2.3 Discrete metric

The most simple metric is the discrete metric, which is also known as exact congruence met-
ric. The discrete metric is describe from equation (2.2) but it lacks any usefulness since it
finds matches only if the objects are equal. This metric is described in depth from Veltkamp
[54] and Hagedoorn [24].

d(A,B) =

{
0 if A equals B

1 otherwise
(2.2)

2.4 Hausdorff distance

TheHausdorffmetric is themost studied similaritymeasure in computational geometry. The
Hausdorff distance is defined for an arbitrary non-empty and closed set A and B. The di-
rected Hausdorff distance simply assigns to each point of one set the distance to its closest
point on the other and takes the maximum over all these values [47, 1] (see equation (2.3)
and figure 2.1)

δ̃H(A,B) = max
a∈A

min
b∈B

d(a, b) (2.3)

where d(x, y), x, y ∈ R2 denotes the Euclidean distance between x and y. In this thesis
we use the Euclidean distance but other norms can also be used in the general case of the
Hausdorff metric.

According to Veltkamp [54] the direct Hausdorff distance is not a metric since it fails the
triangle inequality but the bidirectional Hausdorff distance between A and B, which is de-
fined in equation (2.4) is a metric [47, 39].

δH(A,B) = max(δ̃H(A,B), δ̃H(B,A)) (2.4)

The Hausdorff distance is robust against small deformations and performs reasonably
well in practice and the main advantages are that it does not require the solution of the
correspondence problem and not all points from A need to have a corresponding point in B
[19, 54].



12 CHAPTER 2. OBJECT SIMILARITY

Figure 2.1: The direct Hausdorff distance between the blue and green point sets. The
yellow arrows indicate the shortest distances from each point on the blue set to a

point on the green set. The red arrow indicates the Hausdorff distance [6]

The main disadvantage of the Hausdorff distance is that it is sensitive to noise [47, 54,
24]. According to Dubuisson and Jain [19] the distance values are large even in the presence
of small amount of noise and this is due to the fact the the Hausdorff distance value is set
by the maximum distance among the two points sets. A single outlier can determine the
distance value and this can be a real problem since a few outliers will perturb the distance
measure greatly, even though the two objects might be very similar.

Finally, another disadvantage of the Hausdorff distanceis that it only focus on the loca-
tion of points and not their ordering along the the set of points. If the order of the points
matters, just as in trajectories and curves, then theHausdorffdistancewould not considering
the ordering leading to inaccurate comparisons.

2.4.1 Partial Hausdorff distance

A similar measure that is not as sensitive as the original Hausdorff distance is the partial
Hausdorff distance, which according to Veltkamp and Hagedoorn [55] is again the the maxi-
mumof the two directed partial Hausdorff distances (see equation (2.5)), where the directed
distance are defined as the k-th value in incrasing order of the distance from a point in A to
B (see equation (2.6))

δkH(A,B) = max(δ̃kH(A,B), δ̃kH(B,A)) (2.5)

δ̃kH(A,B) = ktha∈Amin
b∈B

d(a, b) (2.6)

The partial Hausdorff distance is not a metric since it fails the triangle inequality [55].

2.4.2 Modified Hausdorff distance

To solve the problem of sensitivity, Dubuisson and Jain [19] proposed a non-metric modified
version of theHausdorff distance shown in the equation (2.7). Thismodified version satisfies
positivity and symmetry, but does not satisfy the triangle inequality.

δ̃mod
H (A,B) = max(dmod(A,B), dmod(B,A)) (2.7)

where dmod(A,B) = 1
Na

∑
a∈A

d(a,B), a a point in point set A and Na the number of points
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Figure 2.2: Hausdorff and Bottleneck distances [56]

in the set of points A.

Dubuisson and Jain [19] determined that, among the class of distance measures based
on the Hausdorff distance, the modified version is best for matching two objects based on
their edge points and it has two desirable properties: a) its value increasesmonotonically as
the amount of difference between the two sets of edge points increases, and b) it is robust
to outliers points that might result from segmentations errors.

2.5 Bottleneck distance

The Bottleneck distance is defined for two point setsA,B of the same size n (equal cardinal-
ity) as theminimum over all bijection between the sets over themaximum distance between
each two points that are related in a bijection [24, 54] (see equation (2.8)).

According to Veltkamp [54] the bottleneck distance F (A,B) is the minimum over all 1-1
correspondences f between A,B of the maximum distance d(a, f(a))

dBρ(A,B) = min
f∈F (A,B)

max
a∈A

d(a, f(a)) (2.8)

where A,B are finite subsets of a space X (usually R2 )with metric ρ (usually the eu-
clidean) and same cardinality, F (A,B) the set of all bijections from A to B and d(a, b) the
distance between two points.

The main problem of this metric is that it needs a 1-1 correspondence and according to
Venkatasubramanian [56] is more sensitive to outliers than the Hausdorff distance, since it
attempts to match each point in the input. Figure 2.2 illustrates the difference between the
Hausdorff distance and the bottleneck distance.

2.6 Fréchet distance

The simplicity of Hausdorff distance may lead to wrong conclusions, when used to calculate
the distance between curves. According to Alt and Guibas [1] the reason for this problem
is that the Hausdorff distance is only concerned with the point sets but not with the course
of the curves (see figure 2.3). Notice that the Hausdorff distance between P and Q is small,
because every point in P is close to some point of Q and vice versa. However the curves are
not at all similar [56].

The Fréchet distance is awell-knownmetric tomeasure similarity of polygonal curves that
takes into account the continuity of the shapes, the location and ordering of the points along
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Figure 2.3: Limitations of the Hausdorff distance [56]

the curves. Wikipedia [62] describes the Fréchet distance between two curves as the mini-
mum length of a leash required to connect a dog and its owner, constrained on two separate
paths, as they walk without backtracking along their respective curves from one endpoint to
the other.

The definition of the Fréchet distance given by Hagedoorn [24] is given in equation 2.9.

dF (f, g) = inf
a,b∈Hom([0,1])

max
t∈[0,1]

ρ(f(a(t)), g(b(t))) (2.9)

where X a space with metric ρ and let Hom([0, 1]) be the set of homeomorphisms from
[0, 1] onto itself and f, g two curves.

According to Hagedoorn [24] the Fréchet distance can be used only if the input consists
of curves or closes curves.

2.7 Area of symmetric difference

For two compact sets A,B the area of symmetric difference, also called template metric, is
defined as in equation (2.10). According toVeltkamp [54] andHagedoorn [24] unlike the area
of overlap, this measure is a metric.

s(A,B) = vol(A△B) = vol((A−B) ∪ (B −A)) (2.10)

where the volume of symmetric difference is defined on the collection of Lebesguemea-
surable subsets ofRk. For k = 1, 2 or 3 it coincides with the standardmeasure of length, area
or volume.

The symmetric difference of two sets A,B is the set of all points in A that are not in B
and all points in B that are not in A.

The normalized volume of symmetric difference is given by equation (2.11) [24]

s∗(A,B) =
vol(A△B)

vol(A ∪B)
(2.11)

The problem is thatmany times the setA,B are not compact and according toHagedoorn
[24] the symmetric difference is only suitable for matching regions (solid sets).

Notice that, according to De Berg et al. [18], maximizing the area of overlap of two poly-
gon is equivalent to minimizing the area of the symmetric difference.
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2.8 Similarity of trajectories

The process of calculating the similarity between two trajectories is more complicated than
calculating the corresponding similarity between points. According to Laurinen, Siirtola, and
Röning [32] the reasons that makes the calculations more complicated for trajectories are:

1. that the values may be observed in equidistant or varying distant intervals

2. that the two trajectories may contain different number of measurement points

3. that the trajectories may be measured in 2 or multi-dimensional spaces.

2.9 Euclidean distance measure

Just as previous, a simple solution to calculate the similarity is to use an Lp norm to the
sequences of points [42]. Euclidean distance has the advantage of being easy to compute
(and specifically it has a linear computation cost [14]) and is easy to implement [42]. However,
the Euclidean distance outliers have a great impact on the overall distance (due to the fact
that is computed by square deviations) and it does not support local time shifting [42, 14].

Laurinen, Siirtola, and Röning [32] describes an intuitive algorithm (see algorithm 2.1) for
calculating the similarity of two trajectorieswithO(n2) complexity but this algorithm can not
compensate the problems described above.

Algorithm 2.1: The intuitive algorithm for calculating the similarity between two trajec-
tories [32]

Input: trajectories traja and trajb of size n(traja) and n(trajb)
Output: the distance between the trajectories, trajectory_distance

1 trajectory_distance = 0 ;
2 smallest_distance =∞ ;
3 for i=1 to n(traja) do // scans all the points of the traja
4 for i=1 to n(trajb) do // scans all the points of the trajb
5 if d(traja,i, trajb,j) < smallest_distance then
6 smallest_distance = d(traja,i, trajb,j);

/* add the distance between the closest points to the distance between the
trajectories */

7 trajectory_distance+ = smallest_distance ;
8 smallest_distance =∞ ;

9 trajectory_distane = (trajectory_distane/n(traja)) ;
10 return trajectory_distane ;

Algorithm2.1 resembles the logic of themodified version of theHausdorffdistance since
it computes the average distance between the points of the trajectories.

To be able to calculate the measure of similarity for the trajectories, one needs to define
a) how to find the matching pairs in the two trajectories and b) how to take into account the
varying numbers of points in the trajectories [32]

For these reasons the LP norms usually are combined with linear interpolation when the
sampling times of the intermediate points do not match, or when the two trajectories have
a different number of points (see fig. 2.4) [42].
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Figure 2.4: Interpolation of two trajectories using the Euclidean distance norm (L2)[42]

2.10 Dynamic Time Warping - DTW

According to Sankararaman et al. [46], the Fréchet distance is not a godd indicator of the
correspondences between the trajectories due to the fact there could exist a large number
of correspondences which yield the optimal Fréchet distance since the optimization criteria
is the distance between the two farthest points in the coupling.

An alternative to Fréchet distance which is more appropriate to trajectories is the aver-
age Fréchet distance, aka dynamic time warping (DTW). The advantage of the DTW is that it
allows a sequence to ”stretch” or to ”shrink” in order to better fit [42]. According to Wang
et al. [59] the definition of DTW uses a recursive manner to search all possible point com-
binations between two trajectories for the one with minimal distance (see fig. 2.5 and eq.
(2.12)).

DTW attempts to match each point with the most appropriate one and finally chooses
the shortest distance. If the trajectories contain significant dissimilar portions, possibly due
to actual deviations the results are not as meaningful due to the fact that DTW tries to find
a correspondence for all points and thus, gives correspondences for points in the deviation
for which no meaningful one exists [42, 46].

TheDTWdistancebetween two trajectoriesA,B of lengthsm andn is defined in equation
(2.12).

