
DEPARTMENT OF INFORMATICS

UNIVERSITY OF PIRAEUS

Monitoring and Mining Distributed
Data Streams

PhD thesis

NIKOLAOS GIATRAKOS
BSc in Informatics, U. Piraeus (2006)

MSc in Information Systems, AUEB (2008)

Piraeus, November 2012

DEDICATION
To my father’s memory

...completing the above line was the most
difficult part of the thesis, I admit.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

Συμβουλευτική επιτροπή:

Επιβλέπων:

Ιωάννης Θεοδωρίδης,

Αν. Καθηγητής Παν/μίου Πειραιώς

Μέλη:

Μίνως Γαροφαλάκης,

Καθηγητής Πολυτεχνείου Κρήτης

Τιμολέων Σελλής,

Καθηγητής Ε. Μ. Πολυτεχνείου

Πανεπιστήμιο Πειραιώς

Τμήμα Πληροφορικής

Διατριβή

για την απόκτηση

Διδακτορικού Διπλώματος

του Τμήματος Πληροφορικής

ΝΙΚΟΛΑΟΥ ΓΙΑΤΡΑΚΟΥ

«Monitoring and Mining

Distributed Data Streams»

(Παρακολούθηση και Εξόρυξη Γνώσης από

Κατανεμημένα Ρεύματα Δεδομένων)

Εξεταστική επιτροπή:

Ιωάννης Θεοδωρίδης,

Αν. Καθηγητής Παν/μίου Πειραιώς ____________

Μίνως Γαροφαλάκης,

Καθηγητής Πολυτεχνείου Κρήτης ____________

Τιμολέων Σελλής,

Καθηγητής Ε. Μ. Πολυτεχνείου ____________

Χρήστος Δουληγέρης,

Καθηγητής Παν/μίου Πειραιώς ____________

Θεμιστοκλής Παναγιωτόπουλος,

Καθηγητής Παν/μίου Πειραιώς ____________

Δημήτριος Βέργαδος,

Επίκ. Καθηγητής Παν/μίου Πειραιώς ____________

Αντώνιος Δεληγιαννάκης,

Επίκ. Καθηγητής Πολυτεχνείου Κρήτης ____________

c© Copyright by

Nikolaos Giatrakos

2012

vi

Abstract

Many modern streaming applications, such as online analysis of financial,network, sen-
sor and other forms of data are inherently distributed in nature. Due to the distributed
nature of data production in the aforementioned scenarios, the major challenge con-
fronted by algorithms dealing with their manipulation is to reduce communication [21].
This happens because the central collection of data is not feasible in large-scale appli-
cations. Furthermore, in the case of sensor deployments, central data accumulation
results in depleting the power supply of individual sensors reducing the network life-
time [119, 44, 43, 45].

An important query type that is of the essence in such applications involves a con-
tinuous check on the position of a given (arbitrarily complex) function f with respect
to a posed threshold T . This monitoring demand may be explicitly placed at the core
of applications mission, e.g. in network traffic monitoring scenarios [21, 103] or im-
plicitly stand as an operational component. For instance, while detecting outliers in
sensor network settings, motes have to determine the similarity of their samples to
those obtained by their neighbors based on a given distance function as well as a cho-
sen similarity threshold.

One approach to achieve the desired communication reduction is to decompose the
monitoring problem into local constraints that can be disseminated to the geographi-
cally dispersed sites. According to that approach, each site in the network will then
have to consult these constraints upon the local dataset is altered. Collecting the data
centrally is only required when the local constraint of at least one site is violated [103].
However, the decomposition of the central monitoring problem into a set of local con-
straints is not always effective. In fact, it may complicate the monitoring processes
as well as uncontrollably sacrifice accuracy when functioning over generic network
infrastructures such as hierarchical sensor networks where message losses, death or
reorganization of nodes affects the network formation [9].

A second approach of performing the monitoring is to allow continuous communi-
cation between the necessary network parties but attempt to reduce the bandwidth con-
sumption by applying reduction techniques on the data under transmission. In that, we
allow efficient derivation of answers to our tracking procedure by controllably compro-

vii

viii

mising its accuracy. In particular, we aim at inventing techniques capable of providing
approximate answers to whether f > T or f < T with predefined accuracy guarantees
and simultaneously beware of the fact that the more we reduce the communication cost
the looser our accuracy guarantees become.

Regarding the first approach, we focus on monitoring (non-linear) complex func-
tions over distributed data streams. More precisely, in our work [42], we generalize the
geometric monitoring approach initially presented in [103] by proposing the adoption
of local predictors [22] to be used during the distributed tracking. We present a thor-
ough study regarding prediction models’ adoption within the geometric monitoring
setting. After identifying the peculiarities exhibited by predictors upon their imple-
mentation in the aforementioned environment, we develop a solid theoretic framework
composed of sufficient conditions rendering predictors capable of refraining the com-
munication burden. We propose algorithms incorporating those conditions and expand
on relaxed versions of them along with extensive theoretical analysis on their expected
benefits.

As already noted, the geometric monitoring framework may suffer from inaccuracy
in hierarchical sensor network architectures. For instance, its use while trying to detect
outliers based on minimum support queries cannot guarantee correctness or provide
any predictable approximation [9]. To handle such situations, we reside to the second
of the previously discussed approaches and propose an outlier detection framework,
namely TACO [44, 45], that trades bandwidth for accuracy in a straightforward manner
and supports various similarity metrics (monitored functions of interest).

Eventually, we further elaborate on extensions of the rationales utilized in the pre-
viously mentioned approaches. We concentrate on trajectory data streams and perform
distributed Representative Trajectory monitoring over a number of monitored objects
utilizing the concept of predictors [42]. Additionally, we exploit the properties of the
monitored similarity measures used in [44, 45], in the context of detecting movement
pattern alterations over streaming movement data [116].

ix

Περίληψη

Πολλές σύγχρονες εφαρμογές ρευμάτων δεδομένων, όπως ανάλυση οικονομικών,

δικτυακών, αισθητήρων και άλλων τύπων δεδομένων είναι κατανεμημένης φύσεως.

Εξαιτίας της κατανεμημένης φύσης παραγωγής των δεδομένων στα προαναφερθέντα

σενάρια, η μεγαλύτερη πρόκληση που αντιμετωπίζουν οι αλγόριθμοι που καλούνται

να τα διαχειριστούν είναι η μείωση του κόστους επικοινωνίας [21]. Αυτό συμβαίνει

λόγω του ότι η κεντρική συλλογή των δεδομένων δεν είναι εφικτή σε κατανεμημένες

εφαρμογές μεγάλης κλίμακας, αφού οδηγεί σε αυξημένη κατανάλωση του εύρους

ζώνης των συνδέσμων επικοινωνίας οι οποίοι αργά ή γρήγορα καθίσταντι μη

λειτουργικοί. Επιπλέον, σε περιπτώσεις πεδίων εφαρμογής της τεχνολογίας των

δικτύων αισθητήρων, η συσσώρευση των δεδομένων κεντρικά έχει ως αποτέλεσμα

την εξάντληση της εναπομένουσας ισχύος κάθε συσκευής, μειώνοντας τη διάρκεια

ζωής του δικτύου [119, 44, 43, 35].

Ένας σημαντικός τύπος επερωτήσεων που έχει ιδιαίτερο νόημα σε τέτοιες

εφαρμογές αφορά το συνεχή έλεγχο της τοποθέτησης της τιμής μιας δοθείσας

(οσοδήποτε πολύπλοκης) συνάρτησης f σε σχέση με κάποιο τεθέν κατώφλι Τ. Αυτή η

απαίτηση παρακολούθησης ενδέχεται να τίθεται ρητά στον πυρήνα της αποστολής

κάποιας εφαρμογής κατανεμημένων ρευμάτων δεδομέναν, π.χ. σε σενάρια

παρακολούθησης δικτυακής κίνησης [21, 103] ή να αποτελεί λειτουργικό της

συστατικό. Επί παραδείγματι, κατά τον προσδιορισμό ακραίων τιμών σε

περιβάλλοντα ασύρματων δικτύων αισθητήρων, οι κόμβοι αισθητήρες πρέπει να

αποφασίσουν την ομοιότητα των μετρήσεών τουςμε αυτές που έχουν δειγματιστεί από

τους γείτονές τους βάσει κάποιας δοθείσας συνάρτησης και ενός επιλεχθέντος

κατωφλιού ομοιότητας.

Μια προσέγγιση για να επιτύχη κανείς την επιθυμητή μείωση στην επικοινωνία,

είναι η αποσύνθεση του προβλήματος της παρακολούθησης των ρευμάτων

x

δεδομένων, σε τοπικούς περιορισμούς που μπορούν να δοθούν στις, γεωγραφικά

κατανεμημένες, πηγές δεδομένων. Σύμφωνα με αυτή την προσέγγιση, κάθε πηγή

δεδομένων θα πρέπει έπειτα να συμβουλεύεται αυτούς τους περιορισμούς σε κάθε

αλλαγή του ρεύματος δεδομένων που καταφθάνει τοπικά. Η κεντρική συλλογή των

δεδομένων χρειάζεται μόνο όταν παραβιάζεται ο περιορισμός που έχει τεθεί τοπικά σε

κάποια πηγή [103]. Παρόλα αυτά, η αποσύνθεση του προβλήματος της

παρακολούθησης των ρευμάτων δεδομένων σε ένα σύνολο τοπικών περιορισμών δεν

είναι πάντα αποτελεσματική. Στην πραγματικότητα, μπορεί να περιπλέξει τη

διαδικασία παρακολούθησης καθώς και να θυσιάζει ανεξέλεγκτα την ακρίβεια της

όταν λειτουργεί σε λιγότερο απλές δικτυακές υποδομές όπως ιεραρχικά δίκτυα

αισθητήρων όπου απώλειες μηνυμάτων, θάνατος και αναδιοργάνωση των κόμβων του

δικτύου μπορεί να λάβουν χώρα [9].

Μια δεύτερη προσέγγιση για την επιτέλεση της παρακολούθησης είναι να

επιτραπεί η συνεχείς επικοινωνίας μεταξύ των απαραίτητων δικτυακών μερών αλλά

να γίνει προσπάθεια μείωσης της κατανάλωσης του αντίστοιχου εύρους ζώνης με

εφαρμογή τεχνικών μείωσης των δεδομένων που πρόκειται να μεταδοθούν. Έτσι,

επιτρέπουμε την αποδοτική παροχή απαντήσεων στις διαδικασία παρακολούθησης

παράλληλα θυσιάζοντας μέρος της ακρίβειας τους με ελεγχόμενο όμως τρόπο.

Συγκεκριμένα, στοχεύουμε στην ανάπτυξη τεχνικών ικανών να παρέχουν

προσεγγιστικές απαντήσεις σε ότι αφορά το αν f > T ή f < T με προκαθορισμένες

εγγυήσεις ακρίβειας και ταυτόχρονα είμαστε ενήμεροι για το γεγονός ότι όσο

περισσότερο μειώνουμε το απαιτούμενο φόρτο επικοινωνίας τόσο χαλαρώνουμε τις

εγγυήσεις ακρίβειας των εξαγόμενων απαντήσεων.

Σε ότι αφορά την πρώτη από τις παραπάνω προσεγγίσεις, επικεντρωνόμαστε στην

παρακολούθηση (μη γραμμικών) πολύπλοκων συναρτήσεων επί κατανεμημένων

ρευμάτων δεδομένων. Πιο συγκεκριμένα, στην εργασία μας [42], γενικεύουμε την

προσέγγιση της γεωμετρικής παρακολούθησης που αρχικά παρουσιάστηκε στο [103],

προτείνοντας την υιοθέτηση τοπικών μοντέλων πρόβλεψης [22] κατάλληλων να

χρησιμοποιηθούν κατα την κατανεμημένη παρακολούθηση. Παρουσιάζουμε

διεξοδική μελέτη σχετικά με την υιοθέτηση τέτοιων μοντέλων πρόβλεψης στο

πλαίσιο της γεωμετρικής μεθόδου. Αφού προσδιορίσουμε τις ιδιαιτερότητες που

παρουσιάζουν τα μοντέλα πρόβλεψης όταν υλοποιηθούν στο προαναφερθέν

περιβάλλον, αναπτύσσουμε σχετικό θεωρητικό πλαίσιο αποτελούμενο απο επαρκής

συνθήκες που καθιστούν τα μοντέλα πρόβλεψης ικανά να συγκρατήσουν το φόρτο

επικοινωνίας. Προτείνουμε αλγορίθμους που ενσωματώνουν αυτές τις συνθήκες και

xi

επεκτεινόμαστε σε χαλαρές εκδόσεις των συνθηκών με ταυτόχρονη θεωρητική

ανάλυση των αναμενόμενων οφελών τους.

Όπως ήδη σημειώθηκε, το πλαίσιο γεωμετρικής παρακολούθησης μπορεί να

οδηγήσει σε έλλειψη ακρίβειας εντός ιεραρχικών αρχιτεκτονικών δικτύων

αισθητήρων. Για παράδειγμα, η χρήση του για τον προσδιορισμό ακραίων τιμών

βάσει ερωτημαάτων ελάχιστης υποστήριξης δεν μπορεί να εγγυηθεί ορθότητα ή να

παρέχει προσέγγιση με προβλέψιμο περιθώριο σφάλματος [9]. Προκειμένου να

χειριστούμε τέτοιες περιπτώσεις, καταλήγουμ στη δεύτερη από τις προαναφερθείσες

προσεγγίσεις και προτείνουμε ένα πλαίσιο προσδιορισμού ακραίων τιμών, με όνομα

TACO [44, 45], το οποίο είναι ικανό να συναλλάσει ευθέως την κατανάλωση εύρους

ζώνης με την ακρίβεια στον προσδιορισμό των ακραίων τιμών και μπορεί να

ενσωματώσει πληθώρα μέτρων ομοιότητας (παρακολούθηση συναρτήσεων που μας

ενδιαφέρουν).

Εν κατακλείδι, επιπρόσθετα στα προηγούμενα αναφερόμαστε σε επεκτάσεις των

προηγούμενων λογικών. Επικεντρωνόμενοι σε ρεύματα δεδομένων τροχιών

κινούμενων αντικειμένων, πραγματοποιούμε κατανεμημένη παρακολούθηση

Αντιπροσωπευτικών Τροχιών επί ενός παριθμού παρακολουθούμενων, κινούμενων

αντικειμένων χρησιμοποιώντας έννοιες των μοντέλων πρόβλεψης [42].

Επιπλέον, εκμεταλλευόμαστε τις ιδιότητες των μέτρων ομοιότητας που

χρησιμοποιήθηκαν στα [44, 45], για τον εντοπισμό αλλαγών στο μοτίβο κινούμενων

αντικειμένων, μέσω των αντίστοιχων ρευμάτων δεδομένων του τρόπου κίνησής τους

[116].

xii

Acknowledgments

First, I would like to thank a number of academic persons I had the opportunity to meet
during my studies. I choose to do so by chronological order of acquaintance.

Initially, I would like to thank my advisor, Professor Yannis Theodoridis, for the
continuous inspiration throughout my studies. During my early years as an undergradu-
ate student, I found his exceptional teaching abilities critical in unfolding the charming
world of database related concepts before me. Later on, during my Ph.D., he was al-
ways glad to share his priceless experience and knowledge which constitute integral
elements of the current thesis.

Special thanks to Assoc. Professor Yannis Kotidis. As my master thesis advisor
he exhibited endless patience in communicating the principles a hatching researcher
should get to know. I consider the opportunity to work with him as a determinant
factor in developing the way of research thinking I possess today. Furthermore, I had
the privilege of collaborating with him in most part of this thesis.

I would also like to express my deepest gratitude to Asst. Professor Antonios Deli-
giannakis. This work in its entirety could not have been fulfilled without his guidance,
patience and willingness in criticizing, correcting or even overlooking my imperfec-
tions. His help in broadening my horizons, his trust and honest friendship over the
years have been invaluable.

Professor Minos Garofalakis is another exceptional researcher and amazing indi-
vidual that I have had the opportunity to work with and who has provided me with
exceptional advice and guidance during the previous two years of my studies. His con-
tribution in the evolution of my research as well as my future career was critical. I
would like to thank him for the trust and encouragement he still supports me with.

Separate thanks to the members of the committee, Professor Timos Sellis, Profes-
sor Minos Garofalakis, Asst. Professor Antonios Deligiannakis, Professors Christos
Douligeris and Themis Panagiotopoulos and Asst. Professor Dimitrios Vergardos for
agreeing to serve on my thesis committee and for devoting their precious time to review
the current work and provide comments and suggestions.

Over the years I have had the pleasure to cooperate with talented individuals. Zhix-
ian Yan is an amazing person and good friend who I had the opportunity to work with

xiii

xiv

on semantic trajectory extraction issues. Furthermore, I was pleased to collaborate
with Izchak Sharfman and Professor Assaf Schuster on our prediction - based geo-
metric monitoring framework development. I also want to thank my colleagues and
partners starting with the Information Systems Laboratory (InfoLab) at the University
of Piraeus: Elias Frentzos, Evanglelos Katsikaros, Despina Kopanaki, Evangelos Kot-
sifakos, Gerasimos Marketos, Irene Ntoutsi, Nikos Pelekis and Marios Vodas for the
endless working hours and funny moments we shared. Additionally, while visiting the
Software Technology and Network Applications Laboratory (SoftNet) at the Technical
University of Crete I was delighted to meet Aikaterini Ioannou, Odysseas Papapetrou
and Asst. Professor Vasilis Samoladas to whom I give thanks for the fruitful discus-
sions we had together.

During my studies I participated in a number of national as well as European
projects. The LIFT (ICT-FP7-LIFT-255951) Project was the funding source of my
thesis during the previous two years. Moreover, the FP7/ICT/FET Project MODAP
partially supported me during the last three years of my studies. The DIACHORON
Project (PEP Attikis) was a good start at my early Ph.D. studies. Finally, by contribut-
ing to the FP6/IST Project GEOPKDD, I earned valuable experience and knowledge
at the first year of my Ph.D. I give thanks to those in charge of the above research
programs.

On a personal level, my close friends were constantly there for me, being willing to
tolerate my deeply silent or tense moments (often with turbulent alternations). Nikos,
Panagiotis, Aristidis, Tasos and Stavy, I feel fortunate for having you by my side guys.

Finally, I am graceful to my mother for her love, different aspects of support and
understanding. No words could express my exact feelings for her.

I frankly apologize to those I have inadvertently left out.
Thank you all!

Contents

1 Introduction 1

2 Related Work 7
2.1 Distributed Monitoring of Data Streams 7

2.2 Representative Trajectories and Location Predictors 8

2.3 Outlier Detection in Sensor Networks 9

2.4 Semantic Trajectory Extraction . 11

I Part I:Monitoring Distributed Data Streams 15

3 Prediction - Based Geometric Monitoring over Distributed Data Streams 17
3.1 Introduction . 17

3.2 Preliminaries . 19

3.2.1 The Geometric Monitoring Framework 19

3.2.2 Local Stream Predictors . 21

3.3 Prediction-Based Monitoring . 23

3.3.1 Motivation for Predictors . 23

3.3.2 How to Incorporate Predictors 23

3.3.3 Defining a Good Predictor 24

3.4 Strong Monitoring Models . 25

3.4.1 Containment of Convex Hulls 25

3.4.2 Convex Hull Intersection Monitoring 27

3.5 Simplified Alternatives . 28

3.5.1 Relaxing the Containment Condition 28

3.5.2 The Average Model . 30

3.5.3 The Safer Model . 30

3.5.4 Loosened Intersection Monitoring 31

3.5.5 Choosing Amongst Alternatives 34

3.6 Evaluation Results . 35

3.6.1 Corpus Data Set - Cash Register Paradigm 36

xv

xvi CONTENTS

3.6.2 Weather Data - Sliding Window Paradigm 37

3.6.3 CAA Operational Insights 40

3.7 Synopsis . 41

4 A Case Study on Prediction - Based Distributed Monitoring of Represen-
tative Trajectories 49
4.1 Introduction . 49

4.2 Basics . 50

4.2.1 Network Model . 50

4.2.2 Representative Trajectory Concepts 51

4.2.3 ReTra’s Query Processing 53

4.2.4 Incorporating Location Predictors 53

4.3 Distributed ReTra Monitoring . 54

4.3.1 ReTra Monitoring by Decomposition to Local Constraints . . 54

4.3.2 ReTra Monitoring Using the Prediction-Based Geometric Ap-
proach . 55

4.3.3 Comparison of the Approaches 56

4.4 Synopsis . 59

II Part II:Mining Distributed Data Streams 61

5 Tunable Approximate Computation of Outliers In Wireless Sensor Net-
works 63
5.1 Introduction . 63

5.2 Basic Framework . 66

5.2.1 Outlier Definition . 66

5.2.2 Supported Similarity Metrics - Monitored Functions 67

5.2.3 Network Organization . 68

5.2.4 Operation of the Algorithm 68

5.3 Data Encoding and Reduction . 69

5.3.1 Definition and Properties of LSH 70

5.3.2 Data Reduction at the Sensor Level 70

5.4 Detecting Outliers with TACO . 72

5.4.1 Running Example and Query Format 73

5.4.2 TACO at Individual Motes 74

5.4.3 Intra-Cluster Processing . 75

5.4.4 Inter-Cluster Processing . 75

5.4.5 Analysis . 77

5.4.6 Boosting TACO Encodings 79

5.4.7 Discussion . 80

CONTENTS xvii

5.5 Load Balancing and Comparison Pruning 81
5.5.1 Leveraging Additional Motes for Outlier Detection 82
5.5.2 Load Balancing Among Buckets 83

5.6 TACO under Other Supported Similarity Measures 85
5.7 Extensions . 90
5.8 Experiments . 91

5.8.1 Experimental Setup . 91
5.8.2 Sensitivity Analysis . 93
5.8.3 Performance Evaluation Using TOSSIM 97
5.8.4 TACO vs Hierarchical Outlier Detection Techniques 100
5.8.5 Bucket Node Exploitation 102
5.8.6 Message Suppression . 103

5.9 Synopsis . 105

6 Semantic Trajectory Extraction over Streaming Movement Data 107
6.1 Introduction . 107
6.2 Preliminaries . 109

6.2.1 Data and Semantic Trajectory Models 109
6.2.2 Window Specifications . 110
6.2.3 SeTraStream Overview . 111

6.3 Online Data Preparation . 112
6.3.1 Online Cleaning . 112
6.3.2 Online Compression . 113

6.4 Semantic Trajectory Extraction . 115
6.4.1 Online Episode Determination - Trajectory Segmentation . . . 115
6.4.2 Time and Space Complexity 118
6.4.3 Episode Tagging . 119

6.5 Experiments . 119
6.6 Distributed Semantic Trajectory Extraction 123
6.7 Synopsis . 124

7 Conclusions and Outlook 127

xviii CONTENTS

List of Figures

3.1 Demonstration of the geometric framework rationale 21

3.2 Prediction - Based Geometric Monitoring, Undesirable situation . . . 26

3.3 The effect of the Average Model Adoption 29

3.4 Loosened Intersection Monitoring Demonstration 31

3.5 Experimental Evaluation: Corpus Dataset - Cash Register Paradigm . 42

3.5 Experimental Evaluation: Corpus Dataset - Cash Register Paradigm . 43

3.6 Experimental Evaluation: Weather Dataset - Sliding Window Paradigm
- Variance Monitoring . 44

3.6 Experimental Evaluation: Weather Dataset - Sliding Window Paradigm
- Variance Monitoring . 45

3.7 Experimental Evaluation: Weather Dataset - Sliding Window Paradigm
- StN Monitoring . 46

3.7 Experimental Evaluation: Weather Dataset - Sliding Window Paradigm
- StN Monitoring . 47

4.1 Exemplary Network Architecture . 51

4.2 An ε−approximate ReTra representation. 52

4.3 Rationale of the ReTra Monitoring by Decomposition to Local Con-
straints . 57

4.4 Rationale of the ReTra Monitoring Utilizing the Prediction - Based
Geometric Approach . 58

5.1 Main Stages of the TACO Framework 65

5.2 LSH application to mote’s value vector 73

5.3 Probability Psimilar of judging two bitmaps as similar, depending on
the angle (θ) of the initial vectors and for two different thresholds Φθ

(W=16, reduction ratio=1/4). 77

5.4 Probability Psimilar of judging two bitmaps (of vectors that pass the
similarity test) as similar, depending on the number of bits d used in
the LSH encoding (W=16, θ=5, Φθ=10) 78

xix

xx LIST OF FIGURES

5.5 Exemplary (bottom-up) demonstration of the 3 phases of load balancing 84
5.6 Average Precision, Recall in Intel Data Set 92
5.7 Average Precision, Recall in Weather Data Set 94
5.7 Average Precision, Recall in Weather Data Set (cont) 95
5.8 Boosting Application on Intel datasets 96
5.8 Boosting Application on Intel datasets (cont.) 97
5.9 Total Bits Transmitted per approach 98
5.10 Transmitted bits categorization . 98
5.11 Power Consumption vs. MoteID . 99
5.12 Average Lifetime . 99
5.13 Intel.Temperature TACO vs Robust Accuracy varying minSup 101
5.14 Intel.Temperature TACO vs Robust transmitted bits varying minSup 101
5.15 Message Suppression on Intel Humidity datasets 104

6.1 From streaming movement data to semantic trajectory 108
6.2 The SeTraStream Framework . 111
6.3 Data cleaning (outlier removal and smoothing) 120
6.4 Data compression rate w.r.t. different thresholds 120
6.5 Episode identification varying the batch size 121
6.6 Sensitivity of RV w.r.t. different segmentation thresholds 121
6.7 Segmentation latency varying the batch size 122
6.8 Segmentation latency varying the segmentation threshold 122

List of Tables

3.1 Notation of Chapter 3 . 20
3.2 Local Stream Predictors’ Summary 21
3.3 Case study: Solar-Var Vs Threshold Monitoring 39
3.4 Case study: Wind Peak-StN Vs # Sites Monitoring 40

5.1 Computation of some supported similarity metrics between vectors
ui, uj containing the latest W measurements of nodes Si and Sj 67

5.2 Notation of Chapter 5 . 70
5.3 The effect of Bucket Nodes Introduction (W=16, d=128) 103

6.1 Notation of Chapter 6 . 112

xxi

xxii LIST OF TABLES

Chapter 1

Introduction

Most modern applications continuously receive a huge amount of streaming data from
geographically dispersed sources (or sites) such as ATM machines, network routers,
sensors, moving objects with GPS enabled devices and so on. On the other hand, the
users of these applications are rather concerned with the analysis of those data in an
online fashion so as to derive answers in real-time and appropriately trigger decision
making procedures. Respective scenarios may include both query monitoring and min-
ing procedures. For instance, a number of sensors placed in a machine room measures
the conditions (temperature, humidity, solar radiance) under which machines operate
and their mission is to continuously monitor whether the quantities measuring these
conditions do not deviate a lot from their expected values. In a similar scenario, a mal-
functioning sensor node, whose obtained samples need to be excluded from the query
answer, can be detected by having each node in the network checking the similarity it
exhibits with the measurements of its neighbors. In the latter case, should a node finds
adequate support from its neighbors its acquired values can then be considered valid.

Nonetheless, accomplishing monitoring and mining tasks in such a setting is not
trivial. First, operating in a streaming environment yields rapidly changing data dis-
tributions in each of the distributed sites so that local data streams vary a lot as time
passes. Second, the monitoring and mining processes may involve computations of
arbitrarily complex quantities or functions of interest that are defined upon the union
of the local data streams. Third, application requirements pose the continuous produc-
tion of valid answers as an essential part of their function. To further complicate the
above situation, a fourth requirement regards bandwidth consumption constraints. In
other words, central data collection is not feasible nor desired in distributed streaming
settings as it skyrockets the load in the communication links of the underlying network
infrastructure.

An important query type that is of the essence in such applications involves a con-
tinuous check on the position of a given (arbitrarily complex) function with respect to

1

2 CHAPTER 1. INTRODUCTION

a posed threshold. This monitoring demand may be explicitly placed at the core of
applications mission, e.g. in network traffic monitoring scenarios [21, 103] or implic-
itly stand as an operational component. As already mentioned, while detecting outliers
in sensor network settings, motes have to determine the similarity of their samples to
those obtained by their neighbors based on a given distance function as well as a chosen
similarity threshold [44, 45, 43, 30].

In the current thesis we tackle with the above issues and present monitoring and
mining techniques for distributed streaming settings. One approach to achieve the
desired communication reduction is to decompose the monitoring problem into local
constraints that can be disseminated to the geographically dispersed sites. According
to that approach, each site in the network will then have to consult these constraints
upon the local dataset is altered. Collecting the data centrally is only required when the
local constraint of at least one site is violated [103].

Regarding the first approach, we focus on monitoring (non-linear) complex func-
tions over distributed data streams. More precisely, in our work [42], we generalize the
geometric monitoring approach initially presented in [103] by proposing the adoption
of local predictors [22] to be used during the distributed tracking. We present a thor-
ough study regarding prediction models’ adoption within the geometric monitoring
setting. After identifying the peculiarities exhibited by predictors upon their imple-
mentation in the aforementioned environment, we develop a solid theoretic framework
composed of sufficient conditions rendering predictors capable of refraining the com-
munication burden. We propose algorithms incorporating those conditions and expand
on relaxed versions of them along with extensive theoretical analysis on their expected
benefits. More precisely, our contributions are:

• We introduce the adoption of prediction models in the setting of tracking complex,
non-linear functions utilizing the geometric approach [103, 105]. We exhibit the
way prediction models can be locally adopted by sites and we show the character-
istics they attribute to the geometric approach. We then illustrate that the initial
geometric monitoring framework of [103, 105] is a special case of our, more gen-
eral, prediction-based geometric monitoring framework.

• We point out the failure of conventional notions of good predictors to be applied in
this setting and manage to establish a solid theoretic framework consisting of suffi-
cient conditions that do render prediction models capable of guaranteeing reduced
bandwidth consumption.

• We expose a number of novel tracking mechanisms relaxing the previously (hard to
verify in a distributed manner) identified sufficient conditions. Using the simplest
possible primitives regarding prediction models’ behavior, we thoroughly study the
potentials of our new tracking techniques to achieve communication preservation.

• We present an extensive experimental analysis using a variety of real data sets,

3

parameters and functions of interest. Our evaluation shows that our approaches
can provide significant communication load reduction with savings ranging from 2
times and in some cases reaching 3 orders of magnitude compared to the transmis-
sion cost of the original bounding algorithm.

• We provide extensions of the prediction - based geometric monitoring framework
for the special case of monitoring representative trajectories over spatiotemporal
data streams produced by a number of tracked moving objects.

However, the decomposition of the central monitoring problem into a set of local
constraints is not always effective. In fact, it may complicate the monitoring processes
as well as uncontrollably sacrifice accuracy when functioning over generic network
infrastructures such as hierarchical sensor networks where message losses, death or
reorganization of nodes affects the network formation. In particular, [9] comments that
when the geometric approach, utilized in the monitoring part of our study, comes to
perform outlier detection in generic sensor architectures, it may sacrifice the accuracy
of the techniques beyond control.

A second approach of performing this mining task, which involves monitoring sim-
ilarity functions of pairs of sensor nodes, is to allow continuous communication be-
tween the necessary network parties but attempt to reduce the bandwidth consumption
by applying reduction techniques on the data under transmission. In that, we allow ef-
ficient derivation of answers to our tracking procedure by controllably compromising
its accuracy. In particular, we aim at inventing techniques capable of providing ap-
proximate answers to whether a similarity measure among sensor readings exceeds a
given threshold with predefined accuracy guarantees and simultaneously beware of the
fact that the more we reduce the communication cost the looser our accuracy guaran-
tees become. Hence, we employ this second approach and propose an outlier detection
framework, namely TACO [44, 45]. Our contributions to the task of mining outliers in
sensor network architectures are as follows:

• We present TACO, an outlier detection framework that trades bandwidth for accu-
racy in a straightforward manner. TACO supports various popular similarity mea-
sures used in different application areas. Examples of such measures include, but
are not limited to, the cosine similarity, the correlation coefficient and the Jaccard
coefficient.

• We present an extensive theoretical study on the trade offs occurring between band-
width and accuracy during TACO’s operation.

• We subsequently devise a boosting process that provably improves TACO’s accu-
racy under no additional communication costs.

• We devise novel load balancing and comparison pruning mechanisms, which alle-
viate certain (leading) nodes from excessive processing and communication load.
These mechanisms result in a more uniform, power consumption and prolonged

4 CHAPTER 1. INTRODUCTION

network unhindered operation, since the more evenly spread power consumption
results in an infrequent need for network reorganization.

• We present a detailed experimental analysis of our techniques for a variety of data
sets and parameter settings. Our results demonstrate that our methods can reli-
ably compute outliers, while at the same time significantly reducing the amount of
transmitted data, with average recall and precision values exceeding 80% and often
reaching 100%. It is important to emphasize that the above results often corre-
spond to bandwidth consumptions that are lower than what is required by a simple
continuous aggregate query, using a method like TAG [78]. We also demonstrate
that TACO may result in prolonged network lifetime, up to a factor of 3 in our
experiments. We further provide comparative results with the recently proposed
technique of [30] that uses an equivalent outlier definition and supports common
similarity measures. Overall, TACO appears to be more accurate up to 10% in
terms of the F-Measure metric while resulting in lower bandwidth consumption.

Motivated by the properties of monitored functions such as the correlation coeffi-
cient or the cosine similarity we used for outlier detection, we subsequently study the
application of generalized versions of these measures for mining semantic trajectories
from spatiotemporal data streams. The aforementioned measures possess the prop-
erty of detecting similar trends in the values of the encapsulated quantities and can thus
serve as the means for detecting movement pattern alterations. These alterations in turn
correspond to homogeneous portions of motion that can be semantically annotated.

We begin introducing a complete, centralized framework, namely SeTraStream [116],
for semantic aware trajectory extraction and subsequently comment on extensions of
SeTraStream to distributed settings. The distributed version of our framework utilizes
the second of the discussed approaches (incorporates data reduction techniques), so as
to alleviate bandwidth consumption but we come up with smart ways tailored for our
exact needs, which manage to reduce communication without affecting accuracy. To-
wards the objective of real-time semantic trajectory extraction, our core contributions
are:

• As a prior step for extracting semantic trajectories, we redesign trajectory data pre-
processing in the real-time context, including online cleaning and online compres-

sion. Our cleaning includes an one-loop procedure for removing outliers and alle-
viating errors based on a Kernel smoothing method. SeTraStream’s compression
scheme uses a combination of the Synchronized Euclidean Distance (sed) and the
novel definition of a Synchronized Correlation Coefficient (scc).

• We design techniques for finding division points which infer trajectory episodes
during online semantic trajectory extraction. SeTraStream’s outcomes are later
easy to handle and a semantic tagging classifier can then be applied for tag assign-

5

ment on identified homogeneous portions of movement, e.g. “driving”, “jogging”,
“dwelling for shopping” and so on.

• We implement SeTraStream’s multi-layer procedure for semantic trajectory extrac-
tion and evaluate it, considering different real life trajectory datasets. The results
demonstrate the ability of SeTraStream to accurately provide computed semantic-
aware trajectories in real-time, readily available for applications’ querying pur-
poses.

• We extend the previously introduced centralized framework to distributed settings
and provide techniques for communication load reduction by data compression
which, however, do not compromise accuracy at all. Our distributed techniques pro-
vide applications the ability to predetermine the worst case bandwidth consumption
and thus enable a priori installation of proper network infrastructure.

This thesis is organized as follows. Initially, in the next chapter, we comment on
works related to the issues we elaborate throughout our study. The rest of the thesis
is divided into two parts. In the first part, we concentrate on distributed monitoring
approaches. We present our prediction - based geometric monitoring framework [42]
(Chapter 3). Furthermore, in Chapter 4 we provide a case study regarding the adoption
of the previously proposed monitoring mechanism to the special case of distributed
representative trajectory monitoring. The second part, focuses on distributed mining
techniques. We present our TACO framework [44, 45] for detecting outliers in sensor
network settings in Chapter 5, while in Chapter 6 we examine semantic trajectory ex-
traction issues based on generalizations of similarity measures - monitored functions
utilized in Chapter 5. Eventually, Chapter 7 includes concluding remarks and future
work considerations.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

2.1 Distributed Monitoring of Data Streams

Recently, substantial efforts have been devoted on tracking and querying distributed
data streams [21]. The geometric monitoring framework which is leveraged by our
approaches in Chapter 3 was introduced in [103, 105] and was later enhanced in [106].
The optimizations proposed in [106] are orthogonal to our approaches, but note that
the techniques of [106] either require data to conform with a multivariate normal dis-
tribution or entail a number of solutions to a series of optimization problems that may
increase the computational load. The latter renders their adoption unaffordable in re-
source constraint environments such as [104]. On the contrary, our approaches are
based on simple predictors’ adoption that remain adaptable to changing data distribu-
tions and are easy to maintain even when resource constraints exist. In other work
related to the geometric monitoring approach, [104] discusses an application of the
framework of [103, 105] to clustered sensor network settings. The more recent work
of [100] adopts the geometric approach and proposes a tentative bound algorithm to
monitor threshold queries in distributed databases (rather than distributed data streams)
for functions with bounded deviation.

