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υξαλδ έ μ 

 

 

λξδεΪ γα άγ ζα θα υξαλδ ά π γ ληΪ κθ πδίζΫπκθ α εαγβΰβ ά ηκυ, εέ έ Μπ λ έηβ 

ΰδα βθ πκζτ δηβ ίκάγ δα πκυ ηκυ Ϋξ δ υ δ εα Ϊ β δΪλε δα πθ πλκπ υξδαευθ αζζΪ εαδ 

πθ η απ υξδαευθ ηκυ πκυ υθέ ΜΫ π βμ υθ λΰα έαμ κυ ηκυ πλκ Ϋφ λ  υεαδλέ μ, 

πδζκΰΫμ αζζΪ εαδ υηίκυζΫμ πκυ ά αθ εαγκλδ δεΫμ ΰδα βθ πκλ έα ηκυ σζα αυ Ϊ α Ϋ βέ Μ  

βθ εαγκ άΰβ ά κυ η  θΫπθ υ  εαδ β ΰθπλδηέα ηκυ ηααέ κυ απκ ζ έ βη έκ αγησ ΰδα 

σ δ Ϋξπ πδ τξ δέ Σκθ υξαλδ υ απσ εαλ δΪμέ 

πδπζΫκθ γα άγ ζα θα υξαλδ ά π α ηΫζβ βμ λδη ζκτμ πδ λκπάμ, κθ θαπζβλπ ά 

Καγβΰβ ά εέ έ θ ακυζΪεκ εαδ κθ θαπζβλπ ά Καγβΰβ ά εέ έ ΦαλΪεβ σξδ ησθκθ ΰδα δμ 

υηίκυζΫμ κυμ εαδ δμ πδ βηκθδεΫμ ΰθυ δμ δμ κπκέ μ ηκυ Ϋξκυθ πλκ φΫλ δ αζζΪ πέ βμ 

εαδ ΰδα κ ξλσθκ πκυ αφδΫλπ αθ β δσλγπ β βμ δπζπηα δεάμ αυ άμέ 

 β υθΫξ δα γα άγ ζα θα υξαλδ ά π σζκυμ κυμ ιαέλ κυμ πδ άηκθ μ πκυ έξα πμ 

εαγβΰβ Ϋμ  εα Ϊ β δΪλε δα πθ πλκπ υξδαευθ εαδ η απ υξδαευθ ηκυ πκυ υθ εαγυμ κδ 

ΰθυ δμ πκυ ηκυ πλκ Ϋφ λαθ ά αθ π λδ σ λκ απσ πκζτ δη μέ 

ΠαλΪζζβζα γα άγ ζα θα αθαφ λγυ εαδ θα υξαλδ ά π κυμ φέζκυμ ηκυ πκυ Ϊγβεαθ 

έπζα ηκυ εαδ η  άλδιαθ εα Ϊ β δΪλε δα βμ υΰΰλαφάμ βμ δπζπηα δεάμ αυ άμ 

λΰα έαμέ πέ βμ γΫζπ θα υξαλδ ά π γ ληΪ δμ υηφκδ ά λδΫμ εαδ φέζ μ ηκυ έ 

α δζ δΪ β εαδ έ  αηα κπκτζκυ ΰδα βθ πκζτ δηβ ίκάγ δα πκυ ηκυ Ϋξκυθ πλκ φΫλ δ αζζΪ 

εαδ ΰδα β άλδιά κυμέ   αυ σ κ βη έκ γα άγ ζα θα υξαλδ ά π εαδ βθ έ κυλζδυ β 

εαγυμ β υπκηκθά εαδ β υπκ άλδιά βμ ά αθ εαγκλδ δεΫμ ΰδα βθ κζκεζάλπ β αυ άμ βμ 

πλκ πΪγ δαμέ  

Οζκεζβλυθκθ αμ,  γα ηπκλκτ α θα παλαίζΫοπ φυ δεΪ βθ έ δα ηκυ βθ κδεκΰΫθ δα 

εαγυμ εσ αθ πΪθ α έπζα ηκυ δαελδ δεΪ εα Ϊ β δΪλε δα αυ άμ βμ πλκ πΪγ δαμ εαδ 

πέ ο   ηΫθα απσ βθ αλξάέ  

 

 

 

  



 

 

  



 

 

Π λέζβοβ 

 

 

Ο α δ δεσμ Ϋζ ΰξκμ  δ λΰα δυθ έθαδ Ϋθα υλΫπμ ξλβ δηκπκδκτη θκ λΰαζ έκ 

πκυ κξ τ δ κθ Ϋζ ΰξκ εαδ β ί ζ έπ β ίδκηβξαθδευθ δα δεα δυθ. Σ ξθδεΫμ η  

ηέα η αίζβ ά ηπκλκτθ θα ξλβ δηκπκδβγκτθ ΰδα βθ παλαεκζκτγβ β θσμ 

ξαλαε βλδ δεκτ  ηδα δα δεα έα, αζζΪ  πκζζΫμ π λδπ υ δμ π λ δ σ λα 

ξαλαε βλδ δεΪ πλΫπ δ θα παλαεκζκυγκτθ αδ αυ σξλκθαέ Η  αθ ιΪλ β β 

παλαεκζκτγβ β πθ ξαλαε βλδ δευθ, γα κ βΰά δ  φαζηΫθα υηπ λΪ ηα α, 

δσ δ β ξΫ β η αιτ πθ η αίζβ υθ θ ζαηίΪθ αδ υπσοβέ Έ δ, β ξλά β κυ 

Πκζυη αίζβ κτ  α δ δεκτ ζΫΰξκυ δ λΰα δυθ έθαδ αθαΰεαέα ΰδα βθ απκφυΰά 

Ϋ κδπθ εα α Ϊ πθέ  

θυ κδ π λδ σ λ μ ξθδεΫμ πκυ αθαπ τξγβεαθ βθ πκζυη αίζβ ά π λέπ π β 

αφκλκτθ βθ παλαεκζκτγβ β κυ ηΫ κυ πδπΫ κυ βμ δα δεα έαμ, β 

παλαεκζκτγβ β βμ δα πκλΪμ έθαδ ιέ κυ βηαθ δεά ζσΰπ κυ ΰ ΰκθσ κμ σ δ η  κ 

θα υηηκλφπγ έ β δα πκλΪ, γα κ βΰβγκτη   ηδελσ λβ ετηαθ β κυ ηΫ κυ  

πδπΫ κυ εαδ πκηΫθπμ  ηδα πδκ αγ λά δ λΰα έα.  

Η παλκτ α δα λδίά αλξδεΪ παλΫξ δ ηδα δ αΰπΰά κ  α δ δεσ Έζ ΰξκ 

δ λΰα δυθέ  β υθΫξ δα, παλκυ δΪα αδ β απζά π λέπ π β βμ ηκθκη αίζβ άμ  

παλαεκζκτγβ βμ βμ δα πκλΪμ. πδπλκ γΫ πμ, ηδα ε αηΫθβ αθα εσπβ β βμ 

ίδίζδκΰλαφέαμ ξ δεΪ η  α πκζυη αίζβ Ϊ δαΰλΪηηα α ζΫΰξκυ ΰδα β δα πκλΪ 

Ϋξ δ ΰέθ δ εαδ Ϋζκμ, παλκυ δΪακυη  ηδα τΰελδ β πθ  δαφσλπθ πκζυη αίζβ υθ 

δαΰλαηηΪ πθ ζΫΰξκυ πκυ ηφαθέακθ αδ β ξ δεά ίδίζδκΰλαφέαέ  



 

  



 

 

Abstract 

 

 

Statistical process control is a widely used tool which aims in controlling and 

improving an industrial or manufacturing process. Univariate techniques can be used 

for monitoring one characteristic in a process but in many situations more 

characteristics must be monitored simultaneously. By monitoring the characteristics 

independently, will lead on false conclusions because the relation between the 

variables is not taken into account. So, the usage of Multivariate Statistical Process 

Control is a necessity for avoiding such situations.  

While most techniques developed in the multivariate case deal with monitoring the 

mean vector of the process, monitoring the dispersion is equally important due to the 

fact that by controlling the dispersion, the mean will fluctuate less leading in a more 

stable process.  

The present dissertation initially provides an introduction in Statistical Process 

Control. Next, the simple case of univariately monitoring the dispersion is presented. 

In addition an extensive literature review on multivariate control charts for the 

dispersion has been made and finally, we present a comparison of several 

multivariate control charts that appear in literature. 
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Chapter 1

Introduction

1.1 Introduction

Statistical process control (SPC) is the oldest and well tested method for con-

trolling and improving the products’ quality in an industrial or manufacturing

process. By using statistical methods, the researcher can discover non-conforming

standards of the product and contribute to the maintenance of the desirable qual-

ity.

In practice a products’ quality is not related to one but more qualitative charac-

teristics. In other words, it is necessary to monitor more than one characteristics

simultaneously to ensure the total quality of the product. Jackson (1991) in his

paper commented that a multivariate procedure should provide 4 information:

• an answer on whether or not the process is in-control,

• an overall probability for the event ”procedure diagnoses an out-of-control

state erroneously” must be specified,

• the relation between the variables/attributes should be taken into account”.

• an answer to the question ”If the process is out-of-control, what is the prob-

lem?”

1
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Therefore Multivariate Statistical Process Control (MSPC) is a necessity and

the fact that more and more scientists throughout the world contribute to the

expansion of this specific scientific area, makes it even more important. Harold

Hotteling in 1947 first applied the idea of Multivariate Statistical Process Control

in collected data regarding bomb sights in World War II. After that a lot of stud-

ies followed Hotteling’s idea including Hicks (1955), Jackson (1956, 1959, 1985),

Montgomery-Wadsworth (1972), Alt (1985), Crosier (1988), Hawkins (1991, 1993),

Pignatiello-Runger (1990), Tracy-Yang-Mason (1992), Lowry-Montgomery (1995),

Maravelakis-Bersimis-Panaretos-Psarakis(2002), Koutras-Berssimis-Antzoulakos (2006)

and Maravelakis-Bersimis(2009).

1.2 Control Charts

Among all techniques used in SPC and MSPC, the most common is the Control

Chart (CC ). The CC, can be displayed when the quality of a product is char-

acterized by values of a variable and is the visualization of a measured quality

characteristic versus time. A CC is equipped with border lines which help the

researcher determine whether the process is in-control (operates with natural vari-

ation) or out-of-control (operates with special cause of variation). The border lines

are the following:

• The Upper Control Limit (UCL),

• The Center Line (CL) and

• The Lower Control Limit (LCL)

It is noted that the UCL and the LCL represent the maximum and the minimum

allowed values that indicate if the process is considered to operate with its nat-

ural variability. On the other hand, the CL represents the expected value of the

measured statistic function arising from functioning an in-control process. Other

optional features that may be included to a CC are the Upper and Lower Warning
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Limits (UWL and LWL) which represent zones that warn the researcher of the

process, in the case that the plotted statistic exceeds or falls short of them.

1.3 Phases of Statistical Process Control

The usage of CCs can be generally separated into two phases with a different

objective.

In Phase I a set of preliminary data is collected and is analysed retrospectively

for constructing control limits in order to establish reliable control limits for mon-

itoring future production. So in Phase I, m subgroups are collected and a set of

control limits is computed for these points. It is fair to assume that in Phase I the

data collected are in-control so the control limits can be calculated by using these

m subgroups. Points that are outside the control limits are usually investigated

by technicians and it is determined if special cause of variation has occurred. If

any special cause of variation is identified for the points that are initially outside

the control limits, they are excluded so a new set of control limits is constructed

by using the rest samples. The next step of the researcher is to collect a new set

of data and plot them on the control limits that have already been obtained. If

any sample is outside the control limits, is again investigated and new control lim-

its are constructed. This analysis continues until the process is stable, so control

limits and a set of in-control Phase I data are obtained.

Phase II begins after a clean set of data has been gathered. In Phase II, the

control limits that have been constructed from Phase I are used for on-line moni-

toring the process so the purpose of this phase is to monitor the process and not

try to bring it in-control. A sample statistic is calculated for every new sample

drawn from the process and is compared to the control limits and if the statistic

is plotted outside the control limits, the process is claimed to be out-of-control.

Otherwise, the monitoring continuous. In this phase sensitizing rules can be ap-

plied for detecting small shifts or for reacting more quickly to prevent the process

from being out-of-control.
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1.4 Control Chart Types

From literature it is clear that different CCs can be constructed for different

scenarios that can exist in every process.

First of all, there are CCs that can be used for monitoring the mean of the process

and their purpose is to control the target of the specifications of a product. On

the other hand, the researcher may be interested on keeping the dispersion of a

product in a specific level. For this purpose, CCs for the variability can be applied.

Finally, the most reasonable scenario is for the researcher to maintain control over

both the mean and the dispersion of a product and thus to use CCs for both the

characteristics.

Another useful and interesting set of options for the researcher is whether or not

the sample size that can be collected from the process is equal to one (1). So CCs

have been proposed for either individual observations or not.

Usually, for monitoring financial data, there have been proposed several CCs

based on the time-series approach. The difference that time-series data have from

regular data is that they are time dependent so every new sample is correlated

with previous ones.

