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Chapter 1 

 

            Introduction 
 

  Investigating causal relationships between a set of variables is one of the most 

important tasks in economics and finance because it helps to explain past data and 

experience and to provide reliable predictions of future outcomes. It is now well 

documented in the literature of economics that the presence of high correlation 

between economic time series cannot securely establish a causal relationship, since 

correlation is a measure of linear association only. If we consider a „universe‟ entirely 

linear, then high correlation can be equated to causality. However, a correlation 

coefficient gives no indication about which variable is causing which. Wiener (1956) 

and Granger (1969) presented a fundamental probabilistic concept to analyze the 

dynamic relationships between economic data based on the direction of the time flow. 

The notion of Granger causality is defined in terms of predictability: the cause should 

precede the effect; and as a consequence, the cause should enable us to predict the 

effect.   

According to Granger (1969, 1980, 1988), we say that the random variable tx  

does not Granger cause the random variable ty  with respect to E if 

 

     gEgfEgf
tt yy ,1      

 

where  0;1   dyE dt  and  0;,   dxyE dtdt  are the information 

sets generated by the past realizations of tx  and ty  up to time t-1 and  Df
ty .  is the 

conditional distribution of ty given the information set D. Hence, the definition of 

non-causality implies that the past information of tx  does not have an impact on the 

conditional distribution of ty . When the equality does not hold, the variable tx  is said 

to Granger cause the random variable ty  with respect to E 
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     gEgfEgf
tt yy ,1  

 

  

1. The concept of Granger non-causality-in-mean 

The above definition of non-causality, originally presented in Granger (1980), 

is too general to be applicable in practice. Granger introduces a weaker form of non-

causality, namely Granger non-causality in mean, and it refers to the conditional mean 

of the random variables rather than their entire conditional distributions. We say the 

random variable tx  does not Granger cause the random variable ty  in mean with 

respect to E if 

 

   ,1EyEEyE tt   

 

where  DyE t  is the conditional  mean of ty given the information set D. If 

the equality does not hold, the variable tx  is said to Granger cause the random 

variable ty  in mean with respect to E, 

 

   .1EyEEyE tt   

 

Hence, Granger causality in mean from tx  to ty means that the past 

information of tx  is useful to help predict ty  at time t. This concept implies that the 

information embedded in the past values of tx  improves the 1 horizon ahead 

predictions of ty because it yields better variances of the forecast error. Feedback or 
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bi-directional Granger causality –in-mean between tx  and ty occurs when tx Granger 

causes ty  and ty  Granger causes tx . Granger, as well as Pierce and Haugh (1977), 

also define instantaneous causality as contemporaneous correlation between the 

random variables. Evidence of non- causality-in-mean does not necessarily imply 

general non-causality, but rejection of the non- causality-in-mean hypothesis is 

sufficient to imply the presence of some general causality between the time series. 

 Tests for Granger noncausality-in-mean are straightforward for stationary 

time series. A test method involves estimating an autoregressive model for the 

variable enhanced with lagged terms of the other variable, calculating and retaining 

the sum of squared residuals from the regression, and comparing it to the sum of 

squared residuals obtained from fitting a univariate autoregressive specification for 

the other variable. The comparison can be performed by using an asymptotic chi 

square test. Haugh (1976) derives conditions for Granger non-causality-in-mean in 

terms of the cross-correlation function (CCF). In particular, the author shows that 

testing for independence between two covariance stationary time series via the cross-

correlation function is equivalent to testing for Granger noncausality-in-mean. He 

proposes an asymptotic chi square test based on the sample cross-correlations at 

different lag orders of two separate innovation series obtained from fitting 

autoregressive moving average (ARMA) models to stationary time series. The Monte 

Carlo simulation results of Geweke, Meese and Dent (1983) show that the finite 

sample performance of these test procedures depends mainly on the selection of the 

lag truncation. Other Granger causality-in-mean tests are surveyed in Pierce and 

Haugh (1977) and Geweke, Meese and Dent (1983).  

The widespread use of the Granger non-causality concept demonstrates why it 

is considered one of the major notions in the analysis of economic time series. The 

listing of applications of the concept includes various fields, such as finance, 

economics, marketing, physics and neuro-science among others.  
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2. The notion of Granger multistep  non-causality  

 

Granger‟ s original probabilistic concept is determined in terms of  

predictability one period ahead. Sims (1972, 1980, 1982) is the first author who 

addressed the issue of Granger causality  h periods ahead in terms of a multivariate 

VAR model. Sims presents a similar causality concept with Granger. The 

identification of a causal relation does not require the specification of a econometric 

model. This is particularly appealing because it allows the development of empirical 

model strategies based on vector autoregressive models. Then, he presents general 

conditions for noncausality at any time period ahead in the bivariate case. In 

particular, in a bivariate process he establishes that a necessary condition for Granger 

non-causality from tx  to ty  requires that the corresponding coefficients of the 

innovations of tx  in the moving average representation of ty  are zero (Sims 1972, 

Theorems 1 and 2, or Pierce and Haugh 1972, Theorem 4.2).  Therefore, the estimated 

impulse response coefficients of a moving average model provide a natural 

framework to test Granger non-causality at various time horizons. According to Sims, 

nonzero h-period ahead impulse responses coefficients derived from a VAR model, 

are interpreted as evidence of the presence of causality h time horizons ahead in the 

sense of Granger.  

Moreover, the author proposes a measure of linear dependence between the 

multivariate time series. Sims measures Granger causal priority from tx  to ty  as the 

variance proportion of the h-period ahead forecast error of ty  attributed to the 

innovations of tx  (1982, pp. 131 – 132).  Applications of Sims „s causality concept 

based on h-step ahead impulse responses and variance decompositions can be found 

in McMillin (1988), Faroque and Veloce (1990), Kyereme (1991), Stam et al (1991) 

and Tegene (1991).  

Dufour and Tessier (1993) extend Sims‟s linear moving average 

characterization of Granger non-causality between two random variables in the 

multivariate case. They show that Sims „s conditions to achieve Granger non-causality 

between two random variables in terms of a moving average representation are not 

necessary and sufficient when a vector of auxiliary variables is also considered. Using 
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a numerical illustration with a trivariate AR model, the authors show that evaluating 

whether the innovations of one variable has an effect on the other variable by means 

of impulse responses or the variance proportions of the forecast errors, is not 

equivalent to testing whether one variable has predictive ability for another (i.e., non-

causality in the Granger sense). 

Based on Sims‟s notion of causal priority, Geweke (1982, 1984 a, b) proposes 

measures, which enable the researcher to quantify the degree of dependence between 

two vectors of variables one period ahead.  Thus, beyond testing for the presence of 

Granger causality between the variables, Geweke introduces criterions, which 

evaluate the intensity of a causal relation in terms of forecasting performance. The 

proposed measure equates to the sum of the mean square measure of unidirectional 

causality from tx  to ty , the measure of unidirectional causality from ty  to tx , and a 

measure of instantaneous causality. To estimate the relevant quantities, simple OLS 

linear regressions are used, the measures are calculated based on the estimated 

variances of the forecast errors, while inference is conducted by implementing 

asymptotic chi-square test criterions.    

Lütkepohl (1994) extends Granger „s concept of one-step non-causality to 

multi-step non-causality in the multivariate case. Similarly to Granger, he considers 

all time series to be covariance stationary, and takes expected squared forecast error 

as a criterion for predictive accuracy. A random variable tx  is said to cause the 

random variable ty  h – steps ahead, where h denotes the forecast horizon, when the 

past information of tx   helps predict ty  up to any time point in period h. Thus, the 

past information of tx  may not be useful to improve predictions of ty  at time t, but it 

may be used to yield better forecasts of ty  at subsequent time periods. 

 

3. Granger noncausality-in-mean for multivariate time series 

 

     Hsiao (1982) presents a generalization of Granger causal relationships 

among the random variables in a trivariate VAR process by introducing the notions of 
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spurious and indirect causality.  Hsiao defines two types of spurious causality, namely 

Type I and II respectively. According to Hsiao, there is Type I spurious Granger 

causality from tz  to ty ,  if 

   121, EyVEEyV tt     

and 

   2EUyVUyV tt   

 

where  0;1   dyE dt ,  0;2   dzE dt  and 

 0;,,   dzxyU dtdtdt  are the information sets generated by the past 

realizations of tz ,  ty  and  ttt zyx ,, up to time t-1,respectively, while  DyV t  is the 

mean square error of the minimum mean square linear prediction error of ty  given 

information set D. The set 2EU   denotes all the information in U apart the 

information in 2E . Type I spurious causality tell us that Granger causality occurs 

from tz  to ty  with respect to information set 3EU      2.,. EUyVUyVei tt  ; 

however, this is a spurious result when the reference information set is reduced to 

 21, EE      121,.,. EyVEEyVei tt  . This type of spurious causality refers to 

situations where tz  appears to cause ty , because it helps to reduce the noise between 

the interaction of the variables tx  and ty , through the association of ty  with tx .   

Moreover, we say that there is indirect Granger causality from tz  to ty ,  if  

 

       3232 EEUyVEUyVEUyVUyV tttt   

   2EUxVUxV tt   

and 

   332 , ExVEExV tt   
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where  0;3   dxE dt  is the information set generated by the past 

realizations of tx up to time t – 1.  Indirect causality implies that although the random 

variable tz does not Granger cause ty     2.,. EUyVUyVei tt  , it may still predict 

ty through their relation with the random variable tx . If tz Granger causes tx  and tx  

Granger causes ty , then there is an indirect effect from tz  to ty . 

Hsiao argues that exclusion of variables, which contain valuable information 

for analyzing the causal structure of a multivariate time series, may lead to misleading 

characterization of the causality relations between the variables. Thus, Type II 

spurious Granger causality from tz  to ty  occurs, if 

       3232 EEUyVEUyVEUyVUyV tttt   

   3EUzVUzV tt   

and 

   232 , EzVEEzV tt   

The author presents necessary conditions for Granger non-causality, which 

involve coefficients of the moving average, as well as the autoregressive 

representation of the trivariate VAR process ( theorems 1, 2 3 and 4, pages 9-11).  

Tjostheim (1981) introduces a general framework for testing Granger one step 

ahead non-causality in a multivariate setting. He also proposes a test procedure based 

on multivariate regressions. Boudjellaba, Dufour and Roy (1992) present a new 

definition of Granger one step ahead non-causality for a stationary multivariate 

ARMA model. In particular, they first derive necessary and sufficient conditions for 

non-causality between two random vectors based on components of a stationary 

multivariate linear invertible process. A component-wise characterization of non-

causality means that causality between the components of the random vector can be 

evaluated by considering causality between the corresponding scalar random 

variables. Their result generalizes Kang „s (1981) sufficient condition for Granger 
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non-causal relations in a bivariate setting. Then, they investigate the implications of 

these general conditions on multivariate stationary ARMA processes. They establish a 

characterization of Granger one –step ahead non-causality between two vectors in 

terms of autoregressive and moving average coefficients for two different cases: first 

when all random variables participating the system are considered in the analysis and 

secondly when all scalar variables of the original vector process are partitioned in two 

subvectors   (Theorems 1, 2 and 3, pp 1084). This two-sided characterization is then 

used to develop a causality test procedure for multivariate VARMA models.    

 

 

4. Short and long horizon causality 

 

For multivariate systems with more than three variables, establishing complete 

Granger causal relations based on Hsiao „s definitions becomes practically 

implausible. Dufour and Renault (1998) extend Hsiao „s general framework by 

introducing the concept of short-run and long-run non-causality. Their framework 

considers multivariate time series and is based on one hand on Lütkepohl‟ s notion of 

multi-step causality and on the other hand on Hsiao „s concept of indirect causality. 

Non-causality is evaluated at a specific point in time h, i.e., the forecast period, and 

this is appealing in empirical applications because it allows to differentiate between 

short run and long run causality. According to Dufour and Renault, short (or long) – 

run causality refers to situations where a random variable, say X, does not cause 

variable Y in period 1 in the Granger sense but it may still have predictive content for 

Y up to a subsequent time horizon, due to the indirect effects induced by the relation 

of X and Y with a vector of auxiliary variables, say Z.  

 First, without making any assumptions on stationarity or imposing an explicit 

functional form governing the dynamics of the multivariate process, i.e., such as an 

autoregressive representation, they present conditions (i.e., exhaustivity and 

separation conditions ) which ensure the equivalence between non-causality at 

horizon one and non-causality at all horizons. Conditions for non-causality at all 
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forecast horizons between vectors (random variables) are established in view of 

corresponding components of the vectors.  

Second, they impose an autoregressive parametric form of possible infinite 

order governing the dynamics of the random variables, i.e., the linear invertible 

processes, in order to achieve a full characterization of the causal structure of the 

multivariate process at various forecast horizons.  Characterization of non-causality at 

different h is obtained by setting specific zero restrictions on the autoregressive 

coefficients of the process. These coefficient restrictions reflect the indirect effects in 

terms of causality chains running between the random variables in the system at 

various forecast horizons (Theorem 3.2, page 1109). Defining non-causality by means 

of causality chains offers a better description of both h-step ahead causality and 

indirect causality. They also show that non-causality at various forecast horizons 

(characterized by zero restrictions on the coefficients of the linear invertible process) 

is equivalent to zero restrictions of the impulse response coefficients (of a moving 

average presentation) as in Sims and Lütkepohl. However, the authors argue that such 

causality properties fail to capture indirect causalities between the random variables. 

Instead, they show that generalized impulse response coefficients, defined as the 

lagged variables in forecasts at different horizons ahead, provide a solid 

characterization of the causal structure of the multivariate process.  To make the 

hypotheses of interest empirically testable, they extend their results to the case of a 

finite order VAR process.      
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4.1. Testing for short and long horizon non-causality  

 

 Dufour and Renault' s conditions on non-causality between two variables at 

prediction horizon greater than one, with more than two time series included in the 

multivariate system, implies an increasing number of zero restrictions on products of  

VAR coefficients.  The task of testing such hypotheses using likelihood ratio or 

Lagrange multiplier tests involves complicated computation  given the difficulty of 

estimating conditional specifications under the null hypothesis. On the other hand, 

inference can be performed by using a standard Wald test because it only requires 

estimating the unrestricted model.  

A regularity condition states that the asymptotic distribution of a standard 

Wald test is valid only when the matrix of the first partial derivatives of the 

coefficient restrictions is of full rank. Lütkepohl and Burda (1997) argue that the 

matrix of the first partial derivatives of Dufour and Renault 's  VAR coefficient 

restrictions may be of reduced rank because these restrictions have a multilinear form. 

Therefore, the  Wald statistic may fail to be asymptotically distributed as chi square 

under the null, and the use of the asymptotic chi square critical values may lead to 

misleading inference on Granger h-step ahead non-causality.  The results from Monte 

Carlo simulation experiments provide evidence in support of their argument. 

Lütkepohl and Müller (1994) and Lütkepohl and Burda (1997) propose modified 

Wald statistics to test the h-step ahead non-causality  hypothesis. Degenerate Wald 

statistics are shown to have a valid asymptotic chi square distribution under the null of 

non-causality at all forecast horizons. Nevertheless, these Wald statistics have poor 

finite sample power.  

Dufour, Pelletier and Renault (2006) present an estimation and inference 

procedure for testing h-step ahead non-causality hypothesis in multivariate VAR 

models, stationary or nonstationary. They introduce the method of (p,h) 

autoregressions, which requires the estimation by least squares of long horizon vector 

autoregressions, in which some vector process htV  is regressed on  tVV ,..,1 . The 

proposed parameterization enables the researcher to conduct inference in a simple 

efficient fashion by testing linear zero coefficient restrictions on the parameters of the 
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„(p,h)- autoregressions‟  via an asymptotic chi-square Wald test, after taking into 

account the serial correlation in the innovations using a Newey and West (1987) 

estimator. They also propose a lag-augmented  version of their „(p,h)- 

autoregressions‟ method to test non-causality at an arbitrary time horizon, in which 

the  vector process  tV  may be integrated of an unknown order. This extension is 

similar in spirit to that proposed by Toda and Yamamoto (1995) on testing the 

Granger one-period-ahead non-causality hypothesis in a VAR framework with levels 

ignoring the integration and cointegration properties of the time series. Since their 

simulation results show that the Wald statistic faces severe size distortions, the 

authors present a parametric Monte Carlo method to calculate p-values. Their 

simulation method ensures an enhanced finite sample size and power of the test 

procedure.  

 Hill (2007) argues that the test procedure of Dufour, Pelletier and Renault 

(2006) cannot be used for classification of causality chains over a range of time 

horizons because it focuses on testing the noncausality hypothesis at a time for a 

single prediction horizon, and therefore is not suitable for performing cross-horizon 

causality comparisons. According to Hill, their test method also fails to disentangle 

absence of causal linkages between the series and causal neutralization, in which 

several indirect effects offset each other. Moreover, the Dufour, Pelletier and Renault 

(2006) test results may present logical inconsistency with the original theory of 

Dufour and Renault (1998). In particular, Dufour and Renault state that causality at 

horizon h ( where h > 2) from X to Y preceded by noncausality over the horizons 1 to 

h - 1, requires the presence of at least one indirect causal route between X, Y and the 

vector of auxiliary variables Z. However, the author shows that there may be 

situations where  the outcome of the test implementation may violate this condition. 

Therefore, he proposes a recursive parametric representation of causality chains for 

trivariate processes defined in Hilbert spaces.  Hill also presents a strategy which 

involves testing sequentially a set of simple linear restrictions in terms of trivariate 

VAR models by using  an asymptotic Wald test statistic. The overall significance 

level of the test procedure at each step is controlled by means of Bonferroni bound 

adjustments. However, Bonferroni based procedures yield conservative tests with low 

finite sample power.  
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Eichler (2007) presents a graph-theoretic concept for analysis of h-step ahead 

causality relations of high-dimensional time series. Path diagrams are employed to 

visualize the autoregressive dynamics of  multivariate weakly stationary processes, 

and then to derive general Granger causality relations  among the random variables of 

the system. The author' s main concern is the theoretical graphical representation of 

general causality relations, and he does not consider an estimation and inference 

econometric procedure of multi-step causality in a time series framework. 

  Al-Sadoon (2010) shows that Dufour, Pelletier and Renault (2006) test may 

reject the horizon-specific noncausality hypothesis in situations where the causal 

effect is limited and confined to certain subspaces of the variations of the variables.  

Therefore, he presents a modified version of Dufour, Pelletier  and Renault „s method 

for testing Granger noncausality up to a specific forecast horizon. Al-Sadoon argues 

that in order to reveal the full causal structure of the multivariate time series, rank 

restrictions rather than zero coefficient restrictions should be preferred on testing the 

relevant hypotheses. His test method involves fitting (p,h) autoregressions, and then 

using Kleibergen and Paap (2006) Wald type test statistic to conduct inference, after 

tackling the problem of serial correlation in the innovations by means of a Newey and 

West (1987) estimator. Following Robin and Smith (2000), estimation of the rank 

used in the test calculations is performed by implementing a sequential procedure. 

Similar to Dufour, Pelletier and Renault (2006), the author proposes a Monte Carlo 

method to compute the p-value of the Wald test. 

Several limitations of testing h-step ahead non-causality were mentioned 

previously in this section. These procedures require the estimation of parametric mean 

regression and therefore are not designed to detect nonlinear causal associations or  

causalities  in high order moments. 
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4.2. Measurement of short and long horizon causality  

 

 Causality tests provide in-sample evidence on whether  a relation between 

economic time series is statistical significant, but they do not quantify the degree of 

their dependence.  Econometric advances on the field present statistical tools for 

measurement of the magnitude of causality relations between economic data.  

 Dufour and Taamouti (2010) generalize Geweke „s (1982) one-period ahead 

causality concept to h-period ahead causality for multivariate time series. The authors 

argue that in multivariate systems the presence of indirect causal influences between 

the random variables, if there are any, may be evident only after several subsequent 

time periods.  Granger non-causality at h-period ahead is defined through projections 

on Hilbert spaces, similarly with Dufour and Renault (1998).  However, non-causality 

at forecast period h is characterized in terms of the variance-covariance matrix of the 

forecast errors (Proposition 3.1, pp. 45). The authors also present a characterization of 

what they define as  „unconditional non-causality‟ at a specific period h, i.e., the 

vector with auxiliary variables is dropped from the information set.  Dufour and 

Taamouti propose a series of causality measures between two vector processes at a 

specific forecast period h, namely a mean square measure, an unconditional mean 

square measure, a measure of instantaneous causality, and a dependence measure. 

Dependence measure helps to determine in situations where bi-directional and 

instantaneous causality occurs, in which direction the causal effect is more intense. 

Hence, their concept enables the researcher to evaluate the strength of the causal 

relationship.  For the case where the multivariate time series have a VARMA or VAR 

representation (or the system evolves as a general linear invertible process), explicit 

parametric forms of the causality measures which involve impulse responses are 

introduced by the authors (theorems 5.1, 5.2, 5.3, pp. 48-49). Asymptotically valid 

bias- corrected bootstrap confidence intervals are also proposed in order to evaluate 

the statistical significance of these measures.     

Taamouti, Bouezmarni, and El Ghouch (2013) propose a nonparametric estimator 

and an asymptotic normal test  for measures of Granger h-step-ahead causality 

between random variables.   Measures of Granger causality, as originally introduced 

by Dufour and Taamouti (2010), are redefined in terms of copula densities. The 
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measures are estimated in a nonparametric fashion using the Bernstein copula density. 

These criterions and tests can be used to quantify both linear and nonlinear causal 

relationships, as well as causalities  of high order moments. The authors also propose 

a bootstrap bias-corrected estimator for the implementation of the measures and tests  

which yields good finite sample properties. 

 

5. The concept of Granger non-causality-in-variance 

 

Recent research on causal relations between the economic time series 

addresses the issue of non- causality-in-variance or second order non-causality.  

Granger et al. „s  (1988) definition in a bivariate setting gave rise to a rapid growth of 

general econometric procedures for testing the non-causality-in-variance hypothesis 

between asset returns or economic variable growth rates (an early review of the 

literature includes that of Gagnon and Karolyi (2006)).We say the random variable tx  

does not Granger cause the random variable ty  in variance with respect to E if 

 

       1

22
EEyEyEEEyEyE tttt   

 

where  DyE t  is the conditional  mean of ty given the information set D.   

Evidence of non- causality-in-mean and variance does not necessarily imply 

general non-causality, but rejection of either the non- causality-in-mean or the non-

causality-in-variance hypothesis is sufficient  to characterize general causality 

between the time series. Causality-in-variance is a sufficient condition for general 

causality even when the hypothesis of non-causality-in-mean holds.  
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5.1.  Testing noncausality-in-variance in a univariate framework   

 

Cheung and Ng (1996) generalize Haugh „s (1976) concept of testing 

independence between two covariance stationary series to variance non-causality. 

Variance non-causality is characterized in terms of the cross-correlation function 

(CCF) between the two separate squared whitened series (i.e., innovations derived 

from a univariate ARMA process) properly standardized by their conditional 

volatilities (it is assumed that each innovation series has a univariate GARCH 

representation).  They propose an asymptotic chi-square test based on the sample 

cross-correlations at different lag orders of two separate squared standardized 

innovation series obtained from fitting univariate finite ARMA models with GARCH 

type errors to the data. Several other researchers have adopted Cheung and Ng „s 

concept of Granger variance non-causality; see, for example, Hu et al. (1997), Kanas 

and Kouretas (2002), Constantinou et al. (2005), Inagaki (2007).   

Hong (2001) presented enhanced versions of the CCF tests by employing a 

weighting scheme on the cross-correlation estimates. Similar to Cheung and Ng 

(1996), his method can be applied to a bivariate covariance stationary process, while 

it involves fitting univariate ARMA (or a bivariate VAR specification) and  GARCH 

specifications for each separate time series. Hong proposes asymptotic standard 

normal tests, which are calculated as the sum of the weighted T-1 (T denotes the 

length of the innovations) sample cross-correlations between the two squared 

standardized innovations, properly rescaled by some constant terms. Several widely 

used in the literature kernels such as the truncated, quadratic-spectral, Bartlett, etc, are 

implemented as weighting functions. All kernels allocate larger weight to a lower lag 

order (non-uniform kernels), except the truncated kernel (uniform kernel), which 

gives equal weighting to all lags selected. Moreover, kernels such as Daniell and 

Quadratic-Spectral use all T -1 cross-correlations but assign more weight to the N 

more recent lag time periods, while other kernels, like the truncated, Bartlett, Parzen 

and Tukey-Hanning, ignore sample cross-correlations larger than N. The parameter N 

controls the amount of smoothing applied to the cross-correlations and is denoted as 

bandwidth. The Monte Carlo experiments of Hong demonstrate that his tests are 
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favorably compared to Cheung and Ng 's (1996) test in terms of empirical size and 

power. 

 In addition to the CCF based tests, Hafner and Herwartz (2006) propose a 

Lagrange Multiplier (LM) test which constitutes an   adaptation of the 

misspecification testing framework in univariate GARCH models introduced by 

Lundbergh and Terasvirta (2002). Their method only tests for noncausality at a 

particular lag order, while its implementation is based on the estimation of univariate 

ARMA and GARCH specifications. Their test procedure involves regressing the 

squared innovations standardized by the GARCH conditional volatilities of one 

variable on quasi-maximum likelihood derivatives of the GARCH model estimation 

of the same variable and a bivariate set, which includes the innovations and 

conditional volatilities of the other variable.  They show that their test has better 

power properties than Cheung and Ng 's test under a series of local alternatives. 

Van Dijk, Osborn and Sensier (2005) prove that inference on Granger 

causality-in-variance may be misleading when both volatility series experience 

simultaneous structural breaks which are left unaccounted for. The asymptotic 

analysis of Rodrigues and Rubia (2007) also shows that the CCF based causality tests 

will not have their usual asymptotic distribution only when simultaneous structural 

changes occur in the dynamics of both volatility processes.  

Testing noncausality-in-variance within the univariate framework is 

convenient because it only requires fitting univariate ARMA-GARCH models to the 

data. This is particularly appealing  because these conditional specifications do not 

involve simultaneous modeling of intra and inter-series dynamics. On the other hand, 

the CCF test method does not preclude the possibility of causality relations that 

produce zero cross-correlations, such as potential nonlinear causalities or causality at 

high order moments. Moreover, these procedure are implemented on bivariate sets of 

data, and as a consequence, these tests ignore by construction potential indirect effects 

with other possibly important variables.  
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5.2. Testing noncausality-in-variance in a multivariate framework   

 

Multivariate GARCH (MGARCH) models provide a natural framework for 

testing causality in variance (not all representations).  A vast amount of empirical 

research is concerned with second -order causal relations between multivariate 

economic time series based on MGARCH representations (Karolyi (1995); Booth and 

Kootmos  (1995); Booth et al. (1997); Jeantheau (1998); Ng (2000); Caporale et al. 

(2002), Ling and McAleer (2003)). However, little attempt has been made to derive 

conditions for general Granger causality-in-variance relations in MGARCH 

processes.  

Comte and Lieberman (2000) are the first who addressed this issue formally 

by introducing a general theoretical framework, which involves the estimation of 

VARMA models with multivariate GARCH type errors. They present two definitions 

of Granger second-order non-causality: a conventional Granger second-order non-

causality definition and a more general definition of linear Granger second order non-

causality based on projections on Hilbert spaces. The authors argue that Granger et al 

„s definition equates to second order non-causality rather than variance non-causality 

because of the nonlinearities induced by the squared terms   2DyEy tt  . They 

derive equivalence relations between the notions of Granger causality-in-mean, 

variance and second order non-causality (Proposition 1, pp. 538). They establish a 

characterization of second order Granger non-causality, which involves zero 

restrictions on specific coefficients of a MGARCH-BEKK representation. Likelihood 

based tests are also proposed to test the relevant hypotheses.  

Hafner and Herwartz (2004) extend Comte and Lieberman‟ s results by 

proposing parametric characterizations of second order non-causality for strong, semi-

strong, and weak MGARCH processes. Caporin (2007) presents general conditions 

for Granger non-causality-in-variance in the framework of MGARCH processes with 

in-mean effects.  

Causality tests within the MGARCH framework are expected to have good 

power properties, provided that a sensible lag length selection is made for the model 

specification. However, these conditional volatility specifications face the 'curse of 
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dimensionality' ; the number of coefficients to be estimated grows rapidly with 

increasing lag order and the number of variables in the system. Fitting restricted 

MGARCH models with a long lag structure involves tedious computation. Therefore, 

in empirical applications low order MGARCH models are usually employed. These 

limitations raise a reasonable amount of concern about the reliability of inference. 

Lack of differentiation between causality-in-mean and causality-in-variance is 

likely to present serious challenges in empirical applications. Vilasuso (2001) 

demonstrates that inference on Granger causality-in-mean based on least squares test 

procedures- even  when a heteroscedastic autocorrelation consistent (HAC) 

covariance matrix estimator is used - may be misleading under the presence of a 

causality-in-variance relation between the series.  Hence, pre-testing for causality-in-

variance is recommended before conducting inference on causality-in-mean. 

Moreover, the Monte Carlo simulation results of Pantelidis and Pittis (2004) show 

that, when there is causality-in-mean, conclusions drawn from implementing 

causality-in-variance  tests without an explicit parameterization of such influences 

may lead to an erroneous claim that a statistical significant Granger causality-in-

variance relation exists.   

A brief enumeration of the applications of Granger causality-in-mean tests 

clearly highlights the widespread use of the concept in different fields. On the other 

hand, most (if not all) of the applications of Granger causality-in-variance tests are 

listed only in the field of finance. Despite the recent contribution of Vilasuso (2001) 

who emphasizes  on the necessity of adopting the variance or second-order 

noncausality concept  in time series analysis, a limited number of empirical efforts is 

documented.   

Careful scrutiny of the literature presented above reveals some interesting aspects. 

First,  existing literature focuses mostly on the existence and the direction of 

causality-in-variance. In many applications of these tests, however, the researcher's 

interest may be also centered on the causal lag structure of the time series. For 

instance, in applications with financial time series the researcher expects to find 

statistical significant volatility spillovers (if there any ) at low lags.  On the other 

hand, when both macroeconomic and financial time series are involved,  one might 

anticipate that the volatility of asset prices will take more time to be transmitted to the 
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volatility of macroeconomic variables. A typical example in the financial 

macroeconomics literature is the relationship between monetary policy and output 

growth. Several researchers, including  Dufour, Renault and Pelletier (2006), Hill 

(2007), Dufour and Taamouti (2010) among others, document that monetary policy 

indicators, such as the short term interest rates and nonborrowed reserves, Granger 

cause GDP growth rates in US over a range of long prediction horizons. It is possible 

that similar causation patterns may occur between the second-order dynamics of the 

economic time series. Therefore, it is clearly desirable to know how sensitive are 

these tests in finite samples against alternative  hypotheses of different causal lag 

structures. So far only limited simulation evidence is reported in the literature. 

 Second, the behavior of these tests in finite samples is evaluated via Monte 

Carlo simulation experiments using exclusively high persistent volatility data 

generating processes. In particular, these studies allow for alternative degrees of 

volatility persistence but their analysis is restricted to the cases of  near Integrated and  

Integrated GARCH processes. These data generating mechanisms describe the 

dynamics of financial volatility.  Empirical illustrations, however,  indicate that 

macroeconomic volatility exhibits low degrees of persistence. It is not known a priori 

whether these test methods perform satisfactorily under low volatility dynamics in 

finite samples.   

       Third, inferential biases associated with the application of the test procedures 

may raise some concern among researchers and academics. The simulation results of 

Hong (2001) show that the finite sample properties of the Cheung and Ng (1996) test 

statistic present great sensitivity to arbitrary selections of the lag length.  On the other 

hand, to date, how best to choose the bandwidth parameter N used in the calculations 

of Hong 's (2001) kernel based tests, remains unclear. The bandwidth parameter 

controls the degree of smoothing applied to the cross-correlations. The simulation 

results of Hong demonstrate that the choice of non-uniform weighting does not affect 

the finite sample properties of the kernel type tests. On the other hand, as with any 

kernel based semi-parametric test procedure, arbitrary selections of the bandwidth 

parameter have a significant  impact on the power properties of the tests in finite 

samples. Therefore, it is clearly demanded a data-driven method of bandwidth 

selection under which formal statistical inference can be conducted, and helps to 

avoid possible inferential biases.  
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6. Testing Granger non-causality in cointegrated systems 

 

Tests for Granger non-causality for stationary time series are straightforward. 

On the other hand, in cointegrated systems testing non-causality involves complicated 

computations  given the presence of an uncertain number of unit roots. Sims, Stock 

and Watson (1990) demonstrate that, in a trivariate VAR model framework with 

levels, the  Wald statistic may fail to be asymptotically distributed as standard chi 

square under the null of non-causality (in-mean) if some variables are found to be 

integrated and there is no cointegration between the time series. Under these 

circumstances, the use of standard chi-square critical values for evaluating the Wald 

type criterion may lead to misleading inference on causality. Moreover, they find that 

the Wald test  is asymptotically distributed as standard chi square if the variables are 

cointegrated and if the long-run relationship involves the variable that is excluded 

under the null hypothesis of non-causality.  

Mosconi and Giannini (1992) propose a method of testing jointly for Granger 

non-causality and the existence of cointegrated variables in the  error correction 

framework.  Coefficient restrictions on the parameters of levels VAR model  are 

imposed jointly in order to test both hypotheses. To achieve this goal, the model is 

redefined as a error correction specification. Their approach requires  pretesting for 

cointegrating ranks using Johansen' s  (1988) procedure.  Then, asymptotic chi-square 

likelihood ratio statistics are used to test non-causality  in cointegrated systems. To 

compute the tests, a sequential procedure conditional on the cointegration rank is 

implemented to get estimates and log-likelihood values of both the restricted and 

unrestricted models.  

Toda and Phillips (1993) study the asymptotic chi-square distribution of the 

Wald statistic when used to test Granger non-causality in multivariate VAR models 

with levels and error correction representations. They demonstrate that pretesting for a 
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unit root, and cointegration in the economic time series is necessary before 

conducting statistical inference using the asymptotic chi-square Wald statistic. 

Moreover, the authors show that even if we have explicit knowledge of the previous, 

the usual asymptotic distribution of a Wald test may be invalid when testing non-

causality in the levels VAR framework under the presence of a unit root or  

cointegrated variables.  Specifically, the authors derive necessary conditions for non-

causality in terms of the coefficients of a subset of the variables of a error correction 

model and a VAR model, and provide asymptotic theory for Wald criteria. Then, they  

show that the Wald statistic when implemented to test non-causality in the 

multivariate VAR framework, not only is distributed under the null as nonstandard 

chi-square but also depends on the nuisance parameters if some variables are 

integrated or cointegrated. To overcome these difficulties, the authors propose 

solutions which involve demanding computations but still yield disputable results. On 

the other hand, their analysis indicates that the asymptotic distribution of the Wald 

test based on the error correction representation is both nonstandard chi-square and 

dependent from nuisance parameters, except the cases where either the coefficient 

submatrices or the submatrices of cointegrating coefficients that are relevant under the 

null are of full rank. If one of the two conditions hold, the usual chi-square 

asymptotics are valid.   

Toda and Yamamoto (1995)  propose a method on testing the Granger non-

causality hypothesis in a simple efficient fashion ignoring the integration and 

cointegration properties of the time series. The implementation of their procedure 

does not require the time series to be stationary, integrated of an arbitrary order, or 

cointegrated of an arbitrary order. Their method involves fitting a VAR model of 

order maxdkp   to the levels using the ordinary least squares estimation method, 

where k is the optimal lag order and maxd represents the maximal order of integration 

that the researcher believes might occur in the process. The authors imply overfitting 

the VAR specification with additional arbitrary maxd  lags. Then, to conduct inference 

on causality one has to evaluate the statistical significance of usual zero coefficient 

restrictions on the VAR parameters up to lag k  ( maxd  lagged coefficient matrices are 

assumed to be zero) using a standard Wald statistic. 
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Bruneau and Jondeau (1999) present a concept of  long-run Granger non-

causality between two variables based on the Error Correction Model (ECM) 

representation of cointegrated systems. According to the authors, a variable X is 

causal for another variable Y in the long-run, only if the past information of X helps 

to predict in the long-run the variable Y. Characterization of long-run Granger non-

causality is achieved by setting a bilinear zero  restriction on the parameters of a VAR 

model with levels and the long-run dynamic multipliers (Proposition 1, p. 547). This 

condition is not affected by the level of the cointegration rank.  Hence, testing for 

long-run non-causality requires estimating a function of the long-run dynamic 

multipliers. However, the long-run dynamic multipliers cannot be estimated directly; 

they are estimated in terms of the restricted VAR (RVAR) model, as proposed by 

Campbell and Shiller (1988), and then inverted at a later stage. In particular, in a first 

step the parameters of the ECM representation and their asymptotic distribution are 

estimated using Johansen 's (1988) maximum likelihood method.  The second step 

involves obtaining the estimators of the RVAR parameters and their asymptotic 

covariance matrix based on the ECM parameter estimators. Once the RVAR 

parameters are estimated, deriving the long-run dynamic multipliers is 

straightforward. The authors also propose an asymptotic chi-square test of Granger 

non-causality (Proposition 4, p. 555).   

Yamamoto and Kurozumi (2006) extend Bruneau and Jondeau' s (1999) 

concept of  long-run Granger non-causality to general long-run block non-causality, 

which we can make use to investigate for the presence of long-run causality from one 

block of variables to another block of variables. They define long-run non-causality 

similar to   Bruneau and Jondeau (1999). Testable conditions for non-causality are 

derived based on their definition using the least squares prediction of  detrended series 

(Proposition 1, p.708). The authors argue that short-term causality does not 

necessarily imply long-run causality and vice versa due to the presence of possible 

indirect causal effects. To make the hypotheses of interest empirically plausible, the 

authors first analyze the limiting distribution of the maximum likelihood estimator of 

the coefficient matrix on the error correction representation. In particular, they present 

the rank of the covariance matrix of the ML estimator in the limiting distribution 

(Proposition 2, p. 710). Their analysis indicates that the rank of the  covariance matrix 

might be degenerate, making impossible to test the relevant hypotheses by means of a 
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Wald statistic because it is required that the covariance matrix is of full rank. The 

degeneracy problem is likely to appear in the long-run causality test of Bruneau and 

Jondeau (1999). To overcome this difficulty, the authors propose asymptotic chi-

square Wald test statistics based on the generalized inverse of the covariance matrix. 

Implementation of these statistics requires determining the ranks of submatrices of the 

cointegrating matrix and its orthogonal matrix. The authors use sequentially the 

method of Kurozumi (2005) to test for the appropriate ranks.   

Testing Granger non-causality in levels vector autoregressions and error 

correction models requires testing for unit roots and cointegration in the time series 

(we exclude the test method of Toda and Yamamoto (1995)). This strategy is not 

particularly appealing in empirical investigations due to the complicated computation. 

In addition, standard unit roots tests, such as Dicky and Fuller (1979) and Phillips and 

Perron (1988), are known to have poor power properties against the alternative 

hypothesis of stationarity. Furthermore, the finite-sample performance of tests for 

cointegrating ranks in Johansen 's ECM representation are found to depend on the 

values of the nuisance parameters. These observations raise some concern about the 

reliability of the statistical inference in finite samples.  

 

 

7. Testing Granger non-causality in the frequency-domain 

 

While traditional Granger causality tests have been the workhorse in time 

series analysis of economic data for more than three decades, they do not preclude the 

possibility of variation of the direction and strength of a causality relation over 

different frequencies. Recent researchers argue that it is crucial to distinguish between 

different causation patterns across different periodicities.  Granger (1969) is the first 

to highlight the importance of using the spectral density approach to gain  more 

insight in the dynamics of a causal relationship between two variables. 

Geweke (1982) proposed a causality measure at a particular frequency based 

on the spectral density representation of a bivariate VAR process (for more see earlier 
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section of this introduction). Hosoya (1991) builds on the Geweke framework, and 

introduces a causality test at a particular frequency. Yao and Hosoya (2000) presented 

a more sophisticated procedure for testing the  noncausality null hypothesis at a 

particular frequency for a bivariate VAR process. Their test method involves 

evaluating a set of nonlinear coefficient restrictions of the vector autoregressive 

model parameters.  To perform hypothesis testing, the Geweke causality measure 

based on VAR estimates is expanded via the delta method. Using this result, they 

propose a Wald test to test noncausality. Derivatives appearing in their Wald test 

statistic are approximated using numerical differentiation instead of deriving the exact 

analytical expression.  Breitung and Candelon (2006) propose a simpler method to 

test for Granger causality measure between random variables in the Geweke 

framework. In particular, the null hypothesis of noncausality at a specific frequency is 

tested by using an F test statistic to evaluate the statistical significance of specific 

linear restrictions on VAR coefficients. These conditions are derived from the 

Geweke causality measure, when the latter is rewritten as a function of the estimated 

VAR coefficients. Their simulation results show that their test has good size and 

power in finite samples.  

 Lemmens, Croux, and Dekimpe (2008) propose a nonparametric test for the 

frequency-domain causality measure of Pearce (1979).  Specifically, the cross-

spectrum between two white-noise processes is estimated nonparametrically using a 

weighted scheme on the sample cross-covariances at different lag orders between two 

innovations obtained from fitting  ARMA models to the data. Then, the coefficient of 

coherence is calculated based on the cross-spectrum estimates. According to the 

authors, the null hypothesis of Granger noncausality at a specific frequency is 

equivalent to testing whether the corresponding coefficient of coherence equates to 

zero. Inference is conducted by using an asymptotic chi-square test which is 

calculated based on the estimated squared coefficient of coherence at a certain 

frequency properly rescaled. Their results from Monte Carlo experiments show that 

the F test of Breitung and Candelon  (2006) is more powerful in finite samples than 

their chi-square statistic.  
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8. Alternative notions of Granger non-causality 

 

8.1. Out-of-sample Granger noncausality 

 

Several researchers argue that the result from the implementation of a Granger 

in-sample causality test on the data must be in accord with the out-of-sample 

predictive performance of the corresponding forecasting model. Chao, Corradi and 

Swanson (2001) propose out-of-sample linear and nonlinear tests of the Granger one-

step ahead noncausality hypothesis. In particular, based on sequences of forecast 

errors obtained from fitting autoregressive models to the data, the authors introduce 

an asymptotic normal test of noncausality. The authors also consider  a more general 

test function including a nuisance parameter unidentified under the null hypothesis. 

Consequently, they develop a nonlinear causality test based on a approach followed in 

the field of testing for neglected nonlinearities.  

 

8.2.  Granger noncausality-in-risk 

 

Modern portfolio theorists focus on measuring the probability of extreme 

downside asset price movements rather than estimating volatility, which is based on 

modeling the whole distribution of the asset returns. Hong, Liu, and Wang (2009) 

present the probabilistic concept of Granger non-causality-in-risk, which analyzes 

whether the occurrence of a large loss in one asset can help to predict the occurrence 

of a large loss  in another asset.  Their causality concept is defined in terms of the 

cross-spectrum between the left tails of the conditional distributions of the asset 

returns. The authors propose an asymptotic standard normal test, which is based on 

the weighted lagged sample cross-correlations between two risk indicators. The 

indicators are obtained from fitting univariate autoregressive quantile specifications 

on the asset returns. 
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9. Chapters of thesis 

 

9.1. First Chapter 

  

This thesis consists of three chapters. In the first chapter, we first evaluate the 

finite sample properties of recently proposed Granger causality-in-variance test 

procedures via extensive Monte Carlo simulations and then we introduce some 

modifications that improve their practical implementation to financial and economic 

time series. We focus our attention on four testing procedures: the Likelihood Ratio 

(LR) tests in the framework of a GARCH-BEKK(1,1) model as employed by Comte 

and Lieberman (2000); Cheung and Ng‟s  sample cross-correlation (hereafter denoted 

as CCF) based S  test (1996); the semiparametric CCF Q tests proposed by Hong 

(2001); and the Lagrange Multiplier (LM) test of  Hafner and Herwartz (2006). Our 

investigation assesses and compares the size and power of these tests under various 

alternative hypotheses of practical importance. First, the sensitivity of the CCF based 

causality tests to the choice of the lag truncation and the bandwidth parameter is 

evaluated.  Second, the credibility of statistical inference is assessed for different 

causal time lag structures, usually met in financial and macroeconomic applications. 

