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Abstract

Intrusion detection systems successfully detect intrusions, but the alert-sets they

produce suffer from multiple deficiencies. The volume of alerts is difficult to handle, while

the percentage of false ones is relatively high. The intruder’s attack plan is difficult to be

unveiled, as alerts correspond to low level events and the security analyst has to put in a

lot of effort, in order to successfully monitor the security status of the protected system.

An alerts post-processing system is proposed to improve the results of intrusion de-

tection systems. It transforms the alert-sets produced by multiple intrusion detection

sensors to a meaningful live graphical representation, that can timely inform the analyst

about occurring events and enable her to further examine these events and react accord-

ingly. The system consists of sensor managers, each one of which is responsible for an

intrusion detection sensor’s alert flow. They calculate a validity estimation for each alert

and aggregate identical alerts. Their outputs are all led to a single clustering subsystem.

This merges these flows into a system-wide flow and commits the required clustering

between relevant aggregated alerts. It optionally attempts to estimate information about

events missed by the intrusion detection sensors. Finally a visualization subsystem pro-

duces a three dimensional live graph of existing clusters, in order to provide the analyst

with a compact representation of occurring security events.

Along with the proposed system, an alternative method for false alerts filtering is

discussed. It is based on fuzzy inference systems and efficiently evaluates the validity

of alerts, eventually filtering out false ones. Finally a platform for conducting alerts

post-processing experiments is presented. It provides users with standard ready to use

functionality, while it enables them to reuse theirs or others past components.
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Greek Abstract

Τα συστήµατα ανίχνευσης παρεισφρήσεων ανιχνεύουν µε επιτυχία πιθανές εισβολές, αλ-

λά τα σετ συναγερµών που παράγουν χαρακτηρίζονται από σηµαντικά προβλήµατα. Ο όγκος

των παραγόµενων συναγερµών κάνει δύσκολη την διαχείρισή τους, ενώ ένα µεγάλο ποσοστό

τους είναι ψευδές. Το σχέδιο του εισβολέα δεν είναι εύκολο να εξαχθεί, καθώς οι συναγερ-

µοί αντιστοιχούν σε χαµηλού επιπέδου πληροφορία και ο αναλυτής πρέπει να καταβάλλει

σηµαντική προσπάθεια, προκειµένου να παρακολουθεί επιτυχώς την κατάσταση ασφαλείας

του συστήµατος ύπο προστασία.

Στην παρούσα διατριβή παρουσιάζεται ένα σύστηµα επεξεργασίας συναγερµών, µε στόχο

την ϐελτίωση των αποτελεσµάτων των συστηµάτων ανίχνευσης παρεισφρήσεων. Μετά από

την επεξεργασία των συναγερµών πολλαπλών αισθητήρων ανίχνευσης παρεισφρήσεων, το

σύστηµα παράγει µία Ϲωντανή γραφική αναπαράσταση των γεγονότων που έχουν ανιχνευθεί.

΄Ετσι ο αναλυτής ενηµερώνεται εγκαίρως σχετικά µε τα γεγονότα αυτά και είναι σε ϑέση να

τα εξετάσει περαιτέρω, όποτε αυτό κρίνεται αναγκαίο, και τελικά να αντιδράσει κατάλλη-

λα. Το σύστηµα αποτελείται από διαχειριστές αισθητήρων που είναι υπεύθυνοι για τις ϱοές

συναγερµών που προέρχονται από τους αισθητήρες ανίχνευσης παρεισφρήσεων. Υπολογί-

Ϲουν µια εκτίµηση ορθότητας για κάθε συναγερµό και ενοποιούν αυτούς που ταυτίζονται.

Οι έξοδοι τους, οδηγούνται σε ένα κεντρικό υποσύστηµα οµαδοποίησης. Αυτό συγχωνεύει

τις πολλαπλές ϱοές συναγερµών σε µία ενιαία και οµαδοποιεί τους σχετικούς συναγερµούς.

Προαιρετικά το υποσύστηµα αυτό εκτιµά παραµέτρους σχετικά µε γεγονότα που δεν έχουν

γίνει αντιληπτά από τους αισθητήρες ανίχνευσης. Τέλος, ένα υποσύστηµα οπτικοποίησης

παράγει µία τρισδιάστατη γραφική παράσταση των οµάδων που παρήχθησαν, προκειµένου

να παρέχει στον αναλυτή µία συνοπτική εικόνα των γεγονότων ασφαλείας.

Παράλληλα µε το προτεινόµενο σύστηµα, παρουσιάζεται και µία εναλλακτική µέθοδος

αναγνώρισης ψευδών συναγερµών. Βασίζεται στην µεθοδολογία των fuzzy inference systems

και αξιολογεί αποτελεσµατικά την εγκυρότητα των συναγερµών, µε σκοπό την απόρριψη



x

όσων είναι ψευδείς. Τέλος, παρουσιάζεται µια πλατφόρµα για τη διεξαγωγή πειραµάτων

σχετικά µε την επεξεργασία συναγερµών. Η πλατφόρµα αυτή παρέχει στους χρήστες έτοιµα

υποσυστήµατα σχετικά µε τυπικές επαναλαµβανόµενες λειτουργίες, ενώ τους δίνει και τη

δυνατότητα να επαναχρησιµοποιούν υποσυστήµατα που έχουν αναπτυχθεί στο παρελθόν

από τους ίδιους ή από άλλους.
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C H A P T E R 1

Introduction

Security has evolved in one of the most critical parameters for employing computer

systems in everyday life. Growth of the internet along with its usability have necessitated

for all information systems to be interconnected in the world wide web. This has trans-

formed such systems into potential targets for an increasing population of intruders. On

the other hand, the value of the information stored in the systems along with the signifi-

cance of their uninterrupted operation have increased the probability of an intruder being

able to benefit from breaking in systems that are not sufficiently protected.

One of the tools in the hands of security analysts, in order to secure computer systems,

is intrusion detection systems, which detect possible intrusions and produce alerts in

order to notify the analyst. There are multiple types of such systems, as the detection

technique and the scope of protected system may vary. Host based systems protect critical

hosts, while network systems can protect a whole network. Signature based systems use

predefined intrusion profiles and try to match the activity of the protected system to them,

while anomaly-based systems search for important deviations in the activity of the system

and characterize these as intrusions.

An important problem in the intrusion detection field, regardless of the type of the

used system, is the low quality of produced alert-sets, due to which intrusion detection

systems may even become unusable. The volume of alerts is usually difficult to manage,

while false positives and false negatives are always present. Generally alert-sets, as

produced by intrusion detection systems, are hard for security analysts to utilize. The

aim of this thesis is to design and implement a prototype system for post-processing of

intrusion detection alerts, in order to produce a more qualitative representation of the

security state of the protected system.
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In this thesis a complete alert port-processing system is implemented. It accepts as

input the alert-sets produced by multiple intrusion detection sensors and produces a

real-time high level graphical representation of the security state of the protected system.

It deals with all common deficiencies of intrusion detection alert-sets and aims to resolve

most of the issues, that hinder intrusion detection systems from efficiently inform the

analyst. The system consists of three subsystems, namely the Sensor manager, the

Clustering subsystem and the Visualization subsystem.

The set-up of the system includes more than one Sensor manager subsystems. For

each intrusion detection sensor used as input, a Sensor manager subsystem is responsi-

ble for managing the incoming alerts, for producing a validity score for each one of them

and for committing the required aggregation to eliminate multiple identical instances of

the same alert. The validity score is produced as a combination of four partial validity

scores. There are four different components, each one of which examines the existence

of a characteristic property of true or false alerts, for each record in the alert-set and

produces a partial validity score. Consequently a weights formula is used to produce one

final validity score for each alert. The calculated scores are attached to the alerts, which

are then subject to an aggregation procedure, that replaces each group of identical alerts,

triggered by the same event, with one, sufficiently informative aggregated alert.

The produced aggregated alerts are forwarded to the Clustering subsystem. There

is a single such system that takes as input all the outputs of all the Sensor manager

subsystems. Its first task is to merge these multiple alert flows into a single one. In

order for this to happen the Merging component discards aggregated alerts that relate to

the events already detected in other sensors’ flows. The Merging component produces a

unified flow of aggregated alerts, which is led to the Clustering component. The latter is

responsible for detecting relationships between alerts and for grouping them into clusters

that correspond to actual actions of the intruder. It is critical for the successful represen-

tation of the security state of the system, to approximate the level of detail of real actions.

This can only happen if similarities between alerts are thoroughly examined to disclose

any indications that more than one alerts may have been caused by the same event. The

clustering procedure is periodically executed for all recent alerts. The operation of the

Clustering subsystem can optionally be extended by the Clusters generator component,
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that detects cases where logical gaps between consecutive clusters exist. In such cases

an occurred event is considered to have been missed and the component tries to approx-

imate information about it. This estimated information is formed as an additional cluster

of alerts which is then embedded into the real clusters list, in order to notify the analyst

that there may be undetected activity, that she should investigate about. The final list of

clusters produced by the subsystem at each execution is stored in a database.

The third subsystem is the Visualization subsystem, that recalls formed clusters from

the database and depicts them on a three dimensional space. The Visualization subsys-

tem is also functioning repetitively, and produces consecutive images, which are then

used as frames to form a live representation of the security state of the protected system.

At each run the current list of clusters is read from the database. The parameters of the

clusters are normalized, to enable the subsystem to produce a comprehensive depiction.

The three axes of the produced graph represent time, IP values of the protected network

and a calculated danger value. The security state is depicted by a surface parallel to the

plane defined by the intersection of time and IP axis. For every cluster a peak which is

indicative of its parameters is formed on the surface. The resulting graph is informative

for the analyst, while being simple enough to enable her timely reaction when a dangerous

event is spotted.

Experiments have been carried out to justify the efficient operation of the system. Two

different datasets have been used and the performance of all components has been stud-

ied. In both cases the system managed to vastly reduce the volume of alerts by producing

a manageable final number of clusters. Most of the false alerts have been successfully

detected, therefore misleading clusters relevant to nominal events were filtered out during

visualization, in order not to hinder the reading of the resulting graphs. The number of

clusters produced for each real intrusion event is very small; this is a great improvement

with respect to multiple alerts, initially triggered by the event. The plan of the intruder is

easily recognizable through the produced clusters list. Regarding missed event approxi-

mation, the relevant testing scenarios have shown that the system can efficiently inform

the analyst about missed events, without overwhelming the clusters list with artificial

data. Finally, the resulting visualizations are illustrative and provide sufficient data to

the analyst, to keep her informed about security events, without much effort.
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Additionally to the analysis of proposed system, an alternative false alerts detection

methodology is presented. It incorporates a fuzzy inference system, as it is assumed that

the claims about certain characteristics of alerts and their validity are not definite but

may hold true to some extent. By the use of if-then rules these claims are correlated and

a validity estimate for each alert is finally produced. The method is able to vastly reduce

false positives, while it filters in alerts for all events detected by the intrusion detection

system.

Finally a platform for conducting intrusion detection alerts post-processing experi-

ments has been designed and implemented. Researchers working in the area usually

face difficulties when implementing the methods they propose, to prove their validity.

The proposed platform enables them to build a complex alerts processing solution on a

component-by-component basis. They are provided with ready-to-use components for

typical tasks, such as reading alerts from an intrusion detection system or calculating

metrics of the performance of their solution. Apart from that, the components are re-

usable, so the user can easily embed functionality she has already implemented in a new

method of her. Additionally users can exchange their components just for comparison or

within the context of research collaboration.
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Intrusion Detection Systems and their Limitations

S
ecurity is one of the most important factors in computer systems applications. Ex-

amples of recent security breaches are discussed, to manifest this importance. In-

trusion detection systems are analysed and their main taxonomies are presented. They

can either monitor traffic of a protected network or events in a protected host. Fur-

thermore the detection technique they employ may vary. Finally the most important

limitations regarding the output of intrusion detection systems are presented, to stress

out the necessity of an alternative scheme for presenting alerts.

2.1 Computer security importance

Internet extraordinary growth in the last fifteen years has completely altered the way

people work, get informed or even have fun. It is present in all aspects of everyday life.

The majority of electronic devices is designed to connect to the world wide web and the

users of the Internet have exponentially increased. Figure 2.1 shows the increase of

the number of internet users in the last fifteen years [1], [2], [3]. This number was 147

millions in 1998, which was about 3.6% of world population. Since then it has been

steadily increasing and in 2012, after fifteen years it has become 2,497 millions, which

corresponds to 35.7% of the world population.

The growth of the internet user base is obvious and is mainly due to the fact that

internet offers the ability to easily do things, that otherwise would be difficult or even im-

possible. The world wide web is a shared resource used by many people, applications or

organizations representing different interests. It is being used by competing businesses,

mutually antagonistic governments, and opportunistic criminals. Unless security mea-



6 Intrusion Detection Systems and their Limitations

1998 2000 2002 2004 2006 2008 2010 2012
0

500

1000

1500

2000

2500

Year

M
ill

io
ns

 o
f i

nt
er

ne
t u

se
rs

Figure 2.1: Internet users growth in the last fifteen years

sures are taken, a network conversation, a distributed application or a miss-protected

system may be compromised by an adversary [4].

People and even businesses enthusiastically employ internet technology, without tak-

ing the required measures to protect themselves. Usually security becomes a major

concern after a security incident happens. This can cost the privacy or integrity of a

user’s data or a lot of money, when it regards enterprise systems.

Security breaches make the news on a regular basis: incidents in which the security

of a company or a government agency is breached, leading to loss of information, personal

records, or other data. There are many ways to measure the size or cost of a security

breach. Some result in the loss of millions of data records, some affect millions of people,

and some wind up costing the affected businesses a lot of money [5]. Some representative

security breaches are briefly discussed below [6].

In June 2005, MasterCard announced that up to 40 million credit card holders were

at risk of having their data stolen, and 200,000 definitely had, because of a Trojan on

the computers of a credit card processing company. The processor, CardSystems Solu-

tions, had improperly stored the card data, unencrypted, in order to do research on the

transactions.
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In February 2007, TJX, a discount stores company, disclosed that thieves had stolen

information on possibly tens of millions of credit and debit cards. The systems of the

company had been compromised for about twenty months. The incident wound up costing

TJX millions of dollars and eventually eleven hackers were arrested for the break-in.

The grocery store chain Hannaford Brothers announced in March 2008 that hackers

had gained access to more than 4.2 million credit card transactions. By the time word

got out, more than 1,800 of the credit card numbers had already been used at the stores

of the company.

Heartland was a credit card payment processor for more than 250,000 businesses in

2009, when the company revealed that tens of millions of transactions might have been

compromised. The computers of the company were infected with malware that passed

information on to outsiders, that would enable them to create counterfeit cards with

actual user data. The company claimed that Social Security information, PIN numbers,

and other personal data were not affected.

In 2009 in an act of industrial espionage, the Chinese government launched a massive

and unprecedented attack on Google, Yahoo, and dozens of other Silicon Valley compa-

nies. The Chinese hackers exploited a weakness in an old version of Internet Explorer to

gain access to internal network of Google.

The worst gaming community data breach of all-time happened in April of 2011 on

the network of Sony Play-station. Of more than 77 million accounts affected, 12 million

had unencrypted credit card numbers. According to Sony the source of the hack was

never found. Whoever they are gained access to full names, passwords, e-mails, home

addresses, purchase history, credit card numbers, logins and passwords.

Throughout 2012 there were again multiple cases, in which major breaches were in

the first lines of the news [7].

Wyndham Hotels repeatedly left their database vulnerable to hackers over the course

of a few years. It seems that Wyndham failed to utilize industry-wide best practices

such as using complex passwords and user IDs or encrypting customer credit card data.

Because this information was stored in an improperly secured, centralized data center,

hackers were able to easily install phishing software. Furthermore when the company

discovered the security lapse, they did not make changes to their security procedures and
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the hacking continued for years.

In mid-January, Zappos was the victim of a cyber-attack by a criminal who gained

access to parts of its internal network and systems. The hackers had managed to com-

promise over 24 million records which included user names, phone numbers, email ad-

dresses, partial credit card numbers, and encrypted passwords. After reviewing the inci-

dent, it became clear that Zappos had followed proper security protocols, such as salting

their encrypted passwords, and the aftermath was little more than a need for customers

to change their passwords.

Not long after Zappos security breach, both LinkedIn and eHarmony had their users

passwords published to code cracking forums, presumably by the same hacker. Users

were notified via email and urged to change their passwords immediately. Because the

posted passwords were quickly brute-forced by security experts, and presumably hack-

ers, it became clear that the companies did not properly hash and salt the encrypted

passwords.

In mid-2012, hackers had exploited security of Last.fm to make off with millions of

user passwords. The incident was discovered when the passwords were again dumped

on a hacking forum. After going public with this incident, the original developer of the

company, Russ Garrett, claimed that he was responsible for failing to institute proper

password encryption. Additionally, he admitted that the security protocols had not been

updated since the site was originally coded in 2003.

Finally hackers broke into a Yahoo sub-domain by sending commands through an

inadequately secured URL and managed to steal files from Yahoo’s Contributor Network.

In total, the files stolen contained about 450,000 user names and passwords. Shockingly,

these files were not encrypted and were instead stored in plain text.

All these incidents indicate that taking the required countermeasures against security

threats is crucial and failing to do so may expose a system to great danger. As attacks

become more sophisticated, tools in the hands of security analysts become more complex.

One of these tools is intrusion detection systems, the performance of which is enhanced

by the system proposed in this thesis.
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2.2 Intrusion detection

Intrusion detection is the process of monitoring the events occurring in a computer

system or network and analysing them for signs of possible incidents, which are violations

or imminent threats of violation of computer security policies, acceptable use policies, or

standard security practices [8].

The first research effort in intrusion direction is an an audit trail-based intrusion

detection system in 1980 [9]. The author tried to detect unauthorized access to files

by examining audit trails. His methodology was similar to current host based intru-

sion detection systems. Since then a lot have changed regarding the requirements that

an intrusion detection system should fulfil and such systems have evolved significantly

through time.

Intrusion detection systems aim to produce one alert for each abnormal activity hap-

pening on the protected system. Such activity may either be an external intrusion to the

system or an internal misuse. Real world implementations cannot perform ideally, but try

to approximate this aim. The truth is that not all security incidents are monitored, while

there are alerts produced with no real corresponding suspicious activity. When designing

an intrusion detection system the aim is to maximize the percentage of security incidents

for which alerts are produced, while keeping as low as possible the percentage of false

alerts (alerts for which no real event occurs).

2.3 Intrusion detection systems taxonomies

The variety of intrusions to be detected has enforced the use of different intrusion

detection systems. They are categorized, according to both the detection method they use

and the kind of data they monitor [10].

2.3.1 Taxonomies based on monitored data

The main categorization of intrusion detection systems is based on the data they

manipulate, in order to detect intrusions; the resulting categories are host-based systems

and network-based systems.
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Host­based systems

Host-based intrusion detection systems monitor events happening in a single host.

They are usually installed on critical hosts, on which valuable data is stored or important

services are run. They examine network traffic only for the host they are installed on

along with other valuable information found in the host’s logs, running processes, file

access, file modification and configuration changes [8].

Host-based systems were the first systems to be used. As the years passed, the focus

of computing shifted from mainframe environments to distributed networks of multiple

computing machines communicating to each other [11]. This made host-based systems

inadequate for protecting modern complex systems on their own, but they remain integral

parts of an organization’s security infrastructure.

Network­based systems

Network-based intrusion detection systems monitor network traffic for the network

of an organization or for a particular network segment of it. They analyse the network

and application protocol activity to identify suspicious events [8]. They are capable of

detecting attacks from the network traffic that these produce, so if a host has already

been compromised and the activity of the intruder is limited to this host no alerts will

be produced. On the other hand most attacks are network-oriented so network-based

systems are the appropriate monitoring tool to detect them.

They are usually deployed at the boundaries between different segments of networks,

such as border firewalls or routers. Depending on the size and the segmentation of a

network, multiple sensors may be required, to sufficiently monitor the whole system.

