
University of Piraeus

Department of Digital Systems

Systems Security Laboratory

Master Thesis

Attacks in Wireless Sensor Networks

Christina Skouloudi

September 2014

1

Supervisor

Sokratis Katsikas, Professor

Co-Supervisor

Eleni Darra, PhD Candidate

Examination Board

Sokratis K. Katsikas, Professor

University of Piraeus

Konstantinos Lambrinoudakis, Associate Professor

University of Piraeus

Christos Xenakis, Assistant Professor

University of Piraeus

2

Table of Contents

Abstract .. 6

Acknowledgements .. 7

Introduction to Wireless Sensor Networks .. 8

1.1 Definition .. 8

1.2 Benefits, Constrains and Applications of WSNs .. 10

1.3 Node architecture .. 11

1.3.1 Low-power embedded processor ... 11

1.3.2 Memory/storage ... 12

1.3.3 Radio transceiver ... 12

1.3.4 Sensors ... 12

1.3.5 Geopositioning system ... 12

1.3.6 Power source .. 13

Security in Wireless Sensor Networks ... 14

2.1 Security Goals for WSN .. 14

2.2 Security Attacks in WSN .. 14

2.2.1 Physical Layer Attacks .. 15

2.2.2 MAC Layer Attacks ... 16

2.2.3 Network Layer Attacks .. 18

2.2.4 Transport Layer Attacks .. 22

2.2.5 Application Layer Attacks ... 22

2.3 Security Mechanisms for WSN ... 24

2.3.1 Intrusion Detection Systems .. 24

Experiment : Attacks in WSN.. 26

3.1 Simulation of WSN Attacks .. 26

3.1.1 The NS-2 Simulator ... 26

3.2 Simulation Parameters... 29

3.2.1 Routing Protocol .. 29

3.2.2 Topology .. 32

3.2.3 Performance Metrics .. 33

3.2.4 Malicious Node in Routing Protocol ... 35

3.3 Simulation Scenarios ... 36

3.3.1 Normal Traffic Scenario .. 36

3

3.3.2 Blackhole Attack Scenario ... 38

3.3.3 Rushing Attack Scenario.. 39

3.3.4 Flooding Attack Scenario .. 39

3.3.5 Selective Forwarding Attack Scenario... 40

Experiment Results .. 42

4.1 Comparative Analysis ... 42

4.1.1 Packet Delivery Ratio .. 42

4.1.2 Packet Drop Ratio .. 44

4.1.3 Throughput ... 45

4.1.4 Average End to End Delay .. 46

4.1.5 Energy Consumption ... 46

IDS Effectiveness Evaluations ... 48

Conclusions .. 53

References .. 54

Appendix .. 62

Normal traffic Code ... 62

Blackhole Attack Code .. 69

Rushing Attack Code ... 77

Flooding Attack Code .. 85

Selective Forwarding Attack Code .. 94

Generic Attack Code .. 102

4

Table of Figures

Figure 1: WSN Node architecture.. 11

Figure 2: Simulation flow .. 27

Figure 3: Capture of our scenario simulation in NAM .. 38

Figure 4: Packet Delivery Ratio ... 42

Figure 5: Packet Delivery .. 43

Figure 6: Packet Drop Ratio .. 44

Figure 7: Packet Loss ... 44

Figure 8: Average Throughput... 45

Figure 9: Average End to End Delay ... 46

Figure 10: Average energy consumption in Joules .. 46

Figure 11: Energy consumption of each node for all scenarios 47

file://aris/ouzouev$/Miss%20Narbi/Dropbox/Thesis/AttacksWSNv.1.0.docx%23_Toc387602001

5

To Christina, Eftychia and Yianna

for their support and togetherness.

To Eleftheria

for helping me know myself.

6

Abstract

Wireless Sensor Networks have been studied in depth for several decades and entire

books are devoted to the subject. Their main role is to provide bridges between the

virtual world of information technology and the real physical world. They represent a

fundamental paradigm shift from traditional inter-human personal communications to

autonomous inter-device communications. They promise unprecedented new abilities

to observe and understand large-scale, real-world phenomena at a fine spatio-temporal

resolution. As a result, Wireless Sensor Networks also have the potential to engender

new breakthrough scientific advances.

In this paper, our objective is to simulate and analyze the performance of routing

protocols for Wireless Sensor Networks using a scenario based experiment in order to

observe the network’s behavior under all the simulated attacks. Moreover, it is

examined through the simulation results if there is a pattern in all these attacks that

could be used to detect or prevent a set of attacks.

Keywords: security, AODV, protocol, routing, mobile ad hoc network, Ad hoc,

attack, ns2 simulator, metrics, blackhole, flooding, rushing, selective forwarding,

packet delivery ratio, network throughput, average end to end delay, packet loss.

7

Acknowledgements

Apart from the efforts of myself, the success of any project depends largely on the

encouragement and guidelines of many others. I take this opportunity to express my

gratitude to the people who contributed in the successful completion of this extensive

research.

I would like to show my greatest appreciation to Prof. Sokratis Katsikas who has the

attitude and the substance of a genius. He continually and convincingly conveyed a

spirit of adventure in regard to research and scholarship, and an excitement in

teaching. He inspired me to become a wiser person.

I also want to thank Eleni Darra who introduced me to wireless sensor network

attacks and provided me her support and continuous guidance on my master’s thesis.

Finally, I thank my family for being always there for me. Without their economic

support, their belief in me and their caring love I wouldn’t be able to acquire the

academic knowledge I have so far.

8

Chapter 1

Introduction to Wireless Sensor Networks

1.1 Definition

Wireless Sensor Networks (WSN) consist of a number of sensors which monitor

physical or environmental conditions, such as temperature, sound, pressure, etc. and

to cooperatively pass their data through the network to a main location. The “modern”

networks are bi-directional, also enabling control of sensor activity. Common

functions of WSNs are including broadcast and multicast, routing, forwarding and

route maintenance. The development of wireless sensor networks was motivated by

military applications such as battlefield surveillance. Nowadays, such networks are

used in many industrial and consumer applications, such as industrial process

monitoring and control, machine health monitoring, and so on. WSNs are still

vulnerable to many types of threats [1,2].

The WSN is built of "nodes" – from a few to several hundreds or even thousands,

where each node is connected to one (or sometimes several) sensor. Each such sensor

network node has typically several parts: a) a radio transceiver with an internal

antenna or connection to an external antenna, b) a microcontroller, c) an electronic

circuit for interfacing with the sensors and d) an energy source, usually a battery or an

embedded form of energy harvesting. A sensor node might vary in size from that of a

shoebox down to the size of a grain of dust, although functioning "motes" of genuine

microscopic dimensions have yet to be created. The cost of sensor nodes is similarly

variable, ranging from a few to hundreds of dollars, depending on the complexity of

the individual sensor nodes. Size and cost constraints on sensor nodes result in

corresponding constraints on resources such as energy, memory, computational speed

and communication’s bandwidth. The topology of the WSNs can vary from a simple

star network to an advanced multi-hop wireless mesh network. The propagation

technique between the hops of the network can be routing or flooding [2].

If a centralized architecture is used in a sensor network and the central node fails, then

the entire network will collapse, however the reliability of the sensor network can be

9

increased by using distributed control architecture. Distributed control is used in

WSNs for the following reasons:

 Sensor nodes are prone to failure

 For better collection of data

 To provide nodes with backup in case of failure of the central node

There is also no centralized body to allocate the resources and they have to be self-

organized [2]. Depending on the application, WSN devices can be networked together

in a number of ways. In basic data-gathering applications, for instance, there is a node

referred to as the sink to which all data from source sensor nodes are directed. The

simplest logical topology for communication of gathered data is a single-hop star

topology, where all nodes send their data directly to the sink. In networks with lower

transmit power settings or where nodes are deployed over a large area, a multi-hop

tree structure may be used for data-gathering. In this case, some nodes may act both

as sources themselves, as well as routers for other sources.

One interesting characteristic of wireless sensor networks is that they often allow for

the possibility of intelligent in-network processing. Intermediate nodes along the path

do not act merely as packet forwarders, but may also examine and process the content

of the packets going through them. This is often done for the purpose of data

compression or for signal processing to improve the quality of the collected

information.

The main characteristics of a WSN include:

 Power consumption constraints for nodes using batteries or energy harvesting

 Ability to cope with node failures

 Mobility of nodes

 Communication failures

 Heterogeneity of nodes

 Scalability to large scale of deployment

 Ability to withstand harsh environmental conditions

 Ease of use

 Cross-layer design

10

1.2 Benefits, Constrains and Applications of WSNs

The advantages of a WSN are that it can be deployed easily, its structure is

inexpensive as well as it can access and measure unreachable events. Also, it is a self-

organized and self-managed network without the continuous need of a centralized

management. The absence of wires accommodates its mobile movement too.

However, WSNs have some design constrains such as their limited battery life, the

limited instruction set and a very strict energy management. The fact of the

unattended nodes also increases the challenge that a WSN faces.

According to [1], WSNs are vulnerable to many kinds of attacks not only because of

the previous constrains but also because of insider attacks, reengineering,

compromising and replicating of nodes, inapplicable/unusable traditional security

techniques due to limited devices/resources, unreliable communications, deploy in

open and hostile environments and interaction with physical environment.

In general, there are two kinds of applications for WSNs: monitoring and tracking.

Therefore, some of the most common applications of these networks are:

 Military applications

 Environmental monitoring

 Health applications

 Home applications

 Smart cities

 Commercial applications

 Infrastructure protection

 Disaster detection and recovery

 Agriculture

 Law enforcement

 Transportation

 Space discovery

 Underground Mining

 Traffic Control

 Pipeline Monitoring

11

Sensors

Processor Memory GPS

Radio

transceiver

Power Source

1.3 Node architecture

The architecture of a wireless sensor node, as shown in Figure 1, is descripted in

detail in [2]. .

1.3.1 Low-power embedded processor

The computational tasks on a WSN device include the processing of both locally

sensed information as well as information communicated by other sensors. At present,

primarily due to economic constraints, the embedded processors are often

significantly constrained in terms of computational power (e.g., many of the devices

used currently in research and development have only an eight-bit 16-MHz

processor). Due to the constraints of such processors, devices typically run specialized

component-based embedded operating systems, such as TinyOS. However, it should

be kept in mind that a sensor network may be heterogeneous and includes at least

some nodes with significantly greater computational power.

Moreover, future WSN devices may possess extremely powerful embedded

processors. They will also incorporate advanced low-power design techniques, such

as efficient sleep modes and dynamic voltage scaling to provide significant energy

savings.

Figure 1: WSN Node architecture

12

1.3.2 Memory/storage

Storage in the form of random access and read-only memory includes both program

memory (from which instructions are executed by the processor), and data memory

(for storing raw and processed sensor measurements and other local information). The

quantities of memory and storage on board a WSN device are often limited primarily

by economic considerations, and are also likely to improve over time.

1.3.3 Radio transceiver

WSN devices include a low-rate, short-range wireless radio (10–100 kbps, <100 m).

While currently quite limited in capability too, these radios are likely to improve in

sophistication over time – including improvements in cost, spectral efficiency,

tunability, and immunity to noise, fading, and interference. Radio communication is

often the most power-intensive operation in a WSN device, and hence the radio must

incorporate energy-efficient sleep and wake-up modes.

1.3.4 Sensors

Due to bandwidth and power constraints, WSN devices primarily support only low-

data-rate sensing. Many applications call for multi-modal sensing, so each device may

have several sensors on board. The specific sensors used are highly dependent on the

application; for example, they may include temperature sensors, light sensors,

humidity sensors, pressure sensors, accelerometers, magnetometers, chemical sensors,

acoustic sensors, or even low-resolution imagers.

1.3.5 Geopositioning system

In many WSN applications, it is important for all sensor measurements to be location

stamped. The simplest way to obtain positioning is to pre-configure sensor locations

at deployment, but this may only be feasible in limited deployments. Particularly for

outdoor operations, when the network is deployed in an ad hoc manner, such

information is most easily obtained via satellite-based GPS. However, even in such

applications, only a fraction of the nodes may be equipped with GPS capability, due

to environmental and economic constraints. In this case, other nodes must obtain their

locations indirectly through network localization algorithms.

13

1.3.6 Power source

For flexible deployment the WSN device is likely to be battery powered (e.g. using

LiMH AA batteries). While some of the nodes may be wired to a continuous power

source in some applications, and energy harvesting techniques may provide a degree

of energy renewal in some cases, the finite battery energy is likely to be the most

critical resource bottleneck in most WSN applications.

Depending on the application, WSN devices can be networked together in a number

of ways. In basic data-gathering applications, for instance, there is a node referred to

as the sink to which all data from source sensor nodes are directed. The simplest

logical topology for communication of gathered data is a single-hop star topology,

where all nodes send their data directly to the sink. In networks with lower transmit

power settings or where nodes are deployed over a large area, a multi-hop tree

structure may be used for data-gathering. In this case, some nodes may act both as

sources themselves, as well as routers for other sources [2].

14

Chapter 2

2 Security in Wireless Sensor Networks

The nature of large, ad-hoc, wireless sensor networks presents significant challenges

in designing security schemes. A wireless sensor network is a special network which

has many constraint compared to a traditional computer network because of its

wireless medium, ad-hoc deployment, hostile environment, resource scarcity and

immense scale, unreliable communication and the unattended operation [3]. There are

many security services on WSNs; but some of their commons are including

encryption and data link layer authentication, multi-path routing, identity verification,

bidirectional link verification and authenticated broadcasts.

2.1 Security Goals for WSN

As the sensor networks can also operate in an ad-hoc manner the security goals cover

both those of the traditional networks and goals suited to the unique constraints of ad-

hoc sensor networks. The security goals are classified as primary and secondary. The

primary goals are known as standard security goals such as Confidentiality, Integrity,

Authentication and Availability (CIAA). The secondary goals are Data Freshness,

Self-Organization, Time Synchronization and Secure Localization [3].

2.2 Security Attacks in WSN

A variety of attacks is possible in Wireless Sensor Network. These security attacks

can be classified according to different criteria, such as the domain of the attackers,

the OSI layer the attacks are applied [4,10], the techniques used in attacks or how the

attacks are initially launched [32]. These security attacks in WSN and all other

networks can be roughly classified by the following criteria: passive or active, internal

or external, different protocol layer, stealthy or non-stealthy, cryptography or non-

cryptography related. Here, attacks classification follows the structure of the OSI

layer taxonomy.

15

2.2.1 Physical Layer Attacks

2.2.1.1 Physical attack

Unlike many other attacks, physical attacks destroy sensors permanently, so the losses

are irreversible. For instance, attackers can extract cryptographic secrets, tamper with

the associated circuitry, modify programming in the sensors, or replace them with

malicious sensors under the control of the attacker.

2.2.1.2 Jamming

Jamming is the type of attack which interferes with the radio frequencies used by

network nodes. It is an attack on physical layer of wireless network. It interferes with

the radio frequencies being used by the nodes of a network. An attacker sequentially

transmits over the wireless network refusing the underlying MAC protocol. Jamming

can interrupt the network impressive if a single frequency is used throughout the

network. In addition, jamming can cause excessive energy consumption at a node by

injecting impertinent packets. The receiver’s nodes will as well consume energy by

getting those packets [5].

2.2.1.3 Tampering

Another physical layer attack is tampering. Given physical access to a node, an

attacker can extract sensitive information such as cryptographic keys or other data on

the node. The node may also be altered or replaced to create a compromised node

which the attacker controls. One defense to this attack involves tamper-proofing the

node’s physical package. However, it is usually assumed that the sensor nodes are not

tamper-proofed in WSNs due to the additional cost. This indicates that a security

scheme must consider [5].

2.2.1.4 Radio interference

In Radio interference attack the adversary either produces large amounts of

interference intermittently or persistently. To handle this issue, use of symmetric key

algorithms in which the disclosure of the keys is delayed by some time interval [11].

2.2.1.5 False Node

A false node involves the addition of a node by an adversary and causes the injection

of malicious data. An intruder might add a node to the system that feeds false data or

prevents the passage of true data. Insertion of malicious node is one of the most

16

dangerous attacks that can occur. Malicious code injected in the network could spread

to all nodes, potentially destroying the whole network, or even worse, taking over the

network on behalf of an adversary [3].

2.2.2 MAC Layer Attacks

2.2.2.1 Monitor and Eavesdropping

This is the most common attack to privacy. By snooping to the data, the adversary can

easily discover the communication contents. When the traffic conveys the control

information about the sensor network configuration, which contains potentially more

detailed information than accessible through the location server, the eavesdropping

can act effectively against the privacy protection [3].

2.2.2.2 Man-in-the-Middle Attack

The man-in-the-middle attack is a form of active eavesdropping in which the attacker

makes independent connections with the victims and relays messages between them,

making them believe that they are talking directly to each other over a private

connection. The attacker will be able to intercept all messages exchanging between

the two victims and inject new ones [5].