Third, we utilize different degrees of volatility persistence, reflecting the variations in 

the volatility dynamics between the financial and economic time series.  

Our results show that Comte and Lieberman‟s likelihood ratio test as well as 

the Hafner and Herwartz‟s LM test suffer from severe size distortions, while they 

demonstrate very low power, under long horizon causality alternatives. Both cross 

correlation tests are reasonably well sized. However, Hong‟s kernel tests demonstrates 

less sensitivity to arbitrary choices of the weighting scheme and alternative volatility 

dynamics, when compared to Cheung and Ng‟s S test.  Furthermore, cross 

correlations tests are favorably compared to LR and LM tests in terms of empirical 

power under a sequence of local alternatives. However, our results reveal that the 

power performances of Q and S tests greatly depend on the choice of bandwidth and 

lag truncation respectively.  
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Motivated by these findings, we introduce three simple methods for automatic 

bandwidth selection used in Hong‟s Q test calculations. The first method, the „naïve‟ 

bandwidth selection criterion, chooses the bandwidth where the kernel CCF- based 

test  value is maximum.   Using the critical values of the standard normal distribution 

for the test statistic Q = max(Q(N)) may result in misleading inference. Instead, our 

method uses the extreme value distribution to obtain the asymptotic critical value.  

Two more satisfactory methods from a theoretical point of view are optimal 

bandwidth selection rules under which formal statistical inference can be conducted. 

The first method estimates the optimal bandwidth parameter as a structural change in 

the distributional behavior of the test.  In particular, bandwidth is selected as the 

product of the comparison of the differences between the empirical distributions 

before and after a hypothetical change-point, for a sequence of hypothetical change-

points.  Dumbgen (1991) type estimators are implemented to determine optimal 

bandwidth parameter while three different semi-norms are used in  the calculation of 

the measures. The second selection rule estimates the optimal bandwidth by applying 

the cross-validation method in  kernel regressions of the squared standardized 

innovations. The procedure is based on choosing the bandwidth to minimize 

approximately the mean integrated squared error of the regression function. Härdle, 

Hall and Marron (1992) demonstrate that cross-validation yields bandwidths that are 

asymptotically consistent.  

Simulation results show that the three methods for automatic bandwidth 

selection improve the test performance in finite samples. More importantly, under the 

first two bandwidth selection rules, the tests have high empirical power irrespective of 

the weighting scheme, the degrees of volatility persistence, or, whether causality is 

present at short or long horizon.  

We also examine the causal relationship between the stock price volatility and 

industrial production volatility in the United States, Japan, Germany and Italy. 

Previous empirical evidence is inconclusive. Schwert (1989) finds that in US the 

volatility of stock returns in-sample predicts industrial production growth volatility 

only in two sub-samples out of four. He documents, however,  weak evidence that 

industrial production growth volatility in-sample predicts stock returns volatility. On 

the other hand, Diebold and Yilmaz (2007) show that output growth fluctuations 
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cause stock market volatility based on a large panel of economies. Hong‟s tests with 

bandwidths selected automatically by the „naïve‟ criterion, present clear cut evidence 

that volatility spillovers occur from stock returns to industrial production growth rates 

in US and Japan.  Moreover, the estimated bandwidth parameters are always large 

numbers suggesting long horizon causality dynamics. Hence, distant past changes in 

the volatility of stock returns appear to influence the recent fluctuations of industrial 

production growth rates in two out of four economies. Under optimal bandwidth 

parameter selection, these tests   also suggest statistical significant short horizon 

causality-in-variance from industrial production growth to stock returns in US and 

Italy. The other tests yield mixed results.  

 

9.2. Second Chapter 

 

In the second chapter, we introduce a nonparametric method for testing 

unidirectional Granger causality-in-variance between two covariance stationary time 

series. Our approach is based on a model-free volatility proxy, as opposed to existing 

tests in the literature, whose implementation requires the estimation of a conditional 

volatility model via a GARCH type representation. These methods impose an explicit 

functional form on the evolution of the second order dynamics. However, these tests 

are suitable to be implemented to financial data, where the presence of the so-called 

„volatility clustering‟ is well documented. On the other hand, Hamilton and Lin 

(1998) argue that evidence of ARCH effects in macroeconomic data is weak, casting 

doubts on whether GARCH specifications are suitable representations of second-order 

dynamics of the data. Hence, there is some concern about the reliability of statistical 

inference on second-order non-causality when GARCH based test procedures are 

applied to macroeconomic time series.  

To our knowledge, no attempt to date has been made to test for causality-in-

variance within an unconditional volatility framework. The methods of Schwert 

(1989)  and Diebold and Yilmaz (2007) are the most relevant to the one proposed 

here. Schwert (1989), in particular,  fits autoregressions to the series, and takes the 

absolute values of the associated residuals as volatility proxies. However, the proxies 

are transformed to conditional volatilities by estimating a VAR model. Hypothesis 
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testing is performed by examining the significance of specific VAR coefficients zero 

restrictions via an F test.  Diebold and Yilmaz (2007) follow Schwert‟ s approach and 

use the absolute values of the residuals from autoregressive models to estimate panel 

regressions.   

 Our nonparametric procedure compares simultaneously a set of p-values, 

which result from the implementation of a asymptotic standard normal test statistic at 

multiple single lag periods. The test calculations are based on the sample cross-

correlations between the absolute values of innovations resulting from fitting 

autoregressions to the series of interest. By using a similar reasoning with Haugh 

(1976) and Cheung and Ng (1996), we establish that the test is asymptotically 

distributed under the null hypothesis of non-causality at an arbitrary lag order as 

standard normal.  Joint inference is conducted by simultaneous comparison of the 

CCF-based test values at multiple lag periods, via the procedure developed by Rom 

(1990). In particular, the p-values are ordered and then contrasted to some 

corresponding critical levels of significance. The overall null hypothesis of non-

causality is rejected if at least one p-value is found to be below the critical level of 

significance. The latter emerge as adjustments of the nominal level of significance to 

the lag truncation, so as to control the overall size of the test.  

Monte Carlo experiments have been performed to evaluate the finite sample 

properties of the proposed test. The performance of our test is compared to two 

conventional tests, namely Cheung and Ng‟s (1996) S test and Hong‟s (2001) Q tests, 

under alternative models regarding the causal lag structure, the distributional 

characteristics of the series and the degree of fractional integration of the volatility 

process. Our simulation results show that the proposed test is well sized. In addition, 

the empirical test size exhibits less sensitivity than the S test to arbitrary choices of the 

lag selection parameter and the distribution of the error term. Interestingly the 

implementation of the proposed test yields surprisingly high finite sample power not 

only against the alternative hypothesis of short horizon causality, but also against the 

alternative hypothesis of long horizon causality. This great gain in empirical power 

holds for diverse selections of the lag truncation as well as for different sample sizes. 

By comparison, our test never performs worse than the Q and S tests and in fact 

outperforms both tests when dealing with short horizon causalities, especially so when 

the sample size is not very large. In addition, the power of both tests appears to 
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depend greatly on the lag truncation and for the case of the Q test, on the weighting 

scheme used as well.  Our findings also indicate that all test procedures have poor 

power under the presence of long-range dependence in the underlying volatility 

processes. Nevertheless, for large sample sizes there seems to be an advantage in 

using our proposed test. 

 

Our test procedure is also used to examine the relationship between the 

volatilities of output growth and real stock returns. We used data for four develop 

economies, namely U.S., United Kingdom, Italy and Canada, covering a period from 

January 1973 to May 2011. Our test results show that industrial production volatility 

Granger cause real stock volatility in three economies out of four at level of 

significance 5%. This result is robust with respect to the implemented lag truncation. 

On the other hand, we find no significant relationship in the opposite direction. In 

comparison Cheung and Ng ‟s (1996) S test and Hong ‟s (2001) Q tests (with a few 

exceptions) do not reject the non-causality hypothesis in either direction. 
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9.3. Third Chapter 

In the third chapter, our goal is to present a complete analysis of the multiple 

horizon causal linkages between the volatility of stock returns and industrial 

production growth rates, when a set of auxiliary processes, such as various monetary 

and macroeconomic variables, is included in the setting. We attempt to consider the 

classic question of whether fluctuations in the stock return volatility anticipate long-

run changes in industrial production growth rates as the present value model predicts.  

The studies of Whitelaw (1994), and Campbell, et al. (2001) are the most 

relevant to ours. Whitelaw (1994) applied different empirical formulations to identify 

leadership patterns between stock return volatility and stock returns over the course of 

the business cycle in US. He finds that the commercial paper- Treasury bill spread has 

predictive ability for stock return volatility, while he links the latter to the business 

cycle. Campbell, et al. (2001) document that volatility measures at the firm, industry 

and market level are highly correlated with GDP growth rates and NBER recession 

dates up to a lead and lag of a year in US. Their results from estimating OLS 

regressions with GDP growth  as the dependent variable, and as independent 

variables, lagged GDP growth and the lagged return on the value-weighted CRSP 

index in addition to combinations of lagged aggregate volatility measures at different 

levels, indicate that stock return volatility has predictive power for short-term changes 

of real activity. Neither study, however,  evaluates the relationship between output 

growth and stock return volatility at long predictive horizons, and both ignore  

possible influences from monetary policy factors on their joint behavior. 

Multiple horizon Granger non-causality from the volatility of stock returns to 

industrial production growth rates is tested using the econometric procedure of 

Dufour, Renault and Pelletier (2006) on data from four developed economies, namely 

US, Germany, Japan, and Italy. Monetary policy indicators and economic variables 

such as money supply (M2) growth rates, inflation, and short-term interest rates 

operate as auxiliary variables. We document a large number of highly significant 

direct unidirectional causalities from the volatility of stock returns to output growth at 

both short and long horizons in all four economies. Our findings are consistent with 

the results of Whitelaw (1994), and Campbell, et al. (2001). More importantly, our 

results reveal that stock return volatility presents an enhanced ability to predict 
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production growth rates at distant forecast periods. Interestingly, we also find that 

stock return volatility indirectly causes monthly growth rates of industrial production 

at long horizons through (i) nominal short-term interest rates in US, and Germany, (ii) 

money supply growth rates in Japan and (iii) inflation in Italy. These results have not 

been previously shown in the literature. Our findings also confirm the finding of 

Dufour, Pelletier and Renault (2006), Hill (2007), and Dufour and Taamouti (2010) 

that monetary policy is causal for real activity growth at both short and long horizons.  

Second, the multi-step ahead causality measure introduced by Dufour and 

Taamouti (2010) is implemented on the time series to quantify the intensity of 

forecast improvement. Asymptotic valid confidence intervals are also constructed 

using a bootstrap technique presented by the authors. The results of the criterion 

largely confirm our hypothesis test findings. Except Japan, we document that stock 

market return volatility causes more strongly than the other variables real economy at 

long prediction horizons in Germany, and Italy. Moreover, the volatility of US stock 

returns appears to have a statistical significant indirect impact on output growth at 

distant horizons through money supply growth rates.  

Third, a forecasting exercise reveals that the combination of stock return 

volatility, short-term interest rates, money supply growth, and inflation in a single 

regression model generates more accurate forecasts of output growth than the 

autoregressive model in the long term. Our forecasting results validate the causality 

linkages between stock market volatility, monetary policy and output growth obtained 

in our empirical investigations. We also show that single indicator specifications 

based on the lag structure  revealed by our in-sample analysis fares well at predicting  

short term industrial production growth rates relative to the benchmark model when 

pooling the forecasts across estimation windows of different lengths or using a large 

simulation scheme  to offset small sample estimation bias. 
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Chapter 2 

 

Investigating the finite sample properties of causality-in-variance tests:  

A Monte Carlo approach 

 

 

1. Introduction 
 

Causality-in-variance has become an important element in risk management, 

asset pricing and the development of economic policy. A good understanding of the 

volatility spillovers is necessary for optimal asset allocation and the construction of 

better hedging techniques. For policy makers, the ability of measuring the 

transmission of volatility across markets is crucial for the development of various 

regulatory requirements, such as capital requirements or capital controls.  

Granger‟s (1988) definition gave rise to a rapid growth of general econometric 

procedures for testing the noncausality-in-variance hypothesis between assets or 

economic variables (Cheung and Ng, 1996; Koutmos and Booth, 1995; Comte and 

Lieberman, 2000; Hong, 2001; Hafner and Herwartz, 2006). Recent econometric 

literature on testing causality-in-variance can be categorized into two strands. The 

first one focuses on testing for causality in the framework of multivariate models such 

as multivariate GARCH (MGARCH) models. MGARCH models provide the natural 

framework for testing causality in variance.   Comte and Lieberman (2000) introduced 

a general theoretical framework, which involves the estimation of VARMA models 

with multivariate GARCH type errors. In their framework the null of non-causality-

in-variance can be carried out by imposing linear restrictions on the GARCH 

parameters and testing their significance through likelihood based tests. The second 

strand focuses on testing for causality-in–variance by employing univariate GARCH 

models. Cheung and Ng (1996) proposed a simple two-step procedure based on the 

cross-correlation function (CCF) of the univariate squared standardised innovations 
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obtained from univariate GARCH models. Hong (2001) presented enhanced versions 

of the CCF tests by employing a weighting scheme on the cross-correlation 

estimates
1
. In addition to the CCF based tests, Hafner and Herwartz (2006) propose a 

Lagrange Multiplier (LM) test which constitutes an   adaptation of the 

misspecification testing framework in univariate GARCH models introduced by 

Lundbergh and Terasvirta (2002). 

There is a considerable body of literature on investigating the causal 

relationships between the volatilities of international asset prices, including stock 

markets (Koutmos and Booth, 1995; Hu et al, 1997), exchange rates (Hong, 2001; 

Caporale et al., 2002), and exchange rates and derivatives (Cheung and Ng, 1996). 

However applications on economic time series are relatively sparse. To our 

knowledge, Vilasuso (2001) examined the causal relationship between money and 

prices, while Caporale and Spagnolo (2003) investigated whether there is evidence of 

volatility transmission between stock market and output growth in developed and 

emerging markets.  

Despite the extensive empirical evidence and the recent theoretical developments 

in the field
2
, so far only limited simulation evidence is reported about the finite 

sample performance of recently proposed causality-in-variance tests. Likelihood 

based tests within the MGARCH framework are expected to be more efficient, given 

that the parametric model is well specified. However, due to dimensionality problems 

this is never possible in practice; in empirical research low order MGARCH models 

are usually employed. On the other hand, testing procedures within the univariate 

framework are easier to implement, as they do not involve simultaneous modelling of 

intra and inter-series dynamics. 

Furthermore, various major practical and theoretical questions are still left open to 

puzzle the academic researchers and the market practitioners. First, Cheung and Ng‟s 

(1996) tests involve calculating the sum of estimated squared cross-correlations. The 

practitioner must choose a number of cross-correlations to use in computing the test 

statistic. A similar decision must be made for the bandwidth parameter of the Hong‟s 

                                                           
1
 The reader can find many financial applications of the „multivariate‟ (Karolyi ,1995; Booth and 

Kootmos  ,1995; Booth et al. ,1997; Ng ,2000; Caporale et al. ,2002) and „univariate‟ methods ( Hu et 

al. ,1997; Kanas and Kouretas, 2002; Constantinou et al., 2005; Inagaki, 2007) 
2
 Comte and Lieberman (2003) provided evidence on the asymptotic properties of the multivariate 

GARCH models. 
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(2001) tests.  The lack of a procedure that helps the researcher to make an appropriate 

choice on the lag selection parameter or the bandwidth raises some uncertainty 

concerning the reliability of the statistical inference. So far, there is only limited 

evidence on the empirical performance of these tests related to different arbitrary 

selections of the lag truncation or the bandwidth. Second, the Cheung and Ng (1996) 

and Hong (2001) tests have not been compared against the Comte and Lieberman‟s 

(2000) likelihood based tests or the recently proposed Hafner and Herwartz‟s (2006) 

Lagrange Multiplier test. Third, it is interesting to examine the performance of these 

tests under different degrees of persistence, since they can be implemented not only to 

high persistent financial data, but also to macroeconomic data of moderate or low 

persistence. Fourth, it is of great importance to investigate the performance of 

causality-in-variance tests in the presence of long horizon causality dynamics. For 

example, in the case of financial data, one expects to detect causality at low lags 

(short horizon causality dynamics). However, when these tests are applied to detect 

causality between financial and macroeconomic variables causality patterns can be 

detected at distant lags, that is long horizon dynamics are present.   

  The purpose of our paper is to evaluate the finite sample properties of recently 

proposed Granger causality-in-variance testing procedures and to introduce some 

modifications that improve their practical implementation to financial and economic 

time series. We focus our attention on four testing procedures: the Likelihood Ratio 

(LR) tests in the framework of a GARCH-BEKK(1,1) model as employed by Comte 

and Lieberman (2000); Cheung and Ng‟s S test (1996); the semiparametric CCF Q 

tests proposed by Hong (2001); and the Lagrange Multiplier (LM) test of  Hafner and 

Herwartz (2006). The causality-in-variance tests are compared in an extensive 

simulation study under different degrees of persistence, alternative causal structures 

and for a wide range of the lag truncation and the bandwidth parameter values. The 

simulation results show that Comte and Lieberman‟s LR as well as the Hafner and 

Herwartz‟s LM tests suffer from severe size distortions, while they demonstrate very 

low power, under long horizon causality alternatives. Both cross correlation tests are 

reasonably well sized. However, Hong‟s Q test demonstrates less sensitivity to 

arbitrary choices of the weighting scheme and alternative volatility dynamics, when 

compared to Cheung and Ng‟s S test.  Furthermore, cross correlations tests are 

favorably compared to LR and LM tests in terms of empirical power under a sequence 
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of local alternatives. However, our results reveal that the power performances of Q 

and S tests greatly depend on the choice of bandwidth and lag truncation respectively.  

 Motivated by these findings, we introduce  simple methods for automatic 

bandwidth selection used in Hong‟s Q test calculations. Since the researcher has no 

apriori knowledge of the exact causal lag structure of the two series, it is evident that 

the appropriate bandwidth must be determined endogenously by the data. First, we 

follow an idea developed by Zivot and Andrews (1992) and we propose a naive 

approach which detects the particular bandwidth that assigns the most weight to the 

alternative. Since large values of the test statistic lead to rejection of the null of non- 

causality, bandwidth is chosen to maximize the causality test. As a consequence, 

critical values  are data dependent and the use of standard normal distribution may 

lead to misleading inference. Our approach is to obtain critical values using the 

extreme value distribution as proposed by Berman (1964). A second method estimates 

the optimal bandwidth parameter as a structural change in the distributional behavior 

of the test. Dumbgen (1991) type estimators are used to determine optimal bandwidth 

parameter while three different semi-norms are implemented in  the  measure 

calculations.  A third method estimates optimal bandwidth in a nonparametric 

regression of the squared standardized innovations based on the cross-validation 

method. Under this rule, bandwidth is selected by minimizing  the integrated squared 

error criterion of the kernel regression, which is a classical measure of the closeness 

of the kernel estimator to its target parameter value. Simulation results show that the 

implementation of our procedures ensures high finite sample power.  

In a brief empirical illustration, we examine the causal relationship between 

the stock price volatility and industrial production volatility in the United Kingdom, 

Japan, United States and Italy. The results suggest that the volatility of stock market 

returns is a leading indicator for the conditional variance of industrial production for 

the United States, United Kingdom and Japan at level of significance 5% while the 

volatility of industrial production help to predict the future stock returns volatility 

only in the case of  the United Kingdom (at level 5%) and US and Italy (at level 

10%).  

The remainder of the chapter is organized as follows. In the next section we 

briefly present the four causality-in-variance tests. Section 3 provides the details about 
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the Monte Carlo design. The simulation results are described in Section 4. Section 5 

contains the  empirical application and a final section concludes 

 

2. Econometric testing procedures 

 

In this section we briefly discuss the four methodologies for testing the no 

causality-in-variance null hypothesis.  

  

 

 

2.1. Likelihood Ratio Tests in  the MGARCH framework 

 

Testing within the MGARCH framework has great empirical appeal because such 

specifications allow for interaction between the time varying volatilities of the series. 

Comte and Lieberman (2000) delivered a general theoretical framework with 

empirical implications for testing non causality-in-variance within VARMA models 

where the conditional covariance matrix is modeled as MGARCH.   

Several MGARCH models have been employed in the literature
3
. A major problem 

with these models is that the researcher has to estimate a large number of parameters. 

Another problem is the positive definiteness of the conditional covariance matrix
4
. 

One of the most popular MGARCH specifications, the BEKK model defined in Engle 

and Kroner (1995), guarantees by construction the positive definiteness of the time-

varying variance-covariance matrix.  

Let us now briefly present  the testing procedure in the framework of a BEKK model. 

Consider a bivariate stochastic stationary and ergodic process   ttt yyy 21 , . Mean 

dynamics can be estimated by a VARMA model: 

 

t

n

nt

r

r uLBLByLALA )...1()...1( 11                                        (1) 

                                                           
3
 The most popular are the VECH model of Bollerslev, Engle, and Wooldridge (1988) , the BEKK 

model introduced in Engle and Kroner (1995), the Constant Correlation Model of Bollerslev (1990), 

and the Dynamic Correlation Model introduced by Engle (2002). See Bauwens, L., Laurent, S.,  

Rombouts, J. V. K. (2006) for a broad review of the MGARCH models 
4
 See Ding and Engle (1994) 
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Where L  is the lag operator and lA , ml ,...,2,1 and B , n,...,2,1 are 2x2 

matrices of coefficients.  

If   ttt uuu 21 , is the vector of innovations, with ),0(~1 ttt HNu  , where 1t  is 

the information set available at time 1t , the BEKK form of a GARCH(p,q) process 

is specified as: 

    
 




p

k

q

m

mmtmkktktkt FHFGuuGDDH
1 1

.     (2) 

In (2) D  is a 2x2 upper triangular matrix and kG , pk ,...,2,1 , and mF , 

qm ,...,2,1 are 2x2 parameter matrices. One of the disadvantages of the BEKK(p,q) 

model is that the number of parameters increases rapidly with p and q . Conducting a 

testing procedure, which relies on the estimation of large number of parameters, raises 

a reasonable amount of concern about the precision of the estimates and the reliability 

of the statistical inference. Consequently, a low order model is preferred in the 

empirical research. Following the literature, we set 1 qp and we consider the 

BEKK(1,1) model for testing causality-in-variance in our analysis:                               

1111111 FHFGuuGDDH tttt 
       (3) 

As reported by Comte and Lieberman (2000), such a specification of the conditional 

covariance matrix allows us to test the null hypothesis of no causality-in-variance by 

setting the relevant off-diagonal coefficients of the parameter matrices equal to zero 

For example, the null hypothesis that the ith variable does not Granger-cause the jth 

variable in variance is formulated as 0:0  ijij agH ,  2,1, ji , ji  . 

The Likelihood Ratio test (LR) is employed to test for the validity of the null 

hypothesis of no causality-in-variance. Under the null, the LR test statistic has a chi-

square distribution with  degrees of freedom, where  is the number of the 

restrictions imposed. It should be noted that under the usual regularity assumptions a 

sufficient condition for the asymptotic distribution of the LR test is the asymptotic 

normality of the quasi-maximum likelihood (QML) estimator of the MGARCH (p,q) 

specification. Not until recently, Comte and Lieberman (2003) derived asymptotic 

normality of the QML within the BEKK model. 
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The three alternative testing approaches that follow overcome the 

dimensionality problem because they involve estimation of univariate GARCH 

models.  

 

 

2.2. Cheung and Ng ‘s (1996) CCF tests  

 

Cheung and Ng (1996) present a simple and convenient two-step framework, 

with the important advantage that avoids the complexity of the direct estimation of the 

time-varying variance-covariance matrix. The CCF approach is an extension of the 

procedures developed by Haugh (1976) and McLeod and Li (1983). Their test 

statistics are asymptotic and they are not based on any innovation distribution 

assumption like normality.  

In the first step, a VAR(r) model with GARCH type errors is fitted to the 

bivariate process   ttt yyy 21 , :  

tt

r

r uyLALA  )...1( 1 ,        (4) 

with   ttt uuu 21 , ,   2/1

ititit hu  , and  it , 2,1i , two independent sequences of 

iid random variables with mean zero and unit variance
5
 . Conditional variances are 

given by 








 
q

m

mtiim

p

k

ktiikiit hbuaah
1

)(

1

2

)(0 .       (5) 

 

The second step involves the calculation of the sample cross-correlation function 
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5
 Lundbergh and Terasvirta (2002) assume 03 itE  to ensure block diagonality of the information 

matrix of the log-likelihood function.  
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The null hypothesis that ity does not Granger-cause in variance jty  up to lag N can 

be tested using the test statistic 





N

ijTS
1

2 )(ˆ


 ,                                                                                                         (6)    

which is asymptotically distributed as chi-square with N degrees of freedom. 

Alternatively, when the sample size is small a modified chi-square test can be used:  




 
N

ijTS
1

2 )(ˆ


  ,                                                                                                      (7)     

where    TT or      TT 2  

The empirical performance of Cheung and Ng s‟ tests presents great 

sensitivity to arbitrary selections of the lag truncation parameter N.  

 

 

2.3. Hong’s (2001) kernel-based CCF tests  

 

Hong (2001) suggested a CCF based test which can be viewed as a generalization of 

the Cheung-Ng test. Specifically, he proposed a normalized test, the Q test, which 

utilizes a weighted sum of sample cross correlations. Under the null of no causality-

in-variance, the Q test defined as 

    
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follows asymptotically the standard normal distribution, where (.)w  is the weighting 

(kernel) function, N is called the bandwidth parameter,  



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2 )/(/1)(
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4 )/(/)1(1/1)(
T
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Hong (2001) considers several widely used in the literature kernels as 

weighting functions, all assigning larger weight to a lower lag order (non-uniform 

kernels), except the truncated kernel (uniform kernel), which gives equal weighting to 
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all lags up to N. Kernels of compact support, like the truncated, Bartlett, Parzen and 

Tukey-Hanning assign to squared sample cross-correlations zero weight for lags 

higher than N, while the Daniell and Quadratic-Spectral kernels have unbounded 

support. These kernels include all T-1 sample cross-correlations.  The Q test is one-

sided, because under the alternative it diverges to positive infinity in probability as 

T . 

Hong (2001) provides also modified versions of the Q test for small samples, i.e. 
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The main disadvantage of the Hong‟s Q  tests is the absence of a specific rule 

for the selection of the appropriate bandwidth N. Hong (2001) argues that the use of 

non – uniform kernel functions such as Quadratic Spectral, Parzen, Bartlett and 

Daniell, make the power robust to the choice of the bandwidth parameter N . 

However, the issue of how many cross-correlations should be employed in computing 

theQ , and 
*Q test statistics remains an open question.   

 

 

 

2.4. The Lagrange Multiplier test of Hafner and Herwartz (2006) 

 

Hafner and Herwartz (2006) proposed a Lagrange Multiplier test statistic for 

causality in variance based on the estimation of univariate GARCH (1,1) models. 

Their framework is an adaptation of the general Lagrange Multiplier misspecification 

test introduced by Lundbergh and Terasvirta (2002). Let us assume for simplicity 

that tt uy  , where   ttt yyy 21 ,  and   ttt uuu 21 , . To test the null that jty  does not 
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Granger-cause ity in variance for 2,1, ji , ji  , Hafner and Herwartz (2006) 

consider the model:  

1

2

1   itiitiiit hcubah ,                  (10) 

  ,
2/1

tititit hu                                                                                                        (11) 

,1  jtt s                                                                                                              (12) 

    1

2

1, jtjtjt hus , 0 ,   and                                                                                 (13) 

 it a sequence of iid random variables with zero mean and unit variance. 

The null and alternative hypotheses of the LM test are 0:,0: 10  HH . If the 

null of no causality-in-variance is valid, the model given in (10) disintegrate to a 

GARCH (1,1) model, and a LM test statistic can constructed as follows: 
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The LM statistic follows asymptotically the )2(2 distribution. The LM test of Hafner 

and Herwartz can be also easily computed as T times the 2R , where 2R  is the centered 

coefficient of determination of the regression of )1( 2 it on jts and itz . 
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3. Monte Carlo experiments 

 

   We conduct Monte Carlo experiments in order to assess and compare the size 

and power properties of the econometric tests outlined in the previous section in finite 

samples and under alternative assumptions of practical importance. 

 First, we evaluate the sensitivity of the CCF tests to the different choices of the 

lag truncation and the bandwidth parameter. CCF causality-in-variance tests proposed 

by Cheung and Ng (1996) and Hong (2001) are easy to implement, however, their 

performance in finite samples can depend greatly on the choice of the lag truncation 

and the bandwidth parameter respectively.  

Second, the credibility of statistical inference is being assessed for different causal 

time lag structures
6
, usually met in financial and economic applications. Even though 

the existing literature on testing the non-causality-in-variance hypothesis focuses 

mostly on the existence and the direction of causality, we believe that the causal lag 

structure of the time series is important. For example, in financial applications the 

researcher expects to detect spillover effects at low time lags; however that will not be 

the case when both macroeconomic and financial time series are involved. In such a 

case, one might anticipate that the volatility of asset prices takes more time to be 

transmitted to the volatility of macroeconomic variables. Furthermore, Dufour and 

Taamouti (2010) argue that a random variable X may cause a variable Y at long 

horizon if the causality is transmitted from X to Y indirectly through auxiliary 

variables.  

In order to empirically reason this idea we conduct a preliminary analysis on two 

pairs of time series; the first includes financial and macroeconomic series while the 

second concerns only financial data. The sample covers a period from February of 

                                                           
6
 Hong (2001) provided some limited evidence on  the  performance of the CCF tests to different causal 

patterns. In particular, he included in his experiments cases of one and a fourth lag period causality in 

variance. 
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1973 through September of 2008
7
. In Figure1 we display graphically the sample 

cross-correlations for 36 lags between the monthly stock returns volatility and 

volatility industrial production growth
8
 in the case of Japan. In the direction of 

positive lags, the cross-correlations exceed the two confidence bounds at distant lag 

periods, suggesting a long horizon causal structure in the volatility processes. In 

Figure 2 we plot the sample cross-correlations for 36 lags between the monthly 

squared stock returns of UK and US. The cross-dependence pattern changes 

thoroughly; only recent changes of the US squared stock returns seem to lead those of 

the UK. Motivated by these considerations, we extend the simulation design by taking 

into account also a second type of models where the conditional variances of the two 

processes are related through a distant time lag causal structure. We refer to this type 

of causality patterns as long horizon causality. 

 In addition to the previous, in our design we assume alternative volatility 

dynamics, reflecting the variations in the persistence of the volatility processes 

between financial and economic time series. In similar research (Hong (2001), 

Pantelidis and Pittis (2004), Dijk et al. (2005), and Hafner and Herwartz (2006)) the 

parameter values in the Monte Carlo experiments yield Integrated MVGARCH 

models and highly persistent volatility processes
9
. Although these papers pay close 

attention to high volatility persistence because it usually causes standard inference 

methods to break down, we broaden the evidence by including models with volatility 

dynamics usually met in real macroeconomic applications. 

 

3.1.  Data Generating Mechanism 

The zero mean bivariate stochastic process ),( 21
 ttt yyy  is generated by the 

following data generating process (DGP): 

,tt uy   Tt ,...,2,1 ,                                                                              (15) 

                                                           
7
 In Section 4 we describe the data with more details.  

8
 The realised volatility is measured as the squared values of the (real) returns and growths.  

9
 Hafner and Herwartz (2006) allow for alternative degrees of volatility persistence but their analysis is 

restricted to the cases of a near Integrated GARCH process and an Integrated GARCH process.  A 

similar evaluation is performed by Pantelidis and Pittis (2004) focused on the size properties; note also 

that Hong (2001) employs low persistent  univariate GARCH processes associated through exogenous 

lagged conditional variance terms.   
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where ),( 21
 ttt uuu , ][ ijdD  ,  ][ ij

k

k gG  , pk ,...,2,1 , and ][ ij

m

m fF  , 

qm ,...,2,1 , are square parameter matrices . 

Following Engle and Kroner‟ s (1996) definition of a covariance stationary BEKK 

process, we characterize the bivariate GARCH process defined in (15)-(18) as highly 

persistent if the maximum eigenvalue of     
 


p

k

q

m

mmkk FFGG
1 1

 is near to one in 

modulus.  

To investigate the size as well as the power of the tests under a series of empirically 

plausible alternatives, we consider the following set of parameters under the DGPs 

defined in (15)-(18): 

NULL1: [No Granger causality-in-variance, high persistence in the volatility process] 
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NULL2:  [No Granger causality-in-variance, low persistence in the volatility process] 















).,,,.()fff,f(

).,,,.()gggg(

qp

100030,,

3500050,,,

1

22

1

21

1

12

1

11

1

22

1

21

1

12

1

11

1  

  

ALTER1: [Unidirectional, short horizon Granger causality-in-variance, high 

persistence in the volatility process] 
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ALTER2: [Unidirectional, short horizon Granger causality-in-variance, low 

persistence in the volatility process] 
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ALTER3: [Unidirectional, long horizon Granger causality-in-variance, high 

persistence in the volatility process] 
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ALTER4: [Unidirectional, long horizon Granger causality-in-variance, low 

persistence in the volatility process] 
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For all the cases, we set )0,0,0,0(),,,( 22211211 dddd . We denote NULL1, ALTER1, 

and ALTER3 as highly persistent since in these models the maximum eigenvalue in 

modulus is 0.88.  On the other hand, NULL2, ALTER2, and ALTER4 correspond to 

low persistent volatility processes; the maximum eigenvalue in modulus in these cases 

equals 0.45. There is no causality-in-variance under the high persistent NULL1, and 

the low persistent NULL2. This set up allows investigating the empirical size for 

different degrees of volatility persistence. Under ALTER1 and ALTER2 there exists 

short horizon causality-in-variance from ty2 to ty1  while in the  case of ALTER3 and 

ALTER4 volatility spillovers from ty2 to ty1  occur at long horizon of time lag length 

12. To assess the empirical performance of the CCF-based tests under different 

weighting schemes we use six kernel functions: the Bartlett, Parzen, Quadratic 

Spectral, Daniell, Tukey-Hanning and truncated kernels. Moreover, we calculate 

empirical size and power for a wide range of values for the bandwidth and the 

truncation lag parameter N (N = 5, 10, 20, 30, 40, 50, 60, 70, 80). The sample size T is 

200, 500, and 1000
10

 while for each case we generate 2500 replications. The start-up 

value for the conditional variance process is  set  equal to the unconditional variance 

*

tH ,     )(

1

1 1

* DDvecFFGGIH
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mmkkt
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



 







 

  . After we have produced the 

simulated series, we apply the testing procedures described in Section 2. 

 

 

 

                                                           
10

 Following the literature we generate 4500 observations for each replication and we discard the first 

2000 observations to reduce the start up effect.  
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 4. Monte Carlo results 

 

First, we examine the empirical size of the causality-in-variance tests 

described in section 2 under the null hypothesis that ty2 does not Granger-cause in 

variance ty1 . For space reasons we only present the results for Q  and S tests, while 

the  results for the *

1Q and *S  tests are qualitatively very similar tests and are available 

upon request. Table 1 reports the size of the CCF tests at the 10% and 5% levels under 

the highly persistent NULL1. It is evident that Q  tests perform quite similar for 

different sample sizes T, while their performance is relatively invariant to different 

non-uniform weighting schemes (e.g. Daniell, Tukey-Hanning, Quadratic-spectral, 

Bartlett and Parzen), and to the choice of bandwidth N. Specifically, the kernel based 

tests are slightly undersized for small N, but their empirical size is very close to the 

nominal for bandwidths larger than 10. On the other hand, S statistic faces under-

sizing problems at both levels of significance, which become more pronounced as the 

lag truncation N increases. Its performance is very similar to that of the Q statistic 

when the truncated kernel is used. As far as the LM and the LR tests are concerned, 

Table 3 reveals that they face severe size distortions. Table 2 reports the empirical 

size of the CCF tests under the NULL2, i.e. when the underlying volatility process is 

low-persistent. All size patterns are very similar to those under NULL1. However, 

under NULL2 the under-sizing of the Q  tests at low bandwidths is slightly larger. 

Furthermore, the LM and LR tests remain significantly undersized. In sum, under 

both NULL1 and NULL2 the size properties of Hong‟s tests are relatively invariant to 

the choice of the kernel function and bandwidth, while Cheung and Ng‟s  S statistics 

appear to be more sensitive to the choice of the lag truncation parameter.  The Comte 

and Lieberman‟s LR as well as  Hafner and Herwartz‟s LM  tests face significant size 

distortions. 

Next, we examine the power performance of the causality-in-variance tests 

under evaluation, for a sequence of alternatives.  The power performance of the CCF-

based tests is evaluated for several values of the bandwidth/lag truncation parameter 

N, and different weighting schemes. 
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In the graphs of Panel I we display the power of the CCF-based tests, under 

the high persistent ALTER1, where there exists short horizon causality from 

ty2 to ty1 . The graphs in the left column present the performance of the tests at level 

5% while those in the right column present the performance at level 10%. The power 

patterns present in the graphs of both columns are similar. On the other hand, the 

reader may observe that when the sample size T increases the cross-correlation tests 

appear to perform better at both levels of significance. Note that the power reaches a 

maximum value around N = 5 and then decreases gradually; for example, for T = 500 

the rejection rates of Q  which is based on the Quadratic Spectral kernel with N =5 

and N = 50, are approximately close to 75% and 40% respectively at level 5%. Q  

tests with non-uniform weighting are more powerful than tests with uniform 

weighting. Specifically, the Q  test which is based on the Parzen kernel is the most 

powerful, while the S test has the worst power performance. The results provide some 

support for use of certain kernels like the Parzen or the Bartlett and indicate that a 

careful choice of the number of cross-correlations is important for the reliability of the 

statistical inference. Particularly, in the case of low horizon causality large values of 

the bandwidth/lag truncation parameter N result in a significant loss of power.  

Let us now explore the power performance of the CCF-based tests when the 

underlying volatility process is low persistent. The results for the tests against 

ALTER2, where there exists short horizon causality from ty2 to ty1 , are presented in 

the graphs of Panel II. The power performance is qualitatively similar to that observed 

against the high persistent ALTER1. Specifically, the power reaches a maximum 

value around N = 5 and then monotonically decreases. Furthermore, the performance 

of all CCF based tests is much better at large sample sizes than medium or small.  For 

example, at 5% level of significance for T = 200 and N = 5 the power of Q  tests when 

the Quadratic Spectral kernel is used, is close to 35%, while for T = 1000 is 

approximately equal to 95%.  However, there is a significance difference in the 

performance of the CCF-based tests against ALTER1 and against ALTER2. All CCF-

based tests are more powerful when the underlying volatility process is highly 

persistent, for all the values of the bandwidth/lag truncation parameter N, and 

irrespective of the weighting scheme employed. For example, for T= 500 the rejection 
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rates of the Q  test with N = 30, which is based on the quadratic-spectral kernel, are 

approximately equal to 86% and 66% against ALTER1 and ALTER2 respectively. As 

N increases the differences in power do not become more pronounced; the rejection 

rates of the Q  test with N = 80, which is based on the quadratic-spectral kernel, are 

close to 65% and 46% against ALTER1 and ALTER2 respectively.  

To investigate the power of causality-in-variance tests on detecting long 

horizon volatility spillovers, we examine their rejection probabilities against the high 

persistent ALTER3, and the low persistent ALTER4. Under both ALTER3 and 

ALTER4, there exists long horizon causality (at lag 12) from ty2 to ty1 . In the figures 

of Panel III we display the power performance of the CCF-based tests against 

ALTER3.  The picture is quite different from that observed against the short horizon 

ALTER1 (Figure of T = 500 and level of significance 5%).  Specifically, the power is 

very low for bandwidths/lag truncations less than 12; tests with non-uniform 

weighting have rejection rates steadily below 10%. However, as the bandwidth/lag 

truncation N  approaches a critical value *N , power exhibits a sudden increase and 

takes values between 95% and 100%.  The critical value *N equals 12 in the case of 

the tests with uniform weighting, while is somewhat larger for the tests with non-

uniform weighting. The power performance of the tests appears to be very similar 

when applied at levels of significance 5% and 10% and at medium and large sample 

sizes.  

Similar results are obtained against the low persistent ALTER4.   The results 

presented in the graphs of Panel VI confirm the fact that the all power patterns are 

similar to those under the high persistent ALTER3. We observe the same tendency of 

under-rejecting the null of no causality-in-variance for N less than 12, while all tests 

reach high power at larger values of N.  However, the power levels of the CCF-based 

tests are lower than those observed under the high persistent ALTER3 (figures of 

Panel III). 

Finally, we examine the performance of the LM and LR tests of non causality-

in-variance. In Table3 we report their empirical power against ALTER1-4. LR test 

establishes itself as being the trustworthiest empirical tool against short horizon 

alternatives irrespective of the alternate degrees of volatility persistence or the sample 
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size. On the other hand, when applied to medium and large samples (T = 500 and 

1000) the LM test has good power against ALTER2 (67% and 93.88% respectively) 

but is less powerful against ALTER1 (23.04% and 25.08% respectively) at level 5%, 

what indicates that the LM test loses power when the underlying volatility process is 

highly persistent. At levels 5% and 10%, both tests severely under-reject under the 

long horizon alternatives, ALTER3 and ALTER4 when applied to small, medium or 

large samples.  

In summary, the empirical size of the CCF-based tests is close to the nominal 

size and appears to be relatively invariant to different non-uniform weighting schemes 

and to the choice of the bandwidth parameter N. On the other hand, LM and LR tests 

exhibit considerable size distortions. The persistence of the underlying volatility 

process does not seem to have any significant impact on the empirical size. However, 

the empirical power of the CCF-based tests, seem to be higher against high persistent 

alternatives, while the opposite holds for the LM test.   CCF-based tests exhibit good 

power properties but their performance crucially depends on the choice of the 

bandwidth/lag truncation parameter N. Specifically, the horizon of causality 

determines how power depends on the choice of N. Simulation results support the 

belief that LR tests have the best power
11

, but only under the presence of recent 

volatility spillovers.  Our findings clearly indicate that the power performance of LR 

and LM tests against long horizon causality alternatives is very poor.   

Because of their poor performance against some of the alternative models considered, 

LR and LM tests cannot be considered reliable tools for statistical inference. On the 

contrary, the CCF-based tests have better power properties provided that the 

bandwidth parameter is accurately selected. Among the CCF-based tests Hong‟s Q  

test should be preferred for empirical work since they exhibit better size properties. 

To enhance the applicability of these tests, we suggest a practical rule for selecting the 

optimal bandwidth
12

.  In the next section, we describe a simple procedure that 

automatically selects the optimal bandwidth for the calculation of the Q  tests. 

  

                                                           
11

 See Hafner and Herwartz (2006) 
12

 Optimal bandwidth is considered the bandwidth that maximises the power of the tests 
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5. Automatic Bandwidth Selection 

 

In this section, we describe two data driven method for selecting the optimal 

bandwidth parameter. As is shown by the simulations results presented in the previous 

section the bandwidth has little impact on the size of the Q  tests while it significantly 

affects their empirical power. 

The investigation of the empirical power as a function of the bandwidth N 

revealed an interesting feature: at a certain value of the bandwidth parameter, 
*N , 

power exhibits some sort of episodic variation. Moreover, this shift occurs at a 

bandwidth that is associated with the true horizon 
*k of the causality pattern. For 

bandwidths less than the true causality horizon 
*k the tests yield very low power. 