Prediction models in the context of distributed data streams have already been
fostered in previous work to monitor one-dimensional quantiles [23] and randomized
sketch summaries [22]. Their adoption has been proven beneficial in terms of reducing
the communication burden. Contrary to previous approaches our focus is on the bene-
fits they can provide in the context of the geometric monitoring framework for tracking
non-linear threshold functions.

In related work regarding distributed trigger monitoring, [67] provides a framework
for monitoring thresholded counts over distributed data streams, while [55] designs
techniques that decompose the problem of detecting when the sum of a distributed set
of variables exceeds a given threshold. Based on [55] anomaly detection techniques are

7

8 CHAPTER 2. RELATED WORK

studied in [51] and [52]. The recent work of [24] provides upper and lower communica-
tion bounds for approximate monitoring of thresholded Fp moments, with p = 0, 1, 2.

Other works focus on tracking specific types of functions over distributed data
streams. The work of [84] considers simple aggregation queries over multiple sources,
while [3] focuses on monitoring top-k values. Furthermore, [26] monitors set-expression
cardinalities in a distributed system using a scheme for charging local changes against
single site’s error tolerance. [121] considers the problem of tracking heavy hitters
and quantiles in a distributed manner establishing optimal algorithms to accomplish
the task. Eventually, [25] studies the problem of clustering distributed data streams,
while [125] generalizes the previous approach to hierarchical environments.

2.2 Representative Trajectories and Location Predic-
tors

In Chapter 4 we present a specialization of the prediction - based monitoring devel-
oped in Chapter 3 for the case of distributed representative trajectory tracking over
spatiotemporal data streams. The concept of a representative trajectory providing a
concise summary of the movement of a number of monitored objects that is adopted in
our approach, resembles the one that was initially introduced in TRACLUS [73]. Ac-
cording to the TRACLUS clustering framework, a representative trajectory of a cluster
of line segments (partial trajectories) is computed as an average direction vector similar
to a rotated centroid. The representative trajectory notion is reconsidered in [92] where
uncertain trajectories with general, instead of linear, types of movement are clustered
as a whole.

In the context of privacy-aware querying, [91] utilizes representative trajectories to
enable the production of fake trajectories that resemble the average movement pattern
of the objects participating in the query answer. In that, the returned query answers do
not reveal the actual trajectory of a moving object and simultaneously ensure that the
introduction of fake trajectories does not uncontrollably distort the query answer.

An approach for expressing the ”representativeness”, via a voting process that is ap-
plied for each segment of a given trajectory is presented in [87]. A simplistic trajectory
ranking method selects the trajectories of highest voting and ignores trajectories in low
density regions. The previous scheme is improved in [88] by handling trajectory seg-
mentation and sub-trajectory sampling aspects. Representative trajectories have also
been used for sampling purposes in [93].

In [99] online, distributed hot motion path extraction is studied. The hot motion
paths are defined as frequently traveled trails of moving objects. The framework, sim-
ilar to our techniques, assumes a distributed system of moving objects communicating
with a central server. The location measurements of each object are modeled with some

2.3. OUTLIER DETECTION IN SENSOR NETWORKS 9

uncertainty tolerance ε and a one-pass greedy algorithm, termed RayTrace, which is
supposed to run on each object independently is introduced. However, the focus is
on pinpointing frequently preferred paths instead of tracking the average movement
behavior of the monitored objects.

Finally, Chapter 4 utilizes the predictors presented in Chapter 3 (and [23, 22]) for
estimating the future location of moving objects. Specific techniques for predicting the
upcoming locations of moving objects have been proposed in [120, 59, 83]. However,
these approaches are developed to perform over centralized databases and cannot ef-
ficiently function in (distributed) streaming settings where we are interested in online,
continuous tracking of the objects as well as in adapting our predictions to frequently
changing movement distributions.

2.3 Outlier Detection in Sensor Networks

The emergence of sensor networks as a viable and economically practical solution for
monitoring and intelligent applications has prompted the research community to de-
vote substantial effort to define and design the necessary primitives for data acquisition
based on sensor networks [78, 119]. Different network organizations have been con-
sidered, such as using hierarchical routes (i.e., the aggregation tree [109, 123]), cluster
formations [13, 50, 96, 122], or even completely ad-hoc formations [4, 65, 70]. The
framework we present in Chapter 5 assumes a clustered network organization. Such
networks have been shown to be efficient in terms of energy dissipation, thus resulting
in prolonged network lifetime [96, 122].

Sensor networks can be rather unreliable, as the commodity hardware used in the
development of the motes is prone to environmental interference and failures. As a re-
sult, substantial effort has been devoted to the development of efficient outlier detection
techniques that manage to pinpoint motes exhibiting extraordinary behavior [126].

The recent work of [9] adopts the basic (without incorporating predictors) geomet-
ric monitoring framework we are going to discuss in Chapter 3 during outlier detection
in a sensor network. However, in a generic sensor setting where message losses as well
as addition and removal of nodes may happen, fostering the geometric approach may
compromise the accuracy of the technique beyond control [9]. As a result in Chapter
5 we are going to present our TACO framework [44, 45] that fosters a different ratio-
nale achieving efficiency by incorporating data reduction techniques accompanied by
respective accuracy (depending on the reduction ratio) guarantees. Until then, we re-
view a number of works that tackle with the outlier detection process in sensor network
architectures.

The authors of [56, 57] introduce a declarative data cleaning mechanism over data
streams produced by the sensors. Similarly, the work of [35] introduces a data cleaning
module designed to capture noise in sensor streaming data based on the prior data dis-

10 CHAPTER 2. RELATED WORK

tribution and a given error model N(0, δ2). In [81] kalman filters are adopted during
data cleaning or outlier detection procedures. Nonetheless, without prior knowledge of
the data distribution the parameters and covariance values used in these filters are dif-
ficult to set. The data cleaning technique presented in [129] makes use of a weighted
moving average which takes into account both recent local samples and correspond-
ing values by neighboring motes to estimate actual measurements. A wavelet-based
value correction process is discussed in [128] while outliers are determined utilizing
the Dynamic Time Warping (DTW) distance of neighboring motes’ values. A different
approach is presented in [15], where Pairwise Markov Networks are used as a tool to
derive a subset of motes sufficient to infer the values obtained by the whole network.
However, this technique requires an energy draining learning phase. In other related
work, [112] proposes a fuzzy approach to infer the correlation among readings from
different sensors, assigns a confidence value to each of them, and then performs a fused
weighted average scheme. A histogram-based method to detect outliers with reduced
communication cost is presented in [107].

In [68], the authors discuss a framework for cleaning input data errors using in-
tegrity constraints, while in [7, 124] unsupervised outlier detection techniques are used
to report the top-k values that exhibit the highest deviation in a network’s global sam-
ple. Amongst these techniques, of particular interest is the technique of [7], as it is
flexible with respect to the outlier definition. However, in contrast to our techniques,
it provides no means of directly controlling the bandwidth consumption, thus often
requiring comparable bandwidth to centralized approaches for outlier detection [7].

In [58], a probabilistic technique for cleaning RFID data streams is presented. The
framework of [30] is used to identify and remove outliers during the computation of
aggregate and group-by queries posed to an aggregation tree [19, 78]. Its definition
of what constitutes an outlier, based on the notion of minimum support and the use
of recent history, is adopted in Chapter 5 by our framework. It further demonstrates
that common similarity metrics such as the correlation coefficient and the Jaccard co-
efficient can capture the types of dirty data encountered by sensor network applica-
tions. Similarly to TACO (Chapter 5), the PAO framework [43] operates on top of
clustered network organizations and attempts to restrain communication costs during
outlier identification by detecting trends on mote measurements and applying linear-
regression based compression. In [111] the authors introduce a novel definition of an
outlier, as an observation that is sufficiently far from most other observations in the
data set. A similar definition is adopted in [85] where a distributed outlier detection
approach for dynamic data sets is presented. However, in cases where the motes ob-
serve physical quantities (such as noise levels, temperature) the absolute values of the
readings acquired depend, for example, on the distance of the mote from the cause
of the monitored event (i.e., a passing car or a fire respectively). Thus, correlations

2.4. SEMANTIC TRAJECTORY EXTRACTION 11

among readings in space and time are more important than the absolute values, used
in [85, 111].

The algorithms in [7, 30, 56, 124, 43] provide no easily tunable parameters in order
to limit the bandwidth consumed while detecting and processing outliers. On the con-
trary, the techniques of Chapter 5 have a direct way of controlling the number of bits
used for encoding the values observed by the motes. While [30] takes a best effort ap-
proach for detecting possible outliers and [56] requires transferring all data to the base
station in order to accurately report them, controlling the size of the encoding allows
our framework to control the accuracy of the outlier detection process.

The work in [14, 113] addresses the problem of identifying faulty sensors using a
localized voting protocol. However, localized voting schemes are prone to errors when
motes that observe interesting events generating outlier readings are not in direct com-
munication [30]. Furthermore, the framework of [113] requires a correlation network

to be maintained, while the TACO framework can be implemented on top of commonly
used clustered network organizations.

In Section 5.7 we extend TACO by a message suppression strategy that fledges
bandwidth consumption preservation. Message suppression schemes in sensor net-
works for continuous aggregate queries have been studied in [28, 29, 102]. Our work
differs in that we do not suppress raw measurements but extracted, compact bitmap
representations instead.

The Locality Sensitive Hashing (LSH) scheme used in TACO was initially intro-
duced in the rounding scheme of [47] to provide solutions to the MAX-CUT problem.
Since then, LSH has been adopted in similarity estimation [12, 33], clustering [97] or
indexing techniques for set value attributes [46]. Additionally, LSH has also been fos-
tered in approximate nearest neighbor (NN) queries [54] while [2] introduces a novel
hash-based indexing scheme for approximate NN retrieval that, unlike [54], can be ap-
plied to non-metric spaces as well. Eventually, the recent work of [38] extends the
Random Hyperplain Projection LSH scheme [12] by automatically detecting correla-
tions, thus computing embeddings tailored to the provided data sets.

2.4 Semantic Trajectory Extraction

In Chapter 6 our objective is to generalize the rationale of the similarity measures used
in Chapter 5, but this time so as to detect movement pattern alterations of moving
objects and design online methods for real-time semantic trajectory extraction with
extensions to distributed settings.

We start by trajectory construction which is the procedure of reconstructing trajec-
tories from the original sequence of spatiotemporal records of moving objects. Tasks
involved in this procedure mainly include data cleaning and data compression. Data

cleaning is dealing with trajectory errors which are quite common in GPS alike trajec-

12 CHAPTER 2. RELATED WORK

tory recordings. There are two types of errors: the outliers which are far away from
the true values and need to be removed; the noisy data that should be corrected and
smoothed. Several works [80, 101, 117] design specific filtering methods to remove
outliers and smoothing methods to deal with small random errors. Regarding network-
constrained moving objects, a number of map matching algorithms have been designed
to refine the raw GPS records [6, 64].

Trajectory data are generated continuously, in a high frequency and sooner or later
grow beyond systems’ computational and memory capacity. Therefore, data compres-

sion is a fundamental task for supporting scalable applications. The spatiotemporal
compression methods for trajectory data can be classified into four types: i.e. top-down,
bottom-up, sliding window, and opening window. The top-down algorithm recursively
splits the trajectory sequence and selects the best position in each sub-sequence. A rep-
resentative top-down method is the Douglas-Peucker (DP) algorithm [34], with many
extended implementation techniques. The bottom-up algorithm starts from the finest
possible representation, and merges the successive data points until some halting con-
ditions are met. Sliding window methods compress data in a fixed window size; whilst
open window methods use a dynamic and flexible window size for data segmentation.
To name but a few methods: Meratnia et al. propose Top-Down Time Ratio (TD-TR)
and OPen Window Time Ratio (OPW-TR) for the compression of spatiotemporal tra-
jectories [82]. In addition, the work of [95] provides two sampling based compression
methods: threshold-guided sampling and STTrace to deal with limited memory capac-
ity.

Recently, semantic-based trajectory model extraction has emerged as a hot topic
involving the addition of a semantic level on top of the mere spatiotemporal trajecto-
ries. [110] models a semantic trajectory as a sequence of stops and moves. From a
semantic point of view, a raw trajectory as a sequence of GPS points can be abstracted
to a sequence of meaningful episodes (e.g. begin, move, stop, end) along with their
spatiotemporal extend. [117][118] design a computing platform to progressively ex-
tract spatiosemantic trajectories from the raw GPS tracking feeds. In that approach,
different levels of trajectories are constructed, from the construction of spatiotemporal

trajectories and structured trajectories to the final semantic trajectory extraction, in
four computational layers, i.e. data preprocessing, trajectory identification, trajectory

structure and semantic enrichment.

Trajectory episodes like stops and moves can be computed with given geographic
artifacts [1] or only depend on spatiotemporal criteria like density, velocity, direction
etc. [86, 98, 117]. [1] develops a mechanism for the automatic extraction of stops that
is based on the intersection of trajectories and geometries of geographical features con-
sidered relevant to the application. In that approach the semantic information is limited
to geographic data that intersect the trajectories for a certain time interval. Thus, it is
restricted to applications in which geographic information can help to identify places

2.4. SEMANTIC TRAJECTORY EXTRACTION 13

visited by the moving objects which play an essential role. Recently, more advanced
methods use spatiotemporal criteria to perform trajectory segmentation which is equiv-
alent to identifying episodes like stops/moves: [117] designs a velocity-based method
providing a dynamic velocity threshold on stop computation, where the minimal stop
duration is used to avoid false positives (e.g. congestions); several clustering-based
stop identification methods have been developed, e.g. using the velocity [86] and
direction features [98] of movement. Finally, [8] provides a theoretical framework
for trajectory segmentation and claim that the segmentation problem can be solved in
O(n`ogn) time.

Online segmentation concepts can be traced back to the time series and signal pro-
cessing fields [66], but not initially for trajectories. Although, some of the above works
are capable of adapting to an online context [6][64], none of them focuses on revealing
the profound semantics present in the computed trajectories in real-time.

14 CHAPTER 2. RELATED WORK

Part I

Monitoring Distributed Data
Streams

15

Chapter 3

Prediction - Based Geometric
Monitoring over Distributed
Data Streams

3.1 Introduction

A wide variety of modern applications relies on the continuous processing of vast
amounts of arriving data in order to support decision making procedures in real time.
Examples include network administration, stock market analysis, environmental, surveil-
lance and other application scenarios. These settings are, more often than not, inher-
ently distributed in nature. For instance, consider the case of a network operation center
where data is produced by hundreds or thousands of routers [20, 23, 22] or the case of
environmental as well as control applications where wireless sensor network adoption
has become of great importance [79].

Due to the distributed nature of data production in the aforementioned scenarios,
the major challenge confronted by algorithms dealing with their manipulation is to re-
duce communication [20, 23, 22, 103, 105, 106, 26]. This happens because the central
collection of data is not feasible in large-scale applications. Furthermore, in the case of
sensor network deployments, central data accumulation results in depleting the power
supply of individual sensors reducing the network lifetime [79].

An important query type that is of the essence in the aforementioned fields regards
the monitoring of a trigger condition defined upon the range of values a function of
interest receives [103, 105, 106, 51, 55, 67, 52]. For instance, in order to perform
spam detection on a number of dispersed mail servers, algorithms base their decisions
on whether the value of the information gain function globally exceeds a given thresh-
old [105]. Moreover, in the example of the network operation center, Denial-of-Service

17

18 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

attacks are detected by attempting to pinpoint strangely high (based on a given thresh-
old) number of distinct source addresses routing packets across various destinations
within the network [26].

Recently, the work in [103, 105] has introduced a generic paradigm for monitoring
complex (non-linear) functions defined over the average of local vectors maintained at
distributed sites. Their proposed geometric approach essentially monitors the area of
the input domain where the average vector may lie, rather than monitoring the func-
tion’s value itself. The monitoring is performed in a distributed manner, by assigning
each node a monitoring zone, expressed as a hypersphere, which is nothing more than
a subset of the input domain where the average vector may lie. Communication is
shown to be necessary only if at least one site considers it likely that the condition of
the monitored function may have changed since the last communication between the
sites.

In this chapter [42], we examine the potentials of a simple (yet powerful), easy to
locally maintain approach in order to further reduce transmissions towards the central
source. In particular, we foster prediction models so as to describe the evolution of
local streams. The adoption of prediction models has already been proven beneficial
in terms of bandwidth preservation [20, 23, 22] in distributed settings. Initially, we
extend the geometric monitoring framework of [103, 105] and illustrate how it can
incorporate predictors, in order to forecast the evolution of local data vectors of sites.
We exhibit the way the geometric monitoring framework is modified to encompass con-
structed predictors and identify the peculiarities occurred upon predictors’ adoption. In
contrast to the findings of prior works [20, 23, 22], we prove that the mere utilization
of local predictions is hardly adequate to guarantee communication preservation even
when predictors are quite capable of describing local stream distributions. We then
proceed by establishing a theoretically solid monitoring framework that incorporates
conditions managing to guarantee fewer contacts with the central source. Eventually,
we develop a number of mechanisms, along with extensive speculative analysis, that
relax the previously introduced framework, base their function on simpler criteria, and
in practice yield significant transmission reduction.

The chapter proceeds as follows. In the next section we formally present the geo-
metric monitoring framework and we exhibit exemplary prediction models useful for
the applications we consider. Section 3.3 introduces the idea of prediction - based geo-
metric monitoring and shows how conventional notions of good prediction models fail
to adapt in the current setting. Section 3.4 presents theoretic frameworks that man-
age to dictate the sufficient conditions for prediction models adoption with provable
communication reduction while in Section 3.5 we propose practical alternatives built
upon as simple as possible assumptions on the ability of prediction models to describe
incoming data distributions. Our experimental analysis is incorporated in Section 3.6.

3.2. PRELIMINARIES 19

3.2 Preliminaries

In this section, we first provide helpful background work related to function monitoring
using the geometric approach. We then describe local stream predictors, which have
been utilized in past work. The notation used in this chapter appears in Table 3.1.

3.2.1 The Geometric Monitoring Framework

As in previous works [23, 105, 20, 22, 106], we assume a distributed, two-tiered setting,
where data arrives continuously at n geographically dispersed sites. At the top tier,
a central coordinator exists that is capable of communicating with every site, while
pairwise site communication is only allowed via the coordinating source.

Each site Si, i ∈ [1..n] participating at the bottom tier receives updates on its local
stream and maintains a d-dimensional local measurements vector vi(t). The global

measurements vector v(t) at any given timestamp t, is calculated as the weighted av-

erage of vi(t) vectors, v(t) =

n∑
i=1

wivi(t)

n∑
i=1

wi

, where wi ≥ 0 refers to the weight associated

with a site. Usually, wi corresponds to the number of data points received by Si [103].
Our aim is to continuously monitor whether the value of a function f(v(t)), defined
upon v(t), lies above/below a given threshold T . We use the term threshold surface to
denote the area of the input domain where f(v(t)) = T .

During the monitoring task using the geometric approach [103, 105], the coordi-
nator may request that all sites transmit their local measurements vectors and subse-
quently calculates v(t), performs the required check on f(v(t)), and transmits the v(t)

vector to all sites. The previous process is referred to as a synchronization step. Let
vi(ts) denote the local measurements vector that Si communicated during the last syn-
chronization process at time ts. The global measurements vector computed during a

synchronization step is denoted as the estimate vector e, where e =
n∑
i=1

wivi(ts)/
n∑
i=1

wi.

After a synchronization, sites keep up receiving updates of their local streams and
accordingly maintain their vi(t) vectors. At any given timestamp, each site Si individ-
ually computes vi(t) − vi(ts) and the local drift vector ui(t) = e + (vi(t) − vi(ts)).
Since

v(t) =

n∑
i=1

wivi(t)

n∑
i=1

wi

= e+

n∑
i=1

wi(vi(t)− vi(ts))
n∑
i=1

wi

=

n∑
i=1

wiui(t)

n∑
i=1

wi

v(t) constitutes a convex combination of the drift vectors. Consequently, v(t) will
always lie in the convex hull formed by the ui(t) vectors: v(t) ∈ Conv (u1(t), . . . ,

un(t)), as depicted in Figure 3.1.

20 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

Symbol Description
n The number of sites
Si The i-th site
ts Timestamp of the last synchronization

v(t) Global measurements vector at time t (
n∑
i=1

wivi(t)/
n∑
i=1

wi)

e(t) Estimate vector at time t (equal to v(ts))

ep(t) The predicted estimate vector (
n∑
i=1

wiv
p
i (t)/

n∑
i=1

wi)

vi(t) Local measurements vector at Si at time t
wi Number of data points at Si
ui(t) Drift vector (equals to e(t) + vi(t)− vi(ts))
vpi (t) Local predictor of Si at time t
upi (t) Prediction deviation vector (ep(t) + vi(t)− vpi (t))
B
‖r‖
c Local constraint (ball) centered at c with radius ‖r‖

Table 3.1: Notation of Chapter 3

Note that each site can compute the last known value of the monitored function
as f(e) and can, thus, determine whether this value lies above/below the threshold
T . Since v(t) ∈ Conv (u1(t), . . . , un(t)), if the value of the monitored function
in the entire convex hull lies in the same direction (above/below the threshold T) as
f(e), then it is guaranteed that f(v(t)) will lie in that side. In this case, the function
will certainly not have crossed the threshold surface. The key question is: “how can
the sites check the value of the monitored function in the entire convex hull, since
each site is unaware of the current drift vectors of the other sites”? This test can be
performed in a distributed manner as described in Theorem 3.2.1, while an example (in
2-dimensions) is included in Figure 3.1.

Theorem 3.2.1. [103, 105] Let x, y1, . . . , yn ∈ Rd be a set of d dimensional vectors.

Let Conv (x, y1, . . . , yn) be the convex hull of x, y1, . . . , yn. Let B‖
x−yi

2 ‖
x+yi

2

be a ball

centered at x+yi
2 with a radius of ‖x−yi2 ‖ that is,B‖

x−yi
2 ‖

x+yi
2

= {z ∈ Rd : |‖z− x+yi
2 ‖ ≤

‖x−yi2 ‖}. Then, Conv (x, y1, . . . , yn) ⊂
n
∪
i=1
B
‖ x−yi2 ‖
x+yi

2

.

With respect to our previous discussion x corresponds to e while yi vectors refer to
the drift vectors ui(t). Hence, sites need to compute their local constraints in the form

of B‖
e−ui(t)

2 ‖
e+ui(t)

2

and independently check whether a point within these balls may cause

a threshold crossing. If this indeed is the case, a synchronization step takes place.
Note that since Conv (e, u1, . . . , un) is a subset of the union of local ball constraints,
the framework may produce a synchronization in cases where the convex hull has not
actually crossed the threshold surface (false positives).

In summary, each site in the geometric monitoring framework manages to track
a subset of the input domain. The overall approach achieves communication savings
since the coordinator needs to collect the local measurement vectors of the sites only

3.2. PRELIMINARIES 21

e

u1
u2

u3

u4 u5

f(v(t)) > T

v(t)

Figure 3.1: Demonstration of the geometric framework rationale. Conv (u1, . . . , un)
is depicted in gray, while the actual position of e and the current v(t) are shown as
well. Black spheres refer to the local constraints constructed by sites to assess possible
threshold crossing. v(t) is guaranteed to lie within the union of these locally con-
structed spheres. Since one of the spheres crosses the threshold surface, f(v(t)) and
f(e) may not lie at the same side relative to the threshold T . Hence, a synchronization
needs to be performed.

when a site locally detects (in its monitored area of the input domain) that a threshold
crossing may have occurred.

3.2.2 Local Stream Predictors

We now outline the properties of some prediction model options that have already been
proven useful in the context of distributed data streams [22, 23]. Note, beforehand,
that the concept of their adoption is to keep such models as simple as possible, and
yet powerful enough to describe local stream distributions. It can easily be conceived
that more complex model descriptors can be utilized, which however incur extra com-
munication burden when sites need to contact the coordinating source [22, 23]. In our
setting, this translates to an increased data transmission overhead during each synchro-
nization step. In our discussion, hereafter, we utilize the term predictor to denote a
prediction estimator for future values of a local measurements vector. Using a similar
notation to the one of Section 3.2.1, we employ vpi (t) to denote the prediction for the
local measurements vector of site Si at timestamp t.

The Static Predictor. The simplest guess a site may take regarding the evolution of its
local measurements vector is that its coordinates will remain unchanged with respect to
the values they possessed in the last synchronization: vpi (t) = vi(ts). It is also evident
that this predictor is trivial to maintain in both the sites and the coordinator. Moreover,

Predictor Info. Pred. Local Vector (vpi)

Static ∅ vi(ts)

Linear Growth ∅ t
ts
vi(ts)

Velocity/Acceleration veli vi(ts) + (t− ts)veli + (t− ts)2acceli

Table 3.2: Local Stream Predictors’ Summary

22 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

it requires no additional information to be communicated towards the coordinator upon
a synchronization step. Using the static predictor, in the absence of a synchronization
step, the coordinator estimates that v(t) = e.

The static predictor may be a good choice only in settings where the evolution of
the values in each local measurements vector is unpredictable, or local measurements
vectors change rarely.

The Linear Growth Predictor. The next simple, but less restrictive, assumption that
can be made is that local vectors will scale proportionally with time. In particular,
vpi (t) = t

ts
vi(ts) which is the only calculation individual sites and the coordinating

source need to perform in order to derive an estimation of vi(t) at any given time.
Note that, using this predictor, the best guess that a coordinator can make for the value
of v(t) is equal to t

ts
v(ts) = t

ts
e. As with the Static Predictor, the Linear Growth

Predictor requires no additional information to be transmitted upon a synchronization.

We can deduce that the Linear Growth Predictor is built on the assumption that vi(t)
vectors evolve, but that their evolution involves no direction alterations. Consequently,
it can be adopted to approximate local streams in which vi(t) vectors’ coordinates are
expected to increase uniformly over time.

The Velocity/Acceleration Predictor. The Velocity/Acceleration (VA) Predictor is a
much more expressive predictor. VA employs additional vectors that attempt to capture
both the scaling and directional change that vi(t) may undertake. More precisely, in the
VA predictor the future value of the local measurements vector is estimated as vpi (t) =

vi(ts)+(t−ts)veli+(t−ts)2acceli. Since the velocity veli and the acceleration acceli
of the local stream are capable of expressing both possible types of vi(t) alterations, it
provides an enriched way to approximate its behavioral pattern.

In a way similar to [22], when a synchronization is about to take place, Si is re-
quired to compute the velocity vector veli utilizing a window of the W most recent
updates it received. Given that window, the velocity vector can be calculated by com-
puting the overall disposition as the difference between vi(t) and the local vector in-
stance corresponding to the first position of the window.1 Scaling this outcome by the
time difference between the window extremes provides veli. In addition, the acceli
value can be computed as the difference between the current velocity and correspond-
ing velocity calculated in the previous synchronization. Scaling the previous result by
1/(t−ts) computes a proper acceli vector. Additional approaches based on use of veli
and acceli values can be found in [22].

It is easy to see that the flexibility provided by the VA Predictor comes at the cost of
the transmission of veli (along with vi(t)) during each synchronization. We note that
acceli does not need to be communicated to the coordinator, since the coordinator is
already aware of the previously computed velocity vectors of each site.

1Note that each update may not arrive at each timestamp. Thus, the timestamp of the first update in the
window may in general be different than t−W + 1.

3.3. PREDICTION-BASED MONITORING 23

Table 3.2 summarizes the described predictor characteristics. It is important to em-
phasize that the prediction-based monitoring framework described in the next sections
can utilize any predictor and is, thus, not restricted to the predictors presented in this
section.

3.3 Prediction-Based Monitoring

In this section, we first motivate the need to incorporate predictors in the geometric
monitoring framework and then demonstrate how this can be achieved. We then illus-
trate that the initial geometric monitoring framework of [103, 105] is a special case of
our, more general, prediction-based geometric monitoring framework. Subsequently,
we define the notion of a good predictor and demonstrate that good predictors lead
to monitoring a smaller subset of the domain space, thus potentially leading to fewer
synchronizations and, hence, fewer transmitted messages.

3.3.1 Motivation for Predictors

Figure 3.1 demonstrates a motivating example of why it may be beneficial to incor-
porate predictors in the geometric monitoring framework. In the illustrated example,
the sphere of u4 has crossed the threshold surface. By definition, the direction of each
drift vector essentially depicts how the values of the corresponding local measurements
vector have changed since the last synchronization. Using the geometric monitoring ap-
proach, a synchronization will take place because S4 will detect a threshold crossing.
A plausible question is: ”Could we avoid such a synchronization step, if the changes
in the values of the five local measurements vectors could have been predicted fairly
accurately”? For example, if we could have predicted the change (drift) in the local
measurements vectors of each site fairly accurately, then we would have determined
that v(t) has probably not moved closer to the threshold surface and, thus, avoid the
synchronization step. The above example motivates the need for prediction-based ge-
ometric monitoring.

3.3.2 How to Incorporate Predictors

As explained in Section 3.2.2, the coordinator can receive, during a synchronization
step, information regarding the predicted local measurements vector vpi (t) of each site.
Thus, the coordinator will be able to compute an estimation of v(t) provided by the

local predictors as: ep(t) =

n∑
i−1

wiv
p
i (t)

n∑
i−1

wi

, which we will term as the predicted estimate

vector. Based on ep(t), we now show that the coordinator can continuously check for

24 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

potential threshold crossings. However, in this case a synchronization is required only
when ep(t) and v(t) are likely to be placed in different sides of the threshold surface.

In the context of the geometric monitoring framework, we first observe that:

v(t) =

n∑
i=1

wivi(t)

n∑
i=1

wi

= ep(t) +

n∑
i=1

wi(vi(t)− vpi (t))

n∑
i=1

wi

=

n∑
i=1

wiu
p
i (t)

n∑
i=1

wi

where upi (t) = ep(t) + (vi(t)− vpi (t)) denotes the vector expressing the prediction de-

viation. Thus, similar to our analysis in Section 3.2.1, v(t) ∈ Conv (up1(t), . . . , upn(t))

⊂
n⋃
i=1

B
‖
ep(t)−up

i
(t)

2 ‖
ep(t)+u

p
i

(t)

2

. Since v(t) lies in the convex hull Conv(up1(t), . . . , upn(t)), each

site Si can monitor the ball that has as endpoints of its diameter the estimated predicted
vector ep(t) and its prediction deviation upi (t).

Note that the geometric monitoring approach of [103, 105] corresponds to utilizing
a static predictor (this leads to vpi (t) = v(ts), ep(t) = e and upi (t) = ui(t)) and is,
thus, a special case of our, more general, prediction-based monitoring framework.

3.3.3 Defining a Good Predictor

Upon utilizing a predictor, as long as local forecasts (vpi (t)) remain sound, we expect
that they will approximate the true local vectors vi(t) to a satisfactory degree at any
given timestamp. This means that each vpi (t) will be in constant proximity to the vi(t)
vector, when compared to vi(ts). Formally:

Property 3.3.1. A Good Predictor possesses the property:

‖vi(t)− vpi (t)‖ ≤ ‖vi(t)− vi(ts)‖ ∀t ≥ ts

Property 3.3.1 lies, implicitly or not, in the core of predictors’ adoption in dis-
tributed stream settings. It expresses the notion of a useful, in terms of bandwidth
consumption reduction, predictor present in previous works [20, 22, 23] which have
managed to exhibit important improvements by exploiting the above fact. Hence, we
start by exploring the benefits of the notion of good predictors expressed by Prop-
erty 3.3.1 within the geometric monitoring setting.

Predictors satisfying Property 3.3.1 yield stricter local constraints for the bounding
algorithm compared to the original monitoring mechanism (Section 3.2.1). This hap-
pens because ‖vi(t) − vpi (t)‖ ≤ ‖vi(t) − vi(ts)‖ ⇔ ‖upi (t) − ep(t)‖ ≤ ‖ui(t) − e‖
and the radius of the constructed balls will always be smaller. An example of predict-
ion-based monitoring is depicted in Figure 3.2.

Consequently, a good predictor results in the sites monitoring a tighter convex hull,
namely Conv (up1(t), . . . , upn(t)), than the corresponding convex hull of the original

3.4. STRONG MONITORING MODELS 25

geometric monitoring framework. This yields the construction of tighter local con-
straints and, as already mentioned, a synchronization is required only when ep(t) is
likely to be placed in a different side of the threshold surface to the one of v(t). Hence,

a synchronization is again caused when any ball B‖
ep(t)−up

i
(t)

2 ‖
ep(t)+u

p
i

(t)

2

crosses the threshold

surface.

Despite the fact that this mechanism may in practice be useful, it cannot guarantee
fewer synchronizations because Conv (up1(t), . . . , upn(t)), although tighter, might still
be placed closer than Conv (u1(t), . . . , un(t)) to the threshold surface. This in turn

will cause some B‖
ep(t)−up

i
(t)

2 ‖
ep(t)+u

p
i

(t)

2

to cross the threshold before any B‖
e−ui(t)

2 ‖
e+ui(t)

2

does (Fig-

ure 3.2). This observation shows that the conventional concept of good predictors fails
to adapt in the current setting since it does not guarantee by itself fewer synchroniza-
tions.

3.4 Strong Monitoring Models

The concluding observations of Section 3.3 raise a concern regarding the sufficient
conditions that should be fulfilled for the predictors to always yield fewer synchroniza-
tions than the original framework. Apparently, this happens when the surface of the
monitoring framework devised by the predictors is contained inside the monitored sur-
face of the original framework. In other words, we need to define the prerequisites for

constructing local constraints that are always included in
n⋃
i=1

B
‖ e−ui(t)2 ‖
e+ui(t)

2

utilized by the

original framework. Let Sur(P) be the surface monitored by any alternative mecha-
nism that adopts predictors while operating. A monitoring model is defined as strong

if the following property holds:

Property 3.4.1. A Strong predictor-based Monitoring Model possesses the property:

Sur(P) ⊆
n⋃
i=1

B
‖ e−ui(t)2 ‖
e+ui(t)

2

3.4.1 Containment of Convex Hulls

According to Theorem 3.2.1, after computing the local drift vectors and prediction
deviations, we are free to choose any common, reference vector in order to perform the
monitoring task. Thus, it is not mandatory for the sites to use e and ep(t) as a common
reference point in order to construct their monitoring zones. In fact, the sites could use
any common point as an endpoint of the diameter of their monitoring zones.

An important observation that we prove in this section is that a predictor-based
monitoring model satisfies Property 3.4.1 when (1) every prediction deviation vector is
contained in the convex hull of the estimate vector and the drift vectors defined by the
original bounding algorithm, and (2) an appropriate reference vector is selected.

26 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

f(v(t)) > T

e

u1
u2

u4 u5

v(t)
ep

up
1

up
2

up
3

up
4 up

5

v(t)

Figure 3.2: The red balls demonstrate the local constraints of sites when using a sample
good predictor. A good predictor results in the tighter convex hull Conv (up1(t), . . . ,
upn(t)) (depicted in yellow). Here, fewer synchronizations are not guaranteed, since
the balls of the predicted convex hull cross the threshold before any ball of the original
convex hull does so.

Before proving our observation, we first show that for any triplet of vectors z, y, x ∈
Rd, the condition z ∈ B‖

y−x
2 ‖

y+x
2

is equivalent to 〈x− z, y − z〉 ≤ 0 where the notation
〈., .〉 refers to the inner product of two vectors. Whenever it is appropriate, we omit the
temporal reference symbol (t) in the vectors to simplify the exposition.

Lemma 3.4.1. z ∈ B‖
y−x

2 ‖
y+x

2

if and only if 〈x− z, y − z〉 ≤ 0.

Proof. Recall that if z ∈ B
‖ y−x2 ‖
y+x

2

, then ‖z − x+y
2 ‖ ≤ ‖

x−y
2 ‖. This is equivalent to

1
4 〈2z − (x + y), 2z − (x + y)〉 − 1

4 〈x − y, x − y〉 ≤ 0. Recall that the inner product
is distributive, i.e. 〈a + b, c〉 = 〈a , c〉 +〈b , c〉, and symmetric, i.e. 〈a , b〉 = 〈b , a〉
Therefore: 1

4 〈2z − (x+ y), 2z − (x+ y)〉 − 1
4 〈x− y, x− y〉 =

1
4 〈(z − x) + (z − y), (z − x) + (z − y)〉−
1
4 〈(z − x)− (z − y), (z − x)− (z − y)〉 =

〈z − x, z − y〉 = 〈x− z, y − z〉 .