2.2.2.3 Traffic Analysis

Even when the messages transferred are encrypted, it still leaves a high possibility

analysis of the communication patterns. Sensor activities can potentially reveal

enough information to enable an adversary to cause malicious harm to the sensor

network [3].

2.2.2.4 Camouflage Adversaries

One can insert a node or compromise the nodes to hide in the sensor network. After

that these nodes can copy as a normal node to attract the packets, then misroute the

packets, conducting the privacy analysis [3].

2.2.2.5 Location disclosure attack

An attacker reveals information regarding the location of nodes or the structure of the

network. It gathers the node location information, such as a route map, and then plans

further attack scenarios. Traffic analysis, one of the subtlest security attacks against

WSN, is unsolved. Adversaries try to figure out the identities of communication

17

parties and analyze traffic to learn the network traffic pattern and track changes in the

traffic pattern. The leakage of such information is devastating in security-sensitive

scenarios [36].

2.2.2.6 Node Outage

Node outage is the situation that occurs when a node stops its function. In the case

where a cluster leader stops functioning, the sensor network protocols should be

robust enough to mitigate the effects of node outages by providing an alternate route

[3].

2.2.2.7 Node Malfunction

In this type of attack the compromised nodes behave normally but report false

readings to lead to an incorrect decision. The malfunctioning node will generate

inaccurate data that will expose the integrity of sensor network especially if it is a

data-aggregating node such as a cluster leader [3].

2.2.2.8 Collision

This is a DoS attack, where a node induces a collision in some small part of a

transmitted packet. The packet will then fail the checksum check, because of the

changes brought on by the collision, and the receiver node will then ask for a

retransmission of the packet [4].

2.2.2.9 Node Subversion

Capture of a node may reveal its information including disclosure of cryptographic

keys and thus compromise the whole sensor network. A particular sensor might be

captured, and information (key) stored on it might be obtained by an adversary [3].

2.2.2.10 Misdirection

In this attack a malicious node, that is part of a route, can instead of dropping packets,

quite simply send them on a different path where there does not exist a route to the

destination. The malicious node can do this for certain packets, or all packets [4].

2.2.2.11 Passive Information Gathering

An adversary with powerful resources can collect information from the sensor

networks if it is not encrypted. An intruder with an appropriately powerful receiver

and well-designed antenna can easily pick off the data stream. Interception of the

messages, containing the physical locations of sensor nodes, allows an attacker to

18

locate the nodes and destroy them. Besides the locations of sensor nodes, an adversary

can observe the application specific content of messages including message IDs,

timestamps and other fields. To minimize the threats of passive information gathering,

strong encryption techniques needs to be used [3].

2.2.2.12 Path based DoS

An adversary overwhelms sensor nodes by flooding a multi-hope end to end

communication path with either replayed or injected false message to injected false

message to waste secure energy resources [3].

2.2.2.13 Clone Attack

Clone attack also known as node replication attack, is a severe attack in WSNs. In this

attack, an adversary (WSN Adversary can be person or another entity that only

monitors the communication channels which threatens the confidentiality of data)

captures a few of nodes, replicates them and then deploys arbitrary number of replicas

throughout the network. A node replicated in this approach can severely disrupt a

sensor network’s performance. Packets can be corrupted or even misrouted by

inserting the replicated nodes at specific network points. The attacker could easily

manipulate a specific segment of the network, perhaps by disconnecting it altogether

[3]. If an attacker can gain physical access to the entire network he can copy

cryptographic keys to the replicated sensor nodes. In clone attack, an adversary may

capture a sensor node and copy the cryptographic information to another node known

as cloned node. Then this cloned sensor node can be installed to capture the

information of the network. The adversary can also inject false information, or

manipulate the information passing through cloned nodes [5].

2.2.2.14 Resource consumption attack

This is also known as the sleep deprivation attack. An attacker or a compromised

node can attempt to consume battery life by requesting excessive route discovery, or

by forwarding unnecessary packets to the victim node [3,10].

2.2.3 Network Layer Attacks

The majority of these attacks take place at routing phase, routing discovery phase or

routing maintenance phase.

19

2.2.3.1 Sinkhole Attack

In Sinkhole attack, attacker attracts all the traffic from a particular area to a

compromise node by advertising a zero cost route through itself. This is specified as a

DOS attack. [4].

2.2.3.2 Sybil Attack

In Sybil attack, a malicious node can represent multiple identities to the network. The

Sybil attack targets fault tolerant schemes such as distributed storage, disparity,

multipath routing and topology maintenance. This is done by having a malicious node

present multiple identities to the network. This attack is especially confusing to

geographic routing protocols as the adversary appears to be in multiple locations at

once [4].

2.2.3.3 Wormhole Attack

The simplest form of this attack is an attacker sits in between the two nodes and

forward in between them. A malicious node uses a path outside the network to route

messages to another compromised node at some other location [24]. In wormhole

attack is not compromised the integrity and authenticity of the communication, and

any cryptographic quantity remains secret.

2.2.3.4 Rushing attack

Two colluded attackers use the tunnel procedure to form a wormhole. If a fast

transmission path (e.g. a dedicated channel shared by attackers) exists between the

two ends of the wormhole, the tunneled packets can propagate faster than those

through a normal multi-hop route. This forms the rushing attack. The rushing attack

can act as an effective denial of-service attack against all currently proposed on-

demand WSN routing protocols, including protocols that were designed to be secure,

such as ARAN and Ariadne [36].

2.2.3.5 Selective Forwarding

In this type of attack, attacker refuses to forward packets or drop them and act as a

black hole. A malicious node can selectively drop only certain packets. Especially

effective if combined with an attack that gathers much traffic via the node. In sensor

networks it is assumed that nodes faithfully forward received messages. But some

compromised node might refuse to forward packets, however neighbors might start

using another route. Even though the protocol is completely resistant to the sinkholes,

20

wormholes, and the Sybil attack, a compromised node has a significant probability of

including itself on a data flow to launch this type of attack if it is strategically located

near the source or a base station [4].

2.2.3.6 Misdirection

Changing or replaying the routing information can cause the misdirection attack. In

this attack a malicious node, that is part of a route, can instead of dropping packets,

quite simply send them on a different path where there does not exist a route to the

destination [4,32]. Misdirection attack is also considered as routing layer attack.

2.2.3.7 Hello Flood Attack

In Hello Flood Attack, attacker with high radio range sends more Hello packet to

announce themselves to large number of nodes in the large network persuading

themselves as neighbor [7].

2.2.3.8 Blackhole Attack

The attacker node absorbs all the messages resulting loss of communication between

nodes and therefore it can cause denial of service since it is dropping all the received

packets. Alternately, the attacker node can monitor and analyze the traffic to find

activity patterns of each node. Sometimes the black hole becomes the first step of a

man-in-the-middle attack.

2.2.3.9 Spoofing and Altering Routing Attack

In this attack, a malicious node may be able to create routing loops, wormholes, black

holes, partition the network attract or repel network traffic, extend or shorten source

routes, generate false error messages, increase end-to-end latency and etc., by

spoofing, altering or replaying routing information [4].

2.2.3.10 Routing table overflow attack

A malicious node advertises routes that go to non-existent nodes to the authorized

nodes present in the network. It usually happens in proactive routing algorithms,

which update routing information periodically. The attacker tries to create enough

routes to prevent new routes from being created. The proactive routing algorithms are

more vulnerable to table overflow attacks because proactive routing algorithms

attempt to discover routing information before it is actually needed. An attacker can

21

simply send excessive route advertisements to overflow the victim’s routing table [8,

36].

2.2.3.11 Routing cache poisoning attack

In route cache poisoning attacks, attackers take advantage of the promiscuous mode

of routing table updating, where a node overhearing any packet may add the routing

information contained in that packet header to its own route cache, even if that node is

not on the path. Suppose a malicious node M wants to poison routes to node X. M

could broadcast spoofed packets with source route to X via M itself; thus, neighboring

nodes that overhear the packet may add the route to their route caches [8, 36].

2.2.3.12 Simple Target Flooding

In this attack query packets are flooded inside the network to search for a certain

target node. When the target node receives the query packet, it responds to the source

node in order to inform the source node about its existence and to avoid further

unnecessary flooding attempts from the source node. Even if the flooded packet

reaches the target, packets flooded towards other directions continue.

2.2.3.13 False Identity Target Flooding

Similar to simple target flooding, query packets are flooded inside the network to

search for a certain target node, except the fact that the attacker deceives with wrong

source ID [7].

2.2.3.14 Fabrication Attack

Adversary may fabricate the routing messages to disorder the routing decisions. For

instance, a malicious node could simply fabricate a route error message in AODV

protocol, this will put all the upstream nodes in the network into a very

embarrassment situation since all of them now believe that a certain number of

destination are unable to reach. This may result in these upstream nodes to re-initiate

a route request to those unreachable destinations so as to discover and build another

possible route to them. This brings the energy consuming issue on the table again and

significantly degrades the performance of the routing protocol [9].

2.2.3.15 Tunneling Attack

In Ad hoc network, a node can be located adjacent to other nodes. A tunneling attack

is referred to two or more malicious nodes in the network may collude and cooperate

22

with each other to encapsulate and exchange routing messages between them by either

using the existing data routes or potentially high power transceiver [9].

2.2.4 Transport Layer Attacks

2.2.4.1 Flooding Attack

In this DoS attack, a malicious node may send continuous connection requests to a

victim node effectively flooding the victim’s network link [4]. Flooding attacks take

place when adversary starts triggering multiple connection requests towards the target

node. The adversary can be a legitimate node which has now been compromised

otherwise an adversary may have higher capabilities, generating large number of

legitimate packets and overwhelming the victim node [5].

The primary aim of flooding attacks is to cause exhaustion of resources on victim

system. This process is analogous to TCP SYN attacks where, attacker sends many

connection establishment requests, forcing the victim to store state of each connection

request. The attack generates large volume of traffic that prevents legitimate user

from accessing services. The main aim of this attack is either to block the node only

or blocking link along with the node. As a result network performance decreases

greatly [36].

2.2.4.2 Desynchronisation

It can disrupt an existing connection between two end points. Adversary transmits

forged packet with bogus sequence number or control flag to degrade or prevent the

exchange of data [4].

2.2.5 Application Layer Attacks

2.2.5.1 Message Corruption

In this case, any modification of the content of a message by an attacker that

compromises its integrity is considered as message corruption attack. This action

affects not only the data integrity which is needed to ensure the reliability of the data

but also the ability to confirm that a message has not been tampered with, altered or

changed [3].

23

2.2.5.2 False Data Injection

In false data injection attacks, multiple compromised nodes collaboratively forge a

fake report and inject the report into the network. This type of attacks is hard to

defend with existing approaches, because they only verify a fixed number of message

authentication codes (MACs) carried in the data report but the adversary can easily

obtain enough compromised nodes from different geographical areas of the network

to break their security [15].

2.2.5.3 Masquerading

A bogus registration is an active attack which an attacker does a registration with a

bogus re-of-address by masquerading itself as someone else. By advertising

fraudulent beacons, an attacker might be able to attract a MN (mobile node) to

register with the attacker as if MN has reached HA (home agent) or FA (foreign

agent). Now, the attacker can capture sensitive personal or network data for the

purpose of accessing network and may disrupt the proper functioning of network. It is

difficult for an attacker to implement such type of attack because the attacker must

have detailed information about the agent [10].

2.2.5.4 Repudiation

Repudiation refers to the denial or attempted denial by a node involved in a

communication of having participated in all or part of the communication. Example of

repudiation attack is a commercial system in which a selfish person could deny

conducting an operation on a credit card purchase or deny any on-line transaction

Non-repudiation is one of the important requirements for a security protocol in any

communication network [10].

2.2.5.5 Key management Attack

Key management protocols deal with the key generation, storage, distribution,

updating, revocation, and certificate service. Attackers can launch attacks to disclose

the cryptographic key at the local host or during the key distribution procedure. The

lack of a central trusted entity in WSN makes it more vulnerable to key management

attacks [36].

24

2.3 Security Mechanisms for WSN

Security of a network is determined by the security over all layers. In the case of

Wireless Sensor Networks, where the physical security of nodes is not guaranteed,

arises the need of security measures that are resilient to physical tampering with nodes

in the field operation.

According to [3, 42, 43] there are many security mechanisms that can be implemented

in a WSN to ensure all the primary and secondary security goals that have been

already mentioned in 2.1 section. Many of these security mechanisms focus on

cryptography, key management, secure routing, secure data aggregation, secure

location discovery, secure time synchronization, trust management systems and

intrusion detection.

2.3.1 Intrusion Detection Systems

An Intrusion Detection System plays an important role in WSN because it offers the

ability to monitor a network, detect any unlawful action and alarm based on specific

rules. Therefore it can eliminate most of the security attacks in a network in contrast

to other security measures that ensure security only at some level. Despite that,

security mechanisms in WSN are being studied for over twenty years, as implied in

[32], intrusion detection systems are still in an immature level and only few of them

are able to detect many separate attacks. Moreover, the limited resources of WSNs

hamper the design and the implementation of such an efficient mechanism.

Intrusion Detection Systems are divided in categories according to the rules they

apply to detect an intrusion. Anomaly-based IDSs are lightweight in nature; however

they create more false alarms. Signature-based IDSs are suitable for relatively large-

sized WSNs; however they have some overheads such as updating and inserting new

signatures. Hybrid IDSs are a combination of both anomaly-based and signature-

based approaches and are more energy consuming but more accurate in terms of

attack detection with less number of false positives. Hybrid mechanisms usually

contain two detection modules where one module is responsible of detecting well-

known attacks using signatures and the other is responsible for detecting and learning

normal and malicious patterns or monitor network behavior deviation from normal

profile. Cross layer IDSs are usually not recommended for networks having resources

25

limitations, as more energy and computation are required for exchanging multilayer

parameters [76].

Additionally, it should be noted that it is still a challenge to prevent automatically and

effectively an attack in wireless sensor networks even after its detection. After an

attack detection a manual isolation or removal of the affected nodes takes place to

limit the damage in the network.

Intrusion detection systems in wireless sensor networks are still a challenge for

researchers and many of them are being proposed every year. In chapter 5 we perform

a comparison analysis between recently proposed IDSs that include an experiment

evaluation in their proposal.

26

Chapter 3

3 Experiment : Attacks in WSN

3.1 Simulation of WSN Attacks

There are many network simulators available. Some of the most popular network

simulators are listed below:

 TOSSIM – Tiny OS Simulator

 ns-2 (C++)

 ns-3 (C++ & python for ns-3)

 OMNeT++ (C++)

 NetSim

For this experiment we have chosen the NS-2 because of its rich documentation,

community and maturity in this specific area that we examine.

3.1.1 The NS-2 Simulator

The ns-2 is an open source event driven simulator used by the research community for

research in networking. It has support for both wired and wireless networks and can

simulate several network protocols such as TCP, UDP, multicast routing, etc. More

recently, support has been added for simulation of large satellite and ad hoc wireless

networks. The ns-2 simulation software was developed at the University of Berkeley.

It is constantly under development by an active community of researchers.

The ns-2.35 is available as an all-in-one package that includes many modules. The

standard ns-2 distribution runs on Linux. However, a package for running ns-2 on

Cygwin (Linux Emulation for Windows) is available too. In the latter mode, ns-2 runs

in the Windows environment on top of Cygwin.

The input to ns-2 is a Tcl script file. An NS2 simulation script (e.g., myfirst_ns.tcl) is

referred to as a Tcl simulation script. Each script file corresponds to one specific

experiment scenario and has the extension .tcl.

NS2 consists of two key languages: C++ and Object-oriented Tool Command

Language (OTcl).While the C++ defines the internal mechanism (i.e., a backend) of

27

the simulation, the OTcl sets up simulation by assembling and configuring the objects

as well as scheduling discrete events (i.e., a frontend). The C++ and the OTcl are

linked together using TclCL [27].

Figure 2: Simulation flow

The simulation can be classified into two categories: the time driven and the event

driven simulation and is described in [27] as follows:

Time-driven simulation induces and executes events for every fixed time interval of Δ

time units. In particular, it looks for events that may have occurred during this fixed

interval. If found, such events would be executed as if they occurred at the end of this

interval. After the execution, it advances the simulation clock by Δ time units and

repeats the process. The simulation proceeds until the simulation time reaches a

predefined termination time.

Time interval (Δ) is an important parameter of time-driven simulation. While a large

interval can lead to loss of information, a small interval can cause unnecessary waste

of computational effort.

An event-driven simulation does not proceed according to fixed time interval. Rather,

it induces and executes events at any arbitrary time. Event-driven simulation has four

important characteristics:

 Every event is stamped with its occurrence time and is stored in a so-called

event list.