2.3.2 Taxonomies based on the detection methodology

There are mainly two approaches to the way an intrusion detection system processes

data to find indications of suspicious behaviour. One is misuse detection and the other

is anomaly detection.
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Misuse detection

In the misuse detection scheme the intrusion detection system employs patterns that

correspond to known attacks. The system continuously compares data generated by

current activity against these patterns and when a match is found the system generates

an alert the details of which depend on the pattern itself and on the data matching it.

Patterns are often referred as signatures and the relative systems are characterized as

signature-based.

Generally these systems demonstrate good performance on detecting known attacks.

Normally attacks, the pattern of which exists in the signatures of the intrusion detection

system, are successfully detected. The syntax of the signatures must be flexible enough

to match as many transformations of the attack as possible.

On the other hand such systems cannot detect any attack not existing in their signa-

tures list. Even if this list is as fully populated as possible, zero day attacks will always

pass by undetected.

Anomaly detection

The anomaly detection approach is characterized by a different logic. Instead of look-

ing for known attacks, a model of normal activity is utilized. Anomaly-based systems

continuously compare current activity to this model and when a significant deviation is

spotted they generate an alert. Details of this alert depend only on the current activity,

as no specific pattern occurs.

Unlike misuse detection systems, these perform better in detecting new attacks as the

data they produce is probably different from what has been modelled as normal activity.

Thus anomaly detection systems should be preferred if the protected system may be the

target of new attacks.

On the other hand because of their way of functioning anomaly detection systems

produce too many false alerts. Every activity happening for the first time in the protected

system triggers an alert, regardless if it is suspicious or not. So whenever the behaviour

of normal users becomes different from what it usually is a false alert is produced.
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2.4 Intrusion detection systems limitations

Intrusion detection systems, while providing important information about intrusions

that occur in a system, they do not allow the best possible reaction to them. This is be-

cause the output of the systems is usually illegible lengthy alert-lists, while an important

percentage of alerts they contain are false, as they do not correspond to real events. The

major deficiencies of the output of intrusion detection systems output are analysed in

this Section [12] [13] [14].

The produced alert-sets are usually large in size, even for small protected systems.

In cases of larger protected systems, the volume of the produced alerts set makes it

impossible to monitor the security state of the protected systems, through tedious reading

of the produced list.

Security events usually cause multiple identical alerts. This happens either because

of their nature or because of their time duration. The resulting alert-set is largely charac-

terized by alerts containing overlapping information. In cases where there are more than

one installed sensors in a system, it is obvious that when events are perceived by multi-

ple sensors, the corresponding alerts will appear more than once in the final consolidated

alert-set.

The validity of alerts is one of the major problems of intrusion detection systems. As

the failure of detection of an ongoing attack can be disastrous, the systems are usually

configured to be too sensitive. This reduces the chances of not detecting real attacks,

but also significantly increases the number of the produced false alerts, as more nominal

events are considered as intrusions.

The produced alerts correspond to low-level events. The ideal level of detail for the

analyst would be proportional to the level of detail of the actions of the intruder. However,

due to functioning of intrusion detection systems, each of the actions of the attacker

usually causes multiple alerts. So even if the actions of the intruder are detected by the

intrusion detection system, her exact plan is difficult to be detected by the analyst by

inspecting the list of generated alerts.

The presentation of alerts in long lists is by itself, even without the aforementioned

problems, an obstacle to the analyst in her attempt to identify security incidents as early

as possible and to immediately react to them. A brief presentation format of the detected
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events is necessary for the analyst, in order to take the required actions in time.

Overall, it is obvious that the knowledge produced by intrusion detection systems

is not presented in the format it should be. While the actual security incidents may be

detected by the systems, the way the data is displayed is not efficient enough. The analyst

may identify a detected intrusion too late or even not identify it at all, because of the low

quality of the presentation scheme.
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C H A P T E R 3

Relevant work

R
elevant work of others is presented in this chapter. The most influential research

efforts in intrusion detection alerts post-processing field are presented. Conse-

quently the most recent work is summarized and presented in different sections. The

first section discusses false positives reduction methods proposed in the last years. The

next section presents multiple alerts correlation methods based on various approaches to

the problem of high alerts’ volume. Finally methodologies relevant to both hypothesizing

about missed events and visualization are analysed. In both of these cases the relevant

papers are significantly less than the first two.

3.1 Introduction

As soon as intrusion detection research matured and the first real world implemen-

tations of such systems were installed, the problem of the low quality of the resulting

alert-set became evident. In theory intrusions were detected at a high rate, but the

alert-sets produced by the intrusion detection systems were inappropriate for use in an

environment where instant reaction is critical. Security analysts had to dig through huge

alert-sets of low quality to find indications of intrusions. The difficulty in deciding whether

an intrusion was really occurring made them to either react with delay or even to not react

at all to real intrusions that were indeed detected by the intrusion detection systems.

So in the last two decades serious research work on post-processing of alerts has been

conducted, in order to improve their quality. In next Section the most important research

efforts in the field are presented. The most recent research efforts are categorised and

presented in the rest of the Sections.
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3.2 Early important work on post­processing of intrusion de­

tection alerts

3.2.1 Defining alerts similarity

In 2001 Valdes and Skinner proposed using probabilistic similarity between alerts as

a means to post-process them [15]. To this end, they defined a method for calculating

similarities. They calculate similarity between two alerts as a meter of overlapping be-

tween their features. Since then many methods that use this similarity approach or try

to enhance it have been proposed.

In this approach alerts for which there is a relevant match are aggregated. For each

different alert attribute an appropriate similarity function is defined. Additionally, an

expected similarity value is calculated, which in practice is a weight that is later used to

calculate the overall similarity. A minimum match specification is also incorporated, that

unconditionally rejects a match if any feature similarity is lower than the minimum speci-

fied value. For each new alert, the similarity to all existing meta alerts is computed taking

into account attribute similarities along with the corresponding expected similarities. The

alert is then merged with the best matching meta alert, as long as their similarity is above

a threshold value.

An experimental process has been conducted, with a simulated real world network.

Normal traffic was artificially generated and at the same time the designed attack was

executed. The intrusion detection sensors used were EMERALD eBayes and eXpert-Net.

The correlation procedure has achieved a reduction of false alerts at one-half to two-thirds

with regards to the initial alert-set.

The concept of combining results of similarity functions for each attribute of alerts, to

calculate an overall similarity has influenced the work of other researchers [16] [17] [18].

3.2.2 Discriminating between aggregation and correlation

At about the same time, Debar and Wespi [19] presented the first analytical descrip-

tions of alert aggregation and correlation procedures. They discuss an overall intrusion

detection post-processing architecture and their well defined approach remains valid until

today, as most methods after theirs have discriminated between aggregation and correla-
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tion.

They highlight the most important problems in intrusion detection alert-sets as:

• Intrusion detection systems provide the operator with a large number of alerts; the

operator then has difficulties coping with the load.

• Attacks are likely to generate multiple related alerts and it is not easy for operators

to logically group them.

• Intrusion detection systems are likely to generate many false alerts, false positives

or false negatives.

• Intrusion detection system architectures, at the time, made it difficult to achieve

large-scale deployment.

In order to solve these problems, the authors proposed an architecture that consists

of multiple detection probes, the outputs of which are fed to aggregation and correlation

components.

In the aggregation component the algorithm groups events together according to cer-

tain criteria. The aim is to discard multiple identical alerts at the sensor level.

In the correlation component the algorithm creates correlation relationships between

related events according to explicit rules. Once events are in a relationship, they are

considered as part of the same attack and are processed together. The authors define two

kinds of correlation relationships between events: duplicates and consequences.

The detection of duplicates relies on the provision of common information by different

intrusion detection sensors. Duplicates are alerts referring to exactly the same event.

Consequence chains are sets of alerts linked in a given order, where the link must occur

within a given time interval. Consequences are alerts that correspond to consecutive

related alerts.

A usage example is given, but thorough experiments are not carried out.

3.2.3 Reconstructing attack scenarios

In [20] the motivation is to provide a framework for constructing attack scenarios

through alert correlation, using prerequisites and consequences of intrusions. The ap-

proach is based on the observation that alerts correspond to different stages of an attack
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scenario, with the earlier stages preparing for the later ones. The same idea has been

reused in recent years in many research efforts [21] [22] [23].

The authors proposed a formal framework to represent alerts along with their pre-

requisites and consequences, and developed a method to correlate related alerts. In this

framework they define hyper alerts types, which are composed by the intrusion type, the

prerequisites and the post conditions of the intrusion. The prerequisites of an intrusion

are the necessary conditions for the intrusion to be successful, while the consequences of

an intrusion are its possible outcomes. They also developed an off-line tool on the basis of

the formal framework, which tries to correlate alerts, by combining post conditions with

prerequisites. Specifically, the tool examines each alert and tries to discover possible

combinations of its post conditions with the prerequisites of alerts with timestamps in a

specific time window which comes later than the time stamp of the alert being examined.

The authors conducted experiments that demonstrated the potential of their method

in correlating alerts. While the method is based on manually defining prerequisites and

post conditions for all possible attack types, a fact that reduces flexibility and ability to

deal with new attack types, the idea of connecting alerts in a logical and chronological

manner was important for later post-processing of alerts research.

3.2.4 A complete approach

Perhaps the most influential work in post-processing of alerts was presented in [24].

The authors in [24] have implemented a complete system that tackles most aspects of

post-processing of alerts and have conducted experiments on different data-sets to prove

the validity of their assumptions.

They provided a detailed analysis of the problem and designed a set of components

that focus on different aspects of the overall correlation task. First, a normalization

component transforms all alerts to a standardized format, understood by all correlation

components. Next, a preprocessing component deals with attributes of alerts that sensors

may have omitted and supplies relevant values, as accurate as possible. These attributes

may be required for the functioning of other components in sequel. The fusion com-

ponent is responsible for combining alerts that represent independent detections of the

same attack instance by different intrusion detection systems. In a system with multiple
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sensors, identical alerts may be an important problem to solve. A verification component

determines the possible success of the attack which each alert corresponds to; this in-

formation is used by the correlation components down the line. Verification is performed

either by using passive techniques, such as gathering data for the network in advance,

or by using active techniques, such as looking for attack success evidence after the alert

has been recorded.

The thread reconstruction component identifies combinations of attacker and target

through all alerts, in order to discover series of alerts that refer to attacks launched by a

single attacker against a single target. This component is important as it can associate

network-based alerts with host-based alerts, both related to the same attack. The task of

the focus recognition component is to identify hosts that are either the source or the target

of a significant number of alerts. These hosts are likely to be related to a denial-of-service

attack or to a port scanning attempt. The multistep correlation component identifies

predefined common attack patterns such as island-hopping attacks. Finally, the impact

analysis component determines the impact of the detected attacks on the operation of

the network being monitored; this information is eventually used by the prioritization

component, which assigns an appropriate priority to every alert.

Besides designing a robust system, the authors extensively researched data-sets avail-

able at the time, and utilized all of them to experimentally test their system.

3.3 Reducing false positives

Intrusion detection alert-sets are characterized by high false positives rate. Various

numerous methods have been proposed to cope with this problem. In this section the

latest research efforts to reduce false positives in intrusion detection are presented.

3.3.1 Considering initial classification inadequate

the author in [25] suggests that the actual intrusion detection systems are inadequate,

as he proves that checking the TTL of packets that produced the alerts helps reducing

significantly the false positives rate. The proposed method is based on clustering the

produced alerts on the basis of their TTL values. Experiments on various data-sets show

that false positives are included in specific clusters and that it is then easy to discard
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them. This work has been extended in [26], whereby apart from false positives, redundant

alerts are also filtered out through clustering procedures.

3.3.2 Looking at neighboring alerts

The authors in [27] take advantage of mixture models in order to discriminate between

true and false positives. They compare the characteristics of each alert to the characteris-

tics of previous ones. It is expected that a true alert will differentiate from its precedents.

In this way the alert is classified to the intrusion or to the non-intrusion set. Addition-

ally the protected system is checked for vulnerabilities relevant to each alert, in order to

characterize it as critical or not.

While the method seems interesting, it is not well defined and the reader is not con-

vinced of its validity.

Thw authors in [28] also examine neighboring alerts, to decide on the validity of each

alert. They calculate the relevant correlation, and try to identify false alerts along with

duplicate ones (alerts that tend to reappear multiple times through the dataset). Apart

from that, they also use an ensemble-based adaptive learner which, given the expertise

feedback, is capable of adapting to environmental changes through automatic tuning.

The learner remains effective even if the protected network changes. The implementation

is tested by using both the DARPA and a private data-set. The method requires the

intervention of the security analysts; this makes it inapplicable in real world, large scale

networks.

The alert-set itself is also utilized in [29]. The method proposed therein is based on

the calculation of reputation for alerts. The reputation relates to the probability that

these alerts are true. It is calculated from the false positives rate of alerts concerning

the same IP address or sharing the same signature. The performance of the method is

validated through experiments that show significant reduction in the false positives rate.

The limitation of the method is that in order to calculate the reputation, the validity of

previous alerts needs to be known.
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3.3.3 Training required

The authors in [30] propose the use of an adaptive false alert filter that incorporates

some of the most common machine learning techniques, such as K-nearest neighbors; De-

cision trees; and Support vector machines. The results of each method are continuously

monitored. The filter examines each algorithm’s performance every hour and chooses

the best of them to be used until the next evaluation. The filter seems to perform well,

but there is an important drawback, as the comparison of the algorithms’ performance is

based upon the labeled Snort data-set (the validity of alerts can be determined from the

DARPA documentation). In a real world scenario no such labels exist.

In [31] the main assumption exploited is that false positives are triggered by causes

that are frequent in a specific network. A training phase is described, where the frequency

of values for attributes of alerts are calculated. These frequencies are stored in hash

tables. They are normalized by weight values and used to determine if a future alert is

similar to alerts that frequently appear or if it is significantly different from them. The

threshold value that is used to discard frequent alerts is also decided upon during training

phase.

3.3.4 Considering attacks as anomalies

In [32] valid alerts are considered as anomalies in an alert-set mainly consisting of

false positives. The authors built profiles of usual false positives, for a given protected

network. The idea is to use anomaly detection techniques on the produced alert-set, to

discriminate true alerts as alerts that are characterized by an important deviation from

these profiles. Three different algorithms are used and compared in terms of achieved

false positives reduction, given the fact that they do not filter out any true positive. The

rationale of this paper seems interesting and promising, but the choice of the threshold

that discards alerts would be difficult to make in a real world scenario, where no evidence

regarding the validity of the alerts exists.

The same idea is more or less found in [33]. The authors therein state that there are

root causes for each group of similar alerts. If the protected system’s administrator can

discriminate root causes relevant to intrusions from the ones relevant to benign activity,

then she could easily reduce the false positives rate by discarding the alerts produced by
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non intrusive root causes. They propose to use clustering in order to create clusters of

similar alerts and then to characterize each of these clusters according to an assumed

root cause. Future alerts can be characterized by the cluster they are closer to. An

obvious drawback of the proposed system is that it is semi-automatic, as it will always

require human intervention in order for root causes to be discovered and characterized

as nominal activity or intrusion.

In [34] the idea is to reduce the overall number of alerts and by doing so to reduce

the false positives rate. K-means clustering is used to identify main clusters in a huge

population of alerts for a specific network, while outliers are ignored. The authors state

that if a future alert could be categorized into one of these clusters it would be a strong

indication that the specific alert concerns nominal traffic. Upon this hypothesis, they

propose to completely ignore such alerts. While they provide proof for the high percentage

of alerts that could be ignored in this way (resulting in a much smaller alert-set), they do

not provide enough evidence on the validity of their assumption, that the ignored alerts

are indeed relevant to nominal traffic.

3.3.5 Getting feedback

A general framework is proposed in [35] that enables the feedback of false positives

occurring in results to be fed back into the monitoring process. This way the policy

implemented by the intrusion detection system can be altered accordingly to the false

positive rate. The framework proposed therein is a solid base on which methods for

reconfiguring monitoring policies can be based, but there are important issues that should

be addressed in order for the framework to be used in a real world scenario. Specific

adjustments should be made to the framework itself as it is strongly coupled to the

intrusion detection system used, the procedure chosen for checking the validity of alerts

and the method for evaluating the performance of the monitoring policy in use.

3.3.6 Working under uncertainty

The authors in [36] deal with the aggregation of alerts, in order to reduce false pos-

itives, but in terms of anomaly detection systems. Alerts, produced by signature based

systems, contain useful information for alert correlation methods, such as the relevant
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signature or the class of the attack. On the other hand, anomaly detection systems pro-

duce less information for the attack and the correlation process is more difficult. In this

paper the use of fuzzy sets is proposed, in order to avoid missing alerts due to fuzziness

issues. The main information to base aggregation in anomaly-based systems is times-

tamps. Problems may appear in this aggregation procedure due to system latency or

wrong sharp threshold values. The authors discuss the criteria required to compute the

time distance between alerts and to define threshold values by taking into account the un-

certainty factor. The general intrusion detection feasible data-set problem is thoroughly

discussed and a framework for evaluating fusion methods is presented.

3.3.7 Considering network’s vulnerabilities

The authors in [37] propose to filter out false positives by taking into account the

vulnerabilities of the protected systems. They assume that every alert that concerns an

ineffective, to the protected network, attack can be treated as a false positive. Even if there

is an ongoing intrusion attempt, it will be unsuccessful as the required vulnerability is

missing. The proposed method uses vulnerability scanners to create profiles of existing

vulnerabilities. Alerts are then correlated to these profiles and the resulting distance

vectors are used to classify each alert as true or false. A back-propagation neural network

has been trained on vectors that belong to alerts known to be ineffective. Then, this neural

network classifies new alerts as effective or ineffective, filtering out the latter ones. The

experimental results on a custom data-set indicate that the accuracy of the intrusion

detection system has been vastly improved.

3.4 Correlating alerts

Perhaps the most research-intensive field in intrusion detection post-processing is

the correlation of alerts. Due to the multiple feasible approaches to the problem, a large

volume of relevant papers exist in the literature. In this section we present the most

recent works in the field. Some authors extend work that was done previously, while

others propose more innovative solutions.
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3.4.1 Methods in their early stages

In [38] a simple alert clustering scheme is proposed, in order to reduce the number of

alerts. The alerts’ attributes that are examined are the alert’s signature; the destination

IP; and the time stamp. While the clustering algorithm used is not described in detail,

each produced cluster is tagged with an attack type at the end of the procedure. This

research work seems to be in progress hence, criticizing its results is immature.

An iterative clustering procedure is presented in [39]. The ISODATA algorithm creates

clusters of alerts in an iterative manner. The functioning and the finalizing circumstances

of the algorithm are based on arbitrarily valued parameters. The experimental results

indicate a reduction of the number of alerts, albeit without justifying the validity of the

produced aggregations. The method does not seem to contribute much to recent intrusion

detection research.

The methodology described in [40], aims to aggregate intrusion detection alerts in

a performance-efficient manner, in order to be applicable in an on-line scenario. The

authors regard attack instances as random processes producing alerts and they try to

model these processes, using approximate maximum likelihood parameter estimation

techniques. While they provide a general description of their theory, there is no analysis

of the proposed method.

3.4.2 Using correlated alerts to reduce false positives

The authors in [41] have incorporated the results of correlating alerts, to reduce false

positives. They use the Self Organising Maps algorithm to create clusters of alerts, trig-

gered by the same security events, in an unsupervised manner. After that, they use the

K-Means algorithm to further classify the clusters as true or false. The output of the SOM

algorithm is fed as input to the K-means algorithm. The experiments carried on both the

DARPA data-set and on a private University of Plymouth data-set prove that two stage

clustering is efficient. Another advantage of the proposed method is that the graphical

representation of clusters produced by the SOM algorithm may be representative of the

relations between correlated alerts.