We now proceed to prove in Lemma 3.4.2 that a predictor-based monitoring model
that maintains each prediction deviation vector contained in the convex hull of the
drift vectors defined by the original bounding algorithm is a strong predictor-based
monitoring model if it also selects the same reference vector (e.g., e instead of ep)
as the original framework. A direct result is that the area monitored by the sites is a
subset of the corresponding area of the original framework. This, in turn, leads to fewer
synchronizations, since every time a site detects a potential threshold crossing in the
predictor-based monitoring model, at least one site would also have detected the same
threshold crossing (for the same vector of the input domain) in the original framework.

Lemma 3.4.2. Let upi ∈ Conv(u1, ..., un) ∀i ∈ {1..n}. Then

B
‖
e−up

i
2 ‖

e+u
p
i

2

⊆
n⋃
i=1

B
‖ e−ui2 ‖
e+ui

2

.

3.4. STRONG MONITORING MODELS 27

Proof. For each upi ∈ Conv(u1, ..., un) there exist λ1,λ2, . . . , λn such that λi >

0 (i ∈ {1..n}),
∑n
i=1 λi = 1 and upi =

∑n
i=1 λiui. Let h ∈ B‖

e−up
i

2 ‖
e+u

p
i

2

. We show that

for at least one of the ui vectors, h ∈ B‖
e−ui

2 ‖
e+ui

2

. According to Lemma 3.4.1:〈h− e, h−
upi 〉 ≤ 0. Therefore:

〈h− e, h− upi 〉 =
〈
h− e,

∑
λih−

∑
λiui

〉
=〈

h− e,
∑

λi(h− ui)
〉

=
∑

λi 〈h− e, h− ui〉 ≤ 0

Since λi > 0, it follows that for at least one ui with λi > 0, 〈h − e, h − ui〉 ≤ 0,

which implies (Lemma 3.4.1) that h ∈ B‖
e−ui

2 ‖
e+ui

2

.

A trivial example of a strong predictor-based monitoring model is the static pre-
dictor which, as mentioned in Section 3.3, is equivalent to the original framework
of [103, 105]. Unfortunately, the containment constraints are not easily abided by
any other chosen predictor and, even if they are, it appears hard to dictate a way that
allows sites to identify that fact in a distributed manner. We will revisit the convex hull
containment issues in Section 3.5.1.

3.4.2 Convex Hull Intersection Monitoring

An important observation that we make is that, as v(t) ∈ Conv(u1, . . . , un) and
v(t) ∈ Conv(up1, . . . , u

p
n), these two convex hulls cannot be disjoint (Fig. 3.2). One

could, thus, seek ways to exploit this fact, which limits the possible locations of v(t),
in order to reduce the size of the monitoring zones of each site which, in turn, will
potentially lead to fewer detected threshold crossings. We thus seek to come up with
new local constraints in the context of predictor-based monitoring models that cover the
intersection of the two convex hulls and which also fulfill Property 3.4.1. To proceed
towards that goal we first formally formulate an enhanced version of Property 3.3.1.

Property 3.4.2. A Universally Good Predictor possesses the pro-perty: ‖vi(t)−
vpi (t)‖ ≤ ‖vj(t)− vj(ts)‖ for any pair of sites Si, Sj

In other words for universally good predictors:

min
k=1..n

‖e− uk‖ ≥ max
k=1..n

‖ep − upk‖ (3.1)

Property 3.4.2 yields ‖upi− ep‖ ≤ ‖uj− e‖ for any pair of sites Si, Sj . The latter result
is produced by simply adding as well as subtracting ep, e to the left and right side of
its inequality, respectively. The following lemma utilizes this fact to devise appropriate
local constraints to be fostered at each site Si.

28 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

Lemma 3.4.3. If Property 3.4.2 holds, each site Si needs to examine whetherB‖
e−ui

2 ‖
e+ui

2

∩

B
‖e−ui‖
ep crosses the threshold, since:

Conv(u1, . . . , un) ∩ Conv(up1, . . . , u
p
n) ⊂

n
∪
k=1

B
‖ e−uk2 ‖
e+uk

2

∩B‖e−uk‖ep

Proof. We demonstrate that any vector h ∈ Rd which lies in Conv (u1, . . . , un) ∩
Conv (up1, . . . , u

p
n) is also included in at least one intersection B‖

e−uk
2 ‖

e+uk
2

∩ B‖e−uk‖ep

of a site Sk (k ∈ {1..n}). What is certain is that, due to Property 3.4.2, h ∈ Conv

(up1, . . . , u
p
n) ⇒ h ∈

n
∪
k=1

B
‖
ep−up

k
2 ‖

ep+u
p
k

2

⇒ h ∈
n
∪
k=1

B
‖ep−upk‖
ep ⇒ h ∈ B

‖e−uk‖
ep . Since

h is definitely contained as well in at least one of the balls B‖
e−uk

2 ‖
e+uk

2

(Theorem 3.2.1)
constructed by the sites, which implies that h will be examined by at least one site. The
proof follows immediately.

According to Lemma 3.4.3, universally good predictors guarantee Property 3.4.1,
thus leading to a decreased synchronization frequency. Nonetheless, in practice we
cannot safely assume that predictors are always universally good. Hence, sites need to
constantly check Inequality 3.1. This check can only be done by gathering all ‖e−ui‖,
‖ep − upi ‖ values to the coordinator so as to compute the respective minimum and
maximum. But if we allow that, the number of messages will be equivalent to that of
continuous, central data collection. Thus, in Section 3.5.4, we seek to devise alternative
implementations for intersection monitoring that employ more relaxed conditions and
call for a synchronization only when a violation of newly devised local constraints
occurs.

3.5 Simplified Alternatives

3.5.1 Relaxing the Containment Condition

The containment of convex hulls (Section 3.4.1), as a sufficient prerequisite to achieve
accordance with Property 3.4.1 is seemingly hard to achieve, let alone come up with
ways to continuously check it in a distributed manner. To confront the above draw-
backs we investigate an alternative approach which relaxes that condition. Rather than
implementing distributed checks for the containment condition, we direct our interest
to the more practical alternative of making it likely. Intuitively, we are looking for a
way to monitor v(t) such that:

Requirement 1: the local constraints in the shape of constructed balls are tighter than
those of the original framework (Section 3.2.1)

Requirement 2: the choice of the reference point should be as close as possible to e
(due to the establishment of Lemma 3.4.2)

3.5. SIMPLIFIED ALTERNATIVES 29

e

u1

u2

u3

(a) The original and the prediction-based
convex hulls cross the threshold. The blue
and red balls depict the areas monitored by
each site, correspondingly, for the original
and the prediction-based frameworks. S2 vi-
olates Property 3.3.1 producing a larger pre-
diction deviation (up2) than the correspond-
ing drift vector’s (u2) length.

(b) Convex hull and local constraints of
the Average Model. Threshold cross-
ing is prevented with stricter local con-
straints (except for S2) and increased
n⋃
i=1

B
‖ e
p+e
4
−
u
p
i

+ui
4
‖

ep+e+u
p
i

+ui
4

area contained in

the constraints of the original bounding al-
gorithm.

Figure 3.3: The effect of the Average Model Adoption

since this pair of requirements renders the containment of new constraints in
n⋃
i=1

B
‖ e−ui2 ‖
e+ui

2

more likely. Furthermore, we wish to invent an algorithm that avoids any communica-
tion among the sites, unless a threshold crossing is observed.

Since v(t) =

n∑
i=1

wiu
p
i

n∑
i=1

wi

and v(t) =

n∑
i=1

wiui

n∑
i=1

wi

, for any µ ∈ R we can express the true

global vector as v(t) =

n∑
i=1

wi(µu
p
i+(1−µ)ui)

n∑
i=1

wi

. So, in order to monitor the current status

of the true global vector we may reside to a new convex hull, namely Conv (µup1+

(1− µ)u1, . . . , µu
p
n+ (1− µ)un). We then find ourselves concerned with identifying

a value for µ that may fulfill Requirements 1 and 2.

Lemma 3.5.1. For any 1
2 ≤ µ ≤ 1, when Property 3.3.1 holds, tighter local constraints

compared to the framework of Section 3.2.1 are guaranteed, i.e.: ‖(µupi +(1−µ)ui)−
(µep + (1− µ)e)‖ ≤ ‖ui − e‖

Proof.

‖upi − e
p‖ ≤ ‖ui − e‖

µ≥0⇔ ‖µupi − µe
p‖ ≤ ‖µui − µe‖ ⇔

‖µupi − µe
p + (1− µ)(ui − e) + (µ− 1)(ui − e)‖ ≤ ‖µui − µe‖

By the triangle inequality:

‖µupi − µe
p + (1− µ)(ui − e)‖ − ‖(µ− 1)(ui − e)‖ ≤ ‖µui − µe‖ ⇔

30 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

‖µupi − µe
p + (1− µ)(ui − e)‖ ≤ (2µ− 1)‖ui − e‖

Obviously, (2µ− 1) ≥ 0⇔ µ ≥ 1
2 . The balls that are built by the original framework

possess a radius of ‖ui−e‖2 and for µ ≤ 1:

‖µupi − µe
p + (1− µ)(ui − e)‖ ≤ (2µ− 1)‖ui − e‖ ≤ ‖ui − e‖

The latter inequality completes the proof.

The lemma above provides a rough upper, as well as lower, bound to the value of µ
such that ‖(µupi +(1−µ)ui)−(µep+(1−µ)e)‖ ≤ ‖ui−e‖ in every site. This means
that sites construct tighter constraints than the ones they possessed using the original
framework.

3.5.2 The Average Model

Lemma 3.5.1 shows that setting µ = 1
2 meets Requirement 1 and simultaneously pro-

vides beforehand some minimum knowledge with respect to the closest we can move
µep + (1−µ)e towards e for Requirement 2 to be satisfied as well. Based on these, we
are able to devise a first simpler alternative to the containment of convex hulls notion,
which we term as the ”average model”. The average model monitors Conv (

up1+u1

2 ,

. . . ,
upn+un

2) ⊂
n⋃
i=1

B
‖ e
p+e
4 −

u
p
i

+ui
4 ‖

ep+e+u
p
i

+ui
4

by a priori picking a value of µ = 1
2 .

Figure 3.3 depicts an example of the Average Model adoption, where both the
original and the prediction-based convex hulls cross the threshold surface in different
areas (we used three sites to simplify the exposition). In Figure 3.3(a), notice that for
S2 Property 3.3.1 is violated. Despite this fact, as shown in Figure 3.3(b), the Average
Model can still ward off threshold crossing, nearly achieving containment of its spheres
in those of the original bounding algorithm.

3.5.3 The Safer Model

We now discuss an alternative model that relaxes Requirement 2. Following a rationale
similar to [106], we observe that at any given time, the sites can individually choose the
reference point µep + (1− µ)e, 1

2 ≤ µ ≤ 1 which is farther from the threshold surface
and, simultaneously, ensures smaller local constraints. Note that by being far from
the threshold surface, a reference point makes the local constraints of any predictor
based monitoring model less likely to cause a crossing [106]. This second alternative
is termed the ”safer model”.

At the first step of the algorithm, every site starts with µ1 = 1
2 and calculates

µ1e
p+(1−µ1)e. In addition, let e∗1 denote the vector lying on the threshold surface and

being the closest to µ1e
p + (1− µ1)e. Every site is capable of individually computing

3.5. SIMPLIFIED ALTERNATIVES 31

e

u1

u2

u4 u5
ep

up
1

up
2

up
3

up
4 up

5

Figure 3.4: Loosened Intersection Monitoring. max
i=1..n

B
‖e−ui‖
e , max

i=1..n
B
‖e−ui‖
ep are pro-

duced by S1 which is the one that checks max
i=1..n

B
‖e−ui‖
e ∩ max

i=1..n
B
‖e−ui‖
ep . No threshold

crossing occurs despite that individual convex hulls violate the threshold surface.

‖µ1e
p+ (1−µ1)e− e∗1‖ and, thus, determine the distance the first examined reference

point yields. To reduce the computational requirements of the technique, we define a
number of allowed steps θ, such that in every subsequent step 1 ≤ j ≤ θ the sites
employ a value of µj = µj−1 + 1

2θ until µθ = 1. Eventually, the µj value that induces
the largest distance is chosen. Notice that using this framework, the sites can reach a
consensus regarding µ without any additional communication. This happens due to the
fact that the choice of the final µ is based on common criteria related to the threshold
surface and the e, ep vectors that are known to all sites.

3.5.4 Loosened Intersection Monitoring

So far in this section we have proposed simplistic alternatives that relax the convex hull
containment condition that was discussed in Section 3.4.1. The presented (average and
safer) predictor based monitoring models do manage to avoid any direct communica-
tion between the sites unless a threshold crossing is detected. Although they do not
necessarily abide by Property 3.4.1, these models encompass Requirements 1 and 2
(for the average model) and are, thus, in practice likely to substantiate a condition that
is hard to check in a distributed manner.

We next aim at inventing a loosened version for the intersection monitoring model
of Section 3.4.2. As before, we wish to come up with a mechanism that avoids any
communication between sites unless a threshold crossing happens and simultaneously
makes Property 3.4.1 very likely. Property 3.3.1 is again set as a simple prerequisite,
but note that all our algorithms in this section remain correct even if it does not hold,
since local constraints still totally cover the monitored area of the input domain. In
Section 3.4.2 we saw that v(t) ∈ Conv(u1, · · · , un) ∩ Conv(up1, · · · , upn) while
in this section we demonstrated that v(t) also lies in any Conv (µup1+ (1 − µ)u1,

· · · , µupn+ (1 − µ)ui) which for 1
2 ≤ µ ≤ 1 possesses the desired characteristics

32 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

formulated in Requirements 1 and 2. The following lemma provides a primitive result
on how the intersection monitoring can be achieved using the aforementioned logic.
For ease of exposition, we use Conv3

∩ to denote the triple intersection of these three
(original, predicted and weighted) convex hulls, while Sur(Conv3

∩) ≡ max
i=1..n

B
‖e−ui‖
e

∩ max
i=1..n

B
‖ep−upi ‖
ep ∩ max

i=1..n
B
‖µep+(1−µ)e−µupi−(1−µ)ui‖
µep+(1−µ)e , where max

i=1..n
B
‖r‖
c denotes the

corresponding (in each maximization term) ball of maximum radius.

Lemma 3.5.2. For any µ ∈ R, the area inscribed in Conv3
∩ is covered by the region

induced by Sur(Conv3
∩).

Proof. Initially notice that:

Conv(u1, . . . , un) ⊂
n
∪
i=1
B
‖ e−ui2 ‖
e+ui

2

⊂ max
i=1..n

B‖e−ui‖e (3.2)

Conv(up1, . . . , u
p
n) ⊂

n
∪
i=1
B
‖
ep−up

i
2 ‖

ep+u
p
i

2

⊂ max
i=1..n

B
‖ep−upi ‖
ep (3.3)

Conv(µup1 + (1− µ)u1, . . . , µu
p
n + (1− µ)un) ⊂

n
∪
i=1
B
‖
µep+(1−µ)e−µup

i
−(1−µ)ui

2 ‖
µep+(1−µ)e+µu

p
i

+(1−µ)ui
2

⊂ max
i=1..n

B
‖µep+(1−µ)e−µupi−(1−µ)ui‖
µep+(1−µ)e (3.4)

So each time the maximum balls cover the corresponding convex hulls. We want to
prove that the intersection of the latter balls also covers the intersection of the convex
hulls. The proof will be derived by contradiction.

Suppose that a vector h ∈ Conv3
∩ exists. Now assume that the vector h does not lie

in at least one of max
i=1..n

B
‖e−ui‖
e , max

i=1..n
B
‖ep−upi ‖
ep , or max

i=1..n
B
‖(µep+(1−µ)e)−(µupi+(1−µ)ui)‖
µep+(1−µ)e .

However, this would violate at least one of the Propositions 3.2,3.3,3.4, which is a con-
tradiction. This concludes the proof.

Note, however, that the intersection cover identified in Lemma 3.5.2 cannot be
tracked in a distributed manner, since the site that determines each maximum ball may
be different. Should Property 3.3.1 and, thus, (for 1

2 ≤ µ ≤ 1) Lemma 3.5.1 hold, what
sites actually need to perform so that they can track (in a distributed manner) Conv3

∩

is to use B‖e−ui‖e , B‖e−ui‖ep and B‖e−ui‖µep+(1−µ)e. To understand this, observe that if both
‖ep − upi ‖, ‖(µep+ (1 − µ)e)− µupi − 1 − µ)ui‖ ≤ ‖e − ui‖ (due to Property 3.3.1
and Lemma 3.5.1, respectively), it is evident that: Sur(Conv3

∩) ⊂ max
i=1..n

B
‖e−ui‖
e ∩

max
i=1..n

B
‖e−ui‖
ep ∩ max

i=1..n
B
‖e−ui‖
µep+(1−µ)e.

Hence, the site that possesses the maximum ‖e − ui‖ will check whether the in-
tersection of its locally constructed balls crosses the threshold. Provided that the inter-
section of the local balls does not cross the threshold at any site (and, thus, at the site
with the maximum ‖e − ui‖ as well), synchronization can safely be avoided. At this

3.5. SIMPLIFIED ALTERNATIVES 33

point, we would be interested in identifying proper values for µ that refine the range
(1

2 ≤ µ ≤ 1) established in Lemma 3.5.1. Nonetheless, the following corollary shows
that if we have to employ ‖e − ui‖ as the radius of the balls, max

i=1..n
B
‖e−ui‖
µep+(1−µ)e does

not reduce the volume of the intersection.

Corollary 3.5.1. When Property 3.3.1 holds and for any 0 ≤ µ ≤ 1, max
i=1..n

B
‖e−ui‖
µep+(1−µ)e

does not reduce the volume of the region induced by max
i=1..n

B
‖e−ui‖
e ∩ max

i=1..n
B
‖e−ui‖
ep .

Proof. Assume that there exists a vector h ∈ max
i=1..n

B
‖e−ui‖
e ∩ max

i=1..n
B
‖e−ui‖
ep . Then:

‖h− e‖ ≤ max
i=1..n

‖e− ui‖
1≥µ⇒ (1− µ)‖h− e‖ ≤ (1− µ)max

i=1..n
‖e− ui‖

and ‖h− ep‖ ≤ max
i=1..n

‖e− ui‖
µ≥0⇒ µ‖h− ep‖ ≤ µmax

i=1..n
‖e− ui‖.

Summing the above and merely applying the triangle inequality we obtain:

‖h− (µep + (1− µ)e)‖ ≤ µ‖h− ep‖+ (1− µ)‖h− e‖ ≤ max
i=1..n

‖e− ui‖

The latter result exhibits that if a vector lies in the intersection of max
i=1..n

B
‖e−ui‖
e

∩ max
i=1..n

B
‖e−ui‖
ep , it will definitely lie in the max

i=1..n
B
‖e−ui‖
µep+(1−µ)e as well. Consequently

that ball does not contribute to refining the monitored area.

Corollary 3.5.1 is true for any 0 ≤ µ ≤ 1, but note that in order to ensure ‖ep−upi ‖
≤ ‖e− ui‖ and ‖(µep+ (1−µ)e)− µupi− (1−µ)ui‖ ≤ ‖e− ui‖, we had already as-
sumed that 1

2 ≤ µ ≤ 1. Hence it suffices to check whether the pairB‖e−ui‖e ∩B‖e−ui‖ep

crosses the threshold in at least one site 2. Figure 3.4 provides an exemplary applica-
tion of the intersection monitoring procedure described so far, where max

i=1..n
B
‖e−ui‖
e ,

max
i=1..n

B
‖e−ui‖
ep are produced by S1.

On the other hand, following an intuition similar to the one utilized in the average
model, an alternative is to track Conv (up1, · · · , upn) ∩ Conv (

up1+u1

2 , · · · , u
p
n+un

2)

instead. In other words, this time each site Si needs to individually construct two
balls using ep and ep+e

2 as centers and M = max{‖ep − upi ‖, ‖ e
p+e
2 − upi+ui

2 ‖} as
the common radius (note that M refers to the maximum of the pair of local radii).
Subsequently, a synchronization is caused when at least one Si detects that the locally
constructed intersection crosses the threshold.

We conclude our study by showing the condition which makes the latter intersection
tracking preferable as it results in smaller local constraints compared to max

i=1..n
B
‖e−ui‖
e

∩ max
i=1..n

B
‖e−ui‖
ep .

2Even if the site that determines the maximum radius finds that Property 3.3.1 does not hold, Corol-
lary 3.5.1 is still valid upon replacing ‖e− ui‖ with ‖ep − upi ‖.

34 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

Proposition 3.5.1. When Property 3.3.1 holds and max
i=1..n

B
‖e−ui‖
e ⊇ max

i=1..n
BMep+e

2

, then:

max
i=1..n

BMep ∩ max
i=1..n

BMep+e
2

⊆ max
i=1..n

B‖e−ui‖e ∩ max
i=1..n

B
‖e−ui‖
ep

Proof. For any vector h ∈ max
i=1..n

BMep ∩ max
i=1..n

BMep+e
2

we have:

‖h− ep‖ ≤M
‖ep−upi ‖≤‖e−ui‖

≤ max‖e− ui‖

which entails that h ∈ max
i=1..n

B
‖e−ui‖
ep . If in addition max

i=1..n
B
‖e−ui‖
e ⊇ max

i=1..n
BMep+e

2

then

h ∈ max
i=1..n

B
‖e−ui‖
e as well. Hence h ∈ max

i=1..n
B
‖e−ui‖
e ∩ max

i=1..n
B
‖e−ui‖
ep

3.5.5 Choosing Amongst Alternatives

So far, we investigated a number of simpler alternatives that loosen the strong monitor-
ing frameworks of Section 3.4, i.e., the convex hull containment as well as the intersec-
tion monitoring framework. We based our analysis on Property 3.3.1 as an intuitive as-
sumption also employed in past studies [23, 20, 22] and evolved it to practical tracking
mechanisms together with appropriate speculative analysis. Nonetheless, upon relax-
ing the monitoring conditions we also relaxed their conformity to Property 3.4.1, i.e.,
the prerequisite for strong predictor-based monitoring models. Since the coordinator
is supposed to a priori dictate the predictor-based tracking alternative that should be
uniformly utilized by sites at least until the next synchronization, we need to provide
a decision making mechanism that enables it choose among the available options and
adjust its decisions on their anticipated performance with respect to communication
savings.

The available tracking options that do not belong (excluding the trivial choice of
the original framework) to the strong predictor-based monitoring models’ class in-
clude:

• Monitoring of Conv(u1, . . . un) as in Section 3.2.1

• Monitoring of Conv(up1, . . . , u
p
n) as in Section 3.3

• Adoption of the average model

• Adoption of the safer model

• Tracking of max
i=1..n

B
‖e−ui‖
e ∩ max

i=1..n
B
‖e−ui‖
ep

• Tracking of max
i=1..n

BMep ∩ max
i=1..n

BMep+e
2

In order to provide an appropriate decision making mechanism, we require that
sites keep up monitoring all the six options mentioned above. This monitoring will
take place only for models that would not result in any local transmission since the
last synchronization (i.e., we stop monitoring an alternative model for which we detect

3.6. EVALUATION RESULTS 35

that a transmission would have been caused). Notice that one model has been chosen
as the main model after the last synchronization. Thus, for each of the 6 alternatives,
the sites maintain 6 bits, where the i-th bit is set iff the corresponding monitoring mode
would have resulted in at least one transmission since the last synchronization. A syn-
chronization can still be caused only by the main model. Upon a synchronization,
however, together with vi(t) and the velocity vector in the case of the velocity accel-
eration model choice, sites attach 5 bits (they do not need to send a bit for the current
model being used) on their messages. Note that the following facts hold in our adaptive
algorithm:

• No site had a violation using the current model in a previous time instance (since
the previous synchronization).

• An alternative model that has its corresponding bit to 1 in any of the sites would not
have been better than the model currently being used, since it would have resulted
in a transmission in a prior (or the current) time instance.

• Based on the above observation, we decide to switch to an alternative model only
if the corresponding bits for this model were equal to 0 in all the sites.

In case of multiple alternatives with unset bits, a random choice among such alterna-
tives is performed.

3.6 Evaluation Results

In order to evaluate our algorithms we developed a simulation environment in Java.
We utilized two real data sets to derive data stream tuples arriving at every site in
the network. ”Corpus”, consists of 804,414 records present in the Reuters Corpus
(RCV1-v2) [76] collection. Each record corresponds to a news story to which a list of
terms (features) and appropriate categorization have been attributed. As in [106, 105]
we focused on the following features: Bosnia, Ipo, Febru while monitoring their co-
existence with the CCAT (the CORPORATE / INDUSTRIAL) category. Aiming at
identifying the relevance of these features to the CCAT category at any given time, we
monitored two different functions involving the Chi-Square(χ2) and Mutual Informa-
tion(MI) score. We utilized the Corpus data set in order to test our techniques using
the Cash Register streaming paradigm i.e. taking into consideration the whole history
of the tuples arriving at the various sites. In any given timestamp, after the receipt of
a new tuple each site forms a vector which consists of four dimensions for the χ2 and
three dimensions for the MI case. These vectors have one of their positions set, while
the rest remain zero. In particular, for both the functions the first position of the vector
is set if the term and the category co-occur, the second if the term occurs without the
CCAT category, the third in case CCAT is present without the term, while the fourth
(only for χ2 score) if neither of them appeared in the incoming tuple.

36 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

Due to the nature of the incoming (binary) vectors and the utilized Cash Register
paradigm the previously described environment may be considered moderate to change
and be thought of as easily predictable by our techniques. In order to test our algorithms
in more dynamic conditions we utilized one more data set. The ”Weather” data set
includes Solar Irradiance, Wind Speed and Wind Peak measurements from the station
in the University of Washington and for the year 2002 [27], where each file incorporates
523,439 records of measurements. We used the Weather data sets so as to monitor the
Variance (Var) and the Signal to Noise Ratio (StN) functions. We utilized Var since it
has already been used within the geometric monitoring framework [104]. In addition,
the StN function equals the ratio between the mean and the standard deviation (µσ) in
a given window of measurements and can, thus, be applicable to globally quantify the
noise present in the measurements.

In each experiment we first measure the number of messages transmitted in the
network across different thresholds for a network configuration consisting of 10 sites.
We then use the middle case threshold and plot the number of transmitted messages
when increasing the scale of the distributed environment (the number of sites). We
denote the performance of the original bounding algorithm (Section 3.2.1) by ”Model
0”, while ”Model 1” refers to the mere application and monitoring of the prediction-
based bounding algorithm (Section 3.3). Eventually, ”CAA” shows the performance of
the Choosing Amongst Alternatives framework that was introduced in Section 3.5.5.
Moreover, for each of the lines in the graphs, we enclosed the chosen predictor using
LG to denote the Linear Growth predictor and V A −W so as to declare a Velocity /
Acceleration predictor with a window of W measurements 3.

3.6.1 Corpus Data Set - Cash Register Paradigm

We begin our study by examining the performance of our techniques in the Corpus
data set on par with the Cash Register paradigm adoption. Figure 3.5 depicts the per-
formance of Model 0 and of the CAA approach when using the LG and the V A pre-
dictors. Since almost 6000 documents are received within a period of a month [106],
we choose a W = 200 window for the VA predictor which is expected to be roughly
the amount of news stories received daily. Each column of the figure corresponds to
the case of the terms “Bosnia”, “Ipo” and “Febru”, respectively.

Sensitivity to Threshold - Chi Square. As shown in the first row of Figure 3.5, where
the χ2 function for the term ”Bosnia” is monitored, Model 0 appears to always be
about 2 and 1.85 times worse in terms of the number of transmitted messages when

3We focus on comparing the performance of our prediction-based geometric monitoring techniques
against [103, 105] (Model 0), since we expect our prediction-based methods to give similar benefits when
operating over the ellipsoidal bounding regions of [106] to those seen in our current study using spherical
constraints as in [103, 105].

3.6. EVALUATION RESULTS 37

compared to the CAA(LG) and CAA(VA-200) approaches, respectively, for different
threshold values (Fig. 3.5(a)) using 10 sites.

Sensitivity to Threshold - Mutual Information (MI). Moving to the second and third
rows of Figure 3.5(a) we investigate the cases of the ”Ipo” as well as ”Febru” terms,
monitoring the MI function across different threshold values for a 10 site configuration
(note that MI is calculated as a logarithm, therefore the negative threshold values in
that axis). In these graphs the peak that occurs at 0.4 and 0 for the ”Ipo” and ”Febru”
involves an accumulation of synchronizations around the average value the MI function
possesses along the run. We again observe that CAA(LG) performs 1.75-2.1 times
better than the Model 0 case for both monitored terms. Despite the fact that CAA(VA-
200) is proved slightly worse compared to CAA(LG), it is still able to better amend the
peak that occurs in ”Febru” monitoring for a 0 threshold.

Sensitivity to Number of Sites. Eventually, switching to Figure 3.5(b), for the “Bosnia”
term (first row) the relative benefits remain almost the same across all network scales.
For the ”Ipo” term monitoring (middle row) we observe that Model 0 is steadily more
than 1.8 times worse than the CAA(LG) choice across different scales. CAA(VA-
200) performs worse than the CAA(LG) case for network configurations up to 80
sites. Nonetheless, the introduction of additional sites (along with their respective sub-
streams) in 90, 100 site cases, causes the MI function to always lie below the posed
zero threshold since the ”Ipo” term becomes more rare. This fact is perfectly read by
the CAA(VA-200) approach, the transmitted messages of which approach zero. A sim-
ilar behavior appears early in the third row of Figure 3.5(b) for the Febru case where
the introduction of more than 10 sites causes MI to be negative, which is again accu-
rately pinpointed by the CAA(VA-200) monitoring model reaching savings of 3 orders
of magnitude size.

In the previously presented graphs we omitted the lines for the mere application of
Model 1 to keep the diagram readable, since Model 1 shows almost identical (actually
CAA can occasionally save a few tens of extra messages) behavior with its correspond-
ing CAA applications. CAA possesses the ability to recognize the utility of Model 1
(the mere application of predictors as described in Section 3.3) in this setting and en-
compass it throughout its operation. On the other hand, this fact exhibits the ability
of Model 1 to provide an efficient solution in environments where vi values evolve
relatively slowly. Nonetheless, as we will shortly present, this is not always true in
scenarios where more dynamic updates occur.

3.6.2 Weather Data - Sliding Window Paradigm

We proceed to the sliding window operation, using the Weather data set and monitoring
the Var and StN functions. Note that in all the graphs presented in the current subsec-
tion the Linear Growth predictor is not applicable since it assumes that local vectors

38 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

(vi) uniformly evolve by a time dependent factor (Section 3.2.2), which is obviously
unrealistic for the physical measurements in the Weather data and the sliding window
application scenario. We thus compare the performance of Model 0, Model 1(VA-W)
and CAA(VA-W) cases in our study. For the CAA(VA-W) monitoring model we again
choose the window based on natural time units’ division. We uniformly utilize a predic-
tion windowW = 10 which corresponds to the latest minutes of received observations,
except for the Wind Peak data where W = 50 was chosen to adjust predictions to the
expected frequency of the peaks in the wind blasts. For each data set-function pair,
the default value of the sliding window size, over which the corresponding function is
computed, is 200 measurements. However, we also perform a sensitivity analysis on
this parameter as well.

Variance Monitoring. Figure 3.6(a) plots the performance of the techniques in the
case of Var monitoring in the Solar Irradiance Data. In the first row of the figure
we observe that the cost of Model 0 ranges between 11 and 600 times larger than the
cost yielded by CAA(VA-10) monitoring model, while CAA(VA-10) ensures up to 500
times lower cost even when compared with Model 1 across different thresholds. A case
of particular interest shows up for a threshold of 30000. There, Model 1 shows a peak
in the number of transmitted messages which are higher even when compared to Model
0. This happens due to the existence of specific sites whose drift vectors approach the
threshold surface as noted in Figure 3.2. Obviously, increasing the threshold to 40000
alters the threshold surface and thus hinders the same sites to cause threshold viola-
tions. Nonetheless, CAA(VA-10) maintains low transmission cost due to the loosened
intersection monitoring capabilities (Section 3.5.4) that it embodies. We will revisit
this issue in the next subsection where we look into the operational details of the CAA
monitoring model. In the meantime we note that the same applies for the second row of
Figure 3.6(a) where increasing the scale of the network results in CAA(VA-10) savings
that reach a number of 30 times compared to Model 0 and they become even larger
when compared to Model 1. Eventually, the third row of the same figure, shows the
resilience of our techniques when altering the employed size of observations encapsu-
lated in the sliding window for 10 sites. CAA(VA-10) shows similar behavior when
enlarging the window. Model 1 yields more synchronizations for a window of 200 ob-
servations since enlarging the window causes the variance values within it to increase
and thus some sites approach the posed threshold of 50000. The lack of the alterna-
tive mechanisms that are incorporated in CAA leads sites merely utilizing Model 1 to
threshold crossings. Finally, Model 0 exhibits high sensitivity to the number of values
that local vectors (vi) are built upon.

Figure 3.6(b) presents corresponding results for Var monitoring in the Wind Speed
data set. Model 1 is slightly worse (almost 1%) in terms of transmitted messages com-
pared to CAA(VA-10) when varying the threshold (first row in the figure) and across
different network scales (second row), yet both result in savings ranging between 3

3.6. EVALUATION RESULTS 39

Threshold Model 0 Model 1 Average Safer Intersection 1 Intersection 2
10000 0 15 0 3 0 0
30000 105 0 0 0 4 25
50000 7 0 0 0 5 3
70000 0 0 1 0 0 1
90000 0 0 1 0 0 1

Table 3.3: Case study: Solar-Var Vs Threshold Monitoring

and 13 times compared to the message cost of Model 0. Furthermore, in the third
row of Figure 3.6(b) we observe that both CAA(VA-10) and Model 1 remain resilient
to altering the sliding window size ensuring significant benefits when compared to
Model 0. Notice that for a window of 100 observations, Model 1 performs better than
CAA(VA-10). Recall that CAA resolves ties in the choice of the monitoring mecha-
nism (Section 3.5.5) by picking a random model among those which did not cause a
threshold crossing. Thus, when a particular model is always the appropriate choice, the
adaptive CAA algorithm may sometimes end up transmitting slightly more messages.
The results are similar for the Wind Peak data set.

Signal to Noise Monitoring. In our next experiment we utilized the same motif for
analyzing the performance of our techniques in monitoring the StN function. We begin
our discussion with the Solar Irradiance data set in Figure 3.7(a). CAA(VA-10) per-
forms up to 3 times better than Model 0 when varying the threshold for 10 sites (first
row in the figure) and up to 5 times across network configurations of 10-100 sites (sec-
ond row). Model 1 is again the worst choice as it yields 2-5 times higher cost compared
to Model 0 across different thresholds and appears over 2 times worse than Model 0 for
different scales. In the third row of Figure 3.7(a), it is evident that CAA(VA-10) again
remains mostly unaffected to different window sizes, while Model 1 exhibits a wavy
behavior depending on the accuracy of the employed VA-10 predictor.

We then analyze the performance of the Wind Peak Data in StN monitoring (Fig-
ure 3.7(b)) (the Wind Speed data had similar behavior). Model 1 and CAA possess
similar performance across different thresholds with savings ranging between 4 and
85 times compared to the cost of Model 0. The same holds in large part when vary-
ing the network scale (middle row in Fig 3.7(b)) where savings reach a factor of 5.
An exception occurs for 40 and 50 site configuration cases. This is another occasion
where site predictors lie close to the threshold surface for the given threshold of 0.5
and CAA manages to achieve increased savings due to the intersection monitoring ca-
pacity. As more sites are added in the subsequent steps (60-100 site configurations)
the predicted estimate’s (ep) position is affected and thus the sites that were previously
causing synchronizations (despite their restricted local constraints - balls) were ousted
from the threshold surface, stabilizing the cost of Model 1. Eventually, as with the pre-
viously examined functions-data set pairs, the CAA monitoring model is not sensitive
to changes in the window size (third row of Fig 3.7(b)) while Model 0 and Model 1

40 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

Sites Model 0 Model 1 Average Safer Intersection 1 Intersection 2
10 35 16 25 35 1 3
40 8 6 12 19 0 1
50 13 10 7 17 0 1
80 12 14 9 14 0 1
90 9 9 12 21 0 1

Table 3.4: Case study: Wind Peak-StN Vs # Sites Monitoring

exhibit opposite trends upon enlarging it. Overall, Model 0’s cost is 5 to 35 times the
transmission cost of CAA, while savings against Model 1 range between 4 to 9 times
across different window sizes.