DTW (A,B) = LP (rn, qm) +min

 DTW (A,Head(B)),
DTW (Head(A), B)

DTW (Head(A),Head(B))

 (2.12)

where Head(A) = ((r1,x, r1,y · · · (rn−1,x, rn−1,y)) (the subsequence A without the head
element).

Another disadvantageof theDTW is that it doesnot follow triangle inequality [14]making
it a non-metric function.
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Figure 2.5: The mapping of a trajectory using either the Euclidean or the DTW function
[42]

(a) Using DTW (b) Using LCSS

Figure 2.6: Point correspondence of two trajectories [14]

2.11 Longest Common SubSequence - LCSS

The Longest Common Subsequence (LCSS) is similar to DTW that it tries to match two trajec-
tories by allowing their ”stretching”, however, without changing the sequence of elements,
while allowing some elements of the sequences to be left unmatched. It can handle possible
noise that may appear in data more efficient because it can disregard noisy points (see fig.
2.6) [42, 14, 59].

LCSS can be calculated by equation (2.13).

LCSS(A,B) =



0 ifm = 0 or n = 0

LCSS(Head(A),Head(S)) + 1 if |rn − sm| < ϵ

and |n−m| ≤ δ

max

{
LCSS(Head(A), B),

LCSS(B,Head(B))

}
otherwise

(2.13)

where ϵ ∈ R and δ ∈ Z. In LCSS, ϵ declares the threshold, which determines whether or
not two elements match and δ is used to control how far in time we can go in order to match
a given point from one trajectory to a point in another trajectory

LCSS is not a distance but can be converted into one by using equation (2.14)

LCSSdist(A,B) = 1− LCSS(A,B)

min(n,m)
(2.14)

Another disadvantage of the LCSS is that it does not follow triangle inequality [14, 71]
making it a non-metric function.
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2.12 Summarizing

Table 2.1 is summing up the distance functions.

Distance
Function

Different
Lengths

Local Time
Shifting

Noise Metric

LP norm No No No Yes
Discrete met-
ric

No No No Yes

Hausdorff Yes No No Yes
Partial Haus-
dorff

Yes No Yes No

Modified
Hausdorff

Yes No Yes No

Bottleneck No No No Yes
Fréchet No No No Yes
Area of sym-
metric

Yes No Yes Yes

Euclidean No No No Yes
DTW Yes Yes No No
LCSS Yes Yes Yes No

Table 2.1: Comparison among the distance functions
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3.1 Introduction

Eyesight is one of the most important senses of a human. Through sight someone can per-
ceive his surroundings. Unfortunately, the mechanisms of sight are not entirely known and
there is a continuous effort to study and analyze these mechanisms.

The recording and the analysis of eye movements constitute an effective method for the
exploration of several aspects related to human vision,perception and visual behavior. Eye
tracking is the process of measuring either the point of gaze (where one is looking) or the
motion of an eye relative to the head. It provides objective and quantitative evidences to-
wards the examination of visual attention and a way to examine processes related to visual
search, visual perception and cognitive process, which occurs during the observation of a
stimulus [61, 28, 31, 57, 35]. Eye tracking has been gaining in popularity (see fig. 3.1) over
the past decade as a window into observers’ visual and cognitive processe.

Figure 3.1: Histogram of all publications, relevant for eye tracking data visualization
techniques. The number of published articles, conference papers, and books has

strongly increased during the last decade [10]

The recording of the eye movement is performed using an apparatus. An eye tracker is
the device responsible for making the measurements of the eye movements. Eye trackers
are used in research of the visual system, in cognitive linguistics and in product design and
have become very popular in a wide range of scientific disciplines from different research
areas such as neuroscience, psychology, human and computer interaction (HCI). Specific ap-
plications include the tracking of eye movement in language reading, music reading, human
activity recognition, perception of advertising, i.e. commercial eye tracking which includes
web usability, marketing, automotive and the playing of sport [31, 57, 28, 35].

Eye tracking data have the same structure as data about movements of discrete objects
in the geographic space.The main difference is that eye tracking data consist of gaze coor-
dinates in a screen (and in the general case in the 3D word) and the tracking data consist of
geodetic coordinates. So the object similarity functions mentioned in chapter 2 can be used
in eye tracking data for extracting similarities between the gazes of two subjects. However,
not all methods may be relevant since the movement properties and the possible questions
of interest are not the same for eye movements and for road or sea traffic, human mobil-
ity, or animal migration. In the next sections the basic concepts of eye movements will be
analyzed.

3.2 Eye movements

The main eye movements identified by the scientist are: a) saccades, b) fixations, c) smooth
pursuits, d) vergence, e) vestibulo-ocular, f) nystagmus g) and conjugate [35]. But the key
movements used in the analysis and recording of eye movements are only the first two (i.e.
the saccades and the fixations) [29].
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Table 3.1: Taxnonomy of fixations identifications algorithms [44]

Aclear definition of the types of themain eyemovementsmust be given, so the recording
of the eye movements to be precise [35]. As already mention, the main eye movement can
be classified to two categories:

Fixations: During the gaze of a scene, the eye focuses in various parts of the scene remain-
ing relative still. Fixation occurs at the moment when the eyes are relative stationary
in a position and the subject is focused on an object which attracts the attention. This
moment is characterized by the miniature movements of tremors, drifts and microsac-
cades. Fixations represent the informations regarding the point that is being observed
and their duration is between 100 msec and 1500 msec. 90% percent of the obser-
vation time is dedicated to fixations and they are important to the cognitive process.
Fixations are able to indicate critical information regarding the cognitiveprocesses that
occur when a visual stimulus appears. During the gaze of the scene, the existence of
many fixations points indicates that the subject is interested in the particular scene or
that the scene appears to be complex. [35, 8, 43, 31, 33, 29]

Saccades: Saccades are eyemovements, which are not part of the observation of a ”critical”
point. They are quick, simultaneous movement of both eyes that redefine the region
of interest (leading to the next fixation). Their duration varies from 10ms to 100 ms.
During a saccade little or no visual processing can be achieved, so thesemovements can
not give any information regarding the complexity of the objects that are part of the
visual scene, and thus the actual paths traveled during saccades are typically irrelevant
for many research applications. However, regressive saccades (i.e. backtracking eye-
movements) can act as a measure of processing difficulty [36, 35, 33, 8, 69, 29, 44, 43].

According to Salvucci and Goldberg [44] the process of fixation and saccades identifica-
tion in eye-tracking is essential part of eye-movement data analysis and can have a dramatic
impact on higher-level analyses.

There are numerous algorithms that identify fixations and saccades in eye tracking. In
order to distinguish each type, the algorithms have several criteria based on spatial and tem-
poral characteristics. Their criteria have velocity-based, dispersion-based and area-based at-
tributes for spatial characteristics while the criteria that are related to temporal characteris-
tics are the duration sensitivity and the local adaption of the algorithms (see table 3.1) [31].

Salvucci andGoldberg [44] haveevaluatedandcomparedfixation identificationalgorithms
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and suggest that velocity-based and dispersion-based algorithms provide equivalent per-
formance, while area-based algorithms seem to be more restrictive [31]. In a similar paper
Shic, Scassellati, and Chawarska [49] have evaluated how outcome measures are impacted
by changes to fixation algorithms.

3.3 Visualization

The visualization of the eye tracking data can reveal characteristics of the fixations, the sac-
cades and the scanpath structures [29, 10]. Several visualizations methods for eye tracking
data exists to help researchers to depict data collected in eye tracking experiments. An-
drienko et al. [4] have done an extensive categorization of the visualisation techniques that
exist and in the next sections we present the most widespread techniques.

3.3.1 Gaze plot

The most straightforward solution to visualize eye tracking data is with a simple plot of the
pupil’s horizontal and vertical coordinates against time. Similar techniques plot raw eye
movements in 2-D with the stimulus image as the background. Traditionally, fixations are
represented by circles, and saccades are represented by lines connecting the circles, indicat-
ing also the the order in which they occur. The center of each circle is placed in the position
where the fixation happened and the size of the circle is proportional to the duration of the
fixation. Larger radius of circle means bigger fixation duration (see fig. 3.2). Additionally,
the third dimension may also be used in order to solve the problem of data overlapping [51,
29, 57]

This method is not suitable for large data due to enormous overplotting [4, 57].

3.3.2 Heatmaps

More advanced visualization techniques use the so-called heatmaps (aka fixation maps) to
present the information in a more consistent manner (see fig. 3.3). A heatmap is a two-
dimensional graphical visualization technique which represents points entities through dif-
ferent levels of intensity or different intensities of a color hue [51, 29, 51, 51, 57].

The visualizationof thedatawith heatmaps is a tool throughwhich complicateddata, that
would be difficult to be perceivedwith numerical data, is being summarized and understood.
Heatmaps indicate the distribution of entities and this methodology can be quite useful in
the direct observation of specific patterns or trends in the distribution of the gaze points
[29].

Heatmaps can be easily generated using standard eye tracking software. The main cate-
gories of the heatmaps can be classified according to the properties of the fixations (see fig.
3.4) in which refer to and they can visualize counts of fixations, counts of different users who
fixated on different areas, absolute gaze duration, and relative gaze duration (percentage to
the total time spent) [29, 4]:

Heatmaps based on the number of fixations: In this case the visualization that is created
is based on the number of fixations that occur in a visual scene. In this category the
duration of the fixation is not considered.

Heatmaps based on the absolute duration of fixations: In this case, theheatmap is releted
to the absolute duration of the fixation that occur in the visual scene, without the num-
ber of fixations being considered.

A sequence of alternating fixations and saccades is called a scanpath. A scanpath can give information about
the search behavior of a participant [10].
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Figure 3.2: Gaze plot visualizing the fixation and saccades movements occuring during
the recording of eye movements ([52] adopted from Krassanakis [29])

Figure 3.3: Heatmap with different levels of intensity ([16] adopted from Krassanakis
[29])
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Figure 3.4: Different type of heatmaps (from left to right: Count, Absolute Duration,
Relative Duration) [38] adopted from Krassanakis [29]

Heatmaps based on the relative duration of fixations: In this case, theproperties that the
heatmap is based on is directly related to the relative duration of the fixations, i.e. the
durationof eachfixation relative to the total durationof all fixationsof the visual scene.

Heatmaps based on the participants percentage: In this case, theheatmap is basedon the
percentage of the participants that gaze the different areas of the visual scene.

According to Andrienko et al. [4] ”heatmaps may be useful for area of interest focused
tasks. In comparative studies (different time intervals, different users, or different images)
several heatmaps are compared. Eye tracking analysts also try to determine users’ search
strategies by analyzing series of heatmaps generated for consecutive time intervals, which
show how the users’ attention focus change over time. However, the characteristics of the
eye movements, the links between the attention focus, and the paths followed during the
search remain unclear”.