In [42] frequent itemset mining is used in order to discover alerts that are frequent

and characterize them as normal. Alerts that look like unusual (interesting) are isolated
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and promoted as possible intrusions. The authors have collected a private alert-set; a

thorough examination of the properties of these alerts has indicated that strong recurring

patterns exist in the alert-set. The frequent itemset mining algorithm has been adapted

to address problems of the specific domain. For example, unusual and intensive short-

term malicious network activity may produce too many alerts and thus trigger relative

patterns that will classify similar future activity as normal. On the other hand, too generic

produced patterns may be inappropriate for alert classification due to over-generalization

issues. The experimental results showed that the classification of alerts as interesting

has achieved high rates of precision, as most of the intrusion-relevant alerts were in that

category, while the size of the alert-set was substantially reduced.

3.4.3 Socialization between intrusion detection nodes

An interesting approach for optimising collaboration among intrusion detection nodes

is presented in [43]. It is based on the assumption that each node can communicate

with other nodes and it can appraise their trustworthiness. In this way, each node can

get information about ongoing attacks from other nodes and evaluate it according to

the confidence it has for them. The authors describe a formal mathematical model that

dictates how nodes get to know other nodes, how they manage trustworthiness through

time, how they send consultation requests and, finally, how they decide on the validity of

alerts based on aggregating advice from other nodes through a Bayesian approach. This

method does not deal with correlation in the usual manner, but it provides a new aspect

on how alerts produced by different intrusion detection systems can be combined.

The authors in [44] propose a framework that is based on an hierarchical view of the

protected system. They first define ontologies for all the involved parts and then describe a

model through which correlation of alerts is achieved even though the alerts may concern

various kinds of assets of the protected system or they have been generated by various

types of sensors. Moreover, a trustworthiness factor for each of these combinations is

taken into account in order to produce results that approximate the true security status of

the protected system, as accurately as possible. A limited manual experimental procedure

is described in order to assess the efficiency of the proposed method, while more extensive

tests are required, as the likely diversity of sensors or systems may prove the framework
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inapplicable.

An important requirement for successful alert correlation between different intru-

sion detection systems is the existence of a common representation for alerts. In [45] a

well defined representation model is presented, based on the first-order logic formalism.

Apart from describing a representation model for intrusion detection alerts, the authors

have also tried to formalise representations for all other important entities in intrusion

detection context. They propose representation schemes for hosts, software products,

vulnerabilities, attack classes, intrusion detection systems, events, messages etc. The

model is interesting and its use seems promising. Further testing has to be done in order

to evaluate if this theoretical model is applicable to real word alert correlation scenarios.

3.4.4 Decentralizing alert correlation

A well defined methodology is proposed in [46], in order to cope with the correlation of

alerts produced by intrusion detection systems scattered all over the world. The authors

define an alert attribute pattern scheme, that is used to efficiently represent alerts. They

use this scheme to commit a two stage correlation, one locally for each intrusion detection

system and one for the global system. The two stages of correlation ensure that there

will not be any computation overhead issues. A methodology for automatically setting the

local and global thresholds is defined. Two different models of processing are examined,

one with a central server and the other completely decentralized, built on a peer-to-peer

architecture. The evaluation of the algorithm is also concrete, as it takes into account the

geographical location of the sensors and it calculates the corresponding communication

overheads. In general, the authors have made an important contribution to collaborative

intrusion detection research.

Reducing communication overhead is also the motivation in [47]. The use of dis-

tributed hash tables in each intrusion detection node is proposed, in order to keep single

and correlated alerts. This structure enables efficient and flexible handling of alerts.

Computations for each correlated alert are handled to the node with the least load among

the nodes relevant to the alert. Moreover, communication issues are also taken into ac-

count in the described methodology. Routing of data exchanges between nodes is based

on the Kademlia algorithm that ensures that information flow is conducted through the
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least loaded path. The approach seems interesting, but the actual correlation process is

insufficiently analyzed.

The authors in [48] have emphasized on the data fusion part of the alert correlation

problem. It is commonly accepted that each intrusion detection sensor is more feasible

to detect certain kinds of attacks, according to its nature. The proposed method uses

a Neural Network learner unit, that is initially trained with labeled data to decide upon

the weights to be used for each intrusion detection sensor. The weights depend on both

the sensor itself and the kind of alert it produces. The thresholds used both in each

sensor and globally are optimized through the process of observing the data flow and by

dynamically modelling normal and anomalous activity distributions. The threshold values

are continuously adjusted in order to keep the optimum detection-false alarm trade-off.

Experimental results show that the proposed fusion system beneficially combines two

different intrusion detection sensors: PHAD and ALAD; the detection rate of the fusion

unit is much better than the detection rates of each of the two sensors individually, while

the false positive rate is kept at minimum.

3.4.5 Taking into account expert knowledge

Due to the nature of the intrusion detection problem, no automated method can pro-

duce a perfect representation of tsecurity state of the protected system. In [49] expert

knowledge is used in order to enhance both the intrusion detection and the alert corre-

lation processes. The authors assume that intrusion detection and alert correlation both

constitute classification problems. They try to revise results of broadly used classifiers

(various Naive Bayes implementations and Decision trees), by taking into account prior

expert knowledge. This knowledge is expressed in simple forms, e.g. a certain percentage

of traffic is normal or alerts of a certain attack class follow a specific probability distri-

bution. Their algorithm examines this knowledge and tries to alter the results of the

classifiers, in order to make them adhere to the relevant limitations, to the extent that

this is possible. They finally provide an analytical experimental procedure, using three

different data-sets, to show the validity of their approach.



28 Relevant work

3.4.6 Concentrating on infected hosts

A different approach to the reduction of the size of the alert-set is taken in [50],

where the main goal is to find infected hosts. It is difficult to efficiently transform raw

alerts to meta-alerts that absolutely correspond to real security events. The authors state

that it is easier to just find infected hosts on the protected network, by examining raw

alerts and then to further investigate these hosts. They build a novel heuristic to detect

infected hosts from a huge alert-set. This heuristic uses a statistical measure to find

hosts that exhibit a repeated multi-stage malicious footprint involving specific classes of

alerts. Validation of the method showed that it achieves relatively low false positive rates

in huge data-sets. It is obvious that the method could be useful to a large network’s

administrator as she could have a good approximation of infected hosts on her network

instead of a very long and impractical alert list.

3.4.7 Alert flows are more informative than single alerts

In [51] the authors propose that investigating flows of alerts is more effective than

investigating single alerts. In this way it is obvious that the size of the data for the

analyst;s attention is massively reduced, as flows consisting of alerts related to normal

system behavior can contain strong regularities, which can be modeled and eventually

filtered out. Normal flow behavior is modeled as a weighted sum of previous observations,

using non-stationary auto-regressive models. The weights are re-estimated or updated at

every new observation. Re-estimation is conducted through the use of a Kalman filter,

and it happens on-line, without having to stop examining flows. The most significant

differences between forecasts provided by the model and the observations are reported as

anomalies and possible intrusions. Finally, these models are used to process voluminous

alert flows from an operational network and the results are satisfactory.

3.4.8 Multiple correlators are better than a single one

The authors in [52] propose a system that is based on multiple correlation methods

and, for a given data-set, is able to efficiently combine the results of these methods. A

learning phase must exist in advance, in which the performance of each of the correlation

methods is measured in terms of their alert reduction rate percentages. The best of the
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methods are then selected and applied in a best to worst fashion, during the real corre-

lation phase. The experimental process has been conducted on various data-sets while a

lot of attention has been given to the total correlation time, as the authors’ intention is

to produce a system capable of working on-line. An important issue is that the achieved

high reduction rate is not an adequate indication of required performance, as the quality

of the produced correlated alerts should also be examined.

3.5 Hypothesizing on missed events

There are only a few research efforts on hypothesizing on missed events in intrusion

detection. Even though false negatives (non-existent alerts for occurred events) may be

proven much more dangerous than false positives, there are not many proposals on how

to deal with this issue. This mainly happens because of the complexity of the problem

and the danger to destroy the initial alert-set by overpopulating it with artificial data, in

order to approximate missed events.

In [53], the authors develop a series of techniques to hypothesize and reason about

attacks possibly missed by intrusion detection systems. If the sensors miss some crit-

ical attacks, alerts from the same attack scenario could be split into multiple attack

scenarios. Thus, combining different attack scenarios can potentially reveal alerts for

missed events. They first obtain attack scenarios through a correlation method based

on prerequisites and consequences of attacks and identify which attack scenarios (and

possibly individual, uncorrelated alerts) may be combined by examining the attributes of

the alerts in different attack scenarios. If those attribute values satisfy some constraints,

they consider integrating the corresponding attack scenarios. They assume the missed

attacks are most likely unknown variations of known attacks, or attacks equivalent to

some known attacks. They hypothesize and reason about missed attacks based on pos-

sible causal relationships between known attacks, aiming at constructing more complete

attack scenarios.

In [54], the authors first propose a novel queue graph approach to alert correlation. A

queue graph only keeps in memory the latest alert matching each of the known exploits

(that is, host-bound vulnerabilities). The approach has a linear time complexity and

a quadratic memory requirement (both in the number of known exploits in the given
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network). Those are both independent of the number of received alerts, meaning the

efficiency does not decrease over time. A unified method for the correlation, hypothesis,

and prediction of intrusion alerts is also discussed. The method compares knowledge

encoded in a queue graph with facts represented by correlated alerts. An inconsistency

between the knowledge and the facts implies potential missed events. The method seems

interesting but is insufficiently tested.

3.6 Visualizing results

While all methods previously analysed improve the quality of the produced alert-set,

none of them can create an easy to read high level representation for the security analyst.

This can only achieved by visualizing the produced alert-set. Despite of this fact, the

relevant visualization methods in the literature are not many. The most recent among

them are analysed in this section.

3.6.1 Tables of aggregated alerts

In [55] the motivation is to produce a graphical representation of all possible aggrega-

tions of alerts, in order to help security analysts to easily recognize anomalous activity. A

graph of tables is created in an hierarchical manner; the root table of the graph represents

all events. Each table on the second level represents all possible aggregations produced

by defining a specific value for one of the attributes of alerts. The descendants of each

second level table are more specific aggregations as the values of a second attribute is

picked. It is obvious that nodes on the higher levels of the graph represent more popu-

lated aggregations, while nodes on the lower nodes represent more specific aggregations.

Probability distributions of attribute values can be useful when searching for anomalies

throughout the graph, as a detailed examination of the graph may provide evidence for

actual intrusions.

3.6.2 Limiting the dimensionality of alerts

Usually intrusion detection alerts contain 7-8 interesting attributes. This dimension-

ality is obviously hard to depict by any visualization method. The motivation of [56] is

to research which projection method is the most suitable in order to compress intrusion
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alert data and make their visualization easier. The methods compared are Principal Com-

ponent Analysis (PCA), Maximum Likelihood Hebbian Learning (MLHL) and Cooperative

Maximum Likelihood Hebbian Learning (CMLHL). The results of relevant experiments

have shown that the latter of three methods is the most suitable, as it produces the best

results. While this conclusion seems interesting, no indication is given whether CMLHL

can be efficiently used in a real world scenario.

3.6.3 Different views for different uses

An interesting multi-view approach for intrusion detection visualization is presented

in [57]. The authors have implemented four different representations, each being suitable

for a different scenario. Specifically, there is a main system component responsible for

preprocessing and aggregation of alerts along with a PostgreSQL database that holds all

required data. The four different views are :

• Daily Summary: A customizable overview which shows various daily summary data,

such as aggregated flows per minute over the entire network, or over certain ports.

• Intrusion Detection View: A view based on predefined or user-created templates

that shows all relevant intrusion detection alerts. The user can set criteria, such as

port or IP address, for the alerts being shown, in order to see the part of alert flow

she is interested in.

• Home centric flow visualization: It consists of a Tree Map that shows traffic flows

between attacking hosts and protected network hosts as splines. The size of the

TreeMap rectangles (weight), their background color, and the spline width can be

set to a default value or they can be computed by some function of the attributes of

aggregated flow data, e.g., log of flow count, transferred packets, or bytes.

• Graph-based flow visualization: This is provided as an alternative to the home-

centric flow visualization. The main advantage of the graph view is that it empha-

sizes on the structural properties of the intrusions such as the connectivity between

hosts. It is easier to recognize hosts with an intense participation in the intrusion

activity.
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The last two of the views seem more interesting, but they are not the appropriate

views to provide a satisfactory representation of the overall security state of the protected

system.

3.6.4 3d may be better than 2d

In [58] an innovative approach to intrusion detection visualization is proposed. A 3d

graphics engine is used to depict the protected network and the security events. Usually,

the means used to visualize intrusion detection data are charts, pies or graphs. In this

case, a 3d world is created, in which objects, like hosts or network connections, exist

and graphical effects indicate the occurrence of an intrusion. The work presented is in its

early stages; not enough evidence exists for the validity of the method.

3.6.5 Place everything on wheels

An impressive application of radial visualization in the intrusion detection field is

presented in [59]. The authors have implemented AlertWheel, which is an intrusion

alerts visualization method, based on the bipartite graphs approach. They depict alerts

as edges that connect nodes, representative of source IPs, to a central pie, slices of which

represent intrusion categories. the number of possible categories does not exceed thirty,

while source IPs can be easily grouped in sub-nets. The edges, which correspond to

alerts, usually come in huge numbers. The method tries to group these edges whenever

they share the same path, in order to produce a readable graph. The security analyst can

set criteria to restrict the alerts shown, in order to be able to read the resulting graph

more easily. The method is interesting and produces a nice result. Perhaps more alert

attributes can be taken into account in order to create a more informative picture.
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Observing data

T
he alert-sets produced by intrusion detection systems suffer from various deficien-

cies. In this Chapter a specific traffic data-set is used and the resulting alert-set

is thoroughly examined. The redundancy of information in the alert-set is researched

and various metrics are calculated to indicate the existence of characteristic properties

of alerts that could be used for detecting false positives. Graphs depicting metrics values

are presented, in order to justify the validity of the relevant assumptions.

4.1 Introduction

In order to design a system that will be able to enhance the quality of information of

intrusion detection alerts, a thorough examination of such alerts has been performed. The

Darpa 2000 1.0 traffic data-set [60] has been used to create an alert-set and the relevant

documentation has been used to define the validity of each one of the alerts produced.

The data-set was used as input to Snort [61] and the resulting alert-set consists of 3646

alerts, 67% of which are false.

The redundancy of information between alerts is examined and the assumptions about

different characteristics of true and false alerts are checked, by computing relevant meta-

data for each alert. The influence of the meta-data values to the validity of the alerts is

depicted by visualizing their relationship.

4.2 Redundancy of alerts

One of the most important problems of the produced alert-set is the redundancy of

alerts. Due to the nature or the time range of the events, it is common for them to trigger
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bursts of identical alerts. These alerts overwhelm the final alert-set and make it hard to

read. Additionally each event may produce more than one distinct alert instances, as it

can trigger more than one of the intrusion detection system’s signatures.

In order to check the existence of this problem in the alert-set under examination, two

different metrics have been defined and calculated for each alert. The first metric is called

ial; for a specific alert its value is defined to be equal to the number of alerts, identical

to it, that have been produced in a very narrow time range (10 seconds) around it. This

metric highlights the cases, in which an event produces a burst of identical alerts. The

second metric is called ral; for a specific alert its value is defined as the number of alerts

similar (having at least one of signature, source IP and destination IP fields identical) to

it that exist within a wider time range (120 seconds) around it. This highlights the cases,

in which an event produces more than one distinct relevant alerts.
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Figure 4.1: Histogram of ial values

Two histograms have been created from these metrics. Figure 4.1 shows the distri-

bution of the ial values, while Figure 4.2 shows the distribution of the ral values for all

alerts. Only 860 out of 3646 alerts seem to not have any identical counterparts, while

many bursts of identical alerts appear, including up to 20 members each. The percentage

of alerts with no relevant alerts at all, is obviously even lower. Only 250 out of 3646 alerts
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Figure 4.2: Histogram of ral values

seem to not relate to any other alert, while there are alerts measuring up to 100 relevant

alerts.

These calculations show that there is a lot of redundant information in the alert-set

and that a required quality improvement would be to eliminate this redundancy or to at

least reduce it.

4.3 Alerts validity discriminative characteristics

A first assumption made on true alerts is that they are more probable to be part of

a group of related alerts, all having been produced by the same or relative causes. On

the other hand false alerts are more probable to be less relevant to other alerts, that are

close in time to them. A metric of this characteristic has been defined as rel. Specifically

for each alert, a range of n alerts around it is selected. Then the percentage of alerts in

this range that seem to be relevant to the alert under examination is calculated. Two

alerts are assumed to be relevant if at least one equality in the four combinations of their

source and destination IP addresses exists. It is expected for this value to be higher for

true alerts.
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Another assumption made, is that true alerts are expected to produce some kind

of deflection in a stable system. In other words, the state of an alert-set in an attack

free scenario should be significantly changed when a real attack occurs. In order to

produce an appropriate metric, frequency of each kind of alert has been used. Each alert

is characterized by a signature field, which corresponds to the kind of attack detected.

When no real attacks occur the frequency of appearance of alerts with a specific signature

should be more or less stable and relevant to the nature and structure of the protected

network. When a real attack producing alerts of the same signature occurs, then the

frequency of appearances of the specific signature should temporarily increase. A metric

used to examine if this assumption holds is defined as fre. This metric is calculated for

each alert by dividing the current frequency of the signature of the alert (the frequency

in an alerts’ range around the examined alert) to the average frequency (throughout the

whole alert-set) for the specific signature. It is expected that this ratio will be higher when

calculated for true alerts.

Finally a third assumption made is that the majority of false alerts is the product

of periodical lawful tasks in a network. In most cases there are sequences of identical

false alerts that appear in more or less fixed time intervals. The metric per which is used

to check the validity of this assumption relates to the periodicity of the appearances of

identical alerts. Specifically for each alert, identical alerts are discovered (the criteria

used are to have the same source and destination IP addresses and the same signature)

through the whole alert-set. If less than 10 appearances exist then no recurring scheme is

detected and the per metric is set equal to 1. If more than 10 appearances exist then the

time distances between them are calculated. The per metric is set equal to the average of

the percentages of change between time distances of consecutive records in the identical

alerts’ list. For a perfectly periodical sequence, where time distances are all equal to each

other, this metric averages to 0, while its value increases as time distances start to differ

from each other.

In order to efficiently observe the distribution of values for these metrics the data min-

ing software Weka 3 [62] has been used. Its visualizing capabilities enable the production

of graphs that indicate the relationships between the validity of alerts and the values of

the metrics. Figures 4.3,4.4 and 4.5 show the distribution of each one of the three metrics
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Figure 4.5: Relationship between validity of alerts and per metric’s values

values for true and false alerts. The blue bars correspond to true alerts, while the red

ones correspond to false alerts.

As it is obvious in Figure 4.3 rel tends to have values close to zero for all false alerts.

In other words false alerts tend to not have a significant percentage of other related alerts

around them. Figure 4.4 shows that the values of fre are mainly grouped in two different

groups, which correspond to true and false alerts. Specifically false alerts have values in

the range [0,2], while true alerts mainly have values in the range [3,7]. Finally Figure 4.5

shows that for most of the false alerts, the values of per are close to zero. By examining

the three Figures strong relationships of the values of the metrics to the validity of alerts

are discovered. The initially made assumptions, initially made, can be used to classify

alerts as true or false.