3.6.3 CAA Operational Insights

We are now providing additional details regarding the choices that CAA makes through-
out its operation to investigate the stem of its benefits. Since it is hard to present analytic
statistics of alternative models’ usage for every single case of the previously discussed
graphs, we focus on two situations where Model 1 exhibits possibly unexpected peaks
in the number of messages and examine the tools that CAA utilizes to avoid similarly
high message exchange.

The first of the aforementioned cases regards the Solar Irradiance under Var mon-
itoring against different thresholds and for 10 sites(first row of Fig 3.6(a)). Table 3.3
shows the CAA choices for different thresholds. Intersection1 refers to monitoring the
intersection between the original and the predicted convex hull, while Intersection2
refers to monitoring the intersection between the average convex hull and the predicted
one. We point out that for threshold ¿10000 (where it exhibits low costs) Model 1 is
never employed by CAA. For the threshold 30000 case, Model 0 appears as the most
frequent choice but it is only used during the first synchronizations until predictors
are stabilized around the threshold surface (if Model 0 was continuously picked, CAA
would have had similar cost to Model 0). Afterwards, the loosened intersection frame-
work is chosen which safely leads the monitoring procedure to the decrement of the
transmission cost as shown in Fig 3.6(a).

The second case we distinguished during our discussion was the peak that occurs
when monitoring the Wind Peak data under the StN function for network configurations
of different scale (middle row of Fig. 3.7(b)). As Table 3.4 shows, for 10 sites the
savings CAA provides are mostly attributed to the average and safer model usage,
while for 40, 50 and more sites, after a few synchronizations, the single time that
Intersection2 is employed by CAA hinders communication for a considerable amount
of time.

3.7. SYNOPSIS 41

3.7 Synopsis

In this chapter, we presented a thorough study regarding prediction models’ adoption
within the geometric monitoring setting. After identifying the peculiarities exhibited
by predictors upon their implementation in the aforementioned environment, we devel-
oped a solid theoretic framework composed of sufficient conditions rendering predic-
tors capable of refraining the communication burden. We proposed algorithms based
on relaxed versions of these conditions along with extensive theoretical analysis on
their expected benefits. In the next chapter, we present the adoption of our prediction -
based geometric monitoring techniques to the special application scenario of distribu-
tively tracking representative trajectories over a number of monitored moving objects.

42 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

0

2.000

4.000

6.000

8.000

10.000

12.000

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Model 0

CAA (LG)

CAA (VA-200) N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Chi-Squared Monitoring varying Threshold for 10 sites

Threshold

0

5.000

10.000

15.000

20.000

25.000

30.000

-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Model 0

CAA (LG)

CAA (VA-200)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Ipo - Mutual Information Monitoring varying Threshold for 10 sites

Threshold

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Model 0

CAA (LG)

CAA (VA-200)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Febru - Mutual Information Monitoring varying Threshold for 10 sites

Threshold

(a) Cash Register Varying Threshold

Figure 3.5: Corpus Data Set: Performance of our Techniques in the Cash Register
Streaming Paradigm

3.7. SYNOPSIS 43

0

20.000

40.000

60.000

80.000

100.000

10 20 30 40 50 60 70 80 90 100

Model 0

CAA (LG)

CAA (VA-200)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Chi-Squared Monitoring varying # Sites for 0.5 threshold

Num Of Sites

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

10 20 30 40 50 60 70 80 90 100

Model 0

CAA (LG)

CAA (VA-200)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

e
s

Ipo - Mutual Information Monitoring varying # Sites for 0 threshold

Num Of Sites

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

10 20 30 40 50 60 70 80 90 100

Model 0

CAA (LG)

CAA (VA-200)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

e
s

Febru - Mutual Information Monitoring varying # Sites for 0 threshold

Num Of Sites

(b) Cash Register Varying Sites

Figure 3.5: Corpus Data Set: Performance of our Techniques in the Cash Register
Streaming Paradigm (cont.)

44 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

0

10.000

20.000

30.000

40.000

50.000

60.000

Model 0

Model 1 (VA-10)

CAA (VA-10)
N

u
m

b
e

r
o

f
Tr

an
sm

it
te

d
 M

e
ss

ag
es

Solar Irradiance - Variance Monitoring varying Threshold for 10 sites

Threshold

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

10 20 30 40 50 60 70 80 90 100

Model 0

Model 1 (VA-10)

CAA (VA-10)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

e
s

Solar Irradiance - Variance Monitoring under sliding window of 200 tuples varying #sites
for 50000 threshold

Num of Sites

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50 100 150 200

Model 0

Model 1 (VA-10)

CAA (VA-10)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Solar Irradiance - Variance Monitoring varying Window for 10 sites & 50000 Threshold

Window of Observations

(a) Solar Irradiance, Variance Monitoring

Figure 3.6: Weather Data Set: Performance of our Techniques in the Sliding Window
Streaming Paradigm for Variance Monitoring

3.7. SYNOPSIS 45

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

5.0 10.0 15.0 20.0 25.0

Model 0

Model 1 (VA-10)

CAA (VA-10)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Wind Speed - Variance Monitoring varying Threshold for 10 sites

Threshold

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

10 20 30 40 50 60 70 80 90 100

Model 0

Model 1 (VA-10)

CAA (VA-10)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

e
s

Wind Speed - Variance Monitoring under sliding window of 200 tuples varying #sites for
15 threshold

Num of Sites

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

50 100 150 200

Model 0

Model 1 (VA-10)

CAA (VA-10)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Wind Speed - Variance Monitoring varying Window for 10 sites & 15 Threshold

Window of Observations

(b) Wind Speed, Variance Monitoring

Figure 3.6: Weather Data Set: Performance of our Techniques in the Sliding Window
Streaming Paradigm for Variance Monitoring (cont.)

46 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

0 0,2 0,4 0,6 0,8 1

Model 0

Model 1 (VA-10)

CAA (VA-10)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Solar Irradiance - Signal to Noise Monitoring varying Threshold for 10 sites

Threshold

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

10 20 30 40 50 60 70 80 90 100

Model 0

Model 1 (VA-10)

CAA (VA-10)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

e
s

Solar Irradiance - Signal to Noise under sliding window of 200 tuples varying #sites for 0.5
threshold

Num Of Sites

0

20.000

40.000

60.000

80.000

100.000

120.000

50 100 150 200

Model 0

Model 1 (VA-10)

CAA (VA-10)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Solar Irradiance - Signal to Noise Ratio Monitoring varying Window for 10 sites & 0.5
Threshold

Window of Observations

(a) Solar Irradiance, StN Monitoring

Figure 3.7: Weather Data Set: Performance of our Techniques in the Sliding Window
Streaming Paradigm for StN Monitoring

3.7. SYNOPSIS 47

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0 0,2 0,4 0,6 0,8 1

Model 0

Model 1 (VA-50)

CAA (VA-50)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Wind Peak - Signal to Noise Ratio Monitoring Monitoring varying Threshold for 10 sites

Threshold

0

10.000

20.000

30.000

40.000

50.000

60.000

10 20 30 40 50 60 70 80 90 100

Model 0

Model 1 (VA-50)

CAA (VA-50)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

e
s

Wind Peak - Signal to Noise Ratio Monitoring under sliding window of 200 tuples varying
#sites for 0.5 threshold

Num of Sites

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

50 100 150 200

Model 0

Model 1 (VA-50)

CAA (VA-50)

N
u

m
b

e
r

o
f

Tr
an

sm
it

te
d

 M
e

ss
ag

es

Wind Peak - Signal to Noise Ratio Monitoring varying Window for 10 sites & 0.5 Threshold

Window of Observations

(b) Wind Peak, StN Monitoring

Figure 3.7: Weather Data Set: Performance of our Techniques in the Sliding Window
Streaming Paradigm for StN Monitoring (cont.)

48 CHAPTER 3. PREDICTION - BASED GEOMETRIC MONITORING

Chapter 4

A Case Study on Prediction -
Based Distributed Monitoring of
Representative Trajectories

4.1 Introduction

The extraction of a Representative Trajectory (ReTra) capable of providing a concise
summary of the movement of a group of monitored objects, constitutes the main tool
of important trajectory querying and mining tasks. More precisely, in trajectory clus-
ter analysis [92, 73] the calculated representative trajectories are utilized as the major
descriptors of the average movement of the trajectories of a specified cluster [73]. In
addition, during privacy aware query answering [91], ReTra is used as the starting point
so as to enable the production of fake trajectories that resemble the average movement
pattern of the objects participating in the query answer. Hence, those trajectories es-
sentially ensure that the returned query answer does not reveal the actual trajectory of a
moving object. Furthermore, they construct an outcome which abides by the expected
movement characteristics avoiding uncontrollable distortion of the query answer.

In streaming settings, location updates of moving objects arrive online at a coordi-
nating source which is expected to provide analytic results of the monitored movement
pattern in real-time. In such a scenario, the continuous maintenance of a representative
trajectory is capable of providing analysts a compact picture of the average behavior of
the motion at any given time interval.

The definition of a ReTra utilized in this chapter is inspired by the respective con-
ceptualization presented in [73]. In particular, [73] defines the representative trajec-
tory as an average direction vector (similar to a rotated centroid). Hence, in our study
we are going to compute every time marked 2D-point (xReTra(t), yReTra(t)) of the

49

50CHAPTER 4. A CASE STUDY ON PREDICTION - BASED MONITORING OF RETRAS

ReTra, as the centroid of the respective 2D-points of the tracked moving objects i.e.,
(xi(t), yi(t)) coordinates for the i−th object Oi. Notice that the moving objects are
usually set to send their location updates on predefined time intervals, thus averaging
the spatial information of the trajectories is sufficient (and valid) to attribute the desired
”average” behavior to the final representative.

Based on the above description, the issue of computing a ReTra having collected
all location updates at a central server is trivial. It simply involves the computation
(average) of a series of two dimensional centroids whose timestamp lies in the moni-
tored time interval. Nonetheless, in a distributed setting where thousands or millions
of moving objects constantly transmit their location towards the central source, a major
problem arises. Sooner or later the communication links are overloaded and may be-
come non operational. Thus, the execution of the continuous monitoring is stalled and
ReTra’s delivery in real-time is precluded. Recall that as we pointed out in Chapter 3,
bandwidth consumption issues occur in any distributed streaming environment where
the major challenge confronted by algorithms dealing with data manipulation is to re-
duce communication [20, 23, 22, 103, 106, 26, 42]. Nonetheless, in our case where
streaming tuples refer to location updates of thousands or millions of moving objects,
the amount of distribution is much larger (e.g., compared to the case of networked
company servers studied in conventional distributed scenarios) the problem becomes
much more intense.

In the current chapter, we aim at confronting the aforementioned challenges. We
manage to provide efficient techniques that enable continuous, distributed ReTra mon-
itoring within user-defined accuracy guarantees, reducing the bandwidth consumption
charged to the underlying network infrastructure. In our effort to do so, we utilize
the notion of predictors for the future locations of the monitored objects developing
prediction - based distributed ReTra tracking techniques.

The rest of the chapter is organized as follows. In the next section we describe the
architectural infrastructure of our distributed setting, we present basic concepts regard-
ing representative trajectory computation and exhibit how predictors can be installed
in this scenario. In Section 4.3 we present two approaches for distributed ReTra moni-
toring and perform a theoretic comparison with respect to their characteristics.

4.2 Basics

4.2.1 Network Model

We assume a three-tiered network infrastructure as depicted in Figure 4.1. At the bot-
tom tier a number of moving objects are equipped with GPS enabled devices, possess-
ing typical communication and processing capabilities. Monitored objects periodically
report their timestamped location updates in the form of 〈x, y, t〉 triplets to a group of

4.2. BASICS 51

Coordinator
 : Antenna

 : Moving object

 : Location update

Figure 4.1: Exemplary Network Architecture

geographically dispersed antennas which stand in the middle tier and passively relay
the updates to a central source. The top tier includes a central coordinating source
which is capable of communicating with the moving objects via the second tier partic-
ipants. Pairwise site communication is only allowed through the central source.

4.2.2 Representative Trajectory Concepts

In our introductory section we briefly referred to the notion of the representative tra-
jectory that will be utilized throughout our study. In the current subsection, we start by
providing a formal definition of a ReTra.

Definition 4.2.1. A Representative Trajectory (ReTra) over N monitored moving ob-

jects within a time window of T size is defined as the time-ordered sequence of pairs:

(xReTra(t), yReTra(t)) = (

∑N
i=1 xi(t)

N
,

∑N
i=1 yi(t)

N
)

for any t ∈ [tnow − T, tnow], where tnow refers to the time of the most recent

location update.

The above definition is inspired by the one initially introduced in [73], which es-
tablishes a series of rotated centroids produced out of clustered line segments. Since in
a streaming scenario we are usually interested for the most recent part of a trajectory,
our definition utilizes a time window of T size to express that need. For real time anal-
ysis purposes, it is important to observe that apart from a visualization of the series of
2D centroids that compose the ReTra, useful movement characteristics such as average
velocity, acceleration, azimuth of directional change etc can be made readily available
to analysts.

52CHAPTER 4. A CASE STUDY ON PREDICTION - BASED MONITORING OF RETRAS

The challenge that arises upon trying to continuously maintain an accurate Re-
Tra in the setting of Section 4.2.1, relates to the communication cost of having mon-
itored moving objects transmitting each and every location update that participates
in (xReTra(t), yReTra(t)). It is not difficult to see that if our objective is to con-
stantly keep an exact ReTra image at the coordinator, the problem is insuperable.
Nonetheless, in online querying procedures it is more often than not satisfactory to
obtain an approximate (within user specified accuracy bounds) answer to a posed
query [84, 21, 22, 20, 23, 25]. This simultaneously provides the primitives for re-
ducing the bandwidth consumption, since transmissions can be suppressed unless the
answer - 2D points belonging to ReTra in our scenario - is likely to have exceeded
those accuracy guarantees.

(xReTra(t1) ,yReTra(t1))

є

(xReTra(t2) ,yReTra(t2)) (xReTra(t3) ,yReTra(t3))

(xReTra(t4) ,yReTra(t4))

Figure 4.2: An ε−approximate ReTra representation.

Definition 4.2.2. An estimation of a ReTra constitutes an ε−approximation of the true

representative trajectory, if its estimated (̂xReTra(t), ̂yReTra(t)) points adhere to the

following condition:

‖(̂xReTra(t), ̂yReTra(t))− (xReTra(t), yReTra(t))‖ ≤ ε

for a constant ε > 0, at any given timestamp t ∈ [tnow − T, tnow].

An example of an ε−approximate representative trajectory represenation is de-
picted in Figure 4.2. Therefore, in what follows we concentrate on monitoring an

4.2. BASICS 53

ε−approximation of the true ReTra at the coordinator. Our methods base their effi-
ciency in avoiding site to coordinator contact unless the quality of the ReTra sustained
at the central source may have been reduced beyond the given threshold ε.

4.2.3 ReTra’s Query Processing

At the beginning of the monitoring process, a query of the following type [89] is regis-
tered at the coordinator:

SELECT ReTra(m.mpoint, ε)

FROM mpoints AS m

{WHERE Overlaps3D(m.mpoint,〈AreaOfInterest, T 〉)=true}
{USING [prediction model] WITH [Parameters]}
SAMPLE PERIOD τ ;

The above query is continuously processed until it is explicitly terminated by the
users. The coordinating source is responsible to disseminate the specifications of the
representative trajectory tracking to the monitored objects. The virtual table mpoints
stores the information of object trajectories, while the Overlaps3D operator essen-
tially performs a spatiotemporal range query that restricts those trajectories a) tempo-
rally - keeping the parts that lie in the desired time window T , b) spatially - filtering
parts placed out of the area we wish to focus on.

Note that the WHERE compartment of the query is placed in brackets which are
used to show that the whole compartment or its counterparts are optional. In case T is
omitted or set to T = 0, the query answer that will be provided every τ time units will
include information only about tnow. On the other hand, leaving theAreaOfInterest
field empty will cause all reachable (from the coordinator) moving objects to participate
in ReTra’s calculation.

The USING compartment is also optional and refers to the chosen prediction model
adoption along with its parameters. We are going to discuss the details regarding
this parameter in the next section. For now, we mention that the desired prediction
model will be used in order to derive (̂xReTra(t), ̂yReTra(t)) while performing the
ε−approximate ReTra tracking. Omitting this compartment is equivalent to the static
predictor adoption which was presented in Section 3.2.2 and Table 3.2.

Eventually, the ReTra calculation in the SELECT compartment is derived accord-
ing to Definition 4.2.1 and 4.2.2, where omitting the tolerance parameter ε accounts
for continuous central data collection as discussed in the previous sections.

4.2.4 Incorporating Location Predictors

In the current section we refer to the utility of predictors that may be utilized so as to
derive the corresponding ε− approximation during distributed ReTra tracking. The talk

54CHAPTER 4. A CASE STUDY ON PREDICTION - BASED MONITORING OF RETRAS

regards the estimations (̂xReTra(t), ̂yReTra(t)) moving objects need to continuously
possess in order to ensure the ε− proximity according to Definition 4.2.2.

Initially, notice that the static e.g. in case of objects unpredictably moving in the
plane, as well as the velocity acceleration predictors that we presented in Section 3.2.2
of Chapter 3 (also see Table 3.2) can be utilized so as to estimate the future location of
a monitored object. In our current scenario the monitored vectors are two dimensional,
composed of (xi(t), yi(t)) coordinates of a monitored object Oi.

The global estimation for a representative trajectory point is computed by

(xpReTra(t), ypReTra(t)) = (

∑N
i=1 x

p
i (t)

N
,

∑N
i=1 y

p
i (t)

N
)

Hence, in what follows we essentially consider (̂xReTra(t), ̂yReTra(t)) = (xpReTra(t),

ypReTra(t)). And correspondingly for local estimations: x̂i(t) = xpi (t), ŷi(t) = ypi (t).
The latter constitutes the ε−approximation of any representative trajectory point within
the chosen window of T size. This enables the coordinator to continuously provide cor-
responding answers to the query of Section 4.2.3 at least until the next synchronization
upon which new predictions about the global vectors will be derived.

In order to efficiently process the tracking process and ward off unnecessary con-
tacts with the coordinating source, again our ultimate goal is to come up with con-
straints that monitored objects may locally check before deciding to transmit their lo-
cation updates. As long as those constraints are not violated at all objects, we can
guarantee that the current ReTra constitutes an ε− approximation of the true one. Of
course, in case the imposed constraints are violated in at least one object, it certainly
needs to contact the coordinating source.

4.3 Distributed ReTra Monitoring

4.3.1 ReTra Monitoring by Decomposition to Local Constraints

We now proceed to the core of the distributed ReTra monitoring algorithm. In order
to achieve the ε−approximation target, we are going to decompose the problem of
distributively ensuring ‖(xpReTra(t), ypReTra(t)) − (xReTra(t), yReTra(t))‖ ≤ ε of
Definition 4.2.2, to local constraints that can be consulted by moving objects so as to
decide whether a synchronization process needs to take place. The upcoming lemma
elaborates on the later issue introducing an appropriate sufficient condition.

Lemma 4.3.1. When the local constraint

‖(xpi (t), y
p
i (t))− (xi(t), yi(t))‖ ≤ ε

4.3. DISTRIBUTED RETRA MONITORING 55

holds for any monitored object Oi at any t ∈ [tnow − T, tnow], then

‖(xpReTra(t), ypReTra(t))− (xReTra(t), yReTra(t))‖ ≤ ε

i.e., the estimation of the ReTra that is kept at the coordinating source, is always an

ε−approximation of the true representative trajectory.

Proof. Starting by the local constraint of a single monitored object Oi we obtain:

‖(xpi (t), y
p
i (t))− (xi(t), yi(t))‖ ≤ ε

Summing for N objects, we have

N∑
i=1

‖(xpi (t), y
p
i (t))− (xi(t), yi(t))‖ ≤ N · ε

triangle

inequality
⇒

‖(
N∑
i=1

xpi (t),

N∑
i=1

ypi (t))− (

N∑
i=1

xi(t),

N∑
i=1

yi(t))‖ ≤ N · ε⇒

‖(
∑N
i=1 x

p
i (t)

N
,

∑N
i=1 y

p
i (t)

N
)− (

∑N
i=1 xi(t)

N
,

∑N
i=1 yi(t)

N
)‖ ≤ ε⇒

‖(xpReTra(t), ypReTra(t))− (xReTra(t), yReTra(t))‖ ≤ ε

which concludes the proof.

As long as Lemma 4.3.1 holds, no transmission is required. The monitored objects
keep up acquiring updates of their location and locally maintain the required informa-
tion for predictors’ computation during the next synchronization as described in Sec-
tion 3.2.2. In case ‖(xpi (t), y

p
i (t)) − (xi(t), yi(t))‖ ≤ ε is not satisfied in at least one

site central data collection is taking place, after which the tracking process is continued.

4.3.2 ReTra Monitoring Using the Prediction-Based Geometric Ap-
proach

In order to apply the prediction-based geometric monitoring framework (Chapter 3)
in the representative trajectory monitoring case, we first need to identify the basic el-
ements of the tracking process. In what follows we re-employ the notation used in
Chapter 3 and was summarized in Table 3.1. We start by studying the function of
interest according to Definition 4.2.2.

f(v(t)) = ‖(xpReTra(t), ypReTra(t))− (xReTra(t), yReTra(t))‖
=

√
(xpReTra − xReTra)2 + (ypReTra − yReTra)2

56CHAPTER 4. A CASE STUDY ON PREDICTION - BASED MONITORING OF RETRAS

and the specified threshold is ε. Furthermore, the true global vector at any given timen-
stamp is composed of v(t) = (

∑N
i=1 xi(t)

N ,
∑N
i=1 yi(t)

N). Note that (xpReTra(t), ypReTra(t))

is made known to all the moving objects after each synchronization process and thus it
can be treated as a constant in the monitored function. We observe that the global vec-
tor v(t) is indeed the average (and thus a convex combination) of the vectors vi(t) =

(xi(t), yi(t)) possessed by individual moving objects and thus the geometric approach
is applicable. As regards the rest of the elements of the monitoring process, the pre-
dicted estimate ep(t) = (

∑N
i=1 x

p
i (t)

N ,
∑N
i=1 y

p
i (t)

N), while e = (
∑N
i=1 xi(ts)

N ,
∑N
i=1 yi(ts)

N).
Eventually, local predictors are expressed by vi(t) = (xpi (t), y

p
i (t)) as well.

We finally briefly outlying the steps of the monitoring process since the details have
already been provided while presenting our prediction - based geometric monitoring
framework in Chapter 3. Again assume that the coordinator has collected all the loca-
tion updates of monitored objects at a previous timestep ts. Then, the central source
extracts e and ep which are broadcasted to all moving objects. Having received the es-
timate as well as the predicted estimate vectors, every object Oi individually computes
the drift vector ui(t) = (

∑N
i=1 xi(ts)

N ,
∑N
i=1 yi(ts)

N) + (xi(t), yi(t)) − (xi(ts), yi(ts))

and the prediction deviation vector upi (t) = (
∑N
i=1 x

p
i (t)

N ,
∑N
i=1 y

p
i (t)

N) + (xi(t), yi(t))

− (xpi (t), y
p
i (t)). The tracking of the resulted convex hull is performed according to

the techniques devised in Chapter 3 employing the CAA strategy we described in Sec-
tion 3.5.5.

4.3.3 Comparison of the Approaches

We are now concerned with identifying the characteristics of the two devised ap-
proaches and decide which of the two is more preferable for a ReTra tracking ap-
plication. For ease of exposition, we start by assuming a static predictor choice i.e.,
xpi (t) = yi(ts) and ypi (t) = yi(ts).

Notice that both the approach of Section 4.3.1 and that of Section 4.3.2 are geo-
metric in nature. As regards the first, the decomposition to local constraints resulted
in having moving objects essentially consult (Lemma 4.3.1) disks centered at (xi(ts),

yi(ts)) with a radius of ε size (Figure 4.3). On the other hand, the approach of Sec-
tion 4.3.2 devises that moving objects check if the disk centered at e+ui(t)2 crosses the
threshold surface. Nonetheless, it worths focusing on the latter approach (that of pre-
diction - based geometric monitoring) and study the shape of the threshold surface in
more detail.

In this particular case, the region where a threshold crossing can occur is beyond ε
distance of the e = (

∑N
i=1 xi(ts)

N ,
∑N
i=1 yi(ts)

N) vector. As a consequence, that region
where the monitored convex hull Conv (u1(t), . . . , un(t)) is allowed to lie is again a
disk (depicted in Figure 4.4) centered at e with radius ε,Bεe, which is convex. But if the
region where Conv (u1(t), . . . , uN (t)) may lie without causing a threshold crossing

4.3. DISTRIBUTED RETRA MONITORING 57

(x1(ts) ,y1(ts))

є

(x1(t) ,y1(t))
(x2(ts) ,y2(ts))

є

(x2(t) ,y2(t))

(x3(ts) ,y3(ts))

є

(x3(t) ,y3(t)) (x4(ts) ,y4(ts))

є

(x4(t) ,y4(t))

Figure 4.3: Rationale of the ReTra Monitoring by Decomposition to Local Constraints.
Moving Object O4 moves outside its local constraint(disk) and thus causes central data
collection.

is convex, we do not actually need
N
∪
i=1
B
e−ui(t)

2
e+ui(t)

2

to monitor it. By convexity of Bεe, the

convex hull of interest cannot cause threshold crossing without having at least one of
its vertices (u1(t), . . . , uN (t)) doing so. Hence, it suffices for every moving object
to check if e + (xi(t), yi(t)) − (xi(ts), yi(ts)) is included in Bεe. Overall, we again
check a circular constraint of length ε which is violated only when ‖(xi(t), yi(t)) −
(xi(ts), yi(ts))‖ > ε.

This analysis is valid even in the more general case of choosing any other (but
the same), instead of the static, predictor in both approaches. Moreover, our pre-
vious discussion renders the presented approaches equivalent in terms of the size of
the consulted local constraints. Note that as explained in Section 3.3, the size of the

58CHAPTER 4. A CASE STUDY ON PREDICTION - BASED MONITORING OF RETRAS

(x1(ts) ,y1(ts))

(x1(t) ,y1(t))

(x2(ts) ,y2(ts))

(x2(t) ,y2(t))

(x3(ts) ,y3(ts))

(x3(t) ,y3(t))

(x4(ts) ,y4(ts))

(x4(t) ,y4(t))

e=(xReTra(ts) ,yReTra (ts))

u1 u3

u4

u2

є

Figure 4.4: Rationale of the ReTra Monitoring Utilizing the Prediction - Based Geo-
metric Approach. Vertex u4 corresponding to the moving object O4 moves outside Bεe
causing a synchronization process.

constructed constraints is an important factor of the communication cost of a given
monitoring scheme. However, we also noted that the choice of the reference point
is the other major criterion in placing the tracked convex hull farther or nearer to the
threshold surface. As a result, the CAA approach presented in Section 3.5.5 provides
additional flexibility to the distributed tracking process as it is capable of tuning both
the aforementioned couple of parameters depending on the recent performance of the
corresponding alternative tracking mechanisms.

4.4. SYNOPSIS 59

4.4 Synopsis

In the current chapter we presented two alternative approaches for efficiently perform-
ing ε-approximate, distributed ReTra monitoring. Since the monitored function of
this special case is relatively easy to handle, in Section 4.3.1 we managed to decom-
pose the tracking of the non linear function ‖(xpReTra(t), ypReTra(t)) − (xReTra(t),

yReTra(t))‖ to a set of simple local constraints, while in Section 4.3.2 we utilized
the framework of [42]. Furthermore, we developed a theoretic analysis exhibiting the
equivalence of the two approaches as well as the flexibility the CAA strategy provides
upon utilizing the prediction - based geometric monitoring framework. We thus pre-
sented a specialization of the concepts of Chapter 3 to the distributed, representative
trajectory monitoring over streaming spatiotemporal data streams.

60CHAPTER 4. A CASE STUDY ON PREDICTION - BASED MONITORING OF RETRAS

Part II

Mining Distributed Data
Streams

61

Chapter 5

Tunable Approximate
Computation of Outliers In
Wireless Sensor Networks

5.1 Introduction

Pervasive applications are increasingly supported by networked sensory devices that
interact with people and themselves in order to provide the desired services and func-
tionality. Because of the unattended nature of many applications and the inexpensive
hardware used in the construction of the sensors, sensor nodes often generate imprecise
individual readings due to interference or failures [56]. Sensors are also often exposed
to severe conditions that adversely affect their sensing elements, thus yielding readings
of low quality. For example, the humidity sensor on the popular MICA mote is very
sensitive to rain drops [30].

The development of a flexible layer that will be able to detect and flag outlier
readings, so that proper actions can be taken, constitutes a challenging task. Conven-
tional outlier detection algorithms [5, 39] are not suited for our distributed, resource-
constrained environment of study. First, due to the limited memory capabilities of
sensor nodes, in most sensor network applications, data is continuously collected by
motes and maintained in memory for a limited amount of time. Moreover, due to the
frequent change of the data distribution, results need to be generated continuously and
computed based on recently collected measurements. Furthermore, a central collection
of sensor data is not feasible nor desired, since it results in high energy drain, due to the
large amounts of transmitted data. Hence, what is required are continuous, distributed
and in-network approaches that reduce the communication cost and manage to prolong
the network lifetime.

63

64 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

One can provide several definitions of what constitutes an outlier, depending on
the application. For example in [111], an outlier is defined as an observation that is
sufficiently far from most other observations in the data set. However, such a definition
is inappropriate for physical measurements (like noise or temperature) whose absolute
values depend on the distance of the sensor from the source of the event that triggers
the measurements. Moreover, in many applications, one cannot reliably infer whether
a reading should be classified as an outlier without considering the recent history of
values obtained by the nodes. Thus, in our framework we propose a more general
method that detects outlier readings taking into account the recent measurements of a
node, as well as spatial correlations with measurements of other nodes.

Similar to recent proposals for processing declarative queries in wireless sensor
networks, our techniques employ an in-network processing paradigm that fuses indi-
vidual sensor readings as they are transmitted towards a base station. This fusion,
dramatically reduces the communication cost, often by orders of magnitude, resulting
in prolonged network lifetime. While such an in-network paradigm is also used in pro-
posed methods that address the issue of data cleaning of sensor readings by identifying
and, possibly, removing outliers [14, 30, 56, 113], none of these existing techniques
provides a straightforward mechanism for controlling the burden of the nodes that are
assigned to the task of outlier detection.

An important observation that we make in this chapter [44, 45] is that existing
in-network processing techniques cannot reduce the volume of data transmitted in the
network to a satisfactory level and lack the ability of tuning the resulting overhead
according to the application needs and the accuracy levels required for outlier detection.
Please note that it is desirable to reduce the amount of transmitted data in order to also
significantly reduce the energy drain of sensor nodes. This occurs not only because
radio operation is by far the biggest culprit in energy drain [78], but also because fewer
data transmissions also result in fewer collisions and, thus, fewer re-transmissions by
the sensor nodes.

In this chapter we present a novel outlier detection scheme termed TACO (TACO
stands for Tunable Approximate Computation of Outliers). TACO [44] adopts two lev-
els of hashing mechanisms. The first is based on locality sensitive hashing (LSH) [12],
which is a powerful method for dimensionality reduction [12, 53, 54]. We first utilize
LSH in order to encode the latest W measurements collected by each sensor node as a
bitmap of d � W bits. This encoding is performed locally at each node. The encod-
ing that we utilize trades accuracy (i.e., probability of correctly determining whether a
node is an outlier or not) for bandwidth, by simply varying the desired level of dimen-
sionality reduction and provides tunable accuracy guarantees based on the d param-
eter mentioned above. Assuming a clustered network organization [13, 50, 96, 122],
motes communicate their bitmaps to their clusterhead, which can estimate the similar-
ity amongst the latest values of any pair of sensors within its cluster by comparing their

5.1. INTRODUCTION 65

(a)

(b)

(c)

Figure 5.1: Main Stages of the TACO Framework

66 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

bitmaps, and for a variety of similarity metrics, which essentially constitute the mon-
itored functions of interest, that are useful for the applications we consider. Based on
the performed similarity tests, and a desired minimum support specified by the posed
query, each clusterhead generates a list of potential outlier nodes within its cluster. At a
second (inter-cluster) phase of the algorithm, this list is then communicated among the
clusterheads, in order to allow potential outliers to gain support from measurements of
nodes that lie within other clusters. This process is sketched in Figure 5.1.

The second level of hashing (omitted in Figure 5.1) adopted in TACO’s frame-
work comes during the intra-cluster communication phase. It is based on the hamming
weight of sensor bitmaps and provides a pruning technique (regarding the number of
performed bitmap comparisons) and a load balancing mechanism alleviating cluster-
heads from communication and processing overload. We choose to discuss this load
balancing and comparison pruning mechanism separately, for ease of exposition, as
well as to better exhibit its benefits.

This chapter proceeds as follows. Initially, Section 5.2 introduces our basic frame-
work. In Sections 5.3 and 5.4 we analyze TACO’s operation in detail. Our load bal-
ancing and comparison pruning mechanisms are described in Section 5.5, while Sec-
tion 5.6 demonstrates how a variety of similarity measures can be utilized by TACO. In
Section 5.7 we elaborate on interesting extensions to TACO that are capable of further
reducing the communication cost. Section 5.8 presents our experimental evaluation.

5.2 Basic Framework

5.2.1 Outlier Definition

As in [30], we do not aim to compute outliers based on a mote’s latest reading but,
instead, take into consideration its most recent measurements. In particular let ui
denote the latest W readings obtained by node Si. Then, given a similarity metric
sim:RW → [0, 1] and a similarity threshold Φ we consider the readings by motes Si
and Sj similar if

sim(ui, uj) > Φ. (5.1)

In TACO, we classify a mote as an outlier if its latest W measurements are not
found to be similar with the corresponding measurements of at least minSup other
motes in the network. The parameter minSup, thus, dictates the minimum support (ei-
ther in the form of an absolute, uniform value or as a percentage of motes, i.e per
cluster) that the readings of the mote need to obtain by other motes in the network,
using Equation 5.1. Consequently, as in Chapter 3, the chosen similarity measure
sim(ui, uj) constitutes the monitored function of interest given the Φ threshold. The
difference is the additional introduction of the minimum support parameter. The de-

5.2. BASIC FRAMEWORK 67

Similarity Metric Calculation of Similarity

Cosine Similarity cos(θ(ui, uj)) =
ui·uj

||ui||·||uj || ⇒
θ(ui, uj) = arccos

ui·uj
||ui||·||uj ||

Correlation Coefficient
corr(ui, uj) =

cov(ui,uj)
σuiσuj

=
E(uiuj)−E(ui)E(uj)√

E(u2
i)−E2(ui)

√
E(u2

j)−E2(uj)
=∑W

`=1(ui`−E(ui))·(uj`−E(uj))√∑W
`=1(ui`−E(ui))2·

√∑W
`=1(uj`−E(uj))2

Jaccard Coefficient J(ui, uj) =
|ui∩uj |
|ui∪uj |

Extended Jaccard Coefficient T (ui, uj) =
ui·uj

||ui||2+||uj ||2−ui·uj

Euclidean Distance dist(ui, uj) =
√∑W

`=1(ui` − uj`)2

Table 5.1: Computation of some supported similarity metrics between vectors ui, uj
containing the latest W measurements of nodes Si and Sj .

mand for minSup makes the geometric approach fail in controlling accuracy when mes-
sage losses or addition as well as death of sensor nodes takes place [9]. On the contrary,
given the above definition, the framework we are about to present manages to control
accuracy and provide a direct way to link it with the desired bandwidth conservation.

By allowing the user/application to control the value of minSup, our techniques
are resilient to environments where spurious readings originate from multiple nodes
at the same epoch, due to a multitude of different, and hence unpredictable, reasons.
Our framework can also easily incorporate additional witness criteria based on non-
dynamic grouping characteristics (such as the node identifier or its location), in order to
limit, for each sensor, the set of nodes that are tested for similarity with it. For example,
one may not want sensor nodes located in different floors to be able to witness each
other’s measurements.

5.2.2 Supported Similarity Metrics - Monitored Functions

The definition of an outlier, as presented in Section 5.2.1, is quite general to accom-
modate a number of intuitive similarity tests between the latest W readings of a pair of
sensor nodes Si and Sj . Examples of such monitored functions of interest, include the
cosine similarity, the correlation coefficient and the Jaccard coefficient [12, 30]. The
Euclidean distance and the extended Jaccard coefficient of standardized value vectors
are supported as well. Table 5.1 demonstrates the formulas for computing the afore-
mentioned metrics over the two vectors ui, uj containing the latest W readings of
sensors Si and Sj , respectively1.

It is important to emphasize that our framework is not limited to using just one

1E(.), σ and cov(.) in the table stand for mean, standard deviation and covariance, respectively.