3.3.3 Average Polyline - APL

APL is anewvisualizationandanalysis tool introducedbyKaragiorgouet al. [27] andVescoukis
et al. [57] and corresponds to the “average” line that is actually seen by subjects (see fig. 3.5
and section 3.5). Such a line might be useful in the study of various optical representations
concepts, such as the assessment of the effects of alternative cartographic line attributes
[27].

APL is the the depiction of the gaze route history using a polyline, which is feasible, as the
visual trace is generated from sequential raw eye tracking data. This visualization is useful in
cases where the context of eye tracking has reference to lines, paths, etc. that subjects are
required or expected to follow [27].

3.4 Structure and properties of eye tracking data

Eye tracking data consist of vectors about the positions and times of gaze fixations. Each
record usually includes the following two components: time, position in the display space (x-
and y-coordinates). For fixations data also the fixation duration is included. The records may
also include other attributes, e.g., stimulus identifier when different stimuli are used in the
data collection. The temporally ordered sequence of records of one user referring to one
stimulus is further called eye trajectory or scanpath, in the literature on eye tracking [4].

Tracking data have similar structure: moving object identifier, time, and position (in geo-
graphical space) defined by coordinates andmaybe some additional attributes that may also
be present. As already mentioned in 3.1 the structural similarity suggests that both classes
of data may be analyzed using the same methods.
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But acccording to Andrienko et al. [4], there is a significant difference between eyemove-
ments and movements of physical objects in the real world. Eye movements include instan-
taneous jumps (saccades) over relatively long distances, so the intermediate points between
the start and end positions of a jump are not meaningful. It cannot be assumed that there
exists a straight or curved line between two fixation positions such that the eye focus trav-
els along it attending all intermediate points. This prohibits the use of methods involving
interpolation between positions. Hence, not all movement analysis methods are valid for
eye trajectories.

3.5 Calculation of Average Polyline (APL)

APL is produced by applying the TraceBundle [28] algorithm on eye tracking datasets, which
was originally developed for the inference of graph geometries such as transportations net-
works, from GPS tracking data. The algorithm extract “hubs” and constructs a polyline that
correspond to the observed geometry and the aim of this approach is to derive a single poly-
line geometry from sampled eye tracking data from multiple users. This line is call the Av-
erage Polyline (APL) and represents the line that the subjects have followed on average. An
APL can be used to help researchers understand how visualizations, distractions or even sub-
jects’ characteristics affect what has been seen in such an experiment [28, 57].

The proposed algorithm to derive the polylines from eye tracking data involves three
steps: a) identifying hubs, b) connecting hubs and c) reducing the links into a single ge-
ometry to generate the APL [57, 27]

In the first step, hubs are inferred from spatial fixations on eye tracking data. According
to Karagiorgou et al. [27] indicators for hub recognition are the number of tracking samples,
the number of different users and the coverage of an extended area of focus. The algorithm
takes as input the eye tracking data anddetermines the k-NNsof each tracking sample, which
are filtered according to the number of users. On the filtered samples, DBSCAN clustering
algorithm is applied using a distance threshold and a minimum number of samples. The cen-
troids of the resulting clusters are the hubs. Hubs are very similar in nature with fixations.

Next, the hubs are connected by links. For each hub, the outgoing and/or incoming track-
ing portions connecting this hub to other is recorded by scanning all eye tracking data to
discover sequences of hubs. The result of this step is the creation of a sample polyline set
that connects hubswith links (this process is shown in algorithm3.1). At this stage redundant
links between hubs are introduced [57, 27, 28].

In the last step of the algorithm, the links are compacted to a reduced geometry ex-
pressed by polylines. The algorithm identifies tracking portions that are close to existing
links by means of a buffer region and merges their geometry into the existing link geome-
try. In this step, only the geometry of existing links is adjusted using a three-step algorithm:
a) sort existing link samples in a descending order according to their length (so to process
longer links first as theymay bemore significant for polyline construction), b) determine rel-
evant tracking portions using a buffer region around link samples and c) adjust the geometry
of links based on the tracking data geometry (see algorithm 3.2) [57, 27, 28]. In table 3.2 the
input parameters of the algorithm are summarized and in fig. 3.6 an example of the APL
algorithm is shown.

According to Vescoukis et al. [57] ”APLs provide a newmeans for visualizing eye-tracking
data, which can be used along heatmaps and other methods to extract useful conclusions,
depending on the specifics of the experiment”.

According to Karagiorgou et al. [27] a hub represents the spatial fixation that the eye creates near an area of
interest.
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Algorithm 3.1: Connecting hubs [57]
Input: Set of eye-tracks T and hubsH
Output: A set of link samples LS

/* Connecting hubs using tracking data */
/* Hub sequence */

1 HS ← 0 ;
/* Link samples */

2 LS ← 0 ;
/* Identify hub sequences from tracks */

3 foreach t ∈ T do
4 foreach p ∈ t do

/* position sample is mapped to a hub */
5 if p ∈ H then

/* record prev., current hub */
6 HS ← h−, h, p−, p, t ;

/* Collect and merge link samples */
7 foreach h−, h ∈ H do

/* add all track portions for this hub pair */
8 foreach t ∈ HS do
9 Ls ← t, p−, . . . , p ;

/* cluster link samples */
10 Width←Width(LS) ;
11 Weight←Weight(LS) ;
12 LS ← SweepMerge(LS);

Algorithm 3.2: APL extraction [57]
Input: A set of link samples LS
Output: A set of links L
/* Sorting link samples by length */

1 LS ← sort(LS, length) ;
/* Candidate link samples */

2 CLS ← 0 ;
/* width of link samples */

3 Width ;
/* direction threshold */

4 Angle ;
5 foreach l ∈ LS do
6 CLS ← Find(bbox(l,Width(l), Angle)) ;
7 foreach cl ∈ CLS do
8 if Contains(l, cl) then
9 LS ← SweepMerge(l, cl) ;

10 else
/* partial overlap */

11 clin, clout ← Split(l, cl) ;
12 CLS.add(clout) ;
13 L← SweepMerge(l, clin)) ;
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Parameters Explaination

Proximity and angle difference

DBSCAN clustering algorithm is
applied using a distance thresh-
old and a minimum number of
samples

Number of tracking samples,
the number of different users
and the coverage of an ex-
tended area of focus

Indicators for hub recognition
are the number of tracking sam-
ples, the number of different
users and the coverag e of an
extended area of focus. The al-
gorithm takes as input the eye
tracking data and determines
the k-NNs of each tracking sam-
ple, which are subsequently fil-
tered according to the number
of users.

Bounding box

The algorithm identifies trajec-
tory portions that are close to
existing links by means of a
bounding box and merges their
geometry onto the existing link
geometry, using a bounding box
around link samples to deter-
mine relevant trajectory por-
tions

Table 3.2: Parameters of APL algorithm.
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4.1 Introduction

Whenworking with eye tracking data, it is common to determine somemeasurement of sim-
ilarity between many subjects gaze sequences. APLs (see section 3.3.3) enable the quantita-
tive analysis of the individuals’ behavior compared to the averagebehavior, using established
similaritymeasures. Other researchers, determined similarity by using simple visual analysis.
This analysis is prone to error and bias, whereas computational analysis generates concrete
and reproducible results [60, 57].

The purpose of this toolkit is to support the researchers in productively analyzing gaze
data and producing similarity scores between gaze data in a quantitative way.

4.2 Concepts and work flow

The algorithm discussed in section 3.3.3, will be used to extract a set of hubs and connecting
links which represent the APL. After the average polyline is extracted, the whole set will
be further processed and the behavior of each individual will be analyzed and compared to
the ”average behavior” of the sample from which the APL was produced. By following this
approach, two types of questions may be answered [57]:

Type 1: Visualization attributes How does a different stimulus affect the behavior of the
same population?

Type 2: Individual‘s behavior How do groups of individual subjects with similar properties
deviate from the average behavior when the same stimulus is presented?

According to Vescoukis et al. [57] ”by being able to compare the behavior of each individ-
ual to the average behavior of the population participating in an experiment, we can perform
quantitative statistical analysis on groups of subjects with common attributes”.

The work flow to process a set of eye tracking data is shown in algorithm 4.1.

Algorithm 4.1: APL analysis workflow [57]

Input: Set of eye-tracking data for a given experiment E
Output: APL, table T containing set of individuals PL (PLi), deviation metrics (Di)

1 adjust the APL extraction algorithm parameters ;
2 calculate the APL for E using the APL extraction algorithm ;
3 foreach Si ∈ E do
4 calculate PLi by applying the APL extraction algorithm on data in Si ;
5 calculate deviation metricsDi between PLi and APL ;
6 add PLi,Di to table T ;

7 perform statistical analysis on table T ;

This approach can enable many new applications in education, behavioral and intention
analysis, psychology, and elsewhere [57].

4.3 Software

Many tools havebeendeveloped inorder to implement specific approaches in eyemovement
analysis. In table 4.1 there is an overview of the freely available software.

EyeMMV toolbox (Eye Movements Metrics & Visiualizations toolbox) is a MATLAB® tool-
box for post experimental eye movement analysis. It includes functions for fixations
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Analysis tool Developers Site

EyeMMV toolbox
Krassanakis, Filippakopoulou,
and Nakos [31]

https://github.com/krasvas/
EyeMMV

ILAB Gitelman [21] Not available any more

Eyelink Toolbox
Cornelissen, Peters, and Palmer
[17]

http://psychtoolbox.org

iComp
Heminghous and Duchowski
[25]

http://andrewd.ces.clemson.
edu/iComp/

openEyes Li, Babcock, and Parkhurst [34] http://www.openeyes.org.uk/

eyePatterns West et al. [60]
http://sourceforge.net/
projects/eyepatterns/

ASTEF Camilli et al. [13] www.astef.info

ETU-driver Špakov [72]
http://www.sis.uta.fi/~csolsp/
downloads.php

OGAMA VoßKühler et al. [58] http://www.ogama.net/

ITU Gaze Tracker San Agustin et al. [45]
http://sourceforge.net/
projects/gazetrackinglib/

GazeAlyze Berger et al. [9]
http://gazealyze.sourceforge.
net/

GazeParser Sogo [50]
http://gazeparser.sourceforge.
net/

Table 4.1: An overview of the freely available tools for eyemovement analysis
(modified from Krassanakis, Filippakopoulou, and Nakos [31]).

identifications, metrics analysis, data visualization and ROI (region of interest) analysis
[31].

ILAB is a MATLAB® toolbox which allows to a) display basic eye movement data, including
scan paths, fixations, and saccades b) allow basic quantification of analyzed eye move-
ment data, including tabulation of fixations and saccades and correlation of eye posi-
tion with a region of interest (ROI) c) allow accurate mapping between the eye tracker
and the computer screen d) enable display of eye movement data on the same images
as those the subject was viewing e) display pupil size data f) enable export of data and
results to facilitate analyses inother applicationsg) apply anyof theprecedingmethods
to a variety of eye-tracking systems and h) develop a system that allowed expandability
over time [21].