Specifically, at these bandwidths the empirical power is very close to the nominal size 

of the tests. This is not surprising since for 
*kN   kernels of compact support 

(truncated, Parzen, Bartlett, Tukey-Hanning)  attach non-zero weight only to cross-

correlations )(N which equal to zero. This happens because in the case of a long 

horizon causality  DGP, causality occurs at lag 
*k greater than the selected bandwidth 

N . In the case of kernels of unbounded support (Daniell and Quadratic Spectral) the 

power behaves similarly since zero cross-correlations )(N , 
*kN  , receive much 

larger weights. Consequently, in the case of long horizon causality, Q statistics for 

bandwidths N less than the true causality horizon 
*k behave as if the null hypothesis 

of no causality was true, and the power is close to the nominal size. At a certain 

bandwidth 
** kN  the statistics capture the long horizon causality dynamics and 

yield high power. This particular bandwidth 
*N can be regarded as change-point in 

the distributional behaviour of the Q  test, and the stability of the power performance 

of the test. 

At these change-points Q  tests yield maximum power. Thus, the optimal 

bandwidth can be defined by selecting among the various potential optional 
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bandwidths the specific value that generates a permanent regime shift in the power 

performance of the Q  tests.  

 Our primary objective is to test the null of non causality-in-variance against 

the alternative of causality of unknown horizon.  To start with, we suggest a naive 

way to proceed, which can be seen as a rough approach. Since the size of the Q  tests 

is approximately equal to the nominal significance level for a variety of arbitrary 

bandwidth selections, we suggest to detect the particular bandwidth that assigns the 

most weight to the alternative. Since large values of the test statistic lead to rejection 

of the null of no causality-in-variance, N is chosen to maximize the one sided Q test. 

This idea is quite similar in spirit to the one used by Andrews and Zivot (2002) to test 

the unit root hypothesis.  

If we denote *N  the optimal bandwidth parameter, then we can utilize a grid search 

to determine its value: 

)(maxargˆ
2

* NQN
kNN

 .                                         (18) 

 
*N̂ is an estimator of the optimal bandwidth and the upper bound kN is any large 

positive integer. The proposed procedure determines the optimal bandwidth to be the 

point at which the Q  test is maximized for a selected grid of kN  bandwidth values. 

The application of this procedure is quite simple and computationally attractive.  

 The resulting distribution of the test statistic )(max
2

NQB
qN

q


  for some N 

chosen using the data is different than the standard normal. The following theorem 

suggests using the critical values of the extreme value distribution of Type I to 

conduct inference. 

Theorem. Let    qQQ ,...,2  a sequence of Q test statistics as defined in (8) with q any 

integer greater than two. Then  

    ,exp x

qqq exdBcP                                                                                (19) 

in distribution  
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where  

  2/1
log2 qcq  ,  iQB qiq  2max , and    4loglogloglog25.0

2/1



qqcd qq . 

 Our result is a straightforward application of the limit theorem for the maxima 

of independent and stationary random variables proposed by Berman (1964).    

 

 A strategy more satisfactory from a theoretical point of view could be based 

on the estimation of the optimal bandwidth  
*N  as  a change-point in the 

distributional behaviour of the Q  test. Darkhovskh (1976) and Carlstein (1988) are  

among the first who considered the problem of change-point estimation for a 

sequence of random variables in a nonparameric setting. Dumbgen (1991) generalized 

their results and showed that the rate of convergence is  )( 1

kp NO .
13

 The concept 

behind Carlstein‟s approach is to compare the differences between the empirical 

distributions before and after a hypothetical  change-point, for a sequence of 

hypothetical change-points. Specifically, given the sequence of statistics 

},...,2,1),({ kNNQ we estimate the optimal bandwidth 
*N using the estimator: 
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measure and )( is a semi-norm on the space of signed finite measures. Following 

Carlstein (1988) we employ the following three semi-norms:  
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13

 Darkhovskh(1976), Calrlstein (1988) as well as Dumbgen (1991) considered independent sequence 

of random variables. Recently, Ben Hariz et al. (2007) considered a very general class of dependent 

sequences  and  proved the consistency of Dumbgen-type estimators.  
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The upper bound kN  can be any large number depending on the sample size. Our 

simulation results show that the selection of kN  has only minor effects on the 

performance of the Q  tests.  

 A third selection rule estimates the optimal bandwidth by implementing the 

method of cross-validation in a kernel regression of  te2
ˆ on   te1̂ . A standard 

criterion for evaluating an estimator is to determine how close it is to the true 

parameter value. For nonparametric  regression estimation by the kernel method, 

integrated squared error gives a measure of the distance between  the regression and 

the underlying 'smoothed' curve. The problem of  bandwidth parameter selection is to 

determine the bandwidth that is optimal in the sense that the  integrated squared error 

criterion is minimized with respect to all bandwidth selections. 

 Let  tt ee 21
ˆ,ˆ  be a realization of the bivariate process  tt YX , . Consider the 

regression 

 

   TtuXgY ttt ,..,1,                                                                                           (21) 

 

where   dg :.  represents a functional of tX  which minimizes 
2

)(XrYE   

with respect to   dr :.  with 
2

)(XrE , while  Ttut ,...,1,  are 

independent and identical distributed random variables with distribution  .F . 

The Nadaraya-Watson kernel regression estimator is defined as  
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where dW :  is the kernel function. 

 The cross-validation (CV) procedure, as suggested by Rudemo (1982) and 

Bowman (1984), selects the optimal bandwidth *N  by minimizing the Integrated 
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Squared Error       dxxgxg
2

ˆ . Consider (.)ˆ
Ng the estimate of the regression 

function (.)ĝ which corresponds to a specific bandwidth N. For each observation t, 

the method evaluates the prediction error   ttNt XgY  ,
ˆ  using the regression (21) 

with that observation removed from the modeling process. The term (.)ˆ
, tNg   denotes 

the 'leave-one-out' estimator, where  the tht observation is dropped from (22) 

 

 
  

   

  
   

Tt
NxXW

NxXWY
xg

tTs s

tTs ss

tN ,...,1,ˆ

\,..,1

\,..,1

, 











                                                  (23)                                                                          

  

Optimal bandwidth is estimated using a grid search  

)(minargˆ
2

* NCVN
TN

                                                                                               (24) 

where 

 

 




 
T

t

ttNt XgYTNCV
1

2

,

1 )(ˆ)( is the weighted average of squared errors.  

Härdle, Hall and Marron (1992) demonstrate that cross-validation yields bandwidths 

that are asymptotically consistent. 

Details about the finite sample performance of these estimation procedures are 

reported in the next subsection. 

 

 5.1. Simulation results 

In this section we report the results of the simulation study conducted to 

evaluate the empirical performance of the Q  tests when the bandwidth parameter is 

automatically selected based on the proposed in the previous section procedures. We 

also examine the sensitivity of these tests to the selection of the upper bound kN . The 
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Monte Carlo design remains identical to the one described in section 2, and examines 

the size and the power properties of the Q tests and the modified statistics qB .  

Table 4 reports the empirical size under NULL1 and NULL2 when the “naïve” 

optimal bandwidth selection procedure is implemented. kN  is set equal to 100. Let us 

first discuss the results of the tests when the critical values of the extreme value 

distribution are used. It is evident that under the low-persistent NULL2, Q tests with 

non-uniform weighting perform quite well; their empirical size is close to the 

nominal. For example, for T = 500 at the 5% level the empirical size of the qB test 

with Daniell, Quadratic Spectral, Parzen, Bartlett and Tukey-Hanning weighting is, 

3.04%, 3%, 2.92%, 2.92% and 2.96% respectively. Contrary, qB  test based on 

standard normal critical values suffers from size distortions; for 5% level, the 

empirical size of the qB test with Daniell and Quadratic Spectral weighting is 12.76% 

and 13.36% respectively. The empirical size performance of the qB  tests when the 

underlying volatility process is high-persistent (NULL1) is similar to that observed 

under the low-persistent NULL2. However, it is clear that in the former case the 

rejection rates are higher especially at the 5% level when using the critical values of 

the standard normal distribution. For example, for T = 1000 at the 5% level the 

empirical size of the qB test with Daniell, Quadratic Spectral, Parzen, Bartlett and 

Tukey-Hanning weighting is, 19.36%, 19.56%, 17.56%, 17.56% and 18.56% 

respectively. At level 10%  the results are very similar to those reported for NULL2. 

However, we need to highlight the fact that uniform weighting yields more profound 

over-rejection at both levels and for both null hypotheses; for example, under NULL2 

the 5% empirical size of the qB test with the truncated kernel when implemented to a 

sample  of size 1000 is 30.64% and 40.92% at levels 5% and 10%, respectively.  

Let us now report the empirical size performance of the Q tests when the 

optimal bandwidth is estimated using a Dumbgen-type estimator. The results reported 

in Table 5 show that the tests are well sized; the empirical size is very close to the 

nominal in most cases for both hypotheses. For example, under NULL2 for T = 500 

the 5% empirical size of the Q test with Daniell, Quadratic Spectral, Parzen, Bartlett 

and Tukey-Hanning weighting is, 4.84%, 4.8%, 4.64%, 5.08% and 4.88% 
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respectively. Overall, the size distortions are less profound comparing to those 

reported above for the case of the “naïve” optimal bandwidth selection procedure.  

Table 6 and Table 7 present the power simulation results for the proposed 

qB tests with the “naïve” optimal bandwidth selection procedure. The case of short 

horizon alternatives, ALTER1 and ALTER2, are reported in Table 6.  The proposed 

tests appear to have very good properties against both alternatives at levels of 

significance 5% and 10% for medium and large sample sizes; for instance when T = 

1000, the power of the tests is always beyond 80%. Note that when these tests are 

implemented to small samples ( T = 200) they achieve a bad performance against 

ALTER1 and ALTER2 ranging approximately from 10% to 50% at both levels.  

However, we should stress out that the reported power is the maximum power that 

can be achieved for this sample size for the range of bandwidths from 1 to 100 (see 

figures in Panel I and Panel II). The choice of the weighting scheme does not appear 

to have any  effect on the performance of the tests.  

Table 7 reports the power performance of the tests when our “naive” method 

of automatic bandwidth selection is implemented against the long-horizon 

alternatives, ALTER3 and ALTER4. The results suggest that qB  tests achieve 

maximum power against ALTER3, that is when the underlying volatility process is 

highly persistent. Specifically, when qB tests are implemented on data with T = 500 

and 1000 the power exceeds 90% irrespective of the kernel function used. Again, as in 

ALTER1 and ALTER2, the tests have a relatively satisfactory performance when 

applied to small sample sizes. Persistence in the volatility process does not seem to 

have any significant effect on the rejection probabilities in the presence of long 

horizon causality. In the case of low persistence, tests continue to have very good 

power against long horizon causality patterns; for T = 500, 1000 the power of the 

qB tests against ALTER4 is between 72% and 99.6% at the 5% significance level.  

Let us now discuss the power performance of the Q  tests when the optimal 

bandwidth is estimated using a Dumbgen-type estimator. The results are calculated 

for three semi-norm choices,  1  , 2 , and 3 . Table 8 reports the empirical power 

under the short horizon alternatives, ALTER1 and ALTER2. In general, we can the 

empirical power is lower than the one observed when the “naïve” optimal bandwidth 
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selection was used. This difference is more pronounced when the sample size is small. 

In the case of T=200 the power is relatively low. For example, under the high 

persistent ALTER1 the Daniell kernel yields power at the 5% and 10% levels  near 

24% and 30%, respectively. The power performance is getting better as the sample 

size increases. In the case of  non-uniform kernels the power at the 10% level is 

between 61% and 74%, and 88% and 97%, for T=500 and T=100, respectively. Under 

the low persistent ALTER2 the power is slightly lower. Except for this, all power 

patterns are similar to those under ALTER1. Non- uniform kernels give similar 

power, while the choice of the semi-norm has no significant effect on the power 

performance of the tests.  Under the long-horizon alternatives, ALTER3 and 

ALTER4, the results reported in Table 9 show that most of the kernels give high 

power. The exceptions is the Parzen and truncated kernels which give much lower 

power especially in small and medium sample sizes. All the other kernels give high 

power both under ALTER3 and ALTER4. For example, for T=1000 the empirical 

power is around 99% at both levels of significance. In the case of moderate sample 

sizes the power remains  high; for T=500 at the 10% level the power is  96%-99% 

under ALTER1, and 89%-98% under ALTER2. Our procedure yields good power 

even in the case of a small sample. For example, in the case of T=200, at the 10% 

level the empirical power is 60%-85% and 43%-63% under ALTER1 and ALTER2, 

respectively.  

Tables 8, 9 and 10 report the size and power performance of the tests when the 

cross-validation method of automatic bandwidth selection is implemented at levels 

5% and 10%. Overall, the tests are well sized at both levels of significance. For 

instance,  for T = 500 at the 5% level the empirical size of the Q test under NULL1 

with Daniell, Quadratic Spectral, Parzen, Bartlett and Tukey-Hanning weighting is, 

5.44%, 5.48%, 5.44%, 5.40% and 5.40% respectively. The size properties of the 

Q tests when implemented to high-persistent volatility processes (NULL1) are similar 

to those observed under the low-persistent NULL2. The Q tests appear to be oversized 

tests at level 5% under both NULL1 and NULL2 when applying the method of cross-

validation on  data of sample size T =1000. For example,  for T = 1000 at the 5% level 

the empirical size of the Q test under NULL1 with Daniell, Quadratic Spectral, and 

Tukey-Hanning weighting is, 9.88%, 9.96%, and 9.84% respectively.  
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Table 9 and Table 10 present the power simulation results for the proposed 

Q tests with the cross-validation based optimal bandwidth selection procedure. The 

case of short horizon alternatives, ALTER1 and ALTER2, are reported in Table 9.  

The proposed tests appear to have very good properties against ALTER2 at levels of 

significance 5% and 10% for all sample sizes; for instance when T = 1000, the power 

of the tests is always 100%. On the other hand,   tests with non-uniform weighting 

achieve a low performance against ALTER1  ranging approximately from 10% to 

30% at both levels (excluding quadratic spectral based test). Note that the power of 

the truncated Q test ranges from 40% to 98%.    

Table 10 reports the rejection frequencies of the tests when the cross-

validation method of automatic bandwidth selection is implemented against the long-

horizon alternatives, ALTER3 and ALTER4.  The tests have a relatively satisfactory 

performance against both alternative hypotheses at 5% and 10% when implemented to 

moderate and large sample sizes. In particular, the power against both models  ranges 

from 94% to 97% . On the other hand, the rejection frequencies of the Q tests against 

ALTER3 and ALTER4 when implemented to samples of small size (T = 200) range 

from  69% to 83% and 32% to 46% respectively. 

In summary, the proposed procedures for selecting the optimal bandwidth 

yield tests with reasonable size and very good power against a sequence of 

alternatives of practical importance. When  the optimal bandwidth is estimated using 

a Dumbgen-type estimator or cross-validation in terms of a kernel regression the 

empirical size of the Q  tests are very close to the nominal size, whereas the “naïve” 

optimal bandwidth selection procedure yields tests which slightly over-reject 

especially the processes are highly persistent. What concerns the empirical power 

performance, the “naïve” optimal bandwidth selection procedure outperforms in the 

case of short-horizon alternatives. Simulation results show that the “naïve” procedure 

consistently behave very well in terms of power no matter whether the causality is 

present at short horizon or long horizon. Under long-horizon alternatives all 

procedures ensure high power.  The upper bound kN  has only minor effects on the 

size performance of the proposed procedures. However, smaller values of kN  seem to 

reduce the size distortions in the high-persistent case.  
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6. Empirical illustration 

 

In our empirical analysis we examine the relationship between stock returns 

volatility and output growth volatility. The evidence provided in this section is 

complementary to those presented by Schwert (1989) and Diebold and Yilmaz (2007). 

An explicit view in finance is that stock prices reflect in the present time the 

discounted future expected earnings of all firms in a specific economy. So, one would 

consider that the changes of the conditional variance of the stock prices are 

proportional to the changes of the conditional variance of the future discount rates and 

expected future earnings. However, volatilities of both the future earnings and 

discount rates change whenever there are variations in the volatility of real economy.   

On the other hand, the stock prices are forward looking; reaction of speculative 

investors to anticipate events about the future economic fundamentals yield shifts in 

current stock price volatility. 

Schwert (1989) provides some weak evidence on the predictive ability of the US 

stock market volatility for the future volatility of industrial production.  He tested the 

non-causality-in-variance hypothesis in both directions by using monthly (and daily) 

US stock returns and industrial production growths covering a period from 1857 to 

1987. Recently, by employing a panel data framework on quarterly data for a large 

number of countries, Diebold and Yilmaz (2007) have found that output growth 

Granger causes-in-volatility the stock market returns.  

 Our analysis is restricted to four developed countries: the UK, the US, Italy, 

and Japan. The data consist of monthly observations of the aggregate stock price 

index, the industrial production index, and the consumer price index (CPI). We define 

monthly stock returns and output growth rate as the logarithmic differences of stock 

indices and industrial production, respectively. Real stock returns are computed by 

subtracting CPI inflation from nominal stock returns. Stock market data is taken from 

Datastream. Industrial production and CPI are retrieved from IFS and OECD 

database, respectively. The sample period spans from January 1973 to September 
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2008. The standardized squared residuals are calculated by fitting the data to VAR-

GARCH(2,2) models
14

.  

Hong‟s  Q  tests are calculated using a fixed bandwidth  N = 12 as well as  

optimal bandwidth estimated by the “naive” optimal bandwidth selection  procedure, 

qB , the cross-validation (denoted as )ˆ( *

CVNQ ) and the Dubgen based method   

(denoted as )ˆ( *

DBNQ ) presented in the previous section. We employ four kernel 

functions, the Bartlett, the Parzen, the Daniell and the Quadratic Spectral. We exclude  

the truncated kernel since simulations showed that its performance is inferior relative 

to the non-uniform kernels. The empirical analysis commences with investigating the 

null hypothesis of no Granger causality-in-variance from stock market returns to 

industrial production growth. The results presented in Table 13 provide evidence that 

when the optimal bandwidth is utilized, Q  tests strongly reject the null hypothesis for 

the UK, the US and Japan. Interestingly, in most cases the estimated optimal 

bandwidths are large numbers suggesting long horizon causality dynamics (if any). In 

other words, distant past changes in the volatility of real stock market returns seem to 

have an “impact” on the recent changes of the volatility of industrial production 

growth. For example, in the case of the US Dubgen type and cross-validation 

bandwidth estimation method  yield bandwidth values *N̂ 51 and 45 for the Tukey-

Hanning kernel, respectively. For these bandwidths the tests statistics values are 

1.6519 and 1.8519 respectively, suggesting the existence of statistically significant 

distant period volatility spillovers; the corresponding p-values are 0.0493 and 0.0320, 

respectively. Not surprisingly, Hong‟s Q  tests with 12N  fail to detect any 

significant causality relationships for all countries in our sample, excluding US. 

Cheung and Ng‟s S  and S  tests with 12N  indicate significant causality link only 

in the case of the US. One possible explanation is the poor power performance of the 

CCF  tests under long horizon causality alternatives when the bandwidth/lag 

truncation parameter is not accurately chosen as documented in section 3.2 (Fig5 and 

Fig6).  The LR test indicates that stock market returns Granger cause-in-variance the 

                                                           
14 To save space the VAR(r)-GARCH(p,q) estimated coefficients are not reported, but are available 

from the author upon request. 
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industrial production growth only in the UK (the p-value is 0.0001). The later result is 

consistent with the conservatism of the LR test found in the simulation analysis. The 

LM rejects the null hypothesis in two countries, the US and Italy. 

In Table 14, we present the results for testing the presence of causality from 

industrial production volatility to stock returns volatility. The qB  tests show 

statistically significant volatility spillovers from output growth to real stock returns in 

the US and Italy at the 10%, and in UK at the 5%. Moreover, cross-validation optimal 

bandwidth selection procedure indicates rejection of the null hypothesis in UK and 

Japan at levels 5% and 10% respectively, while the Dubgen type bandwidth selection 

rule indicates the presence of causality in UK at level 5%. In both countries the 

optimal bandwidth parameter values range from 2 to 20.  Contrary, the empirical 

results provide evidence that neither Q  tests with given bandwidth of 12, nor the S  

and S  tests support the presence of volatility spillovers from industrial production to 

stock returns. However, these results could be expected given that our simulation 

analysis highlights the fact that in the case of short horizon causality the selection of a 

bandwidth greater than 5 results in a loss of power. On the contrary, LR test indicates 

highly significant volatility spillovers from output growth to real stock returns in Italy 

and the UK. The LM test rejects the null hypothesis only in the case of Italy. 

To sum up,  Q  tests along with an optimal bandwidth selection procedure 

provide strong evidence of volatility transmission from real stock market returns to 

industrial production growth for the UK, the US and Japan. They also suggest the 

existence of volatility spillovers in the opposite direction at the 5% in the case of the  

UK, and at the 10% in case of US and Italy. Contrary, the applications of Q  tests with 

an exogenously given bandwidth, and S  tests fail to detect any volatility spillovers in 

any direction. LM and LR tests‟s results lead to mixed conclusions.  The empirical 

results highlight the practical importance of the proposed optimal bandwidth 

estimation methods. 

 

 

7. Conclusions 

 

In this paper we evaluate the finite sample properties of four causality-in- 

variance tests recently proposed in the literature. We focus on the LR test within the 
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framework of multivariate GARCH models proposed by Comte and Lieberman 

(2000), the LM test of Hafner and Herwartz (2006), and the cross correlation function 

based  tests of Hong (2001) and Cheung and Ng (1996). Our findings indicate that LR 

and LM tests face severe size distortions while they demonstrate poor power 

performance against long horizon (distant-lag) causality dynamics. However, the LR 

test is the most powerful among the tests under study in the presence of short horizon 

causal links while is not affected by the degree of persistence in the volatility 

processes. Hong‟s Q  tests are well sized, while their performance in the sense of size 

is relatively invariant to different non-uniform weighting schemes, and to the choice 

of bandwidth.  Cheung and Ng‟s S tests are reasonably sized but their empirical size 

performance presents great sensitivity to arbitrary selections of the lag truncation 

parameter. Most importantly, lack of accuracy in the choice of the bandwidth/lag 

truncation parameter has a substantial effect on the power properties of the cross 

correlation function based tests. Furthermore, the finite sample properties of both 

Hong‟s and Cheung and Ng‟s tests are found to demonstrate moderate sensitivity to 

alternative degrees of persistence in the underlying volatility process.  

To enhance the empirical performance of the kernel-based tests proposed by 

Hong (2001), we suggest three procedures for automatic optimal bandwidth selection. 

The first method determines the optimal bandwidth as the one at which the Q test is 

maximized for a selected grid of bandwidth values. The second method utilizes a  

Dumbgen-type change-point estimator. The third selects bandwidth in a kernel 

regression of the squared standardized innovations by using the cross-validation 

method. The simulation results demonstrate that the implementation of our procedures 

yield powerful tests with only minor size distortions. Most importantly, the resulting 

tests seem to be robust to different causality horizons and to alternative degrees of 

volatility persistence. Robustness and computational simplicity makes our procedures 

very attractive in practice. 

We also applied the optimal bandwidth selection methods to examine whether 

there are statistically significant volatility spillovers between real stock returns and 

industrial production growth for the United Kingdom, the United States, Italy and 

Japan. Hong‟s Q tests with bandwidths selected by our automatic bandwidth selection 

procedure provide strong evidence in favour of volatility spillovers from stock market 

returns to output growth in the case of the UK, the US and Japan.  In particular, 
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distant period volatility spillovers are found to be significant in these countries. These 

tests also suggest statistically significant causality-in-variance from output growth to 

real stock returns in the UK, the US and Italy.  Contrary, neither (original) Hong‟s Q  

tests nor Cheung and Ng‟s S  tests support the presence of volatility spillovers 

between industrial production and stock returns in any direction. This empirical 

evidence could be easily explained since according to our simulation results, both 

testing procedures demonstrate poor power performance when the bandwidth/lag 

truncation parameter is not accurately selected.  
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Appendix of Chapter 2 

 

Table 1: Size of the Cheung and Ng (1996) and Hong (2001) causality-in-variance tests at the 5% and 

10% levels against NULL1 

                

              

 Level 5%  Level 10% 

                

 QDan QTH QQS QBart QTrun QParz S  QDan QTH QQS QBart QTrun QParz S 

N                

 T = 200 

5 3.56 3.16 3.76 3.52 5.12 3.12 3.56  5.20 5.00 5.76 5.24 7.80 4.40 6.72 

10 4.52 4.40 5.08 4.28 5.68 3.84 3.96  7.00 6.52 7.80 6.68 8.04 5.60 7.40 

20 5.12 5.20 5.20 5.04 5.64 4.88 3.08  7.36 7.56 7.72 7.40 8.64 7.52 6.08 

30 5.24 5.12 5.56 5.00 5.64 5.16 3.04  7.76 7.68 8.16 7.52 8.56 7.40 5.08 

40 5.48 5.32 5.40 5.12 6.04 5.12 2.24  8.32 7.72 8.48 7.80 9.44 7.60 3.92 

50 5.44 5.56 5.80 5.24 6.32 5.24 1.52  8.56 8.24 8.68 8.00 10.0 7.60 3.16 

60 5.76 5.32 5.92 5.36 7.08 5.20 1.24  8.52 8.48 8.96 8.20 10.56 7.96 2.16 

70 5.96 5.56 5.88 5.60 7.64 5.48 0.88  8.76 8.48 9.52 8.20 12.08 8.24 1.88 

80 6.00 5.80 6.36 5.68 8.40 5.32 0.64  9.00 8.72 10.08 8.52 12.52 8.52 1.28 

                

 T = 500 

5 3.28 3.00 3.44 3.00 4.16 3.20 2.72  5.20 5.08 5.52 5.20 7.00 4.64 6.28 

10 3.72 3.52 4.12 3.40 5.20 3.40 3.96  5.92 5.88 6.56 5.80 8.92 5.44 8.00 

20 4.88 4.16 5.08 4.16 5.80 3.92 3.44  7.60 7.08 8.36 7.16 9.48 6.44 7.72 

30 5.12 5.00 5.00 4.92 6.12 4.36 3.84  8.76 8.08 8.64 7.68 9.96 7.40 7.32 

40 5.12 5.16 5.20 4.76 5.56 4.92 3.28  8.64 8.40 9.12 8.08 9.88 7.76 6.52 

50 5.32 5.12 5.56 4.84 6.32 5.16 3.48  9.24 8.64 9.44 8.56 10.24 8.44 6.32 

60 5.48 5.08 5.92 5.04 6.32 5.04 2.80  9.36 9.12 10.04 9.04 10.84 8.36 5.32 

70 5.84 5.40 6.04 5.36 5.96 5.08 2.28  9.52 9.52 10.32 9.12 10.44 8.72 4.44 

80 5.84 5.64 6.04 5.52 6.68 5.12 1.92  10.16 9.44 10.36 9.80 10.96 8.96 4.20 

                

 T = 1000 

5 2.68 2.76 2.88 2.44 4.16 2.44 2.44  4.32 3.96 5.32 4.24 7.48 4.04 6.72 

10 3.56 3.28 3.68 3.08 4.48 2.76 3.40  6.16 5.80 6.96 5.60 8.00 4.88 7.12 

20 4.36 3.96 4.64 4.00 5.52 3.48 3.80  7.20 7.32 7.36 6.84 8.60 6.60 7.48 

30 5.00 4.72 4.68 4.48 5.12 4.12 3.60  7.80 7.44 8.16 7.20 8.68 7.32 7.12 

40 4.80 4.84 4.68 4.56 4.64 4.64 3.36  8.32 7.64 8.28 7.64 8.40 7.32 6.28 

50 4.76 4.88 4.72 4.64 5.52 4.84 3.36  8.28 8.32 8.60 7.80 9.28 7.60 6.88 

60 4.76 4.72 4.88 4.52 5.44 4.68 3.36  8.32 8.32 8.68 7.96 9.16 7.72 6.12 

70 4.68 4.76 4.96 4.48 5.04 4.80 3.16  8.56 8.36 8.64 8.16 9.04 8.32 5.84 

80 5.04 4.2 5.20 4.60 5.32 4.84 3.04  8.72 8.60 8.64 8.32 9.32 8.28 5.36 

Notes: NULL1: [No Granger causality-in-variance, high persistence in the volatility process]. N is the lag truncation/ 

bandwidth  parameter . A  Normal bivariate BEKK (1,1) process is simulated (2500 replications) for different. S  and Q are the 

Cheung and Ng‟s and Hong‟s tests, respectively.  Dan, TH , QS, Bar , Trun, and Par stand for Daniell, Tukey-Hanning , 

Quadratic-spectral, Bartlett, truncated, and Parzen  kernels 

 

 

 

 

 



71 

 

Table 2: Size of the Cheung and Ng (1996) and Hong (2001) causality tests at the 5% and 10% levels 

against NULL2 

                

              

 Level 5%  Level 10% 

         

 

       

 

QDan QTH QQS QBart QTrun QParz 

 

S QDan QTH QQS QBart QTrun QParz 

 

S 

N  

 T = 200 

5 1.08 0.92 1.48 0.96 3.12 0.72 2.00  1.88 1.52 2.36 1.68 4.88 1.32 4.32 

10 2.28 1.76 2.80 1.72 3.72 1.28 2.68  4.08 3.36 4.56 3.40 5.76 2.28 4.84 

20 3.64 3.20 3.88 3.08 4.56 2.40 2.56  5.08 4.96 5.68 4.68 7.44 4.44 4.92 

30 3.92 3.60 4.44 3.52 5.20 3.24 2.12  6.04 5.60 6.68 5.44 7.76 5.08 4.32 

40 4.44 4.08 4.76 4.04 4.92 3.64 1.92  6.76 6.32 6.96 6.16 8.00 5.52 3.36 

50 4.84 4.80 4.60 4.20 5.00 3.84 1.24  7.00 6.84 7.20 6.48 8.16 6.00 2.24 

60 4.68 4.92 4.72 4.36 5.24 4.32 0.92  7.28 7.00 7.52 6.52 8.56 6.48 1.72 

70 4.72 4.52 4.64 4.28 6.04 4.76 0.60  7.28 7.20 8.00 6.84 9.28 6.68 1.20 

80 4.60 4.64 5.00 4.44 6.84 4.80 0.40  7.60 7.24 8.40 6.88 9.88 6.84 0.88 

                

 T = 500 

5 0.72 0.48 0.96 0.56 2.48 0.36 1.44  1.28 0.96 2.16 1.08 4.40 0.64 3.72 

10 1.64 1.32 2.00 1.24 3.48 0.72 2.72  3.28 2.92 4.04 2.44 6.12 1.68 5.36 

20 2.80 2.48 3.08 2.36 4.40 1.96 2.52  4.72 4.60 5.24 4.04 7.16 3.84 5.84 

30 3.20 3.00 3.32 2.84 4.48 2.56 2.52  5.64 5.20 6.04 4.64 8.28 4.76 5.76 

40 3.40 3.36 4.00 3.08 5.08 3.00 2.64  6.20 5.76 6.96 5.28 8.84 4.84 5.64 

50 3.80 3.48 4.52 3.24 5.76 3.20 2.64  6.64 6.16 7.80 6.04 8.80 5.52 5.64 

60 4.48 4.00 4.88 3.60 5.12 3.36 2.60  7.64 6.72 8.20 6.44 9.72 5.84 4.56 

70 4.64 4.32 5.04 4.08 5.96 3.52 2.36  8.16 7.28 8.44 6.96 9.76 6.12 4.76 

80 4.80 4.56 5.28 4.24 7.04 3.80 2.36  8.12 7.84 8.72 7.60 10.48 6.56 4.60 

                

 T = 1000 

5 0.68 0.44 1.08 0.44 2.92 0.08 2.08  1.12 0.72 1.80 0.88 4.92 0.12 4.40 

10 1.96 1.48 2.24 1.32 3.60 0.92 2.48  2.92 2.56 3.96 2.44 6.32 1.56 5.56 

20 3.24 2.72 3.52 2.64 4.24 2.16 3.12  5.44 4.72 6.08 4.40 7.36 3.48 6.36 

30 3.84 3.60 4.16 3.00 4.04 3.00 2.88  6.52 5.88 6.52 5.28 6.88 5.20 5.84 

40 4.16 3.88 3.96 3.32 4.80 3.44 3.28  6.72 6.52 6.84 5.84 7.68 5.60 6.16 

50 3.76 3.92 3.96 3.40 4.84 3.48 3.16  6.64 6.60 6.76 6.04 9.00 6.24 6.40 

60 3.96 3.96 4.48 3.48 5.48 3.92 3.72  6.76 6.60 7.40 6.32 8.92 6.52 6.48 

70 4.16 3.88 4.68 3.60 5.64 3.92 3.28  7.00 6.64 7.88 6.56 9.24 6.44 6.00 

80 4.48 4.00 4.76 3.76 6.12 3.92 3.24  7.64 6.84 8.04 6.64 9.68 6.76 6.16 
Notes: NULL2:  [No Granger causality-in-variance, low persistence in the volatility process].  N is the lag truncation/ bandwidth  

parameter . A  Normal bivariate BEKK (1,1) process is simulated (2500 replications) for different. S  and Q are the Cheung and 

Ng‟s and Hong‟s tests, respectively.  Dan, TH , QS, Bar , Trun, and Par stand for Daniell, Tukey-Hanning , Quadratic-spectral, 

Bartlett, truncated, and Parzen  kernels 
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Table 3: size and power of the Comte and Lieberman „s  (2000)  and Hafner and Herwartz „s (2006)  

causality tests at the 5% and 10% levels respectively.  

Note: LR and LM stand for Comte and Lieberman‟s (2000)  Likelihood Ratio and Hafner and Herwartz‟s (2006) Lagrange 

Multiplier tests respectively (see section 2). A  Normal bivariate BEKK (1,1) process is simulated  (2500 replications) for In the 

NULL1, NULL2, ALTER1, ALTER2, while  for ALTER3 and ALTER4 a  Normal bivariate BEKK (12,12) process is 
simulated.  1000 replications are used in the LR test simulations. 

 

 

 

 Test Procedures 

                LR            LM  LR       LM 

  

 Level  5% Level  10% 

Sample sizes   

 NULL1: [No Granger causality-in-variance, high persistence in the volatility process] 

 

T = 200 0.1 11.04 0.1 18.24 

T = 500 0.0 10.36 0.0 17.48 

T = 1000 0.0 10.44 0.0 16.32 

 

 NULL2:  [No Granger causality-in-variance, low persistence in the volatility process] 

 

T = 200 0.0 11.60 0.1 20.00 

T = 500 0.0 10.00 0.0 17.52 

T = 1000 0.0 8.88 0.0 15.88 

 

 ALTER1: [Unidirectional, short horizon Granger causality-in-variance, high persistence in 

the volatility process] 

 

T = 200 100 18.68 100 26.04 

T = 500 100 23.04 100 29.68 

T = 1000 100 25.08 100 32.60 

 

 ALTER2: [Unidirectional, short horizon Granger causality-in-variance, low persistence in 

the volatility process] 

 

T = 200 100 33.80 100 45.80 

T = 500 100 67.00 100 80.04 

T = 1000 100 93.88 100 97.36 

 

 ALTER3: [Unidirectional, long horizon Granger causality-in-variance, high persistence in 

the volatility process] 

 

T = 200 5.30 7.80 5.30 10.48 

T = 500 8.10 8.88 8.10 10.92 

T = 1000 2.70 17.20 2.70 20.40 

 

 ALTER4: [Unidirectional, long horizon Granger causality-in-variance, low persistence in 

the volatility process] 

 

T = 200 11.00 9.36 11.00 16.24 

T = 500 23.2 8.12 23.2 14.28 

T = 1000 36.20 7.48 36.40 13.76 
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Panel 1: Power of the CCF based tests against ALTER1 at levels of significance 5% and 10% 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

5

10

15

20

25

30

35

40

45
C

C
F

 s
ta

ti
s
ti
c
s

Bandwidth / Lag Selection Parameter N

Power of the CCF tests against ALTER1 at level 5%(T=200)

 

 
Daniell Q test

Tukey -Hanning Q test

quadratic-spectral Q test

Bartlett Q test

truncated Q test

Parzen Q test

S test

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

5

10

15

20

25

30

35

40

45

50

C
C

F
 s

ta
ti
s
ti
c
s

Bandwidth / Lag Selection Parameter N

Power of the CCF tests against ALTER1 at level 10%(T=200)

 

 
Daniell Q test

Tukey -Hanning Q test

quadratic-spectral Q test

Bartlett Q test

truncated Q test

Parzen Q test

S test

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
10

20

30

40

50

60

70

80

C
C

F
 s

ta
ti
s
ti
c
s

Bandwidth / Lag Selection Parameter N

Power of the CCF tests against ALTER1 at level 5%(T=500)

 

 
Daniell Q test

Tukey-Hanning Q test

quadratic-spectral Q test

Bartlett Q test

truncated Q test

Parzen Q test

S test

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

10

20

30

40

50

60

70

80

90

C
C

F
 s

ta
ti
s
ti
c
s

Bandwidth / Lag Selection Parameter N

Power of the CCF tests against ALTER1 at level 10%(T=500)

 

 
Daniell Q test

Tukey-Hanning Q test

quadratic-spectral Q test

Bartlett Q test

truncated Q test

Parzen Q test

S test

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
30

40

50

60

70

80

90

100

C
C

F
 s

ta
ti
s
ti
c
s

Bandwidth / Lag Selection Parameter N

Power of the CCF tests against ALTER1 at level 5%(T=1000)

 

 

Daniell Q test

Tukey-Hanning Q test

quadratic-spectral Q test

Bartlett Q test

truncated Q test

Parzen Q test

S test

 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

30

40

50

60

70

80

90

100

C
C

F
 s

ta
ti
s
ti
c
s

Bandwidth / Lag Selection Parameter N

Power of the CCF tests against ALTER1 at level 10%(T=1000)

 

 

Daniell Q test

Tukey-Hanning Q test

quadratic-spectral Q test

Bartlett Q test

truncated Q test

Parzen Q test

S test

 
 
Notes: ALTER1: [Unidirectional, short horizon Granger causality-in-variance, high persistence in the volatility 

process]. A  Normal bivariate BEKK (1,1) process is simulated (2500 replications) for different sample sizes T. 
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Panel II:  Power of the CCF based tests against ALTER2 at levels of significance 5% and 10% 
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Notes: ALTER2: [Unidirectional, short horizon Granger causality-in-variance, low persistence in the volatility 

process]. A  Normal bivariate BEKK (1,1) process is simulated (2500 replications) for different sample sizes T.  
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Panel III:  Power of the CCF based tests against ALTER3 at levels of significance 5% and 10% 
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Notes: ALTER3: [Unidirectional, long horizon Granger causality-in-variance, high persistence in the volatility 

process]. A  Normal bivariate BEKK (12,12) process is simulated (2500 replications) for different T . 
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Panel IV: Power of the CCF based tests against ALTER4 at levels of significance 5% and 10 
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Notes: ALTER4: [Unidirectional, long horizon Granger causality-in-variance, low persistence in the volatility 

process]. A  Normal bivariate BEKK (12,12) process is simulated (2500 replications) for different sample sizes T . 
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Table 4: The empirical size of the Hong (2001) tests with the “naïve” automatic optimal bandwidth 

selection procedure  at the nominal levels of 5% and 10% 

 Levels of Significance 

 5%  10% 

  EVD  N(0,1)   EVD  N(0,1) 

  

 NULL1: [No Granger causality-in-variance, high persistence in the volatility process] 

 

 T = 200 

Daniell 1.92 15.40  15.04 21.88 

Tukey-Hanning 1.88 14.92  14.48 20.88 
Quadratic-spectral 1.96 16.52  15.96 22.96 

Bartlett 1.64 13.84  13.48 20.00 

Truncated 3.28 27.32  26.40 37.72 
Parzen 1.68 13.60  13.20 19.16 

 T = 500 

Daniell 1.92 16.28  15.84 23.44 
Tukey-Hanning 1.92 15.56  15.08 22.84 

Quadratic-spectral 1.88 16.68  16.20 24.56 

Bartlett 1.84 14.20  13.72 21.00 
Truncated 2.64 29.44  28.60 41.16 

Parzen 1.88 14.24  13.72 20.96 

 T = 1000 
Daniell 5.88 19.36  19.00 25.96 

Tukey-Hanning 5.84 18.56  18.16 25.36 

Quadratic-spectral 5.80 19.56  19.08 26.64 
Bartlett 5.68 17.56  17.36 24.20 

Truncated 5.64 31.40  30.60 42.56 

Parzen 5.80 17.56  17.12 23.52 
 NULL2:  [No Granger causality-in-variance, low persistence in the volatility process] 

 

 T = 200 

Daniell 1.32 12.56  12.28 18.60 

Tukey-Hanning 1.12 12.24  11.84 18.28 
Quadratic-spectral 1.20 13.24  13.04 19.88 

Bartlett 1.04 11.24  10.96 16.68 

Truncated 2.08 23.76  23.16 32.52 
Parzen 1.08 11.20  10.92 16.56 

 T = 500 

Daniell 3.04 13.12  12.76 18.44 
Tukey-Hanning 2.96 12.44  11.84 17.80 

Quadratic-spectral 3.00 13.84  13.36 19.96 

Bartlett 2.92 11.04  10.44 16.28 
Truncated 3.84 26.24  25.60 35.96 

Parzen 2.92 10.88  10.36 15.92 

 T = 1000 
Daniell 6.80 17.32  17.20 23.20 

Tukey-Hanning 6.76 16.72  16.44 22.00 

Quadratic-spectral 6.72 18.08  17.72 23.72 
Bartlett 6.68 15.48  15.40 20.56 

Truncated 7.24 30.64  30.00 40.92 

Parzen 6.64 15.60  15.44 20.16 

 

Notes: The optimal bandwidth parameter is automatically selected based on the algorithm: )(maxargˆ

2

* NQN
kNN

  where kN is 

set equal to 100. Normal bivariate BEKK (1,1) process is simulated (2500 replications) for different sample sizes T. Critical 

values are calculated based on the extreme value distribution (EVD) and the standard normal.   
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Table 5: The empirical size of the Hong (2001) tests with the optimal bandwidth estimated using a 

Dumbgen-type estimator at the nominal levels of 5% and 10% 

 Levels of significance 

 5%  10% 

 
1  2  3   

1  2  3  

 NULL1: [no Granger causality-in-variance; high persistence in the volatility process] 

 T = 200 

Daniell 4.680 4.680 4.680  7.640 7.600 7.480 
Tukey-

Hanning 4.920 4.960 4.760 

 

7.520 7.640 7.600 

Quadratic-
spectral 4.760 4.840 4.880 

 
7.560 7.640 7.520 

Bartlett 5.120 5.120 5.120  7.720 7.920 7.840 

Truncated 2.680 2.680 2.880  4.840 5.000 5.200 
Parzen 5.040 5.080 5.040  7.160 7.280 7.040 

    T = 500    

Daniell 5.200 5.240 5.000  8.280 8.400 8.240 

Tukey-

Hanning 5.320 5.520 5.480 
 

8.320 8.400 8.480 
Quadratic-

spectral 4.880 5.040 4.920 
 

8.600 8.520 8.160 

Bartlett 5.600 5.720 5.480  8.400 8.480 8.640 
Truncated 2.440 2.600 2.800  5.320 5.520 5.680 

Parzen 4.800 4.760 4.840  7.400 7.640 7.400 

    T = 1000    

Daniell 7.720 7.640 7.720  11.240 11.160 11.080 
Tukey-

Hanning 8.000 8.080 8.040 

 

11.240 11.320 11.320 

Quadratic-
spectral 7.200 7.240 7.160 

 
11.320 11.320 11.280 

Bartlett 8.480 8.480 8.480  11.720 11.960 11.560 

Truncated 4.760 4.720 4.880  7.320 7.480 7.920 
Parzen 8.520 8.520 8.360  11.440 11.520 11.520 

 NULL2:  [no Granger causality-in-variance; low persistence in the volatility process] 

 T = 200 

Daniell 4.040 4.160 4.040  6.360 6.360 6.400 

Tukey-
Hanning 4.000 3.960 4.000  6.520 6.520 6.560 

Quadratic-
spectral 3.840 3.960 3.800  6.920 6.800 6.600 

Bartlett 4.240 4.240 4.120  6.560 6.600 6.600 

Truncated 2.360 2.400 2.640  4.440 4.560 4.800 
Parzen 4.040 4.080 4.040  6.000 6.080 6.040 

 T = 500 

Daniell 4.840 4.880 4.760  7.120 7.200 7.160 
Tukey-

Hanning 4.880 4.880 4.720  7.280 7.280 7.080 

Quadratic-
spectral 4.800 4.880 4.880  7.560 7.600 7.840 

Bartlett 5.080 5.080 4.960  7.320 7.400 7.320 

Truncated 2.800 3.080 3.160  4.640 4.600 4.720 

Parzen 4.640 4.640 4.640  6.920 6.880 6.840 

 T = 1000 

Daniell 9.000 9.000 9.000  12.080 12.080 11.920 
Tukey-

Hanning 9.440 9.400 9.360  11.760 11.920 11.720 

Quadratic-
spectral 8.800 8.800 8.680  11.880 11.800 11.680 

Bartlett 9.480 9.400 9.280  11.720 11.800 11.760 

Truncated 6.800 7.120 7.040  9.000 9.040 9.000 
Parzen 8.920 9.000 9.040  11.120 11.280 11.240 

Notes:  A  Normal bivariate BEKK (1,1) process is simulated (2500 replications) for different T . The optimal bandwidth 

parameter is estimated using a Dumbgen-type estimator.
 1 , 

2 and  
3 are the semi-norms used in the estimation.  
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Table 6:  Power of the of the Hong (2001) tests with with the “naïve” automatic optimal bandwidth 

selection procedure  at the nominal levels of 5% and 10% under ALTER1 and ALTER2. 