68 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

of the metrics presented in Table 5.1. On the contrary, as it will be explained in Sec-
tion 5.3.1, any similarity metric satisfying a set of common criteria may be incorporated
in our framework.

5.2.3 Network Organization

We adopt an underlying network structure where motes are organized into clusters
(shown as dotted circles in Figure 5.1). Queries are propagated by the base station
to the clusterheads, which, in turn, disseminate these queries to sensors within their
cluster.

Various algorithms [13, 50, 96, 122] have been proposed to clarify the details of
cluster formation, as well as the clusterhead election and substitution (rotation) during
the lifetime of the network. All these approaches have been shown to be efficient in
terms of energy dissipation, thus resulting in prolonged network lifetime. The afore-
mentioned algorithms differ in the way clusters and corresponding clusterheads are
determined, though they all share common characteristics since they primarily base
their decisions on the residual energy of the sensor nodes and their communication
links.

An important aspect of our framework is that the choice of the clustering algorithm
is orthogonal to our approach. Thus, any of the aforementioned algorithms can be
incorporated in our framework. An additional advantage of our techniques is that they
require no prior state at clusterhead nodes, thus simplifying the processes of clusterhead
rotation and re-election.

5.2.4 Operation of the Algorithm

We now outline the various steps involved in our TACO framework. These steps are
depicted in Figure 5.1.

Step 1: Data Encoding and Reduction. At a first step, the sensor nodes encode their
latestW measurements using a bitmap of d bits. In order to understand the operation of
our framework, the actual details of this encoding are not important (they are presented
in Section 5.3). What is important is that:

• As we will demonstrate, the similarity function between the measurements of
any pair of sensor nodes can be evaluated using their encoded values, rather than
using their uncompressed readings.

• The used encoding trades accuracy (i.e., probability of correctly determining
whether a node is an outlier or not) for bandwidth, by simply varying the desired
level of dimensionality reduction (i.e., parameter d mentioned above). Larger
values of d result in increased probability that similarity tests performed on the

5.3. DATA ENCODING AND REDUCTION 69

encoded representation will reach the same decision as an alternative technique
that would have used the uncompressed measurements instead.

After encoding its measurements, each sensor node transmits its encoded measure-
ments to its clusterhead.

Step 2: Outlier Detection at the Cluster Level. Each clusterhead receives the en-
coded measurements of the sensors within its cluster. It then performs similarity tests
amongst all pairs of sensor nodes that may witness each other (please note that the
posed query may have imposed restrictions on this issue), in order to determine nodes
that cannot reach the desired support level and are, thus, considered to be outliers at a
cluster level.

Step 3: Intercluster Communication. After processing the encoded measurements
within its cluster, each clusterhead has determined a set of potential outliers, along
with the support that it has computed for each of them. Some of these potential outliers
may be able to receive support from sensor nodes belonging to other clusters. Thus,
a communication phase is initiated where the potential outliers of each clusterhead
are communicated (along with their current support) to other clusterheads in which
their support may increase. Please note that depending on the restrictions of the posed
queries, only a subset of the clusterheads may need to be reached. The communication
problem is essentially modeled as a TSP problem, where the origin is the clusterhead
itself, and the destination is the base station.

The extensible definition of an outlier in our framework enables the easy applica-
tion of semantic constraints on the definition of outliers. For example, we may want to
specify that only movement sensors trained on the same location are allowed to witness
each other, or similarly that only readings from vibration sensors attached to identical
engines in a machine room are comparable. Such static restrictions can be easily in-
corporated in our framework (i.e., by having clusterheads maintain the corresponding
information, such as location and type, for each sensor id) and their evaluation is or-
thogonal to the techniques that we present in this chapter.

5.3 Data Encoding and Reduction

In this section we provide the definition and properties of the Locality Sensitive Hash-
ing schemes. We further investigate the details of a particular, the Random Hyperplain
Projection, LSH scheme which serves as the basis for incorporating in TACO most of
the similarity measures presented in Table 5.1 (the details of the latter issue are included
in the current section as well as Section 5.6).

70 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

Symbol Description

Si the i− th sensor node
ui the value vector of node Si
W tumble size (length of ui)

θ(ui, uj) the angle between vectors ui, uj
Xi the bitmap encoding produced after applying LSH to ui
d bitmap length

Dh(Xi, Xj) the hamming distance between bitmaps Xi, Xj
Φ similarity threshold used
Φθ threshold based on angle similarity

ΦDh threshold based on hamming distance similarity
minSup the minimum support parameter

Table 5.2: Notation of Chapter 5

5.3.1 Definition and Properties of LSH

A Locality Sensitive Hashing scheme is defined in [12] as a distribution on a family F
of hash functions that operate on a set of objects, such that for two objects ui, uj :

PhεF [h(ui) = h(uj)] = sim(ui, uj)

where sim(ui, uj)ε[0, 1] is some similarity measure. In [12] the following necessary
properties for existence of an LSH family function for given similarity measures are
proved:

Lemma 5.3.1. For any similarity function sim(ui, uj) that admits an LSH function

family, the distance 1− sim(ui, uj) satisfies the triangle inequality.

Lemma 5.3.2. Given an LSH function family F corresponding to a similarity function

sim(ui, uj), we can obtain an LSH function family F ′ that maps objects to {0, 1} and

corresponds to the similarity function 1+sim(ui,uj)
2 .

Lemma 5.3.3. For any similarity function sim(ui, uj) that admits an LSH function

family, the distance 1− sim(ui, uj) is isometrically embeddable in the hamming cube.

As a result, the above lemmas simultaneously summarize the conditions any candi-
date similarity measure should satisfy so as to be incorporated in our outlier detection
framework.

5.3.2 Data Reduction at the Sensor Level

In our setting, TACO applies LSH to the value vectors of physical quantities sampled by
motes. It can be easily deduced that LSH schemes have the property of dimensionality
reduction while preserving similarity between these vectors. Dimensionality reduction

5.3. DATA ENCODING AND REDUCTION 71

can be achieved by introducing a hash function family such that (Lemmas 5.3.2,5.3.3)
for any vector uiεRW consisting of W sampled quantities, h(ui) : RW → [0, 1]d with
d�W .

In what follows we first describe an LSH scheme for estimating the cosine similar-
ity between motes (please refer to Table 5.1 for the definition of the cosine similarity
metric).

Theorem 5.3.1. [Random Hyperplane Projection (RHP) [12, 47]]

Assume we are given a collection of vectors defined on the W dimensional space. We

choose a family of hash functions as follows: We produce a spherically symmetric

random vector r of unit length from this W dimensional space. We define a hash

function hr as:

hr(ui) =

{
1 ,if r · ui ≥ 0

0 ,if r · ui < 0

For any two vectors ui, ujεRW :

P = P [hr(ui) = hr(uj)] = 1− θ(ui, uj)

π
2 (5.2)

Equation 5.2 can be rewritten as:

θ(ui, uj) = π · (1− P) (5.3)

Note that Equation 5.3 expresses angle similarity as the product of the potential range
of the angle between the two vectors (π), with the probability of equality in the result
of the hash function application (P). Thus, after repeating a stochastic procedure using
d random vectors r, the final embodiment in the hamming cube results in [114]:

Dh(Xi, Xj) = d · (1− P) (5.4)

whereXi, Xjε[0, 1]d are the bitmaps (of length d) produced andDh(Xi, Xj) =

d∑
`=1

|Xi`−

Xj`| is their hamming distance. Hence, we finally derive:

θ(ui, uj)

π
=
Dh(Xi, Xj)

d
(5.5)

Equation 5.5 provides the means to compute the angle (and thus the cosine similarity)
between the initial value vectors based on the hamming distance of their corresponding
bitmaps. The exact details of bitmap comparison with respect to outlier detection will
be provided in the next section.

Given two vectors ui, uj on the RW space, and a desired similarity metric, one can
deterministically compute the similarity of the two vectors. However, the transition

72 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

from the continuous (RW) space to the hamming cube ([0, 1]d) results in imprecision,
since the estimation of the angle similarity depends on the selection of the spherically
symmetric random vectors. We now determine the number of bits required in each
encoding so that the resulting scheme achieves an (ε, δ) − approximation of the ac-
tual similarity, where ε denotes a tolerance on the distortion of θ(ui,uj)

π and δ is the
probability with which ε may be exceeded.

Theorem 5.3.2. To estimate θ(ui,uj)
π with precision ε and probability at least 1 − δ,

sensor nodes need to produce bitmaps of O(`og(2/δ)/(2ε2)) length.

Proof. Assume a pair of bitmapsXi, Xj , produced by nodes Si, Sj , each consisting of
d bits. (Xi1 , Xj1), . . . , (Xid , Xjd) denotes corresponding positions of the two bitmaps.

As already mentioned (Theorem 5.3.1), using LSH on bitmap production at the sen-
sor level ensures that bits at the same position ofXi,Xj are designed to be equal with a
probability proportional to the angle similarity of the initial vectors. Nonetheless, bits
at different positions are produced using independent, random vectors r. As a result,
checks at each position k during the hamming distance calculation can be considered
as independent random variables Yk which yield 1, if the corresponding bits differ, and
0 otherwise.

This yields Y1, . . . , Yd random variables, with Yi = 0 or Yi = 1. Obviously,∑d
i=1

Yi
d =

Dh(Xi,Xj)
d , the expectation of which is θ(ui,uj)

π (Equation 5.5). Hoeffd-
ing’s inequality [37] states that for any ε > 0:

Pr[|Dh(Xi, Xj)

d
− θ(ui, uj)

π
| ≥ ε] ≤ 2e−2dε2 (5.6)

Let the right side of the inequality be δ (0 < δ < 1). Then, one can see that the
estimation Dh(Xi,Xj)

d obtained using bitmaps Xi, Xj is beyond ±ε of the initial value
θ(ui,uj)

π with probability ≤ δ. Hence, ε =
√
`n(2/δ)/(2d) and d = `n(2/δ)/(2ε2)

which completes the proof.

So far, we discussed the general operational aspects of our framework (Section 5.2).
Moreover, we formally presented the preliminaries of LSH schemes and looked into the
primitives for RHP application on mote values(Section 5.3). In the upcoming section
we bind these together and primly analyze the details of the outlier identification pro-
cess throughout its various stages.

5.4 Detecting Outliers with TACO

We now present the operation of our TACO framework in detail. As discussed in Sec-
tion 5.1, outlying values often cannot be reliably deduced without considering the cor-
relation of a sensor’s recent measurements with those of other sensor nodes. Hereafter,

5.4. DETECTING OUTLIERS WITH TACO 73

8.2 4.3 … 0 1 …

W d

H(ui)=(h1(ui), h2(ui),…, hd(ui))

Figure 5.2: LSH application to mote’s value vector

we propose a generic technique that takes into account the aforementioned parameters
providing an energy efficient way to detect outlying values.

5.4.1 Running Example and Query Format

In what follows, we will use as a running example the case where

• the angle similarity between two vectors ui and uj is chosen; and

• the angle similarity threshold Φθ is set equal to Φ.

Thus, in our running example sim(ui, uj) = θ(ui, uj), and Φθ = Φ. In Section 5.6
we demonstrate the way that other similarity measures, included in Table 5.1, can be
utilized in TACO.

We now describe the syntax of the queries supported by TACO. Query sections
enclosed in ”[...]” denote optional sections that may be omitted. The meaning of each
query section will be explained shortly.

Assume that the sensor network’s base station poses a query of the form:

SELECT c.Si

FROM Clusterheads c

WHERE c.SupportSi < minSup

USING

TUMBLE SIZE=W

ENCODING BITS=d SEEDED BY seed

TESTS(sim(), Φ)

[CHECKS ON ¡specifications on sim() tests¿]

[BOOSTING GROUPS=µ]

This query is executed continuously in the network until it is explicitly terminated
by the base station. The seed parameter in the USING compartment is encapsulated
in the query so as to enable every mote in the network to produce the same set of
random vectors r, which will be utilized during the LSH encoding. In addition, in
the CHECKS ON line of the query, users are able to declare a set of non dynamic

74 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

Algorithm 1 TACO at Individual Motes
Require: Event of Query Reception
1: compute hr Functions(W , d, seed)
2: {¡¡Sampling¿¿}
3: repeat
4: call getData()
5: if dataReady() then
6: ui ← newSample
7: end if
8: until Tumble of W size is formed
9: computeXi(ui, hr functions) {Xi denotes the LSH bitmap of the node}

10: IntraclusterMessage.send(Si,Xi)
11: {Go to ¡¡Sampling¿¿}

specifications regarding restrictions on motes that can witness each other as discussed
in Section 5.2.4. As an additional example, users may specify that motes within a
certain radius can witness each other for similarity, irrespectively of whether they are
assigned to the same cluster, as they are expected to sense similar conditions. Eventu-
ally, the BOOSTING GROUPS specification regards the application of our proposed
boosting process which will be presented in Section 5.4.6. As already mentioned, the
CHECKS ON and the BOOSTING GROUPS lines (surrounded by “[...]”) are op-
tional. In case the CHECKS ON specification is omitted, users allow comparisons of
any pair of motes in the network, while the absence of BOOSTING GROUPS declara-
tion is equivalent to a µ = 1 choice.

The rest of the query parameters have already been discussed in Section 5.2. The
previously presented query is broadcasted to the sensor network having clusterheads
disseminating the corresponding information within their cluster and towards other
peers.

5.4.2 TACO at Individual Motes

Query reception at sensor nodes triggers a sampling procedure. Recalling Section
5.3.2, W recent measurements form a mote’s tumble [11]. Sending a W -dimensional
value vector as is, exacerbates the communication cost, which is an important fac-
tor that impacts the network lifetime. TACO thus applies LSH in order to reduce the
amount of transmitted data. In particular, after having collected W values, each mote
applies d hr() functions on it so as to derive a bitmap of length d (Figure 5.2), where
the ratio of d to the size of the W measurements determines the achieved reduction.
The derived bitmap is then transmitted to the corresponding clusterhead. The whole
process is sketched in Algorithm 1. We additionally note that in case of severe memory
constraints, motes do not need to pre-compute and locally store the random vectors
(Line 1 of Algorithm 1), but instead sensor nodes are capable of generating those vec-
tors on the fly using the common seed [38].

5.4. DETECTING OUTLIERS WITH TACO 75

Algorithm 2 TACO’s Intra-cluster Processing at Clusterhead Ci
Require: Bitmap Reception from Motes in Cluster
1: for all pairs of motes (Si,Sj) do
2: if Dh(Xi, Xj) ≤ ΦDh then
3: SupportSi ← SupportSi + 1
4: SupportSj ← SupportSj + 1
5: end if
6: end for
7: for all Sis in Cluster do
8: if SupportSi < minSup then
9: PotOutCi ←< Si, Xi, SupportSi >

10: end if
11: end for

5.4.3 Intra-Cluster Processing

In the next phase, each clusterhead is expected to report outlying values. To do so,
it would need to compare pairs of received vectors in order to determine their similarity
based on Equation 5.1 and the Φθ similarity threshold. On the contrary, the information
that reaches the clusterhead is in the form of compact bitmap representations. Note that
Equation 5.5 provides a way to express the angle similarity in terms of the hamming

distance and also the similarity threshold ΦDh = d · Φθ
π

. Thus, clusterheads can obtain
an approximation of the initial similarity by examining the hamming distance between
pairs of bitmaps.

Hence, after the reception of intracluster messages by motes in its cluster, every
clusterhead proceeds according to Algorithm 2. If the hamming distance between two
tested bitmaps is lower than or equal to ΦDh , then the two initial vectors will be con-
sidered similar, and each sensor in the pair will be able to witness the measurements of
the other sensor, thus being able to increase its support by 1 (Lines 1-6). At the end of
the procedure, each clusterhead determines a set of potential outliers (PotOut) within
its cluster, and extracts a list of triplets in the form 〈Si, Xi, support〉 containing for
each outlier Si its bitmap Xi and the current support that Xi has achieved so far (Lines
7-11).

5.4.4 Inter-Cluster Processing

Local outlier lists extracted by clusterheads take into account both the recent history of
values and the neighborhood similarity (i.e., motes with similar measurements in the
same cluster). However, this list of outliers is not final, as the posed query may have
specified that a mote may also be witnessed by motes assigned to different clusterheads.
Thus, an inter-cluster communication phase must take place, in which each clusterhead
communicates information (i.e., its produced triplets) regarding its local, potential out-
lier motes that do not satisfy the minSup parameter. In addition, if the required support
is different for each sensor (i.e., minSup is expressed as a percentage of nodes in the
cluster), then the desired minSup parameter for each potential outlier also needs to be

76 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

Algorithm 3 TACO’s Inter-cluster Processing at Clusterhead Ci
1: while more motes in PotOutCi do
2: InterclusterMessage.send(¡Si, Xi, SupportSi¿ ∈ PotOutCi)

{towards the next TSP hop}
3: end while
{Intercluster Message Reception Handling}

1: if InterclusterMessage.receive(¡Si, Xi, SupportSi¿) then
2: for all Sjs in the current cluster do
3: if Dh(Xi, Xj) ≤ ΦDh then
4: SupportSi ← SupportSi + 1
5: end if
6: end for
7: if SupportSi < minSup then
8: InterclusterMessage.send(¡Si, Xi, SupportSi¿)

{towards the next TSP hop}
9: end if

10: end if

transmitted. Please note that the number of potential outliers is expected to only be a
small portion of the total motes participating in a cluster.

During the intercluster communication phase (sketched in Algorithm 3) each clus-
terhead thus transmits its potential outliers to those clusterheads where its locally deter-
mined outliers may increase their support (based on the restrictions of the posed query
- first three lines of Algorithm 3). This is achieved by using a circular network path
computed by solving a TSP problem that has as origin the clusterhead, as endpoint the
base station, and as intermediate nodes those sensors that may help increase the support
of this clusterhead’s potential outliers. The TSP can be computed either by the bases-
tation after clusterhead election, or in an approximate way by imposing GPSR [63] to
aid clusterheads make locally optimal routing decisions. However, note that such a
greedy algorithm for TSP may result in the worst route for certain point - clusterhead
distributions [48].

Any item in the PotOutCi set of potential outliers of clusterhead Ci received by a
clusterhead Cj is compared to local sensor bitmaps and the support parameter of nodes
within PotOutCi is increased appropriately upon a similarity occurrence (Lines 1-6
in Intercluster Message Reception Handling of Algorithm 3). In this phase, upon a
successful similarity test, we do not increase the support of motes within the current
cluster (i.e., the cluster of Cj), since at the same time the potential outliers produced by
Cj have been correspondingly forwarded to neighboring clusters in search of additional
support. Any potential outlier that reaches the desired minSup support is excluded from
the list of potential outliers that will be forwarded to the next clusterhead (Lines 7-9 of
Intercluster Message Reception Handling).

Eventually, motes that do not manage to accumulate adequate witnesses are identi-
fied as outliers. The corresponding information that reaches the base station comes in
the form of the Si of each node that shows abnormal behavior. Nevertheless, the base
station may additionally require inspection of the sampled values obtained by these

5.4. DETECTING OUTLIERS WITH TACO 77

Figure 5.3: Probability Psimilar of judging two bitmaps as similar, depending on the
angle (θ) of the initial vectors and for two different thresholds Φθ (W=16, reduction
ratio=1/4).

motes. An efficient way to derive estimations of those values is by having clusterheads
forwarding the bitmap Xi, on par with the identifier of the nodes, to the query source.
Subsequently, sampled values’ estimations can be extracted by applying a reverse LSH
process [38]. Of course, a need for exact mote sample acquisition introduces an addi-
tional step of directly querying the pinpointed outlier sensors.

5.4.5 Analysis

The similarity tests that take place during TACO’s intra- and intercluster processing
are approximate in nature, as their decisions rely on hamming distance tests on pairs
of mote bitmaps, instead of the angle similarity of initial mote vectors. In this section,
we elaborate on the quality guarantees provided by TACO with respect to the afore-
mentioned similarity estimations for the given Φθ threshold. We initially discuss some
intuition on these quality guarantees and present graphical analysis results, when dif-
ferent parameters are varied. We then provide an analysis based on the use of Chernoff
bounds.

We first demonstrate how one could estimate the expected error rate of the per-
formed checks. Recall that for any pair of vectors ui, uj , the probability P that the
corresponding bits in their bitmap encoding are equal is given by Equation 5.2. Thus,
the probability of satisfying the similarity test, via LSH manipulation can be expressed
by the cumulative function of a binomial distribution:

Psimilar =

ΦDh∑
i=0

(
d

i

)
P d−i · (1− P)i (5.7)

As an example, Figure 5.3 plots the value of Psimilar as a function of θ(ui, uj) (recall

78 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

32 64 96 128 160 192 224 256

d

0.8

0.85

0.9

0.95

1

P
s
im

il
a
r

Figure 5.4: Probability Psimilar of judging two bitmaps (of vectors that pass the sim-
ilarity test) as similar, depending on the number of bits d used in the LSH encoding
(W=16, θ=5, Φθ=10)

that P is a function of the angle between the vectors) for two different values of Φθ.
The area FP1 above the line on the left denotes the probability of classifying any two
vectors as dissimilar, even though their theta angle is less than the threshold (false
positive). Similarly, the area FN1 denotes the probability of classifying the encodings
as similar, when the corresponding initial vectors are not (false negative). The areas
denoted as FP2 and FN2 correspond to the same probabilities for an increased value
of Φθ. We can observe that the method is more accurate (i.e., leads to smaller areas for
false positive and negative detections) for more strict definitions of an outlier implied
by smaller Φθ thresholds. In Figure 5.4 we depict the probability that TACO correctly
identifies two similar (θ = 5,Φθ = 10) vectors as similar, varying the length d of the
bitmap. As expected, using more LSH hashing functions (i.e., choosing a higher value
of d), increases the probability of resulting in a successful test.

We can, therefore, estimate the expected false positive and false negative rate in
similarity tests as a fraction of those regions over the whole graph area i.e. FP

π ,FNπ ,
with:{

FP = Φθ −
∫ Φθ

0
Psimilar(θ)dθ

FN =
∫ π

Φθ
Psimilar(θ)dθ

Additionally, in case some rough, prior knowledge of the probability density func-
tion df of θ(ui, uj) exists, we are able to derive more accurate FP, FN estimations. In
our previous discussion, we assumed that every θ(ui, uj) value may appear with equal
probability. df(θ) information, however, provides more precise information about the
angle values frequency. As a result, we can incorporate this knowledge in our estima-
tion by substituting Psimilar(θ) with df(θ)Psimilar(θ) in the presented integrals.

We proceed by demonstrating that the probability of incorrect similarity estimation
of two vectors ui, uj decreases exponentially with the difference |θ(ui, uj)− Φθ|.

5.4. DETECTING OUTLIERS WITH TACO 79

Theorem 5.4.1. For any θ(ui, uj) > 0 and ε = | θ(ui,uj)−Φθ
θ(ui,uj)

|, clusterheads perform a

correct similarity test for ui, uj by means of D(Xi, Xj) with probability at least 1− δ,

where δ = e
−

(θ(ui,uj)−Φθ)2

θ(ui,uj)
d

2π .

Proof. First, please note that for θ(ui, uj) = 0, our scheme will always return the same
bitmaps for ui and uj , thus always correctly classifying them as similar.

Let Yi be a random variable that takes the value of 0 if the bits at the i − th po-
sition of the bitmaps Xi, Xj (received by a clusterhead) agree and 1 otherwise. We
can then introduce a new random variable Y =

∑d
i=1 Yi. Substituting

∑d
i=1 Yi with

Dh(Xi, Xj), we obtain: Y = Dh(Xi, Xj). Since, by Equation 5.5, E[Yi] =
θ(ui,uj)

π

⇒ E[Y] = d
θ(ui,uj)

π .

We prove the theorem for the case when the initial value vectors are dissimilar
(θ(ui, uj) > Φθ). The proof for the reverse case is symmetric. The proof will be based
on the use of the Chernoff bound [18]. Let ε = | θ(ui,uj)−Φθ

θ(ui,uj)
|. Thus, for the case of

θ(ui, uj) > Φθ, Φθ = θ(ui, uj)(1− ε).

Pr[E[Y] ≤ dΦθ
π

] = Pr[Dh(Xi, Xj) ≤ d
θ(ui, uj)(1− ε)

π
] =

Pr[d
θ(ui, uj)

π
−Dh(Xi, Xj) ≥ εd

θ(ui, uj)

π
] ≤ e−ε

2d
θ(ui,uj)

2π ⇒

Pr[
Dh(Xi, Xj)

d
π ≤ Φθ] ≤ e

−
(θ(ui,uj)−Φθ)2

θ(ui,uj)
d

2π (5.8)

The bound of Inequality 5.8 is a strictly increasing function of θ(ui, uj) in the interval
[0,Φθ] and a strictly decreasing function in the interval [Φθ, π]. Thus, the probability
of incorrect estimation using TACO decreases (exponentially) with |θ(ui, uj) − Φθ|.
This concludes our proof.

5.4.6 Boosting TACO Encodings

We note that the process described in Sections 5.4.3, 5.4.4 can accurately compute the
support of a mote in the network (assuming a reliable communication protocol that
resolves conflicts and lost messages). Thus, if the whole process was executed using
the initial measurements (and not the LSH vectors) the resulting list of outliers would
be exactly the same with the one that would be computed by the base station, after
receiving all measurements and performing the calculations locally. The application
of LSH however results in imprecision during pair-wise similarity tests. We previ-
ously presented how this imprecision can be bounded in a controlable manner. We also
noted (Figure 5.4) that increasing the size of the bitmaps produced by motes, improves
TACO’s accuracy. Nevertheless, larger bitmaps imply higher energy consumption. To

80 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

avoid extra communication burden, we propose an alternative technique to achieve im-
proved accuracy.

Assume that a clusterhead has received a pair of bitmaps Xi, Xj , each consisting
of d bits. We split the initial bitmaps Xi, Xj in µ groups (Xi1 , Xj1), (Xi2 , Xj2), . . . ,
(Xiµ , Xjµ), such that Xi is the concatenation of Xi1 ,. . . ,Xiµ , and similarly for Xj .
Each of Xiκ and Xjκ is a bitmap of n bits such that d = µ · n. For each group gκ
we obtain an estimation θκ of angle similarity using Equation 5.5 and, subsequently,
an answer to the similarity test based on the pair of bitmaps in the group. We then
provide as an answer to the similarity test, the answer provided by the majority of the
µ similarity tests.2

Two questions that naturally arise are: (i) Does the aforementioned partitioning of
the hash space help improve the accuracy of successful classification?; and (ii) Which
value of µ should one use? Let us consider the probability of correctly classifying two
similar vectors in TACO (the case of dissimilar vectors is symmetric). In our original
(unpartitioned) framework, the probability of correctly determining the two vectors as
similar is Psimilar(d), given by Equation 5.7. Thus, the failure probability of incor-
rectly classifying two similar vectors as dissimilar is Pwrong(d) = 1− Psimilar(d).

By separating the initial bitmaps to µ groups, each containing d
µ bits, one can view

the above classification as using µ independent Bernoulli trials, which each return 1

(similarity) with a success probability of Psimilar(dµ), and 0 (dissimilarity), otherwise.
Let Y denote the random variable that computes the sum of these µ trials. In order
for our classification to incorrectly classify the two vectors as dissimilar, more than
half of the µ similarity tests must fail. The average number of successes in these µ
tests is Y = µ × Psimilar(

d
µ). A direct application of the Chernoff bounds gives

that more than half of the Bernoulli trials can fail with a probability Pwrong(d, µ) at
most: Pwrong(d, µ) ≤ e−2µ(Psimilar(dµ)− 1

2)2

. Given that the number of bits d and,
thus, the number of potential values for µ is small, we may compare Pwrong(d, µ) with
Pwrong(d) for a small set of µ values and determine whether it is more beneficial to
use this boosting approach or not. We also need to make two important observations
regarding the possible values of µ: (i) The number of possible µ values is further
restricted by the fact that our above analysis holds for µ values that provide a (per
group) success probability > 0.5 and (ii) Increasing the value of µ may provide worse
results, as the number of used bits per group decreases. We explore this issue further
in our experiments.

5.4.7 Discussion

The robustness of TACO’s outlier definition, as well as the tuning capabilities that
it provides, render the framework straightforwardly applicable to a wide variety of

2Ties are resolved by taking the median estimate of θks.

5.5. LOAD BALANCING AND COMPARISON PRUNING 81

application classes. The setting of TACO’s parameters is in direct relation to the ap-
plication context. In particular, the first of these parameters regards the window size
W which can be tuned depending on the application’s desire to base its decisions on
short- or long-term observations. The second parameter refers to the length d of the
LSH bitmaps, which affects the number of transmitted bits and for which we have ex-
tensively analyzed (Sections 5.3,5.4) its impact on the accuracy of our techniques. The
desired similarity threshold (Φ) and the level of support (minSup) are essentially those
values that determine sensitive or more relaxed outlier definitions referring to neuralgic
or ordinary deployments of TACO, respectively.

A popular deployment field where wireless sensor networks suit themselves in, re-
lates to habitat monitoring applications [94]. As an example, consider a monitoring
application that aims at investigating bird breeding conditions with motes placed in
nests. Since nest temperatures may affect monitored behaviors, such mote samples are
considered of particular utility. The apparition of outlying temperature measurements
of nodes near nests may attract researchers’ interest to further look into caused reac-
tions. As scientists usually base their investigation on long term observations [94],
large window sizes may be utilized. In TACO’s setting, W values between 24-32 mea-
surements can be applicable, with Φθ = 30 degrees and minSup values of 4 motes
withing a radius of ∼10 meters near bird nests. To prolong the scientific observation
interval and thus the lifetime of the whole sensor network, d values can be squeezed to
yield data reduction ratios of [1/8, 1/16].

As another example, consider motes as machine particles in industrial applications
where controllers need to pinpoint machines that exhibit high vibrations indicating
malfunctioning conditions. Their aim is to timely diagnose those machines and inter-
vene to prevent the production process to be ceased due to permanent casualty. Conse-
quently, sampling rates are high while accuracy is of importance to avoid false negative
or positive alarms. The first requirement may lead to selecting smaller window sizes
of W = 16 measurements, while the second requirement premises d values ensur-
ing moderate (e.g. 1/2 or 1/4) reduction ratios and sensitive similarity definitions i.e.,
Φθ = 10 degrees.

The above are representative examples of TACO’s adoption and parameter tuning.
Of course, the framework itself is not limited to the discussed scenarios but can serve
as an outlier detection tool in any deployment field.

5.5 Load Balancing and Comparison Pruning

In our initial framework, clusterhead nodes are required to perform data collection and
reporting, as well as bitmap comparisons. As a result, clusterheads are overloaded with
extra communication and processing costs, which entails larger energy drain, when
compared to other nodes. In order to avoid draining the energy of clusterhead nodes, the

82 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

network structure will need to be frequently reorganized (by electing new clusterheads).
While protocols such as HEED [122] limit the number of messages required during
the clusterhead election process, this election process still requires bandwidth. In this
section, we tackle with this issue and describe efficient mechanisms provided by TACO
for limiting clusterheads’ load.

5.5.1 Leveraging Additional Motes for Outlier Detection

In order to limit the overhead of clusterhead nodes, we extend our framework by incor-
porating the notion of bucket nodes. Bucket nodes (or simply buckets) are motes within
a cluster the presence of which aims at distributing communication and processing
tasks and their associated costs. Besides selecting the clusterhead nodes, within each
cluster the election process continues to elect additional B bucket nodes. This election
process is easier to carry out by using the same algorithm (i.e., HEED) that we used for
the clusterhead election.

After electing the bucket nodes within each cluster, our framework determines a
mechanism that distributes the outlier detection duties amongst them. Our goal is to
group similar bitmaps in the same bucket so that the comparisons that will take place
within each bucket produce just a few local outliers. To achieve this, we introduce a
second level of hashing.

Proposition 5.5.1. Let Wh(Xi) =
∑d
`=1Xi` be the hamming weight of bitmap Xi

with 0 ≤Wh(Xi) ≤ d. For any pair of bitmapsXi andXj , it holds thatDh(Xi, Xj) ≥
|Wh(Xi)−Wh(Xj)|.

Proof. For any pair of bitmaps Xi, Xj :

|Wh(Xi) − Wh(Xj)| = |
d∑
`=1

Xi` −
d∑
`=1

Xj`| = |
d∑
`=1

(Xi` − Xj`)|

triangle

inequality
≤

d∑
`=1

|Xi` −Xj`| = Dh(Xi, Xj)

Corollary 5.5.1. If |Wh(Xi)−Wh(Xj)| > ΦDh , then the bitmaps Xi and Xj cannot

witness each other.

Our second level of hashing takes into consideration Colorrary 5.5.1 to hash highly
dissimilar bitmaps to different buckets. More precisely:

• Consider a partitioning of the hash key space to the elected buckets, such that
each hash key is assigned to the bWh(Xi)

d
B

c-th bucket. Motes with similar bitmaps
will have nearby Hamming weights, thus hashing to the same bucket with high
probability.

5.5. LOAD BALANCING AND COMPARISON PRUNING 83

• Please recall that encodings that can support each other in our framework have
a Hamming distance lower or equal to ΦDh . In order to guarantee that a node’s
encoding can be used to witness any possible encoding within its cluster, it needs
to be sent to all buckets that cover the hash key range bmax{Wh(Xi)−ΦDh ,0}

d
B

c to

bmin{Wh(Xi)+ΦDh ,d}
d
B

c. Thus, the value of B determines the number of buckets
to which an encoding must be sent. Larger values of B reduce the range of each
bucket, but result in more encodings being transmitted to multiple buckets. In our
framework, we select the value B (whenever at least B nodes exist in the cluster)
by setting d

B > ΦDh =⇒ B < d
ΦDh

. As we will shortly show, this guarantees
that each encoding will need to be transmitted to at most one additional bucket,
thus avoiding hashing the measurements of each node to multiple buckets.

• The transmission of an encoding to multiple bucket nodes ensures that it may be
tested for similarity with any value that may potentially witness it. Therefore,
the support that a node’s measurements have reached is distributed in multiple
buckets needing to be combined.

• Moreover, we must also make sure that the similarity test between two encodings
is not performed more than once. Thus, we impose the following rules: (a)
For encodings mapping to the same bucket node, the similarity test between
them is performed only in that bucket node; and (b) For encodings mapping to
different bucket nodes, their similarity test is performed only in the bucket node
with the lowest id amongst these two. Given these two requirements, we can
thus limit the number of bucket nodes to which we transmit an encoding to the
range bmax{Wh(Xi)−ΦDh ,0}

d
B

c to bWh(Xi)
d
B

c. The above range for B < d
ΦDh

is
guaranteed to contain at most 2 buckets.

Thus, each bucket reports the set of outliers that it has detected, along with their
support, to the clusterhead. The clusterhead performs the following tests:

• Any encoding reported to the clusterhead by at least one, but not all bucket nodes
to which it was transmitted, is guaranteed not to be an outlier, since it must
have reached the required support at those bucket nodes that did not report the
encoding.

• For the remaining encodings, the received support is added, and only those en-
codings that did not receive the required overall support are considered to be
outliers.

5.5.2 Load Balancing Among Buckets

Despite the fact that the introduction of bucket nodes does alleviate clusterheads from
comparison and message reception load, it does not guarantee by itself that the portion

84 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

Number of nodes in cluster = 28

1
0 d/4

c1=d/12

3 3

d/4 d/2

c2=d/16

4 3

d/2 d/4

c3=d/16

1

3d/4 d

c4=d/12

0 0
0 0

2 2
6 3

[f=(0,0,1),c1=d/12] [f=(3,3,4,6),c3=d/16]

[f=(0,0,1),c4=d/12]

Histogram
Calculation

Histogram
Communication

Hash Key Space
Reassignment

SB1

SB2

SB3
SB4

SB4 (11d/16-d]

SB3 (9d/16 - 11d/16]
SB2 (3d/8 - 9d/16]

SB1 [0 - 3d/8]

Figure 5.5: Exemplary (bottom-up) demonstration of the 3 phases of load balancing

of load taken away from the clusterheads will be equally distributed between buckets.
In particular, we expect that motes sampling ordinary values of measured attributes
will produce similar bitmaps, thus directing these bitmaps to a limited subset of buck-
ets, instead of equally utilizing the whole arrangement. In such a situation, an equi-
width partitioning of the hash key space to the bucket nodes is obviously not a good
strategy. On the other hand, if we wish to determine a more suitable hash key space al-
location, we require information about the data distribution of the monitored attributes
and, more precisely, about the distribution of the hamming weight of the bitmaps that
original value vectors yield. Based on the above observations, we can devise a load bal-
ancing mechanism that can be used after the initial, equal-width partitioning in order to
repartition the hash key space between bucket nodes. Our load balancing mechanism
fosters simple equi-width histograms and consists of three phases: a) histogram calcu-

lation per bucket, b) histogram communication between buckets, and c) hash key space

reassignment.