Another big difference that exists in the nature of the data is that not all processes

assume normality of the data. It is common for the data to be distribution-free or

non-normal and CCs based on this assumption have been proposed. In most cases

though the researcher makes the normality assumption and uses a large variety of

CCs.

Finally, all CCs can be classified into two big distinct categories depending on

one simple property. If the points plotted are based only in the information given

by the most recent sample taken, regardless any previous information, then the

CC is characterized as a CC without memory. On the other hand, the last few

years CCs have been developed in which a point plotted is based on information

obtained not only from the most recent sample but from previous as well. These

CCs are called CCs with memory.

As mentioned before, CCs is the most common technique for maintaining the
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products quality. In practice three types of CCs are widely used:

• Shewhart Control Charts,

• Cumulative Sum Control Charts (CUSUM) and

• Exponentially Weighted Moving Average Control Charts (EWMA)

1.4.1 Control Charts Without Memory

In this category the most common type of CCs can be classified which are the

Shewhart CCs [1.1] introduced by Walter A. Shewhart in 1920 while working

for Bell Laboratories but the idea was published in 1931 in his book ”Economic

Control of Quality of Manufactured Product”. Shewhart CCs can be used for

monitoring either the mean or the dispersion of the process or both. These CCs

can be used when the sample size is greater than two (n > 2) and the probability

function of the plotted statistic is known or approximately known. A property in

which the Shewhart CCs lack against the CCs with memory is that they cannot

detect as easily small scale changes in the process as the latter. But in contrary

they are usually preferred for detecting bigger scale shifts.
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Figure 1.1: A Shewhart Control Chart.

1.4.2 Control Charts With Memory

From literature, it seems that two types of CCs can be classified into this category.

These CCs are the CUSUM [1.2] and the EWMA [1.3] CCs introduced by Page

(1954) and Roberts (1959) respectively. CUSUM and EWMA CCs are preferred

when the shift that the researcher wants to detect is small. CUSUM CCs are

mostly used when the probability function of the plotted statistic is known whereas

EWMA CCs are more robust when the distribution is unknown.

The purpose of this thesis is to present multivariate CCs with the assumption

of normality, with sample sizes bigger than one that are not time series. All these

charts will also concern the dispersion of the process. For this reason, Normal

distribution should also be presented.
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Figure 1.2: A CUSUM Control Chart.

Figure 1.3: An EWMA Control Chart.
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1.5 The Normal Distribution

Normal distribution is the most commonly used continuous distribution and the

main reason that it is so popular is because it works or at least is good enough in

many situations. The reason that the normal distribution works is because of the

Central Limit Theorem which means that any variable that can be measured and

is sufficiently large in terms of replicates will be approximately normal.

In the following chapters, the charts that have been recorded from the literature,

have been proposed by assuming the normal distribution (multivariate or not) of

the data. In order to develop the theory of the proposed methods, the reader must

understand the assumed nature of the data.

Normal distribution, which is also known as Gaussian distribution was firstly

proposed by Carl Friedrich Gauss in 1809 in a published monograph called ”Theo-

ria motus corporum coelestium in sectionibus conicis solem ambientium”. In the

same monograph it was also introduced the least squares method and the method

of maximum likelihood.

1.5.1 The Univariate Normal Distribution

In Chapter 2, the CCs that will be presented assume that the data come from a

univariate normal distribution so the simpler case must be presented first.

When a quality characteristic of interest must be monitored (p = 1), it is

said that the vector x = (X) has a univariate normal distribution (symbolically

x ∼ N (µ0, σ
2
0)) with in control mean µ0 and in control variance σ2

0. The density

function has the following form:

f(x) = f(X) =
1

σ
√
2π

exp

[
−(X − µ0)

2

2σ2
0

]
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1.5.2 The Bivariate Normal Distribution

All CCs in Chapter 3 have been proposed for monitoring two characteristics

simultaneously and assume the multivariate normality or more specifically the

bivariate normality.

In a two dimensional space (p = 2), a vector x = (X1, X2) has a bivariate

normal distribution (symbolically x ∼ N2 (µ0,Σ0) where µ0 = [µ1, µ2] is the in-

control means and Σ =


 σ2

1 σ12

σ21 σ2
2


 is the 2× 2 variance covariance matrix with

diagonal elements the in-control variances and off-diagonal elements the in-control

covariance between the two characteristics). The probability density function has

the following form:

f(x) = f(X1, X2) =
1

2πσ1σ2

√
1− ρ2

exp

[
− z

2 (1− ρ2)

]

where

z =
(X1 − µ1)

2

σ2
1

− 2ρ (X1 − µ1) (X2 − µ2)

σ1σ2

+
(X2 − µ2)

2

σ2
2

and ρ is the correlation between the two variables.

1.5.3 The Multivariate Normal Distribution

Finally the multivariate normal distribution must be presented not only because

it is the generalization of the univariate and bivariate normal distribution but also

because the proposed CCs in Chapter 4 assume that the nature of the data are

multivariate normal.

A multidimensional vector of variables

x′ = [X1, X2, · · · , Xp]
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with p ≥ 2 has a multivariate normal distribution (symbolically x ∼ Np (µ0,Σ0))

if the probability density function has the following form:

f(x) = f(X1, X2, · · · , Xp) = (2π)−p/2|Σ0|−1/2× exp

[
−1

2
(x− µ0)

′ Σ−1
0 (x− µ0)

]

where

µ0 = [µ1, µ2, · · · , µp]

is the in-control means for the p characteristics of interest and

Σ0 =




σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

· · · · · · · · · · · ·
σp1 σp2 · · · σ2

p




is the variance-covariance matrix with diagonal elements the in control variances

for every characteristic and off-diagonal elements the in-control covariances be-

tween two characteristics.

A p-dimensional sample of size n can be illustrated as a data matrix (denoted

as Xp×n) with the following form:

Xp×n =




X11 X12 · · · X1n

X21 X22 · · · X2n

· · · · · · · · · · · ·
Xp1 Xp2 · · · Xpn




1.6 The Case of the Dispersion

Controlling the dispersion of the process is as equally important as controlling

the mean. By monitoring the mean in an industrial or manufacturing process,

the researcher tries to achieve the specifications of the product. By assuming that

a point in time is between the UCL and the LCL when monitoring the mean of

the process, then the process is considered to be in-control on the condition that
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the dispersion of the quality characteristic has not changed through time. Also, it

should be noted that when constructing a CC for the mean level of the process,

the dispersion of the process is also taken into account indirectly through the

control limits computed. In other words, the control limits of a process for the

mean depend upon the dispersion. Therefore, the dispersion of the process should

always be monitored. In the case that the dispersion is out-of-control, the mean

level fluctuates more than it should leading not only the process out-of-control but

also in some cases to wider control limits for the mean.

For the case of the dispersion there are several charts that have been proposed

most of them based on different quantities.

1.6.1 Univariate Quantities for the Dispersion

There are several quantities in the univariate case that can be used for measuring

the dispersion.

The first and most known quantity is the sample variance s2. The sample variance

is the second sample central moment and its mathematical expression for a sample

of size n is the following:

s2 =
1

n− 1

n∑

i=1

(xi − x)2

Consecutively the sample standard deviation s can be derived as s =
√
s2 and

it measures how spread out the given data are. Of course, both quantities have

positive values and small values indicate that the data tend to be really close,

while high values indicate that the data are very spread out around the mean.

Also, if m subgroups of size n are available, then the pooled variance can be used

as quantity for measuring the dispersion. Pooled variance has the following form:

s2p =
1

m (n− 1)

m∑

i=1

n∑

j=1

(
Xij −X i

)2
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Another quantity that can easily be derived from the previous 2 is the s which

is of the following form:

s =

∑m
i=1

√∑n
j=1

(
xij − x

)2

n− 1

m

where x =

∑m
i=1 xi

m
.

The second univariate statistic that measures dispersion is the sample range (R)

and it is defined as the maximum minus the minimum observed value of a sample.

Its mathematical expression is:

R = Xmax −Xmin

Finally, another quantity for measuring the dispersion of the data is the sample

Coefficient of Variation (CV ). CV represents the ratio of the standard deviation

to the mean and is useful for comparing the degree of variation from a data set to

another even when the means are different. The mathematical expression is the

following:

CV =
s

x

where x is the sample mean which is computed as x =
1

n

∑n
i=1 Xi for a sample of

size n.

1.6.2 Multivariate Quantities for the Dispersion

In this subsection, it is presented all the the multivariate analogues of the previous

sample statistics.
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For a variance covariance matrix Σ where:

Σ =




σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

· · · · · · · · · · · ·
σp1 σp2 · · · σ2

p




we have the following.

The first multivariate quantity that can be used for measuring the variability

is the generalized variance (GV ) which is denoted as |Σ| and is the determinant

of the variance covariance matrix. GV was introduced by Wilks (1932) and is a

measure of the overall dispersion.

The GV can be computed as the generalized determinant of a n×n matrix. Let

σij be the entry on the ith row and jth column for i = 1, 2, · · · , p and j = 1, 2, · · · , p.
Also let Σij be the determinant of the square matrix of order p − 1 obtained by

Σ by removing the ith row and the jth column multiplied by (−1)i+j. The GV is:

|Σ|=
j=p∑

j=1

σijΣij

for any given i. Although GV is widely used for measuring the multivariate vari-

ability, it seems to be a really simple approach of the multivariate structure. Low-

ery and Montgomery (1995) in a really famous example showed that three bivari-

ate covariance matrices, have the same GV even though they have really different

variances-covariances. These matrices are the following:

Σ1 =


 1 0

0 1




Σ2 =


 2.32 0.40

0.40 0.50




Σ3 =


 2.32 −0.40

−0.40 0.50
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It can be easily seen that the GV in all three cases is equal to 1 but the correlation

differ. For the matrices Σ1, Σ2 and Σ3 they are 0, 0.8 and -0.8 respectively.

Following, a random sample of size n = 10000 in a process with mean vector

µ = [0, 0] and variance-covariance matrix Σ1 can be seen.

Figure 1.4: Correlation: 0.

Furthermore, the process with mean vector µ = [0, 0] and variance-covariance

matrix Σ2 can be seen below.

Figure 1.5: Correlation: 0.8.
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Finally, the process with mean vector µ = [0, 0] and variance-covariance

matrix Σ3 is the following:

Figure 1.6: Correlation: -0.8.

From the previous three graphs, it can be seen how different the nature of the

data is. Even though the data are so different, the GV is the same so it can be

justified GV’s simplistic approach explained above.

Another quantity that can be used for measuring the variability is the total

variance (TV ) which is usually denoted as tr (Σ) and is the trace of the variance

covariance matrix. The mathematical expression of the TV is the following:

tr (Σ) = σ2
1 + σ2

2 + · · ·+ σ2
p =

p∑

i=1

σ2
i

Total Variance also has a defect. Although it is a good representation of the

variance, it does not take into account the correlations between the variables.

A third quantity that measures variability in a multivariate space is the multi-

variate range. Gentle et al. (1975) in their paper present the bivariate range. For

a sample (X1, Y1) , (X2, Y2) , · · · , (Xn, Yn) the bivariate range can be defined as:

R = max
i,j

{
(Xi −Xj)

2 + (Yi − Yj)
2}1/2

for i, j = 1, 2, · · · , n.
A quantity which can measure the multivariate dispersion and yet has not been
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used for constructing CCs is the multivariate coefficient of variation (MCV ).

Reyment (1960) was the first to propose a formal definition for the MCV. His

proposal is denoted as CVRR and is given as:

CVRR =

( |Σ|1/p
µ′µ

)1/2

Reyment suggested another MCV denoted as CVV V with the following form:

CVV V =

(
tr (Σ)

µ′µ

)1/2

In another approach, Voinov and Nikulin (1996) proposed the following expres-

sion for the MCV denoted as CVV N :

CVV N

(
µ′Σ−1µ

)−1/2

Finally, Albert and Zhang (2010) proposed the following expression:

CVm =

[
µ′Σµ

(µ′µ)2

]1/2

Concluding, another method used in multivariate data is the Principal Compo-

nents Analysis (PCA). The purpose of the PCA is to replace a number of correlated

variables X1, X2, · · · , Xp with fewer variables C1, C2, · · · which are a linear trans-

formation of the initial variables and retain a significant amount of information.

For a p-variate vector of variablesX = (X1, X2, · · · , Xp)
′ with variance-covariance

matrix Σ, the first principal component can be specified as:

C1 = α1X1 + α2X2 + · · ·+ αpXp = α′X

where α = (α1, α2, · · · , αp)
′ is real vector with length equal to 1 meaning ||α||=√

α2
1 + α2

2 + · · ·+ α2
p = 1. Since V ar (C1) = α′Σα, finding α for the first compo-

nent is the same as maximizing the quantity α′Σα. Therefore α should be equal

to the unit length eigenvector u1 which corresponds to the biggest eigenvalue (λ1)
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of the variance covariance matrix.