 Simulation proceeds by retrieving and removing an event with the smallest

timestamp from the event list, executing it, and advancing the simulation clock

to the timestamp associated with the retrieved event.

28

 At the execution, an event may induce one or more events. The induced events

are stamped with the time when the event occurs and again are stored in the

event list. The timestamp of the induced events must not be less than the

simulation clock. This is to ensure that the simulation would never go

backward in time.

 An event-driven simulation starts with a set of initial events in the event list. It

runs until the list is empty or another stopping criterion is satisfied.

NAM [27] trace records simulation detail in a text file and uses the text file to play

back the simulation using animation. NAM trace is activated by the command “$ns

namtrace-all $file,” where “ns” is the Simulator handle and “file” is a handle

associated with the file (e.g., “out.nam” in the above example) which stores the NAM

trace information. After obtaining a NAM trace file, the animation can be initiated

directly at the command prompt through the “nam <filename.nam>” command.

Xgraph is a plotting program which can be used to create graphic representations of

simulation results. First, there must be created output files in Tcl scripts, which can be

used then as data sets for xgraph. In order to call xgraph to display the results using

the command “xgraph <data-file>”.

A trace file which contains many trace strings is created after a successful simulation

run in NS2.

The format of a trace string is shown below:

Type
Identifier

Time
Source
Node

Destination
node

Packet
name

Packet
size

Flags
Flow

ID
Source
address

Destination
address

Sequence
number

Packet
Unique

ID

12 fields of the trace string are as follows:

1. Type Identifier:

 “+”: a packet enque event

 “-”: a packet deque event

 “r”: a packet reception event

 “d”: a packet drop (e.g., sent to dropHead_) event

 “c”: a packet collision at the MAC level

2. Time: at which the packet tracing string is created.

29

3-4. Source Node and Destination Node: denote the IDs of the source and the

destination nodes of the tracing object.

5. Packet Name: Name of the packet type

6. Packet Size: Size of the packet in bytes.

7. Flags: A 7-digit flag string

 “-”: disable

 1st = “E”: ECN (Explicit Congestion Notification) echo is enabled.

 2nd = “P”: the priority in the IP header is enabled.

 3rd : Not in use

 4th = “A”: Congestion action

 5th = “E”: Congestion has occurred.

 6th = “F”: The TCP fast start is used.

 7th = “N”: Explicit Congestion Notification (ECN) is on.

8. Flow ID

9-10. Source Address and Destination Address: the format of these two fields is

“a.b”, where “a" is the address and "b" is the port.

11. Sequence Number

12. Packet Unique ID

NS-2 is a very powerful tool though does not provide yet any tool to analyze trace

files. Consequently, the format of a trace string is a very useful knowledge because it

helps to create scripts to analyze the simulation results.

3.2 Simulation Parameters

For any experiment, we have a set of control parameters which are specified by the

user and a set of output parameters which we need to investigate upon. In the scenario

based experiments, the set of input parameters are the parameters for the definition of

the scenario and the specification of the traffic pattern.

3.2.1 Routing Protocol

There are many routing protocols that someone can implement in a Wireless Sensor

Network. Below are mentioned some of the most common and most useful to

implement. In the following chapter’s scenarios we chose to implement the AODV

routing protocol.

30

3.2.1.1 AODV

Ad hoc On-Demand Distance Vector Routing protocol (AODV) is an on demand

routing protocol. In AODV, the communication involves main three procedures, i.e.

path discovery, establishment and maintenance of the routing paths. AODV uses 3

types of control messages to run the algorithm, i.e. Route Request (RREQ), Route

Reply (RREP) and Route Error (RERR) [25]. To find a route to the destination, the

source node floods the network with RREQ packets. The RREQ packets create

temporary route entries for the reverse path through every node it passes in the

network. When it reaches the destination a RREP is sent back through the same path

the RREQ was transmitted. Every node maintains a route table entry which updates

the route expiry time.

3.2.1.2 DSR

Dynamic Source Routing (DSR) is a routing protocol for wireless mesh networks. It is

similar to AODV in that it forms a route on-demand when a transmitting computer

requests one. However, it uses source routing instead of relying on the routing table at

each intermediate device. Dynamic source routing protocol (DSR) is an on-demand

protocol designed to restrict the bandwidth consumed by control packets in ad hoc

wireless networks by eliminating the periodic table-update messages required in the

table-driven approach. The major difference between this and the other on-demand

routing protocols is that it is beacon-less and hence does not require periodic hello

packet (beacon) transmissions, which are used by a node to inform its neighbors of its

presence. The basic approach of this protocol (and all other on-demand routing

protocols) during the route construction phase is to establish a route by flooding

RouteRequest packets in the network. The destination node, on receiving a

RouteRequest packet, responds by sending a RouteReply packet back to the source,

which carries the route traversed by the RouteRequest packet received [26,30].

3.2.1.3 DSDV

This protocol is based on classical Bellman-Ford routing algorithm designed for

MANETS. Each node maintains a list of all destinations and number of hops to each

destination. Each entry is marked with a sequence number. It uses full dump or

incremental update to reduce network traffic generated by rout updates. The broadcast

of route updates is delayed by settling time. The only improvement made here is

avoidance of routing loops in a mobile network of routers. With this improvement,

31

routing information can always be readily available, regardless of whether the source

node requires the information or not. DSDV solve the problem of routing loops and

count to infinity by associating each route entry with a sequence number indicating its

freshness. In DSDV, a sequence number is linked to a destination node, and usually is

originated by that node (the owner). The only case that a non-owner node updates a

sequence number of a route is when it detects a link break on that route. An owner

node always uses even-numbers as sequence numbers, and a non-owner node always

uses odd-numbers. With the addition of sequence numbers, routes for the same

destination are selected based on the following rules:

1. a route with a newer sequence number is preferred;

2. in the case that two routes have a same sequence number, the one with a better

cost metric is preferred. [25]

3.2.1.4 TORA

The Temporally-Ordered Routing Algorithm (TORA) is an algorithm for routing data

across Wireless Mesh Networks or Mobile ad hoc networks. The TORA attempts to

achieve a high degree of scalability using a "flat", non-hierarchical routing algorithm.

In its operation the algorithm attempts to suppress, to the greatest extent possible, the

generation of far-reaching control message propagation. In order to achieve this, the

TORA does not use a shortest path solution, an approach which is unusual for routing

algorithms of this type. TORA builds and maintains a Directed Acyclic Graph (DAG)

rooted at a destination. No two nodes may have the same height [26,30].

Information may flow from nodes with higher heights to nodes with lower heights.

Information can therefore be thought of as a fluid that may only flow downhill. By

maintaining a set of totally-ordered heights at all times, TORA achieves loop-free

multipath routing, as information cannot 'flow uphill' and so cross back on itself. The

key design concept of TORA is localization of control messages to a very small set of

nodes near the occurrence of a topological change. To accomplish this, nodes need to

maintain the routing information about adjacent (one hop) nodes. The protocol

performs three basic functions: Route creation, Route maintenance and Route erasure.

During the route creation and maintenance phases, nodes use a height metric to

establish a directed acyclic graph (DAG) rooted at destination. Thereafter links are

32

assigned based on the relative height metric of neighboring nodes. During the times of

mobility the DAG is broken and the route maintenance unit comes into picture to

reestablish a DAG routed at the destination. Timing is an important factor for TORA

because the height metric is dependent on the logical time of the link failure. TORA's

route erasure phase is essentially involving flooding a broadcast clear packet (CLR)

throughout the network to erase invalid routes [26,30].

3.2.1.5 GMR

Geographic multicast routing (GMR), is a multicast routing protocol for wireless

sensor networks. It is a fully localized algorithm that efficiently delivers multicast

data messages to multiple destinations. It does not require any type of flooding

throughout the network. Each node propagating a multicast data message needs to

select a subset of its neighbors as relay nodes towards destinations. GMR optimizes

the cost over progress ratio where the cost is equal to the number of neighbors

selected for relaying and the progress is the overall reduction of the remaining

distances to destinations. Such neighbor selection achieves a good tradeoff between

the bandwidth of the multicast tree and the effectiveness of the data distribution [21].

3.2.2 Topology

There are four basic types of wireless sensor data network topologies. The four WSN

data network topologies are Peer to Peer, Star, Tree and Mesh. Each topology has its

own pros and cons under the specific working environment constraints [20].

3.2.2.1 Peer to Peer

Peer-to-Peer [20] networks allow each node to communicate directly with another

node without needing to go through a centralized communications hub. Each Peer

device is able to function as both a “client” and a “server” to the other nodes on the

network.

3.2.2.2 Star

Star [20] networks are connected to a centralized communications hub. Each node

cannot communicate directly with one another; all communications must be routed

through the centralized hub. Each node is then a “client” while the central hub is the

“server”.

33

3.2.2.3 Tree

Tree [20] networks use a central hub called a Root node as the main communications

router. One level down from the Root node in the hierarchy is a Central hub. This

lower level then forms a Star network. The Tree network can be considered a hybrid

of both the Star and Peer to Peer networking topologies.

3.2.2.4 Mesh

Mesh [20] networks allow data to “hop” from node to node, this allows the network

to be self-healing. Each node is then able to communicate with each other as data is

routed from node to node until it reaches the desired location. This type of network is

one of the most complex and can cost a significant amount of money to deploy

properly.

3.2.3 Performance Metrics

Quality of Service (QoS) is a demand in almost all forms of networks today.

Moreover, measuring performance can indicate also whether a WSN is under attack

or not. In order to proceed with the performance evaluation different metrics that

would help in making comparisons must be selected. In the following scenarios the

performance of the network in is studied by analyzing packet delivery ratio (PDR),

packet drop ratio (PDrR), network throughput (NTh), end to end delay (EED) and

energy consumption.

3.2.3.1 Packet Delivery Ratio

Packet Delivery Ratio is defined as the ratio of the total number of data packets

received by the destination node to the number of data packets sent by the source

node as given in the following equation:

𝑷𝒂𝒄𝒌𝒆𝒕 𝑫𝒆𝒍𝒊𝒗𝒆𝒓𝒚 𝑹𝒂𝒕𝒊𝒐 (𝑷𝑫𝑹) =
∑ 𝒐𝒇 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒅𝒆𝒔𝒕𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝒏𝒐𝒅𝒆

∑ 𝒐𝒇 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒔𝒆𝒏𝒕 𝒃𝒚 𝒕𝒉𝒆 𝒔𝒐𝒖𝒓𝒄𝒆 𝒏𝒐𝒅𝒆

The greater value of packet delivery ratio means the better performance of the

protocol [24].

34

3.2.3.2 Packet Drop Ratio

Packet Delivery Drop is defined as the ratio of the total number of data packets

dropped by the network to the number of data packets sent by the source node as

given in the following equation:

𝑷𝒂𝒄𝒌𝒆𝒕 𝑫𝒓𝒐𝒑 𝑹𝒂𝒕𝒊𝒐 (𝑷𝑫𝒓𝑹) =
∑ 𝒐𝒇 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒅𝒓𝒐𝒑𝒑𝒆𝒅

∑ 𝒐𝒇 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒔𝒆𝒏𝒕 𝒃𝒚 𝒕𝒉𝒆 𝒔𝒐𝒖𝒓𝒄𝒆 𝒏𝒐𝒅𝒆

3.2.3.3 Network Throughput

The network throughput (NTh) represents the average rate of successful message

delivery over a communication channel within the threshold time. Throughput is

measured using number of bits of packet received per unit time (normally, bps).

𝑵𝒆𝒕𝒘𝒐𝒓𝒌 𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 (𝑵𝑻𝒉) =
∑ 𝒐𝒇 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒔𝒐𝒖𝒓𝒄𝒆 𝒏𝒐𝒅𝒆

∑ 𝒐𝒇 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒅𝒆𝒔𝒕𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝒏𝒐𝒅𝒆

As mentioned in [45] the major factors affecting throughput are: packet loss due to

network congestion, available bandwidth, number of users in the network, data loss

due to bit errors, improper queuing techniques used, usage of weighted fair queue or

priority queue and slow start and multiple decrease techniques.

3.2.3.4 Average End to End Delay

The average time taken by a data packet to arrive in the destination. An end to end

delay includes all possible delay caused during route discovery, retransmission delay,

queuing delay and relay time Only the data packets that successfully delivered to

destinations are counted.

𝑫𝒆𝒍𝒂𝒚 (𝑬𝑬𝑫) =
∑(𝒂𝒓𝒓𝒊𝒗𝒆 𝒕𝒊𝒎𝒆 − 𝒔𝒆𝒏𝒅 𝒕𝒊𝒎𝒆)

∑ 𝑫𝒂𝒕𝒂 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅

3.2.3.5 Energy consumption

Many attacks when applied cause too much energy consumption in order to exhaust

the battery of a wireless sensor device. The energy consumption under an attack may

differ from normal traffic energy consumption. The energy loss can be calculated by

subtracting the amount of energy of a node after running a scenario from the node’s

initial amount of energy.

35

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒔 = 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝒆𝒏𝒆𝒓𝒈𝒚 – 𝑭𝒊𝒏𝒂𝒍 𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝒆𝒏𝒆𝒓𝒈𝒚

3.2.4 Malicious Node in Routing Protocol

We need to modify the two files that are responsible for the AODV routing we are

using. The header file aodv.h and the main source file aodv.cc

According to the installation steps described previously these files are located to the

following paths:

/ns-allinone-2.35/ns-2.35/aodv/aodv.cc

/ns-allinone-2.35/ns-2.35/aodv/aodv.h

After the source code modifications to the aodv files (see Appendix) a number of

nodes is set as malicious into the tcl scenario and won't forward a packet. In order to

complete the procedure the NS-2 core files have to be updated with the modified aodv

files. There must be produced a new aodv.o object file that reflects the modified aodv

source code. Execute the following commands to complete:

$ make clean

$ make

$ sudo make install

36

3.3 Simulation Scenarios

Four scenarios are presented in this section. A normal traffic scenario is simulated in

order to have the network measured in normal state. The other four scenarios

represent four different attacks: the Blackhole attack, the Rushing attack, the Flooding

attack and the Selective Forwarding attack.

In this work, we chose to examine Denial of Service attacks. Denial-of-Service

attacks are recognized as one of the most serious threats due to the resources

constrained property in WSN. Most of the WSN’s routing protocols are vulnerable to

such attacks. The Denial of Service attack is considered particularly as it targets the

energy efficient protocols that are unique to wireless sensor networks [40].

We chose to analyze four popular Denial of Service attacks which all affect the

routing and for that reason such attacks are also known as routing attacks. We

selected four particular attacks because we noticed that almost all papers and research

interest focus on them and therefore we concluded that they were the most valuable

attacks to implement. However, the experiment becomes more interesting because the

selected four attacks follow quite different methods to cause a denial of service:

Blackhole, Flooding, Rushing and Selective Forwarding attack. The first one reduces

the traffic by absorbing the packets while the second one increase the traffic by

sending continuous connection requests to a victim node. The Rushing attack works

in another manner too. It alters the routing information in order to form its attack

through the legitimate nodes. Selective forwarding attack forms a denial of service

attack in a more sophisticate way in order to stay longer undetected in network. The

discrepancies between their executions make the detection of all DoS attacks using

one methodology difficult.

Through this experiment we will be able to see if there is any common point in results

between all the attacks. The simulation results show the impact of DoS attacks on

performance of WSN.

3.3.1 Normal Traffic Scenario

Resuming the previous chapter, we create a Simulation environment consisting of 25

wireless mobile nodes which are placed uniformly and forming a Mobile Ad-hoc

Network, moving about over a 1200 × 600 meters area for 120 seconds of simulated

37

time. We have used standard two-ray ground propagation model, the IEEE 802.11

MAC, and Omni-directional antenna model of NS2. All values are formed in a table

shown below:

Method Value

Channel type Channel/Wireless channel

Radio-propagation model Propagation/Two ray round

Network interface type Phy/wirelessPhy

Mac Layer Protocol Mac/802_11

Routing Protocol AODV

Traffic Model CBR

Number of Sensor Nodes 25

Simulation Time (s) 120s

Simulation Area (mxm) 1200x600

Transmission Rate 0.1Mb

Node Initial Energy 1000 J

As source nodes are defined the nodes with node id 8, 16, 20, 21 and 22. As

destination node is defined the node with node id 18. The total number of packets

generated by all source nodes is 1242 packets, where the source node 8 generates 238

packets and every other source nodes generate 251 packets each. Also, we have to

stress that through all scenarios the number of packets generated, source nodes,

destination nodes and malicious nodes will remain the same.

38

Figure 3: Capture of our scenario simulation in NAM

3.3.2 Blackhole Attack Scenario

In blackhole attack the malicious node sends a forged RREP packet to a source node

that initiates the route discovery in order to pretend to be a destination node itself or a

node of immediate neighbor the destination. Source node will forward all of its data

packets to the malicious node; which were intended for the destination [33].