Eyelink Toolbox is aMATLAB® toolbox that supports themeasurement of eyemovements.
The Eyelink Toolbox, in combination with the Psychophysics Toolbox , provides a fast,
easy, interactive, and powerful means to develop research-grade eye-movement para-
digms [17].

iComp is an open-source visualization tool that implements quantitative scanpath compari-
son in loci and sequence [25].

openEyes consists of an open-hardware design for a digital eye tracker that can be built
from low-cost off-the-shelf components, and a set of open-source software tools for
digital image capture, manipulation, and analysis in eye-tracking applications [34].

eyePatterns is a software for identifyingpatterns and similarities acrossfixation sequences.
This software tool provides trusted sequence analysis techniques and an intuitive inter-
face that guides the user from identifying which experimental variables may influence

http://psychtoolbox.org/

https://github.com/krasvas/EyeMMV
https://github.com/krasvas/EyeMMV
http://psychtoolbox.org
http://andrewd.ces.clemson.edu/iComp/
http://andrewd.ces.clemson.edu/iComp/
http://www.openeyes.org.uk/
http://sourceforge.net/projects/eyepatterns/
http://sourceforge.net/projects/eyepatterns/
www.astef.info
http://www.sis.uta.fi/~csolsp/downloads.php
http://www.sis.uta.fi/~csolsp/downloads.php
http://www.ogama.net/
http://sourceforge.net/projects/gazetrackinglib/
http://sourceforge.net/projects/gazetrackinglib/
http://gazealyze.sourceforge.net/
http://gazealyze.sourceforge.net/
http://gazeparser.sourceforge.net/
http://gazeparser.sourceforge.net/
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fixation sequences to discovering patterns shared by similar sequences. Additional se-
quence analysis techniques, such as compression and filtering of sequences are also
planned [60].

ASTEF (A Simple Tool for Examining Fixations) is data analysis application for processing
eye-movement information. ASTEF is developed in C#.NET and enables the visualiza-
tion, analysis of fixation data and fixation identification [13].

ETU-driver (Eye-Tracking Universal Driver) has been developed as a software layer to be
used between the actual eye tracker driver and the end-user application to provide
device-independent data access and control. The ETU-Driver consists of a COMobjects
that implements the interface common for all eye trackers and a set of supporting DLL
libraries (API-Converters), which ”convert” original manufacturer’s APIs into a common
API used by ETU-Driver. The benefit of using ETU-Driver comes from the fact that any
end-user application implemented on top of ETU-Driver can access data from a newly
installed eye tracker simply by copying a correspondingAPI-converter to theETU-Driver
installation folder [72].

OGAMA (Open Gaze and Mouse Analyzer) is developed in C#.NET. Its main features include
slideshow design, the recording of gaze and mouse data, database-driven preprocess-
ing and filtering of gaze and mouse data, the creation of attention maps, areas-of-
interest definition, and replay. Eyetracking and/or presentation soft- and hardware
recordings in ASCII format can be imported. Data output is provided that can be used
directly with different statistical software packages. Because it is open source, one can
easily adapt it to suit one’s needs [58] .

ITU Gaze Tracker is developed in C#. There are three main components: a) the gaze track-
ing library, which implements all the methods to control a tracker such as extracting
eye features, run a calibration procedure, estimate the gaze coordinates and detect
the type of eye movement b) the camera class, responsible for initializing a generic
camera and grabbing images that are then processed by the gaze-tracking library and
c) the user interface, which provides the communication with the gaze-tracking library
to set up the different parameters of the system [9].

GazeAlyze is aMATLAB®toolbox for the analysis of eyemovement data andwas developed
to analyze gaze data for static visual stimuli and to obtain parameters from fixations
and saccades for further visualization and statistical analysis. It includes detecting and
filtering artifacts, detecting events, generating regions of interest, generating spread
sheets for further statistical analysis, and providing methods for the visualization of
results, such as pathplots andfixation heatmaps. GazeAlyze also includes functions for
correcting eyemovement data for the displacement of the head relative to the camera
after calibration in fixed head mounts [9].

GazeParser is an open-source library for low-cost gaze position recoding, eye tracking and
data analysis. The libraries used in GazeParser are written in Python and can be used in
conjunction with PsychoPy  and VisionEgg  experimental control libraries [50].

The only software that supports similarity analysis of gaze data is the eyePatterns [60].
To accomplish that it uses two algorithms to determine themathematical similarity between
string sequences. The first is the Levenshtein distance algorithm (a.k.a. the string-edit algo-
rithm) and the second is the Needleman-Wunsch algorithm that, unlike the basic string-edit
algorithm, allows the user to specify scoring parameters that are optimal for a given experi-
ment [60].

Unfortunatelly eyePatterns is not suitable for our work due to the fact that the stimulus
must be divided into Areas of Interest (AOIs). Each fixation that resides into a specific AOI is

http://www.psychopy.org/
http://visionegg.org/

http://www.psychopy.org/
http://visionegg.org/
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assigned a one-character and the fixation sequence is converted to a string sequence. After-
wards the program compares the strings, effectively removing any geometrical informations
that the fixations had.

4.4 Requirements outline

Software requirements in systems engineering and software engineering express the needs
and constraints placed on a software product and encompasses those tasks that go into de-
termining the needs or conditions for a newor altered product or project, taking account the
conflicting requirements of the various stakeholders [11, 68].

As already mentioned, the purpose of the toolkit is to support the researchers in produc-
tively analyzing gaze data and producing the output of the suggestedwork flow (see section
4.2 and algorithm 4.1).

The user should be able to calculate the differences between the two polylines and ex-
tract the histogram of the differences between each PLi and the APL to perform further
analyses. With this toolkit we would like to be able to calculate a table T like in figure 4.1
needed to further analyze how specific subject attributes affect the gaze of the subject and
the APL of a particular population. In the table, (i) denotes the subject ID and k denotes the
deviation metric.

Structure of table T

ExperimentID
SubjectID(i)
Subject classifications Ci

PLi calculation parameters
PLi length
AbsoluteDistk
NormalizedDistk

Figure 4.1: Structure of table T to used in analyzing APLS and individual‘s behavior.

The significance of each attribute in a population is shown in histograms. By filtering the
results according to a specific attribute and creating each attributes histogram, someone
will be able to extract the significance of the attribute in the gaze of the subject from the
differences in the histograms.

The present sections describe the development of a new toolbox for post experimental
analysis.

4.4.1 Non-functional requirements

In software system engineering, a software requirement that describes not what the soft-
ware will do, but how the software will do it, is a non-functional requirements and are the
ones that act to constrain the solution [11, 15]. The non-functional requirements that were
in mind before the development of the toolkit were:

Cross-platform: smooth operation on all operating systems.

Modular architecture: in order to allow future extension and upgrades.

Graphical User Interface: Creation of a Graphical User Interface (GUI) for the efficient use
of the toolkit and the ease of learning.

Error messages: for alerting users in terms familiar to them.
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Documentation: of the toolkit bymeans of detailed description of each function in the code
base and creation of manuals for the users.

To ensure the aforementioned in an easyway, it was decided the toolbox to be developed
using MATLAB® [37]. MATLAB® (MATrix LABoratry) is a high-level and fourth-generation
programming language desinged by MathWorks. It allows matrix manipulations, plotting of
functions and data, implementation of algorithms, creation of user interfaces, and interfac-
ing with programs written in other languages, including C, C++, Java, Fortran and Python. It
is used inmany domains such as signal processing and communications, image and video pro-
cessing, control systems, test and measurement, computational finance, and computational
biology [65, 37].

This toolkit could have been written in a low-level computer language such as C++, which
would have freed it from dependency on other software. However, although low-level lan-
guages are very powerful and flexible, they are not as conducive to rapid program develop-
ment or easy implementation of graphical interfaces. Similar with interpreted languages,
such as Python, which allow easier program development than low-level languages do, still
they do not include all the prepackaged algorithmic and graphical tools in the basic version
of MATLAB®.

So even thoughMATLAB® is only available commercially, it is commonly used in research,
and the advantages that offers overcome the disadvantage of being a commercial product.
With MATLAB® the developed software can be executed in every operating system (Win-
dows, Linux or Mac OS) where MATLAB® is installed and with GUIDE the creation of a users
interface is being simplified. In a later stage someone could also replaceMATLAB®withGNU
Octave.

Also, through the GUI the user must able to select the files that contains the raw data
of the experiment and calculate the fixations, the hubs and the APL. By using the toolkit
interface the user is able to calculate the APL for the population he chooses and visualize
the results.

4.4.2 Functional requirements

A software requirement specifies a function that a software system or software component
must be capable of performing.For example, formatting some text or modulating a signal.
They are sometimes known as capabilities or features [11, 15].

With this toolkit the user must be able to:

Load multiple files: The toolkit must be able to loadmultiple files of raw eye tracking data.
The files must have a .raw extension and the file must have a header and each line to
be a triple of (Time, x, y). An example is shown below:

1 Time,X,Y
2 41.0074,430.2848,643.328000
3 41.0239,433.8688,644.096000
4 41.0406,431.2064,643.456000
5 41.0572,434.3808,643.456000
6 41.0739,433.2544,643.456000
7 41.0905,434.7904,642.560000
8 41.1072,432.6400,643.072000
9 41.1238,434.9952,643.456000

10 .
11 .
12 .

http://www.mathworks.com/discovery/matlab-gui.html
http://www.gnu.org/software/octave/
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Figure 4.2: The APL analysis toolkit

Visualize stimulus: If in the same folderwith the data exists a filewith .stimextension, that
files contains the stimulus of the experiment and must be given in pairs of (x,y). Also if
a .bgd file exists that files contain the background of the stimulus and it has the same
properties with .stim file. An example is shown below:

1 634.79,572.13
2 634.53,572
3 634.26,571.9
4 634.01,571.77
5 633.76,571.62
6 633.49,571.5
7 633.28,571.31
8 .
9 .
10 .

Fixations calculation: The toolkit must be able to calculate the fixations of the gaze data.
If a file with .fix extension exists and the name of the file is the same with the name of
.raw data file, it is assumed that the files contains the fixations of the particular raw file
and they wont be recalculated.

APL caclulation: The toolkit must be able to calculate theAPL (see section 3.5) for a batch
of .raw files. The parameters of the algorithm must be provided by the user and the
toolkit must export the hubs and the links calculated from the algorithm.

Similarity comparison: Finally the toolkit must be able to calculate the similarity function
(see chapter 2) forAPL and the PLi. The usermust be able to choose the data and the
toolkit will calculate the distance function between the data.

In figure 4.2 and 4.3 the toolkit is being shown.