The second component can be defined as:

C2 = β1X1 + β2X2 + · · ·+ βpXp = α′X

where β = (β1, β2, · · · , βp)
′, ||β||= 1, has the second largest possible variance and

is uncorrelated to C1. But

Cov (C2, C1) = Cov (β′X,u1X) = β′Σu1

and sinceΣu1 = λ1u1 it will be Cov (C2, C1) = λ1β
′u1. For having Cov (C2, C1) =

0 it must be β′u1 = 0. Finally for finding β the following quantity should be

maximized:

V ar (C2) = β′Σβ

under the restriction that β is a unit vector and normal to u1.

1.6.3 An Example on the Presented Quantities

In this subsection an example will be presented for comparing the various quan-

tities presented that measure dispersion on a multivariate level. The scenarios are

the following: On a bivariate space, 2 variables are considered with mean vector

µ = (1, 1) and variance covariance matrix with unit variances and covariances:

0.99, 0.50, 0, −0.50, −0.99. So all in all there are a total of 5 different scenarios.

Each simulation was produced with 10000 repetitions.
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For µ = (1, 1) and Σ =


 1 0.99

0.99 1


 the produced points can be plotted

as follows:

Figure 1.7: Correlation: 0.99.

For µ = (1, 1) and Σ =


 1 0.5

0.5 1


 the produced points can be plotted as

follows:

Figure 1.8: Correlation: 0.50.
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For µ = (1, 1) and Σ =


 1 0

0 1


 the produced points can be plotted as

follows:

Figure 1.9: Correlation: 0.

For µ = (1, 1) and Σ =


 1 −0.5

−0.5 1


 the produced points can be plotted

as follows:

Figure 1.10: Correlation: -0.50.
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For µ = (1, 1) andΣ =


 1 −0.99

−0.99 1


 the produced points can be plotted

as follows:

Figure 1.11: Correlation: -0.99.

In the following table, the summary of the quantities produced can be seen:

Correlation GV TV Range CVm Var of 1st PC
0.99 0.019 1.966 11.447 0.997 1.956
0.50 0.717 1.963 9.633 0.866 1.479
0 0.956 1.955 8.149 0.707 0.986
-0.50 0.717 1.951 9.482 0.5 1.461
-0.99 0.019 1.962 11.212 0.071 1.952

It can be easily seen that the problem which was previously mentioned is now

confirmed. GV has the same value for different scenarios. Also the problem that

was mentioned about TV has been also confirmed.

1.7 Summary

In this section it was initially presented what is SPC and why is it important to

generalize the idea to MSPC. Afterwards, the CCs were presented with their key

features and the different types that have been proposed for every different scenario

that can occur in a real process. Moreover, the two phases of a process were
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defined and after determining the purpose of the thesis, the normal distribution

was defined. Finally, all quantities that measure dispersion were presented in both

the univariate and multivariate case and some comparisons of these measures were

made.

The outline of this thesis will be as follows. In Chapter 2, some univariate CCs

for the dispersion will be presented. In Chapter 3, there are the bivariate CCs for

the dispersion as for Chapter 4, the general case of the multivariate CCs will be

presented. Chapter 5, compares both bivariate and multivariate charts in a two

dimensional example. Finally, in Chapter 6 there is an overall summary of this

thesis and proposal for further research is discussed.





Chapter 2

Univariate Control Charts for the

Dispersion

2.1 Introduction

For achieving the predetermined target of a product the researcher should be

able to monitor and control the process. As mentioned before, there are different

types of CCs that can be used in practice for monitoring the process and most

of them revolve around the mean of the process but are usually used in addition

with the ones for the dispersion. In the univariate case, the most common and

well-known univariate CCs for monitoring the process is by using the X and R

charts. Phase II X CC has as plotted quantity the sample mean

X =
1

n

n∑

i=1

Xi

and the following α probability control limits:

UCL = µ+ zα/2σ/
√
n

LCL = µ− zα/2σ/
√
n

23
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and with CL = µ.

Phase II R CC has as plotted quantity the sample range:

Xmax −Xmin

and the following α probability control limits:

UCL = D2σ

LCL = D1σ

and with CL = d2σ.

In this chapter, some univariate CCs for the dispersion will be presented. Section

2.2 deals with the Phase I CCs. In 2.2.1, the Shewhart CCs have been recorded

while in subsection 2.2.2 and 2.2.3 are the Phase I CUSUM and EWMA CCs

respectively. In section 2.3 the Phase II CCs for the dispersion can be found with

2.3.1 dealing with the Shewhart CCs, 2.3.2 discusses the CUSUM CCs and finally

2.3.3 is about the EWMA CCs.

2.2 Phase I Charts

2.2.1 Shewhart Charts

2.2.1.1 The s-Chart Control Limits

If the process variability σ is considered unknown, then by selecting m random

subgroups of size n, an s-Chart can be used if as estimation of σ the quantity

σ̂ = s/c4 is selected. The plotted statistic in this case is the sample standard

deviation (s) and the 3σ control limits of the S-Chart are:

UCL = B4 × s =

[
1 + 3

√
1− c24/c4]

]
× s
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LCL = B3 × s =

[
1− 3

√
1− c24/c4]

]
× s

with Center Line C.L. = s.

2.2.1.2 The s2-Chart Control Limits

The unknown process variability σ2 can be estimated by selecting as estimation

of σ2 the quantity s2 . The s2-Chart with probability α control limits has as

plotted statistic the sample variance and the control limits are:

UCL =
s2

n− 1
×X2

n−1;α/2

LCL =
s2

n− 1
×X2

n−1;1−α/2

with Center Line C.L. = s2.

2.2.2 CUSUM Charts

2.2.2.1 log (s2) CUSUM Chart

Chang and Gan (1995) proposed the use of the logarithmic transformation of the

sample variance (log (s2)) in a CUSUM chart for monitoring the process dispersion.

As an unbiased estimator of σ2
0 from the m samples of size n the pooled variance

can be used.

Chang and Gan (1995) introduced an upward CUSUM CC for detecting increases

in the process variance using the scheme:

U0 = u0,

Ut = max
(
Ut−1 + ln

(
s2t
)
− ku, 0

)
, t = 1, 2, . . . ,

where 0 ≤ u0 < UCL and ku is a constant. This chart signals when Ut ≥ UCL.

The corresponding downward CUSUM CC for detecting decreases in the process
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variance is given by the scheme:

D0 = d0,

Dt = min
(
Dt−1 + ln

(
s2t
)
+ kd, 0

)
, t = 1, 2, . . . ,

where LCL < d0 ≤ 0 and kd is constant. The downward CUSUM chart signals

when Dt ≤ LCL. The chart defined above cannot be used for individual observa-

tions. It should be noted that UCL and LCL can be chosen for a predetermined

ARL.

2.3 Phase II Charts

2.3.1 Shewhart Control Charts

2.3.1.1 The S-Chart Control Limits

If a process with a Normally distributed quality characteristic X is considered,

then the dispersion of the process can be monitored by using the sample standard

deviation.

The CC for the dispersion of the quality characteristic X has the following 3σ

control limits:

UCL = µst + 3σst =

(
c4 + 3

√
1− c24

)
σ

LCL = µst − 3σst =

(
c4 − 3

√
1− c24

)
σ

with C.L. = µSt
= c4σ.

and

µst = c4σ , σst = σ
√

1− c24

Moreover a CC with probability limits α can be easily developed by using the
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relation:

P

(
χn−1;1−α/2 ≤

st
√
n− 1

σ
≤ χn−1;α/2

)

or equivalently:

P


σ

√
χ2
n−1;1−α/2

n− 1
≤ st ≤ σ

√
χ2
n−1;α/2

n− 1




where χn is the distribution of the random variable Y =
√
X (when X ∼ χ2

n).

2.3.1.2 The s2-Chart Control Limits

For monitoring the dispersion of the quality characteristic X the sample variance

s2t as plotted statistic can be used where

E
(
s2t
)
= σ2,

(n− 1) s2t
σ2

∼ χ2
n−1

Since

P

(
σ2

n− 1
χ2
n−1;1−α/2 ≤ s2t ≤

σ2

n− 1
χ2
n−1;α/2

)

the α probability control limits for the dispersion of the quality characteristic X

where the sample variance s2t is used as a dispersion measurement are:

UCL =
σ2

n− 1
χ2
n−1;α/2

LCL =
σ2

n− 1
χ2
n−1;1−α/2

with C.L. = σ2.
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2.3.2 CUSUM Control Charts

2.3.2.1 Scale CUSUM Chart

Hawkins (1981) proposed the following quantities to be used for the Scale CUSUM

chart for the dispersion:

S+
t = max

[
0,Wt − k + S+

t−1

]
,where S+

0 = 0

S−
t = max

[
0,Wt − k + S−

t−1

]
,where S−

0 = 0

If either S+
t or S−

t exceeds the quantity = hσ0 (where h is usually equal to

5) then, the procedure is considered to be out of control. Wt derives from the

following:

By considering individual observations Xt from N (µ0, σ
2) and by putting:

Yt =
Xt − µ0

σ

the following statistic can be constructed:

Wt =

√
|Yt| − E (|Yt|)√
V
(√

|Yt|
)

where E (|Yt|) = 0.822 and

√
V
(√

|Yt|
)
= 0.349.

Hawkins observed that the distribution of the quantity Wt is approximately

N (0, 1) and that Wt is sensitive in dispersion (σ2) shifts.

E (|Yt|) and V
(√

|Yt|
)
can be computed as follows:

If |Yt|∼ χ1 then,

E
(√

|Yt|
)
=

21/4Γ (3/4)

Γ (1/2)

E (|Yt|) =
21/2Γ (1)

Γ (1/2)
= 0.79885

V
(√

|Yt|
)
= E (|Yt|)−

[
E
(√

|Yt|
)]2

= 0.121906
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2.3.2.2 Pσ and χ CUSUM Charts

Acosta-Mejia et al. (1998) proposed two new CCs for monitoring the dispersion

of a normal process. These two new charts are two-sided and thus are able to

detect both increases and decreases in process dispersion. Pσ, χ CUSUM charts

are based on two different normalizing transformations of s2. After transforming s2

to an approximately normal variate Z, the standard two-sides CUSUM procedure

can be applied which is the following:

S+
t = max

(
0, Zt − ku + S+

t−1

)
,

S−
t = max

(
0,−Zt − kl + S−

t−1

)
,

where S+
0 , S

−
0 ≥ 0. The value S+

t is used to detect positive shifts while S−
t is used

to detect negative shifts. The constants ku and kt are called reference values and

in most applications kl = ku = k. The statistics S+
t and S−

t are compared to the

decision limits hu and hl respectively where as stated by the authors, the deci-

sion limits are chosen by the user for achieving a desirable ARL. If either statistic

exceeds its respective decision limit, the standard two-sided CUSUM procedure

signals.

The statistics Zt can be chosen to be one of the following quantities.

The Pσ CUSUM CC for process dispersion

The first control chart for monitoring the process dispersion is based on the

inverse normal transformation:

Pσt
= Φ−1

{
Fχ2

n−1

(
(n− 1) s2t

σ2
0

)}

Pσt
has a standard normal distribution, where Fχ2

n−1
(y) is the cumulative distribu-

tion function for the χ2 distribution with n−1 degrees of freedom and Φ (z) is the

cumulative distribution function for the standard normal distribution. An increase

(decrease) in σ will result in an increase (decrease) in the mean of Pσt
. Thus the
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standard two-sided CUSUM scheme using Pσt
as Zt can be used to monitor the

process variance. This procedure is called Pσ-CUSUM chart. For the Pσ-CUSUM

chart the reference values ku and kl and the control limits hu and hl that give a

desired ARL performance can be obtained through simulation.

The χ-CUSUM chart for process dispersion

The second approach for the CUSUM chart for the dispersion is based on a

transformation given by Wilson and Hilferty (1931). Wilson and Hilferty showed

that 3
√

χ2
n/n is approximately normally distributed with a mean 1 − 2/(9n) and

variance 2/(9n). If the observations are iid N (µ, σ) then:

χt =

[(
s2t
σ2
0

)1/3

−
(
1− 2

9 (n− 1)

)]/√ 2

9 (n− 1)

will have an approximate standard normal distribution. This procedure is called

χ-CUSUM chart and in this case, χt can be used as Zt in the standard two-sided

CUSUM scheme. For the χ-CUSUM the reference values ku and kl can be obtained

as follows:

ku =
1

2

[[(
σ2
1+/σ

2
0

)1/3 − 1
] [

1− 2

(n− 1)

]/√ 2

9 (n− 1)

]

and

kl =
1

2

[[
1−

(
σ2
1−/σ

2
0

)1/3]
[
1− 2

(n− 1)

]/√ 2

9 (n− 1)

]

where σ±
1 6= σ0 is the process standard deviation that needs to be detected.