 Levels of Significance 

 5%  10% 

  EVD  N(0,1)   EVD  N(0,1) 

  

 ALTER1: [short horizon Granger causality-in-variance, high persistence in the volatility process] 

 

 T = 200 

Daniell 14.24 46.20  46.52 54.76 

Tukey-Hanning 14.16 46.04  46.48 54.04 
Quadratic-spectral 14.16 46.60  47.32 54.92 

Bartlett 12.96 43.36  44.12 52.16 

Truncated 20.60 57.40  58.80 66.24 
Parzen 13.64 44.84  45.12 52.52 

 T = 500 

Daniell 43.48 80.08  80.12 86.16 

Tukey-Hanning 43.44 80.12  80.08 85.88 

Quadratic-spectral 43.24 80.40  80.32 86.08 

Bartlett 40.52 78.72  78.80 84.56 
Truncated 53.52 86.56  86.00 91.40 

Parzen 42.56 79.60  79.32 85.36 

 T = 1000 
Daniell 85.76 98.16  98.12 98.80 

Tukey-Hanning 85.56 98.16  98.16 98.72 
Quadratic-spectral 85.60 98.20  98.20 98.72 

Bartlett 83.96 98.08  98.04 98.64 

Truncated 90.60 98.76  98.64 99.08 
Parzen 85.24 98.12  98.08 98.68 

 ALTER2: [short horizon Granger causality-in-variance, low persistence in the volatility process] 

 

 T = 200 

Daniell 16.08 42.28  43.44 50.52 

Tukey-Hanning 16.28 42.24  43.20 50.40 
Quadratic-spectral 15.96 42.64  43.84 50.44 

Bartlett 16.12 41.40  42.44 49.52 

Truncated 11.84 44.44  46.04 54.44 
Parzen 16.04 41.52  42.44 49.36 

 T = 500 

Daniell 43.20 78.76  76.24 84.32 
Tukey-Hanning 43.32 79.32  76.44 84.60 

Quadratic-spectral 42.60 78.60  76.04 84.00 

Bartlett 43.12 78.92  76.04 84.32 
Truncated 33.00 75.40  72.64 83.60 

Parzen 43.20 79.12  76.08 84.24 

 T = 1000 
Daniell 79.80 97.44  94.48 98.16 

Tukey-Hanning 80.00 97.44  94.52 98.40 

Quadratic-spectral 79.68 97.40  94.44 98.28 
Bartlett 79.68 97.40  94.32 98.36 

Truncated 72.08 96.20  94.36 98.12 
Parzen 79.92 97.44  94.36 98.36 

Notes: The optimal bandwidth parameter is automatically selected based on the algorithm: )(maxargˆ

2

* NQN
kNN

  where kN is 

set equal to 100. Normal bivariate BEKK (1,1) process is simulated (2500 replications) for different sample sizes T. Critical 

values are calculated based on the extreme value distribution (EVD) and the standard normal.   
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Table 7:  Empirical power of the Hong (2001) tests with with the “naïve” automatic optimal bandwidth 

selection procedure  at the nominal levels of 5% and 10% under ALTER3 and ALTER4. 

 Levels of Significance 

 5%  10% 

  EVD  N(0,1)   EVD  N(0,1) 

  
 ALTER3: [long horizon Granger causality-in-variance, high persistence in the volatility process] 

 

 T = 200 

Daniell 50.60 86.20  86.00 89.84 

Tukey-Hanning 47.88 85.08  84.88 88.68 
quadratic-spectral 51.28 86.52  86.32 90.00 

Bartlett 41.08 82.48  81.88 87.00 

Truncated 73.08 94.48  94.80 96.44 
Parzen 33.76 78.68  78.20 84.08 

 

 T = 500 
Daniell 96.44 99.48  99.48 99.56 

Tukey-Hanning 96.28 99.48  99.52 99.52 

Quadratic-spectral 96.44 99.52  99.56 99.52 
Bartlett 94.48 99.32  99.36 99.52 

Truncated 99.12 99.68  99.68 99.76 

Parzen 92.24 99.08  99.16 99.32 

 T = 1000 

Daniell 99.84 99.88  99.88 99.88 

Tukey-Hanning 99.80 99.88  99.88 99.88 
Quadratic-spectral 99.80 99.88  99.88 99.88 

Bartlett 99.76 99.88  99.88 99.88 

Truncated 99.88 99.92  99.92 99.96 
Parzen 99.48 99.88  99.88 99.88 

 ALTER4: [long horizon Granger causality-in-variance, low persistence in the volatility process] 

 

 T = 200 

Daniell 23.48 64.32  64.08 71.20 
Tukey-Hanning 22.44 62.68  62.44 69.88 

Quadratic-spectral 24.12 65.56  65.48 72.36 

Bartlett 19.24 58.80  58.52 66.84 

Truncated 41.24 80.44  80.56 85.36 

Parzen 16.04 55.96  56.00 63.96 

 T = 500 
Daniell 81.80 97.80  97.68 98.92 

Tukey-Hanning 81.12 97.64  97.52 98.60 

Quadratic-spectral 82.08 97.92  97.92 98.88 
Bartlett 76.00 96.56  96.40 97.92 

Truncated 92.92 99.60  99.56 99.84 

Parzen 72.44 95.76  95.80 97.68 

 T = 1000 

Daniell 99.60 99.92  99.92 99.92 

Tukey-Hanning 99.60 99.92  99.92 99.92 
Quadratic-spectral 99.60 99.92  99.92 99.92 

Bartlett 99.28 99.92  99.92 99.92 

Truncated 99.92 99.96  99.96 100.00 
Parzen 99.08 99.92  99.92 99.92 

      

Notes: The optimal bandwidth parameter is automatically selected based on the algorithm: )(maxargˆ

2

* NQN
kNN

  where kN is 

set equal to 100. Normal bivariate BEKK (12,12) process is simulated (2500 replications) for different sample sizes T. Critical 

values are calculated based on the extreme value distribution (EVD) and the standard normal.   
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Table 8: The empirical power of the Hong (2001) tests with the optimal bandwidth estimated using a 

Dumbgen-type estimator at the nominal levels of 5% and 10% under ALTER1 and ALTER2. 

 Levels of significance 

 5%  10% 

 
1  2  3   

1  2  3  

 ALTER1:  short horizon Granger causality-in-variance. high persistence in the volatility process 

 T = 200 

Daniell 23.760 23.840 24.080  30.320 30.560 31.080 

Tukey-
Hanning 25.000 25.240 25.720  32.920 32.880 33.240 

Quadratic-

spectral 21.640 21.800 21.720  28.280 28.400 28.680 
Bartlett 26.680 26.880 27.360  34.000 34.120 34.200 

Truncated 14.320 14.160 14.480  19.720 19.960 20.560 

Parzen 28.320 28.560 28.800  35.240 35.240 35.640 
    T = 500    

Daniell 56.560 56.800 57.280  65.920 66.000 66.280 

Tukey-
Hanning 60.040 60.320 60.920  68.520 68.560 68.880 

Quadratic-

spectral 51.120 51.080 51.920  62.040 61.920 61.960 
Bartlett 61.840 62.040 61.920  70.280 70.440 70.640 

Truncated 38.080 38.280 38.720  47.760 47.760 48.840 

Parzen 64.120 64.440 64.920  72.760 72.880 73.200 
    T = 1000    

Daniell 91.320 91.360 91.640  94.520 94.600 94.720 

Tukey-
Hanning 92.880 92.880 92.960  95.560 95.600 95.800 

Quadratic-
spectral 88.240 88.240 88.240  92.400 92.400 92.280 

Bartlett 93.840 93.880 93.920  96.000 95.920 96.120 

Truncated 74.920 75.160 75.720  83.280 83.440 84.120 
Parzen 94.960 95.040 95.120  96.760 96.760 97.000 

 ALTER2: short  horizon Granger causality-in-variance. low persistence in the volatility process 

 T = 200 

Daniell 15.360 15.400 15.360  21.160 21.040 21.240 

Tukey-
Hanning 16.920 16.920 17.040  22.240 22.240 22.280 

Quadratic-

spectral 13.360 13.440 13.400  19.840 19.880 19.840 
Bartlett 18.520 18.440 18.360  24.080 24.040 24.080 

Truncated 8.040 8.040 8.080  12.320 12.400 12.480 

Parzen 19.640 19.680 19.800  25.480 25.440 25.640 
 T = 500 

Daniell 39.840 39.880 40.000  48.160 48.280 48.520 

Tukey-
Hanning 42.280 42.320 42.560  52.040 51.920 51.720 

Quadratic-

spectral 34.440 34.400 34.360  44.000 44.080 44.040 
Bartlett 45.960 46.000 46.000  54.600 54.560 54.720 

Truncated 22.480 22.480 22.960  30.320 30.720 31.520 

Parzen 48.480 48.520 48.720  57.920 58.040 58.160 
 T = 1000 

Daniell 73.920 73.960 74.040  80.200 80.320 80.320 

Tukey-
Hanning 77.440 77.440 77.560  83.120 83.200 83.160 

Quadratic-

spectral 69.040 69.080 69.160  76.480 76.480 76.560 
Bartlett 79.960 80.040 80.040  85.000 84.960 85.000 

Truncated 52.160 52.160 52.840  62.400 62.680 63.160 

Parzen 82.360 82.400 82.480  87.200 87.200 87.240 

Notes:  A  Normal bivariate BEKK (1,1) process is simulated (2500 replications) for different T . The optimal bandwidth 

parameter is estimated using a Dumbgen-type estimator.
 1 , 

2 and  
3 are the semi-norms used in the estimation. 
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Table 9: The empirical power of the Hong (2001) tests with the optimal bandwidth estimated using a 

Dumbgen-type estimator at the nominal levels of 5% and 10% under ALTER3 and ALTER4.  

 Levels of significance 

 5%  10% 

 
1  2  3   

1  2  3  

 ALTER3:  long horizon Granger causality-in-variance. high persistence in the volatility process 

 T = 200 

Daniell 69.120 70.440 68.760  77.360 78.360 77.280 
Tukey-

Hanning 48.640 51.800 47.520  59.080 62.320 57.080 

Quadratic-
spectral 80.400 80.320 80.080  85.440 85.320 85.080 

Bartlett 58.040 60.960 57.840  67.760 70.360 67.640 

Truncated 35.640 34.440 31.640  42.040 40.360 37.840 
Parzen 14.160 15.600 14.160  20.320 22.240 19.920 

    T = 500    

Daniell 98.360 98.480 98.320  99.040 99.040 98.960 
Tukey-

Hanning 93.840 95.040 93.080  96.720 97.280 96.040 

Quadratic-
spectral 99.320 99.320 99.280  99.440 99.400 99.360 

Bartlett 96.840 97.440 96.840  98.160 98.440 98.120 

Truncated 65.120 63.600 60.040  69.120 67.720 64.560 
Parzen 31.480 37.040 28.280  42.960 48.920 38.800 

    T = 1000    

Daniell 99.840 99.840 99.840  99.840 99.840 99.840 
Tukey-

Hanning 99.520 99.720 99.360  99.800 99.800 99.720 

Quadratic-
spectral 99.880 99.880 99.880  99.880 99.880 99.880 

Bartlett 99.800 99.800 99.800  99.840 99.840 99.840 

Truncated 82.720 81.400 78.040  84.560 83.360 80.160 
Parzen 74.440 79.080 65.360  84.200 86.480 77.000 

 ALTER4: long horizon Granger causality-in-variance. low persistence in the volatility process 

 T = 200 

Daniell 46.200 47.320 46.160  56.800 57.480 56.640 

Tukey-
Hanning 33.680 35.680 33.280  43.560 45.320 43.240 

Quadratic-
spectral 55.360 55.160 54.720  63.360 63.640 62.840 

Bartlett 38.680 39.960 38.400  48.280 49.880 48.080 

Truncated 13.640 13.440 12.720  19.280 19.040 18.400 
Parzen 12.560 13.760 12.520  18.480 20.120 18.360 

 T = 500 

Daniell 93.240 93.600 93.240  95.600 95.880 95.600 
Tukey-

Hanning 83.240 85.600 82.600  89.640 91.280 89.280 

Quadratic-
spectral 96.160 96.120 96.000  97.840 97.800 97.760 

Bartlett 88.720 89.720 88.640  92.560 93.320 92.560 

Truncated 17.400 16.800 15.600  20.760 20.120 18.840 
Parzen 28.800 33.360 27.080  40.480 45.480 37.120 

 T = 1000 

Daniell 99.920 99.920 99.920  99.920 99.920 99.920 
Tukey-

Hanning 99.560 99.720 99.520  99.880 99.880 99.840 

Quadratic-
spectral 99.920 99.920 99.920  99.920 99.920 99.920 

Bartlett 99.840 99.880 99.840  99.880 99.920 99.880 

Truncated 12.760 12.080 11.160  15.720 15.040 14.120 
Parzen 71.920 76.920 64.440  82.640 85.640 76.760 

Notes:  A  Normal bivariate BEKK (12,12) process is simulated (2500 replications) for different T . The optimal bandwidth 

parameter is estimated using a Dumbgen-type estimator.
 1 , 

2 and  
3 are the semi-norms used in the estimation. 
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Table 10: The empirical size of the Hong (2001) tests with the optimal bandwidth estimated using the 

cross-validation method  at the nominal levels of 5% and 10% 

 Levels of Significance 

 5%  10% 

 NULL1: [No Granger causality-in-variance, high persistence in the volatility process] 

 

 T = 200 
Daniell 5.44   

5.36 

5.36 
5.28 

5.96 

4.84 

 6.88 

7.00 

7.36 
7.08 

8.80 

6.76 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  

 T = 500 

Daniell 5.44     

5.40 
5.48 

5.40 

5.68 

5.44 

 7.28   

7.44 
7.52 

7.44 

8.40 

7.44 

Tukey-Hanning  
Quadratic-spectral  

Bartlett  

Truncated  

Parzen  

 T = 1000 

Daniell 9.88 
9.84 

9.96 

9.88 
9.20 

9.92 

 11.88 
11.96 

12.04 

11.96 
12.04 

11.96 

Tukey-Hanning  

Quadratic-spectral  

Bartlett  
Truncated  

Parzen  
 NULL2:  [No Granger causality-in-variance, low persistence in the volatility process] 

 

 T = 200 
Daniell 3.60 

3.76 

3.80 
3.76 

3.68 

3.80 

 5.36     

5.64 

5.24 
5.60 

5.40 

5.64 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  

 T = 500 

Daniell 5.40 

5.68 
5.28 

5.68 

4.32 
5.68 

 7.32 

7.52 
7.20 

7.52 

6.56 
7.52 

Tukey-Hanning  
Quadratic-spectral  

Bartlett  

Truncated  
Parzen  

 T = 1000 

Daniell 8.68 
8.68 

8.72 

8.68 
9.52 

8.68 

 9.60 
9.76 

9.60 

9.76 
11.08 

9.76 

Tukey-Hanning  

Quadratic-spectral  

Bartlett  
Truncated  

Parzen  

Notes:  A  Normal bivariate BEKK (12,12) process is simulated (2500 replications) for different T . The optimal bandwidth 

parameter is estimated using cross-validation in terms of a kernel regression. 
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Table 11: The empirical power of the Hong (2001) tests with the optimal bandwidth estimated using 

the cross-validation method  at the nominal levels of 5% and 10% under ALTER1 and ALTER2 

 
 Levels of Significance 

 5%  10% 

 ALTER1: [short horizon Granger causality-in-variance, high persistence in the volatility process] 

 

 T = 200 
Daniell 11.48 

10.84 

14.40 
11.08 

42.12 

10.44 

 14.32 

13.76 

19.04 
14.12 

48.76 

13.28 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  

 T = 500 

Daniell 19.76 

19.08 
34.80 

19.20 

77.52 
18.76 

 24.32 

23.28 
44.16 

23.52 

82.64 
23.04 

Tukey-Hanning  
Quadratic-spectral  

Bartlett  

Truncated  
Parzen  

 T = 1000 

Daniell 34.20 
32.76 

73.20 
32.84 

97.72 

32.68 

 40.44     
39.16 

81.76 
39.16 

98.52 

39.00 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  
 ALTER2: [short horizon Granger causality-in-variance, low persistence in the volatility process] 

 

 T = 200 
Daniell 87.56 

87.28 

88.64 
87.44 

86.40 

87.32 

 89.84 

89.80 

90.60 
89.84 

89.32 

89.76 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  

 T = 500 

Daniell 68.28 

68.76 
69.48 

68.76 

64.08 
68.84 

 73.56 

74.12 
74.76 

74.08 

71.40 
74.08 

Tukey-Hanning  
Quadratic-spectral  

Bartlett  

Truncated  
Parzen  

 T = 1000 

Daniell 100 
100 

100 
100 

100 

100 

 100 
100 

100 
100 

100 

100 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  

 
Notes:  A  Normal bivariate BEKK (12,12) process is simulated (2500 replications) for different T . The optimal bandwidth 

parameter is estimated using cross-validation in terms of a kernel regression. 
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Table 12: The empirical power of the Hong (2001) tests with the optimal bandwidth estimated using 

the cross-validation method  at the nominal levels of 5% and 10% under ALTER3 and ALTER4 

 
 Levels of Significance 

 5%  10% 

 ALTER3: [long horizon Granger causality-in-variance, high persistence in the volatility process] 

 

 T = 200 
Daniell 79.36 

78.56 

78.64 

76.00 

69.52 

72.36 

 83.24 

82.24 

82.88 

80.36 

75.68 

77.24 

Tukey-Hanning  

Quadratic-spectral  

Bartlett  

Truncated  

Parzen  

 T = 500 

Daniell 95.52    

94.96 
95.28 

95.00 
94.12 

94.36 

 95.76 

95.16 
95.52 

95.40 
94.64 

94.60 

Tukey-Hanning  
Quadratic-spectral  

Bartlett  
Truncated  

Parzen  

 T = 1000 
Daniell 97.12 

96.88 

97.20 
97.00 

97.12 

96.76 

 97.28    

96.96 

97.32 
97.04 

97.20 

96.80 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  
 ALTER4: [long horizon Granger causality-in-variance, low persistence in the volatility process] 

 

 T = 200 
Daniell 39.84    

38.36 

40.96 
37.00 

38.28 

32.16 

 45.72     

43.68 

46.60 
42.80 

43.56 

38.80 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  

 T = 500 

Daniell 95.56 

95.00 
95.32 

95.04 

94.12 
94.40 

 95.80   

95.20 
95.56 

95.44 

94.68 
94.64 

Tukey-Hanning  
Quadratic-spectral  

Bartlett  

Truncated  
Parzen  

 T = 1000 
Daniell 96.92     

96.40 

97.16 
96.68 

97.20 

96.00 

 97.04 

96.60 

97.28 
96.84 

97.28 

96.32 

Tukey-Hanning  

Quadratic-spectral  
Bartlett  

Truncated  

Parzen  

 
Notes:  A  Normal bivariate BEKK (12,12) process is simulated (2500 replications) for different T . The optimal bandwidth 

parameter is estimated using cross-validation in terms of a kernel regression. 
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Table 13: Testing the null hypothesis that real stock market returns do not Granger cause-in-variance 

the industrial production growth in Italy, Japan, the United Kingdom, and the United States. 

 Countries 

 Italy Japan United Kingdom United States 

 

Kernel 

    

 qB  )12( NQ  qB  )12( NQ  qB  )12( NQ  qB  )12( NQ  

Daniell -0.1389 

(0.1360) 

 

-0.3319 

(0.1888) 
3.8326 

(0.0422) 

 

-0.3693 

(0.1863) 
3.8966 

(0.0414) 

 

0.6821 

(0.1581) 
3.8869 

(0.0416) 

 

1.9154 

(0.0277) 

Tukey 

Hanning 

-0.1470 

(0.1363) 

-0.2241 

(0.1945) 
3.7935 

(0.0427) 

 

-0.6653 

(0.1599) 
4.0506 

(0.0396) 

1.1633 

(0.1014) 
3.9032 

(0.0414) 

 

2.3636 

(0.0090) 

Quadratic 

Spectral 

-0.1501 

(0.1364) 

 

-0.1770 

(0.1964) 
4.0964 

(0.0390) 

 

-0.4248 

(0.1823) 
3.9010 

(0.0414) 

0.1750 

(0.1964) 
3.8931 

(0.0415) 

 

2.0945 

(0.0181) 

Bartlett -0.1686 

(0.1372) 

 

-0.2559 

(0.1930) 
3.7474 

(0.0433) 

 

-0.6355 

(0.1630) 
4.0506 

(0.0396) 

 

1.2067 

(0.0963) 
3.8948 

(0.0415) 

 

2.4299 

(0.0076) 

         

 )ˆ( *
CVNQ  )ˆ( *

DBNQ  )ˆ( *
CVNQ  )ˆ( *

DBNQ  )ˆ( *
CVNQ  )ˆ( *

DBNQ  )ˆ( *
CVNQ  )ˆ( *

DBNQ  

Daniell -0.1597 

(0.5634) 

[20] 

-1.2054 

(0.8860) 

[100] 

3.4873 

(0.0000) 

[75] 

3.7007 

(0.0000) 

[84] 

-1.2627 

(0.8967) 

[39] 

-2.2635 

(0.9882) 

[100] 

1.3431 

(0.0896) 

[45] 

1.1087 

(0.1338) 

[51] 

Tukey-

Hanning 

-0.1470 

(0.5584) 

[20] 

-1.0167 

(0.8454) 

[100] 

2.8739 

(0.0020) 

[75] 

3.5127 

(0.0002) 

[99] 

-0.8418 

(0.8000) 

[39] 

-1.9000 

(0.9713) 

[100] 

1.8519 

(0.0320) 

[45] 

1.6519 

(0.0493) 

[51] 
Quadratic 

Spectral 

    -0.3888 

 (0.6513) 

[20] 

-1.6103 

(0.9463) 

[100] 

3.6687 

(0.0000) 

[75] 

3.7228 

(0.0000) 

[99] 

-1.5381 

(0.9380) 

[39] 

-2.5292 

(0.9943) 

[100] 

    0.8185 

 (0.2065) 

[45] 

0.5616 

(0.2872) 

[51] 

Bartlett -0.1996 

(0.5791) 

[20] 

-1.1022 

(0.8648) 

[100] 

2.7034 

(0.0034) 

[75] 

3.1141 

(0.0009) 

[99] 

-0.7900 

(0.7852) 

[39] 

-1.8572 

(0.9684) 

[100] 

1.7734 

(0.0381) 

[45] 

1.5833 

(0.0567) 

[51] 

     

LM 32.7259 

(0.0007) 

0.7327 

(0.6933) 

3.7457 

(0.1537) 
7.3128 

(0.0258) 
LR 3.6663 

(0.1599) 

-1.9174 

(1.000) 
17.7346 

(0.0001) 

3.0253 

(0.2203) 

S (N = 12) 12.7348 

(0.3886) 

10.4654 

(0.5752) 

7.8440 

(0.7972) 
31.6969 

(0.0015) 

S* (N = 12) 12.9591 

(0.3720) 

10.6443 

(0.5596) 

7.8746 

(0.7949) 
32.4309 

(0.0012) 

     

Notes: p-values are in parentheses. Numbers in brackets are the optimal bandwidths  computed according to  cross-validation 

method ( *ˆ
CVN ) and Dubgen type estimators ( *ˆ

DBN ). )(max
2

NQB
qN

q


 with q = 200. The  p-values of the qB tests are based on 

the extreme value distribution. LR, LM, Q and S stand for the Comte and Lieberman‟s (2000), Hafner and Herwartz‟s (2006), 

Hongs (2001) and Cheung and Ng‟s (1996)  tests, respectively. )ˆ( *NQ and )12( NQ
 
denote the Hong‟s statistics calculated at 

the optimal bandwidth and at the  exogenously given bandwidth  12, respectively. 
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Table 14: Testing the null hypothesis that industrial production growth does not Granger cause-in-

variance the real stock market returns in Italy, Japan, the United Kingdom, and the United States. 

 Countries 

 Italy Japan United Kingdom United States 

 

Kernel 

 

 

 

 

 

 

 

 

 qB  )12( NQ  qB  )12( NQ  qB  )12( NQ  qB  )12( NQ  

Daniell 1.7361 

(0.0789) 

 

1.0979 

(0.1092) 

1.5636 

(0.4014) 

 

0.8061 

(0.1441) 

2.5959 

(0.0598) 

 

0.2364 

(0.1940) 

1.5934 

(0.0823) 

 

0.2625 

(0.3965) 

Tukey – 

Hanning 

1.5206 

(0.0841) 

 

1.1669 

(0.1010) 

1.4451 

(0.4331) 

 

0.9078 

(0.1321) 

2.4124 

(0.0646) 

 

0.2610 

(0.1928) 

1.8168 

(0.0770) 

 

0.5886 

(0.2781) 

Quadratic 

Spectral 

1.9213 

(0.0747) 

0.9145 

(0.1313) 

1.3722 

(0.4533) 

0.5704 

(0.1695) 
2.4021 

(0.0254) 

 

0.4750 

(0.1782) 

1.4687 

(0.0854) 

 

-0.0136 

(0.5054) 

Bartlett 1.5288 

(0.0839) 

 

1.1875 

(0.0986) 

1.4451 

(0.4331) 

 

0.8368 

(0.1406) 

2.1180 

(0.0604) 

 

0.1202 

(0.1980) 

1.6879 

(0.0800) 

0.5715 

(0.2838) 

         

 )ˆ( *
CVNQ  )ˆ( *

DBNQ  )ˆ( *
CVNQ  )ˆ( *

DBNQ  )ˆ( *
CVNQ  )ˆ( *

DBNQ  )ˆ( *
CVNQ  )ˆ( *

DBNQ  

Daniell 0.7887 

 (0.2152) 

[19] 

1.0870 

(0.1385) 

[120] 

1.5636 

(0.0590) 

[2] 

0.1940 

(0.4231) 

[33] 

1.3403 

(0.0901) 

[19] 

1.5356 

(0.0623) 

[21] 

0.5813 

(0.2805) 

[10] 

-1.8246 

(0.9660) 

[50] 

Tukey- 

Hanning 

0.8407 

(0.2002) 

[19] 

0.9184 

(0.1792) 

[130] 

1.4451 

(0.0742) 

[2] 

0.1379 

(0.4452) 

[42] 

0.7307 

(0.2325) 

[19] 

1.0179 

(0.1544) 

[22] 

0.8531 

(0.1968) 

[10] 

-1.4564 

(0.9274) 

[50] 

Quadratic 

Spectral 

0.4665 

(0.3204) 

[19] 

1.2999 

(0.0968) 

[106] 

1.3722 

(0.0850) 

[2] 

0.1630 

(0.4353) 

[134] 

2.0951 

(0.0181) 

[19] 

2.1917 

(0.0142) 

[136] 

0.3394 

(0.3672) 

[10] 

-2.2907 

(0.9890) 

[50] 

Bartlett 0.8439 

(0.1994) 

[19] 

1.0156 

(0.1549) 

[124] 

1.4451 

(0.0742) 

[2] 

0.2000 

(0.4207) 

[42] 

1.1240 

(0.1305) 

[19] 

1.1240 

(0.1305) 

[20] 

0.8447 

(0.1991) 

[10] 

-1.4794 

(0.9305) 

[50] 

     

LM 13.0732 

(0.0014) 

4.5083 

(0.1050) 

1.1624 

(0.5592) 

3.7979 

(0.1497) 

LR 14.0429 

(0.0009) 

-3.3742 

(1.000) 
33.1281 

(0.0006) 

3.6129 

(0.1642) 

S (N = 12) 13.4158 

(0.3396) 

12.4986 

(0.4065) 

10.5674 

(0.5663) 

8.2881 

(0.7622) 

S* (N = 12) 13.5687 

(0.3291) 

12.6553 

(0.3946) 

10.6807 

(0.5565) 

8.3721 

(0.7554) 

 

 

Notes: p-values are in parentheses. Numbers in brackets are the optimal bandwidths  computed according to  cross-validation 

method ( *ˆ
CVN ) and Dubgen type estimators ( *ˆ

DBN ). )(max
2

NQB
qN

q


 with q = 200. The  p-values of the qB tests are based on 

the extreme value distribution. LR, LM, Q and S stand for the Comte and Lieberman‟s (2000), Hafner and Herwartz‟s (2006), 

Hongs (2001) and Cheung and Ng‟s (1996)  tests, respectively. )ˆ( *NQ and )12( NQ
 
denote the Hong‟s statistics calculated at 

the optimal bandwidth and at the  exogenously given bandwidth  12, respectively. 
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Chapter 3 

 

A model-free test  for causality-in-volatility, with an application to the 

output growth and stock return volatility relationship 

 

 

 

1. Introduction 
 

Modeling volatility spillovers across different assets or markets has been very 

important in the  finance and macroeconomics literature since Morgenstern (1959) 

and more recently Granger et al. (1986), Schwert (1989), Baillie and Bolleslev (1990), 

Cheung and Ng (1990), Engel et al. (1990),   Lin et al. (1994), Billio and Pelizzon 

(2003). Most of these papers estimate parametric models to examine specific 

formulations for the spillover effects, while Cheung and Ng (1996) and Hong (2001) 

develop general causality-in-variance tests within this framework. 

Investigating whether two financial time series exhibit mutual dependence in 

variance is important for a wide range of applications, including risk management, 

asset pricing and the development of policies for economic and financial stability.  

Since the concept of Granger causality (Granger 1969, 1980,1988) there is a 

considerable amount of research that tests the casual relationship between economic 

and financial variables; see Geweke (1984) and Hoover (2001) for surveys. While 

most of the original studies focus on the mean, recent literature allows for a deeper 

analysis of the causality topic by extending it to second order moments. 

The first definition of variance causality is due to Granger et al. (1986). Comte 

and Lieberman (2000) extended the original Granger idea by testing the null of non-

causality-in-variance and by setting linear restrictions on the parameters of a 

multivariate GARCH model. Alternatively, Cheung and Ng (1996) present a two step 

procedure by first prewhitening two time series and then testing whether the two 

squared residual series, properly standardized by their respective conditional volatility 

estimates, are independent. Hong (2001) modified Cheung and Ng‟s approach by 
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proposing a class of kernel based cross-correlation tests. Hafner and Herwartz (2006) 

adapt a Lagrange test for noncausality in variance of financial returns and show that 

their LM test outperforms the Cheung and Ng (1996) test in terms of empirical power. 

 While these tests have a good finite sample performance against a sequence of 

local alternatives, implementation of these test procedures would require estimation of 

a conditional volatility specification via a GARCH type representation, thus imposing 

the assumption that the conditional second moments follow an explicit functional 

form. However, while it is widely recognized that this class of statistical models are 

more than adequate to account for the „volatility clustering‟ effects, usually met in 

financial return series, it is uncertain whether they represent the actual data generating 

mechanism. See for example Harvey and Siddique (1999) who argue that the presence 

of excess unconditional leptokurticity and skewness in financial returns, can affect the 

time series properties of the conditional variance and consequently, may lead to 

misleading inference on causality. 

To our knowledge, no attempt to date has been made to test for causality-in-

variance within an unconditional volatility framework
15

. The purpose of this paper is 

to propose a simple method for testing unidirectional Granger causality-in-variance. 

Our approach, as opposed to existing causality-in-variance procedures which impose 

an explicit functional form on the evolution of the second order dynamics, is based on 

a model-free volatility proxy. Our procedure compares simultaneously a set of p-

values, which result from the implementation of an asymptotic standard normal test at 

multiple single lag periods. The test statistic employed in these evaluations examines 

the null of non-causality in volatility between the two time series for an individual lag 

period. The test calculations use the sample cross-correlations between the absolute 

values of innovations resulting from fitting autoregressions to the bivariate set of 

returns. Joint inference is conducted by applying the multiple comparison procedure 

                                                           
15 While, in a related work, Schwert (1989) uses the absolute values of prewhitened residuals as volatility proxies or 

growth rates of different financial and macroeconomic time series, at a second stage these measures work as inputs for the 

estimation of a conditional volatility model. A considerable amount of recent work also emphasizes the use of empirical 

measures of asset return variability that involve squared and absolute returns. French, Schwert, and Stambaugh (1987) sum 

squared daily stock returns to compute monthly standard deviations. Subsequent researchers, such as Andersen, et al. (2001 a and 

b, 2003), employ high-frequency intradaily returns to calculate daily variability measures, which are considered to be unbiased 

and efficient estimates of financial volatility. 
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developed by Rom (1990). In particular, the p-values are ordered and then contrasted 

to some corresponding critical levels of significance. The overall null hypothesis of 

no-causality is rejected if at least one p-value is found to be below the critical level of 

significance. The latter emerge as adjustments of the nominal level of significance to 

the lag truncation, so as to ensure a firm control of the joint type I error probability
16

. 

Monte Carlo experiments have been performed to evaluate the finite sample 

properties of the proposed test. The performance of our test is compared to two 

conventional tests, namely Cheung and Ng‟s (1996) S test and Hong‟s (2001) Q tests, 

under alternative models regarding the causal lag structure, the distributional 

characteristics of the series and the degree of fractional integration of the volatility 

process. 

Our results show that the proposed test is well sized. In addition, the finite 

sample size of the test is less sensitive than the S test to arbitrary choices of the lag 

selection parameter and the distribution of the error term. Interestingly the 

implementation of the proposed test yields surprisingly high finite sample power, 

even in the presence of long horizon causalities. This remarkable performance is 

robust with respect to the implemented lag truncation and it holds for different sample 

sizes. 

By comparison, our test never performs worse than the Q and S tests and in 

fact outperforms both tests when dealing with short horizon causalities, especially so 

when the sample size is not very large. In addition, the power of both tests appears to 

depend greatly on the lag truncation and for the case of the Q test, on the weighting 

scheme used as well.  Our findings also indicate that all test procedures have poor 

power under the presence of long-range dependence in the underlying volatility 

processes. Nevertheless, for large sample sizes there seems to be an advantage in 

using our proposed test. 

We apply our tests to study volatility spillover between the real stock returns 

and industrial production growth in U.S., United Kingdom, Italy and Canada. 

Previous research on whether changes in industrial production growth can predict 

future stock returns has been inconclusive and there is very little evidence on the 

                                                           
16

 Nonparametric multiple comparison procedures have been applied to several econometric problems. For instance, 

Chow and Denning (1993) proposed a joint test for the martingale difference hypothesis, resulting from simultaneous 

comparisons of the variance ratios at multiple time horizons.  
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relationship between the volatilities of industrial production growth and real stock 

returns. We used data from Datastream, IFS and OECD database covering the period 

from January 1973 to May 2011. Our results show that fluctuations of industrial 

production growth generate extreme variability in the real stock return patterns but not 

the other way around. This result is robust with respect to the implemented lag 

truncation and holds  for US, United Kingdom and Italy. In comparison, Cheung and 

Ng‟s (1996) S test and Hong‟s (2001) Q tests (with a few exceptions) do not reject the 

non-causality hypothesis for either direction. 

The remainder of the paper is structured as follows. Section 2 briefly describes 

the Cheung and Ng (1996) and Hong (2001) tests. Section 3 describes our procedure. 

Section 4 reports some of our representative Monte Carlo simulation results.  Section 

5 describes the data. Section 6 is the empirical application of our test, where we study 

the volatility spillover between the U.S. real stock returns and real earnings growth. 

Section 7 provides a summary and concludes. 

 

2. Causality-in-variance tests based on GARCH type conditional volatility 

models 

 

In this section we briefly describe the Granger causality-in-variance test of 

Cheung and Ng (1996) and an enhanced version of their test procedure proposed by 

Hong (2001). Most empirical studies on volatility spillover use a Granger type test, 

namely regressing the square residuals of one variable on its own lagged square 

residuals and on other lagged variables in the framework of multivariate GARCH 

models. A different approach has been taken by Cheung and Ng (1996) who propose 

a new test for volatility spillover using the sample cross-correlation function between 

two squared residuals standardized by their conditional variance estimators. More 

specifically, their test is based on the sum of finitely many squared sample cross-

correlations, which has a null asymptotically χ
2

Μ distribution. Hong (2001) proposes a 

class of new tests for volatility spillover. He basically tests for causality in variance in 

the sense of Granger (1969, 1980) who introduces the concept of causality in terms of 

incremental predictive ability between two time series, instead of the more 

conventional approach of cause and effect. Hong‟s test does not assume any specific 

distribution, such as normality and it applies to time series that exhibit conditional 

heteroskedasticity and may have infinite unconditional variances. He also introduces a 
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weighting scheme for the sample cross correlation at each lag, in contrast to Cheung 

and Ng (1996) test which gives uniform weighting to each lag. This idea of non 

uniform weighting was also introduced by Engle (1982) to improve the power of his 

Lagrange Multiplier test for ARCH effects. 

 

Let the bivariate stationary process 2,1,)( 2/1  ihititit  , with )1,0(~ iidit , 

0)/( 1  ititE   and ititit hVar   )/( 1 , where 1 it  denotes the σ–field generated 

by past realizations of i  available at time t-1 and 






 
q

j

jitij

p

j

jitijiit hbah
11

2 . 

Following Cheung and Ng (1996), the independent series  ititit ĥˆ 2  , i = 1,2, are 

used for the sample cross-correlation function calculation at lag k, defined as 

  21

212121

ˆˆ)(ˆ)(ˆ


  CCkCkr                                                                          (1) 

where 11Ĉ and 22Ĉ are the sample variances of t1̂ and t2̂ respectively, and 

)(ˆ
12 kC  is defined as 

0,ˆˆ)(ˆ

1

21

1

21
 







 kTkC
kT

t

tkt                                                                                 (2) 

The Portmanteau statistic S can be applied to test the null hypothesis that t2 does not 

Granger cause in variance t1 for all k = 1,…,N  jointly
17

: 

)(~)(ˆ 2

1

2

21
NkrTS

aN

k




 .                                                                                      (3) 

A drawback of this procedure is that inference is sensitive to the choice of N, 

i.e., the number of lagged cross-correlations used in the computation of the S statistic. 

On the other hand, Hong (2001) proposed a class of normalized tests, the Q tests, 

which utilize a weighted scheme on the sample cross correlations
18

: 

  )1,0(~2)(ˆ)/(

2/1
1

1

2

21
NGEkrNkvTQ

aT

k 







 




                                             (4) 

                                                           

17
 Throughout this paper, the symbol 



~  will denote „asymptotically distributed‟. 
18

 Hong(2001), as well as Cheung and Ng (1996), have presented small sample versions of their test 

statistics. Due to space limitations, we only report the main test statistics.   
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where (.)v  is a kernel function (for example the Daniell), 

 





1

1

2 )/(/1
T

k

NkvTkE and   





1

1

4 )/(/)1(1/1
T

k

NkvTkTkG . 

The finite sample power of this class of tests may depend greatly on the choice 

of the bandwidth parameter N.  Hong (2001) argues that the selection of the kernel 

function is of secondary importance. 

 

 

3.   Econometric procedure 
 

Consider the bivariate ergodic and covariance stationary stochastic process 

 1 2,t t tz z z  . Suppose that each separate , 1,2itz i   evolves as an ARMA (p,q) 

process 

 

( ) ( ) , 1,2i it i itB z B i                                                    (5) 

where 

1( ) 1 ... ,p

i i ipB B B       

1( ) 1 ... ,q

i i iqB B B       

while B is the Backshift operator on t, and , 1,2it i  are the residual series. 

The terms ( )i B and ( )i B are assumed to have all roots outside the unit circle. Let the 

 -fields  0;11   dzF dt  and  0;, 21   dzzF dtdt  be two information sets 

generated by the past realizations of the series  0;  dz dit . The null hypothesis,  that 

tz2  does not Granger cause-in-variance tz1 with respect to information set F, can be 

formulated as 

 

   FEFEH itit ||: 10   . 

 

To investigate the previous hypothesis we consider  the cross-correlation function 

between tX1 and tX 2 at lag k, where 2,1,  iX itit  , defined as  



94 

 

 

  21
)0()0()()(

2121





ddkdkr , 

where 2,1),()0(  iXVard it
i

, and ),()( 21
21

ktt XXCovkd 


 represent the 

variances of each itX  and the cross-covariance of  tX1 and tX 2 at lag k with k  0, 

respectively.  

 

Denote ititX ̂ˆ  , where  it̂ the vector of residuals obtained from estimating 

regression (5) by OLS. The cross correlation function at lag k of itX  and jtX  can be 

estimated non-parametrically by 

  21

2121

ˆˆ)(ˆ)(ˆ





ddkdkr                                                                         (6)  

where 2,1,ˆ id
i

, the sample variance of itX  and  

  
2121

ˆˆˆˆ)(ˆ
2

1

1

1


  





  kt

kT

t

t XXTkd ,k0.                                                     (7) 

Here, 
i

̂ , i = 1,2, represent the sample mean of itX . 

 

We can state the following theorem. 

Theorem. Let ))(ˆ),...,1(ˆ( krrTW  , where 1,2,…,k are fixed integers. Assume that 

the derivatives 
i

kd







 )(ˆ
21

exist and are bounded in probability for  i , where   is 

the parameter space, while the condition 



1

2

itE  holds for some 1  and 

all t. Under the null hypothesis that tz2  does not Granger cause-in-variance tz1  at the 

specific lags 1, 2, …, k, W is asymptotically distributed as ),0( kIN (for the proof  see 

the Appendix). 

 

Under the null hypothesis that it  does not Granger cause-in-variance jt  up to lag N, 

the relationship 0)( m  holds for each m = 1,…, N. Consider now a set of N 

statistics )(),...,1( NWW  with corresponding p-values NPP ,...,1 Rexamining the 
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validity of each individual hypothesis NHH 001,..., , where 0)(: lHol  .  The null 

hypothesis of Granger noncausality-in-variance is equivalent to a global hypothesis, 

which is a combination of N sub-hypotheses:  N

llo HH
10 

 . A rejection of any 

 0 1

N

l l
H


 can, therefore, lead to the rejection of the global hypothesis for a specific 

level of significance α. Hence, a way to test the null hypothesis of noncausality is to 

use the W tests and the corresponding p-values and reject the null if any p-value lP is 

less than α. 