4.5 Case study

A case study is presented, that uses the software capabilities, to demonstrate the use of the
APL and the similarity analysis of eye tracking data. The data used in this case study, comes
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Figure 4.3: The MATLAB® toolkit
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from the National Technical University of Athens (NTUA) and they were already used in two
publications ([8, 7]). Specifically, the experiment took place in the laboratory of the School
of Rural and Surveying Engineering.

In the case study to be discussed in the sequel, we have used two such metrics, namely
the Hausdorff distance H and the relative to the APL length of the subjet’s PLi.

4.5.1 Eye Tracker

The system for recording the gaze of the subjects is the Viewpoint Eye Tracker®from Ar-
rigton Research, which is installed at the Laboratory of Cartography of National Technical
University of Athens (NTUA). Viewpoint Eye Tracker allows the recording of the position and
movement of the subjects eyes on a visual scene displayed on a computermonitor connected
with the system.

The operation of this system is based on the use of devices that are able to record the
gaze on a visual scene by analyzing eye images (see fig. 4.4). The system consists of a) the
recording device (hardware) and b) the processing tools (software). The system is embedded
in a computer, which supports two display monitors. The primary monitor is used from the
system‘s operator and the second monitor is used for the projection of the stimulus to the
subject.

Figure 4.4: The Eye Tracking system, used in the NTUA experiments [8]

The recording device consists of a camera and an infrared Light-Emitting Diode (LED) for
each eye, which are attached to the optical system of the subject. The infrared LED, which
is located under the observer’s eye, illuminates the eyeball (the illumination contributes to
the discrimination between the regions of the pupil and the iris), while its image is being
captured by the camera placed next to the infrared LED. The system’s geometry is completed
by a mechanism that immobilize the position of the observer’s optical system [36, 29, 30].

Themaindisadvantagesof theViewpoint EyeTracker are a) that for the successful record-
ing of data, the immobilization of the head of the subject at a fixed position is needed (see
fig. 4.4) and b) that the subjects that use the system must have accurate vision without the
need for glasses or contact lenses, due to the limitations of the system.

4.5.2 Stimuli

In this experiment, the head of the subject was anchored 60 cm from the screen and only
themovement of the right eye were recordedwith a frequency of 60Hz and an accuracy that
varies between 0.25-1.00 degrees of visual arc (see fig. 4.5)[8, 7]
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Figure 4.5: The geometry of the subject and the screen [8]

The subjects that participate in the experiments were persons aged from 18 years to 40
years and from various professional areas, with different educational levels and accurate
vision.

The stimulus that were displayed to the subjects were:

• The coastline of the Peristera island, which is located in Sporades, at scale 1:50.000
approximately (see fig. 4.6a).

• The geometrical model consisted of several representative line shape samples intro-
duced by Thapa [53] (see fig. 4.6b)

The line’s width was modified taking into consideration the distance of the 60 cm be-
tween the subject and the projection’s monitor. Stimuli have 1280 x 1024 pixels resolution.
Formore information about the original experiments the readers are referenced to Bargiota
[8] and Bargiota et al. [7]

4.6 Analysis of samples

In this case study, we executed the work flow discussed in section 4.2 and created the table
for each stimulus (TP for Peristera stimulus and TT for Thapa stimilus).

TraceBundle (see section 3.3.3) algorithm is used to create a polyline that the subjects
have followed ”on average” and a set of hubs and connecting link are extracted from the
data provided (see section 3.5). Each subject in the experiments was asked to follow the
linear entities described in section 4.5.2 and afterwards the analysis of the data followed
using the Hausdorff distance and the Modified Hausdorff distance.

For each subject an averagegaze linewas producedusing theAPL (see tableA.1 andB.1 in
the Appendix) and that line was compared to the ”average line” produced by many subjects.
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Figure 4.6: Stimuli

The visualization of the aforementioneddatasets using heatmaps (see section 3.3.2) andAPL
(see section 3.3.3) are shown in fig. 4.7 and 4.8 respectively. As a reference line, in the case
of the Peristera stimulus the APL introduced fromKaragiorgou et al. [27] was used and in the
case of the Thapa stimulus, 3 subjects were chosen and the APL was created.

Only two of the distance functions discussed in chapter 2 were used, namely the Haus-
dorff distance (see section 2.4) and the modified Hausdorff distance (see section 2.4.2). The
reason for using only these two metrics were due to the limitations of our data. Although
our original data did include a time dimension (when the gaze was recorded), after applying
the TraceBundle, this information is lost since the algorithm only produces hubs and links
(location of the processed gaze data). So algorithms that include the time dimension (i.e.
trajectories similarity - see section 2.8) are not possible to be used. Also our sets are not
compact and the cardinality of our data can‘t be consider equal (since most of the times we
won‘t have the same number of observations) so the area of symmetric difference (see sec-
tion 2.7) and the Bottleneck distance (see section 2.5) are not applicable metrics. Finally the
Fréchet distance (see section 2.6) would have been a suitable metric but due to the nature
of the produced data (points connected with edges), there wasn‘t a straightforward way of
producing a correct curve, so the use of a Fréchet algorithm was impossible.

As alreadymentioned in chapter 2 the simplicity of the Hausdorff distancemay lead from
time to time to wrong conclusions since it does not consider the polylines as polylines but
as point sets. In figure 4.9 three cases of the subjects APL and the reference line are shown.
AlthoughHausdorffdistance is simple it captures thedifferences between thepolylines. The
more different a polyline is, the bigger the Hausdorff distance and the Modified Hausdorff
distance is.

4.6.1 Type 1 question

In figure 4.10 the normalized distribution of theRHi is shown. RHi is calculated as the Haus-
dorff distance of each sample PLi from the APL, divided by the length of the APL (see equa-
tion (4.1) and table 4.2).

RHi =
δH(PLi, APL)

length(APL)
(4.1)

The two experiments have not been executed with this kind of analysis in mind, but it
seams from the results that the subjects deviate less from the ”average line” in the simpler
cartographic line of Thapa.



40 CHAPTER 4. TOOLKIT

(a) The Peristera heatmap

(b) The thapa heatmap

Figure 4.7: Heatmap of the stimuli [7]
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(a) The Peristera APL [27]

(b) The Thapa APL

Figure 4.8: APL of the stimuli
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Figure 4.9: Subjects APL with reference line
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Figure 4.10: Normalized distribution of Hausdorff distance across experiments

Frequencies
Peristera
RHi

Peristera
RHi%

Thapa
RHi

Thapa
RHi%

5 0 0 0 0
7.5 1 2.5 15 39
10 1 2.5 9 24
12.5 1 2.5 3 8
15 0 0 3 8
17.5 0 0 5 13
20 17 42.5 1 3
22.5 16 40 1 3
25 4 10 0 0
27.5 0 0 0 0
30 0 0 1 3
32.5 0 0 0 0

Table 4.2: The normalized distribution of the two experiments
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Figure 4.11: Normalized Hausdorff distance distribution across groups for the ”Thapa”
experiment

4.6.2 Type 2 question

To study how attributes of different individuals influence the results of the APL, we studied
thedistributionof twometrics. Thefirst is theonepresented in type1question andequation
4.1. The second is basedon ratio calculated fromthe lengthof eachPLi dividedby the length
of the APL (see equation 4.2)

Ri =
Li

Lref
=

length(PLi)

length(APL)
(4.2)

The distributions were calculated for 2 groups of subjects. The first group consists of 14
people aged over 45 where the 24members of group 2 are aged below 40. The distributions
are shown in fig. 4.11 and 4.12 accordingly.

From the diagrams is noticed that the deviations of individuals observations in group 1
are noticeably higher than the corresponding deviations of group 2.
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Figure 4.12: Normalized distribution of Li/Lref across groups for the ”Thapa”
experiment.

Frequencies
Thapa
group
#1 RHi

Thapa
group
#1
RHi%

Thapa
group
#2 RHi

Thapa
group
#2
RHi%

5 0 0 0 0
7.5 0 0 15 39
10 0 0 9 24
12.5 3 8 0 0
15 3 8 0 0
17.5 5 13 0 0
20 1 3 0 0
22.5 1 3 0 0
25 0 0 0 0
27.5 0 0 0 0
30 1 3 0 0
32.5 0 0 0 0

Table 4.3: The normalized distribution of the two experiments
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CHAPTER5

Conclusions

5.1 Introduction

The huge amount of gaze data collected in eye tracking studies requires analysis and visual-
ization in order to help researchers to answer questions posed in every case. The majority
of the well-established eye tracking visualization techniques, such as heatmaps, are mainly
used for qualitative evaluations.

Thepurposeof the thesis is topresent anewvisualizationmethod introducedbyVescoukis
et al. [57] for the representationof the averagegazebehavior during theobservationof stim-
ulus in qualitativeway. The approach is based on the TraceBundle algorithm [28] and the aim
of this approach is to derive the reference average line (APL).

5.2 Conclusions

The main advantage of the new visualization technique is that it allows the depiction of the
average gaze behavior of a population and this approach enables the comparison of the vi-
sual reaction of individual subjects in a group through analytical techniques used in similarity
analysis. During this thesis, except from the theoretical background a case study was also
presented.

Theproposedmethodextends the capability of eye tracking visualizations allowinggroup
comparison reported by specific metrics such as these used in the present study. According
toVescoukis et al. [57] this ideamaybeapplied in domainswhere eye tracking is alreadyused,
to enhance the analysis of eye tracking data. Both a visualization and a framework for quanti-
tative analysis, theAPL approach can be useful in caseswhere the context of eye tracking has
reference to lines, paths, etc. that subjects are required or expected to follow. Several other
applications may also benefit from the possibility of quantitative analysis of gaze data, such
as fields in education, behavioral and intention analysis, psychology and ophthalmology.

5.3 Proposals

After the completion of this thesis some proposals for future work should be noted:

• The approach of the introduced method is based on the generation of a reference av-
erage line that we refer as APL. Currently the APL is a flat polyline, but in the future it
can be further improvedby adding color attributes to the line segments of this polyline,

47
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using calculations such as data density of eye tracking samples near the line, or other
metrics.

• Another promising application area might be medical education, where the behavior
ofmedical students in the observation of images where a linear geometry is dominant,
such as a e.g. cardiogram, might be an indication of how they perceive attributes of
the cardiogram that lead to a diagnosis. Also, deviations from the average or the ex-
pert’s behavior might be indications that, combinedwith other data, might be useful in
the evaluation (grading) of medical students asked to observe a cardiogram. Needless
to say, all of the above possible areas for applying the APL visualization and analyt-
ics approach introduced in this paper, need to be individually addressed and specific
experiments need to be designed for each case with APL visualization and analysis in
mind.

• Fréchet distance (see section 2.6) is a suitable metric for comparison of gaze data. So a
suitable experiment or a transformation of the original data that would allow the use
of the Fréchet algorithm should be found.