Furthermore the combination of the metrics can reveal additional correlations between

the calculated data and the validity of the alerts. Figures 4.6,4.7 and 4.8 show the

distribution of true and false alerts on two dimensional graphs the axes of which represent

all possible pairs of the thee metrics. In all three graphs the false alerts seem to form clear

clusters. The combination of previous assumptions can produce a classification scheme

with a high detection rate for false alerts.
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C H A P T E R 5

Motivation and design

T
he system proposed in this thesis is a complete post-processing solution that in-

tends to enhance the output of intrusion detection systems. The motivation is to

provide security analysts with a more elaborate way of inspecting the security state of

the protected system. In this Chapter the main ideas motivating the implementation of

the system are presented. Additionally the initial design of the system is analysed and

the tasks of the main subsystems are discussed. Sensor managers read alerts from their

sources, produce a validity score and commit the required aggregation. The clustering

subsystem merges the different inputs from the sensor managers, it creates clusters of

related alerts and it produces artificial clusters to approximate alerts for events that have

not been detected by sensors. The database of the system holds data for profiling and

for communication between different subsystems. Finally the visualization subsystem

produces an informative live representation of the security state of the system in the form

of a three-dimensional graph.

5.1 Motivation for the system

As discussed in Chapter 2 intrusion detection systems produce alert-sets suffering

from significant problems. The motivation for the system of this thesis is to analyse these

problems and to create a mechanism that will automatically transform the outcome of

intrusion detection systems in something more meaningful and helpful for the security

analyst. The main ideas, on which the design of the system, is based are:

• Reducing the volume of alerts

• Reducing the rate of false positives
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• Producing alerts relevant to the actions of the intruder

• Hypothesizing about missed intrusion events

• Visualizing the final outcome

• On-line efficient operation

In other words, the design of the system was guided by the motivation to cope with

the problems analysed in Chapter 2. These design ideas are analysed in the coming

subsections.

5.1.1 Reducing the volume of alerts

The first important problem that a user (security analyst) of an intrusion detection

system encounters is the sheer volume of the produced alerts. This volume most of

the time makes even observing the alert-set very difficult. The user has to dig through

thousands of alerts, in order to find the ones that seem interesting and have potentially

been triggered by real intrusion events. Methods relevant to reducing the volume of alerts

are aggregation and correlation.

Aggregation of alerts is the procedure that tries to substitute multiple similar or iden-

tical alerts that have been triggered by a single event with one representative general alert.

A single low level event (a TCP/IP packet or a system call) can produce many identical

alerts either because of its time duration or because of triggering multiple intrusion de-

tection sensors, mechanisms or rules. Successful aggregation of alerts is usually feasible,

as the similarity of alerts that should be aggregated is high.

On the other hand correlation is the procedure that tries to discover relationships,

of any kind, between alerts, triggered by different low level events, and create groups

of relevant alerts. The identified relationships can be logical, when the alerts relate to

actions that take place consecutively in an attack plan. They can also be chronological,

when alerts occur too close in time. Moreover alerts could be related to each other when

they pertain to the same asset of the protected system. This common asset can be a host,

a subnet of the protected network or a service of a protected host. The groups of relevant

alerts can be represented by a more general alert indicating their details.



5.1 Motivation for the system 43

In the proposed system both of these approaches have been incorporated, in order

to reduce the volume of alerts initially produced by the intrusion detection system. Ag-

gregation is performed at the sensor level, while correlation is performed at the system

level. For every sensor, each alert is compared in an efficient way to preceding alerts of

the same sensor, and if they are found to match they are aggregated. Afterwards when

the alert-sets of the multiple sensors are merged, the correlation is performed through

similarity-based clustering.

5.1.2 Reducing the rate of false positives

The most known problem of intrusion detection systems is high rate of false positives.

The way of operation of any intrusion detection system invariably produces many false

positives. The requirement for high detection rate calls for a strict configuration of in-

trusion detection systems, which causes high false positive rate, as many non-intrusive

actions are interpreted as suspicious and relevant alerts are produced.

Many methods have been proposed for discarding false positives. The methodol-

ogy used in the proposed system is mainly based on statistical observations of various

alert-sets and discriminative properties that seem to characterize false alerts or their

relationships with their neighbouring alerts.

In order to avoid the danger of discarding useful alerts along with false ones, the idea

of filtering out alerts considered to be false was not pursued. Instead the calculation of a

probability (score) that indicates whether an alert is true was chosen as more appropriate.

The use of a threshold value set by the security analyst in the next stage of processing

can easily discard alerts, if this is required.

More than one properties of false alerts are exploited in order to conclude if an alert

is true and the combination of the multiple corresponding probabilities is a fundamental

issue. A weighted formula has been used, aiming to benefit the parts of the system that

seem to produce more reliable estimations.

5.1.3 Producing alerts relevant to actions of the intruder

Apart from containing too many alerts, most of which are false, alert-sets usually

contain low level information, which does not correspond to the actions of the intruder.
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Each action of the intruder may trigger multiple alerts, similar or not, which make its

identification harder for the security analyst.

The proposed system tries to produce information at the same level of granularity

with the actions of the intruder. This has been taken into account when designing the

clustering procedure, as the production rate of clusters is decisive for the quality of the

information finally produced.

Similarity-based clustering was elected as the most suitable way of comparing alerts

and deciding which ones of those may constitute a group of indications of the same

event or of related events. Each one of alerts’ attributes is separately processed and the

individual similarities are then combined to decide on whether the alerts are similar or

not.

5.1.4 Hypothesizing on missed intrusion events

Besides false positives there are also false negatives, which may be less in number

but they may be much more dangerous. False negative stands for a committed intrusion

without an associated alert. Intrusion detection systems produce huge numbers of alerts,

aiming at as low false negatives rates as possible. This happens because a false negative

usually has marginally larger cost for the protected system, than a false positive.

In the proposed system there is a component that aims to hypothesize on information

about security events that have been missed by the intrusion detection system. It is

obvious that the correct estimation of this information is practically impossible. On the

other hand a good approximation of events missed by the intrusion detection system may

stimulate the user, in order to protect the system in a better way.

This hypothesizing attempt, may also produce alerts for events that never happened

and gradually destroy the produced alert-set. Because of this danger a lot of attention

should be given to the configuration of this part of the system, to ensure that the alert-set

will not be vastly altered by artificially generated data.

5.1.5 Visualizing the final outcome

Finally all the above ideas will not offer much to the security analyst, if an alternative

way to visualize the produced information is not incorporated. Her immediate reaction
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may be critical for defending the protected system from an attack, so digging through lists

of alerts, to check if an intrusion is happening or not, may be dangerous.

An elaborate visualization scheme can inform the analyst intermediately if suspicious

behaviour is detected, giving her basic information about it. If she believes that more

information could be useful, she can then examine the produced alert-set to extract it.

A three-dimensional space has been used to allow alerts visualization to be as infor-

mative as possible. Activity is visualized with respect to IP values, time and estimated

danger. The rationale behind this part of the system is to produce a comprehensive image

of the security state of the system that will be continuously updated.

5.1.6 On­line efficient operation

An important requirement for designing the system was to be as lightweight as pos-

sible, in order to be able to on-line enhance alert-sets of huge sizes. Introducing too

complex methods to solve the above problems would prohibit any real world application

for the system, as off-line intrusion detection is applicable only in experimental set-ups.

Most of the methods presented in Chapter 3 have been tested off-line. Authors have used

ready data-sets to conduct experiments that justify the validity of their methods, without

checking the application of these in a real world scenario.

A lot of attention was given to the processing rate of the proposed system; how many

alerts per second it can process, without introducing any latency in informing the security

analyst. A simulation environment has been developed in order for the experiments to

be run in a real world scenario. In this way the overhead introduced by each component

and the overall performance of the system can be easily measured.

Another important issue is that when examining alerts off-line all the alert-set is

available. On the other hand when examining alerts on-line only the previous alerts are

available. The simulation environment mentioned above ensures that the components

of our system in order to process an alert use the information they have accepted as

input until the time-stamp of this alert. Using all the dataset (previous and next alerts)

to process a single alert is obviously not rational and cannot be applicable in a real world

implementation.
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5.2 Designing the system

In order to implement all the ideas mentioned in Section 5.1 the design of the system

has been focused on three different subsystems and a database. These are:

• A sensor manager for each intrusion detection sensor used

• The clustering subsystem

• A database for storing clusters’ data

• The visualization subsystem

Basic design and functioning of the system is depicted in Figure 5.1. In the following

subsections the task of each subsystem is analysed.

Sensor Manager 1

Sensor Manager 2

Sensor Manager n

Clustering subsystem

Visualization
subsystem

Input from 
IDS sensor 1

Input from 
IDS sensor 2

Input from 
IDS sensor n

Aggregated
alert sets

DB

Clusters

Clusters Resulting 
visualization 

Figure 5.1: Overall design of the system

5.2.1 Sensor manager

Each one of the sensor managers is responsible for manipulating the alert-set of

the corresponding sensor. Sensor managers are identical and produce equal in number

aggregated alert-sets that are the input for the Clustering component that follows.

The main tasks that Sensor managers perform are:

• Read alert-set from sensor

• Forward each alert to various components, which produce individual scores accord-

ing to the validity of the alert
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• Keep track of the scores produced by each component

• Accordingly configure weights used for the combination of individual scores

• Calculate a combined score according to the validity of each alert and attach it to

the alert

• Aggregate alerts, to eliminate groups of multiple identical ones and produce an

aggregated alert-set

• Forward this aggregated alert-set to the Clustering subsystem

As indicated in Chapter 4 false positive alerts are characterized by specific statistical

properties that could be exploited, in order to successfully classify alerts as true or false.

Four different components have been designed and embedded into the Sensor manager

subsystem that take advantage of the observations in Chapter 4. These produce four

corresponding scores for each alert, that stand for the probability that the specific alert

is true or not.

These components may be more or less effective, depending on various parameters

such as the nature of the protected network, the kind of attack or even time. The diversity

of these parameters may prove components ineffective or make them produce misleading

results from time to time. Because of this, a weighting formula has been employed, which

enables the Sensor manager subsystem to promote the scores of components that seem

to perform better under the current circumstances, while it ignores to a certain extent

the scores of the remaining components. The functioning of the weighting formula is

presented in Chapter 6, along with the algorithm used to on-line update these weights.

The weights are used to calculate a combined score for each alert, which is then

attached to the alert. Discarding alerts has not been preferred, even for alerts with a very

low score. All alerts are propagated to the next components, but their scores are used to

estimate the validity of aggregated alerts, clusters of alerts produced by them or resulting

visualizations. A threshold value can be used, in subsequent stages of processing, to filter

out data with low estimated validity.

The last process that the Sensor manager subsystem performs is the aggregation of

alerts. As stated in Chapter 2, intrusion detection systems tend to produce multiple



48 Motivation and design

similar alerts for each security event. The aggregation component accepts as input the

alert-set of the sensor along with the calculated scores. It then aggregates similar alerts

that seem to have been triggered by the same event into one aggregated alert, that holds

all the relative data. This procedure is important as it significantly reduces the size of

the alert-set, and besides improving the quality of information in the alert-set, it enables

subsequent subsystems to perform much faster for a given input to the system.

The output of the Sensor Manager subsystem is an aggregated alert-set that is fed to

the first component of the next subsystem, the Clustering subsystem.

5.2.2 Clustering subsystem

The Clustering subsystem is important for the overall approach as it adds much value

to the initial alert-set. Its main tasks are:

• Accept aggregated alert-sets as input from the Sensor managers

• Merge these aggregated alert-sets, by discarding identical alerts

• Periodically examine clusters and generate artificial ones whenever sensors seem to

have missed intrusion events

• Produce final cluster-set and store it to the database

The step of merging is required, as the inputs from multiple sensors must be converted

to a uniform alert-set, in order to produce an overall representation of the security state

of the protected system. As different sensors may monitor the same assets or the same

intrusion may be concurrently happening at different parts of a system, it is usual for

different sensors to produce alerts for the same event. The merging component deals with

multiple aggregated alerts’ streams and unifies them, while it checks for aggregated alerts

eligible for discarding, as they may contain redundant information.

The main mission of the Clustering subsystem is to produce clusters of alerts relevant

to each other, or having been triggered by the same attack plan. It is obvious that

successful clustering is decisive for the quality of the final result. The motivation behind

the clustering procedure is to create for each intrusion plan as many clusters as the steps

of the plan are. Choosing the most appropriate fields of alerts, to base the clustering
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algorithm on, is an important factor for producing meaningful clusters. Similarity based

clustering is used, to discover correlation between aggregated alerts that are included in

the output stream of the merging component.

Additionally this subsystem is designated to reconstruct information for security

events that have been missed by intrusion detection sensors. For these events no relevant

alerts exist in the incoming aggregated alert-set. The motivation for generating cluster

is not to precisely generate alerts, that have not been produced by the sensors, but to

generate clusters which in reality are estimates of the clusters that would have existed if

all events were successfully detected.

It is expected for this component to produce a percentage of wrong estimates, artificial

clusters which will not correspond to any real event. Its designing, has been very careful;

while a small percentage of wrong artificial alerts may be acceptable, a higher one may

destroy the initial alert-sets altogether.

5.2.3 Database of the system

The database of the system is a MySQL database which is mainly used for two pur-

poses:

• To hold data relevant to all the components of the system, for performance evalua-

tion

• To hold specific data for produced clusters, that enable the Visualization subsystem

to operate

The parameters of each of the components, along with the data they manipulate as

input or output are important for inspecting the functioning of the system. All components

store data to the database as they operate, for profiling reasons.

Apart from that the Visualization subsystem is implemented separately; the best way

to make clusters’ data required for visualization available to it is to store them in the

database. This data is constantly updated by the clustering subsystem. The Visualiza-

tion subsystem periodically reads this data, to update the resulting visualization. The

appropriate update intervals are decided by the speed of the simulation and the density

of alerts.
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5.2.4 Visualization subsystem

The visualization subsystem is responsible for producing a meaningful representation

of the security state of the system. It reads clusters data produced by the clustering

subsystem and stored in the database of the system. Then it produces a graph in 3 di-

mensions that depicts clusters in relevance to time, internal IPs of the protected network,

validity estimation and probable danger for the protected system.

It has been designed on the basis of giving to the security analyst an initial general

view of intrusions happening in the system and impel her to further investigate initial

alert-sets produced by the intrusion detection sensors, when this is required. By first

inspecting the result of the Visualization subsystem and then studying alerts accordingly

to the information depicted on the graph, the analyst can be more effective in monitoring

the security state of the protected system.

This subsystem continuously reads the clusters’ information stored in the database

at specific time intervals. These intervals should be chosen so as to ensure that the graph

produced evolves through time without interruptions and depicts all events happening.

The optimal updating speed depends upon both the density of alerts in time and the speed

of simulation.

The axis of the three-dimensional graph, depict time, IPs of protected network and

a danger estimate of the event. A plane is created in this three dimensional space,

to represent the security state of the system. If no clusters exist this plane coincides

with the x-y plane (time-IPs plane). At every point where a cluster exists the surface is

characterized by a peak. The height of the peak, in the z axis, corresponds to a danger

value calculated for the cluster. Finally the color of the plane at each point is decided by

an estimated validity value for each cluster.

The plane along with the graph evolve through time to adjust to the clusters’ data.

For example the time axis should obviously be elongated at each update, and the plane

should be altered to depict clusters created since the last update. The user watching the

output of the Visualization subsystem, sees a live image showing the exact security state

of the protected network, as this can be estimated by the sensors’ alerts, at each moment.
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5.3 Data formats

Defining of formats used to represent the data exchanged between the components

of the system, is an important keystone for the effective and accurate functioning of the

system as a whole. Each of the components accepts a specific type of data as input and

produces a specific type of data as output. In this Subsection the types of data used are

analysed.

5.3.1 Alert

The first type of data used is obviously relevant to alerts. The type of data Alert holds

all information relative to alerts as they are read from the sensors. Alert fields are:

• Sensor id: This is an id relevant to the sensor the alert comes from. Each sensor

has an id and this id is attached to the Sensor id field of its alerts. It is an integer

value.

• Signature: This is relevant to the kind of the intrusion the alert was triggered by.

In signature-based systems matching of traffic with signatures that concern specific

attacks are used to produce alerts. It is an integer value.

• Class id: Signatures are categorized in different classes, that mainly stand for the

phase of an attack plan the intrusion belongs to. The Class id of each alert shows

at which phase of a designated attack plan the alert has been produced. The higher

the Class id, the more advanced the relative event is. It is an integer value.

• Time­stamp: Time-stamp of alert is the point in time at which the alert was gener-

ated. It is calculated in Unix time format, seconds from 00:00:00 UTC on 1 January

1970. It is obviously an integer value.

• Source IP: It is the source IP of the IP packet that has triggered the alert. It is an

integer value. The conversion of an IP X.Y.Z.W to integer is achieved by Equation

5.1.

IPint = X ∗ 2563 + Y ∗ 2562 + Z ∗ 256 +W (5.1)

• Destination IP: It is the destination IP of the IP packet that has triggered the alert.

It is also an integer which is calculated by Equation 5.1.
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• Truth: It holds the validity estimate produced in Sensor Manager for the alert. It is

a real number ranging from zero to one.

5.3.2 Aggregated alert

The next type of data used is Aggregated alert. This holds the aggregated alerts

produced by the aggregation procedure, in the Sensor manager. During this phase the

system tries to aggregate alerts that are identical and refer to the same event. Aggregated

alert is similar to Alert, but it has some differences, to hold information for the group of

alerts that have been aggregated.

The Alerts aggregated to an Aggregated alert are identical, so most of their fields hold

the same values. So Sensor id, Signature, Class id, Source IP and Destination IP fields

also exist in Aggregated alerts. They inherit their values from the corresponding values

of the Alerts that have been aggregated to produce the specific Aggregated alert. Due to

the aggregation algorithm used these fields have the same values for all Alerts appropriate

for being aggregated together. The Time field does not exist in the Aggregated alert type,

as it is replaced by two fields:

• Start time: It is equal to the time value of the first one of the Alerts aggregated. It

is held in Unix time format, and it is obviously an integer value.

• End time: It is equal to the time value of the last one of the Alerts aggregated. It is

held in Unix time format, and it is obviously an integer value.

Additionally there is one more field, with respect to Alert data type:

• Number of alerts: It is the number of Alerts aggregated to produce the Aggregated

alert. It is an integer value.

5.3.3 Cluster

Another important data format is Cluster. It is used by the Clustering component to

store information of clusters produced during the clustering algorithm. The clustering

algorithm tries to discover groups of Aggregated alerts that relate to each other and

transform them to corresponding clusters. The fields of Cluster data type are:
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• List of signatures: A list that contains Signatures existing in at least one of the

Aggregated alerts, from which the Cluster has been produced.

• List of class ids: A list that contains Class ids existing in at least one of the

Aggregated alerts, from which the Cluster has been produced.

• Start time: The earliest of the Start times of Aggregated alerts, from which the

Cluster has been produced.

• End time: The latest of the End times of Aggregated alerts, from which the Cluster

has been produced.

• List of source IPs: A list that contains all IPs that exist as Source IPs in at least

one of the Aggregated alerts, from which the Cluster has been produced.

• List of destination IPs: A list that contains all IPs that exist as Destination IPs in

at least one of the Aggregated alerts, from which the Cluster has been produced.

• Truth: A validity estimate of the Cluster as a whole, that is produced by Truth

values of Aggregated alerts, from which the Cluster has been produced.

• Number of alerts: The sum of Number of alerts fields of all Aggregated alerts that

produced the Cluster. It is an integer value.

Besides these basic fields, there are some auxiliary fields that are used by the Clus-

tering subsystem and the Visualization subsystem, in order to reduce the computation

complexity and enable the system to be more effective:

• Internal IPs: A list that contains all IPs that belong to the protected network and

that appear at least once in either Source IP or Destination IP of Aggregated

alerts, from which the Cluster has been produced.

• External IPs: A list that contains all IPs that do not belong to the protected net-

work protected and appear at least once in either Source IP or Destination IP of

Aggregated alerts, from which the Cluster has been produced.

• Minimum internal IP: The minimum IP in Internal IPs list.
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• Maximum internal IP: The maximum IP in Internal IPs list.

• Minimum class id: The first in order of List of class ids

• Maximum class id: The last in order of List of class ids

• Danger value : It is a value in the [0,1] range that indicates if the Cluster refers to

initial steps of an attack plan or to advanced ones. It is calculated, when needed,

from the List of signatures of the Cluster. A danger score has been manually

assigned to each one of alerts signatures, according to the relevant attack. The

Danger value of the Cluster is the average of the danger values of signatures existing

in its List of signatures.