Miller (1966), argues that the overall significance level α must be controlled in 

situations where an individual test is implemented simultaneously at multiple lag 

periods. This result has implications for testing the joint significance of the cross-

correlations. Comparing the p-values of the W test with the significance level α can 

lead to invalid inference. As suggested by Miller, the level α must be adjusted in order 

to account for the number of sub-hypotheses comprising the global hypothesis. An 

approach that has been followed in the statistics literature is the implementation of a 

Bonferroni inequality adjustment, i.e., an upper bound on the overall significance 

level is set by dividing the test size α with the number of individual hypotheses. 

Nevertheless, this method yields very low finite sample power. A number of modified 

versions of the Bonferroni method have been proposed in order to increase the test 

power while ensuring a firm control of the joint probability of type I error (Hochberg 

(1988), Holm (1979), Hommel (1988), Rom (1990)). 

Multiple comparisons between the cross-correlation based test statistic are 

performed by applying the method developed by Rom (1990). Rom‟s procedure is an 

improvement on the Hochberg (1988) method. This method is implemented in two 

simple steps. First the elements of  0 1

N

l l
H


 are ordered by their p-values and adjusted 

significance levels are then calculated for their evaluation. Starting from the 

hypothesis with the largest p-value, this method sequentially contrasts the p-values 

with the corresponding adjusted significance levels. The overall null hypothesis of 

noncausality-in-variance is rejected only when one p-value is found to be smaller or 

equal to its corresponding level of significance. Otherwise, the null hypothesis of 

noncausality-in-variance is accepted. A detailed description of the procedure follows 

in the next subsection. 
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Rom‟s method of adjustment of the significance level: 

The p-values are ordered from smallest to largest: ][]1[ ,..., NPP . Let 
*

][

*

]1[ ,..., Naa  

be the adjusted significance levels employed in the multiple evaluations of the ordered 

individual hypotheses ][0]1[0 ,..., NHH . The adjusted levels Nla l ,..,1,*

][   are calculated 

recursively  as: 

 ia
h

i
aa

i

h

hi

hN

i

h

h

iN /
2

1

)*(

][

1

1

*

]1[

















 













 ,                                               (8) 

where  i = 2, …, N and aa N *

][ . 

Inference is conducted by sequential pairwise comparisons of the p-values 

[.]P with the equivalent critical levels 
*

[.]a . Rom‟ s method starts the testing by 

contrasting the largest p-value ][NP with the corresponding adjusted significance level 

][N . If ,*

][][ NN aP  then the overall null hypothesis is rejected; otherwise, the 

evaluation moves on to the next pair  *

]1[]1[ ,  NNP  . The procedure is repeated 

sequentially until at least one l ( l = 1,…, N ) is found, such that
*

][][ ll aP   will hold. If 

not, then the global hypothesis is accepted. 

The main steps of the proposed testing procedure can be summarized as follows: 

1. The absolute values of the residuals are used in the computation of  the W 

statistics and the corresponding p-values for a series of successive lag periods l 

= 1,…, N. 

2. The p-values are ordered from lowest to largest. Define α and use the formula 

proposed by Rom to obtain the N-1 adjusted levels of significance. If there is 

at least one p-value smaller than the corresponding adjusted significance level, 

reject the null hypothesis up to lag N; otherwise accept the null. 

 

 

 

 

4.  Monte Carlo simulations 

 

This section presents our Monte Carlo simulation results conducted to evaluate 

the finite sample performance of our tests as compared with the two conventional 



97 

 

causality-in-variance tests presented in Section 2. We begin by the description of the 

Monte Carlo set up, followed up by the presentation of our main results. 

 

3.4.1. Experimental design 

 

The simulated series ),( 21
 ttt yyy are generated from a bivariate BEKK (p,q) 

process given by: 

,tt uy      Tt ,...,2,1 ,                                                                                           (9) 

  2/1

ttt Hu  ,                                                                                             (10)                                                                               

    
 




p

i

q

i

iitiiititit FHFGuuGDDH
1 1

' ,                                      (11) 

 

where ),( 21
 ttt uuu , )1,0(~ IIDt , ][ ijdD  ,  ][ k

ijk gG  , pk ,...,2,1 , and 

][ k

ijk fF  . 

The parameter values in equations (9):(11) describe the following data 

generating processes (DGPs): 

 

DGP1: 



















)1,0(~

1000350
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1

22

1

21

1

12

1

11

1

22

1

21

1

12

1

11

NIID

).,,,.(),f,f,f(f

).,,,.(),g,g,g(g

qp

t

 

Under this setting we evaluate the size of the test since there is no causality-in-

variance between t1 and t2 . 

 

DGP2: 
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The parameter values are identical to DGP1, although now the t are distributed as 

Student  t with 6 degrees of freedom. 
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We allow t2  to Granger cause-in-variance t1 at first lag period, in order to 

investigate the power of the test. 

DGP4: 
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Under this model, there is a long lag causal structure given that t2  Granger cause-in-

variance t1 at the 10
th

 lag period. 

Empirical results, reported in Taylor (1986), Ding, Granger and Engle (1996), Baillie 

et al. (1996), have demonstrated that the autocorrelations of realized volatility proxies, 

such as absolute or squared daily stock or exchange rates returns, exhibit a slow 

hyperbolic rate of decay over long lags. This property is characterized as long 

memory in financial volatility and has been the object of controversy by many 

researchers. Bollerslev and Mikkelsen (1996), Breidt et al. (1998), Henry and Payne 



99 

 

(1997), Eibens (1999) provide evidence on the presence of long term dependence in 

volatility dynamics. On the other hand, Ryden et al. (1998), Mikosch and Starica 

(1998), Granger and Hyung (1999) argue that the high degree of persistence is caused 

by unaccounted structural breaks or potential nonlinearities in the conditional second 

moments. Recent empirical work, such as Morana and Beltratti (2004), show that the 

hyperbolic memory in the exchange rate realized volatility is attributed to structural 

changes only to some extent. Motivated by these considerations, we investigate 

whether the presence of long memory effects may have some impact on the 

performance of the proposed test. To achieve this goal we use a different data 

generating mechanism which is presented in equations (12) to (15).  In particular, 

each ty  evolves as a univariate Fractional Integrated GARCH (p, d, q) process as 

introduced by Baillie et al. (1996), enhanced by a volatility spillover term: 

,tt uy   Tt ,...,2,1 ,                                                                                              (12) 

  2/1

ittt hu  ,  ~ (0,1)t NIID                                                                                (13) 

1

2

1 ))1)(1(1(   jtiit
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iiitiiit huLLbhbkh i                                          (14) 
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k

k

ii

d
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where id
L)1(   is the Fractional differencing operator, id is the Fractional 

Differencing Parameter, Γ is the Gamma function,  ib   is the GARCH parameter 

coefficient and  i is the coefficient of the volatility spillover term. When parameter 

id approaches zero any shocks will cause persistent effects on the volatility dynamics, 

which is a characteristic of long memory processes. On the other hand, the influence 

of a shock decays with a geometrical rate when id approaches unity. 

Under the mechanism described above, the volatility processes are assumed to have 

fractional degrees of integration. We consider two hypotheses when studying the 

power properties of our tests. First we evaluate the effects of the presence of 

hyperbolic memory on the test performance. This is denoted as the long memory 

hypothesis. Then, we examine the impact of geometric memory. This is denoted as 

the short memory hypothesis. 
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The parameter values in DGP4 and DGP5 describe a long and a short memory model, 

respectively. In both models, unidirectional volatility spillovers occur from ty2 to ty1  

at the first lag period. 

To assess the empirical performance of the Q tests under different weighting schemes 

we use three kernel functions: the Quadratic Spectral, Daniell, and Tukey-Hanning 

kernels. Each of the statistics is calculated with N = 10, 20, 30, 40, and 50. Samples of 

size T = 200, 500, 1000 and 4000 are simulated while we use 2500 replications. To 

eliminate the effect of the start-up value
19

, we generate T + 2500 observations and 

then we remove the first 2500 observations. A univariate GARCH (1,1) model is 

fitted to each simulated series in order to compute the series  ititit hy ˆˆ 2 , used in 

the Q and S test calculations. 

 

 

 

 

                                                           
19

 The start-up value was set to be the unconditional covariance of the BEKK process, i.e.,  

    )(

1

1 1

* DDvecFFGGIH

p

i

q

i

iiiit 






















 

  . For more details see Engle and Kroner (1993). 



101 

 

3.4.2. Simulation results 

We evaluate first, the empirical size of the causality tests under the null 

hypothesis that ty2 does not Granger-cause in variance ty1 . Table 1 reports the size of 

the tests at the 5% and 10% levels of significance under the null hypothesis of a 

Normal GARCH-BEKK(1,1) process. The empirical size of the W test is close to the 

nominal levels of significance 5% and 10% for all sample sizes. For example, for T = 

500 the size of W test at nominal level 5% is 4.00%, 4.52%, 5.12%, 5.48% and 

5.52%, implemented for lag selections 10, 20, 30, 40, and 50 respectively. For T = 

1000 the W test tends to slightly over-reject the null hypothesis. Overall, the size of 

our test does not appear to depend on the choice of the lag truncation N. On the other 

hand, the Q tests are slightly under-sized for N = 10; when N increases the estimated 

probability of Type I error tends to be near the 5% level. The choice of N has the 

opposite effect on the S test size since the under-sizing becomes more severe when N 

increases, especially for small sample sizes. The finite sample size of the tests, when 

implemented to volatility processes where t are distributed as Student t with 6 

degrees of freedom (DGP2), is presented in Table 2. Overall, the W test has good size 

for all T. Compared to the previous results, our test statistic now appears to be slightly 

under-sized. On the other hand, leptokurtic errors cause the opposite effect on the size 

of the Q and S tests. 

Table 3 presents the power of the tests at nominal level 5% and 10% under 

DGP3, where volatility spillovers from ty2 to ty1 occur at the first lag period.  For all 

sample sizes T, the W test has great power against DGP3; with a few exceptions, the 

estimated Type II error probabilities are always 100% at both levels of significance. 

Furthermore, our results show that the test power is robust to arbitrary choices of the 

lag selection parameter. On the other hand, the power properties of the competing test 

procedures seem to depend on the choice of N. For instance, for T = 500 the rejection 

rates of Q test, which is based on the Tukey- Hanning kernel, when N takes the values 

10 and 50, are 43.68% and 24.84% respectively at level 5%; on the other hand, the 

power of the W test is 100% for both selections of N. Under DGP3, the superiority of 

the W test performance at small, medium and large sample sizes (e.g. 200, 500 and 

1000) over the competing test procedures is evident. It is interesting to note that for 

very large T (e.g. 4000) the Q and S tests share similar power with the W test. 
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Table 4 reports the power of the tests at nominal level of significance 5% and 

10% under DGP4, where ty2 Granger causes-in-variance ty1 at the 10
th

 lag period.  

The W test has a satisfactory performance against long horizon causalities. For small 

and moderate sample sizes (e.g. 200 and 500) the rejection rates range from 94.96% 

to 100% at both nominal levels of significance. The power of our test for larger 

sample sizes (e.g. 1000 and 4000) is always 100%. The gain in power from 

implementing the W test is now small since the competing tests appear to have also 

good power. However, our test seems to have relatively more power in detecting 

direct changes in the causal structure of the data, since it always yields high power for 

N = 10. 

Table 5 reports the power of the tests at nominal level of significance 5% and 10% 

under DGP5, where ty2 Granger causes-in-variance ty1 at the first lag period, while 

there is a long range dependence in the underlying volatility process. The results show 

that the W test has good power only for very large sample sizes. For T = 4000, the 

rejection rates at nominal level 10% are 56.92%, 74.08%, 73.80%, 74.76% and 

74.60% when N equals 10,20,30,40 and 50 respectively. However, for smaller sample 

sizes all test procedures appear to perform below 50%.  Moreover, the simulation 

results show that the power of the tests decreases with T. Note that for T = 200 the W 

test yields maximum power 13.72% and 18.32% at nominal levels 5% and 10% 

respectively. Interestingly, the power of our test seems to increase with N at both 

levels of significance. For T = 1000, when a lag truncation 10 and 50 is used, the test 

yields power 21.80% and 39.56% respectively. Nevertheless, comparing the W, Q and 

S simulation results, we observe that the first performs relatively better when applied 

to large and very large sample sizes  (e.g. T = 1000 and 4000). 

Table 6 presents the power of the tests at nominal level of significance 5% and 10% 

when the underlying process exhibits short range dependence (DGP6). The 

performance of our test is very poor under the presence of short memory in volatility, 

especially when implemented to medium and small sample sizes. However, a 

substantial improvement in the power of the test seems to have been achieved, when 

compared to the results of Table 5.  The Q and S tests share similar power with the W 

test. It appears that there is not much to be gained by using the W test. 
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In conclusion, the simulation results show that the finite sample size of the W test is 

more robust than the S test to leptokurtic errors and the lag truncation, for different 

sample sizes.  Moreover, it has excellent power under a series of local alternatives. 

Under these models, the choice of the lag selection parameter and the size of the 

sample have a relatively small effect on the power of the test. On the other hand, the 

Q and S tests have good power only when implemented to very large sample sizes, 

while their performance appears to depend greatly on the choice of the weighting 

scheme. The simulation results also reveal that all tests perform very poor when 

implemented to volatility processes that are characterized by long memory. 

 

 

 

5.  Data and empirical analysis 
 

In the next section, the relationship between stock returns volatility and 

industrial production growth volatility is investigated. Our analysis is restricted to 

four developed countries: the US, the United Kingdom, Italy, and Canada. The data 

consist of monthly observations of the aggregate stock price index, the industrial 

production index, and the consumer price index (CPI). Stock market data is taken 

from Datastream. Industrial production and CPI are retrieved from IFS and OECD 

database, respectively. The sample period spans from January 1973 to May 2011. We 

define monthly stock returns and output growth rate as the logarithmic differences of 

stock indices and industrial production, respectively. Real stock returns are computed 

by subtracting CPI inflation from nominal stock returns. 

In our empirical analysis we examine the relationship between stock returns 

volatility and output growth volatility. The evidence provided in this section is 

complementary to those presented by Schwert (1989), Beltratti and Morana (2006) 

and Diebold and Yilmaz (2007). Standard models in asset pricing imply that stock 

prices reflect in the present time the discounted future expected earnings of all firms 

in a specific economy. So, changes of the conditional variance of the stock prices are 

determined by the changes of the conditional variance of the future discount rates 

and/or the expected future earnings. However, volatilities of both the future earnings 

and discount rates are affected by unexpected fluctuations of the real economy.   On 
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the other hand, the stock prices are forward looking; reactions of speculative investors 

to anticipate events about the future economic fundamentals yield shifts in current 

stock price volatility. 

In his seminal work, Schwert (1989) investigates the association between the 

volatilities of US stock returns and industrial production growths by using monthly 

and daily data covering a period from 1857 to 1987. He provides some weak evidence 

on the predictive ability of the US stock market volatility for the future volatility of 

industrial production while he finds even less for the reverse direction of the causal 

relationship. Beltratti and Morana (2006) show that the volatilities of US stock returns 

and industrial production growth are not related in the long-run. However, they 

demonstrate that the dynamics of stock return volatility can be decomposed into a 

persistent and a non persistent component, and that industrial production volatility 

accounts for a significant proportion of these two components.Recently, by employing 

a panel data framework on quarterly data for a large number of countries, Diebold and 

Yilmaz (2007) have found that output growth Granger causes-in-volatility the stock 

market returns. 

Our analysis is restricted to four developed countries: the US, the United 

Kingdom, Italy, and Canada. The data consist of monthly observations of the 

aggregate stock price index, the industrial production index, and the consumer price 

index (CPI). We define monthly stock returns and output growth rate as the 

logarithmic differences of stock indices and industrial production, respectively. Real 

stock returns are computed by subtracting CPI inflation from nominal stock returns. 

Stock market data is taken from Datastream. Industrial production and CPI are 

retrieved from IFS and OECD database, respectively. The sample period spans from 

January 1973 to May 2011. 

Van Dijk, Osborn and Sensier (2005) have shown, through Monte Carlo 

simulation, that inference on Granger causality-in-variance may be misleading if both 

time series experience ignored simultaneous structural changes in the volatility 

dynamics. Further theoretical evidence on this result is provided by Rodrigues and 

Rubia (2007). Their analysis shows that the cross-correlation based tests will fail to 

converge asymptotically to the standard normal distribution under the presence of 

structural breaks in both volatility series at the same time. Therefore, before the null 
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hypothesis of noncausality-in-variance is tested, we implement the Kokoszka and 

Leipus (1998, 2000) (hereafter denoted as KL) test on the squared (and absolute) 

stock returns and industrial production growths in order to detect for possible 

simultaneous volatility structural breaks
20

. The KL test is calculated as 
s
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2/1)( , u represents the series of squared (or absolute) 

returns (or growths), and s is the standard deviation of the realized volatility 

processes, estimated by a VARHAC model
21

. The structural break test results and the 

dates of the change-points, for the squared and absolute returns of the time series, are 

presented in Table 7. Statistical significant structural changes are found only in two 

cases: the squared growth rates of industrial production of United Kingdom at level of 

significance 10% and the real squared (and absolute) stock returns of Italy at levels of 

significance 5% and 10%. However, no simultaneous structural changes have been 

documented. Furthermore, there is no close relation between the dating of the 

statistical insignificant change points in the volatility of both variables. Thus, the pre-

testing allows us to proceed to our main testing objective. 

Once the variables are made stationary by taking logarithmic first differences, 

VAR (p) models are fitted to each pair of growth/return rates for these four 

economies
22

. Akaike‟s criterion is used to specify the order of the fitted VAR (p) 

models. We find that the criterion is minimized at order p = 3 for US, United 

Kingdom, and Italy, and at order p = 5 for Canada. Monthly volatility proxies have 

been constructed as the absolute values of the residuals it generated by the 

estimation of the four VAR(p)  models. Then these proxies are used to calculate our 

test statistic ))(ˆ),...,1(ˆ( NrrTW  for different lag orders N as described in Section 3 

(see equations (6):(7)). As far as it concerns the Q and S test calculations, a univariate 

GARCH (1,1) model is fitted to each separate residual series, and the attained 

                                                           
20

  The simulations results of Andreou and Ghysels (2001) indicate that the Kokozska and Leipus test 

has a reasonable good finite sample performance when applied to highly persistent GARCH processes. 
21

 VARHAC refers to the Vector Autoregression Heteroscedasticity and Autocorrelation Consistent 

estimator proposed by den  Haan and Levin (1997). The AIC criterion is used for the selection of the 

autoregressive lag length order. 
22

 Pantelidis and  Pittis (2004) have shown that  neglected causality-in-mean may lead to spurious 

detection of second order causality. To this aim, a VAR model is estimated for the conditional mean 

process rather a standard ARMA specification. 
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conditional volatilities itĥ are used for the computation of the series  ititit ĥˆ 2  . 

Then, the test statistics are calculated as presented in equations (1): (4) of Section 2. 

The empirical analysis commences with investigating the hypothesis of no 

Granger causality-in-variance from stock market returns to industrial production 

growth. Table 8 demonstrates the results of the application of our test procedure, as 

well as the two causality tests described in Section 2, on the four economies 

mentioned previously. The tests are computed for different lag selections and 

bandwidths (N = 10, 20, 30 and 40). The p-values of the W test results are ordered 

from lowest to largest value, and then contrasted to the levels of significance 5% and 

10% when adjusted for each lag order as described in equation (8). For each N we 

only report the specific W test values, where the p-value is smaller than the adjusted 

significance level * ; otherwise, the W test results with the minimum p-value are 

presented.  The corresponding adjusted significance levels for original levels 5% and 

10% are also reported for each N. The W test results presented in Table 8 demonstrate 

that there is no evidence of the presence of causality linkages for the specific direction 

in these four countries at levels of significance 5% and 10%. For instance, in US for N 

= 10, 20, 30 and 40, the minimum p-value 0.0315 of the W test is always larger than 

the corresponding adjusted significance level, i.e., * = 0.0051, 0.0026, 0.0017 and 

0.0013 at original level  5%. Similar results are obtained when our test procedure 

is implemented in the other three economies. For example when N =10 and 20 is 

selected the minimum p-values 0.0435, 0.0385, and 0.0450 of the W test in United 

Kingdom, Italy and Canada respectively, are larger than the corresponding levels * = 

0.0051 and 0.0026 at original level of significance  5%. In the same way, 

according to the Q and S test results the null of no causality of stock return volatility 

for industrial production growth volatility is not rejected at any lag order at the 5% 

and 10 % significance levels. 

In Table 9, we present the results for testing the presence of causality from 

industrial production volatility to stock returns volatility. The results of the W test 

show that there is clear-cut evidence of the presence of volatility spillovers from 

industrial production growth to stock return series. Specifically, in three cases out of 

four the null of no causality for the specific direction is rejected at almost all lag 

orders at both levels of significance 5% and 10%. For instance, in U.S. the p-value 
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0.0016 is smaller than the related * = 0.0051, 0.0026, and 0.0017 at original level 

 5%, when considering lag orders N = 10, 20, and 30, respectively. This result 

holds for the economies of United Kingdom and Italy for different choices of the lag 

truncation. In Italy, for all lag length selections the no causality null hypothesis is 

rejected since the p-value of the W statistic 0.0008 is always much smaller than the 

corresponding adjusted level of significance ( * =0.0057, 0.0027, 0.0018 and 0.0013 

at original level  5%, while * =0.0116, 0.0055, 0.0036 and 0.0027 at original 

level  10%). On the other hand, the Q and S tests do not find statistical significant 

causal linkages from industrial production volatility to stock returns volatility in the 

majority of the cases. For example, note that only when the bandwidth parameter N 

equals 10 and 20 respectively, the Tukey-Hanning Q test values 1.5391 and 1.4902 in 

U.S. and Italy respectively show rejection of the null hypothesis. A possible 

explanation for these contradictory results could be that Q and S test statistics lack in 

power when applied to moderate sample sizes. Moreover, the power of these tests 

demonstrates great sensitivity to the selection of the weighting scheme and the lag 

truncation. 

To sum up, the W test provide strong evidence of volatility transmission from 

industrial production growth to real stock market returns for the US, the UK and Italy 

but not the other way around.  Contrary, the applications of Q and S tests fail to detect 

any volatility spillovers in any direction with some minor exceptions.  The empirical 

results highlight the practical importance of the proposed test procedure. 

 

6. Conclusions 

 

Implementation of standard causality-in-variance test procedures requires the 

estimation of parametric ARCH volatility models for the underlying return processes. 

In this paper, we introduce a new volatility spillover test which is based on model free 

volatility measure.  In particular, our approach uses the absolute residuals, which 

result from fitting autoregressions to the return series, as inputs to calculate an 

individual cross-correlation based test statistic. This test statistic is shown to be 

asymptotically distributed under the null hypothesis as standard normal. A multiple 

comparison scheme is used on a set of the individual test values, so as to perform joint 

hypothesis testing. 
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Extended Monte Carlo simulations are conducted in order to evaluate the finite 

sample size and power of the proposed test. The evaluations focus on the comparative 

performance of our test against two conventional test procedures, namely Cheung and 

Ng „s (1996) Portmanteau statistic S, and Hong „s (2001) kernel Q tests. The results 

show that all tests yield good finite sample size. However the size of our test is less 

sensitive than the S test to the lag truncation, the sample size or the distributional 

characteristics of the error term. Moreover, the implementation of the proposed test 

ensures remarkable gain in power, with power diminishing when the underlying 

volatility processes exhibit long range dependence.  The lag truncation and the sample 

size have no effect on the test power, apart from the situations where the volatility 

processes display long range dynamic dependence. Note that even so, our test never 

performs worse than the Q and S tests. Moreover, the power of the tests depends 

greatly on the lag truncation, or the weighting scheme as far as it concerns the kernel 

tests, when applied to samples of small and moderate size. In addition, the 

performance of these tests is very poor under the presence of long memory. 

 

Our test procedure is used to examine the relationship between the volatilities 

of output growth and real stock returns. Previous research on whether changes in 

industrial production can predict future stock returns is inconclusive and there is very 

little evidence on the relationship between the volatilities of industrial production and 

real stock returns. We used data for four develop economies, namely U.S., United 

Kingdom, Italy and Canada, covering a period from January 1973 to May 2011. Our 

results show that industrial production volatility predicts real stock volatility in three 

economies out of four. This result is robust with respect to the implemented lag 

truncation. On the other hand, we find no significant relationship in the opposite 

direction. In comparison Cheung and Ng ‟s (1996) S test and Hong ‟s (2001) Q tests 

(with a few exceptions) do not reject the non-causality hypothesis in either direction. 
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Appendix of Chapter 3 

 

Table 1: size of the tests under DGP1 at nominal levels of significance 5% and 10%. 

Tests  Lag Selection Parameter / Bandwidth Parameter N 

  10  20  30  40  50 

  5% 10%  5% 10%  5% 10%  5% 10%  5% 10% 

   

  T = 200 

W  3.36 5.76 3.88 6.76 3.80 6.84 3.96 6.52 3.72 6.48 

Q Dan  4.68 7.00 5.12 7.32 5.24 7.72 5.48 8.32 5.48 8.52 

Q T-H  4.48 6.52 5.20 7.52 5.20 7.64 5.28 7.72 5.60 8.24 

Q QS  5.08 7.80 5.20 7.64 5.56 8.04 5.44 8.44 5.80 8.56 

S  3.96 7.40 3.04 6.08 2.96 5.00 2.24 3.88 1.52 3.16 

  T = 500 

W  4.00 6.36 4.52 7.32 5.12 7.88 5.48 8.56 5.52 8.72 

Q Dan  3.88 5.88 4.96 7.64 5.16 8.80 5.16 8.64 5.36 9.32 

Q T-H  3.48 5.84 4.20 7.08 5.04 8.12 5.20 8.36 5.12 8.60 

Q QS  4.16 6.52 5.08 8.36 5.04 8.60 5.32 9.12 5.68 9.48 

S  3.96 8.00 3.40 7.72 3.84 7.32 3.28 6.56 3.44 6.24 

  T = 1000 

W  4.28 7.60 4.92 7.88 5.72 8.88 5.72 9.56 5.80 9.60 

Q Dan  3.64 6.16 4.36 7.20 5.04 7.76 4.80 8.32 4.80 8.28 

Q T-H  3.24 5.80 3.96 7.36 4.76 7.44 4.92 7.64 4.88 8.32 

Q QS  3.72 6.92 4.72 7.36 4.68 8.16 4.68 8.32 4.68 8.64 

S  3.40 7.16 3.76 7.48 3.60 7.12 3.32 6.28 3.32 6.96 

  T = 4000 

W  6.60 10.12 5.72 9.64 6.16 9.48 6.20 9.72 6.48 10.56 

Q Dan  3.84 6.00 5.04 7.96 4.80 8.36 4.76 8.68 4.60 8.56 

Q T-H  3.32 5.60 4.52 7.60 4.96 8.28 4.68 8.44 4.68 8.60 

Q QS  4.28 7.00 4.88 8.36 4.72 8.56 4.80 8.28 4.64 8.44 

S  4.20 8.40 4.12 8.08 4.00 7.96 3.80 8.04 3.76 7.64 

Notes: a Normal bivariate BEKK (1,1) process is simulated (2500 replications); there is no causality -in -variance between 

ty1 and ty2 . Dan, T-H and QS stand for Daniell, Tukey-Hanning and quadratic-spectral kernels (function ν(.)) respectively; the 

one-sided Q tests are defined as:    )1,0(~2)(ˆ)/(
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concerns the implementation of the W test, the p-values are ordered from lowest to largest. Then, the Rom procedure (described 

in Section 3) is used to obtain the adjusted levels of significance. The decision to accept or reject 0H is based on the pairwise 

comparisons between the ordered p-values and the adjusted levels of significance 
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Table 2: size of the tests under DGP2 at nominal levels of significance 5% and 10%. 

Tests  Lag Selection Parameter / Bandwidth Parameter N 

  10  20  30  40  50 

  5% 10%  5% 10%  5% 10%  5% 10%  5% 10% 

   

  T = 200 

W  3.12 5.84 3.20 5.52 3.72 5.96 3.24 6.24 3.16 5.96 

Q Dan  4.48 6.80 4.56 7.84 5.04 8.12 5.32 8.64 5.40 8.96 

Q T-H  4.16 6.72 4.60 7.76 4.92 8.20 5.20 8.36 5.36 8.52 

Q QS  4.56 7.40 5.04 8.20 5.28 8.52 5.40 9.00 6.00 9.44 

S  3.56 7.56 2.92 5.88 2.60 5.12 2.12 4.04 1.76 3.44 

  T = 500 

W  3.96 6.84 4.60 7.00 4.72 7.68 5.08 8.60 5.36 8.76 

Q Dan  4.20 6.88 4.44 7.56 4.68 8.00 4.84 8.24 4.64 8.84 

Q T-H  3.84 6.12 4.44 7.64 4.76 7.36 4.56 8.12 4.84 7.96 

Q QS  4.44 7.72 4.44 7.44 4.72 8.00 4.72 8.80 5.32 9.04 

S  3.36 6.84 3.76 7.36 3.12 6.52 3.20 5.92 2.36 5.44 

  T = 1000 

W  4.32 7.60 4.20 7.72 4.80 8.28 5.20 8.28 5.56 8.68 

Q Dan  3.92 6.36 4.52 7.56 5.00 8.76 5.20 9.24 5.40 9.36 

Q T-H  3.44 5.76 4.56 7.20 4.68 8.24 5.32 9.20 5.44 9.36 

Q QS  4.36 6.72 4.68 8.48 5.40 9.48 5.44 9.36 5.40 9.12 

S  3.84 7.92 4.24 8.60 4.04 8.16 3.52 7.28 3.24 6.96 

  T = 4000 

W  6.40 10.40 5.80 9.84 5.92 9.76 5.76 9.76 6.40 10.12 

Q Dan  3.80 6.24 4.72 7.64 4.72 8.32 4.96 8.28 5.00 8.44 

Q T-H  3.76 5.84 4.44 7.16 4.60 8.08 4.86 8.24 5.04 8.52 

Q QS  4.04 6.92 4.68 8.20 5.04 8.52 5.00 8.64 5.04 8.84 

S  3.84 7.52 3.96 8.52 4.28 8.16 3.88 8.40 4.60 8.20 

Notes: a Student‟s t (6 d.f.) bivariate BEKK (1,1) process is simulated (2500 replications); there is no causality -in -variance 

between ty1 and ty2 . Dan, T-H and QS stand for Daniell, Tukey-Hanning and quadratic-spectral kernels (function ν(.)) 

respectively; the one-sided Q tests are defined as:    )1,0(~2)(ˆ)/(
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Table 3: power of the tests under DGP3 at nominal levels of significance 5% and 10% . 

Tests  Lag Selection Parameter / Bandwidth Parameter N 

  10  20  30  40  50 

  5% 10%  5% 10%  5% 10%  5% 10%  5% 10% 

   

  T = 200 

W  98.00 98.68 99.32 99.44 99.0 99.32 98.88 99.32 98.68 99.24 

Q Dan  19.28 25.08 15.48 20.04 13.32 18.00 12.00 16.96 11.32 15.80 

Q T-H  20.28 26.20 16.48 21.72 14.48 18.96 13.00 17.72 11.92 16.84 

Q QS  17.96 23.84 13.92 18.84 12.24 17.04 11.36 15.64 11.12 14.96 

S  9.52 15.24 6.72 11.04 4.96 8.56 3.68 6.72 2.44 5.08 

  T = 500 

W  100 100 100 100 100 100 100 100 100 100 

Q Dan  43.68 52.28 35.60 42.92 30.36 38.52 27.08 35.04 24.84 32.40 

Q T-H  46.24 53.64 37.72 46.60 32.96 41.16 29.28 37.68 26.64 34.68 

Q QS  40.08 49.76 32.04 40.40 27.04 35.32 24.56 31.80 21.88 29.88 

S  25.04 35.76 17.08 26.20 13.52 21.64 11.48 18.24 9.4 15.24 

  T = 1000 

W  100 100 100 100 100 100 100 100 100 100 

Q Dan  77.72 83.00 67.96 75.44 60.08 68.52 53.24 62.56 48.44 58.24 

Q T-H  79.20 85.00 71.24 78.32 65.00 71.88 57.80 66.72 52.68 61.96 

Q QS  74.68 80.80 63.88 70.56 53.88 62.96 47.64 57.28 43.04 52.84 

S  54.12 67.20 39.08 51.44 29.84 42.12 25.32 36.52 22.16 32.88 

  T =  4000 

W  100 100 100 100 100 100 100 100 100 100 

Q Dan  99.92 99.92 99.88 99.88 99.76 99.84 99.68 99.72 99.60 99.68 

Q T-H  99.92 99.92 99.88 99.88 99.84 99.88 99.76 99.80 99.72 99.72 

Q QS  99.88 99.88 99.84 99.88 99.72 99.76 99.48 99.72 99.00 99.52 

S  99.80 99.84 99.28 99.64 98.12 98.92 96.24 98.16 94.04 96.52 

Notes: a Normal bivariate BEKK (1,1) process is simulated (2500 replications); ty2 Granger  cause-in-variance ty1 at the first 

lag period. Dan, T-H and QS stand for Daniell, Tukey-Hanning and quadratic-spectral kernels (function ν(.)) respectively; the 

one-sided Q tests are defined as:    )1,0(~2)(ˆ)/(
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concerns the implementation of the W test, the p-values are ordered from lowest to largest. Then, the Rom procedure (described 

in Section 3) is used to obtain the adjusted levels of significance. The decision to accept or reject 0H is based on the pairwise 

comparisons between the ordered p-values and the adjusted levels of significance 
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Table 4:  power of the tests under DGP4 at nominal levels of significance 5% and 10%.  

Tests  Lag Selection Parameter / Bandwidth Parameter N 

  10  20  30  40  50 

  5% 10%  5% 10%  5% 10%  5% 10%  5% 10% 

   

  T = 200 

W  94.96 96.28 97.32 98.24 97.00 97.92 96.48 97.48 96.20 97.20 

Q Dan  6.68 9.32 62.64 71.36 83.32 88.12 85.32 89.36 84.96 88.68 

Q T-H  5.72 8.16 35.80 47.24 78.44 84.16 84.40 88.84 85.40 89.44 

Q QS  10.56 15.40 80.16 86.08 85.24 89.44 84.44 88.68 82.28 86.80 

S  41.40 48.72 80.72 87.52 68.24 78.16 57.36 67.32 47.28 57.04 

  T = 500 

W  100 100 99.96 100 99.96 99.96 99.96 99.96 99.96 99.96 

Q Dan  8.32 12.00 97.20 98.36 99.56 99.80 99.56 99.80 99.48 99.68 

Q T-H  6.32 8.84 87.04 92.48 99.28 99.68 99.68 99.80 99.68 99.80 

Q QS  27.72 38.52 99.40 99.76 99.72 99.80 99.44 99.68 99.24 99.48 

S  75.68 82.44 99.68 99.88 98.84 99.08 98.12 98.92 96.48 97.80 

  T = 1000 

W  100 100 100 100 100 100 100 100 100 100 

Q Dan  10.16 15.00 99.72 99.76 99.88 99.88 99.88 99.88 99.88 99.88 

Q T-H  6.68 9.56 98.48 99.04 99.88 99.88 99.88 99.88 99.88 99.88 

Q QS  64.48 76.80 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 

S  95.00 96.44 99.88 99.88 99.88 99.88 99.72 99.80 99.60 99.68 

  T =  4000 

W  100 68.20 100 100 100 100 100 100 100 100 

Q Dan  41.28 55.56 99.96 99.96 99.96 99.96 99.96 99.96 99.96 99.96 

Q T-H  9.84 14.96 99.88 99.88 99.96 99.96 99.96 100 99.96 99.96 

Q QS  99.28 99.56 99.96 100 99.96 100 99.96 99.96 99.96 99.96 

S  99.84 99.92 99.96 100 99.96 99.96 99.96 99.96 99.96 99.96 

Notes: a Normal bivariate BEKK (10,10) process is simulated (2500 replications); ty2 Granger cause-in-variance ty1 at 10th lag 

period; Dan, T-H and QS stand for Daniell, Tukey-Hanning and quadratic-spectral kernels (function ν(.)) respectively; the one-

sided Q tests are defined as:    )1,0(~2)(ˆ)/(
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concerns the implementation of the W test, the p-values are ordered from lowest to largest. Then, the Rom procedure (described 

in Section 3) is used to obtain the adjusted levels of significance. The decision to accept or reject 0H is based on the pairwise 

comparisons between the ordered p-values and the adjusted levels of significance 
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Table 5: power of the tests under DGP5 at nominal level of significance 5% and 10%. 

Tests  Lag Selection Parameter / Bandwidth Parameter N 

  10  20  30  40  50 

  5% 10%  5% 10%  5% 10%  5% 10%  5% 10% 

   

  T = 200 

W  7.52 11.56 12.88 17.20 13.64 18.32 13.72 18.28 13.60 17.48 

Q Dan  11.32 15.80 12.60 16.96 12.68 17.84 12.52 18.48 13.00 18.44 

Q T-H  10.84 15.16 12.52 16.28 12.64 17.36 13.12 17.80 12.80 18.04 

Q QS  12.20 16.28 12.92 17.56 12.72 18.08 12.76 18.40 13.08 19.20 

S  9.20 14.60 8.68 13.36 7.04 11.68 5.92 9.84 4.56 7.56 

  T = 500 

W  14.16 18.56 23.08 27.60 24.48 29.60 24.84 30.28 25.44 30.88 

Q Dan  15.12 19.56 16.44 21.40 16.76 21.72 16.56 22.28 16.48 22.36 

Q T-H  14.32 18.48 16.00 21.68 16.56 21.48 16.52 22.04 16.60 21.88 

Q QS  15.76 21.00 16.80 21.48 16.52 22.04 16.64 22.16 16.76 22.52 

S  12.40 18.16 12.32 18.56 11.88 18.04 11.00 16.52 10.24 15.64 

  T = 1000 

W  21.80 27.16 34.96 41.32 37.12 42.88 38.64 43.96 39.56 44.88 

Q Dan  19.36 24.28 21.56 28.12 22.92 28.80 22.76 29.24 22.76 29.28 

Q T-H  17.96 22.36 21.12 26.64 21.76 28.12 22.64 28.80 22.56 29.04 

Q QS  20.16 25.28 22.00 28.44 22.40 28.88 23.04 29.00 23.36 28.88 

S  17.12 25.16 17.12 24.64 17.32 24.60 17.20 24.40 16.48 23.84 

  T =  4000 

W  52.80 56.92 70.12 74.08 70.16 73.80 71.24 74.76 71.72 74.60 

Q Dan  44.64 50.48 48.52 55.16 49.44 56.32 49.52 56.84 48.96 56.88 

Q T-H  41.64 48.04 47.52 54.16 48.32 55.40 48.96 56.00 48.64 56.28 

Q QS  46.64 52.52 48.32 55.68 48.92 56.20 48.32 56.28 48.36 55.92 

S  40.84 51.28 40.40 51.20 40.44 50.00 40.36 48.80 40.12 50.20 

Notes: two Normal FIGARCH (1,1) processes are simulated (2500 replications); the degree of fractional integration for both 

processes is 0.4 (long memory); ty2 Granger cause-in-variance ty1 at the 1st lag period. Dan, T-H and QS stand for Daniell, 

Tukey-Hanning and quadratic-spectral kernels (function ν(.)) respectively; the one-sided Q tests are defined as:  
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concerns the implementation of the W test, the p-values are ordered from lowest to largest. Then, the Rom procedure (described 

in Section 3) is used to obtain the adjusted levels of significance. The decision to accept or reject 0H is based on the pairwise 

comparisons between the ordered p-values and the adjusted levels of significance 
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Table 6: power of the tests under DGP5 at nominal level of significance 5% and 10%. 

Tests  Lag Selection Parameter / Bandwidth Parameter N 

  10  20  30  40  50 

  5% 10%  5% 10%  5% 10%  5% 10%  5% 10% 

   

  T = 200 

W  13.52 16.76 24.80 28.84 26.36 31.04 27.44 32.04 27.56 32.36 

Q Dan  18.16 23.24 20.48 25.32 21.24 26.40 20.72 26.40 20.20 26.36 

Q T-H  16.68 21.68 20.24 24.60 21.24 26.28 20.88 26.44 20.52 26.28 

Q QS  19.28 24.36 21.40 26.64 20.80 26.44 20.44 26.48 20.24 26.72 

S  15.96 22.04 13.96 20.96 11.80 17.68 9.72 15.24 8.00 11.88 

  T = 500 

W  24.68 28.88 41.52 46.84 43.20 48.40 44.80 49.56 45.64 50.24 

Q Dan  26.92 31.40 30.80 35.64 31.36 36.76 30.76 37.28 30.64 37.16 

Q T-H  24.68 29.16 29.88 35.04 31.16 36.28 30.84 36.84 31.08 36.84 

Q QS  28.72 33.12 31.04 36.24 30.84 37.00 30.72 37.12 30.32 36.68 

S  24.68 32.64 24.68 32.12 23.76 31.12 22.64 28.80 20.12 27.36 

  T = 1000 

W  37.12 41.52 57.80 61.92 59.92 63.52 61.12 64.88 61.96 65.96 

Q Dan  41.04 46.12 45.04 51.04 45.04 51.20 45.00 50.84 44.92 51.04 

Q T-H  37.84 43.28 43.92 49.68 44.84 51.40 44.72 50.76 44.60 50.84 

Q QS  42.88 48.00 44.52 51.48 44.76 50.68 44.64 50.80 44.32 50.72 

S  38.24 46.84 37.20 45.88 36.80 44.52 36.28 43.92 35.48 42.68 

  T =  4000 

W  71.52 74.76 87.56 88.96 87.52 89.08 87.68 89.32 87.92 89.48 

Q Dan  83.52 86.16 86.84 89.12 87.08 89.52 86.36 89.16 85.52 88.64 

Q T-H  80.76 84.00 86.44 88.40 87.00 89.36 86.72 89.20 86.28 88.92 

Q QS  85.04 87.64 86.96 89.24 86.20 89.00 85.24 88.52 84.60 88.00 

S  82.48 87.04 81.16 86.28 80.20 84.76 79.48 84.20 78.40 83.32 

Notes: two Normal FIGARCH (1,1) processes are simulated (2500 replications); the degree of fractional integration for both 

processes is 0.6 (short memory); ty2 Granger cause-in-variance ty1 at the 1st lag period. Dan, T-H and QS stand for Daniell, 

Tukey-Hanning and quadratic-spectral kernels (function ν(.)) respectively; the one-sided Q tests are defined as:  

  )1,0(~2)(ˆ)/(

2/1
1

1

2
21

NGEkrNkvTQ
a

T

k
















 




 , where E and G some constants (see Section 2). 

The S and W tests are defined respectively as:  )(~)(ˆ 2

1

2

21
NkrTS

a
N

k






  and  )1,0(~))(ˆ),...,1(ˆ( NNrrTW
a

 . As far as it 

concerns the implementation of the W test, the p-values are ordered from lowest to largest. Then, the Rom procedure (described 

in Section 3) is used to obtain the adjusted levels of significance. The decision to accept or reject 0H is based on the pairwise 

comparisons between the ordered p-values and the adjusted levels of significance 
 

 

 

 



115 

 

 
Table 7: results of the structural break pre-testing on the volatility of real stock returns and industrial 

production growth. 