In order to apply this attack, we have to modify file aodv.cc, aodv.h inside the routing

protocol. Blackhole always say that have the route to be a sink. So, the pseudocode

for the modified routing protocol in C++ would be like:

else if ((rt && blackhole == 1)) {

 assert(rq> rq_dst == rt> rt_dst);

 sendReverse(rq> rq_src);

 rt> pc_insert(rt0> rt_nexthop);

 rt0> pc_insert(rt> rt_nexthop);

 Packet::free(p);}

The blackhole attack scenario follows the configuration of the normal traffic scenario.

It consists of 25 nodes in which nodes with id 7, 8 and 10 are blackhole nodes and all

the other nodes are non-malicious.

39

3.3.3 Rushing Attack Scenario

Rushing attack exploits this duplicate suppression mechanism by quickly forwarding

route discovery packet in order to gain access to the forwarding group. When a node

send a route request packet (RR packet) to another node in the wireless network, if

there an attacker present then he will accept the RR packet and send to his neighbor

with high transmission speed as compared to other nodes, which are present in the

wireless network. Because of this high transmission speed, packet forwarded by the

attacker will first reach to the destination node. Destination node will accept this RR

packet and discard other RR packets which are reached later. Receiver found this

route as a valid route and use for further communication. This way attacker will

successfully gain access in the communication between sender and receiver [41].

On-demand routing protocols are more vulnerable to this attack, because whenever

source node floods the route request packet in the network, an adversary node

receives the route request packet and sends without any hop_count update and delay

into the network. Rushing attack can be taken place at source side or destination side

or at the middle. Also, this attack is more effective when attacker is near to source or

destination node.

The following conditions the rushing attacker is not included in active route:

 When source and destination nodes have direct communication link

 When source and destination nodes have better route than rushing attackers

route

Rushing attacks mainly classified into two types: i) Rushing attack followed by

jellyfish attack and ii) Rushing attack followed by byzantine attack because it disturbs

the data forwarding phase by either jellyfish or byzantine attack.

The rushing attack scenario follows the configuration of the normal traffic scenario as

well. It consists of 25 nodes in which nodes with id 7, 8 and 10 are rushing attack

nodes and all the other nodes are non-malicious.

3.3.4 Flooding Attack Scenario

As mentioned two sections before, a malicious node may send continuous connection

requests to a victim node effectively flooding the victim’s network link.

40

The flooding attack can be launched by both external attacker and inside attacker. In

case of external attacker we can use any of the authentication mechanisms and restrict

the external attacker from entering the network and prevent the attack. In case of

inside attack it is difficult to detect and the attack intensity is also more. The inside

attacker behaves like normal node and send out the genuine route request but the only

difference is that it send more amount of route request [39].

In this work, flooding attack is simulated in ns2 by using the timer based approach in

AODV routing protocol. The malicious nodes with id 7, 8 and 10 will create more

RREQs to a node, which is even doesn't exist in the network topology. In this

scenario, the malicious nodes will create a RREQ to node 99 (which doesn't exist in

the network) for every 0.09 seconds. This is how malicious node, start to flood the

request in the network. The purpose of this attack is to consume the network

bandwidth and to exhaust the network resources all the time.

3.3.5 Selective Forwarding Attack Scenario

In this scenario we implement an attack in which a malicious node can accomplish to

form a type of blackhole attack but selectively. In this case the malicious node rather

than attempting to drop all packets that come in it drop some packets selectively. This

action can be done in many ways e.g. by dropping packets for a particular network

destination, at a certain time of the day, a packet every n packets or every t seconds,

or a randomly selected portion of the packets. This is rather called a selective

forwarding attack or grayhole attack and it is often harder to detect because some

traffic still flows across the network. This attack makes it more difficult to be

discovered quickly through common networking tools such as traceroute because it

adds a little complexity by changing its malicious nodes status from blackhole nodes

to normal nodes. In the case of blackhole attack when other nodes notice that a

compromised node is dropping all traffic, they begin to remove from their forwarding

tables the malicious node but in this attack this method cannot be applied because

malicious node becomes more undetectable.

In this scenario, the selective forwarding attack is implement by “flipping a coin” to

decide if the node will behave as a normal node or as a drop packet node. We use this

implementation of selective forwarding attack to verge on an average statistic of this

41

type of attack. Same configuration as in normal traffic scenario applies and there are

used 25 nodes. Nodes with id 7, 8 and 10 are the malicious and all the other nodes are

non-malicious.

42

0,9944

0,2021

0,9332

0,7295

0,6055

No attack Blackhole
Attack

Rushing Attack Flooding
Attack

Selective
Forwarding

Attack

Chapter 4

4 Experiment Results

The trace file generated is the only output data from NS-2 that contains all the traffic

flows’ data and can be used to perform an analysis. In this experiment, NS2 Visual

Trace Analyzer and a few awk scripts have been used in order to extract in a human

readable format the statistics by the trace files. Also, a spreadsheet’s program has

been used to create visual representations of the resulted comparison tables.

Both the tcl file and the tracefile generated from the ns command execution for each

scenario are imported into the NS2 Visual Trace Analyzer. The tool provides us the

information for the average end to end delay, the total number of packets generated by

all sources, the number of packets delivered and therefore the packets dropped.

Moreover we used an awk script that calculates the Throughput of the network in each

scenario. The calculation of the energy consumption was done manually through the

trace files records. Comparative Analysis

In this subsection a comparative analysis is performed through the visualization of the

data extracted from the trace files before.

4.1.1 Packet Delivery Ratio

Figure 4: Packet Delivery Ratio

43

Figure 4 depicts the Packet Delivery Ratio for all simulated attack scenarios. The

simulated attacks are represented in the x axis and the packet delivery ratio with range

0-1 in the y axis. Under normal traffic the packet delivery ratio is very high which

means a good behavior of the network and a high quality of service. On the other

hand, blackhole attack’s scenario seems to have significant influence in Packet

Delivery Ratio with ratio 0,2021 followed by selective forwarding attack which has a

PDR of 0.6055 and then by flooding attack which has a PDR of 0.7295. Rushing

attack affects almost 6% the PDR.

Figure 5: Packet Delivery

Figure 5 depicts the Packet Delivery for all simulated attack scenarios. It is the same

graph as in Figure 4 with the only difference that here the simulated attacks are

represented in the x axis and the number of packets delivered in the y axis. At this

point, we should remind that the total number of packets generated by the network in

all simulations is 1242 packets.

1235

251

1159

906

752

No attack Blackhole
Attack

Rushing Attack Flooding
Attack

Selective
Forwarding

Attack

44

4.1.2 Packet Drop Ratio

Figure 6: Packet Drop Ratio

Figure 6 depicts the Packet Drop Ratio for all simulated attack scenarios which is

actually the complementary value of the previous chart. The simulated attacks are

represented in the x axis and the packet drop ratio with range 0-1 in the y axis. In this

chart we observe that the packet drop ratio is very low in normal traffic while the

same network under blackhole attack faces a very high Packet Drop Ratio. Rushing

attack introduces a small number of packet drops and flooding attack causes around

27% of packets to get dropped. Selective forwarding attack states its presence by

introducing the second highest packet drop ratio after blackhole attack.

Figure 7: Packet Loss

0,0056

0,7979

0,0668

0,2705

0,3945

No attack Blackhole
Attack

Rushing Attack Flooding
Attack

Selective
Forwarding

Attack

7

991

83

336

490

No attack Blackhole
Attack

Rushing Attack Flooding
Attack

Selective
Forwarding

Attack

45

Figure 7 depicts the Packet Loss for all simulated attack scenarios. It is the same

graph as in Figure 6 with the only difference that here the simulated attacks are

represented in the x axis and the number of packets delivered in the y axis. We should

remind that the total number of packets generated by the network in all simulations is

1242 packets.

4.1.3 Throughput

Figure 8: Average Throughput in Kbps

Figure 8 depicts the calculation of the Average Throughput for all simulated attack

scenarios. The simulated attacks are represented in the x axis and the Kb per second

are presented in the y axis. Once again, rushing attack presents a throughput close to

the network’s normal state throughput. Blackhole, Selective Forwarding and Flooding

attacks decrease the throughput enough to make their presence obvious; with

blackhole affecting the throughput much more than the flooding.

51,08

17,42

47,93

37,21
33,9

No attack Blackhole
Attack

Rushing Attack Flooding
Attack

Selective
Forwarding

Attack

46

101,789473 101,177187 101,727427

124,782348

101,526756

No attack Blackhole
Attack

Rushing Attack Flooding
Attack

Selective
Forwarding

Attack

4.1.4 Average End to End Delay

Figure 9: Average End to End Delay

Figure 9 depicts the average end to end delay (in seconds) of all packets after

simulation. The attack that introduces the highest delay is flooding attack. However,

the blackhole attack seems to improve the time of end-to-end delay because of its

nature to drop all packets that pass by the malicious nodes. Rushing attack also inserts

a delay in packet routing but not to the high level of the flooding attack.

4.1.5 Energy Consumption

Figure 10: Average energy consumption in Joules

Figure 10 depicts the average energy consumption of all nodes after simulation. The

initial energy of every node is 1000 J and for every scenario we measured the final

0,039 0,019

0,344

1

0,043

No attack Blackhole
Attack

Rushing Attack Flooding
Attack

Selective
Forwarding

Attack

47

energy in each node and we subtracted it by initial energy. In this way we calculated

the average energy loss. In the figure above it is obvious that flooding attack

consumes the most energy of all attacks and around 25% more energy than in normal

circumstances. Rushing attack consumes almost the same energy as the network does

under normal traffic which means that measuring energy to detect a possible attack in

this kind of attack would probably fail. The average energy consumption in blackhole

attack as well as in selective forwarding attack is lower than the average consumption

in normal state. This is result is logically explained considering that the packets

absorbed by the malicious nodes do not keep their route towards the destination node.

An energy saving is resulted when packet is not following the next hops in route and

the average energy consumption is in the end lower than it is normally.

Figure 11: Energy consumption of each node for all scenarios in Joule

Figure 11 depicts the energy consumption of each node after simulation. The scope of

this measurement is to observe if particular nodes appear to consume energy in

contrast with other nodes. Moreover, we can test if the energy consumption of

particular nodes such as source nodes, malicious nodes or the destination node is

lower or higher than in normal traffic in order to find a pattern that could indicate the

malicious nodes or the attack itself.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

e
n

e
rg

y
lo

ss
 (

J)

node id

no attack blackhole attack rushing attack flooding attack grayhole attack

48

Chapter 5

5 IDS Effectiveness Evaluations

Researchers have suggested so far many approaches to detect harmful actions in

wireless sensor networks but until today there is no IDS that is able to detect a very

high percentage of all attacks. Moreover, many IDSs even though they are efficient in

detecting attacks it is more likely to introduce overhead in communication, in

computation or in energy consumption. Most of the times a proposed IDS is evaluated

only against one or two metrics according to table 2 in [32].

Summarizing the two previous chapters, we conducted an experiment and for the

performance evaluation we measured the packet delivery and packet loss ratio, the

average end-to-end delay, the throughput and the energy consumption of a wireless

sensor network in normal state and under four different denial-of-service attacks. In

this section, having already analyzed our findings, we will match which of the

previously used metrics are also used to evaluate the effectiveness of the most recent

IDSs in wireless sensor networks. Packet Delivery Ratio and Packet Loss Ratio are

complementary and for this comparative analysis there is no meaning to refer to both

individually.

In [32] a complete comparative analysis is performed between 45 IDS mechanisms

which are evaluated according to specific performance metrics. The representative

sample of the evaluated IDS presents that in total the energy consumption has been

evaluated by five existing IDSs, the packet drop ratio has been evaluated by three

IDSs, the throughput has been evaluated by four IDSs and finally the average end to

end delay has been evaluated by 4 existing IDSs. In general, only few of the proposed

IDSs have been evaluated towards to the metrics related to the network performance.

In this work we update this table regarding the current status of proposed IDS

mechanisms but we limit the table to the metrics we used in our experimental

analysis. In this section 23 new IDSs that have been proposed and evaluated since

mid-2012 are aggregated in the following table.

49

Energy

consumption

Packet

Delivery

rate/Packet

Loss rate

Throughput
EndToEnd

Delay

Congestion aware IDS [46] x x x

Malicious and Malfunctioning [47]

Multivariate detection [48] x

Partially distributed IDS [49] x

Rule based IDS [50] x x

IAIDS [51]

OWIDS [52] x

BIAD [53]

FuzzyQ learning [54] x

Decision tree with wrapper [55]

Distributed fuzzy clustering [56] x

Distributed detection of mobile malicious nodes

[57]

EID through Decision Trees [58]

Gaussian vs Uniform [59]

Hierarchical Node replication [60] x x

IDS for Heterogeneous & Homogeneous [61] x

Dual Threshold IDS [62]

MoteSec-Aware [63] x

Selective Forwarding IDS [64] x x

Sequential anomaly detection[65] x

Intrusion Detection Policy for WSN [66] x x

Subjective Logic-Based Anomaly Detection [67]

Watchdog LEACH [68] x

In [46] the IDS selection method is evaluated towards energy consumption and it is

claimed that it enhances the network’s lifetime and reduces the total energy

consumption.

In [47] malicious node detection rate (MDR), misdetection rate (MR), false alarm rate

(FAR), and event detection accuracy (EDA), are defined to show the effectiveness of

the proposed IDS.

Successful sending rate, Forwarding Rate, False Detection Rate and Node Density

Influence on False Detection Rate are the metrics that are evaluated in the proposed

IDS in [48].

50

In [49], except Memory Use and Energy consumption metrics, the Detection Rate is

also used as a metric which is noticed to be increased when increasing average hop

distance in the proposed scheme.

The evaluation metrics in [50] are Detection Rate, False Positives, Energy

consumption and Reduce number of packets transmitted which affects throughput.

In [51] the proposed methodology is evaluated in terms of Detection rate and False

alarm rate.

In [52], Energy consumption, Transmission accuracy, Attack detection rate, False

positive rate and Accuracy rate are measuring the efficiency and the effectiveness of

the IDS.

In [53] Detection rate, False alarm rate are used as metrics for the IDS evaluation.

Analysis of game-based FQL IDPS [54] is conducted in terms of detection accuracy,

defense rate, number of live nodes and energy consumption.

In [55] the following metrics are used to evaluate IDS: Detection rate (Ratio between

number of anomaly correctly classified and total number of anomaly). Error rate

(Ratio between number of anomaly incorrectly classified and total number of

anomaly). True positive (Classifying normal class as normal class). True negative

(Classifying anomaly class as anomaly class). False positive (Classifying normal class

as an anomaly class). False negative (Classifying anomaly class as a normal class).

In [56] the False Positive Rate and the False Negative Rate were calculated based on

the observed number of False Positives and False Negatives for each of the three

hierarchical stages. Also, the observed instances of True Positives and True Negatives

are also determined at each stage. Then, the Sensitivity and Specificity values are

calculated as follows to be the main evaluation metrics for data classification

accuracy. Additionally, a communication overhead analysis is performed and

temperature levels are measured.

In [57] the evaluation of the proposed scheme is done in terms of its detection

capability, accuracy and speed.

51

Detection capabilities in [58] were measured through False Positive Rate (FPR), False

Negative Rate (FNR), True Negative Rate (TNR), True Positive Rate (TPR), and

Accuracy (ACC).

In order to evaluate the performance of intrusion detection in [59] they use the

following two metrics: a) Intrusion distance which is the distance traveled by the the

intruder before it is detected by a WSN for the first time and b) Detection probability

which is defined as the probability that an intruder is detected within the maximal

allowable intrusion distance, specified by a WSN application.

In [60] communication overhead is measured by the influence of clusters’ size on the

average number of packets sent and received for each node. Moreover, node

replication detection probability, detection rate and energy consumption are used to

evaluate the Hierarchical node replication IDS.

In [61] it is formed an evaluation of the detection probability and energy

consumption.

Six metrics are used in [62]; malicious node detection rate (MDR), misdetection rate

(MR), false alarm rate (FAR), event detection accuracy (EDA), event region detection

rate (ERDR) and boundary false alarm rate (BFAR), are used to show the

effectiveness of our scheme.

MoteSec-Aware [63] is evaluated by the energy consumption and the large-scale

sensor network operations of the scheme.

The metrics considered for comparison in [64] are Energy left and Packet delivery

ratio in presence and absence of malicious nodes.

The performance of the detection scheme proposed in [65] is evaluated by the

detection latency and the receiver operating characteristic (ROC) curve, which is a

plot of the detection rate versus the false alarm rate at different thresholds. They also

plot the detection latency curve, which is a plot of the detection latency versus false

alarm rates.

52

The proposed IDS in [66] is measuring its effectiveness against communication

overhead by counting the number of sends, receive, forward and retransmit for each

node. Therefore the influence packet delivery ratio and throughput is evaluated.