5.3.4 Generated Cluster

Generated cluster format is a specialization of the Cluster format and it is used to

represent the clusters artificially created in the the Clustering subsystem. The fields of

Generated Cluster is a subset of the fields of Cluster, as not all cluster parameters can

be estimated during clusters’ generation procedure.

The fields included in Generated cluster format are List of class ids, Start time,

End time, Minimum internal IP, Maximum internal IP and Truth and their usage is

similar to the usage of the corresponding fields of Cluster format.

5.3.5 Data formats along with their acronyms

In Table 5.1 all four main data formats of the system are shown. Along with their

fields the corresponding acronyms are given, which will be used throughout the rest of

the thesis.
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Table 5.1: Main data formats of the system

Alert (ale) Aggregated alert (aga) Cluster (clu) Generated cluster (gcl)

Sensor id (sid) Sensor id (sid) Signatures list (sig) Class ids list (cid)

Signature (sig) Signature (sig) Class ids list (cid) Start time (sti)

Class id (cid) Class id (cid) Start time (sti) End time (eti)

Time-stamp (time) Source IP (sip) End time (eti) Min internal IP (minii)

Source IP (sip) Dest. IP (dip) Source IPs list (sip) Max internal IP (maxii)

Dest. IP (dip) Truth (truth) Dest. IPs list (dip) Truth (truth)

Truth (truth) Start time (sti) Truth (truth)

End time (eti) Alerts number (num)

Alerts number (num) Internal IPs (iip)

External IPs (eip)

Min internal IP (minii)

Max internal IP (maxii)

Min class id (mincid)

Max class id (maxcid)
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C H A P T E R 6

Sensor manager

T
he Sensor manager accepts as input alerts from a sensor, decides a validity score

for each one and then aggregates identical alerts. The validity score is calculated

by combining four partial validity scores produced by corresponding components. These

components examine various metrics, indicative of the validity of the alerts. Four corre-

sponding weights are used for the scores produced by the components. These weights are

continuously updated in order to make the combination of scores as efficient as possible.

The final score calculated for each alert is attached to it, before the alerts are sent to

the aggregation component, that reduces the volume of alerts by transforming groups of

identical alerts to representative aggregated alerts.

6.1 Design of Sensor manager

The functioning of the Sensor manager subsystem is presented in this Section. As it

has been mentioned in Section 5.2 the task of the Sensor manager is to read alerts from

its corresponding sensor, to decide a validity score for each one of the alerts and then

to conduct the required aggregation, in order to eliminate multiple identical alerts. The

main components of the Sensor manager subsystem along with its design are depicted in

Figure 6.1.

Sensor manager contributes to the functioning of the whole system, as it is responsible

for two important quality improvements on the alerts-set. The first one is to produce a

validity score for each alert, which is an estimate of the probability that the alert is true,

given the parameters of the actual alert-set. The second task is to perform aggregation

of alerts, in order to cope with the known deficiency of intrusion detection systems to
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Figure 6.1: Sensor manager subsystem

produce multiple identical alerts for single events.

Estimation of validity score is carried out by the combination of six components namely

NRA, NRAS, HAF, RFP, Weights updater and Validity score calculator. The AGC compo-

nent is responsible for performing the required aggregation procedure. These components

are analysed in the following sections.

6.2 Calculating a validity score for each alert

In order for the system to finally produce the best possible representation for the

security state of the protected system, the false positives issue must surely be taken into

account. As it has been analysed in Chapter 2, the most important problem of intrusion

detection is that the majority of alerts they produce are false; they do not correspond to

real intrusions. In order to offer to the security analyst information of high quality, these

false alerts should be detected.

Most of the functioning of the Sensor manager subsystem is relevant to producing a

validity score for each alert. It has been preferred not to discard alerts characterized by

low validity scores at this phase. The aggregation, merging and clustering procedures

that follow, group multiple alerts together to create more complex data forms. An alert

with low validity score may be useful at later stages of the procedure. The calculated
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score is attached to each alert and is eventually used to calculate validity scores for more

complex data forms, to which alerts are transformed by the following components.

The score is calculated by combining scores produced by four different components.

Each one of these components has been designed to take advantage of the specific prop-

erty of false alerts. They calculate partial validity scores by examining each alert with

respect to this property. It is obvious that each one of these components is not able to

produce correct scores for all alerts contained in the alert-set, on its own. Each one of

them may be efficient for specific cases of false positives, which are characterized by the

examined property. It surely can not produce useful estimates for the whole alert-set.

The combination of the four components builds upon the partial scores and can produce

good validity estimates for most of the false positives, as it takes into account all four

parameters examined by the components.

The four components producing partial validity scores are:

• The NRA (Neighbouring Related Alerts) component that searches for neighbouring

related alerts and uses them as indication of the validity of an alert.

• The NRAS (Neighbouring Sweeping Related Alerts) that is based on the same logic

but is modified to discover special relations of alerts that hold in sweeping attacks.

• The HAF (High Alert Frequency) component that detects peaks in signature related

frequency of alerts and uses it as an indication of the validity of the alert. It utilises

another component of the Sensor manager, namely the SFH (Signature Frequencies

Holder) component.

• The RFP (Recurring False Positives) component that detects recurring patterns of

alerts and penalizes the alerts conforming to them as probable false positives.

The combination of the four scores is ruled by four corresponding weights that may

set each of the components to be more or less decisive for the final estimate. The weights

are continuously updated during the actual functioning of the system according to the

scores produced by the four components. In this way the Weights updater protects the

system from being biased by components that may malfunction in certain circumstances

and produce too high or too low scores for all alerts.
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When the four scores are sent to the weights updater it adds them to its data and

recalculates the four weights. These are used by the Validity score calculator, to produce

the final validity score for the examined alert. The procedure is repeated for every alert.

In the next subsections the logic and the algorithm of each one of these components

are presented.

6.2.1 Configuration of components

The components deciding the validity of each alert are parametrized, in order to be

eligible to produce correct scores for diverse alert-sets. The Sensor Manager subsystem

reads the incoming alert-set and calculates two variables, which depend on its nature.

The two variables are Alerts density denalerts and Alerts variance varalerts and are con-

sequently used in the calculation of parameters used for the configuration of the four

validity estimation components.

The denalerts variable shows how dense the alerts are. It is high if alerts are close in

time and lower if they are sparse. Its calculation is easy for the Sensor Manager as it is

produced by the number of alerts and the time range of the alert-set. For an alert-set

with n alerts denalerts is calculated as in Equation 6.1.

denalerts =
n

timen−1 − time0
(6.1)

The varalerts variable shows the diversity of alerts in terms of kind of attack (signature).

An alert-set with variety in alerts’ signatures is characterized by high values of varalerts

, while another one with signatures recurring through adjacent alerts has lower values

of varalerts . It is obvious that, while the possible signatures are in the magnitude of

hundreds, an alert-set with thousands of alerts cannot have a different signature for

each one of its alerts. What is important for calculating varalerts is changes of signature

in adjacent alerts. Specifically the alert-set is split to chunks of ten alerts each. The

number of chunks is easily calculated by Equation 6.2. The distinct signatures in each

chunk are counted and their population is divided by ten to produce the local variance,

as shown in Equation 6.3. The global variance for the whole alert-set is the average of the

local variances and is calculated as shown in Equation 6.4.
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numchunks = (alertsetsize ÷ 10) + 1 (6.2)

varn
local =

number of distinct signatures

10
(6.3)

varalerts =

numchunks
∑

i=1
vari

local

numdecs

(6.4)

6.2.2 NRA component

For each alert the NRA component examines the existence of other alerts that are close

in time and seem to be related to it. The assumption on which NRA is based is that true

alerts seem to have more neighbouring related alerts, while false ones seem to have less.

When a real attack occurs, and the intrusion detection system detects it, a group of

alerts, related to the attack, is produced. According to the nature of the attack the number

of produced alerts varies. For specific attacks such as port scanning this number can be

extremely large. These alerts are related to each other and this relation can be indicated

by similarities in their source and destination IP addresses.

On the other hand, false positives are false alerts which are evenly distributed through-

out the huge amount of alerts produced by the intrusion detection system. Therefore, a

decision on whether an alert is true or false can be based on the number of alerts that

occur in a time window around the specific alert and have common values in the source

and destination IP address fields with the specific alert.

The input of the NRA component is of type Alert, the fields of which are shown in

Table 5.1, while its output is the corresponding validity score.

The operation of NRA is configured by two parameters, namely the density limit dlNRA

and the time window twNRA. These are calculated from the variables of the alert-set

mentioned in subsection 6.2.1, as shown in Equations 6.5,6.6. These relations have been

decided empirically, by observing the performance of the component on various alert-sets.

dlNRA =
0.4

varalerts
(6.5)

twNRA =
100

denalerts

(6.6)
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The component scans the alert-set backwards until it finds the first alert of which the

time difference with the alert being examined is greater than twNRA value. Practically it

scans all alerts in a time window that ends at the alert being examined and has width

equal to twNRA. While scanning these alerts the component counts how many of them

are related to the alert being examined. This relation’s conditions are:

• There is at least one equality of source and destination IP addresses between them.

• They do not share the same signature.

One of the source or destination IP addresses of the scanned alert should be equal to

one of the source or destination IP addresses of the alert being examined. The equality

may exist between the source IP of one alert and the destination IP of the other, or vice

versa. Because it is not always the case that only outgoing or only incoming packets

produce the alerts, it is possible to find two related alerts, produced by traffic of different

directions. In this case their source and destination IP addresses equalities will hold

crosswise.

The condition for the two related alerts to have different signatures prevents alerts that

reappear many times from being wrongly estimated by the component. If this condition

were not present, then if the component examined an alert that appeared many times,

which is a very common scenario in intrusion detection alert-sets, it would count its past

appearances as related alerts and would produce a high validity score for it.

In order to produce the component validity score the percentage of related alerts out

of all alerts in the previous twNRA time range is calculated. The percentage is normalized

by using as maximum value the dlNRA.

density =
number of related alerts in twNRA

number of alerts in twNRA
(6.7)

scorenorm =
min(density, dlNRA)

dlNRA

(6.8)

The logic of the NRA component is shown in Algorithm 6.1.
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1: i is the index of alert being examined

2: timenow ← alerttime(i)
3: neigbours← 0
4: counterrun ← i− 1
5: timediff ← alerttime(i)− alerttime(counterrun)
6: while timediff < twNRA do

7: if alertsip(i) == alertsip(counterrun) ∨ alertsip(i) == alertdip(counterrun) ∨
alertdip(i) == alertsip(counterrun) ∨ alertdip(i) == alertdip(counterrun) then

8: if alertsig(i) 6= alertsig(counterrun) then

9: neigbours← neighbours + 1
10: end if

11: end if

12: counterrun ← counterrun − 1
13: timediff ← alerttime(i)− alerttime(counterrun)
14: end while

15: density = neigbours
i−counterrun+1

16: score = min(density,dlNRA)
dlNRA

Algorithm 6.1: Algorithm of NRA component

6.2.3 NRAS component

NRAS is similar to the NRA component, but some of the rules that should hold for an

alert to be counted as related to the one examined are loosened. The rationale behind

this is to produce high scores for specific kinds of attacks, in which produced alerts may

relate in an uncommon way, e.g. sweeping attacks.

Specifically the conditions that should hold for assuming two alerts as related are:

• The two alerts should have one equality either between their source IPs or their

destination IPs, while the difference of the IPs in the other pair should be less than

256.

• The signatures of the two alerts should be different.

Usually in sweeping attacks the intruder scans the whole IP range of a network and

takes action against hosts found alive. This means that the the produced alerts will

probably share the same source IP, while their destination IPs will have continuous values.

If the outgoing traffic produces the alerts then they will have common destination IPs and

their source IPs will have continuous values. Usually sweeping is committed for /24

networks, so the relevant condition demands the distance between varying IPs to be less

than 256.
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As it has been done in NRA it is required for the signatures of the examined alerts to

be different, to consider the alerts relevant. For sweeping attacks it is common to produce

multiple alerts with the same signature but varying IP addresses. It has been opted not to

use the existence of such alerts as a validity indication, because it would hinder correct

estimation for the majority of alerts, as it has been analysed in the previous Subsection.

The NRAS component is also configured by the same parameters as the NRA compo-

nent, dlNRAS and twNRAS . They are calculated as it is shown in Equations 6.9, 6.10.

These relations have been decided empirically, by observing the component performance

on various alert-sets.

dlNRAS =
0.4

varalerts
(6.9)

twNRAS =
1000

denalerts

(6.10)

The operation of NRAS component is identical to that of the NRA component, except of

the part of deciding the relation or not between two alerts. The logic of the NRA component

is Algorithm 6.2.

1: i is the index of alert being examined

2: timenow ← alerttime(i)
3: neigbours← 0
4: counterrun ← i− 1
5: timediff ← alerttime(i)− alerttime(counterrun)
6: while timediff < twNRAS do

7: if (alertsip(i) == alertsip(counterrun) ∧ |alertdip(i)− alertdip(counterrun)| < 256) ∨
(alertdip(i) == alertdip(counterrun)∧|alertsip(i)−alertsip(counterrun)| < 256) then

8: if alertsig(i) 6= alertsig(counterrun) then

9: neigbours← neighbours + 1
10: end if

11: end if

12: counterrun ← counterrun − 1
13: timediff ← alerttime(i)− alerttime(counterrun)
14: end while

15: density = neigbours
i−counterrun+1

16: score = min(density,dlNRAS )
dlNRAS

Algorithm 6.2: Algorithm of NRAS component
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6.2.4 HAF component

A metric used in the HAF component is the signature-related frequency. For a specific

alert ale with time-stamp aletime and signature alesig, the signature-related frequency is

the frequency with which alerts with signature alesig appear in a time window around

aletime.

For the time window [aletime − dt,aletime + dt] the signature-related frequency for

signature alesig can be calculated by the number of alerts that exist in the time window

and carry signature alesig. If this number is denoted by n then the signature-related

frequency fre
alesig
aletime

for the specific signature at the specific time can be calculated as

shown in Equation 6.11.

fre
alesig
aletime

=
n

2 ∗ dt
(6.11)

The functioning of HAF is based on the observation that it is more probable for an alert

to be a true positive if it appears in higher frequency compared to the mean frequency

of alerts describing the same attack (alerts of the same signature). In other words, an

occurring attack increases the signature-related frequency of the alerts it produces.

The HAF component is configured by one parameter, the frequency limit frelimit. This

is calculated as shown in Equation 6.12. This relation has been decided empirically, by

observing the performance of the component on various alert-sets.

frelimit =
5

denalerts

(6.12)

In order for the HAF component to function, the Sensor Manager needs to hold

signature-related frequencies and update them as new alerts come in. This is done by the

SFH component that will be analysed in the next section. The HAF component calculates

for each alert the relative current signature frequency. It then compares it to the average

frequency for the signature of the alert, that is returned by the SFH component. The

ratio of the current to the average frequency is then used as indication of validity for the

examined alert.

In order to calculate the current signature-related frequency for an alert the compo-

nent should scan alerts in a time window before it. It should then sum up the appearances
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of the alert’s signature and divide them by the number of alerts existing in this window.

For efficiency reasons this logic has not been used.

Instead the component calculates the time distance timedist of the examined alert

to the closest alert that shares the same signature. In most of the cases, this provides

a satisfactory estimate of the current signature-related frequency. The time distance is

divided by 1000 as it is in milliseconds and 1 sec is added to avoid division by 0, in cases

where two alerts with the same signature share the same time-stamp. If no alert with the

same signature exists in the alert-set then the frequency is set to 0. The calculation of

current signature-related frequency is as shown in Equation 6.13.

frecur(sig) =











1
1+ timedist

1000

, if an alert with same sig exists

0, if an alert with same sig does not exist

(6.13)

Regarding the average frequency, 0 is returned from the SFH component if no other

appearance of the specific signature exists. In this case the ratio value is set to 1. The

frequencies ratio is calculated as shown in Equation 6.14.

A limit is used to normalize the outcome of the ratio of the current to the average

frequency, the value of frelimit. The normalized frequency ratio, which is the final validity

score outputted by the component, is calculated by Equation 6.15

freratio =











frecur(sig)
freavg(sig) , iffre

avg(sig) > 0

1, otherwise

(6.14)

scorenorm =
min(freratio, frelimit)

frelimit

(6.15)

The logic of the HAF component is presented in Algorithm 6.3.

6.2.5 SFH component

The SFH component is an auxiliary component that provides information to the HAF

component. Its mission is to hold signature-related frequency values for all signatures

and update them at each new alert. When a new alert arrives, the HAF component

requests from SFH to provide it with the average signature-related frequency for the alert

under examination, which is calculated by previous alerts.
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1: i is the index of alert being examined

2: irun ← i− 1
3: found← false

4: while i ≥ 0 ∧ found = false do

5: if alertsig(irun) = alertsig(i) then

6: found← true

7: end if

8: end while

9: if found = false then

10: frecur ← 0
11: else

12: timedist = alertsig(i)− alertsig(irun)
13: frecur ← 1

1+ timedist
1000

14: end if

15: Read freavg from SFH

16: if freavg > 0 then

17: scoreHAF ←
min( frecur

freavg
,frelimit)

frelimit

18: else

19: scoreHAF ← 1
20: end if

Algorithm 6.3: Algorithm of HAF component

The component holds the number of appearances of each signature in a hash table.

Each hash table record consists of a key-value pair. The key is the signature and the

value is the number of its appearances. The component runs periodically to update this

table. The period used, denoted by TSFH , is calculated using the density of the alert-set,

as shown in Equation 6.16.

TSFH =
0, 3

denalerts

(6.16)

In order to update the hash table SFH stores indexlast, the index of the last alert of

the alert-set during its last update. At each run it checks if any new alerts have been

produced by the sensor. If there are new alerts, then it scans them and for each one of

them it increases the appearances of its signature by one. If the signature of a new alert

is not present in the hash table, which means that SFH examines the first alert carrying

it, then a new key-value pair (sig,1) is added to the table. The indexlast is updated to the

last alert of the alert-set.

When an average frequency is requested for a signature by the HAF component SFH
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recalls the number of appearances for the specific signature, divides it by the total number

of alerts in the alert-set and returns the result to HFA.

6.2.6 RFP component

False Positives usually derive from causes that may be related to the topology of the

network, mis-configured hosts or periodical lawful services and tasks that are carried out

in the network. All these causes are time invariant and produce recurrent patterns of false

positives. The rationale of the RFP component is to use these patterns, in order to detect

false positives. If the alerts produced for a specific network are examined thoroughly for a

long period, then the signatures that consistently produce alerts in identifiable patterns

can be detected.

The RFP component examines the alert-set and detects patterns of recurring alerts

that could have been produced by persistent causes, existing in the protected network.

For each one of the discovered false positives patterns the component calculates a validity

score fppval. This score corresponds to the probability that alerts matching the pattern

are in fact false positives. For every new alert the component checks if it matches to any

of these patterns. If it does, the component calculates a relatively low validity score for it,

using the fppval value of the pattern. Otherwise the validity score produced for an alert

for which no match occurs is equal to 1.

During the detection of the pattern, an important parameter is the average period

between recurring alerts. This should not be too small as multiple patterns would be

produced by bursts of alerts. It is common for many identical alerts, sharing the same

time-stamp or having minimal differences in time, to have been produced by a single

event. In these cases no pattern should be detected by the RFP component.

Even if continuously searching for new patterns in the growing alert-set is not a

lightweight task for the system, the component keeps updating the patterns found at

each new alert. This ensures that no false positives will go unnoticed because of slow

pattern detection.