 Real Stock Returns  Industrial Production Growth 

 Squared returns  Absolute Returns  Squared Growth  Absolute Growth 

        

 US 

  
KL test  0.3359  0.1005  0.7427  0.1678 

Change-point date 01/06/2008  01/09/1996  01/01/1984  01/01/1984 

        

 United Kingdom 

        

KL test 0.7959  0.8006  3.0494  2.5196 

Change-point date 01/10/1992  01/01/1993  01/07/1987  01/07/1990 

        

 Italy 

        

KL test 1.2661  0.9943  0.7270  0.2908 

Change-point date 01/10/1986  01/01/1999  01/02/1985  01/01/1988 

        

 Canada 

        

KL test 0.3821  0.7216  0.8635  0.3569 

Change-point date 01/01/1988  01/05/1983  01/01/1985  01/01/1987 

        

        
  

Notes: the KL test is computed as sjVT )(max , where 

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2/1)( , u equals to 2r or r , r is the series 

of logarithmic returns/growths, and s is the standard deviation of the realized volatilities. A VARHAC estimator is implemented 

for the calculation of s.  Under  the null hypothesis of homogeneity in volatility the KL converges to the sup of a Brownian 

Bridge. The critical values at levels of significance 5% and 10% are 1.36 and 1.22 respectively. Values of the test statistic in bold 
are statistical significant at level 5% or /and 10%. 
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Table 8: testing the null hypothesis that real stock market returns do not Granger cause-in-variance industrial 

growth rates in USA, United Kingdom, Italy and Canada at levels of significance 5% and 10%. 

 Test Statistics 

 W  Q  S 

  Level *   

 

Dan  TH  QS   

  5%  10%         

N             

 USA 

             

10 2.1512 

(0.0315) 

0.0051  0.0105  -0.6076 

(0.7283) 

 -0.3466 

(0.6356) 

 -0.7086 

(0.7607) 

 4.5652 

(0.9183) 

20 2.1512 

(0.0315) 

0.0026  0.0053  -0.9453 

(0.8277) 

 -0.8053 

(0.7897) 

 -1.0463 

(0.8523) 

 13.1465 

(0.8710) 

30 2.1512 

(0.0315) 

0.0017  0.0035  -1.2335 

(0.8913) 

 -0.9975 

(0.8407) 

 -1.2723 

(0.8984) 

 20.4133 

(0.9053) 

40 2.1512 

(0.0315) 

0.0013  0.0026  -1.3779 

(0.9159) 

 -1.1595 

(0.8769) 

 -1.5102 

(0.9345) 

 22.5635 

(0.9881) 

             

 United Kingdom 

             

10 2.0189 

(0.0435) 

0.0051  0.0105  -1.3521 

(0.9118) 

 -1.1936 

(0.8837) 

 -1.5060 

(0.9340) 

 2.6119 

(0.9891) 

20 2.0189 

(0.0435) 

0.0026  0.0053  -1.8211 

(0.9657) 

 -1.6699 

(0.9525) 

 -1.8787 

(0.9699) 

 9.6934 

(0.9734) 

30 2.0189 

(0.0435) 

0.0017  0.0035  -1.8131 

(0.9651) 

 -1.8626 

(0.9687) 

 -1.9963 

(0.9771) 

 13.2534 

(0.9965) 

40 2.0189 

(0.0435) 

0.0013  0.0026  -1.9106 

(0.9720) 

 -1.9291 

(0.9731) 

 -2.1005 

(0.9822) 

 16.8101 

(0.9995) 

             

 Italy 

             

10 2.0694 

(0.0385) 

0.0051  0.0105  -0.2080 

(0.5824) 

 -0.2790 

(0.6099) 

 -0.0103 

(0.5041) 

 13.8889 

(0.1781) 

20 2.0694 

(0.0385) 

0.0026  0.0053  0.4515 

(0.3258) 

 0.1976 

(0.4217) 

 0.3906 

(0.3480) 

 20.0015 

(0.4578) 

30 2.0694 

(0.0385) 

0.0017  0.0035  0.3023 

(0.3812) 

 0.3823 

(0.3511) 

 0.4567 

(0.3240) 

 31.5874 

(0.3870) 

40 3.4688 

(0.0005) 

0.0013  0.0026  0.3734 

(0.3544) 

 0.3710 

(0.3553) 

 0.7900 

(0.2148) 

 52.9506 

(0.0825) 

             

 Canada 

             

10 2.0049 

(0.0450) 

0.0051  0.0105  -0.2349 

(0.5929) 
 -0.1344 

(0.5535) 

 -0.4460 

(0.6722) 

 5.9571 

(0.8189) 

20 2.0049 

(0.0450) 

0.0026  0.0053  -0.6080 

(0.7284) 

 -0.5732 

(0.7167) 

 -0.7846 

(0.7837) 

 13.9838 

(0.8313) 

30 2.8489 

(0.0044) 

0.0017  0.0035  -0.9039 

(0.8170) 

 -0.7531 

(0.7743) 

 -0.7866 

(0.7842) 

 25.6187 

(0.6944) 

40 2.8489 

(0.0044) 

0.0013  0.0026  -0.7632 

(0.7773) 

 -0.8268 

(0.7958) 

 -0.7429 

(0.7712) 

 33.0217 

(0.7749) 

 
Notes: p-values are in parentheses. Numbers in bold indicate rejection of the null hypothesis at levels of statistical significance 

5% and  10%.  N refers to the lag selection parameter used in the W and S test calculations, and the bandwidth parameter for the 

Q tests calculations. Dan, T-H and QS stand for Daniell, Tukey-Hanning and quadratic-spectral kernels (function ν(.)) 
respectively. The Q tests and the S test are defined in Section 2 (equations (1)- (4)).  The W test is defined as 

),0(~))(ˆ),...,1(ˆ( N

a
INNrrTW  . We only report the specific value of W test, )(ˆ krTWk  , where *

KkP  , with 

kP representing the p-value of the test and *
k the corresponding adjusted significance level. Levels 

*  are calculated as 
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








 , where  i = 2, …, N and 
*

][Na  is set to be either 5% or 10%.  The W test value with the 

smaller p-value is presented in the cases where the previous inequality does not hold. 
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Table 9: testing the null hypothesis that industrial production growth rate does not Granger cause-in-

variance real stock market returns in USA, United Kingdom, Italy and Canada at levels of significance 5% and 

10%. 

 Test Statistics 

 W  Q  S 

  Level *   

 

Dan  TH  QS   

  5%  10%         

N             

 USA 

             

10 3.1579 

(0.0016) 

0.0051  0.0105  1.1339 

(0.1284) 

 1.5391 

(0.0619) 

 0.7407 

(0.2295) 

 8.4687 

(0.5832) 

20 3.1579 

(0.0016) 

0.0026  0.0053  -0.1626 

(0.5646) 

 0.3102 

(0.3782) 

 -0.5001 

(0.6915) 

 11.7652 

(0.9239) 

30 3.1579 

(0.0016) 

0.0017  0.0035  -0.8043 

(0.7894) 

 -0.4026 

(0.6564) 

 -1.1057 

(0.8656) 

 16.4788 

(0.9783) 

40 3.1579 

(0.0016) 

0.0013  0.0026  -1.2325 

(0.8911) 

 -0.8309 

(0.7970) 

 -1.5464 

(0.9390) 

 20.1144 

(0.9963) 

             

 United Kingdom 

             

10 4.2144 

(0.0000) 

0.0051  0.0105  0.3545 

(0.3615) 

 0.2898 

(0.3860) 

 0.2815 

(0.3891) 

 10.3139 

(0.4134) 

20 3.6779 

(0.0002) 

0.0027  0.0055  0.2615 

(0.3969) 

 0.2687 

(0.3941) 

 0.2214 

(0.4124) 

 19.0271 

(0.5201) 

30 3.6779 

(0.0002) 

0.0018  0.0036  0.1686 

(0.4331) 

 0.2434 

(0.4038) 

 0.0092 

(0.4963) 

 26.6353 

(0.6423) 

40 3.6779 

(0.0002) 

0.0013  0.0027  -0.0303 

(0.5121) 

 0.1098 

(0.4563) 

 -0.1044 

(0.5416) 

 35.5267 

(0.6718) 

             

 Italy 

             

10 3.3664 

(0.0008) 

0.0057  0.0116  1.2343 

(0.1085) 

 0.9708 

(0.1658) 

 1.4751 

(0.0701) 

 16.5214 

(0.0856) 

20 3.3664 

(0.0008) 

0.0027  0.0055  1.4585 

(0.0724) 

 1.4902 

(0.0681) 

 1.2071 

(0.1137) 

 23.4596 

(0.2668) 

30 3.3664 

(0.0008) 

0.0018  0.0036  1.1287 

(0.1295) 

 1.2466 

(0.1063) 

 1.0826 

(0.1395) 

 38.7730 

(0.1309) 

40 3.3664 

(0.0008) 

0.0013  0.0027  1.1393 

(0.1273) 

 1.0959 

(0.1366) 

 1.0501 

(0.1468) 

 45.1971 

(0.2639) 

             

 Canada 

             

10 1.5872 

(0.1125) 

0.0051  0.0105  0.3291 

(0.3711) 
 0.3807 

(0.3517) 

 0.1490 

(0.4408) 

 7.5421 

(0.6735) 

20 1.5872 

(0.1125) 

0.0026  0.0053  -0.2898 

(0.6140) 

 -0.0946 

(0.5377) 

 -0.7164 

(0.7631) 

 10.9541 

(0.9474) 

30 1.5872 

(0.1125) 

0.0017  0.0035  -0.6784 

(0.7512) 

 -0.6614 

(0.7458) 

 -1.2886 

(0.9012) 

 14.8635 

(0.9905) 

40 2.5957 

(0.0094) 

0.0013  0.0026  -1.2859 

(0.9008) 

 -1.1077 

(0.8660) 

 -1.0517 

(0.8535) 

 32.1075 

(0.8085) 

 

 
Notes: p-values are in parentheses. Numbers in bold indicate rejection of the null hypothesis at levels of statistical significance 

5% and  10%..  N refers to the lag selection parameter used in the W and S test calculations, and the bandwidth parameter for the 

Q tests calculations. Dan, T-H and QS stand for Daniell, Tukey-Hanning and quadratic-spectral kernels (function ν(.)) 
respectively. The Q tests and the S test are defined in Section 2 (equations (1)- (4)).  The W test is defined as 
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a
INNrrTW  . We only report the specific value of W test, )(ˆ krTWk  , where *

KkP  , with 

kP representing the p-value of the test and *
k the corresponding adjusted significance level. Levels 

*  are calculated as 
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 , where  i = 2, …, N and 
*

][Na  is set to be either 5% or 10%.  W test value with the 

smaller p-value is presented in the cases where the previous inequality does not hold. 
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Proof of Theorem  

 

A similar reasoning to Haugh (1976) and Cheung and Ng (1996) is used to prove 

Theorem 1. Consider that two time series ,,...,1,2,1, Ttizit  are generated 

separately by two autoregressive processes of order p 

,)( ititi zB                                                                            (A.1) 

where  

i) )(Bi  is the polynomial in the lag operator B of length p, i.e., 

,...1)( 1

p

ipii BBB   and  

ii)  it  are two sequences of white noise random variables, with 

,0)( itE    ,,0 stE isit  and   4

itE   for all t.  

iii)  independence between tz1  and tz2  is required. 

Let i
~  be some arbitrary coefficient values, estimated by OLS or maximum 

likelihood, while it~  denote the residual series which correspond to these coefficient 

values. 

The sample cross-correlation function of it
~ for some k > 0 is defined as  

 

  2/1

)0(
~
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~
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kr  ,                                                        (A.2)                        

 

where   ,~~)(
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
.  

By using a similar notation, we define the terms 

),(ˆ kr ),(kr ),(ˆ
21

kd

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d
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 and 
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Note that 
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To prove Theorem 1, we first show that
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for each plil ,..,1,~   

 

Proof:  

The sample cross-covariance function )(
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 is written as:
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For simplicity in the calculations, the previous expression is written as 
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First, we compute lEd 11

~
 . Given the realization 11111 ,...,, zzz TT  , each term t1

~  in 

the sum  




T

kt

ktt

1

21
~~  is substituted recursively,  

kTpTpTTTkTT zzzz   21121121111121
~~...~~~~   

121131122111111211
~~...~~~~

  kTpTpTTTkTT zzzz   

221141123111212221
~~...~~~~

  kTpTpTTTkTT zzzz   

                                   . 

                                   . 
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21)1(111112111112111
~~...~~~~    pkpkkkk zzzz  
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Thus, for each l =1, 2, …,p,  
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 Therefore, for each pll ,..,1,~
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Under the assumption that   2,1, iM it  , are two independent, and stationary 

processes with finite fourth order moments, Theorem 14 of Hannah (1970, p.228 ) 

states that  

tcTT 1 , where kttt MMc  21 , is asymptotically distributed as 

normal, with mean zero and variance 21p , where 1 and 2 are the 

autocorellation functions  of processes tM1  and ktM 2  respectively. Processes 
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t1 and kt2 in tM1  and ktM 2  respectively, are independent, and stationary 

because they are functions of the independent, and stationary processes t1  and t2 . 

Thus, from Hannah „s theorem it follows that lkd 1
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recursive substitution. Hence, each term of the sum is written as 
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Thus, for each l = 1, 2,…,p we result in 
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Using a similar reasoning as previously, by Theorem 14 of Hannah, 
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d converge in probability to the variances of t1 and t2  

respectively. 
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Therefore, since  
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 by Lemma 4.7 of White (1984, page 67),  
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Hence, we establish that )(ˆ krT  is distributed asymptotically under the null 

hypothesis of non-causality-in-variance as standard normal.  
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Chapter 4 

 

Predicting output growth at long horizons: stock return volatility and 

monetary policy  
 

 

 

1. Introduction 
 

  Stock prices are equal to the discounted values of the infinite stream of future 

expected firms' cash flows. Schwert (1989) states that under the rational expectations 

hypothesis, volatility of stock returns should reflect changes in the conditions of real 

activity growth at future distant periods. To date, the literature has come to a general 

consensus that stock return volatility may affect consumption spending via a 

household wealth effect, business fixed investment by means of capital cost effect, 

and  government spending through  taxes. Of greater concern is the cost of capital 

channel. Changes in stock return volatility influence the level of compensation that 

risk-averse investors request for bearing extra systematic risk.  Hence, movements on 

expected returns may affect the cost of  equity capital which, in turn, has an impact on 

investment. Moreover, Bernanke and Gertler (1999) argue that, variation of stock 

returns affects the condition of the balance sheets of firms, households and financial 

institutions, and as a consequence their ability  to borrow and lend.  Extreme rises or 

falls in credit flows creates  distortions in consumption and investment, leading to 

severe fluctuations in real economic activity growth in the long run.  

 So far there is significant empirical evidence linking stock returns to output 

growth and stock returns to stock return volatility. For the former, stock returns entail 

expectations about future firms ' cash flows and discount rates because investors are 

forward looking; see Fama (1980, 1981, 1990), Geske and Roll (1983), Mandelker 

and Tandon (1985), James, Koreisha and Partch (1985), Schwert (1990), Barro 

(1990),  Chen(1991), Lee (1992), Peiro (1996), Estrella and Mishkin (1998), Forni, et 
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al. (2001) among others
23

. For the latter, Merton 's (1973) Intertemporal Capital Asset 

Pricing model states that there is a positive relation between stock returns and 

volatility because investors demand extra compensation for bearing extra risk;  

Whitelaw (1994) demonstrates that in the volatility of US stock returns leads expected 

returns through the business cycle.  

 Given these results, it is primarily an empirical question whether stock return 

volatility and real activity growth are associated.  Schwert (1989) and Hamilton and 

Lin (1996) show that US aggregate stock return volatility increases in economic 

contractions. Whitelaw (1994) finds evidence that the commercial paper-Treasury bill 

yield spread anticipates changes of aggregate stock return volatility in US, which in 

turn anticipates changes of the expected returns. Campbell,  et al. (2001) document 

that US monthly market, industry and firm-level volatility measures predict recessions 

up to one year-ahead.  They also show that these measures have significant in-sample 

predictive ability for GDP growth rate one quarter ahead.  

While the ability of stock return volatility for predicting real activity growth at 

short forecast horizons is well documented, the nature of their intertemporal relation 

remains unexplored. Hence our interest is whether information about subsequent 

industrial production growth rates is spread across current and recent periods in 

monthly stock return volatility. In our evaluations, macroeconomic and monetary 

factors, such as the short-term interest rates, the money supply growth rates, and 

inflation, are allowed to operate as intermediate processes which in theory
24

 should 

help to communicate this information over the course of time. Our investigation is 

motivated by the seminal contributions of Fama (1990), Schwert (1990) and Lee 

(1992) that show how stock returns can help to predict output growth at subsequent 

time periods ahead. Our goal is to reconcile the results of Whitelaw (1994) and 

Campbell,  et al. (2001) with earlier empirical findings on the intertemporal 

association between stock returns and real activity growth.  

Fama (1990) regresses monthly US industrial production growth rates on stock 

returns at increasing time lags. He finds that lagged stock returns explain to some 

extent the variability of industrial production growth rates at distant periods. 

                                                           
23

 Stock and Watson (2003) surveyed the out-of-sample forecasting performance of both US stock 

returns‟ mean and volatility for output growth.    
24

 Fama (1980) and Geske and Roll  (1983) associate the  linkage between the stock returns and real 

activity growth with  inflation and monetary policy variables based on money demand and supply 

arguments.  
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Moreover, Fama documents that annual stock returns have an enhanced predictive 

ability for annual production growth rates at long horizons. These findings have 

largely been confirmed by Schwert (1990) who implements Fama's long horizon 

regressions on US data extended back to 1889.Lee (1992) uses impulse response 

functions and innovation accounting (i.e., forecast error variance decompositions) for 

long horizon causality testing in the Sims sense
25

  between US monthly stock returns 

and industrial production growth rates, including short-term interest rates and 

inflation in his multivariate vector-autoregression (VAR) specification. His evidence 

suggests that there is Granger causal priority from stock returns to industrial 

production growth rates 24 months ahead, while the latter responds positively to 

shocks from the former up to 12 months ahead.  

A weakness in Fama's work is that he does not explicitly model the joint 

dynamics of stock returns and real activity growth rates with monetary policy 

indicators. Since Lee's (1992) study, there have been many advances in the theoretical 

and empirical evaluation of long horizon causality relations between multivariate 

economic time series. For instance, Dufour and Tessier (1993) show that Sims‟s 

conditions for Granger non-causality between two random variables in terms of 

impulse responses coefficients (and consequently, the innovation accounting) are not 

sufficient when more than two time series are included in the setting. According to 

this result, for multivariate time series the use of the impulse response function and 

the innovation accounting up to a certain horizon may lead to misleading conclusions 

about the presence of a Granger causality relation.  

Dufour and Renault (1998) are the first to present a theoretical multivariate 

framework on the notion of h-step ahead non-causality
26

, referred as long (or short) 

horizon non-causality. The authors provide definitions and a set of conditions which 

ensure the equivalence between standard Wiener - Granger (1956, 1969) type one-

step ahead non-causality and non-causality at any forecast period. Characterization of 

non-causality between two variables at a specific horizon h is achieved by setting zero 

                                                           
25

 Sims (1972, 1980a,b, 1982) is the first author who addressed the issue of Granger causality in terms 

of predictability several- periods ahead. According to Sims (1980a,b, 1982), non-zero impulse 

responses between the innovations at some time period ahead imply the presence of a Granger causal 

relation at the specific horizon. Sims also considers as a measure of Granger type causal priority the 

innovation accounting (i.e., forecast error variance decompositions) defined as the proportion of the h-

step-ahead forecast error variance of one variable due to the innovations of an another variable.    

 
26

 The first definition of h-step ahead Granger non-causality is due to Lütkepohl (1993). 
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restrictions on the coefficients of a multivariate linear invertible process. The 

implications of these general conditions are also investigated, by deriving exact 

testable restrictions on the parameters of a finite-order VAR model. Their 

generalization describes a Wiener - Granger causal relationship at a specific horizon, 

acknowledging all possible indirect effects
27

 of the auxiliary series of the system at 

the previous time periods.  

Dufour and Renault's conditions on non-causality between two variables at 

forecast horizon greater than one, with more than two time series included in the 

multivariate system, involves examining the statistical significance of multi-linear 

zero restrictions on the coefficients of the VAR parameters.  Therefore, the task of 

testing such hypotheses using likelihood ratio or Lagrange multiplier tests becomes 

very challenging given the difficulty of estimating conditional specifications under the 

null hypothesis. However, the required zero coefficient  restrictions can be evaluated 

by using a Wald test. Lütkepohl and Müller (1994) and Lütkepohl and Burda (1997) 

propose modified Wald statistics to test the h-step ahead noncausality hypothesis. 

These tests are shown to have a valid asymptotic distribution under the null even 

when these highly nonlinear zero coefficient restrictions violate the regularity 

condition of a usual Wald test. Still, the proposed tests yield poor finite sample 

performance.  An alternative test procedure is proposed by Dufour, Pelletier and 

Renault (2006). Their method requires the estimation of parametric mean regressions 

denoted as „(p,h)- autoregressions‟. Inference is conducted by testing simple zero 

coefficient restrictions on the parameters of the „(p,h)- autoregressions‟  via an 

asymptotic chi-square Wald test. The authors also introduce a parametric Monte Carlo 

procedure to calculate p-values, to ensure enhanced finite sample properties. Hill 

(2007) proposes a sequential Bonferroni type causality test for trivariate processes, 

while Eichler (2007) evaluates causality relations between multivariate series up to a 

certain time horizon by means of path diagrams. More recently, Al Sadoon (2010) 

suggests procedures for long horizon causality testing in subspaces. Dufour and 

Taamouti (2010) present a linear measure of h-period ahead causal priority in the 

Granger sense between two time series in a multivariate system
28

.  

                                                           
27

  Dufour and Renault define indirect causality similarly with Hsiao (1983): although one variable, say 

x, may not predict another variable, say y, directly, it may still have predictive power for variable y 

through their association with an another variable, say z. 
28  These test procedures are defined in terms of conditional distributions, whose implementation is 

based on the estimation of mean regression models. Therefore, they may fail to reveal high-order 
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Our goal is to present a complete analysis of the multiple horizon causal 

linkages between the volatility of stock returns and industrial production growth rates, 

when a set of auxiliary processes, such as money supply (M2) growth rates, inflation, 

and short-term interest rates, is included in the setting. This paper builds on previous 

research, such as Whitelaw (1994), and Campbell et al. (2001), although it 

distinguishes itself from the rest of the literature by its explicit focus on the evaluation 

of the relation between output growth and stock return volatility at both short and long 

forecast periods in terms of a multivariate system.  

First we consider multiple horizon Granger non-causality testing by 

implementing the econometric procedure of Dufour et al. (2006) on data from four 

developed economies, namely US, Germany, Japan, and Italy. Following  Schwert 

(1989), Campbell,  et al. (2001), we impose no functional form on the evolution of the 

stock return volatility dynamics. We document a large number of highly significant 

direct influences from the volatility of stock returns to output growth at both short and 

long horizons in all four economies. These findings are consistent with the results of 

Whitelaw (1994), and Campbell et al. (2001), while they also reveal that stock return 

volatility presents an enhanced ability to predict production growth rates at distant 

forecast periods. Interestingly, we also find that stock return volatility indirectly 

causes monthly growth rates of industrial production at long horizons through (i) 

nominal short-term interest rates in US, and Germany, (ii) money supply growth rates 

in Japan and (iii) inflation in Italy. These results have not been previously shown in 

the literature. Moreover, we confirm the finding of Dufour, Pelletier and Renault 

(2006), Hill (2007), and Dufour and Taamouti (2010) that monetary policy is causal 

for real activity growth at both short and long horizons.  

Second, one may argue that policy makers, investors and portfolio managers 

are ultimately concerned with the magnitude of the forecasting performance of stock 

return volatility for output growth, as well as the presence of such predictive 

relationship. Hence, the intensity of these causality relations is quantified by applying 

the h-step-ahead causality measure introduced by Dufour and Taamouti (2010). 

Asymptotic valid confidence intervals are also constructed using a bootstrap 

                                                                                                                                                                      
moment associations and nonlinear causal linkages between the time series. Furthermore, Hill (2007) 

argues that Dufour, Renault, and Pelletier (2006) test procedure fails to provide a clear-cut answer on 

whether the presence of an exclusive causality relation at horizon h is preceded by neutralized causal 

effects over the horizons 1 to h - 1  (i.e., possible multiple indirect effects may cancel each other out) or 

by a complete absence of indirect influences between the series over these horizons. 
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technique presented by the authors, in order to back up the evidence from inference. 

The outcome of causality measurement  largely supports our hypothesis test results. 

Our main findings suggest that stock return volatility proxy induces significant long 

horizon spillover effects of large magnitude on output growth in Germany, Japan and 

Italy. However, in Japan inflation appears to be the leading source of changes at 

distant periods in real activity growth rates, as well as the stock return volatility.   The 

volatility of the US stock returns appears to strongly cause output growth at distant 

forecast periods indirectly through money supply growth rates. These strong effects 

appear  in economies with different degrees of market capitalization  and proportions 

of share of household wealth represented by the stocks. 

Third, an out-of-sample forecasting exercise using moderate sample sizes shows 

that combining stock return volatility, short-term interest rates, money supply growth, 

and inflation in a single regression model yields more accurate long horizon forecasts 

of output growth than the autoregressive benchmark model. In particular, the use of 

the particular  forecasting relation appears to be beneficial for a wide range of distant 

forecast periods in accord with our in-sample findings in all four economies. We also 

find that (static) single indicator specifications based on the causal structure  revealed 

by the hypothesis testing and linear measurement of in-sample predictive power 

produce superior short-term forecasts of industrial production growth rates relative to 

the autoregressive (dynamic) model when using the pooling of forecasts across 

different estimation windows to ensure forecasting stability or a large simulation 

scheme  to offset small sample estimation bias.  

The remainder of the paper is organized as follows. In the next section we 

briefly describe the econometric procedures used in our investigations. Data and 

empirical results are described in Section 3 and 4, respectively. Section 5 presents an 

out-of-sample forecasting exercise. Section 6 concludes. 
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2. Description of Econometric procedures 
 

In this section, we briefly discuss two methodologies for testing and measuring h-

step-ahead noncausality. 

 

 

 

2.1. Testing for h-step-ahead Granger non-causality  

Multivariate non-causation at different time horizons is tested by using the 

econometric procedure of Dufour , Pelletier and Renault (2006). The authors present 

an estimation and inference procedure for testing h-step ahead non-causality 

hypothesis in finite multivariate stationary or nonstationary VAR models. In 

particular, first they introduce an estimation method denoted as „(p,h)- 

autoregressions‟. Granger non-causality up to horizon h is tested by evaluating the 

relevant coefficient restrictions on the (p,h)- autoregressions parameters.  

Let ],...,[ 1 mttt vvV   be a second order stationary process, where  mivit ,...,1,   are 

1T  vectors. The method of (p,h)- autoregressions requires that the process htV  is 

regressed on  1,...,VVT
;  
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Coefficient matrix )(hB  is estimated by the method of least squares, 
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 hhhhh PPPZB . The innovations series of the (p,h)- autoregressions 

evolve as a  MA(h-1) process, and as a consequence, the usual OLS estimator of the 

variance-covariance matrix of  )(ˆ hB  cannot be used.  Instead, a heteroskedasticity and 
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autocorrelation consistent (HAC)  estimator is preferred, such as the Newey-West 

(1987) estimator , 
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where  )()()()( ,cov hhhh UPUPQ  , l(T) is the bandwidth parameter, ,)(lim  TlT  

and   0)(lim 4/1  TTlT . Following Dufour et al. (2006) we set l (T) = h -1. Hence, 

the variance-covariance matrix of )(ˆ hB can be consistently estimated as  
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The null hypothesis that tv1 Granger causes tv2  for a specific horizon h is defined in 

terms of zero restrictions on the coefficients of )(ˆ hB : 
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To test the null hypothesis of h-step-ahead non-causality, the authors propose an 

asymptotic chi-square Wald test: 
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where  )(ˆ hBYC  ,   LRIY mppp
  0,,0 1 , while L and R are two vectors of 

size 1T  whose elements are all equal to zero except for a unit value at the position 

that jtv and itv  hold at matrices )(hZ and )(hP respectively. The simulation results of 

the authors show that inference based on the asymptotic critical values may be 

misleading due to size distortions. Therefore, their approach for obtaining the p-

values is to perform a parametric Monte Carlo procedure
29

. Their method can be 

summarized in two steps: 
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 More details on the specific Monte Carlo procedure can be found in Dufour and Jouini (2005). 
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First, estimates )1(B̂  and  pTUUU 


 )1()1( ˆˆˆ  are obtained by fitting (p,1)- 

autoregressions to the series. Similarly, estimates )(ˆ hB  are calculated by fitting (p,h)- 

autoregressions to the series. Then, the W test is computed as presented in  (5). 

Second, the estimates )1(B̂ are used to calculate the impulse responses )(h for each 

forecast horizon as defined by  
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where  0,...,0,mIF  is a mpm  matrix. 

Then a pseudo-random data set R

tw consisting of m series is calculated, where t = 1, 2, 

.., T. The pseudo-data are drawn from a normal distribution with mean zero and 

variance U̂ . Next, letting  RB denote a restricted version of )(ˆ hB , i.e., 
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For each forecast horizon h , m-variate time series R
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based on the data generating mechanism: 
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N replications
30

 of R

tV are generated, and for each sample of simulated data, we apply 

the same estimation and testing procedure as applied to the actual data. The pseudo 

test values are denoted as W
~

. The decision rule is to reject the null hypothesis of non-

causality from tv1 to tv2  for a specific forecast horizon h at level of significance α if 
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 The same number of replications is used (i.e., N = 1000) as in Dufour et al (2006) 
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2.2. Measurement of h-step ahead Granger causality 

Dufour and Taamouti (2010) propose measures for Granger h-step ahead causality 

which evaluate the magnitude of a causality relation between random variables at a 

specific time horizon h. The proposed measures are extensions of Geweke „s  (1982) 

one period ahead causality measures. Let the matrix tV  be partitioned into 

 
qtttt vvvV ,, 21 , where  tv1 , tv2 are two 1T vectors and qtv is a  )2(  mT matrix 

with auxiliary variables. Assume that tV evolves as an (p,1)- autoregression 
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term )1(U  is estimated as 
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while the variance-covariance matrix of the forecast error of htv 2 is estimated as 
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where the impulse responses  are calculated as described  in (6), and 

 0,..,0,1,0R  is a m1  vector.  Assume that we want to measure the intensity of 

forecast improvement that variable tv1 has for variable tv2 at forecast period h. 

Consider the marginal process   
qttt vvV ,2

*   and the dynamics of the process *

tV be 

governed by an autoregression of order (p,1) 

 ,)*1()*1(*)1()*1( UPBZ                                                                                          (12) 
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where )*1(*)1()*1( ,, PBZ and )*1(U are defined as previously. The variance-covariance 

matrices of the innovations )*1(U and the forecast errors of htv 2 respectively as 
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where impulse responses * are calculated as described  in (6), and  0,...,0,1* R  is 

a )1(1  m  vector. Dufour and Taamouti (Theorem 5.1, p. 48) state that a measure of 

unidirectional Granger causality at horizon h is defined as 
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The authors propose  a bootstrap procedure to construct confidence intervals for the 

causality measure at forecast horizon h. Their method can be described in 5 steps: 

Step 1, (p,1)- autoregressions for  tV  are estimated by OLS while the estimates 
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Step 2, the causality measure  t
h

t vvCM 21   is estimated using the original data 

sample.  

Step 3, the method of random sampling with replacement is implemented on )1(Û to 

construct a matrix of mT   bootstrap  residuals )1(~
U . Then,  a bootstrap sample tV

~
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size mT   is generated as function of the model 
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based on )1(B̂ , )1(~
U , while the original data observations  

pVV ,...,1  are used as the p 

initial values of tV
~

. 

Step 4, steps (1) and (3) are repeated N times, and as a consequence,   sequences of 
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 are obtained. For each replication )(

~
ntV we apply the same estimation 

procedure as applied to the actual data, to calculate the OLS estimates  N
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

. 

Dufour and Taamouti adopt Kilian „s (1998) approach to achieve approximately 
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unbiased estimates of )1(B . The term biasB )1(ˆ , where )1(

1

)1(1 ˆ~
BBNbias

N

n

n  


 , is 

used in (15) to generate new bootstrap data and the corresponding estimates of )1(B , 

denoted  N

nnB
1

0)1(~


. Next, a bias-corrected bootstrap estimator biasBB  0)1()#1( ~
, 

where bias is estimated as discussed previously, is employed to the calculations of the 

new bootstrap replications  N

nntV
1

#

)(

~


.  

Step 5, the corresponding causality measures   N
n

t
h

tn vvMC
1

21)(

~


  are estimated by 

applying the estimation method on the bootstrap samples   N

nntV
1

#

)(

~


. 

The authors also apply a bias correction directly to the causality measure itself: 
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A non-negativity truncation is also imposed on the bootstraped causality measures: 
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The empirical analysis is performed using the MATLAB programming language. 

 

3. Data Description 

 

Our investigation focus on four developed countries: US, Germany, Italy, and 

Japan. The data are monthly seasonally adjusted observations of the aggregate stock 

price index (dividends are included), nominal short term interest rates, the consumer 

price index (CPI), the industrial production index, and the money supply (M2). All 

series are retrieved from Datastream. The sample period spans from January 1973 to 

September 2011. We focus on the most recent period, because, during this time these 

four economies have experienced different financial crises, and because also this 

sample period has been neglected in the literature to date. All time series, including 

short-term interest rates, are transformed to logarithmic first differences. Real stock 

returns are computed by subtracting inflation rate from nominal stock returns. CPI 

series are seasonally adjusted based on the ratio to moving average method.  

Estimating univariate autoregressive models for each real stock returns series, and 

then taking the squared values of the innovations construct a simple proxy for the 
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volatility of stock returns
31

. Implementation of the Akaike information criterion for 

selecting the number of lags indicates that autoregressions of order 1, 3, 1, and 3 are 

appropriate for United States, Germany, Japan, and Italy, respectively. 

 

 

 

4. Empirical results 

 

Following Dufour et al. (2006), we employ the sequential method proposed by 

Tiao and Box (1981) to determine the lag order of the (p,1)-autoregressions. We test 

the hypothesis of P lags against P + 1 lags by means of the likelihood ratio test over a 

range of values (1, …, 16). Sequential likelihood ratio tests indicate that a VAR (9) 

model for United States, a VAR (13) model for Germany, a VAR (12) model for 

Japan, and a VAR (12) model for Italy are sufficient parameterizations.  

 Tables 1 to 4 present the results of the causality test for US, Germany, Japan 

and Italy. Each table reports the Wald test of the null hypothesis of non-causality for 

the specific forecast horizon, and the simulated p-values at significance level 10% (in 

parentheses).  We consider causality testing for the horizons from 1 to 36 months 

ahead based on the result of Proposition 4.5 of Dufour and Renault (1998).  Statistical 

significant causal relations at level 10% appear in bold. Panel A presents the results 

when testing for direct causality from a variable to industrial production growth rates 

for the forecast periods 1 to 36 months ahead.  Panel B reports the test results when 

investigating for possible indirect effects on output growth.    

 Table 1a demonstrates the results for US.  Volatility of stock returns (denoted 

as V) is causal for industrial production growth rates (denoted as IP) for forecast 

horizons 8, 13, 16, 18, 19, 20, 21, 29, 30, 31, 32, 33, 34, 35, and 36 at level of 

significance 10%. Inflation (denoted as IN) does not Granger cause output growth for 

any horizon, while short-term interest rates (denoted as SI) predict real activity 

growth only for h = 30.  As an instrument of monetary policy, money supply growth 

rates (denoted as M2) have predictive power for industrial production growth rates at 

horizons 20, 22, 23, 26, 30, 31, 32, 33, 34, 35 and 36 at nominal level 10%.  

Surprisingly, we find a large number of long horizon causality results for money 

                                                           
31

 Morana (2009) constructs a similar volatility proxy when analyzing the co-behaviour patterns 

between exchange rates and different macroeconomic variables. 
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supply and especially, the stock return volatility proxy. In the majority of the results, 

the null hypothesis of non-causality is rejected even at level of significance 5%.  

 Table 1b reports the results, when investigating for the presence of indirect 

long horizon causal effects. Although stock return volatility predicts short-term 

interest rates one and two months ahead, it does not predict money supply growth 

rates at any horizon.  Our findings indicate that short-term interest rates have 

predictive content for money supply growth rates at both short (i.e., h = 1 and 2 

months ahead) and long horizons (i.e., h = 20, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 

and 34 months ahead). Money supply growth rates also Granger cause short-term 

interest rates for short horizons (i.e., 5, 6, and 9 months ahead). Note that our direct 

test results indicate that short-term interest rates have a limited predictive ability for 

future output growth.  However, short-term interest rates are found to be causal for 

money supply growth rates at short horizons, which in turn are causal for output 

growth at long forecast periods. Therefore, short-term interest rates indirectly 

influence output growth through money supply growth rates. Moreover, the volatility 

of stock returns causes short-term interest rates, which in turn are found to be causal 

for real activity growth at distant time periods ahead. Hence, there is evidence that the 

volatility of stock returns and monetary policy instruments directly and indirectly 

Granger cause output growth at long horizons.  These results are consistent with 

Dufour et al. (2006), who find that short-term interest rates predict GDP growth rates 

for a large number of distant forecast periods while nonborrowed reserves indirectly 

cause future real activity growth through T-Bill yields.  

Next, in Table 2a we display the test results for the economy of Japan. Our 

findings reveal co-behavior patterns between stock return volatility and output growth 

at 14, 18, 19, 20 and 21 months ahead at level of significance 10%. Inflation is found 

to predict industrial production growth rates at forecast periods 1, 20, and 21 months 

ahead. Short-term interest rates cause output growth for the horizon 22, while money 

supply growth rates for the horizons 1 and 3 at level 10%. When compared with the 

US test results, we find fewer direct causality results.   

Table 2b reports the causality test results when evaluating for indirect influences 

on Japanese industrial production growth rates. First, the volatility of stock returns 

does not Granger cause short-term interest rates over any horizon. However, stock 

return volatility is causal for money supply growth rates for both short (over the range 

of one month ahead to five months ahead) and long horizons (over the range of 22 
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months ahead to 35 months ahead) at level 10%. Long horizon causality is found from 

stock return volatility to inflation for the forecast periods h = 10, 19, 20, 21, 22, 24, 

30, 31, 32, 33, 34, 5, and 36 months at level 10%. We find that the null hypothesis of 

non-causality from short-term interest rates to money supply growth rates is rejected 

only for 26 and 27 months ahead at level 10%. Our results also indicate that interest 

rates predict inflation for the forecast periods 9, 10, 27, and 28 months ahead. Money 

supply growth rates do not have predictive ability for short-term interest rates. 

However, changes in the growth rates of money supply anticipate changes in inflation 

over the range from 20 months ahead to 35 months ahead at level 10%. The following 

indirect causality relations are revealed. First, money supply growth rates cause 

inflation at short horizons, which in turn cause output growth at long horizons. Thus, 

there is indirect long horizon causality from money supply growth rates to output 

growth through inflation. Second, changes in the volatility of stock returns anticipate 

changes in inflation at short horizons (i.e., 10 months ahead), while inflation causes 

output growth at forecast period 22. Hence, changes of the stock return volatility 

yields an indirect influence on real activity growth at distant periods ahead through 

inflation.  Therefore, we find empirical evidence that fluctuations in stock market 

signal inflationary pressures which affect the real economy.           

Table 3a presents the test results for Germany. Again, the proxy for stock return 

volatility Granger causes production growth rates for a large number of short and long 

forecast horizons. Significant causality results at level 10% are found for the 

forecasting periods 3, 7, 8, 9, 10, 21, 22,23, 28, 30, 31, 32, and 33. The forecasting 

power of the monetary policy appears to be remarkable. Interest rates predict 

production growth rates over the range from 9 months ahead to 36 months ahead, 

while money supply growth rates predict production growth rates for almost all the 

forecasting horizons considered at level 10%. Our results also indicate that there is 

short horizon causality from inflation to the specific measure of output growth.  

 Observing the test results for Germany demonstrated in Table 3b, we find that 

the stock return volatility proxy does not Granger cause money supply growth rates 

for any horizon, still it does predict short-term interest rates for 13,14, 15, 16, 17, and 

18 months ahead, respectively. Money supply growth rates are found to predict 

interest rates for short horizons (from 1 to 8 months ahead) and long horizons ( from 

15 to approximately 36 months ahead). Our findings indicate that no other significant 
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causality results exist. Hence, we find indirect causality from stock market volatility 

to industrial production growth rates through short-term interest rates.  

We present the causality test results for Italy in Table 4a. A smaller number of 

causality relations are revealed when compared to those of the other three economies. 

Changes in the stock return volatility anticipate changes in real activity growth only 

for 19 and 20 months ahead. We find that there is only short horizon causality from 

short –term interest rates to output growth (i.e., at forecast periods 1, 3 and 4 months 

ahead). As far as it concerns the other instrument of monetary policy, money supply 

growth rates do not predict real activity growth for any forecast horizon. On the other 

hand, inflation is found to cause industrial production growth rates for 14, 15, 16 and 

20 months ahead. 

In Table 4b we investigate for causality chains between the variables in Italy. 

Volatility of stock returns causes inflation from 1 month ahead to 33 months ahead. 

The volatility proxy also predicts money supply growth rates over the ranges 17-23, 

25-29, and 33-35 months ahead respectively. Although short-term interest rates do not 

cause stock return volatility at any horizon, they do predict inflation at short horizons 

(i.e., for h = 2 and 8 months ahead). Our results also indicate that money supply 

growth has significant predictive ability for inflation for both short (1 to 9 months 

ahead) and long forecast periods (over the range 22 months ahead and 36 months 

ahead). Volatility of stock returns causes inflation for short horizons (and long 

horizons as well), which in turn causes output growth. Thus, we have indirect 

causality from stock returns volatility to output growth. By using a similar reasoning, 

we find that there is indirect long horizon causality from money supply to output 

growth measure through inflation.  

Panels 1 to 4 present the causality measures over the range from 1 month-

ahead to 36 months-ahead for US, Germany, Japan, and Italy, respectively. Each plot 

displays the OLS causality measure and the bootstrap percentile bounds at 

significance level 5%.  10000 replications are used for the calculation of the bootstrap 

confidence intervals.  

In the US (Panel 1), stock return volatility Granger causes output growth 3 

months-ahead. The impact of the former to the latter appears to be strong in the 

economic sense. Causality from money supply growth rates to output growth is 

statistical different from zero after 7 months. The predictive power of the monetary 

policy instrument declines gradually after 13 months. On the other hand, nominal 
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short-term interest rates do not Granger cause real activity over any horizon. Inflation 

has the largest impact on output growth (approximately 0.03 for the first 6 months); 

from h = 10 inflation is not causal for real activity measure. Causality from  short-

term interest rates to stock return volatility or money supply growth rates is not 

statistical significant different from zero over any horizon. Then again, inflation, 

money supply growth, and the volatility proxy are causal for interest rates. The first 

two variables have significant predictive power for the first 8 to 10 months. 

Moreover, volatility of stock returns appear to cause short-term interest rates for all 36 

horizons. Stock return volatility also affects M2 growth rates 1 month ahead and after 

15 months; this influence is economically strong at both short and long horizons.  

Hence, there is indirect causality from the volatility of real stock returns to real 

activity growth. Money supply also is a significant in-sample predictor of stock return 

volatility over the range from 1 month-ahead to approximately 36 months-ahead.   

Note that money supply has a stronger influence on the volatility proxy than the latter 

to the former. Inflation is also found to strongly cause stock return volatility at both 

short and long horizons; the OLS causality measure increases at longer forecast 

periods.      

Panel 2 reports the causality measure results of Germany.  Stock return volatility 

is found to cause industrial production growth rates strongly over the range from 1 

month-ahead to 14 months-ahead. Monetary policy instruments, money supply 

growth and interest rates present a limited in-sample predictive ability for future real 

activity growth; the first predict up to 4 months ahead while the second 1 month 

ahead.  Moreover, inflation has a small impact on output growth (up to 4 months 

ahead).  