In [67] the evaluation of the IDS focuses exclusively in its detection capability using

as evaluation metrics the detection rate, false detection rate, non-detection rate.

In [68] only energy consumption is measured to evaluate the proposed scheme.

The previous table shows that according to the whole number of the IDSs 10 of them

have been evaluated in terms of energy consumption, 5 in terms of packet

delivery/drop ratio, 4 in terms of throughput and 1 in terms of average end to end

delay.

Most IDS are evaluated taking into consideration metrics such as False Positive Rate

(FPR), False Negative Rate (FNR), True Negative Rate (TNR), True Positive Rate

(TPR) and Accuracy (ACC). Moreover, this results to the fact that the proposed IDSs

do not affect the network performance in terms of communication overhead, energy

consumption, packet delivery ratio, etc.

53

Conclusions

In this paper, it is performed a study of blackhole, flooding, rushing attack and

selective forwarding attack launched in AODV routing protocol. All scenarios are

conducted with the use of ns-2 and the simulation study depicts the performance

degradation in terms of parameters like network throughput, average end to end delay,

packet delivery ratio, packet loss and energy consumption.

From the results it can be observed that the presence of blackhole attack is obvious

through the packet delivery ratio, the network throughput and the packet loss and not

by the end to end delay or the energy consumption. The presence of flooding attack

can also be detected by monitoring the packet delivery ratio, the average delay, the

network throughput, the packet loss or the energy consumption. Rushing attack seems

to be the most unlike attack to detect by simply monitoring the performance of the

network. The results show that it presents values close to the normal traffic’s statistics

in almost all measurements except the average end to end delay and maybe the

network throughput. Selective forwarding adds a little complexity by changing its

malicious nodes status from blackhole nodes to normal nodes and proves that is more

difficult to be discovered as quickly as blackhole. Although, it presence can be

detected through the packet delivery ratio, the network throughput and the packet loss.

Although the attacks evaluated in experiment belong to the same group they do not

affect the network in the same way. Furthermore, it is worth noting that these attacks

are detected by the most of the IDSs.

Additionally, we used specific metrics to evaluate certain attacks and measure the

effectiveness of some recently proposed IDSs in literature. Regarding our findings we

conclude that network performance is affected both by routing attacks and the

majority of the IDSs. The above conclusion makes inefficient the detection of such

attacks by utilizing only certain network performance thresholds.

54

References

[1] Shahriar Mohammadi, Reza Ebrahimi Atani, Hossein Jadidoleslamy, “A

Comparison of Link Layer Attacks on Wireless Sensor Networks”, Journal of

Information Security, p.69-84, 2011

[2] Dargie, W. and Poellabauer, C., “Fundamentals of wireless sensor networks:

theory and practice”, John Wiley and Sons, ISBN 978-0-470-99765-9, pp.

168–183, 191–192, 2010

[3] Dr. G. Padmavathi, Mrs. D. Shanmugapriya, “A Survey of Attacks, Security

Mechanisms and Challenges in Wireless Sensor Networks”, 2009

[4] Muhammad R Ahmed, Xu Huang, and Dharmendra Sharma, “A Taxonomy of

Internal Attacks in Wireless Sensor Network”, 2012

[5] Rishav Dubey, Vikram Jain, Rohit Singh Thakur, Siddharth Dutt Choubey,

“Attacks in Wireless Sensor Networks”, 2012

[6] Ana Paula R. da Silva Marcelo, H.T. Martins, Bruno P.S. Rocha, Antonio A.F.

Loureiro, Linnyer B. Ruiz, Hao Chi Wong, “Decentralized Intrusion Detection

in Wireless Sensor Networks”, Dept of Computer Science Federal Univ of

Minas Gerais Belo Horizonte, MG, Brazil, 2005

[7] Mohammad Saiful Islam Mamun, A.F.M. Sultanul Kabir, “Hierarchical

Design Based Intrusion Detection System For Wireless Ad Hoc Sensor

Network”, Department of Computer Science, Stamford University

Bangladesh, 51, Siddeshwari, Department of Computer Science and

Engineering, American International University Bangladesh, Dhaka, 2012

[8] Teodor-Grigore Lupu, “Main Types of Attacks in Wireless Sensor Networks”,

Department of Computer and Software Engineering University “Politehnica”

of Timisoara, Faculty of Automatics and Computers Vasile Parvan 2, 300223,

Timisoara, Romania, 2009

[9] Celia Li, Zhuang Wang, and Cungang Yang, “Secure Routing for Wireless

Mesh Networks”, Department of Computer Science and Engineering, York

University, M3J 1P3, Toronto, Canada , Department of Electrical and

Computer Engineering, Ryerson University, 2010

[10] Noor Mohd, Singh Annapurna, H.S. Bhadauria, “Taxonomy on Security

Attacks on Self Configurable Networks”, World Applied Sciences Journal 31

(3): 390-398, ISSN 1818-4952, IDOSI Publications, 2014

55

[11] Chaudhari H.C. and Kadam L.U., “Wireless Sensor Networks: Security,

Attacks and Challenges”, International Journal of Networking, Volume 1,

Issue 1, pp-04-16, 2011

[12] Harsh Kupwade Patil, Stephen A. Szygenda, “Security for Wireless Sensor

Networks using Identity-Based Cryptography”, CRC Press, USA, 2013

[13] Pirzada Gauhar Arfaat, Dr. A.H. Mir,”The Impact of Wormhole Attack on

the Performance of Wireless Ad-Hoc Networks”, IJCST Volume 2, Issue 4,

ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print), 2011

[14] Damandeep Kaur, Parminder Singh, “Various OSI Layer Attacks and

Countermeasure to Enhance the Performance of WSNs during Wormhole

Attack”, ACEEE, Int. J. on Network Security , Vol. 5, No. 1, January 2014

[15] Jianxin Wanga, Zhixiong Liua, b, Shigeng Zhanga, Xi Zhangc, “Information

Sciences, Defending collaborative false data injection attacks in wireless

sensor networks”, Information Sciences: an International Journal, Volume

254, p. 39-53, ISSN: 0020-0255, Elsevier Science Inc. New York, NY ,

USA, 2014

[16] Om Shree, Francis J. Ogwu, “A Proposal for Mitigating Multiple Black-Hole

Attack in Wireless Mesh Networks”, Wireless Sensor Network, 5, p. 76-83,

2013

[17] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad

Hoc Network Research”, Wireless Communication & Mobile Computing

(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends

and Applications, vol. 2, no. 5, pp. 483-502, 2002

[18] Md. Monzur Morshed, Meftah Ur Rahman,Md. Habibur Rahman, Md.

Rafiqul Islam, “Performance Comparison of TCP variants over AODV,

DSDV, DSR, OLSR in NS-2”, Department of Computer Science, American

International University-Bangladesh, SCICON & TigerHATS Research

Team-Bangladesh, George Mason University-USA, 2012

[19] Networking Wireless Sensors, Bhaskar Krishnamachari, Cambridge, 2005

[20] Steven Kosmerchock, “Wireless Sensor Network Topologies”, Goodyear

[21] Sanchez, J.A., Dept. of Commun. & Inf. Eng., Murcia Univ., Ruiz, P.M.,

Jennifer Liu, Stojmenovic, I., “Bandwidth-Efficient Geographic Multicast

Routing Protocol for Wireless Sensor Networks”, Sensors Journal, IEEE

(Volume:7 , Issue: 5), p. 627 – 636, 2007

56

[22] Achint Gupta, Dr. Priyanka V J, Saurabh Upadhyay, “Analysis of Wormhole

Attack in AODV based MANET Using OPNET Simulator”, International

Journal of Computing, Communications and Networking, Volume 1, No.2,

ISSN 2319-2720, September–October 2012

[23] Bipul Syam Purkayastha, Rajib Das, “Comparative Analysis of Routing

Attacks in Ad Hoc Network”, Int. J. Advanced Networking and Applications,

Volume: 03 Issue: 05 Pages: 1352-1357, 2012

[24] Narendra Kumar Agarwal, Vishal Shrivastava, “Simulation Results and

Performance Evaluation of Routing Protocols in Mobile Ad-Hoc Networks”,

International Journal of Emerging Science and Engineering (IJESE),

ISSN:2319-6378, Volume-1, Issue-7, 2013

[25] Harris Simaremare, Riri Fitri Sari, “Performance Evaluation of AODV

variants on DDOS, Blackhole and Malicious Attacks”, IJCSNS International

Journal of Computer Science and Network Security, VOL.11 No.6, 2011

[26] Bikash Rath, “Implementing And Comparing Dsr And Dsdv Routing

Protocols For Mobile Ad Hoc Networking”, Department of Computer

Science and Engineering National Institute of Technology, Rourkela, 2009

[27] T. Issaraiyakul and E. Hossain, “Introduction to Network Simulator NS2”,

Springer, 2009

[28] Vandana C.P, Dr. A. Francis Saviour Devaraj, “Evaluation of Impact of

Wormhole Attack on AODV”, Int. J. Advanced Networking and

Applications, Volume: 04 Issue: 04 p. 1652-1656, ISSN : 0975-0290, 2013

[29] Mehul Revankar , “Attacks in Ad-Hoc Networks and Modeling in NS-2”,

2005

[30] Rakesh Kumar Jha , Suresh V. Limkar, Dr. Upena D. Dalal, “A Performance

Comparison of Routing Protocols(DSR and TORA) for Security Issue In

MANET(Mobile Ad Hoc Networks)”, IJCA Special Issue on “Mobile Ad-

hoc Networks” MANETs, 2010

[31] Monika Roopak , Dr. Bvr Reddy¸ “Performance Analysis of Aodv Protocol

under Black Hole Attack”, International Journal of Scientific & Engineering

Research Volume 2, Issue 8, ISSN 2229-5518, August 2011

[32] Eleni Darra, Sokratis Katsikas, “Attack Detection Capabilities of Intrusion

Detection Systems for Wireless Sensor Networks”, Department of Digital

Systems, University of Piraeus, Greece, 2013

57

[33] Dr. Deepali Virmani, Manas Hemrajani, Shringarica Chandel, “Exponential

Trust Based Mechanism to Detect Black Hole attack in Wireless Sensor

Network”, Cornell University, USA, 2014

[34] Shafiullah Khan Al-Sakib Khan Pathan, “Wireless Networks and Security:

Issues, Challenges and Research Trends”, ISBN:9783642361692, Springer,

2013

[35] Vikash Kumar, Anshu Jain, P N Barwal, “Wireless Sensor Networks:

Security Issues, Challenges and Solutions”, International Journal of

Information & Computation Technology, ISSN 0974-22 39 Volume 4,

Number 8 (2014), pp.859-868, India, 2014

[36] Yang Xiao, Xuemin (Sherman) Shen, Ding-Zhu Du, “Wireless Network

Security”, Springer, 2007

[37] Prateek Suraksha Bhushan, Abhishek Pandey & R.C.Tripathi ”A scheme for

Prevention of Flooding Attack in Wireless sensor Network”,Vol 1 No. 2 June

2011

[38] Kalpana Sharma, M K Ghose, “Wireless Sensor Networks: An Overview on

its Security Threats”, IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, India, 2010

[39] Bhuvaneshwari. K , Dr.A.Francis Saviour Devaraj, “Examination of Impact

of Flooding attack on MANET and to accentuate on Performance

Degradation”, Int. J. Advanced Networking and Applications Volume: 04

Issue: 04 Pages:1695-1699 (2013) ISSN : 0975-0290, India, 2013

[40] Doddapaneni.Krishna Chaitanya, Ghosh.Arindam, “Analysis of Denial of

Service attacks on Wireless Sensor Networks Using Simulation”, 2013

[41] Satyam Shrivastava, “Rushing Attack and its Prevention Techniques”,

International Journal of Application or Innovation in Engineering &

Management, Volume 2, Issue 4, ISSN 2319-4847, 2013

[42] John Paul Walters, Zhengqiang Liang,Weisong Shi, and Vipin Chaudhary

“Wireless Sensor Network Security: A Survey”, Security in Distributed,

Grid, and Pervasive Computing, 2006

[43] Xiuli Ren, Haibin Yu, “Security Mechanisms for Wireless Sensor

Networks”, JCSNS International Journal of Computer Science and Network

Security, VOL.6 No.3, 2006

58

[44] A Survey on Security Mechanisms and Attacks in Wireless Sensor

Networks”, nternational Journal of Engineering and Innovative Technology

(IJEIT) Volume 2, Issue 3, September 2012

[45] P.N.Renjith and E.Baburaj, “Analysis on Ad Hoc Routing Protocols in

Wireless Sensor Networks”, International Journal of Ad hoc, Sensor &

Ubiquitous Computing (IJASUC) Vol.3, No.6, December 2012

[46] Jaeun Choi, Gisung Kim, Sehun Kim, “A Congestion-Aware IDS Node

SelectionMethod forWireless Sensor Networks” Hindawi Publishing

Corporation, International Journal of Distributed Sensor Networks, Volume

2012, Article ID 582139, 6 pages, 2012

[47] Seo Hyun Oh, Chan O. Hong, Yoon-Hwa Choi, “A Malicious and

Malfunctioning Node Detection Scheme for Wireless Sensor Networks”,

Wireless Sensor Network, 4, p. 84-90, 2012

[48] Hongjun Dai, Huabo Liu, Zhiping Jia, and Tianzhou Chen. “A Multivariate

Classification Algorithm for Malicious Node Detection in Large-Scale

WSNs”, In Proceedings of the 2012 IEEE 11th International Conference on

Trust, Security and Privacy in Computing and Communications

(TRUSTCOM '12). IEEE Computer Society, Washington, DC, USA, 239-

245, 2012

[49] Eung Jun Cho, Choong Seon Hong, Sungwon Lee and Seokhee Jeon, “A

Partially Distributed Intrusion Detection System for Wireless Sensor

Networks”, Sensors, 13, p. 15863-15879, ISSN 1424-8220, 2013

[50] K. Anand, S. Ganapathy, K. Kulothungan, P. Yogesh, A. Kannan, “A Rule

Based Approach for Attribute Selection and Intrusion Detection in Wireless

Sensor Networks”, Procedia Engineering, Volume 38, p. 1658-1664, ISSN

1877-7058, 2012

[51] Ranjit Panigrahi, Kalpana Sharma and M k Ghose, “An Integrated Approach

of Intrusion Detection System (IAIDS) for Wireless Sensor Networks”, IJCA

Proceedings on Computing Communication and Sensor Network 2013

CCSN 2013(2):5-8, December 2013

[52] Chia-Fen Hsieh, Rung-Ching Chen, and Yung-Fa Huang, “Applying an

Ontology to a Patrol Intrusion Detection System for Wireless Sensor

Networks”, International Journal of Distributed Sensor Networks, Volume

2014, Article ID 634748, 14 pages, 2014

59

[53] Rongrong Fu, Kangfeng Zheng, Tianliang Lu, Dongmei Zhang, Yixian Yang

,“Biologically Inspired Anomaly Detection for Hierarchical Wireless Sensor

Networks”, Journal of Networks, Vol 7, No 8 (2012), 1214-1219, Aug 2012

[54] Shahaboddin Shamshirband, Ahmed Patel, Nor Badrul Anuar, Miss Laiha

Mat Kiah, Ajith Abraham, “Cooperative game theoretic approach using

fuzzy Q-learning for detecting and preventing intrusions in wireless sensor

networks”, Engineering ApplicationsofArtificial Intelligence32(2014)228–

241, 2014

[55] Siva S. Sivatha Sindhu, S. Geetha, A. Kannan, “Decision tree based light

weight intrusion detection using a wrapper approach”, Expert Systems with

Applications, p. 129–141, 2012

[56] Heshan Kumarage, Ibrahim Khalil, Zahir Tari, Albert Zomaya “Distributed

anomaly detection for industrial wireless sensor networks based on fuzzy

data modelling”, Journal of Parallel and Distributed Computing archive,

Volume 73 Issue 6, p. 790-806, June 2013

[57] Jun-Won Ho, Matthew Wright, Sajal K. Das, “Distributed detection of

mobile malicious node attacks in wireless sensor networks”, Ad Hoc

Networks, Volume 10, Issue 3, p. 512-523, May 2012

[58] Alessia Garofalo, Cesario Di Sarno, Valerio Formicola, “Enhancing

Intrusion Detection in Wireless Sensor Networks through Decision Trees”,

Dependable Computing, Lecture Notes in Computer Science Volume 7869,

p. 1-15, 2013

[59] Yun Wang, Weihuang Fu, Dharma P. Agrawal, "Gaussian versus Uniform

Distribution for Intrusion Detection in Wireless Sensor Networks," IEEE

Transactions on Parallel and Distributed Systems, vol. 24, no. 2, pp. 342-355,

Feb. 2013

[60] Wassim Znaidi, Marine Minier, and Stéphane Ubéda, “Hierarchical Node

Replication Attacks Detection in Wireless Sensor Networks,” International

Journal of Distributed Sensor Networks, vol. 2013, Article ID 745069, 12

pages, 2013.