During the histogram calculation phase, each bucket locally constructs equi-width
histograms by counting Wh(Xi) frequencies belonging to bitmaps that were hashed to
them. The range of histogram’s domain value is restricted to the hash key space portion
assigned to each bucket. Obviously, this phase takes place side by side with the normal
operation of the motes. We note that this phase adds minimum computation overhead
since it only involves increasing by one the corresponding histogram bucket counter
for each received bitmap.

In the histogram communication phase, each bucket communicates to its cluster-
head (a) its estimated frequency counts attached, and (b) the width parameter c that it
used in its histogram calculation. From the previous partitioning of the hash key space,
the clusterhead knows the hash key space of each bucket node. Thus, the transmission

5.6. TACO UNDER OTHER SUPPORTED SIMILARITY MEASURES 85

of the width c is enough to determine (a) the number of received bars/values, and (b)
the range of each bar of the received histogram. As a result, the clusterhead can easily
reconstruct the histograms that it received.

The final step involves the adjustment of the hash key space allocation that will
eventually provide the desired load balance based on the transmitted histograms. Rely-
ing on the received histograms, the clusterhead determines a new space partitioning and
broadcasts it to all nodes in its cluster. The aforementioned phases can be periodically
(but not frequently) repeated to adjust the bounds allocated to each bucket, adapting
the arrangement to changing data distributions. Figure 5.5 depicts an example of the
load balancing procedure. To simplify the figure, in this example we assume that the
second bucket node is also the clusterhead.

The mechanisms described in this section better balance the load among buck-
ets and also refrain from performing unnecessary similarity checks between dissimilar
pairs of bitmaps, which would otherwise have arrived at the clusterhead. This stems
from the fact that hashing bitmaps based on their hamming weight ensures that dis-
similar bitmaps are hashed to different buckets. We experimentally validate the ability
of this second level hashing technique to prune the number of comparisons in Sec-
tion 5.8.5.

5.6 TACO under Other Supported Similarity Measures

We have already noted the ability of our framework to encompass a wide variety of
popular similarity measures. So far, in our running example, we showed TACO’s func-
tion using the angle (and, thus, the cosine similarity) between sensor value vectors. In
this subsection we provide a detailed discussion on how the other measures presented
in Table 5.1 can be incorporated in TACO.
Correlation Coefficient. Let E(ui) notate the mean value and σui the standard devia-
tion of vector ui. Moreover for mote value vectors ui, uj we denote u∗i = ui −E(ui),
u∗j = uj − E(uj).

Proposition 5.6.1. The correlation coefficient (corr) can be used as a similarity mea-

sure in TACO by using the same family of hashing functions as with the cosine similar-

ity in the Random Hyperplane Projection LSH scheme.

Proof. To prove the proposition it suffices to show that some kind of equivalence be-
tween the two measures (i.e., cosine similarity and correlation coefficient) exists. In
particular,

corr(ui, uj) = corr(u∗i , u
∗
j) = cos(θ(u∗i , u

∗
j)) (5.9)

holds. We now provide a simple proof for the previous equation, starting from the first
part, and based on the observation that E(u∗i) = E(u∗j) = 0, while also σu∗i = σui

86 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

and σu∗j = σuj :

corr(u∗i , u
∗
j) =

E(u∗i u
∗
j)− E(u∗i)E(u∗j)

σu∗i σu∗j

=
E((ui − E(ui))(uj − E(uj)))− E(u∗i)E(u∗j)

σu∗i σu∗j

=
E(ui · uj − uj · E(ui)− ui · E(uj) + E(ui) · E(uj))

σuiσuj

=
E(ui · uj)− E(uj · E(ui))− E(ui · E(uj)) + E(ui) · E(uj)

σuiσuj

=
E(ui · uj)− E(ui) · E(uj)

σuiσuj

which equals corr(ui, uj). Furthermore:

cos(θ(u∗i , u
∗
j)) =

u∗i · u∗j
||u∗i || · ||u∗j ||

=
1
W

∑W
`=1 u

∗
i` · u∗j`

1
W

√∑W
`=1 u

∗2
i` ·
√∑W

`=1 u
∗2
j`

=
E(u∗i u

∗
j)

σu∗i σu∗j

= corr(u∗i , u
∗
j)

In other words, an outlier detection query may specify a similarity threshold Φcorr

based on the correlation coefficient for ui, uj . Since corr(ui, uj) = corr(u∗i , u
∗
j),

Φcorr also holds for u∗i , u
∗
j . Additionally, because corr(u∗i , u

∗
j) = cos(θ(u∗i , u

∗
j)),

Φcorr can be transformed into a threshold for the hamming distance between bitmaps
using Equation 5.5. Hence, after the collection of uis, motes produce and apply LSH
on u∗i s so as to obtain appropriate bitmaps preserving the angle and, subsequently, the
corr-similarity of the initial value vectors. The rest of the outlier detection process
presented in the previous sections remains unaffected.

Euclidean Distance of Standardized Vectors. A popular similarity measure often
used in distance based outlier identification is the Euclidean distance. Nonetheless, this
measure relies on absolute values to determine the similarity of ui, uj while we have
previously reasoned that in our setting the emphasis should be set on the correlations of
the motes measurements in space and time rather than on the absolute sampled values.
Nevertheless, we are able to adjust the Euclidean distance so as to serve our purposes
by considering standardized vectors.

Let u′i = ui−E(ui)
σui

, u′j =
uj−E(uj)

σuj
and dist(u′i, u

′
j) the Euclidean distance be-

tween u′i, u
′
j which is calculated by dist(u′i, u

′
j) =

√∑W
`=1(u′i` − u′j`)2.

Proposition 5.6.2. The Euclidean distance dist() of standardized mote vectors can

capture correlations among sensor readings and is incorporated in TACO by using the

5.6. TACO UNDER OTHER SUPPORTED SIMILARITY MEASURES 87

same family of hashing functions as with the cosine similarity in the Random Hyper-

plane Projection LSH scheme.

Proof. Initially, we ought to show that the Euclidean distance of standardized vec-
tors can capture existing correlations between motes’ values. In fact, corr(ui, uj) =

1 − dist2(u′i,u
′
j)

2W holds. Observe that upon standardizing mote value vectors, their
mean is zero and their standard deviation is 1. As a result, corr(u′i, u

′
j) is reduced to

1
W

∑W
`=1 u

′
i`u
′
j` and simple calculations yield that corr(ui, uj) = corr(u′i, u

′
j). More-

over, dist2(u′i, u
′
j) =

∑W
`=1(u′i`− u′j`)2 =

∑W
`=1 u

′2
i` +

∑W
`=1 u

′2
j`− 2

∑W
`=1 u

′
i`u
′
j` =

2W − 2Wcorr(u′i, u
′
j). Combining the previous pair of equivalences leads to the dis-

cussed corr(ui, uj) = 1− dist2(u′i,u
′
j)

2W equality.

Since the correlation coefficient captures the correlation among vectors and we ex-
posed a formula connecting it with dist(u′i, u

′
j), the Euclidean distance of standardized

vectors can also capture potential interrelations. It remains to exhibit that dist(u′i, u
′
j)

is encompassed by the Random Hyperplane Projection scheme which is derived in a
straightforward manner according to Equation 5.9:

corr(ui, uj) = cos(u∗i , u
∗
j) = 1−

dist2(u′i, u
′
j)

2W

.

Summarizing, it suffices for the user query to place a threshold for dist(u′i, u
′
j)

which is transformed into an equivalent Φcorr. That point forward, TACO operates in
exactly the same way as with the corr similarity measure choice.

Extended Jaccard Coefficient of Standardized Vectors. Similarly, the Extended
Jaccard (or Tanimoto) Coefficient of u′i, u

′
j expressed by the ratio

T (u′i, u
′
j) =

u′i · u′j
||u′i||2 + ||u′j ||2 − u′i · u′j

is commutatively supported in TACO by means of their Euclidean distance. In particu-
lar, given a specific ΦTanimoto ∈ [0, 1] the similarity test T (u′i, u

′
j) ≥ ΦTanimoto can

be performed checking the condition:

dist(
ΦTanimoto + 1

2ΦTanimoto
u′i, u

′
j) ≤

√
(ΦTanimoto + 1)2 − 4Φ2

Tanimoto

2ΦTanimoto

√
W

instead [72].

Jaccard Coefficient. Jaccard coefficient is another measure that can be used in ap-
plications that require motes sample discrete quantities such as types of objects in the
network realm, spatial features etc. In [46] the authors introduce a mechanism for

88 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

transforming sets of values into dimensionally reduced bitmaps with preserved Jaccard
similarity. To achieve that, they use minwise independent permutations and simplex
codes. Here, we provide a summary of the main results of [46] for clarity and discuss
the way the MinHash scheme [16, 17] utilized there can be embodied in the outlier de-
tection procedure. Moreover, we extend the results of [46] by providing a mechanism
to determine appropriate bitmap sizes upon utilizing that scheme in TACO’s context.

Let π() denote a random permutation on uiεNW (assuming elements of value sets
are labeled by Natural numbers) and min{π(ui)} = min{π(ui`)|ui`εui}. According
to the min hashing scheme [16, 17, 46]:

Pr[min{π(ui)} = min{π(uj)}] = J(ui, uj)

After using k random permutations the resulted signatures are expected to agree in
k · J(ui, uj) values. Taking one step further, signatures can be embedded in the ham-
ming space utilizing error correcting codes. Error correcting codes (ECCs) have the
property of transforming the b-lengthed binary representation of each signature ele-
ment to bitmaps of fixed (b + s)/2 distance, for some s > 0. The final bitmap is
produced by concatenating the ECC outcomes. Eventually, the following equivalence
can be proved [46]:

Dh(Xi, Xj)

d
=

1− J(ui, uj)

2
(5.10)

with bitmap size d = (b+ s) · k and 0 ≤ Dh(Xi, Xj) ≤ d/2.

In [17] the authors dictate an appropriate value for k to control the number of
false positives/false negatives during similarity tests using the signatures with given
ΦJaccard threshold. Nonetheless, the transition to the hamming space results in addi-
tional imprecision. Signature elements are chosen as numbers of fixed precision which
determines the length b of their binary representation. On the other hand, normally,
when ECCs are used to correct bit errors in communication channels, the value of s is
chosen on the basis of the number of errors that an ECC is able to amend. Neverthe-
less, in the current utilization no such criterion may be applied as our goal is different
and regards accurate similarity preservation. Additionally, appropriate k values dic-
tated by [17] premise that the similarity between value vectors is lower bounded by
some constant number. Obviously, such an assumption cannot be guaranteed in our
setting. In other words, the bounds provided in [17] are not sufficient for the current
context since they do not take into consideration the length of the binary representation
of the signature elements and the chosen ECC to determine the value of k and sub-
sequently control the imprecision of the Jaccard coefficient based similarity test using
Equation 5.10.

Notice that bits at corresponding positions of bitmaps Xi, Xj are not independent
as they are produced based on the chosen error correcting code specifications and sig-

5.6. TACO UNDER OTHER SUPPORTED SIMILARITY MEASURES 89

nature element binary formats. For this reason the boosting process of Section 5.4.6
cannot be used for this kind of bitmaps as we cannot freely partition them into groups.
However, the k groups, each of b+ s bit length, inside a bitmap are independent since
they originate from different signature elements. We exploit this fact to prove the fol-
lowing theorem.

Theorem 5.6.1. Given the choice of signature element universe and the specifications

of the chosen ECC (that is, given b + s), to estimate 1−J(ui,uj)
2 with precision ε

b+s

and probability at least 1 − δ the number of signature elements k should be set to

O(log(2/δ)(b+ s)2/(8ε2)).

Proof. Assume a pair of bitmapsXi, Xj produced by applying min hashing and a cho-
sen ECC to sets ui, uj correspondingly. Let Y1, Y2, . . . , Yk be independent random
variables with Yi = 0 or Yi = (b + s)/2. The average of the sum of these variables is∑k
i=1

Yi
k =

Dh(Xi,Xj)
k and the expectation of the previous average, derived by Equa-

tion 5.10, is (b+ s)
1−J(ui,uj)

2 . Utilizing Hoeffding’s inequality [37] for some ε > 0:

Pr[|Dh(Xi, Xj)

k
− (b+ s)

1− J(ui, uj)

2
| ≥ ε] ≤ 2e

− 8kε2

(b+s)2

Substituting (b+ s) · k with d:

Pr[|Dh(Xi, Xj)

d
− 1− J(ui, uj)

2
| ≥ ε

b+ s
] ≤ 2e

− 8kε2

(b+s)2

Setting the right side of the inequality equal to δ and performing simple calcula-
tions, completes the proof.

The above theorem provides the means to determine the value of k and simultane-
ously incorporates the effect of the ECC choice (the value of s) in the desired precision
of the estimation. After determining the overall d value, the following theorem elabo-
rates on the accuracy of the similarity test performed at the clusterheads’ level.

Theorem 5.6.2. For any J(ui, uj) < 1 and ε =
|J(ui,uj)−ΦJaccard|

1−J(ui,uj)
, clusterheads

perform a correct similarity test for ui, uj by means of D(Xi, Xj) with probability at

least 1− δ, where δ = e
−
d(J(ui,uj)−ΦJaccard)2

2(1−J(ui,uj)) .

A proof can be obtained as in Theorem 5.4.1 and is omitted. Note again that
J(ui, uj) = 1 leads to identical bitmaps and the probability of incorrect similarity
test decreases exponentially only this time with the |J(ui, uj)− ΦJaccard| difference.
Upon motes transform initial sets of values to bitmaps, the outlier detection process
using the Jaccard coefficient is quite analogous to the case of cosine similarity with
Equation 5.10 (instead of Equation 5.5) as the main tool.

We further note [12] that there exist popular similarity metrics that do not accept
an LSH scheme. For instance, Lemma 5.3.1 implies that the Dice(ui, uj) =

2|ui∩uj |
|ui|+|uj |

90 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

and Overlap(ui, uj) =
|ui∩uj |

min(|ui|,|uj |) coefficients do not admit an LSH scheme since
they do not satisfy the triangle inequality.

5.7 Extensions

An obvious way to further decrease communication costs during the intra- and inter-
cluster processing of TACO is by suppressing mote messages when bitmaps are not
altered in a number of successive tumbles. In particular, let X last

i denote the last
bitmap that mote Si transmitted to the clusterhead (or bucket node) and Xnew

i the
bitmap produced in the current tumble. When Dh(X last

i , Xnew
i) = 0, Si does not

need to communicate any information to the clusterhead. This reduces the burden of
intracluster communication. In the intercluster processing, as far asXi is not modified,
should it happen to be included in PotOutCi , X

last
i needs to be transmitted only once.

Please notice that the result of similarity tests where Si participates will not be affected
at all.

Relaxing the previous condition, we may allow motes suppress their messages in
case Dh(X last

i , Xnew
i) ≤ f , where 0 ≤ f ≤ d. As a consequence, additional savings

in bandwidth consumption are yielded, however, with the make-weight of distorting the
result of the tests which Si takes place in. Despite this fact, we can still guarantee that
a portion of these tests cannot be affected. Hereafter, we outline the cases for which no
distortion in Si’s similarity test outcomes is introduced.

Assume that motes Si, Sj are to be compared during the intra- or intercluster pro-
cessing and Si suppressed its message in the current tumble while Sj did not. The
result of the similarity test will rely onDh(X last

i , Xnew
j). Due to the fact that the ham-

ming distance possesses the property of satisfying the triangle inequality and bearing
that Dh(X last

i , Xnew
i) ≤ f :

|Dh(X last
i , Xnew

j)− f | ≤ Dh(Xnew
i , Xnew

j) ≤ Dh(X last
i , Xnew

j) + f (5.11)

Consequently:

(Dh(X last
i , Xnew

j) + f ≤ ΦDh) ∨ ((Dh(X last
i , Xnew

j) ≥ f) ∧ (Dh(X last
i , Xnew

j)−
f ≥ ΦDh)) |=undistorted test.

Provided that both sensor nodes Si, Sj suppress their messages, Dh(X last
i , X last

j) is
taken into consideration so as to decide their similarity. In this case:

|Dh(X last
i , X last

j)− f | ≤ Dh(X last
i , Xnew

j) ≤ Dh(X last
i , X last

j) + f (5.12)

Combining inequalities (5.11),(5.12), for the case of pairs of motes that mutually sup-

5.8. EXPERIMENTS 91

press their messages, we overall obtain:

(Dh(X last
i , X last

j)+2f ≤ ΦDh)∨ ((Dh(X last
i , X last

j) ≥ 2f)∧ (Dh(X last
i , X last

j)−
2f ≥ ΦDh)) |= undistorted test.

In any other case, depending on the actual changes of the corresponding hamming
distance, the adoption of the message suppression strategy may cause alteration (com-
pared to the utilization of Dh(Xnew

i , Xnew
j)) in the result of a test or not. Obviously,

increasing the value of f provides increased communication savings but also weakens
the guarantees on the distortion of similarity test outcomes. On the other hand, smaller
fs produce tighter upper and lower bounds in the presented inequalities (5.11),(5.12)
while yielding more moderate bandwidth consumption preservation.

5.8 Experiments

5.8.1 Experimental Setup

In order to evaluate the performance of our techniques we implemented our framework
on top of the TOSSIM network simulator [75]. Since TOSSIM imposes restrictions on
the network size and is rather slow in simulating experiments lasting for thousands of
epochs, we further developed an additional lightweight simulator in Java and used it for
our sensitivity analysis, where we vary the values of several parameters and assess the
accuracy of our outlier detection scheme. The TOSSIM simulator was used in smaller-
scale experiments, in order to evaluate the energy and bandwidth consumption of our
techniques and of alternative methods for computing outliers. Through these experi-
ments we examine the performance of all methods, while taking into account message
loss and collisions, which in turn result in additional retransmissions and affect the
energy consumption and the network lifetime.

In our experiments we utilized two real world data sets. The first, termed Intel Lab
Data, includes temperature and humidity measurements collected by 48 motes for a
period of 633 and 487 epochs, respectively, in the Intel Research, Berkeley lab [32].
The second, termed Weather Data, includes air temperature, relative humidity and so-
lar irradiance measurements from the station in the University of Washington and for
the year 2002 [27]. We used these measurements to generate readings for 100 motes
for a period of 2000 epochs. In both data sets we increased the complexity of the tem-
perature and humidity data by specifying for each mote a 6% probability that it will
fail dirty at some point. We simulated failures using a known deficiency [30] of the
MICA2 temperature sensor: each mote that fails-dirty increases its measurement (in
our experiment this increase occurs at an average rate of about 1 degree per epoch),
until it reaches a MAX VAL parameter. This parameter was set to 100 degrees for the

92 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30
Av

g
Pr

ec
is

io
n

 Similarity Angle

TumbleSize=16 support=4

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

 R
ec

al
l

Similarity Angle
TumbleSize=16 support=4

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

(a) Intel.Temperature Precision, Recall vs Similarity Angle

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

 P
re

ci
sio

n

Similarity Angle
TumbleSize=16 support=4

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

 R
ec

al
l

Similarity Angle
TumbleSize=16 support=4

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

(b) Intel.Humidity Precision,Recall vs Similarity Angle

Figure 5.6: Average Precision, Recall in Intel Data Set

Intel lab data set and 200 degrees for the Weather data (due to the fact that the Weather
data set contains higher average values). To prevent the measurements from lying on a
straight line, we also impose a noise up to 15% at the values of a node that fails dirty.

5.8. EXPERIMENTS 93

Additionally, each node with probability 0.4% at each epoch obtains a spurious mea-
surement which is modeled as a random reading between 0 and MAX VAL degrees.
Finally, for solar irradiance measurements, we randomly injected values obtained at
various time periods to the sequence of readings, in order to generate outliers.

We need to emphasize that increasing the complexity of the real data sets actu-
ally represents a worst-case scenario for our techniques. It is easy to understand that
the amount of transmitted data during the intracluster communication phase is inde-
pendent of the data sets’ complexity, since it only depends on the specified parameter
d that controls the dimensionality reduction. On the other hand, the amount of data
exchanged during the intercluster phase of our framework depends on the number of
generated outlier values. Thus, the added data set complexity only increases the trans-
mitted data (and, thus, the energy consumption) of our framework. Despite this fact,
we demonstrate that our techniques can still manage to drastically reduce the amount of
transmitted data, in some cases even below what a simple aggregate query (i.e., MIN,
MAX or SUM) would require under TAG [78].

In the Intel Lab and Weather data sets we organized the sensor nodes in four and
ten clusters, correspondingly. Please note that we selected a larger number of clusters
for the Weather data set, due to the larger number of sensor nodes that appear in it. The
sensor nodes were organized in clusters using the HEED algorithm.

5.8.2 Sensitivity Analysis

We first present a series of sensitivity analysis experiments using our Java simulator in
order to explore a reasonably rich subset of the parameter space. To evaluate the accu-
racy of TACO in the available data sets we initially focus on the precision and recall
metrics. In a nutshell, the precision specifies the percentage of reported outliers that
are true outliers, while the recall specifies the percentage of outliers that are reported
by our framework. The set of true outliers was computed offline (i.e. assuming all data
was locally available), based on the selected similarity metric and threshold, specified
in each experiment. The goal of these experiments is to measure the accuracy of the
TACO scheme and of the boosting process, and to assess their resilience to different
compression ratios.

We used different tumble sizes ranging between 16 and 32 measurements and Φθ

thresholds between 10 and 30 degrees. Moreover, we experimented with a reduction
ratio up to 1/16 for each (W,Φθ) combination. In the Intel Lab data sets we found
little fluctuations by changing the minSup parameter from 3-5 motes, so henceforth
we consider a fixed minSup=4 (please recall that there are 48 motes in this data set).
Due to a similar observation in the Weather data set, minSup is set to 6 motes. All the
experiments were repeated 10 times. Figures 5.6 and 5.7 depict the accuracy of our
methods presenting the average precision and recall for the used data sets, for different

94 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

Pr
ec

isi
on

Similarity Angle
TumbleSize=16 support=6

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

Pr
ec

isi
on

Similarity Angle
TumbleSize=20 support=6

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

Pr
ec

isi
on

Similarity Angle
TumbleSize=32 support=6

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

(a) Weather Precision: Temperature, Humidity and Solar Irradiance vs
Similarity Angle

Figure 5.7: Average Precision, Recall in Weather Data Set

similarity angles and reduction ratios. To acquire these, we obtained precision and
recall values per tumble and calculated the average precision, recall over all tumbles
in the run. Finally, we proceeded by estimating averages over 10 repetitions, using a
different random set of hash functions in each iteration.

As it can be easily observed, in most of the cases, motes producing outlying values
can be successfully pinpointed by our framework with average precision and recall
> 80%, even when imposing a 1/8 or 1/16 reduction ratio, for similarity angles up to
20 degrees. The TACO scheme is much more accurate when asked to capture strict,
sensitive definitions of outlying values, implied by a low Φθ value. This behavior is
expected based on our formal analysis (see Figure 5.3 and Equation 5.2). We also
note that the model may slightly swerve from its expected behavior depending on the
number of near-to-threshold outliers (those falling in the areas FP , FN in Figure 5.3)
that exist in the data set. That is, for instance, the case when switching from 25 to 30
degrees in the humidity data sets of Figures 5.6 and 5.7.

5.8. EXPERIMENTS 95

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

Re
ca

ll

Similarity Angle
TumbleSize=16 support=6

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

Re
ca

ll

Smilarity Angle
 TumbleSize=20 support=6

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 15 20 25 30

Av
g.

 R
ec

al
l

Similarity Angle
TumbleSize=32 support=6

1/2 Reduction

1/4 Reduction

1/8 Reduction

1/16 Reduction

(b) Weather Recall: Temperature, Humidity and Solar Irradiance vs Sim-
ilarity Angle

Figure 5.7: Average Precision, Recall in Weather Data Set (cont)

Obviously, an improvement in the final results may arise by increasing the length d
of each bitmap (i.e., consider more moderate reduction ratios, Figure 5.4). Another way
to improve performance is to utilize the boosting process discussed in Section 5.4.6.
All previous experiments were ran using a single boosting group during the comparison
procedure. Figure 5.8 depicts the improvement in the values of precision and recall for
the Intel humidity and temperature datasets as more groups are considered and for a va-
riety of tumble sizes (the trends are similar for the other data sets, which are omitted).
Points in Figure 5.8 corresponding to the same tumble size W use bitmaps of the same
length, so that the reduction ratio is 1/8 (Intel.Humidity) and 1/16 (Intel.Temperature),
but differ in the number of groups utilized during the similarity estimation. It can easily
be deduced that using 4 boosting groups in the humidity dataset is the optimal solution
for all the cited tumble sizes, while the 4 group line tends to ascend by increasing the
W parameter. This comes as no surprise since the selection of higher W values results
in larger (but still 1/8 reduced) bitmaps, which in turn equip the overall comparison

96 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

16 20 24 28 32

Av
g.

Pr
ec

isi
on

Tumble Size
Reduction=1/8, support=4, Φθ=25

1 Boosting Group

4 Boosting Groups

8 Boosting Groups

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

16 20 24 28 32

Av
g.

Pr
ec

isi
on

TumbleSize
Reduction = 1/8, support=4, Φθ=30

1 Boosting Group

4 Boosting Groups

8 Boosting Groups

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

16 20 24 28 32

Av
g.

Pr
ec

isi
on

Tumble Size
Reduction=1/16, support=4, Φθ=30

1 Boosting Group

2 Boosting Groups

4 Boosting Groups

(a) Boosting Precision: Intel.Humidity (Φθ=25 & 30 degrees for 1/8
Reduction) and Intel.Temperature (Φθ=30 degrees for 1/16 Reduction)
vs Tumble Size

Figure 5.8: Boosting Application on Intel datasets

model with more accurate submodels. Moreover, notice that using 8 groups may pro-
vide worse results since the number of bits per group becomes smaller, thus resulting
in submodels that are prone to produce low quality similarity estimations. For the same
reason, in the Intel temperature dataset shown in Figure 5.8, where the imposed reduc-
tion ratio is 1/16, employing 2 boosting groups provides better results compared to the
4 boosting group case. In the latter plot, deviations upon switching between tumble
sizes may appear to be steeper (i.e. for tumble size 24), since the 1/16 reduction causes
larger discontinuities when transiting from the continuous space to the hamming cube.
Notice that in the Intel temperature dataset, the application of boosting has a marginal
effect on the average precision (¡+4%). On the contrary, average recall values are sky-
rocketed with the improvement reaching a 30% percentage.

Taking one step further we extracted 95% confidence intervals for each tumble
across multiple data sets. We omit the corresponding graphs, however, we note TACO

5.8. EXPERIMENTS 97

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

16 20 24 28 32

Av
g.

Re
ca

ll

Tumble Size
Reduction=1/8, support=4, Φθ=25

1 Boosting Group
4 Boosting Groups
8 Boosting Groups

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

16 20 24 28 32

Av
g.

 R
ec

al
l

TumbleSize
Reduction=1/8, support=4, Φθ=30

1 Boosting Group

4 Boosting Groups

8 Boosting Groups

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

16 20 24 28 32

Av
g.

Re
ca

ll

Tumble Size
Reduction=1/16, support=4, Φθ=30

1 Boosting Group
2 Boosting Groups
4 Boosting Groups

(b) Boosting Recall: Intel.Humidity (Φθ=25 & 30 degrees for 1/8 Re-
duction) and Intel.Temperature (Φθ=30 degrees for 1/16 Reduction) vs
Tumble Size

Figure 5.8: Boosting Application on Intel datasets (cont.)

exhibits little deviations (±0.04) from its average behavior in a tumble in all of the data
sets.

5.8.3 Performance Evaluation Using TOSSIM

Due to limitations in the simulation environment of TOSSIM, we restricted our experi-
mental evaluation to the Intel Lab data set. We used the default TOSH DATA LENGTH
value set to 29 bytes and applied 1/4, 1/8 and 1/16 reduction ratios to the original binary
representation of tumbles containing W=16 values each.

We measured the performance of our TACO framework against two alternative ap-
proaches. The first approach, termed as NonTACO, performed the whole intra- and
inter-cluster communication procedure using the initial value vectors of motes ”as is”.
In the TACO and NonTACO approaches, motes producing outlying values were iden-
tified in-network, following precalculated TSP paths, and were subsequently sent to

98 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

TACO 1/16
Reduction

TACO 1/8
Reduction

TACO 1/4
Reduction

NonTACO SelectStar To
ta

l B
it

s
Tr

an
sm

it
te

d
 P

er
 T

um
bl

e Min
Average
Max

Figure 5.9: Total Bits Transmitted per ap-
proach

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

ToCluster
head

Retransmis
sions

Inter cluster ToBS

A
vg

. B
it

s
Tr

an
sm

it
te

d
 P

er
 T

u
m

b
le

TACO 1/16 Reduction
TACO 1/8 Reduction
TACO 1/4 Reduction
NonTACO
SelectStar

Figure 5.10: Transmitted bits categoriza-
tion

the base station by the last clusterhead in each path. In the third approach, termed as
SelectStar, motes transmitted original value vectors to their clusterheads and, omitting
the intercluster communication phase, clusterheads forwarded these values as well as
their own vector to the base station.

Besides simply presenting results involving these three approaches (TACO, Non-
TACO and SelectStar), we further seek to analyze their bandwidth consumption during
the different phases of our framework. This analysis yields some interesting compar-
isons. For example, the number of bits transmitted during the intracluster phase of
NonTACO provide a lower bound for the bandwidth consumption that a simple contin-
uous aggregate query (such as MAX, MIN or SUM query) would require under TAG
for all epochs, as this quantity: (a) Simply corresponds to transmitting the data obser-
vations of each sensor to one-hop neighbors (i.e., the clusterheads), and (b) Does not
contain bandwidth required for the transmission of data from the clusterheads to the
base station. Thus, if TACO requires fewer transmitted bits than the intracluster phase
of NonTACO, then it also requires less bandwidth than a continuous aggregate query.

Note that in our setup for TACO, during the first tumble, the base station broadcasts
a message encapsulating the parameters (W,d, seed etc) of the query. The overhead of
transmitting these values is included in the presented graphs.

Figure 5.9 depicts the average, maximum and minimum number of total bits trans-
mitted in the network in a tumble for the TACO (with different reduction ratios), Non-
TACO and SelectStar approaches. Comparing, for instance, the performance of the
middle case of 1/8 Reduction and the NonTACO executions, we observe that, in terms
of total transmitted bits the reduction achieved by TACO is on the average 1/9 per tum-
ble, thus exceeding the imposed 1/8 reduction ratio. The same observation holds for the
other two reduction ratios. This comes as no surprise, since message collisions entail-
ing retransmissions are more frequent with increased message sizes used in NonTACO,

5.8. EXPERIMENTS 99

0,00E+00

2,00E+03

4,00E+03

6,00E+03

8,00E+03

1,00E+04

1,20E+04

1,40E+04

1,60E+04

0

1

2

3

4

5

6

7

8

9

1
0

1

1

1
2

1

3

1
4

1

5

1
6

1

7

1
8

1

9

2
0

2

1

2
2

2

3

2
4

2

5

2
6

2

7

2
8

2

9

3
0

3

1

3
2

3

3

3
4

3

5

3
6

3

7

3
8

3

9

4
0

4

1

4
2

4

3

4
4

4

5

4
6

4

7

MoteID

Power Consumption (in mJ) NonTACO
TACO 1/4 Reduction

Figure 5.11: Power Consumption vs. MoteID

0

100

200

300

400

500

TACO 1/4
Reduction

NonTACO SelectStar

Epoch

Figure 5.12: Average Lifetime

augmenting the total number of bits transmitted. Furthermore, comparing these results
with the SelectStar approach exhibits the efficiency of the proposed inter-cluster com-
munication phase for in-network outlier identification. The achieved reduction ratio of
TACO 1/8 Reduction, when compared to the SelectStar approach is, on average 1/12,
with a maximum value of 1/15. This validates the expected benefit derived by TACO.

Figure 5.10 presents a categorization of the average number of bits transmitted in a
tumble. For each of the approaches, we categorize the transmitted bits as: (1) ToClus-
terhead: bits transmitted to clusterheads during the intra-cluster communication phase;
(2) Intercluster: bits transmitted in the network during the inter-cluster communication
phase (applicable only for TACO and NonTACO); (3) ToBasestation: bits transmit-
ted from clusterheads towards the base station; (4) Retransmissions: additional bits

100 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

resulting from message retransmission due to lossy communication channels or col-
lisions. In Figure 5.10, please notice that the bits classified as Intercluster are always
less than those in the ToClusterhead category. Moreover, the total bits of TACO (shown
in Figure 5.9), are actually less than what NonTACO requires in its intracluster phase
(Figure 5.10), even without including the corresponding bits involving retransmissions
during this phase (73% of its total retransmission bits). Based on our earlier discussion,
this implies that TACO under collisions and retransmissions is able to identify outlier
readings at a fraction than what even a simple aggregate query would require.

Also, we used PowerTOSSIM [108] to acquire power measurements yielded during
simulation execution. Figure 5.11 provides an additional quantitative representation of
the energy savings provided by our framework, presenting the power consumption in
motes for the TACO using a reduction ratio of 1/4, and NonTACO approaches (motes
0-3 in the Figure are clusterheads). To keep the graph readable we omit the Select-
Star approach, which had a much larger energy drain. Overall, the TACO application
reduces the power consumption up to a factor of 1/2.7 compared to the NonTACO ap-
proach. The difference between the selected reduction ratio (1/4) and the correspond-
ing power consumption ratio (1/2.7) stems from the fact that motes need to periodically
turn on/off their radio to check whether they are recipients of any transmission attempts.
This fact mainly affects the TACO implementation since in the other two approaches,
where more bits are delivered in the network, the amount of time that the radio re-
mains turned on is indeed devoted to message reception. We leave the development
of a more efficient transmission/reception schedule, tailored for our TACO scheme as
future work.

As a final exhibition of the energy savings provided by our framework, in Fig-
ure 5.12 we used the previously extracted power measurements to plot the average
network lifetime for motes initialized with 5000 mJ residual energy. Network lifetime
is defined as the epoch on which the first mote in the network totally drains its en-
ergy. Obviously, network lifetime is proportional to the energy savings provided by the
TACO approach compared to the other techniques.

5.8.4 TACO vs Hierarchical Outlier Detection Techniques

In the previous sections we experimentally validated the ability of our framework to
tune the amount of transmitted data while simultaneously accurately predicting out-
liers. On the contrary, existing in-network outlier detection techniques, such as the
algorithm of [30, 111] cannot tune the amount of transmitted information. Moreover,
these algorithms lack the ability to provide guarantees since they both base their deci-
sions on partial knowledge of recent measurements received by intermediate nodes in
the hierarchy from their descendant nodes.

In this subsection, we perform a comparison to the recently proposed algorithm

5.8. EXPERIMENTS 101

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1 2 3 4

F-
M

e
a

su
re

Support
TumbleSize=16,Corr _Threshold=Cos(30)≈0.87

Robust
TACO 1/4 Reduction
TACO 1/8 Reduction
TACO 1/16 Reduction

Figure 5.13: Intel.Temperature TACO vs Robust Accu-
racy varying minSup

0,00E+00

5,00E+03

1,00E+04

1,50E+04

2,00E+04

2,50E+04

3,00E+04

3,50E+04

4,00E+04

1 2 3 4

A
vg

. B
it

s
Tr

an
sm

it
te

d
 P

er
 T

u
m

b
le

Support
TumbleSize=16, Corr _Threshold=Cos(30)≈0.87

TACO-Remaining

TACO-Intercluster

Robust

1/
4

R
ed

u
ct

io
n

1/
8

R
ed

u
ct

io
n

1/
16

 R
ed

u
ct

io
n

1/
4

R
ed

u
ct

io
n

1/
8

R
ed

u
ct

io
n

1/
16

 R
ed

u
ct

io
n

1/
4

R
ed

u
ct

io
n

1/
8

R
ed

u
ct

io
n

1/
16

 R
ed

u
ct

io
n

1/
4

R
ed

u
ct

io
n

1/
8

R
ed

u
ct

io
n

1/
16

 R
ed

u
ct

io
n

Figure 5.14: Intel.Temperature TACO vs Robust trans-
mitted bits varying minSup

of [30], which we will term as Robust. We use Robust as the most representative ex-
ample to extract comparative results related to accuracy and bandwidth consumption
since it uses an equivalent outlier definition and bases its decisions on common simi-
larity measures. As in the previous subsection, we utilized the Intel Lab data set in our
study, keeping the TACO framework configuration unchanged.

In order to achieve a fair comparison, the Robust algorithm was simulated us-
ing a tree network organization of three levels (including the base station) with a
CacheSize = 24 measurements. Note that such a configuration is a good scenario
for Robust since most of the motes that can witness each other often share common
parent nodes. Thus, the loss of witnesses as data ascend the tree organization is re-
duced. Please refer to [30] for further details.