2.3.3 EWMA Control Charts

2.3.3.1 ln (σ2) EWMA Control Chart

For monitoring the process dispersion the unknown in-control process variance

σ2
0 can be estimated as the pooled sample variance s2p from a Phase I data set.
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Crowder and Hamilton (1992) proposed an EWMA CC for monitoring the process’

standard deviation using the scheme:

T0 = ln
(
σ2
0

)
,

Tt = max
(
λ ln

(
s2t
)
+ (1− λ)Tt−1, ln

(
s2p
))

, t = 1, 2, · · ·

where 0 < λ ≤ 1 is a smoother parameter. The UCL of this chart (for the Tt) in

case of independent observations is given by:

UCL = K

√(
λ

2− λ

)(
2

n− 1
+

2

(n− 1)2
+

4

3 (n− 1)3
− 16

15 (n− 1)5

)

where K is chosen together with λ for achieving a desired performance for the

chart. The chart can be used only with subgroup data (n > 1) and the chart can

be used to identify only upward shifts in the variability.

2.3.3.2 The CH EWMA Control Chart

Crowder and Hamilton (1992) EWMA CH chart is based on the following quan-

tity:

Qt = max [(1− λ)Qt−1 + λXt, 0] ,

where Q0 = 0. The chart detects an increase in the process variance if Qt is greater

than:

h = L

√
λ

2− λ
σ0

where L can be chosen to achieve the desired ARL.

Similarly, if one is interested in detecting a decrease in the process variance, the

EWMA chart based on:

Q′
t = min

[
(1− λ)Q′

t−1 + λXt, 0
]
,
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can be used where Q′
0 = 0. The chart detects an decrease in the process variance

if Q′
t is less than:

h′ = −L′

√
λ

2− λ
σ0

where L′ can be chosen to achieve the desired ARL.

2.3.3.3 The EWMA s2 Control Chart

Castagliola (2005) following Crowder and Hamilton (1992) EWMA CC for mon-

itoring the process standard deviation proposed the following three-parameter

transformation to s2:

Tt = α + b ln
(
s2t + c

)

with c > 0. The following EWMA can be derived:

Zt = (1− λ)Zt−1 + λTt

If the value of E (Tt) and σ (Tt) of Tt which correspond to the parameters α,

b and c are known, then the EWMA control limits for the transformed sample

variance will be set at:

UCL = E (Tt) +K

(
λ

2− λ

)1/2

σ (Tt)

LCL = E (Tt)−K

(
λ

2− λ

)1/2

σ (Tt)

where K is a positive constant which is set for achieving a predetermined ARL0.

By using the exact value for the standard deviation of the EWMA statistic

(Montgomery (2001), Ryan (2000)) the control limits become:

UCL = E (Tt) +K

(
λ
{
1− (1− λ)2t

}

2− λ

)1/2

σ (Tt)

LCL = E (Tt)−K

(
λ
{
1− (1− λ)2t

}

2− λ

)1/2

σ (Tt)
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In practice, the following simplified control limits for the s2-EWMA CC can be

used:

UCL = K

(
λ

2− λ

)1/2

σ (Tt)

LCL = −K

(
λ

2− λ

)1/2

σ (Tt)

The above control limits correspond to a two-sided EWMA CC but also the

one-sided EWMA control limits can be considered.

The transformation proposed, belongs to a class of transformations originally

proposed by Johnson (1949). This approach was chosen because α, b and c may

result in approximate normality better than the approach of Crowder and Hamil-

ton (1992).

Castagliola (2005) proves that α, b and c can be defined as:

b = B (n)

c = C (n) σ2
0

α = A (n)− 2B (n) ln (σ0)

where:

B (n) =
1√

ln (w2 + 1)

A (n) =
B (n)

2
ln

(
w2 (w2 + 1)

µ2 (s2t )

)

C (n)

√
µ2 (s2t )

w
− E

(
s2t
)

and

w =

[√
(γ1 (S2

t ) /2)
2
+ 1 +

(
γ1
(
s2t
)
/2
)]1/3

−
[√

(γ1 (s2t ) /2)
2
+ 1−

(
γ1
(
s2t
)
/2
)]1/3

in which, E (S2
t ) , µ2 (s

2
t ) and γ1 (s

2
t ) are the first three moments of s2t .
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2.3.3.4 The SJ EWMA Control Chart

Shu and Jiang (2008) proposed an EWMA chart (SJ chart) based on:

Wt = λ

(
Z+

t − 1√
2π

)
+ (1− λ)Wt−1,

where W0 = 0. The chart declared to be out-of-control when Wt exceeds the UCL:

h = L

√
λ

2− λ
σ+

Z+
t

where LN can be chosen to achieve the desired ARL.

The following standardized quantity has been defined:

Zt =
Xt − µX|σt=σ0

σX

,

where µX|σt=σ0
is the approximate in-control mean of Xt. Also Z+

t = max (Zt, 0).

If Zt has an exact standard normal distribution, Barr and Sherrill (1999) showed

that E
(
Z+

t

)
= 1/

√
2π and σZ2

t
= 1/2− 1/ (2π).

Similarly, if one is interested in detecting a decrease in the process variance, the

following EWMA chart can be used:

W ′
t = λ

(
Z−

t − 1√
2π

)
+ (1− λ)W ′

t−1,

where Z−
t = min (0, Zt) and W ′

0 = 0. The LCL is given by:

h′ = −L′

√
λ

2− λ
σ+

Z−

t

,

where L′ can be determined to achieve desired ARL. The chart is declared to be

out-of-control when W ′
t deceeds the LCL.
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2.3.3.5 HHW1, HHW2 and HHW-C charts

Huwang et al. (2010) following Crowder and Hamilton (1992) and Shu and Jiang

(2008) EWMA chart, proposed the following similar charts for detecting a decrease

in the process variance.

The HHW1 EWMA chart

Huwang et al. (2010) define the following standardized statistic for monitoring

either an increase or a decrease in the variance of the process in time t :

Ut =
ln
[
Vt − (1− λ)t V0

]
− µ

σ2

The one-sided UCL or LCL can be chosen to achieve a desired ARL0.

First they obtain the EWMA statistic:

Vt =
t∑

i=1

λ (1− λ)t−i s
2
i

σ2
0

+ (1− λ)t V0

where V0 = 1.

In their paper they use the fact that s2i /σ
2
0 follows a Gamma distribution. Due

to independence, they use the following approximation by Box (1954)

Vt − (1− λ)t V0 =
t∑

i=1

λ (1− λ)t−i S
2
i

σ2
0

≈ Gamma(β1, β2)

where:

β1 =
(n− 1) (2− λ)

[
1− (1− λ)t

]2

2λ
[
1− (1− λ)2t

]

and

β2 =
2λ
[
1− (1− λ)2t

]

(n− 1) (2− λ)
[
1− (1− λ)t

]

The logarithm of Vt − (1− λ)t V0 follows approximately a Normal distribution

with:

µ = ln (β1β2)−
1

2β1

− 1

12β2
t

+
1

120β4
1
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and

σ2 =
1

β1

+
1

2β2
1

+
1

6β3
1

− 1

30β5
1

The HHW2 EWMA chart

Huwang et al. (2010) have proposed standardized statistic for monitoring the

dispersion of a univariate process which is defined as follows:

Dt =
Ht√

λ

2− λ

[
1− (1− λ)2t

]

The one-sided UCL and LCL can be chosen to achieve a desired ARL0.

First they obtain the EWMA statistic:

Ht = λMt + (1− λ)Ht−1

where H0 = 0. When the process is in control, Ht has a normal distribution with

mean equal to 0 and variance λ
[
1− (1− λ)2t

]
/ (2− λ).

The second proposition from Huwang et al. (2010) has come from the exact nor-

mal transformation of s2t/σ
2
0. It is known that when the process is in control, then

the statistic Mt = Φ−1 {F [(n− 1) s2t/σ
2
0]} follows a standard normal distribution,

where F (·) is the distribution of a chi-squared random variable with n-1 degrees

of freedom.

In their paper, is used the standardized statistic because a possible change in the

variance can result in both changes in the mean and variance of Mt.

The HHW −C EWMA chart

Finally, Huwang et al. (2010) conclude in their paper that the HHW2 chart gives

the best results for detecting an increase in the process variance. On the other

hand, HHW1 chart gives the best results for detecting a decrease in the process

variance. By combining the lower-sided HHW1 CC with the upper-sided HHW2

chart, it results in a better performance for monitoring the process variance. The

mixed CC is denoted as HHW-C chart.



Chapter 3

Bivariate Control Charts for the

Dispersion

3.1 Introduction

In this section some bivariate control charts for the dispersion are presented.

These control charts are specifically constructed for monitoring the dispersion of

two characteristics of interest simultaneously. Section 3.2 discusses bivariate Phase

II control charts for the dispersion since no charts that can be used only in Phase

I could be found in literature. Subsection 3.2.1 presents Shewhart control charts

while subsection 3.2.2 discusses two EWMA control charts.

37
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3.2 Phase II Bivariate Control Charts

3.2.1 Shewhart Control Charts for the Dispersion

3.2.1.1 The CC2 Control Chart

By having two quality characteristics according to Alt (1985), the process

variability can be monitored using as plotted statistic the GV of the variance-

covariance matrix (|S|) and the following chart can be constructed.

The (α probability) control limits are the following:

UCL =
|Σ0|

(
χ2
2n−4;1−α/2

)2

(2 (n− 1))2

LCL =
|Σ0|

(
χ2
2n−4;α/2

)2

(2 (n− 1))2

and center line C.L. = |Σ0|. Where

2(n− 1)|S|1/2
|Σ0|1/2

∼ χ2
2n−4

3.2.1.2 The CC3 Control Chart

Alt and Smith (1988) proposed that by monitoring two quality characteris-

tics, a CC with |S|1/2 as plotted statistic can be constructed with the following

control limits:

UCL =
|Σ0|1/2χ2

2n−4,1−α/2

2 (n− 1)

LCL =
|Σ0|1/2χ2

2n−4,α/2

2 (n− 1)

and center line C.L. = |Σ0|1/2.
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3.2.1.3 The |G|-Control Chart Based on the Gini Matrix

Riaz and Does (2008) proposed a bivariate CC for the process dispersion based

on the sample Gini mean differences matrix. In their paper Riaz and Does use the

quantity |G|1/2=
(
G2

yG
2
x −GyxGxy

)1/2
for monitoring the quantity |Σ0|1/2. The α

probability limits for the proposed chart are:

UCL = |G|1/2u with Fn

(
|G|1/2= |G|1/2u

)
≥ 1− αu

LCL = |G|1/2l with Fn

(
|G|1/2= |G|1/2l

)
≤ αl

After some simplifications, the previous limits can be modified to:

UCL = |G|1/2u = Bu|G|1/2/b0 with Fn (B = Bu) ≥ 1− αu

LCL = |G|1/2l = Bl|G|1/2/b0 with Fn (B = Bl) ≤ αl

It is noted that the CL is |G|1/2. For constructing the CC, the following matrix

must be defined:

G =


 G2

y Gyx

Gxy G2
x




where

Gy =
(√

π/2
)
4Cov (Y, F (Y ))

Gx =
(√

π/2
)
4Cov (X,F (X))

Gyx =
(√

π/2
)
4Cov (Y, F (Y ))Gx

Gxy =
(√

π/2
)
4Cov (X,F (X))Gy

where F is cumulative distribution function. For developing the proposed chart,

the authors define a new quantity for showing the relation between |G|1/2 and

|Σ0|1/2. The quantity B is defined as follows:

B = 2 (n− 1) |G|1/2/|Σ0|1/2
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From B three more quantities can be derived. These quantities are b0, b1 and

Bα which represent the mean, the standard deviation and the αth quantile point

of the distribution of B. All three quantities can be obtained using a simulation

approach.

3.2.1.4 VMIX Chart of a Bivariate Process

Quinino et al. (2012) in their paper, propose a new statistic for controlling the

covariance matrix of a bivariate normal process with known means and variances.

The CC is known as VMIX chart and the monitoring statistic VMIX is:

VMIX =

∑n
t=1 X

2
t +

∑n
t=1 Y

2
t

2n

The chart signals when VMIX > CL, where CL is the control limit which is

selected for a predefined ARL0.

The CC is defined by considering X∗ and Y ∗ as two quality characteristics of

interest with means µX∗ and µY ∗ respectively. The variances are defined as σ2
X∗

and σ2
Y ∗ and the covariance is defined as σX∗Y ∗ . If all the parameters are known,

the new variables can be defined as:

Xt =
(X∗

t − µX∗)

σx∗

and

Yt =
(Z∗

t − ρXt)√
1− ρ2

where Z∗
t =

(Y ∗
t − µY ∗)

σY ∗

. When the process is in control, Xt and Yt follow the

standardized normal distribution and become free of the correlation parameter ρ.

Therefore, after the assignable cause occurrence, at least one of the two variances

σ2
x or σ2

y , of the transformed variables X and Y, increases without changing the

means µX = 0 and µY = 0 .
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3.2.2 EWMA Control Charts for the Dispersion

3.2.2.1 EWMA Scheme Based on the VMAX Statistic

Machado and Costa (2008) proposed an EWMA scheme based on VMAX for

detecting changes in the covariance matrix Σ of a bivariate process. The EWMA

scheme is based on the statistic:

Zt = λYt + (1− λ)Zt−1, t = 1, 2, · · ·

and a signal is given if Zt > CL where:

CL =

(
χ2
2n−4,α

)2 |Σ0|
4 (n− 1)2

It is denoted that Yt = max
{
S2
xt
, S2

yt

}
. S2

xt
and S2

yt are the sample variances of

X and Y respectively. The starting value Z0 is often taken to be the expected

in-control value of Z as defined by Lucas and Saccucci (1990).