[61] Jasvinder Singh, Er. Vivek Thapar, “Intrusion Detection in Wireless Sensor

Network”, International Journal of Computer Science and Communication

Engineering, Volume 1 Issue 2, ISSN: 2319-7080, December 2012

60

[62] Sung Yul Lim, Yoon-Hwa Choi, “Malicious Node Detection Using a Dual

Threshold in Wireless Sensor Networks” Journal of Sensor and Actuator

Networks, ISSN 2224-2708, p. 70-84, 2013

[63] Yao-Tung Tsou, Chun-Shien Lu and Sy-Yen Kuo, “MoteSec-Aware: A

Practical Secure Mechanism for Wireless Sensor Networks”, IEEE

Transactions On Wireless Communications, Vol. 12, No. 6, June 2013

[64] Bharti Bains, Rohit Vaid, “Selective Forwarding based Intrusion Detection

System for Secure Wireless Sensor Network, International Journal of

Computer Applications (0975 – 8887), Volume 77– No.13, September 2013

[65] S. Zheng & J. S. Baras, “Sequential Anomaly Detection in Wireless Sensor

Networks and Effects of Long-Range Dependent Data”, Sequential Analysis:

Design Methods and Applications, 31:4, p. 458-480, 2012

[66] Jiang Xu, Jin Wang, Shengdong Xie, Wenliang Chen and Jeong-Uk Kim,

“Study on Intrusion Detection Policy for Wireless Sensor Networks”,

International Journal of Security and its Applications, Vol.7, No.1, January

2013

[67] Jinhui Yuan, Hongwei Zhou, and Hong Chen, “Subjective Logic-Based

Anomaly Detection Framework in Wireless Sensor Networks,” International

Journal of Distributed Sensor Networks, vol. 2012, Article ID 482191, 13

pages, 2012

[68] Mohammad Reza Rohbanian, Mohammad Rafi Kharazmi, Alireza

Keshavarz-Haddad, Manije Keshtgary, “Watchdog-LEACH: A new method

based on LEACH protocol to Secure Clustered Wireless Sensor Networks”,

ACSIJ Advances in Computer Science: an International Journal, Vol. 2,

Issue 3, No. 4, ISSN : 2322-5157, July 2013

[69] Keshav Goyal, Nidhi Gupta, Keshawanand Singh, “A Survey on Intrusion

Detection in Wireless Sensor Networks” ,International Journal of Scientific

Research Engineering & Technology (IJSRET), Volume 2, Issue2, ISSN

2278–0882, p. 113-126, May 2013

[70] Kashyap Patel , Mrs. T. Manoranjitham, “Detection of Wormhole Attack In

Wireless Sensor Network”, International Journal of Engineering Research &

Technology (IJERT), Vol. 2 Issue 5, ISSN: 2278-0181, May 2013

[71] Ruchi Bhatnagar and Udai Shankar, “The Proposal of Hybrid Intrusion

Detection for Defence of Sync Flood Attack in Wireless Sensor Network”,

61

International Journal of Computer Science & Engineering Survey (IJCSES)

Vol.3, No.2, April 2012

[72] Nabil Ali Alrajeh and J. Lloret, “Intrusion Detection Systems Based on

Artificial Intelligence Techniques in Wireless Sensor Networks”, Hindawi

Publishing Corporation, International Journal of Distributed Sensor

Networks, Volume 2013, Article ID 351047, 6 pages, 2013

[73] Murad A. Rassam, M.A. Maarof and Anazida Zainal, “A survey of Intrusion

Detection Schemes in Wireless Sensor Networks”, American Journal of

Applied Sciences 9 (10): 1636-1652, ISSN 1546-9239, 2012

[74] Helio Mendes Salmon, Claudio M. de Farias, Paula Loureiro, Luci Pirmez,

Silvana Rossetto, Paulo Henrique de A. Rodrigues, Rodrigo Pirmez, Flávia

C. Delicato, Luiz Fernando R. da Costa Carmo, “Intrusion Detection System

for Wireless Sensor Networks Using Danger Theory Immune-Inspired

Techniques”, International Journal of Wireless Information Networks,

Volume 20, Issue 1, pp 39-66, March 2013

[75] Nabil Ali Alrajeh, S. Khan, and Bilal Shams, “Intrusion Detection Systems

in Wireless Sensor Networks: A Review,” International Journal of

Distributed Sensor Networks, vol. 2013, Article ID 167575, 7 pages, 2013

[76] Priyanka Shah, Dr. Atul Patel, “Incremental Intrusion Detection System for

Wireless Sensor Networks”, International Journal of Emerging Trends &

Technology in Computer Science, Volume 2, Issue 6, ISSN 2278-6856, 2013

62

Appendix

Normal traffic Code

normaltraffic.tcl

#===================================

Simulation parameters setup

#===================================

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 25 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 1200 ;# X dimension of topography

set val(y) 600 ;# Y dimension of topography

set val(stop) 120 ;# time of simulation end (s)

set val(energymodel) EnergyModel ;

set val(radiomodel) RadioModel ;

set val(initialenergy) 1000 ;# Initial energy (J)

#===================================

Initialization

#===================================

#Create a ns simulator

set ns [new Simulator]

#Setup topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

#Open the NS trace file

set tracefile [open normal.tr w]

$ns trace-all $tracefile

#Open the NAM trace file

set namfile [open normal.nam w]

$ns namtrace-all $namfile

$ns namtrace-all-wireless $namfile $val(x) $val(y)

set chan [new $val(chan)];# Create wireless channel

63

#===================================

Mobile node parameter setup

#===================================

$ns node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channel $chan \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace ON \

 -energyModel $val(energymodel) \

 -idlePower 1.0 \

 -rxPower 1.0 \

 -txPower 2.0 \

 -sleepPower 0.001 \

 -transitionPower 0.2 \

 -transitionTime 0.005 \

 -initialEnergy $val(initialenergy)

#===================================

Nodes Definition

#===================================

#Create 25 nodes

set n0 [$ns node]

$n0 set X_ 663

$n0 set Y_ 484

$n0 set Z_ 0.0

$ns initial_node_pos $n0 20

set n1 [$ns node]

$n1 set X_ 466

$n1 set Y_ 407

$n1 set Z_ 0.0

$ns initial_node_pos $n1 20

set n2 [$ns node]

$n2 set X_ 871

$n2 set Y_ 426

$n2 set Z_ 0.0

64

$ns initial_node_pos $n2 20

set n3 [$ns node]

$n3 set X_ 668

$n3 set Y_ 393

$n3 set Z_ 0.0

$ns initial_node_pos $n3 20

set n4 [$ns node]

$n4 set X_ 558

$n4 set Y_ 320

$n4 set Z_ 0.0

$ns initial_node_pos $n4 20

set n5 [$ns node]

$n5 set X_ 781

$n5 set Y_ 317

$n5 set Z_ 0.0

$ns initial_node_pos $n5 20

set n6 [$ns node]

$n6 set X_ 523

$n6 set Y_ 222

$n6 set Z_ 0.0

$ns initial_node_pos $n6 20

set n7 [$ns node]

$n7 set X_ 671

$n7 set Y_ 194

$n7 set Z_ 0.0

$ns initial_node_pos $n7 20

set n8 [$ns node]

$n8 set X_ 891

$n8 set Y_ 224

$n8 set Z_ 0.0

$ns initial_node_pos $n8 20

set n9 [$ns node]

$n9 set X_ 476

$n9 set Y_ 117

$n9 set Z_ 0.0

$ns initial_node_pos $n9 20

set n10 [$ns node]

$n10 set X_ 674

$n10 set Y_ 112

$n10 set Z_ 0.0

$ns initial_node_pos $n10 20

set n11 [$ns node]

$n11 set X_ 895

$n11 set Y_ 130

$n11 set Z_ 0.0

65

$ns initial_node_pos $n11 20

set n12 [$ns node]

$n12 set X_ 500

$n12 set Y_ 300

$n12 set Z_ 0.0

$ns initial_node_pos $n12 20

set n13 [$ns node]

$n13 set X_ 687

$n13 set Y_ 36

$n13 set Z_ 0.0

$ns initial_node_pos $n13 20

set n14 [$ns node]

$n14 set X_ 877

$n14 set Y_ 39

$n14 set Z_ 0.0

$ns initial_node_pos $n14 20

set n15 [$ns node]

$n15 set X_ 373

$n15 set Y_ 271

$n15 set Z_ 0.0

$ns initial_node_pos $n15 20

set n16 [$ns node]

$n16 set X_ 990

$n16 set Y_ 306

$n16 set Z_ 0.0

$ns initial_node_pos $n16 20

set n17 [$ns node]

$n17 set X_ 989

$n17 set Y_ 407

$n17 set Z_ 0.0

$ns initial_node_pos $n17 20

set n18 [$ns node]

$n18 set X_ 1086

$n18 set Y_ 453

$n18 set Z_ 0.0

$ns initial_node_pos $n18 20

set n19 [$ns node]

$n19 set X_ 455

$n19 set Y_ 479

$n19 set Z_ 0.0

$ns initial_node_pos $n19 20

set n20 [$ns node]

$n20 set X_ 350

$n20 set Y_ 434

$n20 set Z_ 0.0

66

$ns initial_node_pos $n20 20

set n21 [$ns node]

$n21 set X_ 263

$n21 set Y_ 306

$n21 set Z_ 0.0

$ns initial_node_pos $n21 20

set n22 [$ns node]

$n22 set X_ 261

$n22 set Y_ 209

$n22 set Z_ 0.0

$ns initial_node_pos $n22 20

set n23 [$ns node]

$n23 set X_ 240

$n23 set Y_ 115

$n23 set Z_ 0.0

$ns initial_node_pos $n23 20

set n24 [$ns node]

$n24 set X_ 313

$n24 set Y_ 29

$n24 set Z_ 0.0

$ns initial_node_pos $n24 20

#===================================

Generate movement

#===================================

$ns at 0 " $n6 setdest 1086 453 40 "

$ns at 10 " $n18 setdest 877 39 40 "

$ns at 20 " $n18 setdest 500 117 40 "

$ns at 60 " $n18 setdest 400 100 40 "

$ns at 40 " $n6 setdest 400 500 40 "

$ns at 10 " $n15 setdest 650 470 40 "

$ns at 10 " $n5 setdest 550 220 40 "

#===================================

Agents Definition

#===================================

#Setup a UDP connection

set udp0 [new Agent/UDP]

$ns attach-agent $n21 $udp0

set null1 [new Agent/Null]

$ns attach-agent $n18 $null1

$ns connect $udp0 $null1

$udp0 set packetSize_ 1500

67

#Setup a CBR Application over UDP connection

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set packetSize_ 1000

$cbr0 set rate_ 0.1Mb

$cbr0 set random_ null

$ns at 1.0 "$cbr0 start"

$ns at 20.0 "$cbr0 stop"

#Setup a UDP connection

set udp1 [new Agent/UDP]

$ns attach-agent $n20 $udp1

set null2 [new Agent/Null]

$ns attach-agent $n18 $null2

$ns connect $udp1 $null1

$udp1 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr1 [new Application/Traffic/CBR]

$cbr1 attach-agent $udp1

$cbr1 set packetSize_ 1000

$cbr1 set rate_ 0.1Mb

$cbr1 set random_ null

$ns at 20.0 "$cbr1 start"

$ns at 40.0 "$cbr1 stop"

#Setup a UDP connection

set udp3 [new Agent/UDP]

$ns attach-agent $n22 $udp3

set null3 [new Agent/Null]

$ns attach-agent $n18 $null3

$ns connect $udp3 $null1

$udp3 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr2 [new Application/Traffic/CBR]

$cbr2 attach-agent $udp3

$cbr2 set packetSize_ 1000

$cbr2 set rate_ 0.1Mb

$cbr2 set random_ null

$ns at 40.0 "$cbr2 start"

$ns at 60.0 "$cbr2 stop"

set udp4 [new Agent/UDP]

$ns attach-agent $n8 $udp4

set null4 [new Agent/Null]

$ns attach-agent $n18 $null4

$ns connect $udp4 $null4

68

$udp4 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr4 [new Application/Traffic/CBR]

$cbr4 attach-agent $udp4

$cbr4 set packetSize_ 1000

$cbr4 set rate_ 0.1Mb

$cbr4 set random_ null

$ns at 60.0 "$cbr4 start"

$ns at 80.0 "$cbr4 stop"

set udp5 [new Agent/UDP]

$ns attach-agent $n16 $udp5

set null5 [new Agent/Null]

$ns attach-agent $n18 $null5

$ns connect $udp5 $null5

$udp5 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr5 [new Application/Traffic/CBR]

$cbr5 attach-agent $udp5

$cbr5 set packetSize_ 1000

$cbr5 set rate_ 0.1Mb

$cbr5 set random_ null

$ns at 80.0 "$cbr5 start"

$ns at 100.0 "$cbr5 stop"

#===================================

Termination

#===================================

#Define a 'finish' procedure

proc finish {} {

 global ns tracefile namfile

 $ns flush-trace

 close $tracefile

 close $namfile

 exec nam normal.nam &

 exit 0

}

for {set i 0} {$i < $val(nn) } { incr i } {

 $ns at $val(stop) "\$n$i reset"

}

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

$ns at $val(stop) "finish"

$ns at $val(stop) "puts \"done\" ; $ns halt"

$ns run

69

Blackhole Attack Code

blackholeattack.tcl

#===================================

Simulation parameters setup

#===================================

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 25 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 1200 ;# X dimension of topography

set val(y) 600 ;# Y dimension of topography

set val(stop) 120 ;# time of simulation end (s)

set val(energymodel) EnergyModel ;

set val(radiomodel) RadioModel ;

set val(initialenergy) 1000 ;# Initial energy (J)

#===================================

Initialization

#===================================

#Create a ns simulator

set ns [new Simulator]

#Setup topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

#Open the NS trace file

set tracefile [open blackhole.tr w]

$ns trace-all $tracefile

#Open the NAM trace file

set namfile [open blackhole.nam w]

$ns namtrace-all $namfile

$ns namtrace-all-wireless $namfile $val(x) $val(y)

set chan [new $val(chan)];# Create wireless channel

70

#===================================

Mobile node parameter setup

#===================================

$ns node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channel $chan \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace ON \

 -energyModel $val(energymodel) \

 -idlePower 1.0 \

 -rxPower 1.0 \

 -txPower 2.0 \

 -sleepPower 0.001 \

 -transitionPower 0.2 \

 -transitionTime 0.005 \

 -initialEnergy $val(initialenergy)

#===================================

Nodes Definition

#===================================

#Create 25 nodes

set n0 [$ns node]

$n0 set X_ 663

$n0 set Y_ 484

$n0 set Z_ 0.0

$ns initial_node_pos $n0 20

set n1 [$ns node]

$n1 set X_ 466

$n1 set Y_ 407

$n1 set Z_ 0.0

$ns initial_node_pos $n1 20

set n2 [$ns node]

$n2 set X_ 871

$n2 set Y_ 426

$n2 set Z_ 0.0

71

$ns initial_node_pos $n2 20

set n3 [$ns node]

$n3 set X_ 668

$n3 set Y_ 393

$n3 set Z_ 0.0

$ns initial_node_pos $n3 20

set n4 [$ns node]

$n4 set X_ 558

$n4 set Y_ 320

$n4 set Z_ 0.0

$ns initial_node_pos $n4 20

set n5 [$ns node]

$n5 set X_ 781

$n5 set Y_ 317

$n5 set Z_ 0.0

$ns initial_node_pos $n5 20

set n6 [$ns node]

$n6 set X_ 523

$n6 set Y_ 222

$n6 set Z_ 0.0

$ns initial_node_pos $n6 20

set n7 [$ns node]

$n7 set X_ 671

$n7 set Y_ 194

$n7 set Z_ 0.0

$ns initial_node_pos $n7 20

set n8 [$ns node]

$n8 set X_ 891

$n8 set Y_ 224

$n8 set Z_ 0.0

$ns initial_node_pos $n8 20

set n9 [$ns node]

$n9 set X_ 476

$n9 set Y_ 117

$n9 set Z_ 0.0

$ns initial_node_pos $n9 20

set n10 [$ns node]

$n10 set X_ 674

$n10 set Y_ 112

$n10 set Z_ 0.0

$ns initial_node_pos $n10 20

set n11 [$ns node]

$n11 set X_ 895

$n11 set Y_ 130

$n11 set Z_ 0.0

72

$ns initial_node_pos $n11 20

set n12 [$ns node]

$n12 set X_ 500

$n12 set Y_ 300

$n12 set Z_ 0.0

$ns initial_node_pos $n12 20

set n13 [$ns node]