• It would be interesting to see the results of similarity functions to raw gaze data or fix-
ations points. The Hausdorff distance is not a suitablemetric since it does not consider
the duration of a fixations but Earth Mover’s Distance (EMD) between two weighted
point sets [12] can be used instead.
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APPENDIXA

Peristera stimulus data

Raw file
Cluster
range

Angle
toler-
ance

Num. of
samples

Num. of
users

Minimum
linkage

Bounding
box

Length
Hausdorff
Distance

Modified
Hausdorff
Distance

Peristera50K01 20 10 5 1 1 50 2,072.93 355.28 40.17
Peristera50K010 25 20 5 1 1 50 1,977.04 362.29 30.95
Peristera50K011 15 15 6 1 1 60 2,100.64 419.04 37.07
Peristera50K012 20 10 8 1 1 50 1,773.33 378.64 39.25
Peristera50K015 20 10 8 1 1 50 1,823.30 439.40 41.85
Peristera50K017 20 20 5 1 1 50 2,598.18 340.74 30.56
Peristera50K018 25 15 6 1 1 60 1,929.37 412.72 32.67
Peristera50K019 30 24 7 1 1 50 1,483.20 423.51 50.18
Peristera50K02 12 10 2 1 1 70 2,838.31 370.38 33.83
Peristera50K021 15 16 4 1 1 50 1,969.11 389.08 28.87
Peristera50K022 15 10 5 1 1 50 2,044.26 392.82 29.52

continues on the next page
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Raw file
Cluster
range

Angle
toler-
ance

Num. of
samples

Num. of
users

Minimum
linkage

Bounding
box

Length
Hausdorff
Distance

Modified
Hausdorff
Distance

Peristera50K024 25 10 4 1 1 70 1,880.32 373.83 39.43
Peristera50K025 20 10 4 1 1 50 1,930.01 440.10 47.96
Peristera50K027 25 15 3 1 1 60 1,912.45 445.76 51.46
Peristera50K028 20 15 1 1 1 60 2,613.38 159.11 35.46
Peristera50K029 15 20 1 1 1 50 2,440.88 402.93 34.70
Peristera50K03 17 5 7 1 1 70 2,101.34 376.29 29.23
Peristera50K030 15 20 4 1 1 50 2,051.11 368.49 29.07
Peristera50K032 15 10 5 1 1 50 1,526.11 369.67 33.04
Peristera50K033 15 15 5 1 1 50 1,825.40 429.52 35.04
Peristera50K034 22 10 3 1 1 50 1,707.33 389.65 32.43
Peristera50K035 10 10 2 1 1 50 1,934.55 391.05 29.22
Peristera50K036 30 30 3 1 1 50 2,279.82 200.14 27.69
Peristera50K038 20 15 2 1 1 50 2,416.00 395.32 40.12
Peristera50K039 15 10 5 1 1 50 2,012.49 396.14 28.91
Peristera50K04 10 10 5 1 1 60 1,871.40 355.35 26.74
Peristera50K040 14 10 6 1 1 50 1,869.96 355.84 33.35
Peristera50K041 20 15 6 1 1 50 2,762.20 368.69 29.60
Peristera50K042 10 10 3 1 1 50 1,931.51 358.94 50.54
Peristera50K043 17 15 7 1 1 50 1,776.23 427.05 36.21
Peristera50K044 20 10 5 1 1 50 2,238.23 373.17 32.30
Peristera50K045 15 10 5 1 1 50 2,212.17 409.48 30.61
Peristera50K046 10 10 2 1 1 50 1,861.04 353.62 41.35
Peristera50K047 15 10 5 1 1 50 1,927.98 383.44 26.33
Peristera50K048 20 10 4 1 1 50 1,945.59 378.09 30.97
Peristera50K049 20 15 4 1 1 50 1,849.31 391.19 29.07
Peristera50K05 15 10 4 1 1 80 2,558.89 434.36 37.94
Peristera50K052 10 5 5 1 1 50 2,025.05 109.46 18.10
Peristera50K054 30 8 8 1 1 30 1,847.03 335.41 33.54

continues on the next page
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Raw file
Cluster
range

Angle
toler-
ance

Num. of
samples

Num. of
users

Minimum
linkage

Bounding
box

Length
Hausdorff
Distance

Modified
Hausdorff
Distance

Peristera50K07 27 20 5 1 1 30 1,600.98 421.88 41.15
Table A.1: The data of Peristera stimulus
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APPENDIXB

Thapa stimulus data

Raw file Group
Cluster
range

Angle
toler-
ance

Num. of
samples

Num. of
users

Minimum
linkage

Bounding
box

Length
Hausdorff
Distance

Modified
Hausdorff
Distance

Thapa01 2 20 20 3 1 1 50 1,569.30 126.6795 45.3346
Thapa010 1 20 20 3 1 1 50 1,325.05 221.5554 52.5078
Thapa011 1 35 15 5 1 1 100 1,844.81 157.3236 52.4924
Thapa012 1 28 15 5 1 1 80 1,208.66 194.5716 52.7633
Thapa015 1 40 15 3 1 1 50 2,424.26 307.6057 45.8666
Thapa017 2 30 20 5 1 1 50 1,480.72 140.0413 38.0124
Thapa018 1 20 15 4 1 1 50 1,248.80 141.3833 49.2364
Thapa019 2 25 20 5 1 1 20 2,068.51 95.7864 38.4021
Thapa02 2 30 15 3 1 1 50 1,862.98 83.1184 37.5432
Thapa021 2 25 15 5 1 1 50 1,963.16 94.9938 35.5297
Thapa022 2 20 15 5 1 1 50 1,459.63 119.6408 36.8787
Thapa024 2 20 15 4 1 1 50 1,846.49 85.8959 34.3455

continues on the next page
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Raw file Group
Cluster
range

Angle
toler-
ance

Num. of
samples

Num. of
users

Minimum
linkage

Bounding
box

Length
Hausdorff
Distance

Modified
Hausdorff
Distance

Thapa025 2 20 15 4 1 1 50 1,657.25 131.3555 46.1202
Thapa027 1 15 10 5 1 1 50 1,687.97 238.182 58.8283
Thapa029 1 20 10 1 1 1 30 1,939.52 163.9836 53.7433
Thapa03 1 20 10 2 1 1 30 1,988.26 179.6805 40.4697
Thapa030 2 30 40 4 1 1 50 1,586.66 117.3248 68.7824
Thapa032 2 40 30 4 1 1 50 1,456.26 84.38 14.9827
Thapa033 2 30 20 5 1 1 50 1,656.61 96.6059 34.9138
Thapa034 2 20 20 4 1 1 50 1,520.70 120.1628 46.8895
Thapa035 2 20 15 4 1 1 50 1,818.77 71.0811 34.1994
Thapa036 2 25 15 3 1 1 50 2,092.01 79.0998 33.2847
Thapa038 2 20 15 3 1 1 50 1,992.51 77.2737 31.6131
Thapa039 2 20 15 4 1 1 50 1,597.10 109.8914 36.8604
Thapa04 1 15 30 2 1 1 50 2,219.84 259.906 45.5792
Thapa040 1 10 20 4 1 1 30 1,189.35 214.4671 78.0874
Thapa042 1 20 30 4 1 1 70 1,902.62 201.9069 52.9746
Thapa043 2 20 20 4 1 1 50 1,784.23 137.7386 34.5301
Thapa044 2 20 20 4 1 1 50 1,481.83 131.5853 50.4244
Thapa045 2 30 20 4 1 1 50 1,244.53 79.5988 34.6919
Thapa046 1 20 20 4 1 1 50 1,442.55 220.4169 56.5583
Thapa047 1 20 40 3 1 1 50 2,288.80 389.7367 40.6293
Thapa048 2 20 30 2 1 1 50 1,682.90 95.2711 33.0134
Thapa049 2 45 30 6 1 1 50 1,341.65 91.185 42.01
Thapa05 2 20 10 5 1 1 50 1,588.30 101.7074 45.1123
Thapa052 1 15 10 5 1 1 50 1,436.66 242.5805 47.6775
Thapa054 2 20 15 4 1 1 50 1,835.19 99.8973 38.9004
Thapa07 2 20 15 4 1 1 50 1,603.67 76.717 35.4925

Table B.1: The data of Thapa stimulus
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Abstract. Several visualization methods for eye tracking data exist to help researchers from many 

disciplines depict data collected in eye tracking experiments. Expanding previous work on visualizing 

eye tracking data from observations of cartographic lines, in this paper we introduce APLs, as a new 

visualization and analysis tool of eye tracking data using polylines inferred from the analysis of 

samples. An APL corresponds to the “average” line that is actually seen by subjects, which can be 

useful in the study of various optical representation concepts, such as the assessment of the effects of 

alternative cartographic line attributes, distractions, abstraction levels and more. Furthermore, APLs 

enable the quantitative analysis of the individuals' behavior compared to the average behavior of 

members of the same group in an eye-tracking experiment, using established similarity measures such 

as the Hausdorff distance or other metrics. This approach can enable many new applications in 

education, behavioral and intention analysis, psychology, and elsewhere. 

1 Introduction 

The recording and the analysis of eye movements constitute an effective method for the 

exploration of several aspects related to visual behavior. Eye tracking provides objective and 

quantitative evidences towards the examination of visual attention (Duchowski, 2002) and has 

become very popular in a wide range of scientific disciplines (see also Duchowski, 2002; 

Richardson, 2004). Eye movement analysis techniques are based on the computation of 

fundamental and derived metrics produced by the recorded eye tracking protocols (Goldberg 

& Kotval, 1998; Jacob & Karn, 2003; Poole & Ball, 2005; Ehmke & Wilson, 2007; 

Krassanakis, Filippakopoulou, & Nakos, 2014) while the visualization of eye tracking data 

allows the analysis through a qualitative approach (Blascheck, Kurzhals, Raschke, Burch, 

Weiskopf, & Ertl, 2014).  
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 Visualization techniques may be summarized into two main categories including 

visualizations referred to each individual subject or all subjects which participate in an 

experimental process. Obviously, the selection of the suitable methods depends on the 

research question of each study. In any case, a first approach includes the visualization of 

human gazes as simple trajectories produced by the recorded gaze points (Špakov & Miniotas, 

2007). In the most of the cases this technique is considered to be insufficient taking into 

account the amount of the collected data.  Hence, the implementation of clustering techniques 

towards the identification of fixation and saccade events (see also Salvucci & Goldberg, 2000; 

Duchowski, 2007; Holmqvist, Nyström, Andersson, Dewhurst, Jarodzka, & Van de Weijer, 

2011) contributes to a more effective way for the production of eye tracking visualizations. 

Scan path visualization is a common technique where fixation events are presented as circles, 

which radical values are connected with their absolute or relative durations, while saccades 

are depicted as the line segments between fixations. Additionally, the third dimension may 

also be used in order to solve the problem of data overlapping (Räihä,  Aula,  Majaranta, 

Rantala, & Koivunen, 2005).  