In the evaluation, we employed the correlation coefficient-corr (see Table 5.1) as
a common similarity measure equivalent to the cosine similarity as mentioned in Sec-
tion 5.6. We chose to demonstrate results regarding the temperature measurements in

102 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

the data set. However, we note that the outcome was similar for the humidity data and
proportional for different Φcorr thresholds. Figure 5.13 depicts the accuracy of Robust
compared to TACO with different reduction ratios varying the minSup parameter. To
acquire a holistic performance view of the approaches, we computed the F-Measure

metric as F-measure=2/(1/Precision+1/Recall). Notably, TACO behaves better even
for the extreme case of 1/16 reduction, while Robust falls short up to 10%. To com-
plete the picture, Figure 5.14 shows the average bits transmitted by motes in the two
different settings. Notice that the stacked bars in the TACO approach form the total
number of transmitted bits which comprises the bits devoted to intercluster commu-
nication (TACO-Intercluster) and those termed as TACO-remaining for the remainder.
The increment of the minSup parameter in the graph correspondingly causes an in-
crement in the TACO-Intercluster bits as more motes do not manage to find adequate
support in their cluster and subsequently participate in the intercluster communication
phase. TACO ensures less bandwidth consumption with a ratio varying from 1/2.6 for
a reduction ratio of 1/4, and up to 1/7.8 for 1/16 reduction.

5.8.5 Bucket Node Exploitation

In order to better perceive the benefits derived from bucket node introduction, Table 5.3
summarizes the basic features ascribed to network clusters for different numbers B
of bucket nodes. The table provides measurements regarding the average number of
comparisons along with the average number of messages resulting from multi-hashed
bitmaps. Moreover, it presents the average number of bitmaps received per bucket for
different cluster sizes and Φθ thresholds. Focusing on the average number of compar-
isons per tumble (Comparisons in the Table), this significantly decreases as new bucket
nodes are introduced in the cluster. From this point of view, we have achieved our goal
since, as mentioned in Section 5.5.1, not only bucket nodes do alleviate the clusterhead
from comparison load, but also the hash key space distribution amongst them preserves
the redundant comparisons.

Studying the number of multi-hash messages (Multihash Messages in the Table)
and the number of bitmaps received per bucket (Bitmaps Per Bucket) a trade-off seems
to appear. The first column regards a message transmission cost mainly charged to the
regular motes in a cluster, while the second involves load distribution between buck-
ets. As new bucket nodes are adopted in the cluster, the Multihash Messages increases
with a simultaneous decrease in Bitmaps Per Bucket. In other words, the introduction
of more bucket nodes causes a shift in the energy consumption from clusterhead and
bucket nodes to regular cluster motes. Achieving appropriate balance, aids in maintain-
ing uniform energy consumption in the whole cluster, which in turn leads to infrequent
network reorganization.

5.8. EXPERIMENTS 103

Φθ
10 20

Cluster Buckets Comparisons Multihash Bitmaps Comparisons Multihash Bitmaps
Size Messages Per Bucket Messages Per Bucket

1 66.00 0 12 66 0 12
12 2 38.08 0.90 6.45 40.92 1.36 6.68

4 24.55 7.71 3.65 30.95 8.88 4.08
1 276.00 0 24 276 0 24

24 2 158.06 1.62 12.81 171.80 2.76 13.38
4 101.10 14.97 7.27 128.63 17.61 8.15
1 630 0 36 630 0 36

36 2 363.64 2.66 19.33 394.97 4.30 20.15
4 230.73 22.88 10.88 291.14 26.28 12.19
1 1128 0 48 1128 0 48

48 2 640.10 3.14 25.57 710.95 5.85 26.93
4 412.76 30.17 14.49 518.57 34.64 16.21

Table 5.3: The effect of Bucket Nodes Introduction (W=16, d=128)

5.8.6 Message Suppression

Eventually, we study the effect of the message suppression strategy, introduced in Sec-
tion 5.7, with respect to the accuracy it attributes to TACO as well as the reduction
it yields on the amount of communicated data within the sensor network setting. Fig-
ure 5.15 plots corresponding experimental results for different reduction ratios utilizing
the Intel Lab Humidity data as a representative example since the other datasets exhibit
analogous behavior. We measured TACO’s accuracy in terms of the F-measure met-
ric (Section 5.8.4) and computed the total number of transmitted messages throughout
the network operation varying the f value (which is expressed as a percentage of the
respective ΦDh in the Figure) and the posed Φθ threshold. Particularly, we choose
to present results where we set the tumble size equal to 32 since, given the default
TOSH DATA LENGTH value of 29 bytes, the aforementioned size entails that in a
single tumble motes are required to transmit 3 messages for 1/2 reduction, 2 messages
for 1/4 reduction and a single message otherwise during both the intra- and inter-cluster
communication. Consequently, we are able to acquire a well formed picture of the
bandwidth consumption preservation provided under different circumstances.

Based on Figure 5.15(a), it can be observed that the accuracy of the framework
under message suppression mostly remains unaffected for reduction ratios up to 1/8.
On the other hand, in Figure 5.15(b) the decrease of message transmissions reaches
a factor of 1/2, and 1/11 for Φθ =10 and 30 degrees, respectively. The sign NMS in
the horizontal axis of the graphs expresses the case where No Message Suppression
is applied. Moreover, notice that due to the fact that f is declared as a percentage of
ΦDh the greater the angle threshold, the larger the number of suppressed messages.
To sum up the above discussion, we mention that message suppression is proven to
equip TACO with significantly increased communication savings without precluding

104 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

NMS 0 0,2 0,4 0,6 0,8 1
F-

M
ea

su
re

f % of ΦDh

Intel Humidity: w=32, support=4, Φθ=10

TACO 1/2 Reduction
TACO 1/4 Reduction
TACO 1/8 Reduction
TACO 1/16 Reduction

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

NMS 0 0,2 0,4 0,6 0,8 1

F-
M

ea
su

re

f % of ΦDh
Intel Humidity: w=32, support=4, Φθ=30

TACO 1/2 Reduction
TACO 1/4 Reduction
TACO 1/8 Reduction
TACO 1/16 Reduction

(a) TACO’s Accuracy under Message Suppression

0

500

1000

1500

2000

2500

NMS 0 0,2 0,4 0,6 0,8 1 To
ta

l T
ra

ns
m

it
te

d
M

es
sa

ge
s

f % of ΦDh
Intel Humidity: w=32, support=4, Φθ=10

TACO 1/2 Reduction
TACO 1/4 Reduction
TACO 1/8 Reduction
TACO 1/16 Reduction

0

500

1000

1500

2000

NMS 0 0,2 0,4 0,6 0,8 1 To
ta

l T
ra

ns
m

it
te

d
M

es
sa

ge
s

f % of ΦDh
Intel Humidity: w=32, support=4, Φθ=30

TACO 1/2 Reduction
TACO 1/4 Reduction
TACO 1/8 Reduction
TACO 1/16 Reduction

(b) TACO’s Number of Transmitted Messages under Message Suppres-
sion

Figure 5.15: Message Suppression on Intel Humidity datasets

the accurate outlier identification as it does not exhibit high deviations from its NMS

behavior.

5.9. SYNOPSIS 105

5.9 Synopsis

In this chapter we presented TACO, a framework for detecting outliers in wireless sen-
sor networks. Our techniques exploit locality sensitive hashing as a means to compress
individual sensor readings and use a novel second level hashing mechanism to achieve
intracluster comparison pruning and load balancing. TACO is largely parameterizable,
as it bases its operation on a small set of intuitive application defined parameters: (i)
the length of the LSH bitmaps (d), which controls the level of desired reduction; (ii)
the number of recent measurements that should be taken into account when perform-
ing the similarity test (W), which can be fine-tuned depending on the application’s
desire to put more or less emphasis to past values; (iii) the desired similarity thresh-
old (Φ); and (iv) the required level of support for non-outliers. Given the fact that
TACO is not restricted to a monolithic definition of an outlier but, instead, it supports
a number of intuitive similarity tests, the application can specialize and fine-tune the
outlier detection process by choosing appropriate values for these parameters. We have
also presented novel extensions to the basic TACO scheme that boost the accuracy of
computing outliers. Our framework processes outliers in-network, using a novel in-
tercluster communication phase. Our experiments demonstrated that our framework
can reliably identify outlier readings using a fraction of the bandwidth and energy that
would otherwise be required, resulting in significantly prolonged network lifetime.

In the next chapter we leverage properties of the similarity measures utilized for
outlier detection in order to detect movement pattern alterations and extract semantic
trajectories over spatiotemporal data streams of moving objects. In particular, based
on the observation that measures like the correlation coefficient or the (equivalent) co-
sine similarity depend on the trends of the encapsulated data rather than their absolute
values, we employ the RV− coefficient measure which is a generalization of the cor-
relation coefficient in order to detect homogeneous portions in the motion of monitored
objects which are formed by identifying the division points where the motion pattern
is altered. We first develop a centralized framework and subsequently echibit how our
framework can be modified so as to function in a distributed manner. Unfortunately,
LSH based data reduction cannot perform in that case for efficient distributed mon-
itoring. However, we again manage to invent smart ways to reduce the amount of
transmitted data controlling the accuracy of the semantic trajectory extraction process.

106 CHAPTER 5. TUNABLE APPROXIMATE COMPUTATION OF OUTLIERS

Chapter 6

Semantic Trajectory Extraction
over Streaming Movement Data

6.1 Introduction

With the growth of location-based tracking technology like GPS, RFID and GSM net-
works, an enormous amount of trajectory data are generated from various real-life ap-
plications, including traffic management, urban planning and geo-social networks. A
lot of studies have already been established on trajectories, ranging from data man-
agement to data analysis. The focus of trajectory data management includes building
data models, query languages and implementation aspects, such as efficient indexing,
query processing, and optimization techniques [49][90]. The analysis aims at trajec-
tory data mining including issues like classification, clustering, outlier detection, as
well as trajectory pattern discovery (e.g. sequential, periodic and convoy patterns)
[41][60][74][77].

Recently, semantic trajectory extraction has attracted the research interest [1, 8,
110, 115, 117, 118]. The focus of semantic trajectory extraction is initially on the
extraction of meaningful trajectories from the raw positioning data like GPS feeds.
Moreover, sensory elements placed on vehicles can provide additional lower-scale in-
formation about their movement. Semantic trajectories manage to encompass both
objects’ spatiotemporal movement characteristics (at a certain level of abstraction) as
well as useful information regarding objects’ movement patterns (e.g dwelling, speed-
ing, tailgating) and social activities (see Fig. 6.1) assigned to different time intervals
throughout their lifespan. Current methods of such kind of trajectory extraction are
mainly offline [1][8][110][115][117][118], which is not enough for modern, real life
applications, because positioning data of moving objects are continuously generated

107

108 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

home office market home

bus metro walk

<x,y,t> streaming movement data

Figure 6.1: From streaming movement data to semantic trajectory

as streams and corresponding querying operations often demand result delivery in an
online and continuous fashion.

Motivating Examples. Online semantic trajectory extraction can be useful in many
traffic monitoring scenarios where authorities are interested in identifying apart from
recent (i.e., within a restricted time window) objects’ trajectory representation, the be-
havior of the drivers by posing queries of the form: “Report every τ secs the movement

and driving behavior of the objects within area A during the last T minutes”. In that,
authorities are able to continuously diagnosing streets where the density of vehicles
whose drivers tend to have aggressive (speeding, tailgating, driving at the edges of the
lanes etc.) behavior has recently become high, thus enabling suitable placement and
periodic rearrangement of traffic wardens and patrol cars. As another example, state-of-
the-art navigation services (http://world.waze.com/) provide the potential for combining
traditional routing functionality with social networking facilities. Online semantic tra-
jectory extraction allows users to acquire a compact picture of the movement and the
social activities of interconnected friends around their moving area.

In this chapter, we introduce SeTraStream [116], a real-time platform that can pro-
gressively process raw mobility data arriving within a restricted time window and com-
pute semantic-aware trajectories online. Before that, a number of data preparation steps
need to be considered so as to render data easy to handle and ready to reveal profound
movement patterns. The talk regards data cleaning and compression that precede the
online segmentation and semantic trajectory extraction procedures. Data cleaning is
dealing with trajectory errors, including systematic errors (outlier removal) and ran-
dom errors (smooth noise) [80][117]. Compression considers data reduction because
trajectory data grow rapidly and lack of compression sooner or later leads to exceeding
system capacity [64][82]. Segmentation is used for dividing trajectories into episodes
where each episode is in some sense homogeneous (e.g. sharing similar velocity, direc-
tion etc.) [8] and thus expresses unchanged movement pattern. Semantic computation
can further extract high-level trajectory concepts like stops/moves [110], and even pro-

6.2. PRELIMINARIES 109

vide additional tagging support like the activity for stops (e.g. home, office, shopping)
and the transportation mode (e.g. metro, bus, walking) for moves [1][115][117][127].

Challenges. It is non-trivial to establish a real-time semantic trajectory extraction plat-
form. There exist new technical challenges compared to the existing offline solutions:
(1) Efficient Computation: Large amounts of movement data are generated continu-
ously, therefore we need to come up with more efficient algorithms which can handle
different levels of trajectories in an acceptable time – including all data processing as-
pects like data cleaning, compression, segmentation, and semantic tagging; (2) Suitable

Trajectory Segmentation Decision Making: Algorithms in offline trajectory extraction
typically tune a lot of thresholds placed on movement features (like acceleration, direc-

tion alteration, stop duration etc.) to find their most suitable values, sometimes in a per
object fashion. However, in the real-time context the movement attribute distribution
may tremendously vary over time and continuous parameter tuning is prohibitive for
real-time semantic trajectory extraction. Thus, suitable techniques should not rely on
many predefined thresholds on certain movement features but instead consider pattern
alterations during the trajectory computation process. (3) Semantic Trajectory Tagging:

After trajectory segmentation, the outcomes should provide the potentials for semantic
tags to be explored, e.g. characterization of the activity (shopping, work) or means of
movement that is taking place in episodes (e.g. car, metro, bus in Fig. 6.1).

The rest of the chapter proceeds as follows. Section 6.2 describes the preliminar-
ies for semantic trajectory extraction in SeTraStream, while in section 6.3 we present
the data preparation procedures regarding incoming data cleaning and compression.
In Section 6.4 we present SeTraStream’s online segmentation algorithms and in Sec-
tion 6.5 we experimentally evaluate our techniques. Eventually, section 6.6 includes
extensions of the framework to distributed streaming settings.

6.2 Preliminaries

6.2.1 Data and Semantic Trajectory Models

In our setting, a central server continuously collects the status updates of moving ob-
jects that move inside an area of interest – monitoring area of moving objects. First,
such updates involving an object Oi contain spatiotemporal 〈x, y, t〉 points forming its
“Raw Location Stream”.

Definition 6.2.1 (Raw Location Stream). The continuous recording of spatiotemporal

points that update the status of a moving object Oi, i.e. 〈Q`s1 , Q`s2 , . . . , Q`sn 〉, where

Q`si = 〈x, y, t〉 is a tuple including moving object’s Oi, position 〈x, y〉 and timestamp

t.

By means of the raw location streams, we can derive information of movement

110 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

features such as acceleration, speed, direction etc., which make up a “Location Stream

Feature Vector” (Q`f). Moreover, depending on the application, updates include ad-
ditional attributes such as heading, steering wheel activity, lane position, distance
to headaway vehicle (e.g to assess tailgating), displacement and so on. These fea-
tures formulate a “Complementary Feature Vector” (Qcf). Consequently, the two
types of feature vectors combined together are forming the “Movement Feature Vec-

tor” (Q = 〈Q`f , Qcf 〉) of d dimension describing d attributes of Oi’s movement at a
specific timestamp.

Definition 6.2.2 (Movement Feature Vector). The movement attributes of object Oi at

timestamp t can be described by a d-dimensional vector that is the concatenation of the

location stream feature vector and the complementary feature vectorQ = 〈Q`f , Qcf 〉.
– Location Stream Feature Vector (Q`f): The movement features of object Oi that can

be derived from the raw location stream tuple Q`s.

– Complementary Feature Vector (Qcf): The movement features that cannot be derived

from the location stream but are explicitly included in Oi’s status updates.

To provide better understanding and mobility data abstraction, in [110][117] the
concept of semantic trajectories is introduced, where the trajectory is thought of as a
sequence of meaningful episodes (e.g. stop, move, and other self-contained and self-
correlated trajectory portions).

Definition 6.2.3 (Semantic Movement). A semantic movement or trajectory consists

of a sequence of meaningful trajectory units, called “episodes”, i.e. Tsem = {efirst,
. . . , elast}.
– An episode (e) groups a subsequence of the location stream (a number of consecutive

〈x, y, t〉 points) having similar movement features.

– From a semantic data compression point of view, an episode stores the subsequence’s

temporal duration as well as its spatial extent ei = (timefrom, timeto, geometrybound,

tag).

The geometrybound is the geometric abstraction of the episode, e.g. the bounding
box of a stop area or the shape trace of roads that the moving object has followed. The
term tag in the last part of the previous definition refers to the semantics of the episode,
i.e. characterization of the activity or means of movement that is taking place in an
episode (see Fig. 1).

6.2.2 Window Specifications

In our context, the time window size T expresses the most recent portion of semantic
trajectories the server needs to be informed about. An additional parameter τ specifies
a time interval in which client side devices, installed on moving objects, are required

6.2. PRELIMINARIES 111

…

ON

T

O8

…

Oi

Oi …

Buffer of incoming batches
of objects (arriving every τ)

Candidate
Div PointDiv Point

O1

O2

Div Point

e1 e2
W1l

W2l

W3l

Wr

O5

BB’
1. Filter & smoothing
2. Compression
3. Extract Movement

Feature Vectors

Figure 6.2: The SeTraStream Framework

to collect and report batches of their time ordered status updates [40]. Thus, Tτ batches
are included in the window. Obviously, posed prerequisites are: 1) τ � T and 2) T
mod τ = 0. As the window slides, for each monitored object Oi, the most aged batch
expires and a newly received one is appended to it. The size of τ may vary from a few
seconds to minutes depending on the application’s sampling frequency. Small τ val-
ues enable fine-tuned episode extend determination with the make-weight of increased
processing costs, while larger τ values reduce the processing load by increasing the
granules that are assigned to episodes.

6.2.3 SeTraStream Overview

Having presented the primitive concepts utilized by our framework, in this subsection
we outline SeTraStream’s general function. Details will be provided in the upcom-
ing sections. The whole process is depicted in Fig. 6.2. Upon the receipt of a batch
containing the status updates including Q`s, Qcf vectors at different timestamps in τ ,
a cleaning and smoothing technique is applied on it (Step 1 on the right part of the
figure). Consequently, a novel compression method (Step 2) is applied on the batch
considering both Q`s, Qcf characteristics while performing the load shedding. Finally,
at a third step Q`f , Qcf feature vectors are extracted, a corresponding matrix is formed
and the batch is buffered until it is processed at the SeTraStream’s segmentation stage.
During the segmentation stage (left part of Fig. 6.2), a previously buffered batch is
dequeued and compared with other batches’ feature matrices in Oi’s window. Se-
TraStream seeks both for short and long term changes in Oi’s movement pattern, and
identifies an episode whenever feature matrices are found to be dissimilar based on the
RV-Coefficient (to be defined later) and a specified division threshold σ.

112 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

Symbol Description

N Number of monitored objects
T , τ Window size and batch interval
d Number of movement features
Oi The i-th monitored object id
Bi The i-th batch from a candidate div. point
Q`s Tuple including 〈x, y, t〉 triplet of an objects’ raw location stream
Q`f Feature vector derived from the raw location stream at t
Qcf Complementary feature vector at timestamp t

δoutlier, δsmooth, σ Filtering, smoothing and segmentation thresholds respectively
res The residual between the smoothed and the true value

sed, scc Synchronous Euclidean Distance and Correlation Coefficient
W`,Wr A left and right workpiece respectively
ei The i-th episode in an object’s window

Table 6.1: Notation of Chapter 6

6.3 Online Data Preparation

As already described, arriving batches involving monitored objects contain their raw
location stream, as well as complementary feature vectors. In this section, we dis-
cuss the initial steps of data preparation before proceeding to episode determination
(i.e. trajectory segmentation). The talk regards three steps depicted in the right part of
Fig. 6.2: (1) an online cleaning step that deals with noisy tuples, (2) an online compres-

sion stage that manages to reduce both the available memory usage and the processing
cost in computing trajectories, and (3) extracting movement feature vectors, including
both the location stream features and complementary features. Table 6.1 summarizes
the symbology utilized in the current and the upcoming sections as well.

6.3.1 Online Cleaning

The main focus of trajectory data cleaning is to remove GPS errors. Jun et al. [61] sum-
marize two types of GPS errors: systematic errors (i.e. the totally different GPS posi-
tioning from the actual location which is caused by low number of satellites in view,
Horizontal Dilution Of Position HDOP etc.) and random errors (i.e. the small errors
up to ±15 meters which can be caused by the satellite orbit, clock or receiver issues).
These systematic errors are also named “outliers”, where researchers usually design
filtering methods to remove them; whilst random errors are small distortions from the
true values and their influences can be decreased by smoothing methods. Many offline
GPS data cleaning works can be found such as [61][101][117].

In the context of streaming data, online filtering & smoothing of streaming tuples
has become a hot topic [31][43][44][62][71]. Different from the focus of prior works
on data accuracy and distribution estimation, our primary concern of cleaning such

6.3. ONLINE DATA PREPARATION 113

streaming movement data is refining the data points that have substantial distortion of
movement features for computing semantic trajectories1.

For efficient data cleaning, we need to combine online filtering and online smooth-

ing in a single loop. When a new batch B regarding object Oi arrives (right part of
Fig.6.2), we do the following cleaning steps:

1. Build a kernel based smoothing model: (x̂, ŷ) =
∑
i k(ti)(xti ,yti)∑

i k(ti)
where k(t) is

a function with the property
∫ |B|

0
k(t)dt = 1. The kernel function describes the

weight distribution, with most of the weight in the area near the point. In our

experiments, as in [101], we apply the Gaussian kernel k(ti) = e−
(ti−t)

2

2ß2 , where
ß refers to the bandwidth of the kernel.

2. Calculate the residual between the model prediction and the true value 〈x, y〉 of
the examined point Q`sp , i.e. res =

√
(x̂− x)2 + (ŷ − y)2.

3. By using a speed limit vlimit and the speed vQ`sp−1
at the previous point Q`sp−1,

respectively compute the outlier bound (δoutlier = vlimit × (tQ`sp − tQ`sp−1
)) and

the smooth bound (δsmooth = vQ`sp−1
× (tQ`sp − tQ`sp−1

)× 120%2).

4. Filter out the point if the residual is more than the outlier bound, i.e. res >

δoutlier, or replace the location of the point 〈x, y〉 with the smoothed value 〈x̂, ŷ〉
if the residual is between the outlier bound and the smooth bound, i.e. δsmooth <
res < δoutlier. Otherwise, we keep the original 〈x, y〉 of the point.

This cleaning method has taken both advantages of the distance based outlier re-
moval and the local-weighted kernel smoothing method with linear memory require-
ments of O(|B|), where |B| is the size of a batch.

6.3.2 Online Compression

A primary concern when operating in a streaming setting regards the load shedding
with respect to incoming tuples. In the context of semantic trajectory extraction, this
happens both for limiting the available buffer usage as well as to reduce the process-
ing cost [10][64][82][95]. In our approach, as both Definitions 6.2.2, 6.2.3 imply, the
approximation quality of the mere spatiotemporal trajectories is not our only concern.
Semantic trajectories will be extracted based on additional features other than those
derived from spatiotemporal 〈x, y, t〉 points. On the other hand, if we overlook the spa-
tiotemporal trajectory approximation quality, the portion of the movement features that
rely on the pure location stream will later be uncontrollably distorted. To cope with the

1Qcf values are not examined as the micro-sensory devices of vehicles usually possess self-calibrating
capabilities.

2Here, we increase the smooth bound by 20% of the location prediction provided by the speed of the
previous point.

114 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

previous requirements, we propose a method and define a significance score suitable to
serve our purposes.

Assume that a batch regarding object Oi is processed (step. 2 at right part of
Fig.6.2) and (Q`sp−1, Q

`s
p) is the last examined pair of points in it. When a new point

Q`sp+1 is inspected, we first obtain the significance of Q`sp from a spatiotemporal view-
point by fostering the Synchronous Euclidean Distance, defined as [82][95]:

sed(Q`sp , Q
`s
p−1, Q

`s
p+1) =

√
(xQ′`sp − xQ`sp)2 + (yQ′`sp − yQ`sp)2

with xQ′`sp = xQ`sp−1
+ vx

Q`sp−1Q
`s
p+1
· (tQ`sp − tQ`sp−1

) and yQ′`sp = yQ`sp−1
+ vy

Q`sp−1Q
`s
p+1

·
(tQ`sp − tQ`sp−1

) while vx, vy refer to the velocity vector (please refer to [95] for further
details).

The above measure is also employed in the sampling based approach of [95]. Nev-
ertheless, sed constitutes an absolute number that lacks the ability to quantify the par-
ticular significance of a point with respect to other spatiotemporal points within the
current batch. In order to appropriately derive the aforementioned significance quantifi-
cation, in SeTraStream’s compression scheme we normalize sed and define the relative
spatiotemporal significance SigSP :

SigSP (Q`sp) =
sed(Q`sp , Q

`s
p−1, Q

`s
p+1)

maxsed
(6.1)

with 0 ≤ SigSP (Q`sp) ≤ 1. The denominator maxsed denotes the current maximum
sed of points in the batch. Obviously, increased SigSP (Q`sp) estimations represent
points of higher spatiotemporal significance.

Carefully inspecting sed’s formula, we can conceive that the intuition behind its
definition is to measure the amount of distortion that can be caused by pruning the spa-
tiotemporal point Q`sp . That is, having omitted Q`sp we could virtually infer the respec-
tive data point at timepoint tQ`sp using the preceding and succeeding ones (Q`sp−1, Q

`s
p+1).

And calculating Q′`sp , sed(Q`sp , Q
`s
p−1, Q

`s
p+1) measures the incorporated distortion.

Thus, as regards the complementary feature vectors of Oi we choose to base the
measure of their significance on the Correlation Coefficient (corr) metric. First, fos-
tering an attitude similar to that in sed’s calculation as explained in the previous para-
graph, we estimate the value at the i-th position of vectorQ′cfp as: [Q′cfp]i = [Qcfp−1]i+
[Qcfp+1]i−[Qcfp−1]i

t
Q
cf
p+1

−t
Q
cf
p−1

(tQcfp − tQcfp−1
). Then, based on corr we define the Synchronized Cor-

relation Coefficient (scc) between (Q′cfp , Qcfp) of complementary feature vectors:

scc(Q′cfp , Qcfp) =
E(Q′cfp Qcfp)− E(Q′cfp)E(Qcfp)√

(E((Q′cfp)2)− E2(Q′cfp))(E((Qcfp)2)− E2(Qcfp))
(6.2)

6.4. SEMANTIC TRAJECTORY EXTRACTION 115

where E() refers to the mean and −1 ≤ scc(Q′cfp , Qcfp) ≤ 1.

The choice of scc is motivated by the fact that, as we pointed out in Chapter 5, its
stem, corr, possesses the ability to indicate the similarity of the trends that are profound
in the examined vectors rather than relying on their absolute values [31][43][44][71].
Hence, it provides an appropriate way to identify (dis)similar patterns in the comple-
mentary vectors and can be generalized in order to detect similar patterns between
movement feature vectors in their entirety. Values of scc that are close to -1 exhibit
high dissimilarity between (Q′cfp , Qcfp), indicating that omitting Qcfp results in higher
pattern distortion. Calculating 1 − scc enables higher measurements to account for
more dissimilar patterns and taking one step further, min-max normalization on 1−scc
allows (dis)similarity values lie within [0, 1]. Thus, we eventually compute the relative
significance of the complementary feature vector:

SigC(Qcfp) =
1− scc(Q′cfp , Qcfp)

2max{(1− scc)}
(6.3)

In the context of our compression scheme, the more dissimilar (Q′cfp , Qcfp) are,
the higher the probability to be included in the window should be. As a result, the
overall significance Sig(Qp) of Qp can be estimated by the combination of both the
location stream feature SigSP (Q`sp) and the complementary feature SigC(Qcfp). The
weight balance between them is application dependent, though we choose to treat them
equally important [74]:

Sig(Qp) =
1

2
(SigSP (Q`sp) + SigC(Qcfp)) (6.4)

Eventually, for a threshold 0 ≤ Sigthres ≤ 1, Qp remains in the batch when
Sig(Qp) ≥ Sigthres, or it is removed for compression purposes otherwise.

6.4 Semantic Trajectory Extraction

We now describe the core of SeTraStream, the online trajectory segmentation stage.
This stage comes after data cleaning and compression utilizing the extracted feature

vectors of a batch (step. 3 at right part of Fig.6.2).

6.4.1 Online Episode Determination - Trajectory Segmentation

Upon deciding the data points of a batch that are to be included in the window as
devised in the previous subsection, SeTraStream proceeds by examining episode exis-
tence in T . To start with, we assume the simple case of the current window consisting
of a couple of τ -sized batches (i.e. T = 2τ). We will henceforth refer to each part of

116 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

the window composed of a number of compressed batches as workpiece. Intuitively,
distinguishing episodes is equivalent to finding a division point, where the movement
feature vectors on its left and right sides are uncorrelated and thus correspond to dif-
ferent movement patterns. In our simple scenario, a candidate division point is placed
in the middle of the available workpieces.

Hence, we subsequently need to dictate a suitable measure in order to determine
movement pattern change existence. We already noted the particular utility of the cor-
relation coefficient on the discovery of trends [31][43][44][71], and thus (in our con-
text) patterns in the movement data. In this processing phase movement feature vectors
composing each workpiece essentially form a pair of matrices for which correlation
computation needs to be conducted. As a result, we will reside to the RV-coefficient

which constitutes a generalization of the correlation coefficient for matrix data. We
organize W` into a d × m matrix, where d is the number of movement features and
m represents a number of vectors (at different timestamps) that are the columns of
the matrix. Similarly, Wr is organized in a d × n matrix i.e. n columns exist. The
RV-Coefficient between 〈W`,Wr〉 is defined as:

RV (W`,Wr) =
Tr(W`W

′
`WrW

′
r)√

Tr([W`W ′`]
2)Tr([WrW ′r]

2)
(6.5)

where W ′` ,W
′
r refer to the transpose matrices, Tr() denotes the trace of a matrix and

0 ≤ RV ≤ 1. RV values closer to zero are indicative of uncorrelated movement
patterns.

Based on a division point threshold σ workpieces W`,Wr can be assigned to a pair
of different episodes e` = (0, T−τ, geometrybound), er = (T−τ+1, T, geometrybound)

when:
RV (W`,Wr) ≤ σ (6.6)

or to a single episode e = (0, T, geometrybound) otherwise.

An interesting observation is that the RV coefficient can be equivalently expressed
as a cosine similarity, which was set as the similarity measure - monitored function
on which we focused in Chapter 5. Let V ec be an isomorphism such that V ec :

Rd×n → Rd·n. This essentially is a linear transformation that renders the matrix of
a batch to vectors by stacking its columns. Then Tr(W`W

′
`WrW

′
r) = V ec(W`W

′
`) ·

V ec(WrW
′
r). Moreover,

√
Tr([W`W ′`]

2) = ||V ec(W`W
′
`)||, where ||.|| again refers

to the L2 norm of the formed vector and similarly for WrW
′
r. Overall, we can manage

to express the RV coefficient as a cosine similarity:

RV (W`,Wr) =
Tr(W`W

′
`WrW

′
r)√

Tr([W`W ′`]
2)Tr([WrW ′r]

2)
=

6.4. SEMANTIC TRAJECTORY EXTRACTION 117

= cos(
V ec(W`W

′
`) · V ec(WrW

′
r)

||V ec(W`W ′`)|| · ||V ec(WrW ′r)||
) (6.7)

However, as we are going to present in the distributed version of our framework in
Section 6.6, the LSH reduction scheme cannot be applied for this type of vectors.

Now, consider the general case of T covering an arbitrary number of batches. It
can easily be conceived that in a larger time window an alteration in the movement
pattern may happen: (a) instantly as a sharp change, or (b) in a more smooth manner
as time passes. As a result, upon the arrival of a new workpiece Wr, we initially
check for short-term changes in the patterns of movement. We thus place a candidate
division point between the newly received workpiece and the last of the existing ones.
Then the correlation between the movement feature vectors present in 〈W1`,Wr〉 is
computed. Notice that W1` this time possesses an additional subscript which denotes
the step of the procedure, as will be shortly explained. Similarly to our discussion
in the previous paragraphs, when RV1(W1`,Wr) is lower than the specified division
threshold, a division point exists and signals the end of the previous episode e` and
starts a new one er.

No short-term change existence triggers our algorithm to proceed by seeking long-
term dis-correlations. For this purpose, we first examine RV2(W2`,Wr) doubling the
time scale of the left workpiece by going 2τ units back in the window from the candi-
date division point. In caseRV2 does not satisfy Inequality 6.6, this procedure continu-
ous by exponentially expanding the time scale of the left workpiece in a way such that at
the i-th step of the algorithm the size of Wi` is 2(i−1)τ units and RVi(Wi`,Wr) is cal-
culated. When Inequality 6.6 is satisfied the candidate division point is a true division
point which bounds the previous episode ei = (timefrom, timeto, geometrybound)

and constitutes the onset of a new. Otherwise, Wr is rendered the current bound of the
last episode by being appended to it. If no long-term change is detected, the aforemen-
tioned expansion ceases when either the beginning of the last episode or the start of T
(in case all previous batches have been attributed to the same episode) is reached, i.e.
no data points of the penultimate episode are considered since its extend has already
been determined.

The exponential workpiece expansion fostered here is inspired by the tilted time

window definition [40] as a general and rational way to seek movement pattern changes
in different time granularities. Other expansion choices can also be applied. All of
these options are orthogonal to our approaches and do not affect the generic function of
SeTraStream. Our approach manages to effectively handle sliding windows as a slide
of τ time units results in: (1) the expiration of the initial batch of the first episode efirst
ofOi which affects its (timefrom, geometrybound) attributes and (2) the appendage of
a newly received batch that either extends the last episode elast (when no division point

118 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

is detected) or starts a new episode. The outcome of the online segmentation consists
of tuples TOi = {efirst, . . . , elast} representing objects’ semantic trajectories.

6.4.2 Time and Space Complexity

The introduced trajectory segmentation procedure, premises that a newly appended
batch will be compared with left workpieces that may be (depending on whether a
division point is detected) exponentially expanded until either the previous episode
end or the start of the window is reached. Based on this observation, the lemma below
elaborates on the complexity of the checks required during candidate division point
examination.

Lemma 6.4.1. The time complexity of SeTraStream’s online segmentation procedure,

for N monitored objects, under exponential Wi` expansion is O(Nlog2(Tτ)) per can-

didate division point.

Proof. For a single monitored object, the current window is composed of Tτ −1 batches
(excluding the one belonging to Wr). The worst case scenario appears when no previ-
ous episode exists in the window and the candidate division point is not proven to be an
actual division point. By considering the exponential workpiece expansion, compar-
isons (i.e., σ checks) may reach a number of k = min{i ∈ N∗ :

T
τ −1

2(i−1) ≥ 1} at most.
Adopting logarithms on the previous expression and summing for N objects completes
the proof.

Now, recalling the definition of the RV-Coefficient measure, it can easily be ob-
served that its computation relies on the multiplication of the bipartite matrices with
their transpose. Assume that the number of d-dimensional movement feature vectors
in a cleaned and compressed batch are n. Based on the above observation we can see
that instead of maintaining the original form of the vectors which requires O(d · n)

memory space, we can reduce the space requirements during episode determination by
computing the product of the d×n matrix of the batch with its transpose. This reduces
the space requirements to O(d2) per batch since in practice d � n. So, to check a
short-term change in the movement patterns we do not need to store the full matrices
of W1`,Wr which in this case are composed of one batch each, but only the matrix
products as described above.

However, this point may not be of particular utility since left workpieces are ex-
panded during the long-term pattern alteration checks. A natural question that arises
regards whether or not the product Wi`W

′
i` can be expressed by means of the multipli-

cation of single batch matrices, with their transposes.

Lemma 6.4.2. Wi`W
′
i` is the sum of batch matrix products with their transposes:

Wi`W
′
i` =

∑2(i−1)

j=1 BjB
′
j , where Bj is used to notate the matrix formed by the vectors

in the j-th batch (from a candidate division point to the end of Wi`).