3.2.2.2 A Bivariate EWMA Control Chart Based on the Decomposi-

tion Method of Mason (1995)

Nezhad (2011) defined the following statistic for monitoring the dispersion of a

bivariate process:

Qt = λS2
t + (1− λ)Qt−1

with Q0 = 2. The time varying control limits for Ek can be defined as follows:

UCLk = 2 + c

√
4λ

2− λ

The control limits for Qt can also be obtained as:

UCL =
2χ2

ν,1−α/2

ν
and
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LCL =
2χ2

ν,α/2

ν

where ν =
2 (2− λ)

λ
.

Nezhads (2011) proposal relied on the decomposition method of Mason et al.(1995)

for two quality characteristics. According to Masons decomposition method, the

following two statistics can be defined:

Tt1 =

(
xt1 − E (xt1)

σ1

)

Tt2.1 =

(
xt2 − E (xi2|xt1)

σ2.1

)

where σ2.1 is the conditional standard deviation of the second characteristic given

the first. Finally, the S2
t statistic defined as follows:

S2
t = T 2

t1 + T 2
t2.1

When the process is in-control, the statistics S2
t follows a χ2

2 distribution.



Chapter 4

Multivariate Control Charts for

the Dispersion

4.1 Introduction

This chapter discusses all multivariate control charts for monitoring the dis-

persion of the process. In the multivariate case, the most well-known control

chart for monitoring the process’ mean in the case of normality is the D2 control

chart. The control chart is based on plotting the following statistic against time:

D2
t = n (xt − µ0)

′ Σ−1
0 (xt − µ0). It is assumed that the in-control mean vector

and the variance-covariance matrix is known or are estimated from Phase I. The

D2
t statistic represents the distance between any point and µ0. The UCL for the

D2 is χ2
p,1−α. For the case of the dispersion there are several charts that have been

proposed and will be discussed in this chapter.

In section 4.2 all Phase I control charts will be presented. 4.2.1 discusses She-

whart control charts while 4.2.2 EWMA control charts. No Phase I CUSUM

control charts where found in literature. Section 4.3 discusses Phase II control

charts where 4.3.1 presents the Shewhart control charts and 4.3.2 and 4.3.3 present

the CUSUM and EWMA control charts respectively.

43
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4.2 Phase I Control Charts

4.2.1 Shewhart Control Charts for the Dispersion

4.2.1.1 The Phase I CC1 Control Chart

By considering unknown the variance-covariance matrix |Σ0| the unbiased esti-

mator |S|/b1 defined by Alt(1985) can be used. The control limits of the Phase

I CC for the dispersion with monitoring statistic the GV of the sample variance

covariance matrix (|St|) are:

UCL =
(
|St|/b1

) (
b1 + 3b

1/2
2

)

LCL =
(
|St|/b1

) (
b1 − 3b

1/2
2

)

with C.L. = |St|. b1 can be defined as

∏p
t=1 n− t

(n− 1)p
and also, b2 can be defined as

∏p
t=1 n− t

(n− 1)2p
.

4.2.2 EWMA Control Charts for the Dispersion

4.2.2.1 The EWMA V Chart

For a p-variate normal process with a mean vector µ0 and a variance-covariance

matrix Σ0 (Np (µ0,Σ0)) in which µ0 and Σ0 can be estimated from the Phase I

data samples as the total mean and the pooled variance respectively the EWMA

V CC can be constructed.

Yeh et al. (2003) propose the next multivariate EWMACC based on the function:

Sν (t) = λ× (νt − 0.5) + (1− λ)× Sν (t− 1) , t ≥ 1
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where Sν (0) = 0.

The control limits for the multivariate V EWMA CC are:

UCL = L×
√

1

12

(
λ

2− λ

)(
1− (1− λ)2t

)

CL = 0

LCL = −L×
√

1

12

(
λ

2− λ

)(
1− (1− λ)2t

)

where t = 1, 2, . . . and L are chosen for a predetermined ARL0. The authors

propose m ≥ 50, n ≥ 10 and 3 ≤ p ≤ 8.

Yeh et al. (2003) defined the following probability for t ≥ 1:

νt = P

(
p∏

j=1

Fn−j,N−i+1−j ≤
(

p∏

j=1

N −m+ 1− j

n− j

)
× |nSt|

|NS|

)

where for any given λ and t ≥ 1:

E (Sν (t)) = 0 and V (Sν (t)) =
1

12

(
λ

2− λ

)(
1− (1− λ)2t

)

4.2.2.2 EWMA Chart Based on Generalized Variance

It is known that if the process is in control (X i ∼ Np (µ0,Σ0)) then, the distri-

bution of:

Yt =

√
n− 1

2p
ln

|St|
|Σ0|

follows asymptotically the standardized normal distribution. If the process is out-

of-control and more specifically if Σ0 changes to Σ1, then Yt is asymptotically

distributed as N (ln|Σ1|/|Σ0|, 1). So, a change in the generalized variance is char-

acterized in a change of the mean of Yt. Therefore a univariate EWMA chart can

be used for detecting a mean shifts in Yt. If Σ0 is known, Yeh et al. (2006) defined

the following:

Gi = λYt + (1− λ)Yt−1
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where G0 = 0 and λ is a smoothing constant. The control limits for the EWMA

charts are:

UCL = L×
√

λ

2− λ

[
1− (1− λ)2t

]

and

LCL = −L×
√

λ

2− λ

[
1− (1− λ)2t

]

If Σ0 is not known, it can be estimated by S and the statistic Yt is modified to:

Y ∗
t =

√
k (n− 1)

2p (k + 1)
ln

|St|
|S|

and follows asymptotically the standardized normal distribution. If the process is

out-of-control and more specifically if Σ0 changes to Σ1, then Y ∗
t is asymptotically

distributed as N
(√

k/k + 1 ln|Σ1|/|Σ0|, 1
)
and the EWMA statistic is given by:

G∗
t = λY ∗

t + (1− λ)Y ∗
t−1

4.3 Phase II Control Charts

4.3.1 Shewhart Control Charts for the Dispersion

4.3.1.1 W-Statistic Based Chart

For monitoring the dispersion of a multivariate process Alt (1985) proposes the

following statistic:

Wt = −pn+ pn lnn− n ln

( |At|
|Σ0|

)
+ trace

(
Σ−1

0 At

)

The α probability limits of the chart are:

UCL = X2
p(p+1)/2;1−α

LCL = 0
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and it is noted that At is the sum of squares and cross products matrix. Also,

At = (n − 1)St. If W statistic plots over UCL then the process is considered

out-of-control.

4.3.1.2 The Phase II CC1 Control Chart

Alt(1985) proposes the development of a |S|-CC by using the first two moments

of |S|. The 3σ control limits are:

UCL = |Σ0|
(
b1 + 3

√
b2

)

C.L. = |Σ0|b1

LCL = |Σ0|
(
b1 − 3

√
b2

)

where

b1 =

∏p
i=1 (n− i)

(n− 1)p

and

b2 =

∏p
i=1 (n− i)

(n− 1)2p
×
[

p∏

j=1

(n− j + 2)−
p∏

j=1

(n− j)

]

If the LCL is computed as a negative number (LCL < 0), then it must be

replaced by zero (0).

4.3.1.3 Shewhart Chart Based on Conditional Entropy

Guerrero-Cusumano (1995) states that by measuring the difference between sam-

ple and theoretical entropy for the independent case, the following statistic (E )

for monitoring the variance-covariance matrix can be obtained:

Et =

√
n− 1

2p

p∑

i=1

ln

(
s2i
σ2
i0

)
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The mentioned statistic E follows a univariate standard normal distribution.

The UCL and LCL are calculated using simulation as follows:

UCL = gp

[
G′

(
n− 1

2

)
− ln

(
n− 1

2

)]
+ za/2k

√
pG′′

(
n− 1

2

)

LCL = gp

[
G′

(
n− 1

2

)
− ln

(
n− 1

2

)]
− za/2k

√
pG′′

(
n− 1

2

)

where g = (2 (n− 1) /p)1/2, G′ (·) and G′′ (·) are the first and second derivative of

the natural logarithm of the gamma function.

The result derived from the following suggestion of expressing entropy (H (x)):

H (x) =
1

2
p ln (2πe) +

1

2
2 ln|Σ2

d0
|+1

2
ln|P 0|=

=
1

2
p ln (2πe) +

1

2
Σp

i=1 ln
(
σ2
i0

)
− T (X)

where P 0 = Σ−1
d0
Σ0Σ

−1
d0

is the correlation matrix, Σd0 = diag (σi0) with σi0, being

the in-control standard deviation for the ith component of X. The function T (X)

is called the mutual information of the random variable X. By estimating σ2
i0 with

the sample variance of the ith component s2i , Ĥ (x) is obtained.

For the dependent case another statistic can be used:

E2t = k

p∑

i−1

[
ln
(
χn−1
α

)
− ln (n− 1)

]

with control limits that can be calculated from the following:

UCL = gp

[
G′

(
n− 1

2

)
− ln

(
n− 1

2

)]
+za/2k

√
pG′′

(
n− 1

2

)
+

2

n− 1
tr (P 0 − I)2

LCL = gp

[
G′

(
n− 1

2

)
− ln

(
n− 1

2

)]
−za/2k

√
pG′′

(
n− 1

2

)
+

2

n− 1
tr (P 0 − I)2
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4.3.1.4 Shewhart Chart Based on the Decomposition of St

Tang and Barnett (1996) proposed a multivariate Shewhart chart based on the

decomposition of St into a sum of independent χ2 statistics.Their chart is based

on plotting the following statistic for each sample of n observation:

Tt =

2p−1∑

j=1

Z2
j

When the process is in control, Zj’s are independently and identically distributed

as N (0, 1) and therefore T is distributed as χ2
2p−1. An out-of-control signal is

detected as soon as T exceeds UCL which is determined from χ2
2p−1. As mentioned,

Tt =

2p−1∑

j=1

Z2
j

where:

Z1 = Φ−1

{
χ2
n−1

[
(n− 1) s21

σ2
1

]}

Zj = Φ−1

{
χ2
n−j

[
(n− 1) s2j·1,2,··· ,j−1

σ2
j·1,2,··· ,j−1

]}
for j = 2, 3, · · · , p

Zp+1 = Φ−1
{
χ2
p−1

[
(n− 1) s21 (d2 − θ2)

′ Σ−1
2,3,··· ,p·1 (d2 − θ2)

]}

and

Zp+j−1 = Φ−1
{
χ2
p−j+1

[
(n− 1) s2j−1·1,2,··· ,j−2 (dj − θj)

′ Σ−1
j,j+1,··· ,p·1,2,··· ,j−1 (dj − θj)

]}

for j = 3, 4, · · · , p. Also the following statistics must be defined. S′
(j−1)×(p−j+1) =

(Sj,j−1,Sj+1,j−1, · · · ,Sp,j−1) and Sk,j represent the row vector of sample covari-

ances between the kth variable and each of the first j variables. The same goes

for Σ0 by replacing the sample statistics with the corresponding population pa-

rameters. The conditional sample variance of the j th variable given the first j-1

variables is defined as follows:

s2j·1,2,··· ,j−1 = s2j − S′
j,j−1S

−1
j,j−1Sj,j−1
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The conditional sample covariance matrix of the last p − j + 1 variables given

the first j − 1 can be expressed as:

Sj,j+1,··· ,p·1,2,··· ,j−1 = S∗p−j+1 − S′
(j−1)×(p−j+1)S

−1
(j−1)×(p−j+1)

where Sj and S∗k are the sample covariance matrix of the first j variables and of

the last k variables respectively.

dj (θj) for j = 2, 3, · · · , p denote the vector of sample (population) regression

coefficients when each of the last p − j + 1 variables is regressed on the (j-1)th

variable while the first j-2 variables are held fixed.

dj =

[
S(j−1)×(p−j+1) − S ′

j−1,j−2S
−1
j−2

(
S ′
j,j−2S

′
j+1,j−2S

′
p,j−2

)′]′

s2j−1 − S ′
j−1,j−2S

−1
j−2S

′
j−1,j−2

Likewise, θj is similarly expressed by replacing the sample with the population

statistics.

4.3.1.5 |S|-Control Chart

In their paper, Aparisi et al. (1999) studied the distribution of the |S|-CC and

presented two |S|-Charts that are suitable for more than two quality characteris-

tics. The first procedure, consists only by an UCL and the second with both an

UCL and a LCL. In both cases the plotted statistic is the GV.

In the case were only an UCL is needed, the control limit is:

UCL =
J1−a
n,p |Σ0|
(n− 1)p

If both UCL and L.C.L are needed, the (α probability) control limits are the

following:

UCL =
J
1−a/2
n,p |Σ0|
(n− 1)p

LCL =
J
a/2
n,p |Σ0|

(n− 1)p
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with center line C.L. = |S| in both cases. J
1−a/2
n,p corresponds to the 1-α percentile

of the distribution of the transformed variable:

Jn,p =
(n− 1)p |S|

|Σ|

In the paper, tables for the values of J
1−a/2
n,p and J

a/2
n,p for various number of qual-

ity characteristics p and sample sizes n, are also presented.