The results for Japan are presented in Panel 3. The proxy for stock return volatility 

appears to be causal for monthly growth rates of industrial production at short and 

long horizons. In particular, the causality measures are significantly different from 

zero after 16 months and sizeable from an economic viewpoint (the values range from 

0.01 to 0.06). Another interesting result is that short-term interest rates do not Granger 

cause industrial production growth rates over any horizon. The measures are 

approximately zero and statistical insignificant for all forecast horizons. Then again, 

money supply growth rates have a large (from an economic viewpoint) significant 

impact on real activity growth up to 4 months ahead. The causality measures decline 

gradually until they take zero values. Inflation strongly causes real activity growth 
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(0.1 the first five months). Our results also show that there is strong causality from 

money supply growth to inflation and the stock return volatility proxy for a wide 

range of long horizons, but not for short-term interest rates. In particular, we find that 

M2 has a large impact on stock return volatility data for all horizons; the causality 

measures are high as 0.2.  The volatility proxy is also strongly causal after 20 months 

for M2 growth rates. Short-term interest rates fail to cause money supply growth rates 

and inflation rate. Our results also show that inflation is a significant predictor of the 

volatility proxy after 17 months. 

Panel 4 displays the causality measures between the financial, macroeconomic 

and monetary variables of Italy. We observe that stock return volatility data is the 

only significant predictor of future output growth. The causality measures are 

significantly different than zero after 13 months.  Causality from inflation, money 

supply growth, and short-term interest rates to output growth are zero and statistical 

insignificant. Furthermore, we find that stock return volatility Granger causes money 

supply growth, short-term interest rates and inflation at long horizons. Note that 

volatility has a large impact to inflation (the measure equals approximately to 0.04) 

after 11 months. Monetary policy does not affect stock return volatility; M2 does not 

have a significant impact on the volatility of stock returns, while the causality 

measures from short-term interest rates to the volatility proxy are marginally 

statistically different from zero after 16 months. On the other hand, inflation has high 

predictive power for stock return volatility over the range from 1 month-ahead to 36 

months-ahead.   

 Consensus views by academics and market practitioners state that central 

banks should formulate monetary policy by taking into account actual or predicted 

inflation and output gap but not stock market volatility. They argue that systematic 

responses to stock return volatility may induce destabilizing effects on output growth.  

Bernanke and Gertler (1999) show that including stock market volatility in a policy 

formulation process may improve macroeconomic performance only when changes in 

the variance of stock returns signal possible inflationary or deflationary pressures. 

However, it is almost impossible to disentangle the sources of stock return variability. 

On the other hand, Cecchetti et al. (2000) emphasize  that central banks  should  

follow preventive policies against developments in stock return volatility in order to 

bound the increase of imbalances in real economy. Their analysis show that there are 

sizeable gains when  central banks determine optimal interest rate by minimizing a 
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weighted average of the output gap and inflation fluctuations  while incorporating 

information about stock return variation. Similarly, Filardo (2004) argues that 

monetary policymakers should systematically react to stock return volatility, and 

more importantly to asset price bubbles. Our finding that variability in stock returns 

produces strong effects on both future inflation and production growth rates in all four 

economies implies that central banks should incorporate systematically information 

about stock prices in their policy making. Stock return volatility tends to have a large 

impact in economies with different degrees of market capitalization  and proportions 

of share of household wealth represented by the stocks. Moreover, it appears that 

these distortions operate on spending and aggregate demand on the short-run, but they 

also affect aggregate supply through capital formation on the long-run. These  results 

raise some concern about whether there are actions monetary authorities could take to 

diminish the likelihood of the undesirable effects of stock return volatility. 

 

 

 

 

5. Out-of-sample forecasting evaluation 
 

 Our goal in this section is to show that an out-of-sample forecasting exercise 

using moderate sample sizes yields the same answers with our in-sample empirical 

investigations. We also construct single indicator forecasting models for output 

growth based on the causal lag structure information revealed by our in-sample 

analysis. Our findings indicate that our models generate more accurate and stable 

predictions of output growth than the autoregressive benchmark model. 

  

5.1. Forecasting industrial production growth rates h-steps ahead  

 The iterated multistep approach consists of first estimating a dynamic model  

for the monthly growth rates, and then using the chain rule to compute h-step-ahead 

forecasts of the series. In particular, our forecasting multivariate  regression model is  
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where ty represent the growth rates of industrial production )( tIP , and itx denote the 

indicators )2,,,( tttt MSIINV . The parameters 4,...,1,,...,1,,,  ipkikk  are 

estimated by OLS. By iterating forward one-period ahead h times we are able to 

compute the forecasts recursively,  
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based only on values of the series up to the date on which the forecast is made.  Long 

horizon iterated forecasts of the industrial production growth rates  are computed as 


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0 ~                                                                                                   (20) 

where 0

ty is the log of the industrial production level at time t.  

The forecast performance of these regressions is compared to that of an autoregressive 

bencmark model, 
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To compute the forecasts,  the models are estimated, lag lengths are selected -based 

on the Akaike information Criterion (AIC) with maximum lag order set to five lags– 

using observations from   date 1 through date q, where q is length of the estimation 

window. Moving forward by one month, the models are reestimated (and information 

criteria computed) using data from date 2 through date q + 1. This sequence of actions 

is repeated  T –q - h times across the sample. Hence, sequences of h-step-ahead 

forecasts of the growth in industrial production are formed, and as a consequence the 

corresponding forecast errors, allowing us to compute the root mean squared forecast 

error (RMSFE), the Theil inequality criterion (Theil), the bias (bias) and variance 

(Var) components of the Theil inequality decomposition. We choose to set q = 0.75, 

0.80, 0.60, and 0.65 for US, Germany, Japan and Italy respectively, so that we form 

series of forecast errors with minimum length 150 to 170 observations. 

 We should note that our approach for constructing the stock return volatility 

proxy )( tV  is to recursively estimate an AR(p) model (lag length is selected 

automatically with AIC between lags one and 12) for the real stock returns and to 

retain the squared innovations as we move the estimation window through the sample.  
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5.1a. Pseudo-out-of-sample forecasting results 

 Table 5 demonstrates the forecasting performance of our model in an out-of-

sample forecast exercise for US growth rates of industrial production.   The RMSFEs 

indicate that the AR model produces superior forecasts of output growth when 

compared to our model. On the other hand, Theil coefficient results present a different 

picture. For h = 5 to 23 Theils show that our model outperforms the benchmark 

model. For forecast horizons larger than 23, our model has a poor performance when 

compared to the AR model.  Note that the causality measure from M2 to output 

growth was found to be large and statistical significant over the range from 5 months 

ahead and 20 months ahead approximately (after 20 months causal influence was 

found to be  significant but of  small magnitude) .The bias appears to increase in a 

higher rate in our model than the AR model when h increases. The variance 

component of the Theil decomposition is found to decrease in a higher rate in our 

model than the AR model when h increases. 

Table 6 presents the forecasting performance of our model in Germany for 

horizons one to 36 months ahead. Our forecasting model is found to be beneficial for 

horizons 8 to 19 months ahead when using RMSFE as a measure of forecasting 

accuracy. As in US, for forecast periods larger than 19 months the RMSFEs of our 

model are larger than those of the AR model. These results are in accord with our in-

sample findings where statistical significant comovements of large magnitude 

between stock return volatility and output growth were reported for forecast periods 1 

month ahead to 14 months ahead. Theil results indicate that our model has better 

predictive power than the benchmark model over the range from h = 5 months ahead 

to h = 28 months ahead. The bias increases as h increases; on the other hand, the 

variance decreases as  h grows. 

 Table 7 compares the forecasting accuracy of our model to the AR benchmark 

when implemented to predict japanese monthly industrial production growth rates.  

There are sizeable gains when using our model to forecast production growth rates at 

both short and long monthly periods ahead.  RMSFEs indicate that our specification is 

more accurate than the AR benchmark model for almost all forecast horizons. More 

importantly, greater accuracy is achieved for long horizons. For instance, for h = 5,6, 

35 and 36 our model yields RMSFEs 0.086, 0.096, 0.081 and 0.078 respectively, 

while the AR model yields RMSFEs 0,097,  0,111, 0,461, and 0,472 respectively. Our 

model is favorably compared to the AR benchmark at long horizons when using Theil 
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coefficient to measure forecasting accuracy. For horizons larger than 21 the proposed 

specification achieves a superior performance over the AR, especially at very long 

horizons.  Our model appears to produce less biased forecasts of output growth than 

the benchmark specification for a wide range of forecast periods. On the other hand, 

forecast bias of the former is more volatile. 

The out-of-sample predictive evaluation of both specifications for Italy are 

demonstrated in Table 8. RMSFEs over the range from 8 months-ahead to 29 months-

ahead show that our model outperforms the AR model. We find gains to the use of 

our model at long horizons; for instance our model and the AR yield RMSFEs 0.078 

and 0.094 at h = 20 respectively. Theil coefficients confirm that our model produces 

superior long horizon forecasts of output growth. In particular, our specification 

yields more accurate forecasts than the AR model over the range from 11 months-

ahead to 33 months-ahead. Forecasts produced by the proposed model appear slightly 

more biased than those of the AR. Both specifications produce slightly biased 

predictions of production growth rates of similar size.    

 

5.2. Forecasting output growth one-step ahead based on long horizon causality 

relations  

It is of interest to consider short-term forecasts of industrial production growth 

rates by incorporating in the forecasting regressions the long horizon causal structures 

between the economic time series found in our in-sample analysis. Thus, our interest 

is in the out-of-sample predictive power of single-indicator models that employ h lags 

of itx to forecast real activity growth ty one month-ahead, i.e.,  

   

h

thitiht xy  0                                                                                    (23) 

where h is specified for each indicator itx according to the specific lag structure our 

in-sample analysis indicates that is appropriate. Two indicators are used, stock return 

volatility and money supply growth rates for the forecast regression of each economy 

(in Italy the short-term interest rates are used instead of M2 growth rates). The lag 

structures implied by the causality relations are   

US              },36,..,30{:: hVt },36,..,30{::2 hM t                                          (24) 

Germany    },33,..,30,28{:: hVt },36,32,..,25{::2 hM t                                 (25) 

Japan         },27,..,21{:: hVt },3,2,1{::2 hM t                                               (26) 
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Italy           },23,..,16{:: hVt }.4,3,1{:: hSI t                                                  (27) 

 

The forecasting performance of these regressions is compared to that of an 

autoregressive benchmark model. We select the lag order of the benchmark model at 

each estimation window using the Akaike Information criterion (AIC), with 

maximum lag order set to five lags. We consider two estimation windows, equal to 

50%T and 70%T. 

 

Clark and McCracken (2005) show that lack of parameter constancy of the 

regression model used for forecasting economic series, has a substantial impact on its 

out-of-sample performance. Recent econometric advances in forecasting economic 

series present methods, whose implementation does not require testing for 

heterogeneity of a stochastic process or parameter instability of a regression model. 

Pesaran and Timmermann (2007) show that averaging forecasts obtained from in-

sample model estimation windows of different lengths ensures a satisfactory finite 

sample performance, especially in the presence of neglected structural breaks of small 

size. There is evidence that single predictor models with varying in-sample windows 

outperform the pooling of forecasts from a large set of  single-indicator models; see 

Assenmacher-Wesche and Pesaran (2008), Pesaran, Schuermann and Smith (2009), 

and Schrimpf and Wang (2009). As well as the standard rolling window approach, we 

implement forecast combination across observation windows of different lengths, as 

proposed by  Pesaran and Timmerman (2007) and Pesaran and Pick (2009). The 

starting point of the in-sample window is changed removing one observation, while 

the forecasts are calculated based on the parameters of the predicting model estimated 

on these observation windows. Then these forecasts which correspond to the different 

starting point data windows are averaged. The forecast averages of the rolling window 

are used for the computation of the root mean square forecast error (hereafter denoted 

as RMSFE), Theil inequality criterion, bias and variance decomposition based on the 

Theil inequality.   

For each observation window, we use the sequential procedure of Bai and Perron 

(1998,2003) to estimate  multiple structural breaks on output growth dynamics, and 

then equal the starting points of each sub-window to these break points. Four 

breakpoints are considered within each rolling window (either 50%T or 70%T). The 
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size and location of the multiple change-points can be consistently estimated by this 

procedure.  

 Since we compare the forecast performance of a static model incorporating a 

long lag structure (single-predictor models) to that of a dynamic model 

(autoregressive benchmark model), we consider a bootstrap technique to offset the 

small sample bias in the coefficient estimates of the former, and as consequence, in 

the forecast accuracy of these regressions. Hence,  random sampling with replacement 

is used on the original growth/return observations of each window so that we generate 

a large sample. Once a bootstrap sample is computed (set approximately equal to 8 

times the original estimation window), we use it to estimate the parameters of each 

single-predictor and the benchmark model, and therefore, to calculate the forecasts.  

Forecast averaging over estimation windows of different lengths is also implemented 

on the bootstrap samples. Our approach again estimates multiple breaks, using the 

procedure proposed by Bai and Perron, and then equalizes the starting point of each 

sub-window to the location the break-points. 

 Table 9 reports the forecast results of the single-indicator and the benchmark 

models.  In particular, the results for three forecasting models are presented. The 

models are: an AR(p) model, denoted as benchmark model, with maximum p = 5 and 

lag selection based on AIC criterion; a volatility model using all lagged volatility 

proxy terms as shown in equation (23); a M2 model  using all lagged money supply 

growth rate terms as shown in equation (23) (for Italy short-term interest rates are 

prefered over M2 growth rates). The lag structure h used in the specification of last 

two models are presented in (24):(27).  Three modeling schemes are displayed. The 

schemes are: a simple modeling scheme, where  the three forecasting models as 

described previously are implemented on rolling windows of length 50%T and 70%T; 

a modeling scheme where the forecasts of each model are averaged over different 

estimation sub-windows; a bootstrap scheme, where the forecasts of each forecasting 

model are averaged over different bootstrap data sub-windows. Table 9 a, b, c and d 

records the results for US, Germany, Japan and Italy, respectively.  

  Consider first the exercise using the simple modeling scheme. The AR 

benchmark specification outperforms the other two competing models in terms of 

RMSFEs and Theil coefficients. For instance, in US when a rolling window of 70%T 

observations is employed, Theils of the volatility and M2 indicator models are 0.7637 

and 0.7416 respectively, while the AR model yields 0.6520. We find no gains to the 
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use of single-indicator models based on stock return volatility and money supply 

growth rates for the other three economies. When 70% of the full sample is used, 

volatility, M2 and AR models yield Theils 0.9407, 0.9298, and 0.7627 respectively in 

Germany; 0.9363, 0.9646, and 0.7142 respectively in Japan; 0.9511, 0.9468, and 

0.7146 respectively in Italy. This result is robust to the choice of the estimation 

window for all four economies.  However, when forecasting stability is 

considered by using forecast combinations across different data windows, both static 

models generate more accurate predictions than the AR dynamic model.  US volatility 

proxy based model yields Theil coefficients 0.6711 and 0.7528 when rolling windows 

of size 50%T and 70%T are considered, respectively. On the other hand, the AR 

model yields 0.9864 and 0.9942 respectively. We obtain similar results for the other 

three economies.   

 For the forecasting exercise based on the bootstrap technique, the results are 

qualitatively similar and further strengthen the evidence that our approach produces 

superior short-term forecasts of industrial production growth. Both single indicator 

models yield more accurate predictions than the benchmark model; for instance, Theil 

coefficients of the US volatility and M2 specifications are 0.7382 and 0.8046, 0.6962 

and 0.7606, for estimation windows 50%T and 70%T respectively. Then again, Theil 

coefficients of the AR model are 0.9154 and 0.9993 respectively. Note that the bias of 

both indicator based models is reduced when the bootstrap technique is used in all 

four economies except Italy.     

 

 

6. Conclusions 
 

 Our interest is in whether stock return volatility anticipates changes of output 

growth at distant time periods. In particular, we investigate for the presence of long 

horizon causation from stock return volatility to the growth rates of industrial 

production,  in terms of indirect influences with monetary policy instruments and 

inflation in four economies, namely US, Germany, Japan and  Italy. Multiple horizon 

non-causality testing is performed by implementing the test procedure proposed by 

Dufour et al. (2006) on the former relation, with short-term interest rates, money 

supply growth rates (M2), and inflation as auxiliary variables.   
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Our results reveal a large number of significant direct causalities from the 

volatility of stock returns to output growth at both short and long horizons in all four 

economies. Monetary policy instruments, such as short-term interest rates and M2 

growth rates, also found causality for output growth in the majority of the economies. 

Interestingly, our results indicate that stock return volatility indirectly predicts  

monthly growth rates of industrial production at long horizons, in particular through 

the nominal short-term interest rates (US, and Germany), the money supply growth 

rates (Japan) and the inflation (Italy).  

 We are also interested in measuring the degree of forecast improvement that 

arise from each horizon specific causality relation.  In order to do so, we implement 

the causality measure proposed by Dufour and Taamouti (2010) on the data for 

different time horizons. A bootstrap technique is used to calculate confidence 

intervals for the causality measure. Multiple horizon causalities of significant size 

from stock return volatility to output growth are found in Germany, Japan and Italy. 

In US the causality measures indicate significant indirect long horizon causation 

through the money supply growth rates.   

 Finally, a forecasting exercise reveals that the combination of stock return 

volatility, short-term interest rates, money supply growth, and inflation in a single 

regression model generates more accurate forecasts of output growth than the 

autoregressive model in the long term. Our forecasting results validate the causality 

linkages between stock market volatility, monetary policy and output growth obtained 

in our empirical investigations. We also show that single indicator specifications 

based on the lag structure revealed by our in-sample analysis fares well at predicting  

short term industrial production growth rates relative to the benchmark model when 

pooling the forecasts across estimation windows of different lengths or using a large 

simulation scheme  to offset small sample estimation bias. 

 Our finding that stock return volatility has an impact of significant size on 

both future expected inflation and production growth rates in all four economies 

implies that central banks should incorporate systematically information about stock 

return variation in their monetary policy rules. Stock return volatility causes strongly 

production growth rates of economies with different degrees of market capitalization  

and alternate proportions of share of household wealth represented by the stocks. 

Moreover, it appears that these distortions operate on both  the short and the long-run.  

These  results raise some concern about whether there are actions monetary 
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authorities could take to enhance long horizon macroeconomic performance and 

prevent financial distresses. Cecchetti, et al. (2000) show that it is preferable to 

develop monetary policy rules that minimize  future deviations of  inflation and 

output gap based on stock return volatility rather than determining target interest rates 

using exclusively expectations of future inflation at some fixed time horizon. They 

also demonstrate that monetary policy making which focus on preventing the 

formation of asset price bubbles instead of puncturing them may ensure an overall 

macroeconomic stability. 
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Appendix of Chapter 4 
 

 

Table1a. Causality test results for forecast horizons 1 to 36 months ahead in US 

 h 1 2 3 4 5 6 7 8 9 10 11 12 

              
V→IP 14,378 11,836 8,029 10,129 11,227 10,290 11,355 20,386 17,311 12,604 13,012 12,436 

  (0,183) (0,364) (0,619) (0,483) (0,429) (0,489) (0,438) (0,078) (0,179) (0,360) (0,386) (0,476) 

SI→IP 13,595 7,529 5,499 5,027 5,836 6,160 7,049 7,139 4,472 6,596 8,285 7,436 
  (0,248) (0,685) (0,853) (0,899) (0,815) (0,808) (0,765) (0,750) (0,912) (0,804) (0,707) (0,804) 

IN→IP 12,989 6,779 10,230 7,810 9,453 9,842 8,749 11,785 11,122 12,500 11,439 9,573 

  (0,284) (0,750) (0,476) (0,698) (0,519) (0,552) (0,603) (0,453) (0,500) (0,414) (0,517) (0,625) 
M2→IP 8,125 7,896 6,918 6,211 6,374 7,324 5,750 4,930 5,565 7,372 7,564 9,920 

  (0,634) (0,612) (0,776) (0,819) (0,806) (0,737) (0,856) (0,920) (0,873) (0,780) (0,754) (0,603) 

              

 h 13 14 15 16 17 18 19 20 21 22 23 24 

              

V→IP 23,469 12,884 21,834 34,254 16,660 28,610 31,935 34,946 39,792 17,698 18,036 18,854 

  (0,071) (0,444) (0,155) (0,019) (0,356) (0,045) (0,050) (0,032) (0,026) (0,317) (0,308) (0,325) 
SI→IP 12,081 16,834 18,512 18,526 17,831 15,375 13,129 10,344 14,077 14,467 13,052 17,833 

  (0,494) (0,222) (0,209) (0,203) (0,252) (0,362) (0,474) (0,688) (0,474) (0,446) (0,524) (0,343) 

IN→IP 18,909 12,147 13,722 22,602 17,975 12,777 11,176 12,521 13,215 10,524 12,418 12,443 
  (0,177) (0,494) (0,399) (0,112) (0,254) (0,537) (0,586) (0,524) (0,489) (0,681) (0,612) (0,612) 

M2→IP 15,394 14,521 15,471 21,150 14,836 11,834 8,231 29,281 25,763 37,618 37,773 24,278 

  (0,267) (0,371) (0,330) (0,168) (0,366) (0,619) (0,813) (0,075) (0,101) (0,034) (0,034) (0,168) 
              

 h 25 26 27 28 29 30 31 32 33 34 35 36 

              

V→IP 16,973 14,777 21,169 22,344 33,216 36,260 36,562 37,865 50,000 76,344 113,989 94,502 

  (0,379) (0,498) (0,295) (0,250) (0,075) (0,084) (0,078) (0,075) (0,028) (0,002) (0,006) (0,009) 

SI→IP 22,659 25,873 27,310 23,358 20,300 41,822 25,293 31,515 31,868 23,054 21,374 32,478 

  (0,194) (0,185) (0,127) (0,213) (0,338) (0,052) (0,203) (0,153) (0,131) (0,341) (0,360) (0,175) 
IN→IP 21,455 19,711 22,443 19,643 20,595 25,441 17,551 13,753 13,206 9,702 16,651 17,570 

  (0,291) (0,278) (0,244) (0,343) (0,343) (0,209) (0,483) (0,593) (0,629) (0,845) (0,550) (0,532) 

M2→IP 21,086 37,067 24,245 25,560 22,277 41,320 33,702 53,978 57,360 75,356 66,952 78,350 

  (0,231) (0,058) (0,205) (0,164) (0,237) (0,032) (0,075) (0,024) (0,017) (0,002) (0,011) (0,006) 

              

Note:  this table reports the Dufour et al. (2006) test results for forecast horizons (h) 1 month ahead to 36 months 

ahead at nominal level of significance 10% . Simulated p-values are in parentheses. Rejection of the null 

hypothesis of non-causality is in bold. V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term 

nominal interest rates,  inflation,  M2 growth rate, and industrial production growth rate, respectively. 
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Table1b. Causality test results for forecast horizons 1 to 36 months ahead in US 

 h 1 2 3 4 5 6 7 8 9 10 11 12 

              

M2→SI 15,139 13,414 15,558 16,43 18,382 25,317 18,808 18,372 20,602 16,184 15,337 10,028 

  (0,163) (0,242) (0,172) (0,131) (0,098) (0,026) (0,114) (0,123) (0,098) (0,240) (0,275) (0,617) 
V→M2 14,300 5,572 3,105 3,041 3,155 6,061 4,336 7,554 7,561 8,142 10,702 9,599 

  (0,202) (0,839) (0,965) (0,968) (0,965) (0,821) (0,919) (0,711) (0,722) (0,687) (0,509) (0,632) 

V→SI 17,768 24,288 13,077 9,013 5,581 6,615 11,447 10,898 10,757 9,450 7,406 12,784 
  (0,089) (0,017) (0,259) (0,557) (0,846) (0,762) (0,435) (0,480) (0,477) (0,624) (0,755) (0,390) 

SI→M2 49,872 23,243 13,800 12,163 14,572 12,892 9,286 6,823 11,249 15,351 14,957 14,126 

  (0,001) (0,022) (0,227) (0,290) (0,197) (0,267) (0,558) (0,800) (0,452) (0,251) (0,264) (0,323) 
              

 h 13 14 15 16 17 18 19 20 21 22 23 24 

              

M2→SI 15,170 15,607 14,986 21,073 15,792 15,688 24,766 20,617 13,002 12,075 15,824 15,154 
  (0,316) (0,336) (0,369) (0,149) (0,351) (0,382) (0,117) (0,229) (0,528) (0,595) (0,432) (0,467) 

V→M2 7,971 9,191 7,019 6,030 10,471 14,209 10,339 12,002 10,648 14,973 19,276 24,421 

  (0,734) (0,671) (0,824) (0,867) (0,625) (0,412) (0,665) (0,536) (0,664) (0,449) (0,274) (0,142) 
V→SI 11,293 11,205 8,003 16,889 6,321 7,341 8,256 6,319 6,760 9,468 7,503 5,136 

  (0,528) (0,541) (0,768) (0,258) (0,883) (0,821) (0,779) (0,899) (0,863) (0,761) (0,849) (0,950) 

SI→M2 17,851 19,824 13,162 13,884 3,010 15,148 10,300 30,899 25,586 22,219 32,997 37,996 

  (0,194) (0,150) (0,394) (0,407) (0,990) (0,371) (0,616) (0,038) (0,106) (0,175) (0,057) (0,025) 

              

 h 25 26 27 28 29 30 31 32 33 34 35 36 

              
M2→SI M2→SI 13,727 10,328 12,979 20,057 14,011 9,191 12,371 15,676 17,657 18,690 18,488 

  (0,542) (0,549) (0,757) (0,607) (0,327) (0,556) (0,849) (0,691) (0,569) (0,497) (0,479) (0,494) 

V→M2 V→M2 18,203 26,849 24,047 23,868 24,754 9,855 14,007 19,371 16,013 23,188 31,020 
  (0,325) (0,330) (0,136) (0,201) (0,214) (0,185) (0,787) (0,594) (0,426) (0,542) (0,296) (0,195) 

V→SI 4,884 4,765 5,452 7,561 7,402 7,873 10,129 8,998 10,395 10,120 9,738 12,432 

  (0,961) (0,971) (0,936) (0,884) (0,882) (0,858) (0,760) (0,849) (0,768) (0,809) (0,820) (0,745) 
SI→M2 37,868 42,993 33,709 52,015 48,773 60,332 29,878 38,054 36,493 46,487 28,011 15,644 

  (0,031) (0,025) (0,060) (0,015) (0,020) (0,009) (0,125) (0,068) (0,089) (0,029) (0,190) (0,565) 

              

Note:  this table reports the Dufour et al. (2006) test results for forecast horizons (h) 1 month ahead to 36 months 

ahead at nominal level of significance 10% . Simulated p-values are in parentheses. Rejection of the null 

hypothesis of non-causality is in bold. V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term 

nominal interest rates,  inflation,  M2 growth rate, and industrial production growth rate, respectively. 
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Table 2a. Causality test results for the forecast horizons 1 to 36 months ahead in Japan 

 h 1 2 3 4 5 6 7 8 9 10 11 12 

              

V→IP 19,294 14,118 12,250 12,099 10,718 14,496 12,907 9,893 10,807 10,763 22,768 31,411 

  (0,318) (0,613) (0,741) (0,744) (0,874) (0,677) (0,803) (0,920) (0,887) (0,903) (0,475) (0,318) 
SI→IP 24,323 22,229 24,474 20,788 19,447 13,117 14,044 14,236 17,016 18,453 16,802 12,182 

  (0,150) (0,233) (0,188) (0,339) (0,420) (0,758) (0,743) (0,754) (0,650) (0,610) (0,692) (0,864) 

IN→IP 30,478 18,723 14,412 9,639 9,817 8,895 10,257 10,437 17,543 14,622 11,255 10,012 
  (0,053) (0,396) (0,633) (0,857) (0,869) (0,933) (0,880) (0,891) (0,609) (0,755) (0,900) (0,933) 

M2→IP 28,942 24,060 28,649 19,044 18,457 17,077 18,488 14,178 17,555 12,083 16,762 19,232 

  (0,071) (0,162) (0,095) (0,392) (0,480) (0,560) (0,528) (0,752) (0,622) (0,850) (0,710) (0,590) 
              

 h 13 14 15 16 17 18 19 20 21 22 23 24 

              

V→IP 32,851 51,104 49,234 50,865 47,323 70,649 79,274 75,469 98,198 48,411 44,623 52,153 
  (0,283) (0,065) (0,110) (0,109) (0,165) (0,056) (0,042) (0,064) (0,026) (0,249) (0,353) (0,284) 

SI→IP 7,317 31,587 26,967 40,639 28,720 40,258 40,062 35,618 39,276 89,971 59,628 63,408 

  (0,986) (0,278) (0,459) (0,211) (0,440) (0,260) (0,304) (0,373) (0,356) (0,028) (0,159) (0,133) 
IN→IP 15,137 14,022 30,198 29,973 38,764 44,099 43,540 58,669 67,370 28,592 21,201 14,374 

  (0,806) (0,828) (0,374) (0,388) (0,228) (0,202) (0,235) (0,091) (0,083) (0,618) (0,788) (0,932) 

M2→IP 24,037 10,754 12,993 14,765 11,379 18,877 15,524 18,235 23,360 29,054 17,995 49,739 
  (0,464) (0,936) (0,870) (0,840) (0,928) (0,766) (0,861) (0,823) (0,698) (0,624) (0,871) (0,321) 

              

 h 25 26 27 28 29 30 31 32 33 34 35 36 

              
V→IP 34,544 20,268 19,968 19,642 32,443 27,288 57,894 50,067 88,879 63,361 53,869 51,341 

  (0,567) (0,877) (0,908) (0,901) (0,694) (0,822) (0,384) (0,529) (0,203) (0,396) (0,563) (0,594) 

SI→IP 43,557 39,267 33,569 34,172 37,221 34,452 29,385 27,157 60,185 40,757 33,182 32,565 
  (0,393) (0,512) (0,623) (0,673) (0,614) (0,676) (0,803) (0,818) (0,410) (0,667) (0,812) (0,832) 

IN→IP 9,552 21,675 23,155 23,193 40,625 24,963 21,926 20,068 32,291 82,553 80,068 70,948 

  (0,990) (0,849) (0,828) (0,836) (0,563) (0,846) (0,887) (0,927) (0,777) (0,213) (0,277) (0,383) 
M2→IP 60,358 46,375 17,040 27,248 23,617 18,915 25,406 20,545 24,097 29,760 46,603 55,223 

  (0,204) (0,373) (0,923) (0,782) (0,835) (0,926) (0,849) (0,923) (0,880) (0,802) (0,612) (0,537) 

              

Note:  this table reports the Dufour et al. (2006) test results for forecast horizons (h) 1 month ahead to 36 months 

ahead at nominal level of significance 10% . Simulated p-values are in parentheses. Rejection of the null 

hypothesis of non-causality is in bold. V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term 

nominal interest rates,  inflation,  M2 growth rate, and industrial production growth rate, respectively. 
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Table 2b. Causality test results for the forecast horizons 1 to 36 months ahead in Japan 

 h 1 2 3 4 5 6 7 8 9 10 11 12 

              

M2→SI 7,004 5,561 5,397 5,166 10,437 10,105 12,209 14,870 13,687 11,081 9,780 9,110 

  (0,949) (0,968) (0,978) (0,983) (0,835) (0,858) (0,786) (0,681) (0,758) (0,856) (0,923) (0,947) 

V→M2 36,376 48,175 61,968 50,522 31,358 16,580 15,795 22,885 25,333 21,455 25,756 32,656 

  (0,016) (0,009) (0,001) (0,006) (0,079) (0,531) (0,605) (0,341) (0,293) (0,439) (0,319) (0,186) 

V→SI 12,661 9,733 7,281 6,359 4,936 6,069 5,520 5,934 6,257 5,306 3,956 5,929 

  (0,679) (0,821) (0,923) (0,959) (0,992) (0,978) (0,991) (0,977) (0,978) (0,993) (0,998) (0,990) 

SI→M2 17,070 13,574 15,592 11,217 20,089 31,186 29,673 24,828 18,667 15,305 23,274 40,916 

  (0,400) (0,664) (0,557) (0,787) (0,365) (0,116) (0,138) (0,269) (0,498) (0,689) (0,384) (0,088) 

V→IN 8,485 8,183 12,338 21,296 21,855 23,699 20,668 18,961 35,257 38,126 27,696 31,717 

  (0,888) (0,915) (0,717) (0,318) (0,312) (0,294) (0,451) (0,522) (0,118) (0,091) (0,324) (0,250) 

SI→IN 19,917 21,196 25,474 20,791 20,205 23,278 23,939 18,997 53,049 55,640 28,701 37,095 

  (0,312) (0,251) (0,149) (0,331) (0,402) (0,291) (0,308) (0,508) (0,015) (0,016) (0,278) (0,148) 

M2→IN 17,619 15,153 11,209 13,521 16,915 15,141 20,159 21,609 15,111 20,862 22,949 38,093 

  (0,391) (0,549) (0,818) (0,670) (0,516) (0,664) (0,463) (0,463) (0,715) (0,546) (0,502) (0,164) 

              

 h 13 14 15 16 17 18 19 20 21 22 23 24 

              

M2→SI 7,255 9,929 11,040 16,152 18,852 17,322 12,954 16,956 23,615 23,898 34,194 22,450 

  (0,983) (0,932) (0,938) (0,825) (0,746) (0,802) (0,918) (0,851) (0,700) (0,682) (0,500) (0,781) 

V→M2 21,332 18,005 18,869 26,196 17,226 27,806 25,297 36,471 40,588 86,622 84,885 91,175 

  (0,559) (0,673) (0,669) (0,455) (0,772) (0,454) (0,539) (0,336) (0,299) (0,024) (0,037) (0,031) 

V→SI 8,513 9,897 10,050 13,724 22,299 13,441 16,645 17,141 18,031 13,022 6,910 6,875 

  (0,960) (0,942) (0,940) (0,846) (0,579) (0,893) (0,806) (0,793) (0,810) (0,921) (0,991) (0,993) 

SI→M2 32,750 10,237 11,465 37,173 35,291 23,834 22,646 26,877 26,364 23,602 60,477 37,021 

  (0,218) (0,920) (0,907) (0,198) (0,286) (0,574) (0,643) (0,575) (0,573) (0,670) (0,134) (0,411) 

V→IN 37,667 28,558 13,472 15,432 16,240 23,309 64,221 83,729 102,321 115,436 65,944 117,593 

  (0,179) (0,390) (0,861) (0,839) (0,837) (0,674) (0,074) (0,032) (0,015) (0,013) (0,144) (0,013) 

SI→IN 37,879 37,606 21,542 17,300 13,464 6,789 7,206 21,716 30,671 35,639 45,443 68,205 

  (0,184) (0,214) (0,652) (0,775) (0,877) (0,991) (0,991) (0,709) (0,523) (0,483) (0,336) (0,141) 

M2→IN 45,765 45,914 33,632 39,546 55,241 59,958 51,298 70,608 80,460 75,114 72,221 56,160 

  (0,106) (0,119) (0,343) (0,238) (0,103) (0,110) (0,169) (0,089) (0,054) (0,086) (0,121) (0,259) 

              

 h 25 26 27 28 29 30 31 32 33 34 35 36 

              

M2→SI 33,809 18,437 19,646 19,146 15,266 14,508 18,621 20,518 19,040 22,400 24,630 15,500 

  (0,556) (0,870) (0,882) (0,893) (0,952) (0,960) (0,929) (0,915) (0,931) (0,914) (0,904) (0,972) 

V→M2 75,568 50,610 53,125 66,963 79,446 110,209 63,865 113,004 108,716 189,152 144,212 106,789 

  (0,074) (0,259) (0,304) (0,191) (0,119) (0,051) (0,253) (0,061) (0,065) (0,011) (0,035) (0,122) 

V→SI 15,448 14,340 23,895 9,415 16,653 32,576 23,601 22,920 22,166 19,063 30,993 32,701 

  (0,919) (0,929) (0,770) (0,990) (0,933) (0,688) (0,848) (0,871) (0,898) (0,935) (0,798) (0,780) 

SI→M2 40,556 76,042 78,904 35,968 46,082 52,941 26,111 39,538 55,186 73,521 55,356 61,961 

  (0,398) (0,090) (0,097) (0,585) (0,384) (0,346) (0,804) (0,560) (0,382) (0,261) (0,446) (0,398) 

V→IN 72,905 77,372 63,208 48,196 83,506 109,075 178,650 209,740 155,553 126,066 159,605 128,485 

  (0,134) (0,123) (0,248) (0,447) (0,138) (0,073) (0,015) (0,002) (0,023) (0,073) (0,033) (0,088) 

SI→IN 49,684 48,764 88,652 101,234 61,764 68,357 55,682 70,253 58,033 65,484 86,906 41,118 

  (0,347) (0,362) (0,092) (0,076) (0,283) (0,273) (0,459) (0,278) (0,417) (0,380) (0,240) (0,707) 

M2→IN 54,530 58,166 71,581 48,266 117,863 164,109 214,533 196,578 180,683 235,857 183,121 109,987 

  (0,301) (0,267) (0,193) (0,484) (0,052) (0,020) (0,010) (0,013) (0,019) (0,006) (0,019) (0,181) 

              

 

Note:  this table reports the Dufour et al. (2006) test results for forecast horizons (h) 1 month ahead to 36 months 

ahead at nominal level of significance 10% . Simulated p-values are in parentheses. Rejection of the null 

hypothesis of non-causality is in bold. V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term 

nominal interest rates,  inflation,  M2 growth rate, and industrial production growth rate, respectively. 
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Table 3a. Causality test results for the forecast horizons 1 to 36 months ahead in Germany 

 h 1 2 3 4 5 6 7 8 9 10 11 12 

              

V→IP 20,943 22,748 25,799 21,380 23,403 23,017 28,586 35,518 33,861 32,196 14,343 16,603 

  (0,251) (0,139) (0,088) (0,232) (0,178) (0,230) (0,086) (0,028) (0,090) (0,094) (0,693) (0,599) 
SI→IP 12,150 8,154 15,604 15,531 11,412 20,601 19,435 23,339 33,538 29,333 45,173 38,655 

  (0,470) (0,790) (0,324) (0,298) (0,554) (0,155) (0,202) (0,122) (0,021) (0,056) (0,013) (0,021) 

IN→IP 29,920 24,897 28,684 19,773 19,372 25,919 25,975 37,829 39,627 47,334 26,616 36,853 

  (0,034) (0,103) (0,060) (0,303) (0,318) (0,146) (0,163) (0,041) (0,030) (0,009) (0,202) (0,092) 

M2→IP 53,197 60,529 74,610 64,235 59,409 54,514 52,442 66,580 61,113 45,250 49,592 113,699 

  (0,001) (0,001) (0,001) (0,001) (0,001) (0,001) (0,002) (0,002) (0,004) (0,018) (0,016) (0,001) 

              

 h 13 14 15 16 17 18 19 20 21 22 23 24 

              

V→IP 19,096 17,720 17,171 23,051 26,680 39,289 43,760 37,152 45,102 54,399 55,486 35,271 
  (0,547) (0,609) (0,648) (0,397) (0,352) (0,127) (0,107) (0,185) (0,088) (0,056) (0,047) (0,262) 

SI→IP 25,805 23,403 27,360 25,752 17,531 35,641 23,088 15,565 23,740 22,867 29,349 35,257 

  (0,124) (0,185) (0,137) (0,174) (0,470) (0,073) (0,322) (0,562) (0,324) (0,354) (0,206) (0,144) 
IN→IP 44,224 28,659 30,213 36,950 36,087 29,571 21,976 11,039 13,559 21,996 24,646 22,589 

  (0,039) (0,232) (0,221) (0,116) (0,139) (0,294) (0,521) (0,940) (0,884) (0,620) (0,543) (0,631) 

M2→IP 134,278 120,453 124,705 129,345 149,234 181,370 206,442 164,436 195,839 278,081 336,938 302,350 

  (0,001) (0,001) (0,001) (0,001) (0,001) (0,001) (0,001) (0,001) (0,001) (0,001) (0,001) (0,001) 

              

 h 25 26 27 28 29 30 31 32 33 34 35 36 

              
V→IP 53,020 42,069 26,027 56,280 40,484 71,664 77,799 65,163 68,311 51,654 54,995 56,640 

  (0,109) (0,180) (0,567) (0,077) (0,305) (0,049) (0,039) (0,075) (0,071) (0,206) (0,225) (0,204) 

SI→IP 36,915 37,190 52,086 47,537 50,574 31,244 59,287 59,436 47,653 62,067 52,569 63,433 

  (0,127) (0,122) (0,039) (0,062) (0,060) (0,303) (0,030) (0,043) (0,101) (0,041) (0,092) (0,045) 

IN→IP 21,841 20,397 24,641 24,030 22,328 29,632 38,279 40,767 56,368 43,993 22,515 27,801 

  (0,691) (0,747) (0,661) (0,680) (0,710) (0,536) (0,378) (0,369) (0,200) (0,354) (0,815) (0,719) 
M2→IP 145,389 240,420 302,396 315,934 268,432 155,161 158,216 64,245 37,996 36,419 47,597 103,553 

  (0,002) (0,001) (0,001) (0,001) (0,001) (0,003) (0,001) (0,086) (0,431) (0,468) (0,290) (0,023) 

              

Note:  this table reports the Dufour et al. (2006) test results for forecast horizons (h) 1 month ahead to 36 months 

ahead at nominal level of significance 10% . Simulated p-values are in parentheses. Rejection of the null 

hypothesis of non-causality is in bold. V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term 

nominal interest rates,  inflation,  M2 growth rate, and industrial production growth rate, respectively. 
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Table 3b. Causality test results for the forecast horizons 1 to 36 months ahead in Germany 

 h 1 2 3 4 5 6 7 8 9 10 11 12 

              
M2→SI 33,256 37,967 54,205 43,504 33,543 39,165 29,182 34,169 22,125 24,482 24,114 27,337 

  (0,010) (0,009) (0,001) (0,003) (0,025) (0,013) (0,063) (0,048) (0,266) (0,238) (0,266) (0,177) 

V→M2 7,450 8,348 9,177 8,584 7,731 7,003 6,800 8,949 11,793 17,372 25,051 12,113 
  (0,936) (0,911) (0,890) (0,922) (0,932) (0,973) (0,959) (0,921) (0,839) (0,569) (0,278) (0,842) 

V→SI 16,902 15,164 14,772 15,212 19,140 17,896 19,603 29,764 25,122 25,764 25,228 22,049 

  (0,383) (0,469) (0,516) (0,489) (0,314) (0,389) (0,311) (0,083) (0,166) (0,212) (0,243) (0,378) 
SI→M2 15,512 12,549 12,668 14,449 11,630 10,442 12,667 11,038 17,339 14,495 14,255 11,072 

  (0,465) (0,704) (0,689) (0,616) (0,795) (0,849) (0,774) (0,858) (0,546) (0,719) (0,747) (0,904) 

IN→M2 7,971 8,493 11,149 7,755 7,455 9,707 8,669 8,006 9,012 7,496 18,649 18,127 
  (0,927) (0,908) (0,791) (0,940) (0,953) (0,874) (0,927) (0,947) (0,933) (0,969) (0,540) (0,577) 

              

 h 13 14 15 16 17 18 19 20 21 22 23 24 

              
M2→SI 29,286 31,381 43,083 53,009 63,372 60,802 60,126 68,506 48,298 43,583 84,478 85,776 

  (0,180) (0,151) (0,042) (0,015) (0,003) (0,008) (0,012) (0,004) (0,069) (0,110) (0,006) (0,005) 

V→M2 7,062 7,815 12,363 10,948 14,656 11,378 11,520 12,529 25,342 31,186 32,590 46,052 
  (0,978) (0,974) (0,872) (0,922) (0,809) (0,911) (0,922) (0,906) (0,484) (0,344) (0,346) (0,154) 

V→SI 37,599 48,435 56,864 68,786 69,042 39,597 35,506 39,972 35,981 30,691 27,270 18,168 
  (0,074) (0,022) (0,010) (0,005) (0,005) (0,093) (0,163) (0,113) (0,180) (0,315) (0,418) (0,741) 