In order to find the patterns the alert-set is scanned from first to last alert. The

patterns consist of three values, namely signature, source IP and destination IP. An

important assumption for the efficiency of the component is that these patterns should



6.2 Calculating a validity score for each alert 69

refer to alerts of low danger (with low class id values). Periodic lawful tasks in a network

usually produce such alerts and additionally this is a safety choice, in order not to detect

as false positive any recurring dangerous alert.

The conditions for a pattern to be detected are :

• The class id alecid of the alert should be less or equal to 2.

• There should be at least ten alerts in the alert-set that match to the pattern (carrying

pattern’s sig, sip, dip).

• The average period of the recurring patterns should be more than 2 seconds.

If these conditions are met then a false positives pattern validity score fppval is cal-

culated with respect to its average period. It is considered that a period of 15 seconds

is an appropriate representative value for periods of recurring nominal tasks. A function

built upon two different Gaussian distributions is used in order to transform the average

period value of the pattern to the pattern validity fppval score. The score should be low

for patterns with periods close to 0 seconds, it should then peak at values equal to 1 for

patterns with periods close to 15 seconds and then slowly approximate 0 again for period

values around 5 minutes. The function used is shown in Equation 6.17.

fppval =











exp−
(peravg−15)2

2∗42
, if peravg < 15.

exp−
(peravg−15)2

2∗1002
, otherwise.

(6.17)

The graphical representation of this function is shown in Figure 6.2.

After the rescanning of the updated alert-set for new possible patterns the component

checks the new alert against all patterns. If a match exists the validity score for the alert

is calculated as shown in Equation 6.18. Otherwise the component sets the validity score

for the alert equal to 1. The score produced by the component is representative of the

probability of the alert being true, so high fppval should produce high scores and vice

versa.

scoreRFP =











1− fppval, if a match exists.

1, otherwise.

(6.18)

The logic of the RFP component is shown in Algorithm 6.4.
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Figure 6.2: False positives pattern validity function

6.2.7 Weights updater and Validity score calculator

The Weights updater is the component responsible for updating the weights used to

fuse the four scores produced by the NRA, NRAS, HAF, RFP components to one final

validity score. The four weights sum up to one, while at the start of the functioning of the

system, they are all initiated to 0,25.

wNRA +wNRAS + wHAF + wRFP = 1 (6.19)

wNRA
init = wNRAS

init = wHAF
init = wRFP

init = 0, 25 (6.20)

The Weights updater keeps monitoring the score values produced by each component.

It adjusts the weights, in order to increase the influence to the final score for components

that seem to perform better, while decreasing the corresponding influence for components

that seem not to perform well.

The Weights updater checks the validity scores produced by each component. It takes

into account a number of alerts (most recent ones) and calculates a deviation metric for

each component. The main idea behind this is that a component that is not able to cope
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with a specific running taxonomy of alerts will probably consistently produce too low or

too high validity score values. Low deviation is taken as an indication of low performance,

while a higher one is a characteristic that should increase the weight of the corresponding

component.

The four deviation values calculated are normalized to sum up to one. In the case of

alerts’ series that force all components to low deviation their weights won’t be lowered as

during the normalization phase they will be forced to sum up to 1.

The Weights updater keeps a record of the last n0 validity scores produced by each

one of NRA,NRAS,HAF and RFP (n0 = 500 has been used). As a new score comes in the

first one of the n0 scores stored is discarded and the new one is added to the list. Then

the weights deviation wdev is calculated for each one of the four components. In Equation

6.21 the calculation of the mean of weights is shown for the NRA component, while in

Equation 6.22 the deviation for the same component is calculated.

wmean
NRA =

i=n0
∑

i=1
scoreNRA(i)

n0
(6.21)

wdev
NRA =

√

√

√

√

√

i=n0
∑

i=1
(scoreNRA(i)− wmean

NRA )2

n0
(6.22)

The same calculation is conducted for the other three components. Then the normal-

ization takes place. Each of the four components deviation is divided by their sum to

produce the final weight. This is shown for NRA in Equation 6.23

wNRA =
wdev
NRA

wdev
NRA + wdev

NRAS +wdev
HAF + wdev

RFP

(6.23)

After calculating the four updated weights, the Weights updater sends them to the

Validity score calculator, which uses them to combine the four different scores. The final

score is computed by Equation 6.24.

scorefinal = wNRA∗scoreNRA+wNRAS∗scoreNRAS+wHAF ∗scoreHAF+wRFP ∗scoreRFP

(6.24)
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The functioning of this component is simple and could have been incorporated in

another component. It has been implemented in a separate component, in order to test

more complex fusion ideas for the four scores in the future.

6.3 Aggregating alerts

The second main task of the Sensor manager is to aggregate identical alerts, produced

by the corresponding sensor. The AGC component transforms such groups of identical

alerts to aggregated alerts that hold all the information that existed on identical alerts

aggregated along with other data such as their number and the time space in which they

existed. A validity score is attached to the produced aggregated alerts, by calculating the

mean value of the validity scores of alerts aggregated.

The task of the AGC component is to compare on the fly incoming alerts to close in

time previous ones and to discover alerts candidate for aggregation. While the comparison

is a relatively simple procedure, attention has been focused on enabling the component

to be effective even if high volume of alerts is produced by the sensor.

It is essential to prevent latency being introduced in the system functioning at such an

initial stage of the procedure. Otherwise this latency will be propagated and multiplied

in next components that accept as input the output of the AGC components. For this

reason AGC component keeps two lists for its aggregated alerts. A live aggregated alerts

list contains all recent aggregated alerts that are eligible for aggregating to them future

alerts. A final aggregated alerts list is used to move aggregated alerts from the live list,

when they become too old for aggregating future alerts to them.

The AGC component sends aggregated alerts to the Clustering subsystem as soon as

they become final and no further evolution is possible. Practically alerts that are produced

from sensors are grouped to aggregated alerts, when they are identical to their neighbour-

ing alerts. If no match exists they are transformed to aggregated alerts (containing only

one alert). The produced aggregated alerts are then propagated to the Clustering sub-

system, with a small delay to ensure that no other single alert should be aggregated to

them.

The component upon each new alert arrival performs two tasks. The first one is to

scan the live aggregated alerts’ list for too old entries and move the ones found to the final
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aggregated alerts list. The second task is to examine if the new alert can be aggregated to

any of the aggregated alerts, remaining in the live list, or if a new aggregated alert should

be created.

The aggregated alerts list update is committed before trying to aggregate each new

alert. There is a timewidth parameter that is used for deciding the discarding of a live

aggregated alert. If the end time of an aggregated alert is more than timewidth old then this

aggregated alert is removed from live list and added to the final list. In the implementation

of the system this value has been set to 120 seconds, assuming that differences between

identical alerts produced by the same event should not exceed this value.

timewidth = 120 secs (6.25)

In order to add the new alert to the aggregated alert-set the component scans the live

aggregated alerts list and finds the most recent aggregated alert that matches with the

new alert. The matching conditions are:

• The new alert and the aggregated alert should share the same signature.

• The new alert and the aggregated alert should share the same source and destination

IP addresses.

If a matching aggregated alert is found then the new alert is added to it. In practice

the end time of the aggregated alert is set equal to the time of the new alert, its number of

alerts is increased by one, and its truth value is updated to be the average of the scores

of all alerts, as shown in Equation 6.26

truthnew =
agatruth ∗ aganum + aletruth

aganum + 1
(6.26)

If no matching alert is found then a new aggregated alert is created. Sensor id,

Signature, Class id, Source IP, Destination IP and Truth attributes inherit their values

from the initial alert. Start time and end time of the aggregate alert are set equal to the

time field of the initial alert. The number of alerts value is obviously set to be equal to 1.

The logic of aggregation component is shown in Algorithm 6.5.
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1: {Updating found patterns}

2: patternsscanned← new empty patterns list

3: size← size of alert-set

4: for i = 1→ size do

5: alertbase ← alert(i)
6: if alertbaseclassid ≤ 2 then

7: pat← pattern matching alertbase

8: if ¬patternsscanned contains pat then

9: add pat to patternsscanned
10: times← new empty time values list //list of times of appearances

11: timelast ← alertbasetime // last time value scanned

12: add alertbasetime to times

13: for j = i+ 1→ size do

14: alertrun ← alert(j)
15: if alertrun matches to pat ∧alertruntime > timelast then

16: timelast ← alertruntime

17: add alertruntime to times

18: end if

19: end for

20: if size of times > 10 then

21: peravg ← average period between values of times

22: if peravg < 15 then

23: fppval ← exp−
(peravg−15)2

2∗42

24: else

25: fppval ← exp−
(peravg−15)2

2∗1002

26: end if

27: add pat,fppval to found patterns Hashmap

28: end if

29: end if

30: end if

31: end for

32: {Checking new alert}

33: if last alert matches to a pattern fppmatch then

34: scoreRFP ← 1− fppmatch
val

35: else

36: scoreRFP ← 1
37: end if

Algorithm 6.4: Algorithm of RFP component
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1: {Updating live aggregated alert}

2: i← index of last live aga

3: Read system’s time tnow
4: while i ≥ 0 do

5: if tnow − agaeti(i) > timewidth then

6: remove aga(i) and add it to final list

7: end if

8: i← i− 1
9: end while

10: {Aggregating new alert}

11: found← false

12: i← index of last live aga

13: while i ≥ 0 ∧ ¬found do

14: if agasip(i) = alertsip ∧ agadip(i) = alertdip ∧ agasig(i) = alertsig then

15: agatruth(i)←
agatruth(i)∗aga

num(i)+alerttruth
aganum(i)+1

16: aganum(i)← aganum(i) + 1
17: agaeti(i)← alerttime

18: found← true

19: end if

20: i← i− 1
21: end while

22: if found=false then

23: Create new aga

24: agasid ← alertsid
25: agasig ← alertsig
26: agacid ← alertcid
27: agasip ← alertsip
28: agadip ← alertdip
29: agatruth ← alerttruth
30: agasti ← alerttime

31: agaeti ← alerttime

32: aganum ← 1
33: add aga to live aggregated alerts

34: end if

Algorithm 6.5: Algorithm of AGC component
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C H A P T E R 7

Clustering subsystem

T
he clustering subsystem clusters related aggregated alerts, to produce a more

meaningful representation of the security state of the system. The approach used

is similarity based clustering. The subsystem monitors the nature of incoming aggregated

alerts and adjusts its operation to it. Its main objective is to produce one or at most a

few clusters for each occurred event. Moreover the Clustering subsystem attempts to hy-

pothesize on events missed by the intrusion detection sensors and estimate parameters

of missing clusters. The combined clusters’ list is stored in the database of the system,

to be read by the Visualisation subsystem.

7.1 Design of the Clustering subsystem

The Clustering subsystem is responsible for transforming alerts, that correspond to

low level events, to clusters, that correspond to higher level intruder actions. Its function-

ing is fundamental for the production of a reasonable representation at the output of the

system. The wrong level of clustering (producing either too many or too few clusters) is

capable of destroying the final representation, even if all other subsystems perform well.

Along with conducting the necessary clustering to present information about detected

events in an efficient manner, this subsystem tries to hypothesize on events that have

been completely missed by the intrusion detection sensors and to supply the security

analyst with estimated information about these events. This hypothesis and estimation

procedure should also be fine-tuned, because otherwise there is significant risk to flood

the real alert-set with artificial data.

The Clustering subsystem may function in either simple or advanced mode. In simple
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mode clusters generation for hypothesizing on missed events is omitted, while in advanced

mode it is incorporated. Then main components of this subsystem are depicted in Figures

7.1 and 7.2. The first figure shows simple mode functioning, where only Merger, Clus-

terer and Weights updater are used. In the second Figure advanced mode functioning is

depicted where Clusters generator is also used.

Merger

Clusters generator

Clusterer

Aggregated alerts Aggregated
alerts

Clusters

Clustering subsystem

Aggregated alerts

Aggregated alerts

Weights 
updater

Weights

Figure 7.1: Clustering subsystem (simple mode)

Merger

Clusters generator

Clusterer

Aggregated alerts Aggregated
alerts

Clusters

Clustering subsystem

Aggregated alerts

Aggregated alerts

Clusters Generated
clusters

Weights 
updater

Weights

Figure 7.2: Clustering subsystem (advanced mode)

7.1.1 Simple mode

The component that accepts the output of the previous subsystem, is the Merger. It is

responsible for merging multiple flows of Aggregated alerts coming from the corresponding
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Sensor managers into one single flow. During merging, Aggregated alerts, that seem to

refer to the detection of the same event by different sensors, are discarded.

The Aggregated alerts produced by the Merger are sent to the Clusterer. Each step in

the plan of an intruder may produce more than one different alerts, which are propagated

through previous components as different Aggregated alerts. Additionally consecutive

steps may also produce related alerts. The Clusterer tries to construct clusters of groups

of alerts related to each other. For each new alert it calculates similarity values to all

existing clusters that have been formed from previous alerts and according to these values

it either adds the alert to an existing cluster or it creates a new cluster consisting only of

this single alert.

The Clusterer runs periodically every two seconds. The output of each run is a set

of clusters that corresponds to the security state of the protected system from the start

of monitoring up to the time of the run. The set of clusters is stored in the database,

from where it is continuously read by the Visualization subsystem, which consequently

updates a graph of the security state of the protected system.

The Weights updater is responsible for optimizing weight parameters used by the

Clusterer. The latter needs to be configured according to the nature of the Aggregated

alerts’ set. The Weights updater checks the set everytime a new alert arrives and calcu-

lates values of parameters representative of the nature of the alert set. Based on these

parameters the component recalculates the weights to be used in the Clusterer.

7.1.2 Advanced mode

In the advanced mode an additional component is used, namely the Clusters genera-

tor. Its task is to estimate information about security events missed by intrusion detection

sensors.

The idea behind hypothesizing on missed events is that most of the time these events

are part of a general attack plan, so they are correlated to the steps that come before or

after them in this plan. By examining the detected events and searching for logical gaps

between them, the Clusters generator can detect cases where an event has been probably

missed and estimate information about it.

This component examines the clusters’ set periodically and discovers candidate cases



80 Clustering subsystem

for missing events. The detection is carried out by checking for all possible pairs of

clusters, that have a minimum time difference, if there is detected activity between them

that seems to logically connect them, or not. If no such activity exists, then the pair is

assumed as a candidate case for cluster generation. For each one of the candidate cases

the steps described below are followed:

• An artificial cluster is created in the form of generated cluster described in Table

5.1. Its parameters are calculated by the parameters of the real clusters of the

relevant pair.

• The artificial clusters generated in the previous step are examined in terms of the

quality of information they add to the alert-set. A quality metric has been defined

for this examination and clusters with higher quality are propagated to the next

step, while the rest are discarded.

• The clusters that have not been discarded at the previous step are fine tuned in

order to touch up their quality of information without significantly altering their

state.

7.2 Merger

The task of the Merger is to combine multiple flows of aggregated alerts, into a sin-

gle flow. The main issue in this procedure is to avoid incorporating into the produced

aggregated alerts set multiple similar aggregated alerts, describing the same event.

The Merger accepts input from more than one Sensor managers. It provides them

with an interface to add their aggregated alerts to its alert-set. As it has been described

in Section 6.3 the AGC component keeps a list of live aggregated alerts. As soon as an

alert is discarded from this list, which means that it will not change in the future, it is

also sent to the Merger by using this interface.

Practically the Merger adds each incoming aggregated alert to its global aggregated

alerts list. Before doing so, it checks whether there is an existing similar aggregated alert

added by another Sensor manager in the list. If there is, the new aggregated alert is

discarded. If there is not, the new alert is added to the global list and at the same time it

is sent to the Clustering component.
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The Merger is configured by a time width value timewidth, which is the maximum

time difference allowed for two alerts to be considered as similar and eventually discard

one of them. Using a high value for this parameter will decrease the performance of the

system, while it will ensure that no identical alerts will be propagated to next components,

even if there is a larger time difference between them. During the implementation of the

component, this timewidth parameter value has been set to 10 seconds.

timewidth = 10 seconds (7.1)

The logic of handling a new alert, coming in the component, is shown in Algorithm

7.1.

1: aga← existing aggregated alerts list

2: a← new incoming alert

3: mark_for_deletion← false

4: size← aga.size()
5: i← size− 1
6: while i > 0 ∧ agasti(i) > aeti + timewidth do

7: if (agasip(i) = asip) ∧ (agadip(i) = adip) ∧ (agasig(i) = asig) then

8: mark_for_deletion← true

9: end if

10: i← i− 1
11: end while

12: if mark_for_deletion = false then

13: aga.add(a)

14: Send a to next component

15: end if

Algorithm 7.1: Merger algorithm

7.3 Clusterer

The Clusterer component decides which of the aggregated alerts produced by the

Merger are related to each other and groups them to relative clusters. Similarity based

clustering has been chosen as the methodology that efficiently detects relations between

aggregated alerts. A similarity metric is defined between an aggregated alert and a cluster,

the values of which range from 0 to 1.

The approach used is to add each of the incoming aggregated alerts to one of the exist-

ing clusters. If the aggregated alert is not relevant enough to any cluster then a new one
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is created by it. There is a similarity value simthre that is used as the minimum threshold

for an aggregated alert to be clustered to an existing cluster. In the implementation of

the Clusterer component a simthre value equal to 0.6 was used. If for a new aggregated

alert the similarity values to all existing clusters are below simthre, then a new cluster

is created, otherwise the alert is added to the cluster to which the larger similarity value

corresponds. The logic of handling each new aggregated alert is shown in Algorithm 7.2.

1: aga← incoming aggregated alert

2: clu← existing cluster’s list

3: size← clu.size()
4: i← 0
5: simmax ← 0
6: indexfound ← −1
7: while i < size do

8: sim← sim(aga, clu(i))
9: if (sim > simthre) ∧ (sim > simmax) then

10: indexfound ← i

11: simmax ← sim

12: end if

13: i← i+ 1
14: end while

15: if clufound = −1 then

16: clunew ← create_new_cluster(aga)
17: clu.add(clunew)
18: else

19: clu(indexfound).add(aga)
20: end if

Algorithm 7.2: Clustering a new aggregated alert

7.3.1 Creating a new cluster from an aggregated alert

In order to create a cluster from a new aggregated alert, the cluster’s fields values are

concluded from the values of the corresponding alert’s fields values. Specifically:

• The list of cluster’s signatures is initiated with only one value, the signature of the

aggregated alert.

• The list of cluster’s class ids is initiated with only one value, the class id of the

aggregated alert.

• The Cluster’s start time is set equal to aggregated alert’s start time.
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• The Cluster’s end time is set equal to aggregated alert’s end time.

• List of cluster’s source IPs is initiated with only one value, the source IP of the

aggregated alert.

• List of cluster’s destination IPs is initiated with only one value, the destination IP of

the aggregated alert.

• Cluster’s truth is set equal to the aggregated alert’s truth.

• Cluster’s alert number is set equal to the aggregated alert’s number of alerts.

• Auxiliary cluster’s fields are updated accordingly.

7.3.2 Adding an aggregated alert to an existing cluster

If the similarity of the examined aggregated alert to at least one of the clusters is more

than the threshold value, then it is added to the cluster with the highest similarity value.

In order to update the cluster’s fields values the corresponding values of the aggregated

alert’s fields are used:

• Aggregated alert’s signature is added to the list of cluster’s signatures, if it is not

already included.

• Aggregated alert’s class id is added to the list of cluster’s class ids, if it is not already

included.

• If aggregated alert’s start time is earlier that cluster’s start time then the latter is

set equal to aggregated alert’s start time.

• If aggregated alert’s end time is later that cluster’s end time then the latter is set

equal to aggregated alert’s end time.

• Aggregated alert’s source IP is added to the list of cluster’s source IPs, if it is not

already included.

• Aggregated alert’s destination IP is added to the list of cluster’s destination IPs, if it

is not already included.
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• Cluster’s truth is calculated by the it’s initial truth value and the aggregated alert’s

truth value.

clunewtruth =
clunum ∗ clutruth + aganum ∗ agatruth

clunum + aganum
(7.2)

• Cluster’s alert’s number is set equal to the sum of its initial alert’s number and the

number of alerts of the aggregated alert.