4.3.1.6 Shewhart Control Chart Based on H0 : Σ = Σ0

Levinson et al. (2002) proposed the following statistic for i ≥ 1 for treating the

problem as testing H0 : Σ = Σ0 v.s. H1 : Σ 6= Σ0:

mMi = m
[
(k + 1) (n− 1) ln|Sp|−k (n− 1) ln|S|− (n− 1) ln|Si|

]

When the process is in control, mMi follows χ2
p(p+1)/2 and thus, the UCL and

LCL can be determined. Also,

m = 1−
[

1

k (n− 1)
+

1

n− 1
− 1

(k + 1) (n− 1)

]
×
[
2p2 + 3p− 1

6 (p+ 1)

]

and

Sp =
k (n− 1)S + (n− 1)Si

(k + 1) (n− 1)

where S comes from a Phase I data set.

4.3.1.7 Shewhart Control Chart Based on Probability Integral Trans-

formation

Yeh et al. (2002) proposed using the probability integral transformation to

transform different statistics into the same random variable. The part dealing
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with the covariance matrix can be written as:

νt = P

[
p∏

i=1

Fn−1−i,k(n−1)−k+1−i ≤
(

p∏

i=1

k (n− 1)− k + 1− i

n− 1− i

)
× |(n− 1)St|

|k (n− 1)S|

]

where S comes from a Phase I data set.

When the process is in-control, νt are a sequence of independently and identically

distributed Uniform (U (0, 1)) random variables, therefore the control limits can

be set up based on U (0, 1).

4.3.1.8 Double Sampling |S| Chart

The Multivariate Double Sampling (MDS) |S| chart from Grigoryan and He

(2007) consists of five steps. For these steps, three quantities must be defined. V1

and V2 which are the control limits at the first stage of the process and V3 which

is the control limit for the second stage.

For the first step of the process, a set of size n1 can be taken and the following

statistic can be computed:

Y = (|S1|−b1|Σ0|) /b1/22 |Σ0|

where S1 is the variance-covariance matrix of a sample of size n1. Step 2: If Y

falls in the interval [−V1, V2] then the process is in control.

Step 3: If Y falls in the interval (V2,+∞) or (−∞,−V2) then the process is out

of control.

Step 4: If Y falls in the interval [−V2,−V1] or [V1, V2], then a second sample of

size n2 can be taken and the following statistic is computed based on the combined

sample of size n1 + n2:

Y1 = (|S12|−b11|Σ0|) /b1/222 |Σ0|

where S12 is the variance-covariance matrix of a sample of size n1+n2. Step 5: If

Y1 falls in the interval [−V3, V3] the process is in control. Otherwise is considered
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out-of-control.

The previous five steps take into account the quantities: b1, b2, b11 and b22 which

are determined below:

b1 = [1/ (n1 − 1)p]

p∏

i=1

(n1 − i)

b2 =
[
1/ (n1 − 1)2p

] p∏

i=1

(n− i)

[
p∏

j=1

(n1 − j + 2)−
p∏

j=1

(n1 − j)

]

b11 = [1/ (n1 + n2 − 1)p]

p∏

i=1

(n1 + n2 − i)

b22 =
[
1/ (n1 + n2 − 1)2p

] p∏

i=1

(n− 1)

[
p∏

j=1

(n1 + n2 − j + 2)−
p∏

j=1

(n1 + n2 − j)

]

Finally, for constructing the MDS |S| chart, one has to determine the param-

eters n1, n2, V1, V2 and V3.

4.3.1.9 Monitoring Variation Using the Wilk’s Statistic

Assuming that S is the sample covariance estimator of Σ based on a historical

data set of size n and SA is the sample covariance estimator obtained from the

HDS and the m new samples, the following statistic can be used according to

Mason et al. (2009) to compare the variation in the above two samples using

Wilk’s statistic (1962):

Wt =

(
n− 1

n+m− 1

)p |St|
|SA|

Wilk’s statistic has values between 0 and 1. Values near 1 correspond that the

estimated covariance matrix SA is similar to the estimated covariance matrix S,

while values near 0 indicate otherwise. For a given level of significance α, the LCL

of W is determined by:

P (W < wα) = α

where wα is the αthquantile of the distribution of W.

Regarding the quantiles of the distribution of W, various approximations have
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been developed. The most well-known approximation developed by Bartlett (1938)

and is based on the χ2 distribution. The approximation is as follows:

−f ln (W ) ≈ χ2
mp

where f = (2n+m− p− 3) /2. It is stated that the approximation can be used

when (p2 +m2) ≤ f/3. There is also another approximation developed by Rao

(1951) based on the F distribution. The approximation is given by:

K

(
1−W 1/t

W 1/t

)
≈ Fpm,ft−g

where K =
ft− g

pm
, t =

(
p2m2 − 4

p2 +m2 − 5

)1/2

and g =
pm− 2

2
. Finally it is noted

that the approximation is valid for ft > g.

For the χ2 approximation, the αth quantile of W is approximated by:

wα ≃ exp

{
− 1

f
χ2
mp (1− α)

}

By using the F -distribution approximation, the αth quantile of W is approxi-

mated by:

wα ≃
{

K

K + Fpm,ft−g (1− α)

}t

4.3.1.10 Monitoring Variation Using Scatter Ratios Decomposition

Mason et al. (2010) continued the idea of using Wilks’ statistic and decompos-

ing Wilks’ ratio statistic by noting that the sample generalized variance of the

covariance estimator S can be written as:

|S|= s11
[
s22
(
1− r22.1

)] [
s33
(
1− r23.12

)]
· · ·
[
spp
(
1− r2p.12···p−1

)]

where r2k.12···k−1 represents the squared multiple correlation coefficient for the re-

gression of xk on x1, x2, · · · , xk−1. Applying the previous result, Wilks’ statistic
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can be written as:

Wt =

(
n− 1

n+m− 1

)p(
s11
s
′

11

)
s22 (1− r22.1)

s′22 (1− r′22.1)
· · ·

spp
(
1− r2p.12···p−1

)

s′pp
(
1− r′2p.12···p−1

)

where s′jj and r′2 refer to the sample variances and correlation coefficients for the

variables in the combined data set. The decomposition of the W statistic can also

be written as:

W = W1 ×W2.1 ×W3.1,2 × · · · ×Wp.1,2,··· ,p−1

where W1 =
(n− 1) s21

(n+m− 1) s′21
, Wj.1,··· ,j−1 =

(n− 1) s2j.1···j−1

(n+m− 1) s′2j.1···j−1

and s2j.1···j−1 rep-

resents the conditional variance of xj on x1, x2, · · · , xj−1. With this methodology,

q distinct factors can be monitored and thus, Bonferroni limits can be used. The

chart signals as soon as a factor plots below its corresponding LCL (for a pre

determined LCL). Mason et al. in their paper also gave a way for monitoring the

dispersion with individual observations.

4.3.1.11 Shewhart Chart Using the Eigenvalues

Mohd Noor A. and Djauhari M.A. (2011) proposed measuring the performance

of multiple eigenvalue CCs for monitoring the multivariate process variability.

The jth CC, has as plotted statistic the jth eigenvalue of the ith future variance-

covariance matrix denoted as λiS.

The associated control limits for an individual eigenvalue chart are given by:

UCL = λjΣ0
+ L

(√
2

n− 1
(λjΣ0

)2
)

LCL = λjΣ0
− L

(√
2

n− 1
(λjΣ0

)2
)

L = Φ(Zν) where ν = p
√
α/2 and Φ (·) is the cumulative distribution function of

the standard normal distribution. The process is said to be out-of-control when

at least one CC gives an out of control signal.
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4.3.1.12 One-Sided LRT-Based Control Chart

Yen et al.(2011) in their study focus on monitoring the dispersion of a multivariate

process if the dispersion is decreasing. In a previous work, Yen and Shiau (2010)

derived the LRT statistic for monitoring increases of the dispersion. The proposed

one-sided CC of Yen and Shiau (2010) had the following statistic:

TI = n

p∗I∑

i=1

[(di − 1)− log di] , for p
∗
I > 0

and TI = 0 for p∗I = 0. It is noted that d1 ≥ · · · ≥ dp > 0 are the roots of

|St − dΣ0|= 0 and p∗I is the number of di > 1.

In a similar way, Yen et al. (2010) in their paper propose following statistic for

monitoring decreases in dispersion:

TD = n

p∗D∑

i=1

[(di − 1)− log di] , for p
∗
D > 0

and TD = 0 for p∗D = 0. In this case it is noted that p∗D is the number of 0 < di < 1.

The chart signal whenever TD exceeds TD(α) for the case of decrease and whenever

TI exceeds TI(α) in the case of increase.

It is stated by the authors that the distribution of TD is difficult to be obtained

analytically so in their paper they used a Monte Carlo simulation to estimate the

critical value of TD.

Finally, Yen et al. (2012) propose the usage of a combined chart which signals

an out-of-control alarm if:

TI > TI (αI) or TD > TD (αD)
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4.3.1.13 Test of Covariance Changes Without Large Data

Hung and Chen (2012) in their paper have proposed two statistics for monitoring

the variance-covariance matrix (T1 and T2). Their form is:

T1 = {t2ii for 1 ≤ i ≤ p, Toff−diag} and

T2 = {Tdiag, Toff−diag}

T1 statistic signals if:

{t211 < χ2
n−1,(a1/2)

or t211 > χ2
n−1,1−(a1/2)

} ,

or

.

.

.

or

{t2pp < χ2
n−1,(ap/2)

or t2pp > χ2
n−1,1−(ap/2)

}
or

{Toff−diag > χ2
(p/2)(p−1),1−αoff−diag

}
T2 signals if:

{Tdiag < χ2
(p/2)(2n−p−1),(αdiag/2)

}
or

{Tdiag > χ2
(p/2)(2n−p−1),1−(αdiag/2)

}
or

{Toff−diag > χ2
(p/2)(p−1),1−αoff−diag

}
Their proposal is based on the assumption that (n− 1)S follows a Wishart

distribution with parameters (n− 1) and Σ0 (S ∼ Wp (n− 1,Σ0)). Since Σ0

is positive definite, there is a matrix A satisfying AΣ0A
′ = Ip which leads to

(n− 1)AΣ0A
′ ∼ Wp (n− 1, Ip). Using the Cholesky’s decomposition theorem,

Σ0 can be decomposed into MM ′ where M is the unique lower triangular ma-

trix with positive diagonal elements. A can be chosen to be M−1. Applying the

Cholesky’s decomposition theorem once more to the (n− 1)ASA′ another lower

triangular matrix T can be obtained. Hung and Chen (2012) proved that tij are
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mutually independent distributed as:

t2ii ∼ χ2
n−1, for 1 ≤ i ≤ p

tiiN (0, 1) , for 1 ≤ j ≤ i ≤ p

The following hypothesis test is considered: H0 : Σ = Σ0 versus H1 : Σ 6= Σ0.

Any departure from the null hypothesis will make certain tij behave abnormally.

Two test statistics are constructed (Tdiag and Toff−diag) with exact null distribu-

tions.

Finally Tdiag and Toff−diag are defined as:

Tdiag =
∑

1≤i≤p

t2ij ∼ χ2
(p/2)(2n−p−1) and

Toff−diag =
∑

1≤j≤i≤p

t2ij ∼ χ2
(p/2)(p−1)

4.3.1.14 Penalized Likelihood Ratio (PLR) Chart

In their paper, Li et al. (2012) assume that X follows a p-dimensional normal

distribution with known (or estimated from Phase I data) µ0 and Σ0. Without

loss of generality, they state, that they assume that X follows Np (0, Ip) when

the process is in control. The chart that has been constructed supposes that

the out of control matrix Σ1 remains sparse, meaning that only a few diagonal

elements are not equal to one and only a few off-diagonal elements are not equal

to zero. The first step for the construction of the chart was to estimate Ω = Σ−1
0

using a penalized likelihood function. In the second step, the charting statistic

was calculated based on the negative log-likelihood ratio of testing H0 : Σ0 = Ip

versus H1 : Σ0 6= Ip. For the estimation of Ω Li et al. (2012) found that by

penalizing all elements of Ω produces a more effective CC. The penalized negative

likelihood function can be written as:

l (X1,X2, · · · ,Xn;Ω) = tr (ΩS)− ln|Ω|+λ||Ω||1
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where ||Ω||1=
∑p

j=1

∑p
i=1|ω| and λ is a parameter that can be tuned to achieve

different levels of sparsity of the Ω estimate. Ωλ is the solution to the previous

function for a given λ:

Ωλ = argmin
Ω>0

{(X1,X2, · · · ,Xn;Ω)} .

After obtaining Ωλ, the CC calculates for each given sample:

Λλ = tr (S)− tr (ΩλS) + ln|Ωλ|

The PLR chart, signals when Λλ > UCLλ where UCLλ is chosen for a given λ to

achieve a predetermined ARL.