SI→M2 14,850 10,671 11,301 9,456 11,818 16,093 18,920 14,834 12,395 10,147 13,259 16,366 

  (0,742) (0,920) (0,892) (0,957) (0,899) (0,791) (0,649) (0,825) (0,910) (0,962) (0,887) (0,827) 
IN→M2 17,124 17,599 11,787 11,319 10,791 18,445 18,262 17,768 20,404 27,309 34,470 34,253 

  (0,622) (0,668) (0,894) (0,923) (0,941) (0,690) (0,700) (0,752) (0,719) (0,467) (0,300) (0,307) 

              

 h 25 26 27 28 29 30 31 32 33 34 35 36 

              

M2→SI 51,064 54,226 55,119 104,101 89,300 101,766 93,029 96,520 82,264 51,914 98,197 112,874 

  (0,091) (0,090) (0,081) (0,004) (0,011) (0,007) (0,013) (0,016) (0,030) (0,196) (0,020) (0,014) 

V→M2 31,345 35,176 29,208 35,733 26,421 35,988 43,362 39,050 54,656 33,110 22,392 19,430 

  (0,448) (0,326) (0,497) (0,397) (0,623) (0,416) (0,306) (0,405) (0,197) (0,538) (0,820) (0,877) 

V→SI 25,903 19,368 23,736 19,413 24,725 22,986 27,882 28,894 22,854 29,326 36,275 22,403 
  (0,503) (0,709) (0,603) (0,770) (0,601) (0,693) (0,540) (0,570) (0,721) (0,579) (0,440) (0,809) 

SI→M2 10,470 12,643 12,401 11,676 13,610 10,890 16,564 19,663 23,198 40,248 34,778 18,317 

  (0,964) (0,933) (0,945) (0,943) (0,919) (0,974) (0,889) (0,837) (0,776) (0,425) (0,553) (0,905) 
IN→M2 13,045 15,469 13,101 16,871 15,037 15,798 18,906 30,093 36,004 30,029 17,358 34,662 

  (0,930) (0,872) (0,935) (0,888) (0,917) (0,923) (0,830) (0,603) (0,498) (0,661) (0,896) (0,594) 

              

Note:  this table reports the Dufour et al. (2006) test results for forecast horizons (h)  1 month ahead to 36 months 

ahead at nominal level of significance 10% . Simulated p-values are in parentheses. Rejection of the null 

hypothesis of non-causality is in bold. V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term 

nominal interest rates,  inflation,  M2 growth rate, and industrial production growth rate, respectively. 
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Table 4a. Causality test results for the forecast horizons 1 to 36 months ahead in Italy 

 h 1 2 3 4 5 6 7 8 9 10 11 12 

              
V→IP 16,647 11,978 9,909 11,557 11,439 13,343 13,988 16,390 18,757 22,007 26,589 32,281 

  (0,404) (0,621) (0,773) (0,708) (0,740) (0,601) (0,610) (0,495) (0,435) (0,307) (0,188) (0,122) 

SI→IP 34,236 20,990 24,568 25,741 23,397 20,417 18,296 14,496 20,735 20,421 20,953 15,350 
  (0,013) (0,175) (0,097) (0,089) (0,154) (0,257) (0,394) (0,596) (0,308) (0,383) (0,339) (0,612) 

IN→IP 10,392 12,086 14,226 11,948 15,898 18,827 21,599 27,091 22,018 22,009 25,214 32,567 

  (0,781) (0,628) (0,482) (0,665) (0,489) (0,364) (0,287) (0,143) (0,323) (0,347) (0,233) (0,144) 
M2→IP 12,183 15,270 19,887 18,774 11,893 10,436 8,381 8,741 7,469 20,309 28,753 23,517 

  (0,661) (0,420) (0,233) (0,302) (0,691) (0,814) (0,905) (0,912) (0,940) (0,370) (0,174) (0,312) 

              

 h 13 14 15 16 17 18 19 20 21 22 23 24 

              

V→IP 19,626 22,654 22,565 23,112 29,573 28,256 51,790 46,474 32,508 30,190 28,372 22,144 

  (0,460) (0,382) (0,392) (0,397) (0,276) (0,313) (0,057) (0,083) (0,264) (0,373) (0,422) (0,614) 
SI→IP 12,749 17,984 15,129 14,561 21,969 16,326 16,297 16,246 13,156 10,158 8,793 12,855 

  (0,784) (0,540) (0,709) (0,766) (0,446) (0,722) (0,728) (0,755) (0,877) (0,942) (0,962) (0,911) 

IN→IP 34,338 41,828 44,718 50,253 37,418 38,935 40,489 44,462 45,428 36,687 31,805 31,808 
  (0,119) (0,053) (0,045) (0,033) (0,107) (0,140) (0,113) (0,099) (0,107) (0,227) (0,331) (0,370) 

M2→IP 17,984 14,798 14,068 10,876 10,622 13,414 12,554 13,349 18,855 15,592 24,933 17,052 
  (0,527) (0,695) (0,740) (0,895) (0,896) (0,837) (0,841) (0,843) (0,673) (0,820) (0,503) (0,770) 

              

 h 25 26 27 28 29 30 31 32 33 34 35 36 

              
V→IP 20,291 39,639 41,313 46,754 39,346 46,765 45,688 33,871 20,925 18,347 15,924 18,860 

  (0,705) (0,293) (0,272) (0,214) (0,350) (0,253) (0,272) (0,512) (0,813) (0,870) (0,922) (0,890) 

SI→IP 17,593 19,297 17,048 18,594 19,289 18,415 24,757 26,269 44,743 53,702 51,273 41,436 
  (0,768) (0,754) (0,808) (0,776) (0,800) (0,824) (0,687) (0,659) (0,326) (0,251) (0,277) (0,429) 

IN→IP 41,679 52,233 43,049 35,156 46,997 48,592 31,316 31,078 18,822 30,538 19,017 29,228 

  (0,205) (0,133) (0,210) (0,363) (0,211) (0,227) (0,525) (0,552) (0,854) (0,624) (0,890) (0,700) 
M2→IP 32,996 23,021 22,042 16,574 16,580 16,091 17,391 24,219 45,328 72,217 18,074 24,370 

  (0,359) (0,676) (0,688) (0,825) (0,863) (0,894) (0,861) (0,740) (0,309) (0,102) (0,906) (0,766) 

              

Note:  this table reports the Dufour et al. (2006) test results for forecast horizons (h) 1 month ahead to 36 months 

ahead at nominal level of significance 10% . Simulated p-values are in parentheses. Rejection of the null 

hypothesis of non-causality is in bold. V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term 

nominal interest rates,  inflation,  M2 growth rate, and industrial production growth rate, respectively. 
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Table 4b. Causality test results for the forecast horizons 1 to 36 months ahead in Italy 

 h 1 2 3 4 5 6 7 8 9 10 11 12 

              

SI→V 14,376 15,604 17,522 12,576 10,641 10,280 8,320 8,642 12,695 15,567 15,156 14,441 

  (0,513) (0,469) (0,377) (0,670) (0,834) (0,837) (0,923) (0,920) (0,788) (0,607) (0,705) (0,747) 
V→IN 28,249 28,654 30,157 31,654 34,884 39,537 36,877 38,316 45,205 50,243 32,283 41,563 

  (0,047) (0,054) (0,053) (0,043) (0,028) (0,019) (0,024) (0,030) (0,007) (0,011) (0,110) (0,046) 

M2→IN 55,648 45,897 49,177 42,680 43,457 53,865 52,360 52,946 52,549 27,302 36,765 38,319 

  (0,001) (0,001) (0,002) (0,005) (0,007) (0,002) (0,003) (0,003) (0,007) (0,148) (0,072) (0,076) 

V→M2 13,808 16,162 16,696 23,244 16,675 19,087 20,131 22,348 21,850 31,151 26,661 12,298 

  (0,560) (0,424) (0,400) (0,179) (0,474) (0,397) (0,372) (0,297) (0,328) (0,126) (0,236) (0,827) 
SI→IN 24,021 28,077 23,995 22,931 23,050 29,701 24,275 34,274 23,353 20,079 12,349 16,581 

  (0,108) (0,056) (0,128) (0,155) (0,157) (0,065) (0,198) (0,047) (0,270) (0,421) (0,800) (0,623) 

              

 h 13 14 15 16 17 18 19 20 21 22 23 24 

              

SI→V 16,358 21,905 30,070 8,231 9,653 8,670 6,985 10,252 12,096 6,779 8,984 5,410 

  (0,674) (0,448) (0,222) (0,971) (0,933) (0,965) (0,984) (0,956) (0,917) (0,991) (0,980) (0,995) 
V→IN 29,251 43,150 76,238 77,026 75,669 43,668 58,670 94,643 85,593 89,001 68,749 79,577 

  (0,193) (0,051) (0,004) (0,004) (0,006) (0,099) (0,032) (0,004) (0,006) (0,004) (0,024) (0,018) 

M2→IN 26,210 28,156 26,542 32,921 46,828 36,088 35,057 43,348 44,678 65,694 60,200 48,416 
  (0,351) (0,298) (0,382) (0,241) (0,074) (0,193) (0,261) (0,125) (0,133) (0,040) (0,077) (0,157) 

V→M2 13,703 20,115 30,395 32,598 88,057 67,019 73,341 70,394 73,082 77,614 71,764 39,678 

  (0,783) (0,551) (0,231) (0,217) (0,003) (0,019) (0,009) (0,022) (0,016) (0,021) (0,026) (0,255) 
SI→IN 20,542 29,928 26,138 25,129 21,495 15,499 21,724 31,547 26,165 18,256 25,076 15,405 

  (0,478) (0,211) (0,332) (0,381) (0,538) (0,754) (0,569) (0,315) (0,486) (0,714) (0,526) (0,857) 

              

 h 25 26 27 28 29 30 31 32 33 34 35 36 

              

SI→V 11,055 25,926 19,340 30,538 43,252 43,123 29,421 25,370 23,448 54,360 42,018 51,200 

  (0,948) (0,614) (0,816) (0,516) (0,316) (0,347) (0,616) (0,700) (0,794) (0,282) (0,471) (0,341) 
V→IN 92,187 161,746 98,158 105,759 81,628 84,737 108,043 82,085 79,382 61,658 55,107 46,194 

  (0,013) (0,003) (0,011) (0,013) (0,041) (0,045) (0,021) (0,055) (0,078) (0,181) (0,239) (0,394) 

M2→IN 63,571 68,033 64,814 104,137 127,539 120,533 132,517 53,743 76,005 66,464 67,979 101,334 

  (0,097) (0,075) (0,085) (0,026) (0,010) (0,013) (0,012) (0,263) (0,105) (0,167) (0,187) (0,063) 

V→M2 75,921 86,542 74,262 161,164 137,440 69,829 58,979 61,404 97,723 148,357 120,401 52,478 

  (0,035) (0,014) (0,039) (0,003) (0,004) (0,101) (0,178) (0,166) (0,037) (0,006) (0,030) (0,341) 
SI→IN 10,431 17,241 21,927 21,669 21,527 48,681 42,869 48,014 44,893 37,474 65,315 70,069 

  (0,956) (0,844) (0,742) (0,722) (0,758) (0,263) (0,330) (0,284) (0,347) (0,488) (0,184) (0,134) 

              

Note:  this table reports the Dufour et al. (2006) test results for forecast horizons (h) 1 month ahead to 36 months 

ahead at nominal level of significance 10% . Simulated p-values are in parentheses. Rejection of the null 

hypothesis of non-causality is in bold. V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term 

nominal interest rates,  inflation,  M2 growth rate, and industrial production growth rate, respectively. 
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Panel 1a: Granger causality measures from 1 month-ahead to 36 months ahead between the volatility of stock 

returns, nominal short-term interest rates, inflation, money supply growth rates and industrial production growth 

rates in US 

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

C
a
u
s
a
lit

y
 M

e
a
s
u
re

Time Horizon

Causality from V to IP

 

 

Causality Measure

95% bootstrap Lower bound

95% bootstrap Upper bound

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

C
a
u
s
a
lit

y
 M

e
a
s
u
re

Time Horizon

Causality from M2 to IP

 

 

Causality Measure

95% bootstrap Lower bound

95% bootstrap Upper bound

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

C
a
u
s
a
lit

y
 M

e
a
s
u
re

Time Horizon

Causality from V to M2

 

 

Causality Measure

95% bootstrap Lower bound

95% bootstrap Upper bound

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

C
a
u
s
a
lit

y
 M

e
a
s
u
re

Time Horizon

Causality from IN to IP

 

 

Causality Measure

95% bootstrap Lower bound

95% bootstrap Upper bound

 

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

C
a
u
s
a
lit

y
 M

e
a
s
u
re

Time Horizon

Causality from V to SI

 

 

Causality Measure

95% bootstrap Lower bound

95% bootstrap Upper bound

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
a
u
s
a
lit

y
 M

e
a
s
u
re

Time Horizon

Causality from SI to IP

 

 

Causality Measure

95% bootstrap Lower bound

95% bootstrap Upper bound

 

 
Note: V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term nominal interest rates,  inflation,  M2 

growth rates, and industrial production growth rates, respectively. 
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Panel 1b: Granger causality measures from 1 month-ahead to 36 months ahead between the volatility of stock 

returns, nominal short-term interest rates, inflation, money supply growth rates and industrial production growth 

rates in US 
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Note: V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term nominal interest rates,  inflation,  M2 

growth rates, and industrial production growth rates, respectively. 
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Panel 2: Granger causality measures from 1 month-ahead to 36 months ahead between the volatility of stock 

returns, nominal short-term interest rates, inflation, money supply growth rates and industrial production growth 

rates in Germany 
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Note: V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term nominal interest rates,  inflation,  M2 

growth rates, and industrial production growth rates, respectively. 
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Panel 3a: Granger causality measures from 1 month-ahead to 36 months ahead between the volatility of stock 

returns, nominal short-term interest rates, inflation, money supply growth rates and industrial production growth 

rates in Japan. 
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Note: V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term nominal interest rates,  inflation,  M2 

growth rates, and industrial production growth rates, respectively. 
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Panel 3b: Granger causality measures from 1 month-ahead to 36 months ahead between the volatility of stock 

returns, nominal short-term interest rates, inflation, money supply growth rates and industrial production growth 

rates in Japan. 
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Note: V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term nominal interest rates,  inflation,  M2 

growth rates, and industrial production growth rates, respectively. 
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Panel 4a: Granger causality measures from 1 month-ahead to 36 months ahead between the volatility of stock 

returns, nominal short-term interest rates, inflation, money supply growth rates and industrial production growth 

rates in Italy. 
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Note: V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term nominal interest rates,  inflation,  M2 

growth rates, and industrial production growth rates, respectively. 



167 

 

Panel 4b: Granger causality measures from 1 month-ahead to 36 months ahead between the volatility of stock 

returns, nominal short-term interest rates, inflation, money supply growth rates and industrial production growth 

rates in Italy. 
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Note: V, SI, IN, M2 and IP stand for  volatility of stock returns, short-term nominal interest rates,  inflation,  M2 

growth rates, and industrial production growth rates, respectively. 
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Table 5. Measuring the forecasting ability of various monthly indicators in US  

      

h            

  RMSFE  Theil  Bias  Var  

  model AR  model AR  model AR  model AR  

 

1 

 

 0,010 0,009  0,623 0,616  0,020 0,000  0,874 0,885 

 

2  0,013 0,012  0,546 0,523  0,088 0,007  0,686 0,743  
3  0,018 0,016  0,567 0,549  0,138 0,018  0,505 0,543  
4  0,023 0,021  0,592 0,582  0,171 0,025  0,427 0,460  
5  0,028 0,025  0,609 0,610  0,199 0,031  0,383 0,419  
6  0,034 0,030  0,641 0,653  0,213 0,037  0,340 0,377  
7  0,040 0,036  0,670 0,691  0,227 0,042  0,305 0,346  
8  0,046 0,041  0,687 0,715  0,244 0,049  0,285 0,333  
9  0,052 0,045  0,701 0,736  0,270 0,061  0,267 0,321  
10  0,057 0,049  0,714 0,755  0,296 0,074  0,249 0,308  
11  0,062 0,053  0,723 0,769  0,326 0,088  0,234 0,298  
12  0,067 0,056  0,726 0,775  0,362 0,106  0,221 0,292  
13  0,070 0,059  0,728 0,776  0,405 0,129  0,207 0,286  
14  0,074 0,061  0,729 0,775  0,458 0,161  0,189 0,275  
15  0,077 0,063  0,727 0,771  0,504 0,189  0,178 0,270  
16  0,081 0,064  0,722 0,764  0,541 0,212  0,171 0,273  
17  0,084 0,066  0,716 0,756  0,566 0,225  0,167 0,276  
18  0,087 0,068  0,710 0,749  0,587 0,234  0,162 0,279  
19  0,089 0,068  0,700 0,735  0,609 0,241  0,155 0,279  
20  0,090 0,068  0,692 0,722  0,627 0,247  0,145 0,276  
21  0,092 0,068  0,682 0,707  0,651 0,255  0,134 0,271  
22  0,093 0,067  0,674 0,691  0,675 0,264  0,120 0,261  
23  0,093 0,066  0,664 0,670  0,702 0,277  0,105 0,250  
24  0,095 0,065  0,658 0,655  0,724 0,286  0,090 0,232  
25  0,096 0,064  0,654 0,643  0,743 0,296  0,074 0,211  
26  0,097 0,063  0,652 0,631  0,760 0,305  0,059 0,187  
27  0,098 0,062  0,649 0,619  0,778 0,316  0,044 0,158  
28  0,100 0,061  0,648 0,605  0,795 0,331  0,031 0,132  
29  0,101 0,060  0,645 0,591  0,811 0,346  0,022 0,111  
30  0,103 0,059  0,645 0,579  0,823 0,361  0,015 0,093  
31  0,105 0,059  0,646 0,569  0,830 0,375  0,010 0,076  
32  0,108 0,060  0,647 0,564  0,833 0,383  0,007 0,065  
33  0,111 0,060  0,649 0,561  0,837 0,393  0,005 0,056  
34  0,114 0,061  0,653 0,558  0,838 0,405  0,004 0,052  
35  0,118 0,062  0,656 0,556  0,841 0,421  0,003 0,051  
36  0,122 0,064  0,662 0,558  0,845 0,438  0,003 0,053  

               

Note: this table reports the root mean square forecast error (RMSFE), the Theil criterion (Theil), the bias (bias) and 

the variance (Var) components of the Theil mean square forecast error decomposition for thirty six forecasting 

horizons (h) based on  the forecasting model  
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where tt IPy  , and itx are the predictors, i.e., ttttit MSIINVx 2,,, . tttt SIINVIP ,,, and tM 2 stand for industrial production 

growth rates, volatility of stock returns, short-term nominal interest rates,  inflation, and  M2 growth rates respectively. The 
iterated approach is used to construct the h-step ahead forecasts of  monthly industrial production growth rates. 
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Table 6. Measuring the forecasting ability of various monthly indicators in Germany  

      

h            

  RMSFE  Theil  Bias  Var  

  model AR  model AR  model AR  model AR  

 
1  0,028 0,027  0,942 0,914  0,000 0,004  0,318 0,340  
2  0,030 0,027  0,829 0,738  0,000 0,006  0,586 0,694  
3  0,037 0,033  0,816 0,756  0,001 0,003  0,703 0,771  
4  0,043 0,041  0,808 0,796  0,003 0,002  0,711 0,717  
5  0,046 0,046  0,785 0,804  0,006 0,001  0,749 0,714  
6  0,051 0,051  0,775 0,812  0,010 0,000  0,766 0,718  
7  0,055 0,055  0,769 0,819  0,014 0,000  0,764 0,719  
8  0,058 0,059  0,754 0,815  0,022 0,001  0,776 0,731  
9  0,062 0,062  0,746 0,816  0,030 0,002  0,776 0,734  
10  0,065 0,065  0,739 0,817  0,042 0,005  0,767 0,734  
11  0,067 0,068  0,732 0,818  0,057 0,009  0,755 0,728  
12  0,070 0,071  0,726 0,817  0,074 0,015  0,741 0,724  
13  0,072 0,073  0,722 0,818  0,092 0,021  0,726 0,717  
14  0,074 0,075  0,717 0,820  0,114 0,030  0,704 0,701  
15  0,075 0,076  0,712 0,819  0,145 0,043  0,675 0,686  
16  0,075 0,077  0,707 0,819  0,177 0,057  0,644 0,666  
17  0,077 0,078  0,704 0,818  0,196 0,065  0,619 0,654  
18  0,079 0,079  0,702 0,814  0,200 0,065  0,595 0,648  
19  0,079 0,079  0,694 0,801  0,199 0,061  0,576 0,649  
20  0,080 0,078  0,686 0,787  0,196 0,057  0,553 0,652  
21  0,080 0,077  0,677 0,773  0,194 0,052  0,525 0,647  
22  0,079 0,075  0,666 0,753  0,192 0,047  0,496 0,645  
23  0,079 0,073  0,657 0,735  0,188 0,041  0,464 0,640  
24  0,079 0,072  0,650 0,719  0,183 0,036  0,432 0,631  
25  0,078 0,070  0,641 0,698  0,180 0,032  0,400 0,628  
26  0,079 0,069  0,634 0,679  0,177 0,028  0,372 0,627  
27  0,079 0,067  0,629 0,660  0,174 0,025  0,342 0,624  
28  0,079 0,065  0,621 0,635  0,172 0,022  0,313 0,628  
29  0,079 0,064  0,615 0,614  0,171 0,019  0,286 0,628  
30  0,080 0,062  0,611 0,595  0,169 0,017  0,258 0,623  
31  0,080 0,060  0,605 0,568  0,169 0,015  0,225 0,620  
32  0,081 0,058  0,603 0,549  0,168 0,013  0,198 0,612  
33  0,081 0,056  0,601 0,529  0,169 0,013  0,173 0,605  
34  0,083 0,056  0,602 0,519  0,172 0,013  0,161 0,608  
35  0,085 0,057  0,603 0,511  0,177 0,016  0,155 0,621  
36  0,087 0,057  0,606 0,504  0,185 0,020  0,148 0,632  
              

 
Note: this table reports the root mean square forecast error (RMSFE), the Theil criterion (Theil), the bias (bias) and 

the variance (Var) components of the Theil mean square forecast error decomposition for thirty six forecasting 

horizons (h) based on  the forecasting model  
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where tt IPy  , and itx are the predictors, i.e., ttttit MSIINVx 2,,, . tttt SIINVIP ,,, and tM 2 stand for industrial production 

growth rates, volatility of stock returns, short-term nominal interest rates,  inflation, and  M2 growth rates respectively. The 

iterated approach is used to construct the h-step ahead forecasts of  monthly industrial production growth rates. 
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Table 7. Measuring the forecasting ability of various monthly indicators in Japan  

      

h            

  RMSFE  Theil  Bias  Var  

  model AR  model AR  model AR  model AR  

 
1  0,034 0,030  0,608 0,524  0,003 0,003  0,751 0,778  
2  0,047 0,047  0,612 0,565  0,005 0,005  0,531 0,325  
3  0,064 0,067  0,698 0,636  0,002 0,004  0,351 0,133  
4  0,076 0,082  0,729 0,653  0,002 0,005  0,286 0,059  
5  0,086 0,097  0,748 0,673  0,002 0,008  0,268 0,028  
6  0,096 0,111  0,760 0,682  0,003 0,010  0,259 0,010  
7  0,104 0,126  0,774 0,697  0,004 0,013  0,250 0,002  
8  0,111 0,141  0,785 0,712  0,005 0,015  0,240 0,000  
9  0,119 0,155  0,798 0,720  0,004 0,015  0,234 0,003  
10  0,125 0,169  0,809 0,729  0,003 0,015  0,229 0,009  
11  0,130 0,181  0,811 0,731  0,002 0,015  0,225 0,019  
12  0,134 0,193  0,815 0,737  0,001 0,014  0,217 0,033  
13  0,136 0,203  0,816 0,738  0,000 0,013  0,207 0,052  
14  0,135 0,212  0,808 0,739  0,000 0,011  0,198 0,077  
15  0,134 0,222  0,799 0,744  0,001 0,009  0,183 0,108  
16  0,131 0,231  0,801 0,754  0,005 0,006  0,152 0,152  
17  0,132 0,242  0,802 0,763  0,008 0,005  0,138 0,183  
18  0,133 0,254  0,802 0,770  0,008 0,006  0,131 0,206  
19  0,133 0,266  0,797 0,776  0,007 0,007  0,126 0,229  
20  0,133 0,278  0,791 0,782  0,005 0,009  0,119 0,255  
21  0,131 0,289  0,780 0,788  0,004 0,011  0,113 0,281  
22  0,130 0,300  0,769 0,791  0,002 0,014  0,105 0,311  
23  0,128 0,310  0,758 0,796  0,001 0,016  0,096 0,339  
24  0,126 0,323  0,749 0,805  0,000 0,019  0,084 0,366  
25  0,122 0,336  0,733 0,815  0,000 0,021  0,072 0,393  
26  0,118 0,346  0,712 0,819  0,000 0,024  0,062 0,424  
27  0,116 0,357  0,699 0,825  0,002 0,026  0,050 0,454  
28  0,114 0,370  0,696 0,835  0,004 0,028  0,035 0,481  
29  0,112 0,383  0,690 0,846  0,006 0,031  0,021 0,509  
30  0,109 0,395  0,684 0,856  0,011 0,033  0,009 0,541  
31  0,105 0,409  0,672 0,869  0,017 0,035  0,001 0,576  
32  0,099 0,422  0,661 0,885  0,027 0,038  0,005 0,619  
33  0,092 0,436  0,637 0,907  0,044 0,040  0,043 0,663  
34  0,085 0,448  0,603 0,914  0,060 0,041  0,099 0,701  
35  0,081 0,461  0,574 0,918  0,072 0,042  0,148 0,721  
36  0,078 0,472  0,551 0,917  0,076 0,042  0,177 0,735  
              

 
Note: this table reports the root mean square forecast error (RMSFE), the Theil criterion (Theil), the bias (bias) and 

the variance (Var) components of the Theil mean square forecast error decomposition for thirty six forecasting 

horizons (h) based on  the forecasting model  
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where tt IPy  , and itx are the predictors, i.e., ttttit MSIINVx 2,,, . tttt SIINVIP ,,, and tM 2 stand for industrial production 

growth rates, volatility of stock returns, short-term nominal interest rates,  inflation, and  M2 growth rates respectively. The 
iterated approach is used to construct the h-step ahead forecasts of  monthly industrial production growth rates. 
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Table 8. Measuring the forecasting ability of various monthly indicators in Italy  

      

h            

  RMSFE  Theil  Bias  Var  

  model AR  model AR  model AR  model AR  

 
1  0,027 0,025  0,923 0,849  0,032 0,020  0,335 0,352  
2  0,030 0,024  0,835 0,629  0,054 0,044  0,547 0,625  
3  0,037 0,030  0,851 0,642  0,065 0,050  0,587 0,606  
4  0,043 0,037  0,844 0,672  0,076 0,054  0,570 0,537  
5  0,049 0,044  0,835 0,699  0,085 0,055  0,569 0,479  
6  0,055 0,052  0,836 0,740  0,089 0,053  0,555 0,437  
7  0,061 0,060  0,837 0,775  0,095 0,054  0,531 0,399  
8  0,067 0,066  0,838 0,792  0,100 0,057  0,509 0,387  
9  0,071 0,071  0,828 0,794  0,109 0,063  0,496 0,385  
10  0,075 0,076  0,817 0,804  0,121 0,069  0,485 0,378  
11  0,078 0,080  0,803 0,808  0,137 0,077  0,472 0,370  
12  0,079 0,082  0,782 0,807  0,160 0,090  0,463 0,364  
13  0,080 0,084  0,763 0,804  0,188 0,106  0,450 0,359  
14  0,080 0,086  0,738 0,798  0,223 0,124  0,442 0,352  
15  0,080 0,088  0,710 0,797  0,268 0,144  0,435 0,340  
16  0,079 0,089  0,683 0,791  0,318 0,167  0,429 0,334  
17  0,079 0,091  0,660 0,794  0,351 0,174  0,429 0,328  
18  0,080 0,094  0,649 0,801  0,356 0,170  0,417 0,321  
19  0,080 0,095  0,636 0,804  0,361 0,165  0,399 0,312  
20  0,078 0,094  0,621 0,801  0,362 0,158  0,373 0,300  
21  0,078 0,093  0,617 0,797  0,355 0,153  0,329 0,285  
22  0,077 0,091  0,609 0,792  0,351 0,149  0,291 0,272  
23  0,076 0,090  0,603 0,790  0,343 0,142  0,251 0,254  
24  0,075 0,088  0,599 0,785  0,335 0,137  0,210 0,237  
25  0,075 0,086  0,602 0,785  0,321 0,131  0,159 0,210  
26  0,074 0,084  0,605 0,781  0,307 0,126  0,116 0,187  
27  0,074 0,081  0,610 0,773  0,296 0,125  0,072 0,157  
28  0,074 0,078  0,622 0,772  0,278 0,120  0,039 0,128  
29  0,073 0,074  0,634 0,763  0,265 0,119  0,011 0,091  
30  0,074 0,070  0,653 0,759  0,247 0,117  0,000 0,060  
31  0,074 0,066  0,683 0,754  0,226 0,116  0,007 0,027  
32  0,075 0,063  0,723 0,770  0,206 0,112  0,036 0,004  
33  0,077 0,061  0,771 0,791  0,185 0,107  0,081 0,002  
34  0,080 0,059  0,821 0,805  0,167 0,106  0,124 0,016  
35  0,083 0,059  0,845 0,808  0,157 0,106  0,144 0,027  
36  0,086 0,057  0,871 0,791  0,150 0,113  0,164 0,043  
              

 
Note: this table reports the root mean square forecast error (RMSFE), the Theil criterion (Theil), the bias (bias) and 

the variance (Var) components of the Theil mean square forecast error decomposition for thirty six forecasting 

horizons (h) based on  the forecasting model  
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where tt IPy  , and itx are the predictors, i.e., ttttit MSIINVx 2,,, . tttt SIINVIP ,,, and tM 2 stand for industrial production 

growth rates, volatility of stock returns, short-term nominal interest rates,  inflation, and  M2 growth rates respectively. The 
iterated approach is used to construct the h-step ahead forecasts of  monthly industrial production growth rates. 
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Table  9.  Forecasting one-month ahead industrial production growth rates using information from the 

in-sample significant causality relations 

 Single indicator models 

 Volatility Benchmark MPI 

 rmsfe Theil bias Var rmsfe Theil bias Var rmsfe Theil bias Var 

             

     Simple model      

             

      US       
0.5T 0.0069 0.6972 0.0227 0.7826 0.0065 0.6293 0.000 0.3498 0.0071 0.6790 0.0435 0.6012 

0.7T 0.0078 0.7637 0.1059 0.8200 0.0070 0.6520 0.0100 0.3634 0.0080 0.7416 0.1415 0.6745 

     Germany      
0.5T 0.0152 0.9319 0.0000 0.9110 0.0151 0.6944 0.0004 0.3264 0.0152 0.9275 0.0001 0.9483 

0.7T 0.0162 0.9407 0.0005 0.9723 0.0177 0.7627 0.0001 0.2781 0.0162 0.9298 0.0001 0.9843 

      Japan       
0.5T 0.0252 0.9249 0.0013 0.8143 0.0268 0.6591 0.000 0.1146 0.0252 0.9213 0.000 0.7948 

0.7T 0.0301 0.9363 0.0022 0.8863 0.0336 0.7142 0.0005 0.1516 0.0302 0.9646 0.0002 0.9417 

      Italy       
0.5T 0.0153 0.9532 0.000 0.8830 0.0151 0.7022 0.0120 0.3425 0.0152 0.9287 0.0130 0.9059 

0.7T 0.0180 0.9511 0.0043 0.8924 0.0183 0.7146 0.0260 0.3226 0.0181 0.9468 0.0188 0.9341 

             

 Pooling of forecasts from estimation windows of different lengths 

             

      US       

0.5T 0.0068 0.6711 0.0305 0.6669 0.0069 0.9864 0.0608 0.9322 0.0076 0.6505 0.0856 0.3008 
0.7T 0.0079 0.7528 0.1113 0.6410 0.0074 0.9942 0.0000 1.0021 0.0086 0.7061 0.2212 0.3923 

     Germany      

0.5T 0.0152 0.9026 0.0000 0.8518 0.0152 0.9928 0.0040 0.9887 0.0156 0.8878 0.0000 0.6881 
0.7T 0.0162 0.9104 0.0001 0.9030 0.0162 0.9952 0.0062 0.9937 0.0164 0.9406 0.0013 0.8653 

      Japan       

0.5T 0.0261 0.8396 0.0033 0.5251 0.0247 0.9654 0.0000 0.9692 0.0264 0.8424 0.0005 0.4963 
0.7T 0.0309 0.8698 0.0012 0.6378 0.0298 0.9747 0.0002 0.9827 0.0312 0.8680 0.0024 0.6222 

      Italy       

0.5T 0.0154 0.8938 0.0004 0.7504 0.0151 0.9951 0.0020 0.9954 0.0152 0.9205 0.0064 0.8494 
0.7T 0.0181 0.9079 0.0004 0.8178 0.0179 0.9978 0.0068 0.9985 0.0180 0.9532 0.0092 0.9021 

 

 Bootstrap model 

             

      US       

0.5T 0.0068 0.7382 0.0037 0.8647 0.0070 0.9154 0.0626 0.7371 0.0070 0.6962 0.0307 0.7085 
0.7T 0.0076 0.8046 0.0582 0.8974 0.0074 0.9993 0.0009 1.0062 0.0079 0.7606 0.1146 0.7957 

     Germany      

0.5T 0.0152 0.9236 0.0000 0.9427 0.0152 0.9997 0.0041 0.9999 0.0153 0.9149 0.0005 0.8965 
0.7T 0.0162 0.9248 0.0000 0.9656 0.0162 0.9998 0.0064 1.0007 0.0162 0.9229 0.0000 0.9586 

      Japan       

0.5T 0.0250 0.9686 0.0001 0.9331 0.0249 0.9998 0.0000 1.0062 0.0251 0.9585 0.0000 0.8918 
0.7T 0.0301 0.9761 0.0008 0.9611 0.0300 0.9999 0.0003 1.0106 0.0301 0.9773 0.0001 0.9515 

      Italy       

0.5T 0.0152 0.9380 0.0091 0.9013 0.0151 0.9997 0.0020 1.0028 0.0152 0.9325 0.0104 0.8894 
0.7T 0.0181 0.9560 0.0144 0.9158 0.0179 0.9999 0.0068 1.0017 0.0180 0.9514 0.0154 0.9156 

             

 

Notes:  Single indicator models are estimated with stock return volatility (denoted as volatility), and monetary 

policy indicators (denoted as MPI). Money supply growth rates are used as MPI indicator for US, Germany and 

Japan, while short-term interest rates for Italy. The benchmark model is an AR of IP growth rates where lag order 

is selected based on the AIC criterion. Lag lengths used in the specification of the single indicator models are 

presented in (24):(27).  Estimation windows of lengths 0.5T and 0.7T are used (T is the length of the full sample). 

In the first panel, forecasts are based on a single estimation window. In the second panel, forecasts from estimation 

windows of different lengths are averaged. In the third panel,  the models are estimated using a large simulation 

technique.  
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Chapter 5 

 

Summary and Conclusions 

 

 Nowadays, Granger causality tests are standard tools to investigate causal 

relationships between financial and economic time series. Econometric advances in 

the field have shown that the causal relationship between two variables is not 

invariant to the integration and cointegration properties of the processes nor the 

relevant information that is available and included in the analysis. Hence, various 

notions of Granger non-causality are developed in the context of linear bivariate or 

multivariate stationary or nonstationary discrete time processes. Several of these 

causality concepts are reviewed in this thesis. Their extended concept is contrasted to 

the  standard Granger causality concept. A wide range of causality tests have been 

used to investigate the independence between the second moments of the time series. 

There is currently much interest in testing causality-in-variance by policy makers, 

portfolio managers, and academic researchers.    

 

This thesis consists of three chapters. Chapter 1 is directed towards testing 

Granger non-causality-in-variance. The size and power properties of general Granger 

causality-in-variance test procedures are evaluated by means of extensive Monte 

Carlo simulations.  In particular, we focus our attention on four testing procedures: 

the Likelihood Ratio (LR) tests in the framework of a GARCH-BEKK(1,1) model as 

employed by Comte and Lieberman (2000); Cheung and Ng‟s  sample cross-

correlation (hereafter denoted as CCF) based S  test (1996); the semiparametric CCF 

Q tests proposed by Hong (2001); and the Lagrange Multiplier (LM) test of  Hafner 

and Herwartz (2006).  

The  finite sample size of these tests is evaluated under alternative models 

regarding the degrees of persistence of the volatility  processes. The simulation of  

power is set up in a way which allows to analyze the performance of these tests for 
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bivariate processes where causality is present at distant time periods and others where 

causality is present at short time periods. 

 Our results show that Comte and Lieberman‟s LR as well as and Hafner and 

Herwartz‟s LM tests suffer from severe size distortions, while they demonstrate very 

low power, under long horizon causality alternatives. Both cross correlation tests are 

reasonably well sized. However, Hong‟s Q test demonstrates less sensitivity to 

arbitrary choices of the weighting scheme and alternative volatility dynamics, when 

compared to Cheung and Ng‟s S test.  Furthermore, cross correlations tests are 

favorably compared to LR and LM tests in terms of empirical power under a sequence 

of local alternatives.  

 Therefore, the finite-sample performance of the kernel Q tests is proved to be 

clearly superior to the other methods currently popular in the literature. Moreover, the 

kernel CCF approach is convenient in practice because it only requires estimating 

univariate parametric specifications for each separate time series. This approach 

applies a weighted scheme on the sample cross-correlations. However, efficient 

implementation of the method requires the proper selection of the amount of local 

averaging imposed to the cross-correlations. For a kernel based test procedure, this is 

controlled by the parameter denoted as the bandwidth. To date, how best to choose the 

bandwidth parameter used in the  calculations  of the kernel based CCF tests remains 

unclear. 

 Our simulation results demonstrate that the choice of (non-uniform) kernel 

function has no impact on the finite sample properties of the kernel type tests. On the 

other hand, arbitrary selections of the bandwidth parameter have a significant  effect 

on the power properties of the tests in finite samples. In particular, we find that the 

horizon of causality determines how power depends on the choice of bandwidth 

parameter. Choosing a small bandwidth may result in inferential biases since possible 

long horizon causalities will be ignored, while selecting a large bandwidth will come 

at cost of loosing empirical power under the presence of a short-horizon causality. 

Therefore, it is very useful for the researcher to have a data-driven bandwidth selector 

that estimates the appropriate amount of smoothing implemented on the sample cross-

correlations.  
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 Motivated by these findings, we introduce three simple methods for automatic 

bandwidth selection used in Hong‟s Q test calculations. The first approach detects  

optimal bandwidths those that maximize the power function of the Q tests. The 

second approach estimates optimal bandwidth as a change-point in the distributional 

dynamics of the Q tests. The third estimator selects the bandwidth which minimizes 

an estimate of the integrated squared error in the context of a kernel regression. A 

simulation study illustrates the gains from using these three bandwidth selection 

procedures.   

 We apply the test procedures to the classic question of whether changes in the 

aggregate stock return volatility anticipate changes of industrial production growth 

volatility in four economies, namely US, UK, Japan and Italy. Previous emprical 

evidence is inconclusive. Implementation of the LM, LR as well as the S and Q tests 

using an arbitrary lag and bandwidth selection respectively, yield mixed results. On 

the other hand, under optimal bandwidth selection the Q tests show that there is 

unidirectional causality from stock return volatility to industrial production growth 

volatility in US, UK and Japan at level 5%. Moreover, the large bandwidth estimates 

indicate the presence of long horizon causality relations. We find limited evidence of 

causality from output growth volatility to stock return volatility. 

 A simple efficient test procedure for second-order causation that does not 

impose an explicit functional form on the evolution of the second order dynamics has 

yet to be established. Chapter 2 adresses the issue of testing Granger non-causality-in-

variance in an unconditional context.  A modified general concept of Granger second-

order non-causality for a bivariate covariance stationary process is introduced, which 

in contrast to the standard causality testing frameworks does not require the 

estimation of a parametric specification for the second moment dynamics of the 

processes. 

 Unidirectional second-order noncausality between two variables is 

characterized in terms of the cross-correlation function between the absolute values of 

innovations obtained from ARMA processes. Therefore, a simple cross-correlation 

based test is all that is required to test non-causality between two stationary time 

series at a fixed lag order. In particular, to investigate the relationship between the 

second moments of two stochastic processes under consideration, our method  uses 
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the sample cross-correlation at a specific lag between the absolute values of the 

residuals resulting from fitting univariate ARMA specifications to each separate 

series. Using some assumptions, under the  null hypothesis that the cross- correlation 

at a particular lag  k is zero, we show that the sample cross-cross-correlation at lag 

order k between  these volatility proxies appropriately  rescaled converges 

asymptotically to the standard normal distribution.  

  Our test of second-order non-causality can only be performed for a specific 

lag order at a time.  An approach for performing joint hypothesis testing is the 

implementation of our  test sequentially at multiple lag time periods. Bonferroni -type 

bounds are employed to control the overall test size. Bonferroni size adjustments are 

known to yield conservative test procedures. Nevertheless, the use of the adjusted 

Bonferroni inequality based comparison procedure developed by Rom (1990)  ensures 

high finite sample power.  

 The finite sample size and power of our test relative to the standard 

causality tests previously reviewed are investigated by means of Monte Carlo 

simulations.  It is shown that our test has excellent finite sample properties under a 

series of local alternatives. In particular, simulation evidence suggests that out test has 

practical performance second to none in the existing literature because  its enhanced 

size and power properties are robust with respect to the implemented lag truncation 

while it holds for different sample sizes. An empirical illustration on the causal 

relationship between stock return volatility and output growth volatility highlights its 

practical importance. 

 

 Chapter 3 adresses the issue whether there is multiple long horizon causation 

from stock return volatility to output growth in terms of causal chains involving 

monetary policy indicators. In particular, we are interested in investigating for the 

precise prediction horizon at which fluctuations in the volatility of the agreggate stock 

returns foretell  changes in real activity growth patterns within  a framework of linear 

vector autoregressive discrete time processes, where monetary policy indicators enter 

the multivariate system as auxiliary variables.  

 

 Multiple horizon non-causality is tested by implementing the test procedure 

proposed by Dufour, Pelletier and Renault (2006) on data from four economies, 

namely US, Germany, Japan and Italy.  Their test procedure requires the estimation 
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by least squares of long horizon parametric autoregressions. Their approach is 

convenient because highly nonlinear restrictions on the coefficients of the vector 

autoregressions are imposed under the null. By estimating these parametric 

formulations, one has only to use a standard Wald test to evaluate simple linear zero 

coefficient restrictions on the parameters of these vector  autoregressions.  A Monte 

Carlo method to calculate the p-value of the Wald test ensures a satisfactory finite 

sample performance of the test procedure. 

 Our results reveal a large number of highly significant direct and indirect 

causalities from stock return volatility to output growth at both short and long 

horizons in all four economies; the latter occur through the nominal short-term 

interest rates in US, and  Germany; the money supply growth rates in Japan; and the 

inflation in Italy. Our evidence also confirms earlier findings in the literature that 

monetary policy fares well at predicting changes of the real activity at both short and 

long term. The degree of forecast improvement that arise from each causality relation 

is also considered using the causality measure proposed by Dufour and Taamouti 

(2010). Causalities of significant size from stock return volatility to output growth are 

found in Germany, Japan and Italy, while in US evidence suggests significant indirect 

long horizon causation through the money supply growth rates.  A pseudo out-of-

sample forecasting evaluation also shows how conditioning on such information 

yields better output growth predictions at both short and long forecast periods. 
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