$n13 set X_ 687

$n13 set Y_ 36

$n13 set Z_ 0.0

$ns initial_node_pos $n13 20

set n14 [$ns node]

$n14 set X_ 877

$n14 set Y_ 39

$n14 set Z_ 0.0

$ns initial_node_pos $n14 20

set n15 [$ns node]

$n15 set X_ 373

$n15 set Y_ 271

$n15 set Z_ 0.0

$ns initial_node_pos $n15 20

set n16 [$ns node]

$n16 set X_ 990

$n16 set Y_ 306

$n16 set Z_ 0.0

$ns initial_node_pos $n16 20

set n17 [$ns node]

$n17 set X_ 989

$n17 set Y_ 407

$n17 set Z_ 0.0

$ns initial_node_pos $n17 20

set n18 [$ns node]

$n18 set X_ 1086

$n18 set Y_ 453

$n18 set Z_ 0.0

$ns initial_node_pos $n18 20

set n19 [$ns node]

$n19 set X_ 455

$n19 set Y_ 479

$n19 set Z_ 0.0

$ns initial_node_pos $n19 20

set n20 [$ns node]

$n20 set X_ 350

$n20 set Y_ 434

$n20 set Z_ 0.0

73

$ns initial_node_pos $n20 20

set n21 [$ns node]

$n21 set X_ 263

$n21 set Y_ 306

$n21 set Z_ 0.0

$ns initial_node_pos $n21 20

set n22 [$ns node]

$n22 set X_ 261

$n22 set Y_ 209

$n22 set Z_ 0.0

$ns initial_node_pos $n22 20

set n23 [$ns node]

$n23 set X_ 240

$n23 set Y_ 115

$n23 set Z_ 0.0

$ns initial_node_pos $n23 20

set n24 [$ns node]

$n24 set X_ 313

$n24 set Y_ 29

$n24 set Z_ 0.0

$ns initial_node_pos $n24 20

#===================================

Generate movement

#===================================

$ns at 0 " $n6 setdest 1086 453 40 "

$ns at 10 " $n18 setdest 877 39 40 "

$ns at 20 " $n18 setdest 500 117 40 "

$ns at 60 " $n18 setdest 400 100 40 "

$ns at 40 " $n6 setdest 400 500 40 "

$ns at 10 " $n15 setdest 650 470 40 "

$ns at 10 " $n5 setdest 550 220 40 "

#Blackhole attackers

$ns at 0.0 "[$n7 set ragent_] blackhole"

$ns at 0.0 "[$n8 set ragent_] blackhole"

$ns at 0.0 "[$n10 set ragent_] blackhole"

#===================================

Agents Definition

#===================================

#Setup a UDP connection

set udp0 [new Agent/UDP]

$ns attach-agent $n21 $udp0

set null1 [new Agent/Null]

74

$ns attach-agent $n18 $null1

$ns connect $udp0 $null1

$udp0 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set packetSize_ 1000

$cbr0 set rate_ 0.1Mb

$cbr0 set random_ null

$ns at 1.0 "$cbr0 start"

$ns at 20.0 "$cbr0 stop"

#Setup a UDP connection

set udp1 [new Agent/UDP]

$ns attach-agent $n20 $udp1

set null2 [new Agent/Null]

$ns attach-agent $n18 $null2

$ns connect $udp1 $null1

$udp1 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr1 [new Application/Traffic/CBR]

$cbr1 attach-agent $udp1

$cbr1 set packetSize_ 1000

$cbr1 set rate_ 0.1Mb

$cbr1 set random_ null

$ns at 20.0 "$cbr1 start"

$ns at 40.0 "$cbr1 stop"

#Setup a UDP connection

set udp3 [new Agent/UDP]

$ns attach-agent $n22 $udp3

set null3 [new Agent/Null]

$ns attach-agent $n18 $null3

$ns connect $udp3 $null1

$udp3 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr2 [new Application/Traffic/CBR]

$cbr2 attach-agent $udp3

$cbr2 set packetSize_ 1000

$cbr2 set rate_ 0.1Mb

$cbr2 set random_ null

$ns at 40.0 "$cbr2 start"

$ns at 60.0 "$cbr2 stop"

set udp4 [new Agent/UDP]

75

$ns attach-agent $n8 $udp4

set null4 [new Agent/Null]

$ns attach-agent $n18 $null4

$ns connect $udp4 $null4

$udp4 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr4 [new Application/Traffic/CBR]

$cbr4 attach-agent $udp4

$cbr4 set packetSize_ 1000

$cbr4 set rate_ 0.1Mb

$cbr4 set random_ null

$ns at 60.0 "$cbr4 start"

$ns at 80.0 "$cbr4 stop"

set udp5 [new Agent/UDP]

$ns attach-agent $n16 $udp5

set null5 [new Agent/Null]

$ns attach-agent $n18 $null5

$ns connect $udp5 $null5

$udp5 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr5 [new Application/Traffic/CBR]

$cbr5 attach-agent $udp5

$cbr5 set packetSize_ 1000

$cbr5 set rate_ 0.1Mb

$cbr5 set random_ null

$ns at 80.0 "$cbr5 start"

$ns at 100.0 "$cbr5 stop"

#===================================

Termination

#===================================

#Define a 'finish' procedure

proc finish {} {

 global ns tracefile namfile

 $ns flush-trace

 close $tracefile

 close $namfile

 exec nam blackhole.nam &

 exit 0

}

for {set i 0} {$i < $val(nn) } { incr i } {

 $ns at $val(stop) "\$n$i reset"

}

76

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

$ns at $val(stop) "finish"

$ns at $val(stop) "puts \"done\" ; $ns halt"

$ns run

77

Rushing Attack Code

rushingattack.tcl

#===================================

Simulation parameters setup

#===================================

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 25 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 1200 ;# X dimension of topography

set val(y) 600 ;# Y dimension of topography

set val(stop) 120 ;# time of simulation end (s)

set val(energymodel) EnergyModel ;

set val(radiomodel) RadioModel ;

set val(initialenergy) 1000 ;# Initial energy (J)

#===================================

Initialization

#===================================

#Create a ns simulator

set ns [new Simulator]

#Setup topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

#Open the NS trace file

set tracefile [open rushing.tr w]

$ns trace-all $tracefile

#Open the NAM trace file

set namfile [open rushing.nam w]

$ns namtrace-all $namfile

$ns namtrace-all-wireless $namfile $val(x) $val(y)

set chan [new $val(chan)];# Create wireless channel

#===================================

Mobile node parameter setup

78

#===================================

$ns node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channel $chan \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace ON \

 -movementTrace ON \

 -energyModel $val(energymodel) \

 -idlePower 1.0 \

 -rxPower 1.0 \

 -txPower 2.0 \

 -sleepPower 0.001 \

 -transitionPower 0.2 \

 -transitionTime 0.005 \

 -initialEnergy $val(initialenergy)

#===================================

Nodes Definition

#===================================

#Create 25 nodes

set n0 [$ns node]

$n0 set X_ 663

$n0 set Y_ 484

$n0 set Z_ 0.0

$ns initial_node_pos $n0 20

set n1 [$ns node]

$n1 set X_ 466

$n1 set Y_ 407

$n1 set Z_ 0.0

$ns initial_node_pos $n1 20

set n2 [$ns node]

$n2 set X_ 871

$n2 set Y_ 426

$n2 set Z_ 0.0

$ns initial_node_pos $n2 20

set n3 [$ns node]

79

$n3 set X_ 668

$n3 set Y_ 393

$n3 set Z_ 0.0

$ns initial_node_pos $n3 20

set n4 [$ns node]

$n4 set X_ 558

$n4 set Y_ 320

$n4 set Z_ 0.0

$ns initial_node_pos $n4 20

set n5 [$ns node]

$n5 set X_ 781

$n5 set Y_ 317

$n5 set Z_ 0.0

$ns initial_node_pos $n5 20

set n6 [$ns node]

$n6 set X_ 523

$n6 set Y_ 222

$n6 set Z_ 0.0

$ns initial_node_pos $n6 20

set n7 [$ns node]

$n7 set X_ 671

$n7 set Y_ 194

$n7 set Z_ 0.0

$ns initial_node_pos $n7 20

set n8 [$ns node]

$n8 set X_ 891

$n8 set Y_ 224

$n8 set Z_ 0.0

$ns initial_node_pos $n8 20

set n9 [$ns node]

$n9 set X_ 476

$n9 set Y_ 117

$n9 set Z_ 0.0

$ns initial_node_pos $n9 20

set n10 [$ns node]

$n10 set X_ 674

$n10 set Y_ 112

$n10 set Z_ 0.0

$ns initial_node_pos $n10 20

set n11 [$ns node]

$n11 set X_ 895

$n11 set Y_ 130

$n11 set Z_ 0.0

$ns initial_node_pos $n11 20

set n12 [$ns node]

80

$n12 set X_ 500

$n12 set Y_ 300

$n12 set Z_ 0.0

$ns initial_node_pos $n12 20

set n13 [$ns node]

$n13 set X_ 687

$n13 set Y_ 36

$n13 set Z_ 0.0

$ns initial_node_pos $n13 20

set n14 [$ns node]

$n14 set X_ 877

$n14 set Y_ 39

$n14 set Z_ 0.0

$ns initial_node_pos $n14 20

set n15 [$ns node]

$n15 set X_ 373

$n15 set Y_ 271

$n15 set Z_ 0.0

$ns initial_node_pos $n15 20

set n16 [$ns node]

$n16 set X_ 990

$n16 set Y_ 306

$n16 set Z_ 0.0

$ns initial_node_pos $n16 20

set n17 [$ns node]

$n17 set X_ 989

$n17 set Y_ 407

$n17 set Z_ 0.0

$ns initial_node_pos $n17 20

set n18 [$ns node]

$n18 set X_ 1086

$n18 set Y_ 453

$n18 set Z_ 0.0

$ns initial_node_pos $n18 20

set n19 [$ns node]

$n19 set X_ 455

$n19 set Y_ 479

$n19 set Z_ 0.0

$ns initial_node_pos $n19 20

set n20 [$ns node]

$n20 set X_ 350

$n20 set Y_ 434

$n20 set Z_ 0.0

$ns initial_node_pos $n20 20

set n21 [$ns node]

81

$n21 set X_ 263

$n21 set Y_ 306

$n21 set Z_ 0.0

$ns initial_node_pos $n21 20

set n22 [$ns node]

$n22 set X_ 261

$n22 set Y_ 209

$n22 set Z_ 0.0

$ns initial_node_pos $n22 20

set n23 [$ns node]

$n23 set X_ 240

$n23 set Y_ 115

$n23 set Z_ 0.0

$ns initial_node_pos $n23 20

set n24 [$ns node]

$n24 set X_ 313

$n24 set Y_ 29

$n24 set Z_ 0.0

$ns initial_node_pos $n24 20

#===================================

Generate movement

#===================================

$ns at 0 " $n6 setdest 1086 453 40 "

$ns at 10 " $n18 setdest 877 39 40 "

$ns at 20 " $n18 setdest 500 117 40 "

$ns at 60 " $n18 setdest 400 100 40 "

$ns at 40 " $n6 setdest 400 500 40 "

$ns at 10 " $n15 setdest 650 470 40 "

$ns at 10 " $n5 setdest 550 220 40 "

#$ns at 40 " $n0 t1 "

#Rushing attackers

$ns at 0.0 "[$n7 set ragent_] rushingattack"

$ns at 0.0 "[$n8 set ragent_] rushingattack"

$ns at 0.0 "[$n10 set ragent_] rushingattack"

#===================================

Agents Definition

#===================================

#Setup a UDP connection

set udp0 [new Agent/UDP]

$ns attach-agent $n21 $udp0

set null1 [new Agent/Null]

82

$ns attach-agent $n18 $null1

$ns connect $udp0 $null1

$udp0 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set packetSize_ 1000

$cbr0 set rate_ 0.1Mb

$cbr0 set random_ null

$ns at 1.0 "$cbr0 start"

$ns at 20.0 "$cbr0 stop"

#Setup a UDP connection

set udp1 [new Agent/UDP]

$ns attach-agent $n20 $udp1

set null2 [new Agent/Null]

$ns attach-agent $n18 $null2

$ns connect $udp1 $null1

$udp1 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr1 [new Application/Traffic/CBR]

$cbr1 attach-agent $udp1

$cbr1 set packetSize_ 1000

$cbr1 set rate_ 0.1Mb

$cbr1 set random_ null

$ns at 20.0 "$cbr1 start"

$ns at 40.0 "$cbr1 stop"

#Setup a UDP connection

set udp3 [new Agent/UDP]

$ns attach-agent $n22 $udp3

set null3 [new Agent/Null]

$ns attach-agent $n18 $null3

$ns connect $udp3 $null1

$udp3 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr2 [new Application/Traffic/CBR]

$cbr2 attach-agent $udp3

$cbr2 set packetSize_ 1000

$cbr2 set rate_ 0.1Mb

$cbr2 set random_ null

$ns at 40.0 "$cbr2 start"

$ns at 60.0 "$cbr2 stop"

set udp4 [new Agent/UDP]

83

$ns attach-agent $n8 $udp4

set null4 [new Agent/Null]

$ns attach-agent $n18 $null4

$ns connect $udp4 $null4

$udp4 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr4 [new Application/Traffic/CBR]

$cbr4 attach-agent $udp4

$cbr4 set packetSize_ 1000

$cbr4 set rate_ 0.1Mb

$cbr4 set random_ null

$ns at 60.0 "$cbr4 start"

$ns at 80.0 "$cbr4 stop"

set udp5 [new Agent/UDP]

$ns attach-agent $n16 $udp5

set null5 [new Agent/Null]

$ns attach-agent $n18 $null5

$ns connect $udp5 $null5

$udp5 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr5 [new Application/Traffic/CBR]

$cbr5 attach-agent $udp5

$cbr5 set packetSize_ 1000

$cbr5 set rate_ 0.1Mb

$cbr5 set random_ null

$ns at 80.0 "$cbr5 start"

$ns at 100.0 "$cbr5 stop"

#===================================

Termination

#===================================

#Define a 'finish' procedure

proc finish {} {

 global ns tracefile namfile

 $ns flush-trace

 close $tracefile

 close $namfile

 exec nam rushing.nam &

 exit 0

}

for {set i 0} {$i < $val(nn) } { incr i } {

 $ns at $val(stop) "\$n$i reset"

}

84

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

$ns at $val(stop) "finish"

$ns at $val(stop) "puts \"done\" ; $ns halt"

$ns run

85

Flooding Attack Code

floodingattack.tcl

#===================================

Simulation parameters setup

#===================================

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 25 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 1200 ;# X dimension of topography

set val(y) 600 ;# Y dimension of topography

set val(stop) 120 ;# time of simulation end (s)

set val(energymodel) EnergyModel ;

set val(radiomodel) RadioModel ;

set val(initialenergy) 1000 ;# Initial energy (J)

#===================================

Initialization

#===================================

#Create a ns simulator

set ns [new Simulator]

#Setup topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

#Open the NS trace file

set tracefile [open flooding.tr w]

$ns trace-all $tracefile

#Open the NAM trace file

set namfile [open flooding.nam w]

$ns namtrace-all $namfile

$ns namtrace-all-wireless $namfile $val(x) $val(y)

set chan [new $val(chan)];# Create wireless channel

#===================================

Mobile node parameter setup

86

#===================================

$ns node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channel $chan \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace ON \

 -energyModel $val(energymodel) \

 -idlePower 1.0 \

 -rxPower 1.0 \

 -txPower 2.0 \

 -sleepPower 0.001 \

 -transitionPower 0.2 \

 -transitionTime 0.005 \

 -initialEnergy $val(initialenergy)

#===================================

Nodes Definition

#===================================

#Create 25 nodes

set n0 [$ns node]

$n0 set X_ 663

$n0 set Y_ 484

$n0 set Z_ 0.0

$ns initial_node_pos $n0 20

set n1 [$ns node]

$n1 set X_ 466

$n1 set Y_ 407

$n1 set Z_ 0.0

$ns initial_node_pos $n1 20

set n2 [$ns node]

$n2 set X_ 871

$n2 set Y_ 426

$n2 set Z_ 0.0

$ns initial_node_pos $n2 20

set n3 [$ns node]

87

$n3 set X_ 668

$n3 set Y_ 393

$n3 set Z_ 0.0

$ns initial_node_pos $n3 20

set n4 [$ns node]

$n4 set X_ 558

$n4 set Y_ 320

$n4 set Z_ 0.0

$ns initial_node_pos $n4 20

set n5 [$ns node]

$n5 set X_ 781

$n5 set Y_ 317

$n5 set Z_ 0.0

$ns initial_node_pos $n5 20

set n6 [$ns node]

$n6 set X_ 523

$n6 set Y_ 222

$n6 set Z_ 0.0

$ns initial_node_pos $n6 20

set n7 [$ns node]