One of the most popular techniques to visualize eye tracking data, referred to the gaze 

behavior of either individuals or all subjects of an experiment, is heatmap visualization. 

Heatmaps are two-dimensional representations where the values of a variable are presented 

using colors (Bojko, 2009) or different intensities of a color hue. In eye tracking, heatmap 

visualization may be produced using as variables the duration, the relative duration and the 

number of fixations or the participant percentage who fixated on the areas of the stimulus 

(Bojko, 2009). Additionally, a recent study (Krassanakis et al., 2014) proposes the generation 

of heatmap based on the density of gaze data recordings. Furthermore, dotplots are also two-

dimensional graphical techniques, which are used for the visualization of sequences produced 

by modeled scan paths (Goldberg & Helfman, 2009). Extending the typical representations in 

two dimensions, Li, Çöltiken, & Kraak (2010) suggest also the exploration of eye tracking 

data using the dynamic environment of a Space-Time-Cube (STC).  

As mentioned above, the majority of the aforementioned visualization techniques may be 

applied to depict eye-tracking data produced by one subject or to model the total visual 

behavior of all subjects of an experiment. In many studies, the visualization of an average 

gaze behavior is also considered very important as it may reveals a representative image of 

subjects' visual reaction. Specifically, this approach is very critical in cases that the 
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reconstruction of the gaze route history is meaningful for the examination of a research 

question. For instance, Bargiota, Mitropoulos, Krassanakis, and Nakos (2013) performed an 

experimental study in order to examine subjects' eye movements during the observation of 

cartographic lines. In this study, the reconstruction of gaze route history allows the 

comparison of the eye measurements with the distribution of cartographic lines' critical points, 

which are used for the performance of cartographic generalization methods. 

In this paper, we present further development on earlier work on the depiction of the gaze 

route history using polylines (Karagiorgou et al, 2014). We present a workflow supported by 

a toolkit for the extraction and analysis of what is now called an APL - average polyline from 

eye-tracking data. The description of the APL extraction algorithm is done in section 2. 

Section 3 discusses the workflow for the extraction, similarity assessment and analysis of 

APLs from eye tracking data, along with a Matlab toolkit that has been developed to support 

the process. Application of this workflow in two case studies and demonstration of the 

similarity metrics and analysis is discussed in Section 4. Finally Section 5 concludes by 

discussing on current status and ideas for further applications of the introduced approach for 

visualization and analysis of eye tracking data in other domains.    

 

2 Inference of APLs ‐ average polylines 

In earlier work (Karagiorgou, Krassanakis, Vescoukis, & Nakos 2014), we have experimented 

with a first version of an algorithm to derive APLs from eye tracking data. That particular 

algorithm had been originally developed in a different research context where the objective 

was the extraction of road networks from sparse tracking data. Building on that experience, 

we have applied the algorithm to two larger data sets from eye tracking experiments and did 

some fine tuning, especially regarding the parameters, as the algorithm was initially intended 

to receive parameter values that map to the physical space instead of the computer screen 

space. 

The algorithm involves three steps;  

(i) identifying hubs,  

(ii) connecting hubs, and  
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(iii)  reducing the links to generate the APL,  

These steps will be discussed in more detail in the sequel. 

 

Step 1: Hubs and spatial fixation. A hub represents the spatial fixation that the eye creates 

near an area of interest. Indicators for hub recognition are the number of tracking samples, the 

number of different users and the coverage of an extended area of focus. The algorithm takes 

as input the eye tracking data and determines the k-Nearest Neighbors (k-NN) of each sample, 

which are subsequently filtered according to the number of users. On these filtered samples, 

we apply the DBSCAN clustering algorithm using a distance threshold and a minimum 

number of samples, depending on the specifics of the experiment. The centroids of the 

resulting clusters are what we call hubs. Hubs are very similar to fixations. Hence, they can 

also be calculated using already established fixation identification algorithms, such as 

dispersion-based (I-DT) ones (see also Salvucci & Goldberg, 2000). 

Step 2: Connecting hubs. Next, we connect hubs by links. A fringe benefit of the hubs 

computation based on spatial fixation is that for all data we know which samples helped in 

identifying hubs. To derive links we exploit this knowledge: for each hub we record the 

outgoing and/or incoming tracking portions connecting this hub to others by scanning all eye 

tracking data to discover sequences of hubs. The result of this step is the creation of a sample 

polyline set that connects hubs with links, which contains many links that need to be further 

simplified in the sequel. In our representation of eye tracking data, all tracking samples that 

are also hubs are marked as such. Hence, performing a linear scan of all tracking data reveals 

the respective tracking portions that connect hubs. 

Essentially, two hubs in question will typically be connected by a number of eye tracks, i.e., 

tracks from more than one subjects from one hub to the other. In terms of network geometry, 

at this stage of the overall link inference process, we introduce redundant links between hubs 

as we simply identify how eye tracks connect hubs. Merging these links will be the next step. 

We refer to track portions connecting hubs at this stage as link samples. This process is shown 

in Figure 1. 



5 

 

Phase 2: Connecting Hubs 

Input: Set of eye-tracks T and hubs H  

Output: A set of link samples LS 

begin 

 // Connecting hubs using track data 

 HS ← ∅ // Hub sequence 

 LS ← ∅ // Link samples 

 // Identify hub sequences from tracks  

 foreach t ∈ T do 

  foreach p ∈ t do 

   // position sample is mapped to a hub  

   if p ∈ H then 

    // record prev., current hub  

    HS ← {h−, h, p−, p, t} 

   end 

  end 

 end 

 // Collect and merge link samples  

 foreach {h−, h} ∈ HS do 

  // add all track portions for this hub pair  

  foreach t ∈ HS do 

   LS ← {t, p−, . . . , p} 

  end 

  // cluster link samples 

  Width ← Width(LS) 

  Weight ← Weight(LS) 

  LS ← SweepMerge(LS) 

 end 

end 

Figure 1. Algorithm for initial extraction of links from hubs 

 

Step 3: Compacting links. To this point, we have hubs connected by links derived from eye 

tracking data that exhibit spatial fixation at these hubs. In a nutshell, the algorithm identifies 

tracking portions that are close to existing links by means of a buffer region and merges their 

geometry into the existing link geometry. The size of the buffer region depends on the 

specifics of the data; in our case we used 15 pixels as buffer region, however this may vary 

depending on the specifics of the experiment. In this step, we neither introduce new hubs nor 

do we add new links. We only adjust the geometry of existing links using a three-step 

algorithm: (i) sort existing link samples, (ii) determine relevant tracking portions using a 

buffer region around link samples, and (iii) adjust the geometry of links based on the tracking 

data geometry.  
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The first step is to sort all links according to their length so as to process longer links first as 

they are more significant for link construction. I.e., the longer a link, the more selective will 

be the match for a longer trajectory portion to fit in a bounding box. In trying to identify 

portions of link samples that match other link samples expressed by spatial proximity and 

direction similarity, the algorithm uses a bounding box around the examined link sample and 

retrieves all intersecting portions of other links. The size of the bounding box is determined 

by the width of the respective link sample. In addition to containment in a bounding box, a 

threshold is used to assess direction similarity. In our experimentation, an adequate measure 

for direction similarity is equals to 45◦. Figure 2 shows in black the bounding box of an 

examined link. The examined link is shown in grey and respective portions of other candidate 

links are shown in light grey. The algorithm for compacting links is shown in Figure 3.  

 

Figure 2. Compacting links 

 

As a pre-cursor to merging link samples, we record for each examined link its similar links 

and the portions that exhibit similarity. The latter is important in order to manage partially 

similar link samples. As the similar link samples can be located at the beginning, the end, or 

the middle, the remaining portions are preserved by splitting the respective links. The method 

is applied to every portion of the examined link that exhibits partial similarity to other links. 

New links are created by interpolating link samples and introducing intersection nodes. In 

addition, new links preserve a weight that is the sum of the weights of the merged links. Link 

samples are updated several times during this stage. While the examined links are 

reconstructed, new link samples are created and the existing are removed, i.e., additions, 

deletions and updates to the connectivity of the APL. 
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Phase 3: APL extraction 

Input: A set of link samples LS 

Output: A set of links L 

begin 

 LS ← sort(LS, length) // Sorting link samples by length 

 CLS ← ∅ // Candidate link samples 

 Width // width of link samples  

 Angle // direction threshold  

 foreach l ∈ LS do 

  CLS ← Find(bbox(l, Width(l), Angle)) 

  foreach cl ∈ CLS do 

   if Contains(l, cl) then 

    L ← SweepMerge(l, cl) 

   end 

   else 

    // partial overlap 

    clin, clout ← Split(l, cl) 

    CLS.add(clout) 

    L ← SweepMerge(l, clin) 

   end 

  end 

 end  

end 

Figure 3. Algorithm for compacting links to form the final APL 

 

3 Analysis of samples/APL 

3.1 Concepts and workflow 

The algorithms discussed so far are used to extract a set of hubs and connecting links from 

eye tracking data from many subjects who have been asked to follow a linear entity such as a 

route in a road map or a cartographic line. We call this final set of links the "Average 

Polyline" (APL). APLs represent the line that the subjects have followed "on average". 

Depending on the purpose of the experiment, an APL can be used to help researchers 

understand how visualizations, distractions or even subjects' characteristics affect what has 

been seen in such an experiment.  

To do this, after the initial APL has been extracted, we need to further process the whole set 

of eye tracking data to analyze the behavior of each individual and compare it to the "average 

behavior" of the whole sample. Assuming that the experiments have been designed with this 
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in mind, two types of questions may be answered by this approach: 

− Visualization attributes: How does a different visualization affect the "average" behavior 

of the same population? 

− Individuals' behavior: How do groups of individual subjects with similar selected 

characteristics deviate from the "average" behavior in the same experiment? 

There are several potential applications of each of the above type of questions. In the former 

case, APLs provide a new means for visualizing eye-tracking data, which can be used along 

heatmaps and other methods to extract useful conclusions, depending on the specifics of the 

experiment. The latter type of questions is more challenging: by being able to compare the 

behavior of each individual to the average behavior of the population participating in an 

experiment, we can perform quantitative statistical analysis on groups of subjects with 

common attributes. This has several potential applications in cognitive science, 

ophthalmology, education, psychology and elsewhere, which remain to be explored as will be 

further discussed in Section 5. 

The workflow to process a set of eye tracking data to perform the analysis discussed above is 

shown in Figure 4. 