4.3.1.15 Covariance Matrix Monitor with Fewer Observations than

Variables

Mahaboudou-Tchao E. and Agboto V. (2013) propose a Shewhart-type CC based

on the statistic:

ct = tr (St)− ln|St|−p.

The plot signals if ct > h where h is chosen to achieve a specified in-control ARL.

The CC is based on a sample of size n less than p. For cases with fewer obser-

vations than dimensions the data are unable to compute a non-singular sample

covariance matrix. They use a matrix A with the property of AΣ0A
′ = Ip and

transform x to u = A (x− µ0) where u follows Np (0, Ip) when the process is in

control. In their research they propose a two step mechanism. In the first step,

for each sample i, V t = U ′
tU t is computed. Using V t, an estimate of the inverse

covariance matrix can be found using:

Q (Ω) = − ln|Ω|+tr
(
ΩΣ̂

)
+ ρ||Ω||1,

where ||Ω||1=
∑p

j=1

∑p
i=1|ωij| , Ω = Σ−1

0 and ρ is a data dependent tuning pa-

rameter.
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Next, they obtain an estimate of the covariance matrix St by inverting Ω̂t. Fi-

nally, the matrix St is compared with the identity matrix using ct.

4.3.2 CUSUM Control Charts

4.3.2.1 MCUSUM for the Dispersion

Healy (1987), by considering a shift on the variance-covariance matrix from Σ0 to

Σ1 = CΣ0 proposed a multivariate CUSUM CC for the dispersion of the process

given that the vector µ is constant throughout the whole process. The CUSUM

CC is based on the following function:

MCkk = max [MCk−1 + Yk −K, 0] , k = 1, 2, . . . ,m

where,

Yk = (xk − µ)′ Σ−1 (xk − µ)

and

K = p ln (C)
C

C − 1

The procedure is considered to be out of control if MCk ≥ H.

4.3.2.2 CUSUM Chart Based on Projection Pursuit

Chan and Zhang (2001) use the following statistics for monitoring the dispersion

of a multivariate process:

Q+
t = max

{
0, Q+

t1, Q
+
t2, · · · , Q+

tt

}

and

Q−
t = min

{
0, Q−

t1, Q
−
t2, · · · , Q−

tt

}

where Q+
0 = Q−

0 = 0. The projection method signals as soon as either Q+
t > h+

or Q−
t < h− where h+ and h− are decision values.
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It must be denoted thatQ+
tj = λmax

tj −(t− j + 1) r+ andQ−
tj = λmin

tj −(t− j + 1) r−

where r+ and r− are two reference values. Also when observation are collected,

under the null hypothesis, λmax
tj and λmin

tj denote respectively the largest and small-

est eigenvalue of the subgroup sample matrix.

4.3.2.3 Multiple CUSUM Charts Based on Regression Adjusted Vari-

ables

Yeh et al. (2004), Yeh et al. (2005) and Huwang et al. (2005) following Hawkin’s

(1991,1992) proposal expanded the idea of a multivariate CC for monitoring the

process mean based on regression adjusted variables.

For a given process, one calculates:

S+
ti = max

(
0, S+

(t−1)i +Wti − r
)

and

S−
ti = min

(
0, S−

(t−1)i +Wti − r
)

where S−
ti = S+

ti = 0 and r is a reference value. An out-of-control signal is detected

on the multiple CUSUM chart as soon as

max
1≤i≤p

{
max

(
S+
ti ,−S−

ti

)}
> h

where h is the decision value.

For a data set, the following statistic can be computed:

Zt =
[
diag

(
Σ−1

0

)]−1/2
Σ−1

0 (X t − µ0)

where Zt = (Zt1,Zt2, · · · ,Ztp, )
′. When the process is in-control, Zt is distributed

as Np (0, Ip).

For detecting changes in the variance of the ith component the following statistic
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is defined:

Wti =
|Zti|1/2−0.822

0.349

When the process is in control, Wti follows the standardized normal distribution.

If the distribution of Zti changes to N (0, σ2) then the distribution of Wti changes

approximately toN
(
2.355

(
σ1/2 − 1

)
, σ
)
. Therefore, the usual univariate CUSUM

chart is constructed to monitor mean shifts in Wti (thus the variance of Zti).

4.3.3 EWMA Control Charts for the Dispersion

4.3.3.1 Multivariate EWMA Chart Based on Regression Adjusted Vari-

ables

From Hawkins’ (1991,1992) proposal, the multiple CUSUM chart based on re-

gression adjusted variables can be transformed to multiple EWMA charts. For

t ≥ 1 and i = 1, 2, · · · , p one calculates:

Eti = λWti + (1− λ)E(t−1)i

where E0i = 0 and an out-of-control signal is given when:

max
1≤i≤p

{|Eti|} > L×
√

λ

2− λ

where L is a predefined value selected for a predetermined ARL0. It must be noted

that Wti =
|Zti|1/2−0.822

0.349
.

4.3.3.2 The EWMLR control chart

Yeh et al. (2004) in their paper state that when the monitoring begins, inde-

pendent samples of size n are taken from the process. The EWMLR CC for t ≥ 1

is:

Rt = λrt + (1− λ)Rt−1
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where R0 = r1. The process is considered to be out-of-control if Rt is greater than

the UCL ( UCL = UCL (m,n,w)) and is chosen to achieve a predetermined ARL

and is given from tables in Yeh et al. (2004) paper. It must be noted that rt is

defined as follows:

rt = (mn+ n− 2) ln|A+Bt|− (mn− 1) ln|A|− (n− 1) ln|Bt|

where

Bt =
n∑

j=1

(
Xtj −Xt

) (
Xtj −Xt

)′

and

A =
m∑

i=1

n∑

j=1

(
X ij −X t

)(
X ij −X t

)′

4.3.3.3 The Maximum Multivariate Exponentially Weighted Moving

Variability (MaxMEWMV) Control Chart

Yeh et al. (2004) propose plotting the following statistic:

MaxDt = max

[
Dt1 − E (Dt1)√

V ar (Dt1)
,
Dt2 − E (Dt2)√

V ar (Dt2)

]

The chart signals as soon as the value of MaxD plots a predetermined UCL.

For constructing the chart they define the following statistic after they assume

that Σ0 = Ip×p:

St = λX tX
′
t + (1− λ)St−1

where S0 = X1X
′
1. The proposed CC for monitoring the variance-covariance ma-

trix has been derived from St. In their approach, Yeh et al. (2004) have examined

the variance and covariance components of St separately. So the following two

quantities have been defined:

Stv =
(
St(11), St(22), · · · , St(pp)

)′
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and

Stc =
(
St(12), St(13), · · · , St(ij), · · · , St((p−1)p)

)′

where Stv is a p × 1 vector with the p diagonal elements of St and Stc is a

p (p− 1) /2 × 1 vector of the upper triangular off-diagonal elements of St. With

this approach the deviation of Stv and Stc is measured from:

Ip×1 and 0p(p−1)/2×1

Yeh et al. (2004) have defined the following approach for measuring the distance

between the two vectors:

Dt1 = ||Stv − Ip×1||2=
p∑

j=1

(
t∑

k=1

akX
2
kj − 1

)2

and

Dt2 = ||Stc − 0p(p−1)/2×1||2=
p∑

i<j

(
t∑

k=1

akXkiXkj

)2

where ak = λ (1− λ)t−k, a1 = (1− λ)t−1 and k = 2, 3, · · · , t. Also, i, j =

1, 2, · · · , p.
Finally it should be noted that:

µDt1
= 2p

λ

2− λ
and σDt1

= p

[
48λ4

1− (1− λ)4
+

8λ2

(2− λ)2

]

and also

µDt2
=

p (p− 1)

2

λ

2− λ
and σDt2

= p (p− 1) (2p− 1)

[
λ4

1− (1− λ)4

]
+p (p− 1)

(
λ

2− λ

)2

4.3.3.4 The MEWMA V Control Chart

For monitoring the dispersion of the process, the following statistic proposed by

Yeh et al. (2010) and is defined as follows:

νt = P

(
p∏

m=1

Fn−i,N−k+1−i ≤
(

p∏

i=1

N −m+ 1− i

n− i

)
× |nSt|

|NS|

)
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where m is the number of samples taken for estimating the Σ0 in Phase I. Also,

|nSt| and |NS| denote the determinant of the matrix nSt and NS (N = n×m).

When the process is in-control, νt is distributed as U (0, 1). The EWMA chart is

given below:

Sν (t) = λ× (νt − 0.5) + (1− λ)× Sν (t− 1)

where Sν (0) = 0. The authors state that Sν (t) is symmetric at 0 so the two

control limits can be the following:

UCL = L×
√

1

12

(
λ

2− λ

)(
1− (1− λ)2t

)

and

LCL = −L×
√

1

12

(
λ

2− λ

)(
1− (1− λ)2t

)

with Center Line 0 (CL=0 )

4.3.3.5 The ELR Control Chart

The following CC has been constructed for simultaneously monitoring the mean

and also the dispersion of the process. Zhang et al. (2010) consider the following

hypothesis test:

H0 : µ = 0 and Σ = Ip versus H1 : µ 6= 0 or Σ 6= Ip

The generalized likelihood ratio statistic for this test can be obtained and it is

the following:

LRt = np (a− log g − 1) + n||X t||2

where a =
1

p
tr (St), g = (|St)

1/p and ||·|| represents the Euclidean distance of a

vector. In the paper, it is mentioned that the terms ||X t||2 and a−log g contribute

to the changes of the process mean and variance respectively. Finally, the charting

statistic has the following form:

ELRt = np (a′ log g′ − 1) + n||ut||2
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where a′ =
1

p
tr (vt) and g′ = (|vt|)1/p. Also,

ut = λX t + (1− λ)ut−1

vt = λS
∗

t + (1− λ)vt−1

with S∗
t =

∑n
j=1 (X ij − ut)

′ (X ij − ut) /n and u0 = 0, v0 = Ip. The control

limits for this particular CC are mostly available from the authors upon request.

In general, the ELR statistic follows an asymptotic χ2 distribution.

4.3.3.6 The Max Norm Control Chart

Shen et al.(2013) proposed an EWMA CC for monitoring the variance covariance

matrix denoted as Max Norm. The proposed statistic to plot has the following

form:

TtMaxNorm
= max

[
Tt1 − E (T1)√

V ar (T1)
,
Tt2 − E (T2)√

V ar (T2)

]

and it signals as soon as TtMaxNorm
exceeds a pre-determined UCL. The CC derived

from trying to determine if the covariance matrix of:

Σt = (1− λ)Σt−1 + λSt

is significantly different from the identity matrix. If

Ct = Σt − Ip×p

then, the deviation of variance-covariance matrix can be examined by the deviation

of Ci from 0. In their study, the authors adopt a certain way for measuring the

distance between the two vectors. The two measures used are defined as:

Tt1 = ||dt||2=
p∑

i=1

p∑

j=i

c2t(ij)
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and

Tt2 = ||dt||∞= max
(
|ct(11)|, · · · , |ct(pp)|

)

where ct(ij) is an element (in the ith row and jth column) in the covariance matrix

Ct for i ≤ j. When Σ deviates from Ip×p, then Tt1 and Tt2 tend to have larger

values. Shen et al. (2013) in their study estimate through Monte Carlo simulation

the asymptotic limits of E (T1), E (T2), V ar (T1) and V ar (T2).





Chapter 5

Comparisons

5.1 Introduction

Every case that can be considered in real life is special and it differs with any

other. A practitioner may deal with various problems that can occur in his line of

production and of course he wants to be ahead of them. So, for every scenario that

can be dealt, it must be known to him the best way to catch up to it for less time

and money to be consumed by the process. In other words, the practitioner should

know which is the fastest CC to signal if the process is out-of-control depending

on the possible shift that may occur. This Chapter, deals with this problem

and various scenarios based on the available sample, the possible shift have been

considered. In subsection 5.2 the competing CCs and Scenarios are presented. In

subsection 5.2.1 the charts for the bivariate case will be presented and in subsection

5.2.2 the comparison will take place to determine the best available choice for every

scenario. Finally in subsection 5.2.3 is the summary of the chapter.

5.2 Competing Control Charts and Scenarios

In this section, it will presented comparisons between some of the multivariate

CCs presented in chapter 3 and 4. The first multivariate CC that will be used

69
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for comparisons is the CC1 introduced by Frank Alt (1985)which was presented

in subsection 4.3.1.2

The second multivariate CC is the W-Chart which was described in section

4.3.1.1 and was also introduced by Frank Alt (1985).

The third chart is a bivariate CC and it is the CC2 Control Chart which was

presented in section 3.2.1.1 and was proposed by Alt (1985).

Another bivariate CC (CC3) was proposed by Alt and Smith (1988) and will be

presented in this chapter. The chart corresponds to section 3.3.1.2.

Two more CCs have been proposed in the same paper from Hung and Chen

(2012) and are based on the Cholesky decomposition theorem. Namely, T1 and

T2 and were presented in section 4.3.1.13.

On an approach for a bivariate case, Quinino et al. (2012) in their paper propose

a new statistic for controlling the covariance matrix a normal process with known

means and variances. The VMIX statistic was presented in section 3.2.2.1.