$n7 set X_ 671

$n7 set Y_ 194

$n7 set Z_ 0.0

$ns initial_node_pos $n7 20

set n8 [$ns node]

$n8 set X_ 891

$n8 set Y_ 224

$n8 set Z_ 0.0

$ns initial_node_pos $n8 20

set n9 [$ns node]

$n9 set X_ 476

$n9 set Y_ 117

$n9 set Z_ 0.0

$ns initial_node_pos $n9 20

set n10 [$ns node]

$n10 set X_ 674

$n10 set Y_ 112

$n10 set Z_ 0.0

$ns initial_node_pos $n10 20

set n11 [$ns node]

$n11 set X_ 895

$n11 set Y_ 130

$n11 set Z_ 0.0

$ns initial_node_pos $n11 20

set n12 [$ns node]

88

$n12 set X_ 500

$n12 set Y_ 300

$n12 set Z_ 0.0

$ns initial_node_pos $n12 20

set n13 [$ns node]

$n13 set X_ 687

$n13 set Y_ 36

$n13 set Z_ 0.0

$ns initial_node_pos $n13 20

set n14 [$ns node]

$n14 set X_ 877

$n14 set Y_ 39

$n14 set Z_ 0.0

$ns initial_node_pos $n14 20

set n15 [$ns node]

$n15 set X_ 373

$n15 set Y_ 271

$n15 set Z_ 0.0

$ns initial_node_pos $n15 20

set n16 [$ns node]

$n16 set X_ 990

$n16 set Y_ 306

$n16 set Z_ 0.0

$ns initial_node_pos $n16 20

set n17 [$ns node]

$n17 set X_ 989

$n17 set Y_ 407

$n17 set Z_ 0.0

$ns initial_node_pos $n17 20

set n18 [$ns node]

$n18 set X_ 1086

$n18 set Y_ 453

$n18 set Z_ 0.0

$ns initial_node_pos $n18 20

set n19 [$ns node]

$n19 set X_ 455

$n19 set Y_ 479

$n19 set Z_ 0.0

$ns initial_node_pos $n19 20

set n20 [$ns node]

$n20 set X_ 350

$n20 set Y_ 434

$n20 set Z_ 0.0

$ns initial_node_pos $n20 20

set n21 [$ns node]

89

$n21 set X_ 263

$n21 set Y_ 306

$n21 set Z_ 0.0

$ns initial_node_pos $n21 20

set n22 [$ns node]

$n22 set X_ 261

$n22 set Y_ 209

$n22 set Z_ 0.0

$ns initial_node_pos $n22 20

set n23 [$ns node]

$n23 set X_ 240

$n23 set Y_ 115

$n23 set Z_ 0.0

$ns initial_node_pos $n23 20

set n24 [$ns node]

$n24 set X_ 313

$n24 set Y_ 29

$n24 set Z_ 0.0

$ns initial_node_pos $n24 20

#===================================

Generate movement

#===================================

$ns at 0 " $n6 setdest 1086 453 40 "

$ns at 10 " $n18 setdest 877 39 40 "

$ns at 20 " $n18 setdest 500 117 40 "

$ns at 60 " $n18 setdest 400 100 40 "

$ns at 40 " $n6 setdest 400 500 40 "

$ns at 10 " $n15 setdest 650 470 40 "

$ns at 10 " $n5 setdest 550 220 40 "

#Flooding attackers

$ns at 0.0 "[$n7 set ragent_] flooder"

$ns at 0.0 "[$n8 set ragent_] flooder"

$ns at 0.0 "[$n10 set ragent_] flooder"

#===================================

Agents Definition

#===================================

#Setup a UDP connection

set udp0 [new Agent/UDP]

$ns attach-agent $n21 $udp0

set null1 [new Agent/Null]

90

$ns attach-agent $n18 $null1

$ns connect $udp0 $null1

$udp0 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set packetSize_ 1000

$cbr0 set rate_ 0.1Mb

$cbr0 set random_ null

$ns at 1.0 "$cbr0 start"

$ns at 20.0 "$cbr0 stop"

#Setup a UDP connection

set udp1 [new Agent/UDP]

$ns attach-agent $n20 $udp1

set null2 [new Agent/Null]

$ns attach-agent $n18 $null2

$ns connect $udp1 $null1

$udp1 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr1 [new Application/Traffic/CBR]

$cbr1 attach-agent $udp1

$cbr1 set packetSize_ 1000

$cbr1 set rate_ 0.1Mb

$cbr1 set random_ null

$ns at 20.0 "$cbr1 start"

$ns at 40.0 "$cbr1 stop"

#Setup a UDP connection

set udp3 [new Agent/UDP]

$ns attach-agent $n22 $udp3

set null3 [new Agent/Null]

$ns attach-agent $n18 $null3

$ns connect $udp3 $null1

$udp3 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr2 [new Application/Traffic/CBR]

$cbr2 attach-agent $udp3

$cbr2 set packetSize_ 1000

$cbr2 set rate_ 0.1Mb

$cbr2 set random_ null

$ns at 40.0 "$cbr2 start"

$ns at 60.0 "$cbr2 stop"

set udp4 [new Agent/UDP]

91

$ns attach-agent $n8 $udp4

set null4 [new Agent/Null]

$ns attach-agent $n18 $null4

$ns connect $udp4 $null4

$udp4 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr4 [new Application/Traffic/CBR]

$cbr4 attach-agent $udp4

$cbr4 set packetSize_ 1000

$cbr4 set rate_ 0.1Mb

$cbr4 set random_ null

$ns at 60.0 "$cbr4 start"

$ns at 80.0 "$cbr4 stop"

set udp5 [new Agent/UDP]

$ns attach-agent $n16 $udp5

set null5 [new Agent/Null]

$ns attach-agent $n18 $null5

$ns connect $udp5 $null5

$udp5 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr5 [new Application/Traffic/CBR]

$cbr5 attach-agent $udp5

$cbr5 set packetSize_ 1000

$cbr5 set rate_ 0.1Mb

$cbr5 set random_ null

$ns at 80.0 "$cbr5 start"

$ns at 100.0 "$cbr5 stop"

#===================================

Termination

#===================================

#Define a 'finish' procedure

proc finish {} {

 global ns tracefile namfile

 $ns flush-trace

 close $tracefile

 close $namfile

 exec nam flooding.nam &

 exit 0

}

for {set i 0} {$i < $val(nn) } { incr i } {

 $ns at $val(stop) "\$n$i reset"

}

92

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

$ns at $val(stop) "finish"

$ns at $val(stop) "puts \"done\" ; $ns halt"

$ns run

93

94

Selective Forwarding Attack Code

grayholeattack.tcl

#===================================

Simulation parameters setup

#===================================

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 25 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 1200 ;# X dimension of topography

set val(y) 600 ;# Y dimension of topography

set val(stop) 120 ;# time of simulation end (s)

set val(energymodel) EnergyModel ;

set val(radiomodel) RadioModel ;

set val(initialenergy) 1000 ;# Initial energy (J)

#===================================

Initialization

#===================================

#Create a ns simulator

set ns [new Simulator]

#Setup topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

#Open the NS trace file

set tracefile [open grayhole.tr w]

$ns trace-all $tracefile

#Open the NAM trace file

set namfile [open grayhole.nam w]

$ns namtrace-all $namfile

$ns namtrace-all-wireless $namfile $val(x) $val(y)

set chan [new $val(chan)];# Create wireless channel

#===================================

Mobile node parameter setup

95

#===================================

$ns node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channel $chan \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace ON \

 -energyModel $val(energymodel) \

 -idlePower 1.0 \

 -rxPower 1.0 \

 -txPower 2.0 \

 -sleepPower 0.001 \

 -transitionPower 0.2 \

 -transitionTime 0.005 \

 -initialEnergy $val(initialenergy)

#===================================

Nodes Definition

#===================================

#Create 25 nodes

set n0 [$ns node]

$n0 set X_ 663

$n0 set Y_ 484

$n0 set Z_ 0.0

$ns initial_node_pos $n0 20

set n1 [$ns node]

$n1 set X_ 466

$n1 set Y_ 407

$n1 set Z_ 0.0

$ns initial_node_pos $n1 20

set n2 [$ns node]

$n2 set X_ 871

$n2 set Y_ 426

$n2 set Z_ 0.0

$ns initial_node_pos $n2 20

set n3 [$ns node]

96

$n3 set X_ 668

$n3 set Y_ 393

$n3 set Z_ 0.0

$ns initial_node_pos $n3 20

set n4 [$ns node]

$n4 set X_ 558

$n4 set Y_ 320

$n4 set Z_ 0.0

$ns initial_node_pos $n4 20

set n5 [$ns node]

$n5 set X_ 781

$n5 set Y_ 317

$n5 set Z_ 0.0

$ns initial_node_pos $n5 20

set n6 [$ns node]

$n6 set X_ 523

$n6 set Y_ 222

$n6 set Z_ 0.0

$ns initial_node_pos $n6 20

set n7 [$ns node]

$n7 set X_ 671

$n7 set Y_ 194

$n7 set Z_ 0.0

$ns initial_node_pos $n7 20

set n8 [$ns node]

$n8 set X_ 891

$n8 set Y_ 224

$n8 set Z_ 0.0

$ns initial_node_pos $n8 20

set n9 [$ns node]

$n9 set X_ 476

$n9 set Y_ 117

$n9 set Z_ 0.0

$ns initial_node_pos $n9 20

set n10 [$ns node]

$n10 set X_ 674

$n10 set Y_ 112

$n10 set Z_ 0.0

$ns initial_node_pos $n10 20

set n11 [$ns node]

$n11 set X_ 895

$n11 set Y_ 130

$n11 set Z_ 0.0

$ns initial_node_pos $n11 20

set n12 [$ns node]

97

$n12 set X_ 500

$n12 set Y_ 300

$n12 set Z_ 0.0

$ns initial_node_pos $n12 20

set n13 [$ns node]

$n13 set X_ 687

$n13 set Y_ 36

$n13 set Z_ 0.0

$ns initial_node_pos $n13 20

set n14 [$ns node]

$n14 set X_ 877

$n14 set Y_ 39

$n14 set Z_ 0.0

$ns initial_node_pos $n14 20

set n15 [$ns node]

$n15 set X_ 373

$n15 set Y_ 271

$n15 set Z_ 0.0

$ns initial_node_pos $n15 20

set n16 [$ns node]

$n16 set X_ 990

$n16 set Y_ 306

$n16 set Z_ 0.0

$ns initial_node_pos $n16 20

set n17 [$ns node]

$n17 set X_ 989

$n17 set Y_ 407

$n17 set Z_ 0.0

$ns initial_node_pos $n17 20

set n18 [$ns node]

$n18 set X_ 1086

$n18 set Y_ 453

$n18 set Z_ 0.0

$ns initial_node_pos $n18 20

set n19 [$ns node]

$n19 set X_ 455

$n19 set Y_ 479

$n19 set Z_ 0.0

$ns initial_node_pos $n19 20

set n20 [$ns node]

$n20 set X_ 350

$n20 set Y_ 434

$n20 set Z_ 0.0

$ns initial_node_pos $n20 20

set n21 [$ns node]

98

$n21 set X_ 263

$n21 set Y_ 306

$n21 set Z_ 0.0

$ns initial_node_pos $n21 20

set n22 [$ns node]

$n22 set X_ 261

$n22 set Y_ 209

$n22 set Z_ 0.0

$ns initial_node_pos $n22 20

set n23 [$ns node]

$n23 set X_ 240

$n23 set Y_ 115

$n23 set Z_ 0.0

$ns initial_node_pos $n23 20

set n24 [$ns node]

$n24 set X_ 313

$n24 set Y_ 29

$n24 set Z_ 0.0

$ns initial_node_pos $n24 20

#===================================

Generate movement

#===================================

$ns at 0 " $n6 setdest 1086 453 40 "

$ns at 10 " $n18 setdest 877 39 40 "

$ns at 20 " $n18 setdest 500 117 40 "

$ns at 60 " $n18 setdest 400 100 40 "

$ns at 40 " $n6 setdest 400 500 40 "

$ns at 10 " $n15 setdest 650 470 40 "

$ns at 10 " $n5 setdest 550 220 40 "

#Flooding attackers

$ns at 0.0 "[$n7 set ragent_] grayhole"

$ns at 0.0 "[$n8 set ragent_] grayhole"

$ns at 0.0 "[$n10 set ragent_] grayhole"

#===================================

Agents Definition

#===================================

#Setup a UDP connection

set udp0 [new Agent/UDP]

$ns attach-agent $n21 $udp0

set null1 [new Agent/Null]

99

$ns attach-agent $n18 $null1

$ns connect $udp0 $null1

$udp0 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set packetSize_ 1000

$cbr0 set rate_ 0.1Mb

$cbr0 set random_ null

$ns at 1.0 "$cbr0 start"

$ns at 20.0 "$cbr0 stop"

#Setup a UDP connection

set udp1 [new Agent/UDP]

$ns attach-agent $n20 $udp1

set null2 [new Agent/Null]

$ns attach-agent $n18 $null2

$ns connect $udp1 $null1

$udp1 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr1 [new Application/Traffic/CBR]

$cbr1 attach-agent $udp1

$cbr1 set packetSize_ 1000

$cbr1 set rate_ 0.1Mb

$cbr1 set random_ null

$ns at 20.0 "$cbr1 start"

$ns at 40.0 "$cbr1 stop"

#Setup a UDP connection

set udp3 [new Agent/UDP]

$ns attach-agent $n22 $udp3

set null3 [new Agent/Null]

$ns attach-agent $n18 $null3

$ns connect $udp3 $null1

$udp3 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr2 [new Application/Traffic/CBR]

$cbr2 attach-agent $udp3

$cbr2 set packetSize_ 1000

$cbr2 set rate_ 0.1Mb

$cbr2 set random_ null

$ns at 40.0 "$cbr2 start"

$ns at 60.0 "$cbr2 stop"

set udp4 [new Agent/UDP]

100

$ns attach-agent $n8 $udp4

set null4 [new Agent/Null]

$ns attach-agent $n18 $null4

$ns connect $udp4 $null4

$udp4 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr4 [new Application/Traffic/CBR]

$cbr4 attach-agent $udp4

$cbr4 set packetSize_ 1000

$cbr4 set rate_ 0.1Mb

$cbr4 set random_ null

$ns at 60.0 "$cbr4 start"

$ns at 80.0 "$cbr4 stop"

set udp5 [new Agent/UDP]

$ns attach-agent $n16 $udp5

set null5 [new Agent/Null]

$ns attach-agent $n18 $null5

$ns connect $udp5 $null5

$udp5 set packetSize_ 1500

#Setup a CBR Application over UDP connection

set cbr5 [new Application/Traffic/CBR]

$cbr5 attach-agent $udp5

$cbr5 set packetSize_ 1000

$cbr5 set rate_ 0.1Mb

$cbr5 set random_ null

$ns at 80.0 "$cbr5 start"

$ns at 100.0 "$cbr5 stop"

#===================================

Termination

#===================================

#Define a 'finish' procedure

proc finish {} {

 global ns tracefile namfile

 $ns flush-trace

 close $tracefile

 close $namfile

 exec nam grayhole.nam &

 exit 0

}

for {set i 0} {$i < $val(nn) } { incr i } {

 $ns at $val(stop) "\$n$i reset"

}

101

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

$ns at $val(stop) "finish"

$ns at $val(stop) "puts \"done\" ; $ns halt"

$ns run

102

Generic Attack Code

aodv.h

 /*

 The Routing Agent

 */

 class AODV: public Agent

 {

 /*

 * History management

 */

 bool malicious;

 }

aodv.cc

AODV::AODV(nsaddr_t id) : Agent(PT_AODV), btimer(this), htimer(this),

ntimer(this), rtimer(this), lrtimer(this), rqueue(){

 index = id;

 seqno = 2;

 bid = 1;

 malicious=false;

 }

 int AODV::command(int argc, const char*const* argv)

 {

 if(argc == 2)

 {

 Tcl& tcl = Tcl::instance();

 if(strncasecmp(argv[1], "id", 2) == 0)

 {

 tcl.resultf("%d", index);

 return TCL_OK;

 }

 if(strcmp(argv[1], "hacker") == 0)

 {

 malicious=true;

 return TCL_OK;

 }

 }

 }

103

 /*

 Route Handling Functions

 */

 void AODV::rt_resolve(Packet *p)

 {

 // If i am a malicious node,

 if (malicious == true)

 {

 drop(p, DROP_RTR_NO_ROUTE);

 // DROP_RTR_NO_ROUTE is added for no reason

 return; //Required if you get pkt flow

not specified error.

 }

 }

aodv.tcl

In TCL file we will create we have to add the following line after packet transmission.

$ns at 0.0 "[$node_(0) set ragent_] hacker"