• Auxiliary cluster’s fields are updated accordingly.

7.3.3 Calculating similarity

The main parameter defining the functioning of the Clusterer is the similarity between

an aggregated alert aga and a cluster clu. This similarity sim(aga,clu) is decided by

individual similarities relative to IP, time and signature values of the aggregated alert and

the cluster. Specificaly:

sim(aga, clu) = wIP ∗ simIP (aga, clu) +wtime ∗ simtime(aga, clu) +wsig ∗ simsig(aga, clu)

(7.3)

Each one of the three individual similarities is calculated upon the respective values

of the aggregated alert and the cluster. Additionally there are three corresponding weight

values that are updated by the Weights updater component. They are used to alter

the similarity calculation centre of gravity according to the nature of the alert-set. The

calculation of each one of the three individual similarities is analysed as follows:

IP similarity

The aggregated alert has a source and a destination IP address, agasip and agadip. The

IP similarity of these to the IP addresses of the cluster is calculated and the maximum

value is picked as the similarity value for the aggregated alert.

simIP (aga, clu) = max(simIP (agadip, clu), simIP (agasip, clu)) (7.4)

In order to calculate these two similarities the component needs minimum and max-

imum internal IPs of the cluster along with its minimum and maximum external IPs.
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The first two exist in the Cluster data format and are automatically updated, as they

are required by the Visualization subsystem. The limits for the external IPs (cluminei and

clumaxei) are calculated before calculating the similarity. When examining the similarity

of an internal IP to a cluster, the internal minimum and maximum IPs of the cluster are

utilized. On the other hand external minimum and maximum IPs of the cluster are used

when the similarity of an external IP is calculated.

If the IP in examination is inside the IP range of the cluster used, then 1 is returned

as similarity. If the IP is outside the IP range of the cluster then the multiplicative inverse

of its distance from it is returned as similarity. The distance of the IP from the range of

the IPs of a cluster is equal to the minimum of its distances from the two limits of the

range as shown in Equation 7.5.

distIP (IP, rangemin, rangemax) = min(|IP − rangemin|, |IP − rangemax|) (7.5)

The similarity of an internal IP to a cluster clu is calculated as shown in Equation 7.6.

simIP (IP, clu) =











1, if cluminii ≥ IP ≥ clumaxii

1
distIP (IP,cluminii,clumaxii)

, otherwise

(7.6)

If the IP is an external IP the same equation holds, by replacing cluminii and clumaxii

with cluminei and clumaxei respectively.

Time similarity

In order to calculate the similarity of time values between an aggregated alert and

a cluster, the time ranges (start time to end time) of both are compared. Two factors

decide time similarity, namely the percentage of the time range of the aggregated alert

that overlaps with the time range of the cluster and the distance between the two ranges

if they don’t overlap. These two factors are expressed in two variables: relativeness factor

rf and distance d.

The rf value is calculated as shown in Equation 7.7, while the d value is calculated
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as shown in Equation 7.8.

rf =
length of part of aga time range that overlaps with clu

aga time range
(7.7)

d =



























agasti − clueti, if aga is after clu

clusti − agaeti, if aga is before clu

0, if aga and clu overlap

(7.8)

The time similarity is calculated by these two parameters as shown in Equation 7.9.

simtime =
rf − max(d,d0)

d0
+ 1

2
(7.9)

The d0 parameter is used to normalise time distances. The ratio
max(d,d0)

d0
is close to

zero for small distances and is maximized to 1 for time distances d0 or larger. In the

implementation of the system d0 has been set equal to 120 seconds. In other words all

time distances above 120 seconds are considered to be infinite.

Signature similarity

Signature similarity is simple in calculation. The aggregated alert has a signature,

while the cluster has a signatures list. If the signature of the aggregated alert is included

in the list, then similarity is equal to 1 , while if it is not similarity is equal to 0.

simsig =











1, if agasig ∈ clusig

0, otherwise

(7.10)

7.4 Weights updater

The diversity in protected networks, intrusion detection sensors’ installations and

intruders’ activity makes using a static configuration for the three similarity weights

ineffective. The weights used by the Clusterer should be adjusted according to the nature

of the alert-set in examination. This is the task of the Weights updater component.

After each new alert, the component reads the aggregated alert-set and calculates

three parameters representative of its nature. For performance reasons, the parameters
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can be updated after several new alerts (e.g. after every 5 or 10 alerts). These parameters

are:

• Time density : Ratio of alerts number to time range

• Network density : Ratio of alerts number to size of the protected network

• Signatures variance : Variance of neighbouring alerts signatures

The calculation of the first two parameters is shown in Equations 7.11 and 7.12.

dentime =
aggregated alerts number

time from the start time of the first aggregated alert
(7.11)

dennet =
aggregated alerts number

max internal IP address - min internal IP address
(7.12)

The varsig is similarly calculated to the corresponding parameter for the initial alert-

set presented in subsection 6.2.1. It monitors changes of signature in adjacent aggregated

alerts. The alert-set is split into chunks of tens of aggregated alerts and a local variance

is calculated for each one of them. The global variance for the alert-set is the average of

the local variances.

numdecs = (alertsetsize ÷ 10) + 1 (7.13)

varn
local =

number of distinct signatures

10
(7.14)

varsig =

numdecs
∑

i=1
vari

local

numdecs

(7.15)

These three parameters characterize the incoming alert-set. In order to deduce the

weight values from them a reference alert-set has been used. Specifically a default alert

set with specific parameter values has been defined. These values are:
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den0
time = 0.3 (7.16)

den0
net = 4 (7.17)

var0sig = 2 (7.18)

The default aggregated alert-set has been defined to be as balanced as possible and

the appropriate weights for it have been chosen to be equal:

wIP = wtime = wsig = 0.33 (7.19)

The weights updater measures the deviation of the parameters of the real alert-set

from the parameters of the default one and according to this deviation it adjusts the three

weights. In order to avoid extreme circumstances, in which one weight could be over

increased at the expense of others, the range of the weights has been set to [0.2,0.6].

Three factors factortime, factornet, factorsig, each one of which is relevant to each one of

the parameters describing the nature of the alert-set are calculated.

factortime =
dentime

den0
time

(7.20)

factornet =
dennet

den0
net

(7.21)

factorsig =
1

varsig
var0sig

(7.22)

(7.23)

These three factors are then used to calculate the three weights.

wtime = 0.2 + 0.4
factortime

factortime + factornet + factorsig
(7.24)

wnet = 0.2 + 0.4
factornet

factortime + factornet + factorsig
(7.25)

wsig = 0.2 + 0.4
factorsig

factortime + factornet + factorsig
(7.26)
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7.4.1 Taking care of detached clusters

It is possible for alerts to not have an internal IP in none of their source or destination

IP fields. It is common for intruders to have taken control of an internal host to attack

another site, while using IP spoofing techniques to hide their intermediate location.

In such cases it is possible to have a cluster produced by these alerts with no internal

IP addresses. A cluster like this will not be visualized at all by the Visualization subsystem.

These clusters are characterized as detached clusters and the Clusterer should specifically

examine them.

The Clusterer checks nearby clusters for each detached cluster, while giving priority

to the ones overlapping with the detached cluster. It uses their internal IP addresses

to solve the problem and populate the internal IPs list of the detached cluster. In this

way there may be some ambiguity inserted in the final result, but all clusters, including

detached ones, are visualized by the Visualization subsystem.

7.5 Clusters generator

The task of the Clusters generator is to produce data for cases in which an occurred

event seems to not have a relevant cluster in the clusters’ list. The Clusters generator runs

periodically to discover such cases and to produce estimated information about missed

incidents.

The high level logic of the component is to study every possible pair of clusters with

a minimum time difference and conclude if there is a logical gap between them, that

could be filled by an artificially generated cluster. The clusters between the pair are

examined and if they do not seem to provide the required logical connection, an artificial

cluster candidate is created. Its data is produced by the pair’s data and it is subsequently

validated and tuned, in order to enhance the outcome. During validation the component

checks whether the cluster offers a minimum additional amount of information to the

existing list of clusters, otherwise it is discarded. During tuning its parameters are tuned

in order to maximize the quality of added information.

The Clusters generator operation consists of searching for artificial clusters candi-

dates, generating them, validating them and finally tuning them. These procedures are
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analysed in the next subsections.

7.5.1 Searching through clusters

The component searches for pairs of real clusters with a minimum time distance and

no significant activity monitored between them. In order to calculate the volume of activity

between the pair of clusters a geometric approach has been incorporated.

All clusters are plotted on a three dimensional space. X-axis corresponds to IP values,

y-axis to time values and z-axis to danger values. Each cluster is plotted as a rectangle

parallel to x-z plane and perpendicular to the x-y plane. Its height in z-axis is relevant

to its danger value. Its position in the y-axis is relevant to its time centre (the average

between its start and end times). Its limits on the x-axis are relevant to its minimum and

maximum internal IP addresses. An example of plotting a cluster is shown in Figure 7.3.

Figure 7.3: Plotting a cluster

All pairs of clusters are then examined as long as they abide by the following rules :

• The time difference of their time centres is at least 15 minutes. This is essential in

order not to produce artificial clusters for pairs that simply are close in time and

normally do not have any activity between them.
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• Their internal IPs range is at least 10 IPs. This rule also reduces the number of

candidates, in order not to flood the cluster-set with artificial data.

For all pairs that abide by these rules their intermediate clusters are examined one by

one. The intermediate clusters, whose rectangles intersect with the volume between the

pair’s rectangle (a three dimensional trapezoid) are used to estimate the activity between

the pair. For each one of them its projection to the second in time cluster of the pair is

calculated, as shown in Figure 7.4. The pair of the clusters in examination are the blue

and the orange rectangles, while the intermediate cluster is the green rectangle.
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Figure 7.4: Examining an intermediate cluster

The main idea of searching for candidates is that a large projection means that there

is important activity between the pair of clusters for the same IP space, while a smaller

projection means that there is not enough activity between the two clusters and that the

production of an artificial cluster may be suitable.

For intermediate clusters examined, their projections are produced. Then the union

of these projections is created and its area is calculated as a percentage of the area of

the second cluster of the pair. If this value exceeds a certain threshold then the activity

between the pair is assumed as sufficient; otherwise an artificial cluster candidate is

created.
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Projecting clusters

Regarding the intermediate cluster the projection calculation aims to discover its re-

lation of it to the clusters of the pair and if it can be considered as an intermediate step

between them. The relevant factors are:

• The cluster should be occuring between the pair

• The cluster should refer to a similar IP range

• Its danger values should be relatively high or at least close to the corresponding

values of the clusters of the pair

The parameters of the intersection of the rectangle of the intermediate cluster with the

volume between the rectangles of the clusters of the pair are calculated. These are the

minimum and maximum IP values along with the danger value. Then they are normalized

with respect to the parameters of the intersection of the plane of the intermediate cluster

with the volume between the rectangles of the clusters of the pair. After normalization

the three parameters have values in [0,1] range and are identical to corresponding values

of the projection rectangle with respect to the rectangle of the second cluster of the pair.

So if the pair of clusters is clustart, cluend and the intermediate cluster is cluinter their

parameters used in the calculation are shown in Table 7.1.

Table 7.1: Parameters of searching for artificial cluster candidates

Cluster Minimum internal IP Maximum internal IP Time centre Danger

clustart clustartminii clustartmaxii clustartt =
clustart

sti +clustart
eti

2 clustartdan

cluend cluendminii cluendmaxii cluendt =
cluend

sti +cluend
eti

2 cluenddan

cluinter cluinterminii cluintermaxii cluintert =
cluinter

sti +cluinter
eti

2 cluinterdan

The first parameters to be calculated are these of the rectangle created by the inter-

section between the volume between clustart and cluend and the plane of the cluinter. The

relevant calculations are shown in Eguations 7.27, 7.28 and 7.29.
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intersectionminii = clustartminii + (cluendminii − clustartminii) ∗
cluintert − clustartt

cluendt − clustartt

(7.27)

intersectionmaxii = clustartmaxii + (cluendmaxii − clustartmaxii) ∗
cluintert − clustartt

cluendt − clustartt

(7.28)

intersectiondan = clustartdan + (cluenddan − clustartdan ) ∗
cluintert − clustartt

cluendt − clustartt

(7.29)

Then the component checks if the previous rectangle and the cluinter rectangle inter-

sect. If they do, the parameters of their intersection rectangle which is called projection

rectangle can be calculated as shown in Eguations 7.30, 7.31 and 7.32. If they do not

intersect, no projection rectangle is calculated.

projectionminii = max(intersectionminii, clu
inter
minii) (7.30)

projectionmaxii = min(intersectionmaxii, clu
inter
maxii) (7.31)

projectiondan = min(intersectiondan, clu
inter
dan ) (7.32)

(7.33)

Finally these parameters are normalized with respect to the intersection rectangle in

order to have values in the [0,1]. Specifically:

projectionnorm
minii =

projectionminii − intersectionminii

intersectionmaxii − intersectionminii
(7.34)

projectionnorm
maxii =

projectionmaxii − intersectionminii

intersectionmaxii − intersectionminii

(7.35)

projectionnorm
dan =

projectiondan

intersectiondan

(7.36)

The same projection procedure is carried out for all clusters. For each cluster that

abides by the initial rules and its projection produces a projection rectangle, this rect-

angle is added to the projection rectangles list. After all clusters have been checked the

rectangles included in the list are combined.
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For every point in the [0,1] range of the IPs axis that corresponds to the [cluendminii, clu
end
maxii]

range the maximum danger value of all rectangles is used, in order to create a single union

area for all projections. This combined area on the cluend corresponds to the part of it

that is covered by projection rectangles. If n projection rectangles have been produced

the area of the total projection is calculated as in Equation 7.37.

areaproj =

1
∫

0

max(projection1
dan(x), ..., projection

n
dan(x))dx (7.37)

In order to calculate the integral of Equation 7.37 a sampling approach has been

used. The x variable is increased from 0 to 1 with step 0.01. In each loop the higher

danger value between projections is added to a sum, which is finally divided by 100. This

procedure is efficient in terms of performance terms and it produces a fine approximation

of the area of total projection. The logic of this calculation is described in Algorithm 7.3.

1: sum← 0
2: for i = 0 to 1 with step 0.01 do

3: danmax ← 0
4: for all projections do

5: if (i ≥ projectionnorm
minii) ∧ (i ≤ projectionnorm

maxii) then

6: if projectionnorm
dan > danmax then

7: danmax ← projectionnorm
dan

8: end if

9: end if

10: end for

11: sum← sum+ danmax

12: end for

13: area← sum
100

Algorithm 7.3: Calculation of area integral

The area calculated in Algorithm 7.3 is in [0,1] and is indicative of the percentage of

the cluend that is covered by projections.

If this percentage is greater than a threshold value areathre, then the intermediate

activity between the pair is considered adequate and no new artificial cluster is created.

If this percentage is less than areathre then it is assumed that a logical gap may exist

between the pair of examined alerts and a candidate artificial cluster is produced as is

described in the next subsection.
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The initial value of areathre parameter is set equal to 0.5. This means that the calcu-

lated projection area should be less than half of the area of the rectangle of the second

cluster, in order to create an artificial cluster. If no cases where an artificial alert should

be created are found, the Clusters generator increases areathre by 0.1 to 0.6 to take into

account more pairs of clusters. This increase in the threshold value is repeated until

Clusters generator is able to produce some artificial clusters.

7.5.2 Creating artificial clusters

If for a pair of clusters the total calculated projection area is greater than areathre then

an artificial candidate cluster is created. Its parameters are calculated by the correspond-

ing parameters of the pair clusters. As it is shown in Table 5.1 the Generated cluster data

type includes a subset of the parameters of Cluster data type, which are required for

its visualization by the Visualization subsystem. Almost all parameters’ values of the

Generated cluster are calculated as the average of the two values of the corresponding

parameters of the clusters of the pair.

cluartminii =
clustartminii + cluendminii

2
(7.38)

cluartmaxii =
clustartmaxii + cluendmaxii

2
(7.39)

cluartsti =
clustartsti + cluendsti

2
(7.40)

cluarteti =
clustarteti + cluendeti

2
(7.41)

cluartdan =
clustartdan + cluenddan

2
(7.42)

cluartnum =
clustartnum + cluendnum

2
(7.43)

cluarttruth =
clustarttruth + cluendtruth

2
(7.44)

(7.45)

The last parameter of the Generated cluster that has to be calculated is its class

ids list. Because the artificial cluster is created in order to logically connect the pair of

clusters, its class id values should ideally be between the class ids of the pair clusters. So
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the list of class id values in each of the pair clusters is scanned and class ids are added to

the relevant list of the generated artificial cluster, according to the following logic rules:

if ∃ cid (cid ∈ clustartcid

∧

cid ∈ cluendcid ) −→ add cid to cluarticid (7.46)

if ∃ cid (cid ∈ clustartcid

∧

cid+ 1 ∈ cluendcid ) −→ add cid, cid + 1 to cluarticid (7.47)

if ∃ cid (cid ∈ clustartcid

∧

cid+ 2 ∈ cluendcid ) −→ add cid+ 1 to cluarticid (7.48)

If a class id is present in both lists of pair clusters it is also added to the artificial

cluster generated. If the two pair clusters contain two consecutive class ids then they are

both added to the artificial cluster. If the two pair cluster contain class id values that

differ by 2 then the intermediate class id is added to the artificial cluster.

7.5.3 Validating artificial clusters

In the validation sub process the clusters generated in the previous step are evaluated,

and the ones carrying insignificant information are discarded. A metric of the quality of

the information contained in each cluster is needed to form the basis of this reasoning.

This metric is called Cluster’s Quality CQ and it is defined to be representative of the

value of information of each cluster. It is calculated as a function of three other variables

namely:

Distance from the closest cluster (D): The minimum of the distances of the generated

artificial cluster from the existing clusters, in the two-dimensional space defined by the

time axis and the IP axis. The distance between two clusters A,B is defined as the

Euclidean distance of their centres. The coordinates of their centres are

cluA : (
cluAminii + cluAmaxii

2
,
cluAsti + cluAeti

2
)

cluB : (
cluBminii + cluBmaxii

2
,
cluBsti + cluBeti

2
)

The distance between the clusters A,B is calculated as in Equation 7.49.
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DA,B =
√

(xcluA − xcluB)2 + (ycluA − ycluB)2 (7.49)

In order to calculate the CQ of a cluster, the minimum of its distances to other clusters

Dmin is calculated. Clusters that lie away from neighbouring clusters are more likely to

be useful, in contrast to clusters that are close to neighbouring ones.

Area of the cluster (A): The area of the ellipse that corresponds to the cluster. This

ellipse for cluA is defined by Equation 7.54.

x0 =
cluAminii + cluAmaxii

2
(7.50)

y0 =
cluAsti + cluAeti

2
(7.51)

xr =
cluAmaxii − cluAminii

2
(7.52)

yr =
cluAeti − cluAsti

2
(7.53)

(x− x0)
2

xr
+

(y − y0)
2

yr
= 1 (7.54)

The larger an ellipse is, the more general the corresponding cluster is and vice-versa.

A large area ellipse means either that the cluster spans across multiple IPs, or it has a

large time range or both.

Too general clusters cannot be much helpful for the user, whereas more specific clus-

ters are more likely to contain valuable information. The area of the ellipse is calculated

from time and IP values of the cluster as shown in Equation 7.55:

A =
(cluAeti − cluAsti)(clu

A
maxii − cluAminii) ∗ π

4
(7.55)

Quality of cid values list (CIDQ): It has been mentioned in previous sections that each

cluster has a class ids list that consists of the different attack class values related to it.

These values represent the step of the attack plan, in which the specific cluster belongs.

In Snort the class ids are numbered from 1 to 7. The variance of cid values indicates

whether the cluster spans along multiple steps of the attack. Alerts with different cid
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values belong to different steps of the attack plan, and their coexistence in the same

cluster can potentially reveal the logical connection among the steps of the attack.