It is known that in most cases the performance of CCs is measured by the Average

Run Length (ARL) which is the expected waiting time until the first occurrence

of an event creating an out-of-control signal. In literature there are two distinct

cases for the ARL. The in-control ARL and the out-of-control ARL. The in-control

ARL is the average number of plotted samples until an out-of-control signal even

though the process is in-control. The out-of-control ARL is the average number

of plotted samples until an out-of-control signal when the process is considered to

be out-of-control.

Regarding the comparison of the various CCs, the control limits of the charts

were computed for achieving an in-control ARL equal to 200. Also one scenario

has been taken into account for the number of variables (p = 2) because for

more scenarios computational difficulties were encountered. Furthermore, sce-

narios for different sample sizes have been considered with n = 5, 10, 20. In

addition, the scenarios were made for simulating a process with mean vector

µ = (0, 0) and variance-covariance matrix Σ =


 1 σ11ρσ22

σ11ρσ22 1


 with ρ =

−0.75,−0.3, 0, 0.5 and 0.75. Finally, the out-of-control ARL are compared for a

shift in one or two variances and the shifts had the form kσ2 with k = 1, 1.1, 1.2, . . . , 2.
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In the diagrams it is plotted the volume of the shift and the ln(ARL) for a better

presentation. The number of simulations were set to 10000.

5.2.1 The Bivariate Case (p = 2)

In this section the various figures for the different scenarios will be presented. As

a reminder, the graphs were made with the X-axis representing the volume of the

shift in the variance for a CC with fixed control limits for achieving ARL0 = 200

and the Y-axis representing the ln(ARL).
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5.2.1.1 Scenario with ρ = −0.75

The first scenario assumes that the correlation between the variables is -0.75 mean-

ing that the variables have a strong negative correlation.

Figure 5.1: For n=5 and Shift in One Variance

Figure 5.2: For n=5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

Figure 5.3: For n=10 and Shift in One Variance

Figure 5.4: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

Figure 5.5: For n=20 and Shift in One Variance

Figure 5.6: For n=20 and Shift in Two Variances
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5.2.1.2 Scenario with ρ = −0.30

The second scenario assumes that the correlation between the variables is -0.30

meaning that the variables have a moderate negative correlation.

Figure 5.7: For n=5 and Shift in One Variance

Figure 5.8: For n=5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

Figure 5.9: For n=10 and Shift in One Variance

Figure 5.10: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

Figure 5.11: For n=20 and Shift in One Variance

Figure 5.12: For n=20 and Shift in Two Variances
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5.2.1.3 Scenario with ρ = 0

The third scenario assumes that the correlation between the variables is 0 meaning

that the variables are uncorrelated.

Figure 5.13: For n=5 and Shift in One Variance

Figure 5.14: For n=5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

Figure 5.15: For n=10 and Shift in One Variance

Figure 5.16: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

Figure 5.17: For n=20 and Shift in One Variance

Figure 5.18: For n=20 and Shift in Two Variances
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5.2.1.4 Scenario with ρ = 0.5

The forth scenario assumes that the correlation between the variables is 0.5 mean-

ing that the variables have a moderate positive correlation.

Figure 5.19: For n=5 and Shift in One Variance

Figure 5.20: For n=5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

Figure 5.21: For n=10 and Shift in One Variance

Figure 5.22: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

Figure 5.23: For n=20 and Shift in One Variance

Figure 5.24: For n=20 and Shift in Two Variances
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5.2.1.5 Scenario with ρ = 0.75

The final scenario assumes that the correlation between the variables is 0.75 mean-

ing that the variables have a highly positive correlation.

Figure 5.25: For n=5 and Shift in One Variance

Figure 5.26: For n=5 and Shift in Two Variances
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For a sample size of 10, the following can be derived:

Figure 5.27: For n=10 and Shift in One Variance

Figure 5.28: For n=10 and Shift in Two Variances
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By having a sample size of 20 the following charts have been constructed:

Figure 5.29: For n=20 and Shift in One Variance

Figure 5.30: For n=20 and Shift in Two Variances
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5.2.2 Comparing Bivariate Control Charts

In this section the comparison of the charts in the different scenarios will be

presented.

For the first scenario with correlation between the variables equal to -0.75 it

seems that the VMIX chart performs better regardless the sample size and the

shift. If the researcher has estimated from the data that there is a high negative

correlation between the two variables of interest, then the VMIX chart should be

applied for monitoring the process’ dispersion. It can also be seen that the VMAX

chart performs best for a shift in one variable regardless the volume of the shift.

More specifically as the sample size increases the VMAX chart approximates the

performance of the VMIX chart. VMAX chart can also be selected for monitoring

the process if the sample size is small (n=5 ) if the shift occurs in both variables. In

contrary to these charts, the W chart is the worst chart for monitoring the process

especially if a shift in both variables takes place. When there is a shift only in the

dispersion of one variable, then the W chart is not able to detect the shift if it is of

low volume. For big shifts the performance of the chart rapidly improves. Also, as

the sample size increases, W chart becomes better and its performance is similar

to the VMIX and VMAX chart. So the W chart should be selected for detecting

a shift in one variable, for shifts bigger than 1.7σ2 if the sample size is 10 or for

shifts bigger than 1.3σ2 if the sample size is 20. T2 chart should be considered

for shifts in both variables regardless the sample size but preferably for shifts over

1.4σ2. The T2 chart can also be selected for shift in one variable with a small

sample size because it has the third best performance recorded. CC3 and CC1

charts have identical performance and should only be considered for shift in both

variables regardless the sample size. They have the second best performance for

large sample sizes (n = 10 or 20) and the third best performance for small sample

sizes (n = 5). T1 chart is able to detect a shift in one variable when the sample

size is more than 10. Finally the CC2 chart has the most moderate performance

since it does not performs best in any specific sample size.
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For the second scenario with correlation between the variables equal to -0.30

it seems that the VMAX chart is the best for detecting a shift in only one vari-

able regardless the sample size and the volume of the shift while VMIX chart

outperforms for shift in both variables regardless the sample size and the volume

of the shift. It is easy to say that these charts should be preferred in the appro-

priate situation. As a proposal it should be said that if the researcher knows that

there is a moderate negative shift between the two variables, then both VMIX

and VMAX charts should be used for detecting shifts (either in one or in both

variables) and a signal to the process would be given when the first chart signals.

In this scenario, the W chart performs best only in big sample sizes (n = 20) and

big shift (> 1.8σ2) in only one variable. T1 chart in this case seems to have one

of the best performances when it comes to a shift in one variable regardless the

sample size. For sample size equal to 5 it should be preferred for shifts over 1.4σ2,

for sample size equal to 10 it should be preferred for shifts over 1.3σ and for big

sample sizes (n = 20) for shifts over 1.2σ2. T2 chart should be considered for a

shift in one variable regardless the shift but for shifts over 1.2σ2. For a shift in

both variables it should be preferred if the sample size is 5 for shifts over 1.6σ2,

for sample size 10 when the shift is over 1.5σ2 or for sample sizes 20 if the shift

is over 1.2σ2. CC1 and CC3 should be considered only for shift in both variables

when sample size is 5 and the volume of the shift is less than 1.6σ2 or for sample

sizes 10 and 20 regardless the shift. Also CC1 and CC3 can be considered for a

small shift (< 1.2σ2) in one variable regardless the sample size. Again, CC2 is not

exceptional in any case so it should not be considered.

For the third scenario with correlation between the variables equal to 0 it

seems that VMAX chart is the best chart for detecting shifts in one variable

regardless the sample size. For shift in both variables it should be considered only

for sample size of 5 because it has the second best performance. VMIX chart is

again the best performing chart for shifts in both variables regardless sample size

and shift. VMIX can be considered for shifts in one variable for sample size less

than 10 because it has the second best performance or for shifts less than 1.4σ2 if
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the sample size is 20. From the multivariate charts, T1 can be chosen for detecting

shifts over 1.2σ2 in one variable for sample size over 10 and should not be preferred

at all if the shift occurs in both variances simultaneously. In this case T2 can be

considered but only if the shifts are over 1.6σ2 for sample sizes less than 10 and

regardless the volume of the shifts if the sample size is 20. CC1 and CC3 can

be chosen for shift in both variances regardless the sample size or in one variable

when the volume of the shift is less than 1.2σ2. W and CC2 chart in this scenario

are not appropriate because their performance is among the worst.

The correlation in the fourth scenario is moderately positive (ρ = 0.5). It

seems that the VMAX chart should be chosen for a shift in one variable regardless

the sample size or for shift in both variables when the sample size is small (n = 5)

because the performance is the second best. VMIX chart performs best when the

shift occurs in both variables regardless the sample size and has the second best

performance for a shift in one variable. W chart though improves its performance

as the volume of the shift gets bigger for one variable, can only be chosen for a

big sample size (n = 20) and volume of the shift > 1.6σ2. T1 chart has a really

good performance when it comes to a shift in one variable regardless the sample

size. It best performs for a shift over 1.4σ2 when the sample size is 5, for a shift

over 1.3σ2 when the sample size is 10 and for a shift over 1.2σ2 for sample size

equal to 20. T2 performs really good for shifts in both variables when the sample

size is 5 and the shift is over 1.6σ2, hen the sample size is 10 and the shift is over

1.5σ2 and when the sample size is 20 and the shift is over 1.2σ2. Also it performs

well for sample size of 5 and shift over 1.2σ2 in one variable. Again CC1 and CC3

perform really good in shifts in both variables regardless the sample size and for a

small shift (< 1.2σ2) in one variable regardless the sample size. Finally CC2 has

not a special case in which it should be preferred.

In the final scenario the correlation was set to be 0.75 meaning a strong positive

correlation. In this scenario the same results apply as in the case of ρ = −0.75.
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5.2.3 Summary

In this chapter, the comparisons of some presented charts took place. First

of all, the scenarios of the comparisons were determined which involved different

sample sizes, different correlations between the variables and of course different

shifts in one or both variances. For achieving this, the CCs were simulated and

their control limits were computed for achieving an in-control ARL equal to 200.

The comparison of the charts, showed that in general VMIX and VMAX perform

beter than the other CCs. Also the CC1 and CC3 CCs perform really good for

detecting a shift in both variables. T1 and T2 seem to have a good performance

depending on the scenario and W chart, was really good for detecting big shifts

in one variable when there is a big negative correlation involved. It should be

mentioned that the simulation program used was Wolfram Mathematica 9 and

the graphs were created with Systat SigmaPlot 12.5.



Chapter 6

Discussion and Scope for Further

Research

6.1 Discussion

In this master thesis the theory behind statistical process control was initially

presented. After that, a variety of univariate, bivariate and multivariate control

charts was presented which was the result of an extensive review of a great number

of articles based on control charts both univariate and multivariate. Finally some

specific control charts were compared for determining the most efficient control

chart for any given scenario which involves a bivariate process.

Although much progress has been made in the field of statistical process control,

more research must be considered for improving this area of interest. In the

following section further research and proposals will be discussed.
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6.2 Further Research and Proposals

As already mentioned, multivariate process control according to Jackson (1991),

should provide four simple information to the researcher:

• an answer to the question: ”Is the process in control?”,

• an overall ”Type I error”,

• the relation between the variables should be taken into account and

• an answer to the question ”What variable causes the problem?” if the process

is out-of-control.

Regarding the first information that should be obtained from multivariate sta-

tistical process control, it should be mentioned that more research should be done

for constructing additional CCs based on different statistical quantities. That will

result in a bigger variety of options to the researcher with some of them more effi-

cient than other. As a proposal to the researchers occupied in constructing CCs is

to consider using the multivariate coefficient of variation as a quantity measuring

the dispersion in a multivariate level. From the literature it seems that four (4)

different quantities have been proposed as multivariate coefficients of variation and

should be considered as a potential statistical quantity for proposing a new chart.

For the fourth information that always should be gained from monitoring a pro-

cess must be said that it is relatively new in literature and only small steps have

been made regarding the dispersion in a multivariate level. It is crucial to say that

this area must be expanded because while the main objective of the practitioner

is to monitor the process, more important is to know exactly what is wrong with

the process and especially with which variable when the whole system does not

perform as it should be. More weight should be given on interpreting and control-

ling the variability because if the practitioner manages to control the dispersion

then the target of the process will not fluctuate.

While Jacksons’ list is right on what information should be obtained from multi-

variate process control, it is probably incomplete and should be expanded by one
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information that should be provided to the researcher. The researcher should be

in position to answer to the question ”Am I using the optimal way to monitor the

process?”. The reason is really simple. If the best CC is not used for the scenario

encountered then it is not sure for the researcher to know in any given time the

process is in control (first information from Jackson) leading to ignorance on what

is wrong and in which variable (fourth information from Jackson).

A large-scale research should be done with main objective to determine the best

option for every scenario that can be encountered. This painful study should in-

clude scenarios for different number of variables, different sample sizes, different

correlations, different shifts in variances, meaning not only shift in one variance

or in two simultaneously but also in more with not the same volume of shift. Also

scenarios with different in control ARL should be included. The work done in this

thesis will continue and will revolve on this job for CCs that monitor the dispersion

of a multivariate process.
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