APL analysis workflow 

Input: Set of eye-tracking data for a given experiment E 

Output: APL, table T containing set of individuals' PL (PLi), deviation metrics (Di) 

begin   

 adjust the APL extraction algorithm parameters 

 calculate the APL for E using the APL extraction algorithm 

 foreach Si in E 

  calculate PLi by applying the APL extraction algorithm on data in Si 

  calculate deviation metrics Di between PLi and APL  

  add PLi, Di to table T 

 end 

 perform statistical analysis on table T 

.end 

Figure 4. A workflow for creating and analyzing APLs 

 

In the sequel we present a Matlab toolkit that has been developed to support the workflow 

presented in Figure 4.  
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3.2 The APL Toolkit 

The purpose of the toolkit is to support the researchers in productively analyzing gaze data 

and producing the output of the suggested workflow (APL and T) needed to further analyze 

how specific subject attributes affect the gaze of the subject. In Figure 5 the structure of table 

T is shown. That can be achieved by filtering the results according to a specific attribute and 

comparing it afterwards with another attribute or with the hole subject population. The 

significance of each attribute is shown in histograms. From the differences in the histograms, 

someone will be able to extract the significance of the attribute in the gaze of the subject. 

Structure of table T (columns) 

 Experiment ID 

 Subject ID (i) 

 Subject classification Ci 

 PLi calculation parameters 

 PLi length 

 Absolute Dik 

 Normalized Dik 

Figure 5. Structure of table T to be used in analyzing APLs and individuals' behavior 

 

In the above (i) denotes the subject ID and k denotes the deviation metric, assuming that more 

than one deviation metrics will be calculated. In the case study to be discussed in the sequel, 

we have used two such metrics, namely the Hausdorff distance H and the relative to the APL 

length of the subjet's PLi. 

Through the GUI the user is able to select the files that contain the raw data of the experiment 

and calculate the fixations (based on Krassanakis et al. (2014) fixation detection algorithm), 

the hubs and the APL. By using the toolkit interface the user is able to calculate the APL for 

the population he chooses and visualize the results; if the all the raw samples from the 

experiment are selected, then the APL that will be used as reference in the next steps, will be 

extracted; if one single or any subset of samples is selected, then the PLi or the APL for that 

specific subset will be extracted, respectively. A screenshot of the APL toolkit is shown in 

Figure 6. 
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Figure 6. The APL analysis toolkit 

 

By combining the results and using a suitable metric, such as the Hausdorff distance as will 

be discussed below, the user is able to calculate the differences between the two polylines and 

extract the histogram of the differences between each PLi and the APL to perform further 

analyses. 

 

3.3 Similarity analysis 

Object similarity (referred also as object matching or object dissimilarity or shape matching) 

is the decision on the similarity between two objects. In general, a set of objects �,� is given 

an the resemblance to each other is quantitatively expresses as a distance between the two 

objects (Scharf, 2003 and Veltkamp, 2001). The problem of object similarity arises in a 

variety of applications, including computer graphics, cartography and pattern recognition. 

Object similarity relies on metrics that describe the degree of difference between the two 

objects. A shape similarity measure on a collection of shapes �is a nonnegative value 

�: ��� → ℜ defined on pairs of patterns indicating the degree of resemblance of these patters  

(Hagedoorn, 2000, Scharf, 2003 and Shapiro  et all, 2004). According to Veltkamp (2013) 

some of the desirable properties that a similarity measure should have are a) metric properties 

(i.e. non negativity, the identity property and a strong triangle inequality) b) continuity 

properties and c) invariance. 

In this work we are interested only in the first property since we are comparing sets of points 
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that constitute polylines. For this reason the Hausdorff distance that is widely used as metric 

in similar cases (Sofia Karagiorgou PhD), has been selected. The Hausdorff distance is the 

most studied similarity measure in computational geometry ( Scharf, 2003 and Alt et al, 1999).  

It is defined for an arbitrary non-empty and closed set � and � in equation (1). 

�! �,� = ��� ��� 
!∈!

���
!∈!

� �,� , ��� 
!∈!

���
!∈!

� �,�   (1) 

where � �,� , �,� ∈ ℜ! denotes the Euclidean distance between x and y. The closer to zero, 

the more the shapes resemble to each other. In this work we use the Euclidean distance but 

other norms can also be considered in the future, depending on the nature of the experiment, 

the research question, or the application.  

The main disadvantage of the Hausdorff distance is that it is sensitive to noise (Scharf,2003 

and Veltkamp, 2013). According to (Dubuisson et all, 1994) “the distance values are large 

even in the presence of small amount of noise and this is due to the fact the Hausdorff 

distance value is set by the maximum distance among the two points sets”. To solve this 

problem, Dubuisson et all (1994) proposed a non-metric modified version of the Hausdorff 

distance, which satisfies positivity and symmetry, but does not satisfy the triangle inequality. 

The same work determined that among the class of distance measures based on Hausdorff 

distance, the modified version is best for matching a set of objects based on their edge points 

and it has two desirable properties: a) its value increases monotonically as the amount of 

differences between the two sets increases, and b) it is robust to outliers points. 

Our experimentation so far has shown that although the absolute values of the Hausdorff and 

the modified Hausdorff distances are very different, the distribution of the deviations is not 

affected. Moreover, what is considered as noise by by Dubuisson et all (1994) may not 

actually be noise in the case of eye-tracking samples, as it may represent unwanted behavior 

caused by visual distractions or other anomalies, depending on the experiment. A further 

discussion on this will follow in section 5. 

4 Case studies 

Eye tracking datasets used for the testing of the proposed approach have been collected in one 

previous experimental study (Bargiota et al., 2013) where eye tracking data were collected 

during the observation of two cartographic lines. In the sequel, these experiments will be 



12 

 

referred to as "Peristera"and "Thapa" (first and the second line correspondingly). Subjects’ 

eye movements were recorded with a sampling frequency of 60Hz. Totally 40 subjects 

participated in the experimental process in both cases. The experimental conditions are fully 

described by Bargiota et al. (2013) while more information about the eye tracking equipment 

can be reached through a previous study (Krassanakis, Filippakopoulou, & Nakos, 2011). 

Peristera consists a real cartographic line that depicts the coastline of Peristera’s Island at 

scale 1:50.000 approx. (Nakos & Mitropoulos, 2005), while Thapa is a geometrical model 

consisted of representative line shape samples introduced by Thapa (1988).  

The visualization of the aforementioned datasets using heatmaps and APLs are shown in 

Figure 7.  

 

Figure 7. Visualizations of eye tracking data from Peristera (top) and Thapa (bottom) using 

heatmaps (left) and inferred APLs (right). 

 

In the sequel, we executed the workflow discussed in section 3.1 and came up with one table 

T for each experiment, Tp and Tt, for Peristera and Thapa, respectively. Data in Tp and Tt 

was used in statistical analysis to demonstrate how research questions of the two types 

mentioned in Section 3.1 can be answered. As discussed, two metrics have been used: the 

Hausdorff distance and the relative length calculated as the ratio of the length of PLi of each 

sample, divided by the length of the APL for each experiment. 

Type 1 questions: visualizations and line complexity. In Figure 8 the normalized 

distribution of RHi, calculated as the Hausdorff distance of each sample PLi from the APL, 

divided by the length of the APL, is shown. Although the two experiments have not been 
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executed with this kind of analysis in mind, it is clear that the statistical distribution of the 

deviations of individuals' observations in the simpler cartographic line of Thapa is 

considerably better than the corresponding distribution of Peristera. 

 

 

Figure 8. Normalized distribution of Hausdorff distance across experiments 

 

 

Type 2 questions: behavior of different groups. To study how attributes of different groups 

can be related to results extracted by the approach introduced in this work, we studied the 

distribution of two metrics applied to the Thapa experiment data: RHi based on the Hausdorff 

distance as discussed above, as well as Ri calculated as the ratio of the length of each PLi 

divided by the length of the APL.  

The normalized distribution of RHi was calculated for two groups of subjects participating in 

the Thapa experiment, as shown in Figure 9. Group 1 consists of 14 people aged over 45 

where the 24 members of group 2 are aged below 40. All the subjects declared that their 

vision is accurate without the need for glasses or contact lenses. The corresponding 

distributions shown in Figure 9, indicate that the deviations of individuals' observations in 

group 1 is noticeably higher than the corresponding deviations of group 2. Of course, whether 

this is any indication of any kind of not diagnosed refractive errors is out of the scope of this 

work. 
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Figure 9. Normalized Hausdorff distance distribution across groups for the "Thapa" 

experiment 

 

Finally, the normalized distribution of Ri for the aforementioned groups is shown in Figure 10. 

Although further experimentation is needed to jump to definite conclusions, it is also evident 

that the behavior of the two groups is noticeably different. 

 

Figure 10. Normalized distribution of Li/Lref across groups for the "Thapa" experiment. 
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5 Conclusion and discussion 

The huge amount of gaze data collected in eye tracking studies requires their analysis and 

visualization in order to answer the research questions posed in every case. The majority of 

the well-established eye tracking visualization techniques, such as heatmaps, are mainly used 

for qualitative evaluations. In this paper we introduce a new visualization method for the 

representation of the average gaze behavior during the observation of stimuli in which linear 

entities such as lines, routes, paths etc. exist, and the research question requires the 

quantitative study of their observation, including the study of the behavior of each individual. 

The approach of the introduced method is based on the generation of a reference average line 

that we refer as APL. Currently the APL is a flat polyline, but in the future it can be further 

improved by adding color attributes to the line segments of this polyline, using calculations 

such as data density of eye tracking samples near the line, or other metrics.  

Except from the main advantage that allows the depiction of the average gaze behavior of a 

population, this approach enables us to compare the visual reaction of individual subjects in a 

group through analytical techniques used in similarity analysis. Hence, the proposed method 

gives an alternative point of view that extends the capability of eye tracking visualizations 

allowing group comparison reported by specific metrics such these used in the present study.  

This idea may be applied in domains where eye tracking is already used, to enhance the 

analysis of eye tracking data. Both a visualization and a framework for quantitative analysis, 

the APL approach can be useful in cases where the context of eye tracking has reference to 

lines, paths, etc. that subjects are required or expected to follow. One such case is cartography 

where borders, navigation routes and all kinds of curves, are used to represent useful 

information on a map and the research question is about the effects of different visualization 

attributes of cartographic lines in the concentration of the eye’s attention to a "main" linear 

entity. 

Several other applications of the possibility of quantitative analysis that are very challenging 

also come into mind. These include education, behavioral and intention analysis, psychology 

and ophthalmology, to mention a few. For example, analyzing how a drawing is observed by 

members of groups with specific attributes, may lead to new methods for early diagnosis of 

situations in psychology or ophthalmology.  

Another promising application area might be medical education, where the behavior of 
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medical students in the observation of images where a linear geometry is dominant, such as a 

e.g. cardiogram, might be an indication of how they perceive attributes of the cardiogram that 

lead to a diagnosis; also, deviations from the average or the expert's behavior might be 

indications that, combined with other data, might be useful in the evaluation (grading) of 

medical students asked to observe a cardiogram. Needless to say, all of the above possible 

areas for applying the APL visualization and analytics approach introduced in this paper, need 

to be individually addressed and specific experiments need to be designed for each case with 

APL visualization and analysis in mind. 
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