6.5. EXPERIMENTS 119

Proof. Let Wi` = [B1|B2| · · · |B2(i−1)] the matrix of the (i-th) left workpiece during
the current division point check. Bjs are used to denote sub-matrices belonging to indi-
vidual batches that were appended to the workpiece. It is easy to see that the transpose
matrix can be produced by transposing these submatrices: W ′i` = [B′1|B′2| · · · |B′2(i−1)].
And thenWi`W

′
i` can be decomposed intoBjB′j products: Wi`W

′
i` = B1B

′
1+B2B

′
2+

· · ·+B2(i−1)B′2(i−1) =
∑2(i−1)

j=1 BjB
′
j

Thus, for each batch we only need to store a square d×dmatrix3, which determines
the space complexity of online segmentation leading to Lemma 3.

Lemma 6.4.3. During the online episode determination stage of SeTraStream, the

memory requirements per object Oi are O(d2 T
τ) and assuming N objects are being

monitored the total space utilization is O(d2N T
τ).

6.4.3 Episode Tagging

Having detected an episode ei, SeTraStream manages to specify in an online fashion
the triplet (timefrom, timeto, geometrybound) describing its spatio-temporal extend.
The final piece of information associated with an episode regards its tag as it was de-
scribed in Section 6.2.1. Given application’s context, possible tag instances form a set
of movement pattern classes and notice that the instances of the classes are predeter-
mined for the applications we consider (Section 6.1). Hence, the problem of episode
tag assignment can be smelted to a trivial classification task, where the classifier can be
trained in advance based on the collected episodes (with features like segment distance,
duration, density, avg. speed, avg. acceleration, avg. heading etc.) and the detected
episode ei can be timely classified based on the trained model and the episode fea-
tures. Suitable techniques include decision trees, boosting, SVM, neural or Bayesian
networks [36]. Additional Hidden Markov Model based trajectory annotation can be
referred to [115].

6.5 Experiments

In this section, we present our experimental results in real-time extraction of semantic
trajectories from streaming movement data.

Experimental Setup. We utilize two different datasets: Taxi Data - this dataset in-
cludes taxi trajectory data for 5 months with more than 3M GPS records, which do not
have any complementary features. We mainly use taxi data to validate compression.
It is non-trivial to get real-life on-hand dataset with both complementary features and

3We also keep the geometry bound of the batch that is utilized in the final episode geometry bound
determination as well as some additional aggregate statistics, of minor storage cost, for classification and tag
assignment in the next step.

120 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

transformed longitude X (meter)

tr
an

sf
o

rm
ed

 la
ti

tu
d

e
 Y

 (
m

et
er

)

9.7605 9.761 9.7615 9.762 9.7625

x 106

2.15

2.155

2.16

2.165

2.17

2.175

2.18

2.185

2.19
x 105 (a)

original sequence

9.7605 9.761 9.7615 9.762 9.7625

x 106

2.15

2.155

2.16

2.165

2.17

2.175

2.18

2.185

2.19
x 105 (b)

original sequence
outlier

9.7605 9.761 9.7615 9.762 9.7625

x 106

2.15

2.155

2.16

2.165

2.17

2.175

2.18

2.185

2.19
x 105 (c)

original (with outlier)
smoothed sequence

9.761 9.7612 9.7614 9.7616 9.7618

x 106

2.16

2.161

2.162

2.163

2.164

2.165

2.166

2.167

2.168

2.169

x 105 (d)

original (without outlier)
smoothed sequence

Figure 6.3: Data cleaning (outlier removal and smoothing)

the underlying segment ground-truth tags. Therefore, we collect our own trajectory
data by developing Python S60 scripts deployed in a Nokia N95 smartphone, which
can generate both GPS data and accelerometer data from the embedded sensors. We
calculate GPS features (e.g. transformed longitude, latitude, speed, direction) as the
location stream vectors (Q`f) and accelerometer features (e.g. mean, variance, mag-

nitude, covariance of the 3 accelerometer axis) as the complementary feature vectors
(Qcf). We term the latter dataset as Phone Data within which, we also provide our own
real segment tags (e.g. standing, jogging, walking) to validate the online segmentation
accuracy. For Phone Data, we also work on the GPS data from the data campaign
organized by Nokia Research Center - Lausanne, which has collected 185 users’ phone
data with about 7M records in total [69][115].

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

compression threshold

co
m

p
re

ss
io

n
 r

at
e

Figure 6.4: Data compression rate w.r.t. different thresholds SigSP (Q`sp)

6.5. EXPERIMENTS 121

Data Cleaning. As described previously, our online data cleaning needs to consider
two types of GPS data errors, i.e. filtering outliers as systematic errors and smooth-
ing the random errors. The experimental cleaning results are shown in Fig. 6.3: (a)
sketches the original trajectory data; (b) identifies the outliers during the online clean-
ing process; (c) and (d) present the original movement sequences together with the final
smoothed trajectories, where (c) includes the outliers in the original sequences, whilst
(d) removes them for better visualization.

Online Compression. Technically, compression makes sense when dealing with large
data sets, however both Taxi Data and the big part of Phone Data have no comple-
mentary features (Qcfp) available but only the GPS features (Q`sp). Thus, our current
experiment validates the sensitivity of data compression rate with respect to the spa-
tiotemporal significance SigSP (Q`sp) on location streams, without considering the sig-
nificance of the complementary features SigC(Qcfp). As shown in Fig. 6.4, we plot the
compression rate sensitivity when applying different thresholds on SigSP (Q`sp). The
results are proportional when using the Phone Data with respective Sig(Qp) thresh-
olds.

50 100 150 200 250 300 350 400 450
0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

R
V

 C
o

ef
fi

ci
en

t

τ= 2s
τ= 4s
τ= 8s
τ= 16s

standingwalkingjogging

Figure 6.5: Episode identification varying
the batch size, for σ = 0.6

50 100 150 200 250 300 350 400 450
0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

R
V

C
oe

ffi
ci

en
t

σ=0.2
σ=0.4
σ=0.6
σ=0.8

jogging walking standing

Figure 6.6: Sensitivity of RV w.r.t. different
σ at τ = 8s

Online Segmentation. SeTraStream’s procedure in online trajectory segmentation re-

122 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

lates to (1) initially computing the RV-coefficient between two workpiecesRV (W`,Wr)

and (2) expanding W` if RV (W`,Wr) is bigger than the given threshold σ (otherwise,
we identify a division point between two episodes). Results are shown in Fig. 6.5,
where for T = 60swe can discover two main division points (with RV-coefficient< 0.6

and batch size τ < 16), which is consistent with the underlying ground-truth tags. The
stars in the figures are the real division points in the streaming data, which indicate
when user changes their movement behaviors e.g. from jogging to walking and finally
to standing.

Fig. 6.5 analyzes the sensitivity of using different batch sizes, where the best out-
come (i.e accurate episode extend determination) is τ = 8s; when τ = 16s, we actually
identify three division points, which is partially correct, since as we can see there are
only two real division points in the stream. Similarly, we also investigate the segmen-
tation sensitivity regarding different division thresholds σ in Fig. 6.6. The best seg-
mentation result is achieved when σ = 0.6. Finally, we evaluate the time performance

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

#num of objects

se
g

m
en

ta
ti

o
n

 la
te

n
cy

 (
m

s)

τ= 2s
τ= 4s
τ= 8s
τ= 16s

Figure 6.7: Segmentation latency with
different τ sizes (σ=0.6)

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800

#num of objects

se
g

m
en

ta
ti

o
n

 la
te

n
cy

 (
m

s)

σ=0.2
σ=0.4
σ=0.6
σ=0.8

Figure 6.8: Segmentation latency with differ-
ent σ thresholds (τ = 8s)

of SeTraStream’s trajectory segmentation module. We measure the segmentation la-
tency with 25 users in the Phone Data. In the experiments, we used a laptop with 2.2
Ghz CPU and 4 Gb of memory. From Fig.6.7 and Fig. 6.8, we can see the segmenta-
tion time is almost linear, in both situations with different batch sizes (τ) and different
division thresholds (σ), which is quite consistent with Lemma 1.

6.6. DISTRIBUTED SEMANTIC TRAJECTORY EXTRACTION 123

6.6 Distributed Semantic Trajectory Extraction

In our discussion so far, we presented a complete framework for online semantic tra-
jectory extraction. In the current section we comment on how the developed techniques
can be adapted so as to perform in a distributed streaming setting. Our focus is again in
coming up with efficient ways to perform the distributed semantic trajectory extraction
being primarily concerned with communication load reduction.

Initially, we assume that the GPS enabled devices that have been attached on the
monitored objects possess adequate self calibrating capabilities to perform the neces-
sary data preparation (data cleaning and compression) steps for each batch separately.
Otherwise, it is easy to see that the formed batches need to be transmitted to the central
server as are and assign the data preparation load to it. On the other hand, the memory
capacity of those devices suffices to hold only the information (the movement feature
vectors Q`f and Qcf) of a small number of batches. Thus, in the general case, objects
are not allowed to individually perform the episode determination phase, as the Wi`

workpiece can grow as large as T
τ batches and cannot be accommodated in the local

memory.

Hence, together with the compression scheme of Section 6.3.2, we focus on further
reducing the total size of the batch B that is to be transmitted to the central server. This
happens because the aforementioned size is equivalent to the bandwidth a monitored
object consumes every τ time units. Thus, we aim at inventing data reduction tech-
niques that can alleviate the communication burden with appropriate accuracy guaran-
tees.

Having Expression 6.7 in mind and based on Chapter 5, where the main monitored
function - similarity measure in our discussion was the cosine similarity, our first, de-
liberate reaction is to try applying the locality sensitive hashing scheme on individual
matrices of batches that have previously been vectorized. Unfortunately, in this par-
ticular case we cannot do so. This is because if each device installed on a moving
object transforms its original feature vectors to bitmaps, the left workpiece expansion
while attempting to detect long term pattern alterations cannot be carried out utilizing
separate batch bitmaps.

In order to perform the distributed semantic trajectory extraction in an efficient
manner, we take advantage of the ascertainment of Lemma 6.4.2. Recall that according
to the aforementioned lemma, during the desired RV coefficient checks, the element
Wi`W

′
i` is the sum of batch matrix products with their transposes and the same holds

for WrW
′
r which is composed of a single batch. Consequently, it suffices for every

object Oi to transmit the current product B · B for the lastly acquired batch. This
essentially constitutes the right workpiece that is to be compared for similarity with
left workpieces as dictated in Section 6.4. Section 6.4 also notes that the size of this
product is fixed d2 for d features of interest. Given the above, the upcoming corollary

124 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

establishes the communication cost of the distributed extraction process for a system
that operates for U time units.

Corollary 6.6.1. The communication cost of the distributed, semantic trajectory ex-

traction process for U time units isO(d2 U
τ) per monitored object. AssumingN objects

are being monitored, the total communication load in the network links is O(d2 U
τ N).

Note that a second attempt to reduce the communication cost would be the appli-
cation of the prediction - based geometric monitoring ideas introduced in Chapter 3.
More precisely, our interest in this scenario is the application of the geometric approach
between coordinator - moving object pairs. However, in this particular case, the moni-
tored function of theRV coefficient is derived based on the vectorized batches obtained
by a single object Oi i.e. no averaging operation is needed. Furthermore, the coordi-
nator does not produce movement feature vectors itself. Thus the whole procedure
is reduced to simple, bipartite predictors’ installation and maintenance. Based on the
predictions regarding V ec(Wi`W

′
i`)
p and V ec(WirW

′
ir)

p, the coordinator will be able
to derive estimations of whether RVi(Wi`,Wr) ≤ σ or not. On the other hand, each
object Oi, which knows the information about the predictor it transmitted the last time
it contacted the coordinating source, will be able to see if a false (negative or positive)
estimation of the σ-similarity check is performed. Overall, predictors, as those pre-
sented in Table 3.2, may find themselves useful even in the current scenario for further
reducing the bandwidth consumption. Nevertheless, then the monitoring task does not
raise any additional demand for the adoption of the geometric monitoring framework.

A plausible observation is that Corollary 6.6.1 achieves to reduce the amount of
communicated data without compromising the accuracy of the extraction process. In
other words, the pinpointed division points will be exactly the same with those that
would be identified should the framework performed in a centralized setting where
batches are directly gathered to the server. Furthermore, it worths observing that the
communication cost of the distributed process is independent from both the sampling
rate of the used devices, i.e. the number of the movement feature vectors in a batch
and the chosen window size T . In contrast, the bandwidth consumption is determined
by the total time of semantic trajectory extraction, the number of monitored features
and the amount of monitored objects. Hence, given the number of monitored objects
N , users are enabled to predetermine the characteristics of the hardware infrastructure
that needs to be utilized.

6.7 Synopsis

In this chapter, we proposed a novel and complete online framework, namely Se-

TraStream that enables semantic trajectory extraction over streaming movement data.
This is the first method proposed in the literature tackling with this problem in real-time

6.7. SYNOPSIS 125

streaming environments. Moreover, we considered challenges occurring in real world
applications including data cleaning and load shedding procedures before accurately
identifying trajectory episodes in objects’ streaming movement data. Eventually, we
devised extensions of the basic framework to distributed streaming settings by pointing
out smart communication reduction techniques that manage to leave the accuracy of
the framework unaffected.

126 CHAPTER 6. SEMANTIC TRAJECTORY EXTRACTION

Chapter 7

Conclusions and Outlook

This thesis elaborated on algorithms for monitoring as well as mining distributed data
streams. Our algorithms were derived based on a couple of different rationales while
performing the monitoring and the mining process. Having pointed out the need of
communication load reduction, in the distributed monitoring part of our study we de-
composed the problem of monitoring non-linear functions into local constraints that
can be independently checked by each site in the network and call for central data
collection only if these constraints were violated. In the mining part of our study we
managed to dictate efficient, distributed algorithms by data reduction techniques that
could provide guarantees on their accuracy.

In Chapter 3 we generalized the geometric monitoring framework of [103, 105] by
incorporating the notion of predictors [42]. We thus introduced efficient algorithms
for prediction - based geometric monitoring of complex threshold functions. Accord-
ing to our experimental analysis using a variety real datasets, functions and parameter
settings our methods are capable of providing significant communication load reduc-
tion during the tracking procedure. Our future work on this issue is directed towards
the monitoring of thresholded functions with relative thresholds such as the common
case [23, 22] where the coordinator is supposed to keep an approximation f(ep(t))

∈ (1 ± ε)f(v(t)) of the true value of the pinpointed f function, for some constant
0 < ε < 1. Furthermore, we concentrate our efforts in the choice of optimal reference
points, as in [106], that could perhaps enable ”looser” conditions for strict convex hull
containment(Section 3.4.1).

In Chapter 4 we provided a case study of the prediction-based geometric moni-
toring framework of Chapter 3 and devised alternative geometric approaches for the
specific scenario of distributed representative trajectory monitoring. As with any av-
eraging operation, our ReTra computation is sensitive to the dispersion of the values
around the mean movement pattern. Consequently, apart from performing the moni-
toring task, users need to check the amount of variance the current ReTra holds. For

127

128 CHAPTER 7. CONCLUSIONS AND OUTLOOK

instance, imagine that we wish to monitor the objects commuting inside a rectangular
area of interest. If half of the objects move at the north half of the rectangular area,
while the rest choose the south counterpart the extracted ReTra will lie in the middle
of the area. Obviously, such a representative trajectory does not provide e.g., accurate
results regarding the concentration of traffic. Evidently, traffic experts need to be aware
of that fact so as to avoid rush conclusions regarding traffic wardens’ placement in the
previous example. The incorporation of motion variance tracking as well as the adap-
tive presentation of more than one ReTras depending on this variation constitute future
work considerations.

Our TACO framework [44, 45] was discussed in Chapter 5. TACO was the first
in the literature to formulate an in-network, continuous outlier identification procedure
where the reduction of the communication load simultaneously provides the means to
predict the accuracy of the similarity tests between motes upon using those squeezed
representations. Our ongoing work extends TACO to render it capable of accomondat-
ing: a) multidimensional outlier definitions with tumble (disjoint windows) operation,
b) unidimensional outlier definition and sliding window operation and finally (c) mul-
tidimensional outlier definition and sliding window operation.

Finally, Chapter 6 presented our SeTraStream [116] framework which was the first
in the literature to provide semantic trajectory extraction over streaming movement
data. We further elaborated on extensions of the basic, centralized framework to dis-
tributed settings. An interesting subject that we left as future work regards the com-
bination of the concepts of Chapter 4 with those of Chapter 6 so as to distributively
perform semantic aware representative trajectory extraction. This imposes new chal-
lenges to the basic methods of semantic trajectory extraction and ReTra monitoring as
it combines the monitoring (of the ReTra) and the mining (semantic trajectory extrac-
tion) functions in a single operational module.

Bibliography

[1] L. O. Alvares, V. Bogorny, B. Kuijpers, J. Macedo, B. Moelans, and A. Vaisman.
A Model for Enriching Trajectories with Semantic Geographical Information. In
GIS, 2007.

[2] V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios. Nearest Neighbor
Retrieval Using Distance-Based Hashing. In ICDE, 2008.

[3] B. Babcock and C. Olston. Distributed top-k monitoring. In SIGMOD, 2003.

[4] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating Aggregates
on a Peer-to-Peer Network. Technical report, Stanford, 2003.

[5] S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear
time with randomization and a simple pruning rule. In KDD, 2003.

[6] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle
tracking data. In VLDB, 2005.

[7] J. Branch, B. Szymanski, C. Giannella, R. Wolff, and H. Kargupta. In-network
outlier detection in wireless sensor networks. In ICDCS , 2006.

[8] M. Buchin, A. Driemel, M. V. Kreveld, and V. Sacristan. An Algorithmic Frame-
work for Segmenting Trajectories based on Spatio-Temporal Criteria. In GIS,
2010.

[9] S. Burdakis and A. Deligiannakis. Detecting Outliers in Sensor Networks using
the Geometric Approach. In ICDE, 2012.

[10] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-Temporal Data Reduction With
Deterministic Error Bounds. The VLDB Journal, 15(3), 2006.

[11] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams: a new class
of data management applications. In VLDB, pages 215–226, 2002.

129

130 BIBLIOGRAPHY

[12] M. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, 2002.

[13] M. Chatterjee, S. Das, and D. Turgut. WCA: A Weighted Clustering Algorithm
for Mobile Ad hoc Networks. Journal of Cluster Computing(Special Issue on

Mobile Ad hoc Networks), 5, 2002.

[14] J. Chen, S. Kher, and A. Somani. Distributed Fault Detection of Wireless Sensor
Networks. In DIWANS, 2006.

[15] F. Chu, Y. Wang, D. S. Parker., and C. Zaniolo. Data cleaning using belief
propagation. In IQIS, 2005.

[16] E. Cohen. Size-estimation framework with applications to transitive closure and
reachability. J. Comput. Syst. Sci., 55(3):441–453, 1997.

[17] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman,
and C. Yang. Finding Interesting Associations without Support Pruning. In
ICDE, 2000.

[18] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman,
and C. Yang. Finding interesting associations without support pruning. In ICDE,
2000.

[19] J. Considine, M. Hadjieleftheriou, F. Li, J. Byers, and G. Kollios. Robust
approximate aggregation in sensor data management systems. ACM Trans.

Database Syst., 34(1):1–35, 2009.

[20] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed
approximate query tracking. In VLDB, 2005.

[21] G. Cormode and M. Garofalakis. Streaming in a connected world: querying and
tracking distributed data streams. In SIGMOD, 2007.

[22] G. Cormode and M. Garofalakis. Approximate continuous querying over dis-
tributed streams. ACM Transactions on Database Systems, 33(2), 2008.

[23] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic ag-
gregates in a networked world: distributed tracking of approximate quantiles. In
SIGMOD, 2005.

[24] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional
monitoring. ACM Trans. Algorithms, 7:21:1–21:20, 2011.

[25] G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering the divide: Con-
tinuous clustering of distributed data streams. In ICDE, 2007.

BIBLIOGRAPHY 131

[26] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed set-expression
cardinality estimation. In VLDB, 2004.

[27] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing Historical
Information in Sensor Networks. In ACM SIGMOD, 2004.

[28] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical In-Network
Data Aggregation with Quality Guarantees. In EDBT, 2004.

[29] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Bandwidth Constrained
Queries in Sensor Networks. The VLDB Journal, 2007.

[30] A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, and A. Delis. Another
Outlier Bites the Dust: Computing Meaningful Aggregates in Sensor Networks.
In ICDE, 2009.

[31] A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, and A. Delis. Another
Outlier Bites the Dust: Computing Meaningful Aggregates in Sensor Networks.
In ICDE, 2009.

[32] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-
Driven Data Acquisition in Sensor Networks. In VLDB, 2004.

[33] W. Dong, M. Charikar, and K. Li. Asymmetric distance estimation with sketches
for similarity search in high-dimensional spaces. In SIGIR, 2008.

[34] D. Douglas and T. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. The Canadian

Cartographer, 10(2), 1973.

[35] E. Elnahrawy and B.Nath. Cleaning and querying noisy sensors. In WSNA,
2003.

[36] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-

vances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

[37] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams:
you only get one look a tutorial. In SIGMOD, 2002.

[38] K. Georgoulas and Y. Kotidis. Random Hyperplane Projection using Derived
Dimensions. In MobiDE, 2010.

[39] A. Ghoting, S. Parthasarathy, and M. Otey. Fast Mining of Distance-Based
Outliers in High-Dimensional Datasets. In SIAM, 2006.

[40] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining Frequent Patterns in

Data Streams at Multiple Time Granularities. MIT Press, 2002.

132 BIBLIOGRAPHY

[41] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory Pattern Mining.
In KDD, 2007.

[42] N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman, and A. Schuster.
Prediction - based geometric monitoring over distributed data streams. In SIG-

MOD, 2012.

[43] N. Giatrakos, Y. Kotidis, and A. Deligiannakis. PAO: Power-efficient Attribu-
tion of Outliers in Wireless Sensor Networks. In DMSN, 2010.

[44] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, and Y. Theodoridis.
TACO: Tunable Approximate Computation of Outliers in Wireless Sensor Net-
works. In SIGMOD, 2010.

[45] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, and Y. Theodoridis.
In-Network Approximate Computation of Outliers with Quality Guarantees. In-

formation Systems, 2011. http://dx.doi.org/10.1016/j.is.2011.08.005.

[46] A. Gionis, D. Gunopulos, and N. Koudas. Efficient and tunable similar set re-
trieval. In SIGMOD, 2001.

[47] M. Goemans and D. Williamson. Improved Approximation Algorithms for
Maximum Cut and Satisfiability Problems Using Semidefinite Programming.
J. ACM, 42(6), 1995.

[48] G. Gutin, A. Yeo, and A. Zverovich. Traveling salesman should not be greedy:
domination analysis of greedy-type heuristics for the TSP. Discrete Applied

Mathematics, 117:81–86, 2002.

[49] R. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann,
2005.

[50] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Com-
munication Protocol for Wireless Microsensor Networks. In HICSS, 2000.

[51] L. Huang, M. Garofalakis, J. Hellerstein, A. Joseph, and N. Taft. Toward so-
phisticated detection with distributed triggers. In MineNet, 2006.

[52] L. Huang, X. Nguyen, M. Garofalakis, and J. M. Hellerstein. Communication-
efficient online detection of network-wide anomalies. In INFOCOM, 2007.

[53] P. Indyk. Dimensionality reduction techniques for proximity problems. In
SODA, 2000.

[54] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In STOC, 1998.

BIBLIOGRAPHY 133

[55] A. Jain, J. M. Hellestein, S. Ratnasamy, and D. Wetherall. A wakeup call for
internet monitoring systems: The case for distributed triggers. In HotNets, 2004.

[56] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom. Declarative
Support for Sensor Data Cleaning. In Pervasive, 2006.

[57] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom. A pipelined
framework for online cleaning of sensor data streams. In ICDE, 2006.

[58] S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive Cleaning for RFID Data
Streams. In VLDB, 2006.

[59] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A hybrid prediction model for
moving objects. In ICDE, 2008.

[60] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of
Convoys in Trajectory Databases. In VLDB, 2008.

[61] J. Jun, R. Guensler, and J. Ogle. Smoothing Methods to Minimize Impact of
Global Positioning System Random Error on Travel Distance, Speed, and Ac-
celeration Profile Estimates. Transportation Research Record: Journal of the

Transportation Research Board, 1972(1), jan 2006.

[62] B. Kanagal and A. Deshpande. Online Filtering, Smoothing and Probabilistic
Modeling of Streaming data. In ICDE, 2008.

[63] B. Karp and H. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In MOBICOM, 2000.

[64] G. Kellaris, N. Pelekis, and Y. Theodoridis. Trajectory Compression under Net-
work Constraints. In SSTD, 2009.

[65] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based Computation of Aggregate
Information. In FOCS, 2003.

[66] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An Online Algorithm for Segment-
ing Time Series. In ICDM, 2001.

[67] R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient
distributed monitoring of thresholded counts. In SIGMOD, 2006.

[68] N. Khoussainova, M. Balazinska, and D. Suciu. Towards Correcting Input Data
Errors Probabilistically using Integrity Constraints. In MobiDE, 2006.

[69] N. Kiukkoneny, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila. Towards
Rich Mobile Phone Datasets: Lausanne Data Collection Campaign. In ICPS,
2010.

134 BIBLIOGRAPHY

[70] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor Networks. In ICDE,
2005.

[71] Y. Kotidis, V. Vassalos, A. Deligiannakis, V. Stoumpos, and A. Delis. Robust
management of outliers in sensor network aggregate queries. In MobiDE, 2007.

[72] T. Kristensen. Transforming tanimoto queries on real valued vectors to range
queries in euclidian space. Journal of Mathematical Chemistry, 48:287–289,
2010.

[73] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group
framework. In SIGMOD, 2007.

[74] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory Clustering: a Partition-and-
Group Framework. In SIGMOD, 2007.

[75] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable
simulation of entire TinyOS applications. In SenSys, 2004.

[76] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collec-
tion for text categorization research. Journal of Machine Learning Research,
5(Apr):361–397, 2004.

[77] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining Periodic Behaviors for
Moving Objects. In KDD, 2010.

[78] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny Ag-
gregation Service for ad hoc Sensor Networks. In OSDI Conf., 2002.

[79] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an ac-
quisitional query processing system for sensor networks. ACM Trans. Database

Syst., 30:122–173, March 2005.

[80] G. Marketos, E. Frentzos, I. Ntoutsi, N. Pelekis, A. Raffaetà, and Y. Theodoridis.
Building real-world trajectory warehouses. In MobiDE, 2008.

[81] S. Meng, K. Xie, G. Chen, X. Ma, and G. Song. A kalman filter based approach
for outlier detection in sensor networks. In CSSE , 2008.

[82] N. Meratnia and R. A. de By. Spatiotemporal Compression Techniques for Mov-
ing Point Objects. In EDBT, 2004.

[83] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: a location
predictor on trajectory pattern mining. In KDD, 2009.

[84] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over
distributed data streams. In SIGMOD, 2003.

BIBLIOGRAPHY 135

[85] M. Otey, A. Ghoting, and S. Parthasarathy. Fast distributed outlier detection in
mixed-attribute data sets. Data Min. Knowl. Discov., 12(2-3), 2006.

[86] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A Clustering-based
Approach for Discovering Interesting Places in Trajectories. In SAC, 2008.

[87] C. Panagiotakis, N. Pelekis, and I. Kopanakis. Trajectory voting and classifi-
cation based on spatiotemporal similarity in moving object databases. In IDA,
2009.

[88] C. Panagiotakis, N. Pelekis, I. Kopanakis, E. Ramasso, and Y. Theodoridis. Seg-
mentation and sampling of moving object trajectories based on representative-
ness. TKDE, 2011.

[89] N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. Hermes: aggregative
lbs via a trajectory db engine. In SIGMOD, 2008.

[90] N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. HERMES: Aggrega-
tive LBS via a Trajectory DB Engine. In SIGMOD, 2008.

[91] N. Pelekis, A. Gkoulalas-Divanis, M. Vodas, D. Kopanaki, and Y. Theodoridis.
Privacy-aware querying over sensitive trajectory data. In CIKM, 2011.

[92] N. Pelekis, I. Kopanakis, E. Kotsifakos, E. Frentzos, and Y. Theodoridis. Clus-
tering trajectories of moving objects in an uncertain world. In ICDM, 2009.

[93] N. Pelekis, C. Panagiotakis, I. Kopanakis, and Y. Theodoridis. Unsupervised
trajectory sampling. In ECML-PKDD, 2010.

[94] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler, and J. Anderson. Analysis

of wireless sensor networks for habitat monitoring, pages 399–423. Kluwer
Academic Publishers, 2004.

[95] M. Potamias, K. Patroumpas, and T. Sellis. Sampling Trajectory Streams with
Spatiotemporal Criteria. In SSDBM, 2006.

[96] M. Qin and R. Zimmermann. VCA: An Energy-Efficient Voting-Based Cluster-
ing Algorithm for Sensor Networks. J.UCS, 13(1), 2007.

[97] D. Ravichandran, P. Pantel, and E. Hovy. Randomized algorithms and NLP:
using locality sensitive hash function for high speed noun clustering. In ACL,
2005.

[98] J. A. M. R. Rocha, V. C. Times, G. Oliveira, L. O. Alvares, and V. Bogorny.
Db-Smot: a Direction-Based Spatio-Temporal Clustering Method. In Intelligent

Systems, 2010.

136 BIBLIOGRAPHY

[99] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias,
K. Mouratidis, and T. Sellis. On-line discovery of hot motion paths. In EDBT,
2008.

[100] G. Sagy, D. Keren, I. Sharfman, and A. Schuster. Distributed threshold querying
of general functions by a difference of monotonic representation. Proc. VLDB

Endow., 4:46–57, 2010.

[101] N. Schüssler and K. W. Axhausen. Processing GPS Raw Data Without Addi-
tional Information. Transportation Research Record: Journal of the Transporta-

tion Research Board, 8, 2009.

[102] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. TiNA: A Scheme
for Temporal Coherency-Aware in-Network Aggregation. In MobiDE, 2003.

[103] I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring
threshold functions over distributed data streams. In SIGMOD, 2006.

[104] I. Sharfman, A. Schuster, and D. Keren. Aggregate threshold queries in sensor
networks. In IPDPS, 2007.

[105] I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitor-
ing threshold functions over distributed data streams. ACM Transactions on

Database Systems, 32(4), 2007.

[106] I. Sharfman, A. Schuster, and D. Keren. Shape sensitive geometric monitoring.
In PODS, 2008.

[107] B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in sensor networks. In
MobiHoc, 2007.

[108] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh. Simulat-
ing the Power Consumption of Large-Scale Sensor Network Applications. In
Sensys, 2004.

[109] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware Routing in Mobile Ad
Hoc Networks. In MobiCom, 1998.

[110] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and
C. Vangenot. A Conceptual View on Trajectories. Data and Knowledge En-

gineering, 65(1), 2008.

[111] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopu-
los. Online Outlier Detection in Sensor Data Using Non-Parametric Models. In
VLDB, 2006.

BIBLIOGRAPHY 137

[112] Y.-J. Wen, A. M. Agogino, and K.Goebel. Fuzzy Validation and Fusion for
Wireless Sensor Networks. In ASME, 2004.

[113] X. Xiao, W. Peng, C. Hung, and W. Lee. Using SensorRanks for In-Network
Detection of Faulty Readings in Wireless Sensor Networks. In MobiDE, 2007.

[114] G. Xue, Y. Jiang, Y. You, and M. Li. A topology-aware hierarchical structured
overlay network based on locality sensitive hashing scheme. In UPGRADE,
2007.

[115] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and A. Karl. SeMiTri: A
Framework for Semantic Annotation of Heterogeneous Trajectories. In EDBT,
2011.

[116] Z. Yan, N. Giatrakos, V. Katsikaros, N. Pelekis, and Y. Theodoridis. Se-
TraStream: Semantic Aware Trajectory Construction over Streaming Movement
Data. In SSTD, 2011.

[117] Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty. A Hybrid Model and
Computing Platform for Spatio-Semantic Trajectories. In ESWC, 2010.

[118] Z. Yan, L. Spremic, D. Chakraborty, C. Parent, S. Spaccapietra, and A. Karl.
Automatic Construction and Multi-level Visualization of Semantic Trajectories.
In GIS, 2010.

[119] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing
in Sensor Networks. SIGMOD Record, 31(3), 2002.

[120] G. Yavas, D. Katsaros, O. Ulusoy, and Y. Manolopoulos. A data mining ap-
proach for location prediction in mobile environments. Data Knowl. Eng., 54(2),
2005.

[121] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles.
In PODS, 2009.

[122] O. Younis and S. Fahmy. Distributed Clustering in Ad-hoc Sensor Networks: A
Hybrid, Energy-Efficient Approach. In INFOCOM, 2004.

[123] D. Zeinalipour, P. Andreou, P. Chrysanthis, G. Samaras, and A. Pitsillides. The
Micropulse Framework for Adaptive Waking Windows in Sensor Networks. In
MDM, 2007.

[124] K. Zhang, S. Shi, H. Gao, and J. Li. Unsupervised outlier detection in sensor
networks using aggregation tree. In ADMA , 2007.

[125] Q. Zhang, J. Liu, and W. Wang. Approximate clustering on distributed data
streams. In ICDE, 2008.

138 BIBLIOGRAPHY

[126] Y. Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for wireless
sensor networks: A survey. International Journal of IEEE Communications

Surveys and Tutorials, 12(2), 2010.

[127] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding transporta-
tion modes based on GPS data for web applications. Transactions on the Web

(TWEB), 4(1), 2010.

[128] Y. Zhuang and L. Chen. In-network Outlier Cleaning for Data Collection in
Sensor Networks. In Clean DB Workshop, 2006.

[129] Y. Zhuang, L. Chen, S. Wang, and J. Lian. A Weighted Moving Average-based
Approach for Cleaning Sensor Data. In ICDCS, 2007.

	Introduction
	Related Work
	Distributed Monitoring of Data Streams
	Representative Trajectories and Location Predictors
	Outlier Detection in Sensor Networks
	Semantic Trajectory Extraction

	I Part I:Monitoring Distributed Data Streams
	Prediction - Based Geometric Monitoring over Distributed Data Streams
	Introduction
	Preliminaries
	The Geometric Monitoring Framework
	Local Stream Predictors

	Prediction-Based Monitoring
	Motivation for Predictors
	How to Incorporate Predictors
	Defining a Good Predictor

	Strong Monitoring Models
	Containment of Convex Hulls
	Convex Hull Intersection Monitoring

	Simplified Alternatives
	Relaxing the Containment Condition
	The Average Model
	The Safer Model
	Loosened Intersection Monitoring
	Choosing Amongst Alternatives

	Evaluation Results
	Corpus Data Set - Cash Register Paradigm
	Weather Data - Sliding Window Paradigm
	CAA Operational Insights

	Synopsis

	A Case Study on Prediction - Based Distributed Monitoring of Representative Trajectories
	Introduction
	Basics
	Network Model
	Representative Trajectory Concepts
	ReTra's Query Processing
	Incorporating Location Predictors

	Distributed ReTra Monitoring
	ReTra Monitoring by Decomposition to Local Constraints
	ReTra Monitoring Using the Prediction-Based Geometric Approach
	Comparison of the Approaches

	Synopsis

	II Part II:Mining Distributed Data Streams
	Tunable Approximate Computation of Outliers In Wireless Sensor Networks
	Introduction
	Basic Framework
	Outlier Definition
	Supported Similarity Metrics - Monitored Functions
	Network Organization
	Operation of the Algorithm

	Data Encoding and Reduction
	Definition and Properties of LSH
	Data Reduction at the Sensor Level

	Detecting Outliers with TACO
	Running Example and Query Format
	TACO at Individual Motes
	Intra-Cluster Processing
	Inter-Cluster Processing
	Analysis
	Boosting TACO Encodings
	Discussion

	Load Balancing and Comparison Pruning
	Leveraging Additional Motes for Outlier Detection
	Load Balancing Among Buckets

	TACO under Other Supported Similarity Measures
	Extensions
	Experiments
	Experimental Setup
	Sensitivity Analysis
	Performance Evaluation Using TOSSIM
	TACO vs Hierarchical Outlier Detection Techniques
	Bucket Node Exploitation
	Message Suppression

	Synopsis

	Semantic Trajectory Extraction over Streaming Movement Data
	Introduction
	Preliminaries
	Data and Semantic Trajectory Models
	Window Specifications
	SeTraStream Overview

	Online Data Preparation
	Online Cleaning
	Online Compression

	Semantic Trajectory Extraction
	Online Episode Determination - Trajectory Segmentation
	Time and Space Complexity
	Episode Tagging

	Experiments
	Distributed Semantic Trajectory Extraction
	Synopsis

	Conclusions and Outlook