The quality CIDQ for a list with only one value is defined to be equal to 1, whereas

for a list with k values it is calculated as shown in Equation 7.56.

CIDQ = k ∗

k−1
∑

n=1

1

(an − an−1)2

k − 1
(7.56)

A compact list (a list with continuous values) seems to be more consistent and should

have a higher CIDQ value. On the other hand a list, the members of which are not contin-

uous or/and have large distances between them, is not likely to represent a meaningful

series of the attack’s steps and should have a lower CIDQ value. In table 7.2 the CIDQ

value is calculated for some sample cid lists.

Table 7.2: Calculating CIDQ values for sample cid lists

cid list CIDQ

3 1

3,4 2

3,4,5 3

3,4,6 1.875

3,4,7 1.65

3,7 0.125

Generally the Quality of the cluster CQ is proportional to the distance from the closest

cluster Dmin and the quality of the cid values CIDQ, while it is inversely proportional to

the Area of the cluster A. CQ calculation is shown in Equation 7.57.

CQ =
Dmin ∗ CIDQ

A
(7.57)

The calculated CQ values are used to sort generated clusters in terms of the quality

of information they carry. The validation process ensures that the most useful of the

generated clusters are injected in the real clusters list, without over populating it. The

generated clusters used are at most as many as 20% of the real clusters. If the generated

clusters are less than this threshold, they are all incorporated, otherwise the ones with
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the highest CQ values are selected until the threshold is reached.

7.5.4 Tuning artificial clusters

In the last stage of the Cluster generation process, the clusters that have been pro-

duced in the first stage and have not been discarded in the second are fine tuned in order

to enhance the contribution of the component to the overall system.

The idea of tuning the cluster is to alter the A and CIDQ parameters (Dmin cannot be

usefully altered) in such a way that the cluster becomes more informative, while it keeps

its main initial characteristics.

Area tuning

In general smaller clusters (reducing A) seem more informative about the actual in-

trusion activity. The value of A is calculated as a function of time and the IP boundaries

of the cluster. The IP boundaries are decided upon the IP boundaries of the real clusters,

that are logically connected by the generated ones; hence they should not be altered.

On the other hand, the time span of the cluster could be reduced around its initial

center, as long as this reduction does not completely alter the geometry of the cluster.

Specifically this reduction should not be more than 20% while the ratio of the IP range of

the cluster over the time range of the cluster does not become less than 1
10 . The simple

logic used is described in Algorithm 7.4.

1: trinit ← clueti − clusti
2: ipr ← clumaxii − cluminii

3: tr ← clueti − clusti
4: while (tr ≥ 0, 8 ∗ trinit) ∧ ( tr

ipr
≥ 1

10) do

5: clusti ← clusti + 1
6: clueti ← clueti − 1
7: tr ← clueti − clusti
8: end while

Algorithm 7.4: Area tuning

CIDG tuning

Tuning CIDQ is done in a similar way; it can be altered in order to increase the quality

of information as long as the initial character of the cluster is not lost. One change is
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permitted in the values of the cid list (one value can be replaced by another) as long as

the produced increase in the CIDQ value of the cluster is no more than 50% of the initial

value. The small space of values for cid list, enables exhaustive search to be used as the

method to find the optimal cid values for the cluster. The logic is depicted in Algorithm

7.5.

1: CIDQinit ← CIDQvalue of the cluster

2: CIDQmax ← CIDQinit

3: for all cid list values do

4: for all possible alternate cid values do

5: replace cid value with the alternate one

6: calculate CIDQrun

7: if (CIDQinit < CIDQ+ run < 1.5 ∗CIDQinit)∧ (CIDQrun > CIDQmax) then

8: CIDQmax ← CIDQ

9: keep in record the replace of values

10: end if

11: end for

12: end for

13: if no replace of values kept in record then

14: cluster left intact

15: else

16: commit last replace in record

17: end if

Algorithm 7.5: ACLQ tuning
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Visualization subsystem

T
he visualization subsystem creates a graphical representation of the security state

of the protected system. It reads clusters produced by the Clustering subsystem,

commits the required transformations to their parameters and combines them in a unique

representation. It produces a surface in three dimensions, which is characterized by

peaks for each of the clusters in the list. In this way suspicious activity on the system

is depicted in terms of IPs of the protected network and time. The resulting graph also

presents information about danger and validity estimates for each cluster.

8.1 Design of the Visualization subsystem

The Visualization subsystem is responsible for reading the current clusters list from

the database and producing a graph containing a high level representation of the security

state of the protected system. This procedure is recurring as it produces a still image of

the security state at a specific moment. It has to be continuously repeated, to produce

successive frames that are displayed as an evolving animation.

The visualization concept is to produce a surface in a three dimensional space that

will summarize the security state of the protected system. The three dimensions of the

graph are related to the internal IPs space of the protected network (x axis), time (y axis)

and an estimated danger value (z axis). For a system without any intrusive events the

produced surface is flat and it matches the x-y plane. For each detected cluster of alerts

a peak is created on this level surface.

The height of the peak is related to the danger value of the cluster. The area of the

peaks on the x-y plane is related to the combination of the range of internal IPs that are
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included in the cluster and its time range. The color of the surface at the peak area is

related to the validity score of the cluster.

The platform chosen to implement the Visualization subsystem was Matlab 2010a [63],

as its ready-to-use visualization functions made it easy to depict the surface that combines

all existing clusters.

In Figure 8.1 an example frame, containing peaks corresponding to two clusters is

given. The data for the two clusters are shown in Table 8.1.

Table 8.1: Example clusters data

Cluster IPs space Time range Danger value Truth value

A 76.213.183.186 - 226 17.58.22 - 18.07.39 0.80 0.43

B 76.213.183.175 - 196 18.06.24 - 18.07.06 0.20 0.84

Figure 8.1: An example frame

Cluster A contains activity lasting for almost 10 minutes and affecting a range of 40

IPs of the internal network. On the other hand cluster B lasts for less than a minute and

it concerns 21 internal IPs. The internal IPs and time ranges of each cluster define a base

area on the x-y plane on which the corresponding peak is situated. As cluster A lasts

more and concerns more IPs than cluster B, its base area is significantly larger and in
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general its peak on the surface is more voluminous. The height of the peaks is defined

by the danger value calculated by the Clustering subsystem for each one of the clusters.

Cluster A with danger value equal to 0.8 produces a much higher peak than the peak

produced by cluster B with danger value 0.2. Finally, the color of the surface at the area

of each peak is defined by the validity score of each cluster. Cluster B is characterized by

a higher validity score, so its peak is almost red while the peak of cluster A is blue. The

colour-map used is shown in the bar at the right side of the frame.

Another important visualization feature, that is obvious from Figure 8.1 is that a single

surface is produced for the system, so a single event can be present in the graph for each

grid point (IP and time combination). The values in table 8.1 show that both clusters A

and B are related to IPs between 76.213.183.186 and 76.213.183.226 and are active in

time range from 18.06.24 to 18.07.39. The two peaks overlap in a certain area of the

surface. During surface production the cluster with the highest danger value is preferred

for each grid point, while the others are ignored. This happens because it is essential to

produce a simple informative graph and not a complex representation of each event that

happens. The security analyst will be informed of intrusive activity for a certain IP range

at a certain time by the graph and she may examine in detail relative alert-sets to discover

more details about it.

The subsystem consists of three components that are depicted in Figure 8.2. These

components are DB reader, Clusters analyser and Plotter.

The DB reader is responsible for reading clusters’ data from the database of the sys-

tem and committing the required normalizations in IP and time values, in order for the

resulting graph to be as easy to read as possible.

The produced normalized clusters are then sent to the main component of the Vi-

sualization subsystem, which is the Clusters analyser. Its task is to iterate through all

clusters and produce two arrays that contain height and color values for each point on

the surface. No matter how many clusters may exist, a single surface is generated that

approximates the security state of the protected system.

These arrays along with other auxiliary data are the input to the last component of

this subsystem, the Plotter. The Plotter produces the final frame by depicting the surface

and taking care of other important graph parameters, such as labelling axis and efficiently
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Figure 8.2: Visualization subsystem

placing the camera in the three-dimensional space.

8.2 DB reader

The DB reader reads clusters from the system database and normalizes their parame-

ters, to make a meaningful representation feasible. As it has been mentioned in previous

chapters the clusters’ data stored in the database are in the format shown in Table 8.2.

Table 8.2: Format of clusters data in the database

Field Description Format

min IP The first internal IP related to the cluster IP in decimal format

max IP The last internal IP related to the cluster IP in decimal format

min time The start time-stamp of the cluster Date in Linux format

max time The end time-stamp of the cluster Date in Linux format

num of alerts Number of initial alerts included in the cluster Integer value

danger Danger value calculated for the cluster Double value

truth Truth value calculated for the cluster Double value
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The required transformations concern IP and time data of the clusters and enable

meaningful annotation of the x and y axes. The produced graph concerns all internal IP

values of the protected network, even if not all of them are intrusion targets. On the other

hand, the time range of the graph is decided from the clusters themselves. The graph

concerns only the time range in which the detected clusters exist.

The global minimum and maximum IP values are predefined for the protected network

and correspond to the smallest and the largest of its internal IPs. The global min IP value is

subtracted by all IP values of the clusters to create a representation in the [0, globalmaxIP

- globalminIP] space.

The time values are in Linux format. Assuming that the live representation being

produced is not for periods larger for 24 hours, the date part of the time values is dis-

carded. The values are converted from milliseconds to seconds and the necessary shift for

synchronizing with the valid time zone is performed. The global minimum and maximum

time values are calculated and the minimum time value is subtracted from all time values

to create a representation in the [0, globmaxtime-globmintime] space.

The algorithm of the DB reader component is shown below :

1: Read IP
glob
min , IP

glob
max

2: Read tzd (Time zone’s hours difference)

3: for all clusters do

4: IPmin ← IPmin − IP
glob
min

5: IPmax ← IPmax − IP
glob
min

6: end for

7: for all clusters do

8: timemin ←
timemin

1000
9: timemax ←

timemax

1000
10: end for

11: Calculate time
glob
min, time

glob
max

12: for all clusters do

13: timemin ← timemin − time
glob
min + tzd ∗ 60 ∗ 60

14: timemin ← timemin − time
glob
min + tzd ∗ 60 ∗ 60

15: end for

Algorithm 8.1: DB reader algorithm
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8.3 Clusters analyser

8.3.1 Choosing the appropriate models

The most important component of the Visualization subsystem is the Clusters analyser

as it transforms multiple clusters into a unique surface, representative of all of them. The

input to this component is the normalized clusters’ set produced by the DB reader and its

output are the arrays holding the parameters of the surface, which are sent to the Plotter

component for the production of the frames.

In order to represent each cluster a peak is formed on the surface, as it has been

depicted in Figure 8.1. The rationale is to form a three-dimensional shape that will be

indicative of as many cluster’s parameters as possible.

Gaussian distribution has been chosen for creating the shape of the peak. The bell

shape produced by the Gaussian distribution is depicted in Figure 8.3 and is appropriate

for representing the clusters.

Figure 8.3: Graph of Gaussian distribution

In order to produce narrower peaks the square of the Gaussian distribution was

preferred. The resulting peak is depicted in Figure 8.4. Assuming that the area of the x-y

plane that is relevant to the cluster is the square defined by the x [-1, 1] range and the
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y [-1, 1] range the bell produced by the square of the Gaussian distribution seems more

accurate than the one produced by the distribution itself.

Figure 8.4: Graph of the square of Gaussian distribution

The function of the square of Gaussian distribution is :

z = (e−(x2+y2))
2

(8.1)

8.3.2 Producing a peak for each cluster

The produced bell shape should approximate the cluster as accurately as possible.

The bell is placed on the area of x-y plane that is defined by the time and IP values of the

cluster. The formation of a rectangle on the x-y plane by time and IP ranges is shown in

Figure 8.5.

The xc and yc coordinates of the centre of the rectangle are easily calculated, as shown

in Equation 8.2, while the zc value is zero as the center point is on the x-y plane. The

distances of the rectangle’s sides from the centre are shown in Equation 8.3. The peak is

situated around point (xc, yc, zc).
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Figure 8.5: Time and IP ranges define the base area of the bell

xc =
IPmin + IPmax

2

yc =
timemin + timemax

2

zc = 0

(8.2)

xr =
IPmax − IPmin

2

yr =
timemax − timemin

2

(8.3)

In order to produce a bell that peaks at value 1 at the centre of the rectangle and fades

out to zero towards its sides, the x and y variables in Equation 8.1 have been replaced by

(x−xc)2

xr
2 and

(y−yc)2

yr2
respectively.

The next parameter of the cluster that needs to be calculated is its density, which

shows how dense or sparse is the distribution of alerts in the clusters time range. The

number of alerts is divided by the duration of the cluster.
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density =
numalerts

timemax − timemin
(8.4)

The density calculated in Equation 8.4 ranges from 0 to infinity and is not appropri-

ate for visualization purposes. In order to normalize it, the sigmoid function shown in

Equation 8.5 is used.

f(x) =
1

1 + e−x
(8.5)

Because this function for x values in range (0,∞) outputs values in range (0.5, 1), it

has been slightly transformed by subtracting 0,5 from it to force zero density to produce

zero normalized density and the result has been multiplied by 2, in order to make the

normalized density approximate 1 for large values of density.The graphs of the sigmoid

function and the transformation used are shown in Figure 8.6.

densitynorm = (
1

1 + e−density
− 0, 5) ∗ 2 (8.6)

The densitynorm value is used to emphasize the danger of the cluster. Normally the

height of the peak is decided by its danger value, which also ranges between 0 and 1.

Because the density of alerts is also an indication of cluster’s danger, if densitynorm is

larger than the danger of the cluster, then it is used to define the height of the peaks,

instead of the danger value.

0 1 2 3 4 5 6 7 8 9 10
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sigmoid

Figure 8.6: Sigmoid function and its transformation



110 Visualization subsystem

clusterheight =











danger, if danger ≥ densitynorm.

densitynorm, otherwise.

(8.7)

So Equation 8.8 is used to compute the height of peaks in (x,y) grid point. In this way

a two-dimensional array is created which contains the height of the surface in each grid

point on the x-y plane for the specific cluster.

height(x, y) = clusterheight ∗ (e
−( (x−xc)

2

xr2
+ (y−yc)

2

yr2
)
)

2

(8.8)

The last parameter that needs to be calculated for the specific cluster is the color of

the peak. The color is relevant to the truth value of the cluster. The centre of the peak

is coloured with the color that corresponds to the cluster’s truth value, according to the

colormap in Figure 8.7.

Figure 8.7: Truth value scale colormap

The color of the peak is gradually changing from the cntre of the cluster to the outer

points of its area, to correspond to zero truth value color in the borders of the area. In

this way the color differences in the final surface are much more visible and the truth

parameter is distinguishable for each cluster. This is obvious in Figure 8.1.

In order to achieve this gradual transition of color along the surface of the peak

the truth value has been combined with the calculated height value. So the color that

corresponds to a point x,y, according to the truth value of a cluster is shown in Equation

8.9.

color(x, y) = height(x, y) ∗ clustertruth (8.9)

For each one of the clusters received by the DB reader the Clusters analyser produces

a two dimensional array that contains its height values and another one that contains its

color values at each point of the grid.
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8.3.3 Combining multiple peaks to one surface

The main idea is to produce a simple representation that will be easily inspected by

the security analyst. A large number of clusters obviously produces a large number of

peaks to depict on the surface. In order to keep the graph readable, the color and the

height values for each point of the surface are decided by the cluster that has the largest

height value at the specific point. This means that only the most dangerous cluster is

depicted at each grid point.

The trade-off for keeping the surface simple is small. Overlapping clusters are going

to be visible as two overlapping peaks. The only case in which a cluster will not be visible

at all is to be included in the base area of another cluster with marginally larger height

value. In this case the security analyst will not see the specific peak, but will be informed

that there is intrusive activity for the specific IP and time values combination. The peak

of the cluster with higher danger value, will motivate the analyst to further explore the

alerts related to this combination of time and IP values.

The surface that will be finally visualised by the Plotter is defined by two two-dimensional

arrays relevant to height and color, similar to the ones already produced for each cluster.

To produce the two arrays the analyser initiates their values to 0. Then it iterates through

clusters and for each one of them it scans all grid points. At each point, if the height array

of the cluster has higher value than the height array of the surface, the array values of

both surfaces for this grid point are set equal to the corresponding values of the arrays of

the cluster.

After this procedure the values that are stored in the arrays of the surface, for each

grid point, correspond to the values of the cluster with the higher clusterheight value. The

two arrays are then propagated to the Plotter.

8.3.4 Clusters analyser algorithm

The algorithm of the Clusters analyser component is given below in Algorithm 8.2.
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1: xmin
r =

IP
glob
max−IP

glob
min

20

2: ymin
r =

time
glob
max−time

glob
min

20
3: for i = 1→ 100 do

4: X[i]←
IP

glob
max−IP

glob
min

100 ∗ i {Create x and y values of the grid points}

5: Y [i]← time
glob
min +

time
glob
max−time

glob
min

100 ∗ i
6: Z[i]← 0 {Array to store height values}

7: C[i]← 0 {Array to store color values}

8: end for

9: for all clusters do

10: xc ←
IPmin+IPmax

2

11: yc ←
timemin+timemax

2
12: zc ← 0
13: xr ←

IPmax−IPmin

2

14: yr ←
timemax−timemin

2
15: density ← numalerts

timemax−timemin

16: densitynorm ← ( 1
1+e−density − 0, 5) ∗ 2

17: height← max(clusterdanger, densitynorm)
18: for x = X[1]→ x[100] do

19: for y = Y [1]→ Y [100] do

20: Zc(x, y)← clusterheight ∗ (e
−( (x−xc)

2

xr2
+ (y−yc)

2

yr2
)
)

2

21: Cc(x, y)← clustertruth ∗ Z(x, y)
22: if Zc(x, y) > Z(x, y) then

23: Z(x, y)← Zc(x, y)

24: C(x, y)← Cc(x, y)

25: end if

26: end for

27: end for

28: end for

Algorithm 8.2: Clusters analyser algorithm

8.4 Plotter

The last component of the Visualization subsystem is the Plotter. It gets as input the

color and height arrays of the surface and it uses the Matlab surf() function to create the

frame. I also adjusts the axis labelling, as the global time and IP ranges of the cluster-set,

should be taken into account to produce an informative graph.

The production of the graphical representation of the surface is performed by the

surf(X,Y,Z,C) function of Matlab. X and Y are the arrays produced by the creation of the

grid in the x-y plane in relevance to IP and time values. Z is the two dimensional array

containing the height of the surface at each point and C is the two-dimensional array that
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contains the color values of the surface.

The labelling of the axis is based on two principles :

• If the graph is to be viewed in a pc monitor then fifteen labelling points along the

time and IP axis is an efficient choice.

• The label points of the time axis should be placed in specific intervals such as 5

mins, 10 mins, 20 mins, 30 mins or 60 mins.

The Plotter starts by setting the IP step equal to 2 and doubles it, until the number

of the sampling points become less than 15. For the time step it iterates through the

predefined step values described above. It calculates for each one of them the difference

between the number of produced sampling points and 15. It finally chooses the one with

the least difference. The Plotter calculates sampling points on the time axis and converts

their values from integers to time format. It also calculates the sampling points on the

IP axis and converts their values from long values to IP format. The produced labels are

attached to the graph axis.

The algorithm of the Plotter is shown in Algorithm 8.3.
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1: IPrange ← IP
glob
max − IP

glob
min + 1

2: IPstep ← 2

3: while
IPrange

IPstep
> 15 do

4: IPstep ← IPstep ∗ 2
5: end while

6: for i = 1→ IPrange ÷ IPstep do

7: IPlabel(i)← ipconvert(i ∗ IPstep)
8: end for

9: timestep ← 1

10: timerange ← time
glob
max − time

glob
min

11: pointsnum ← timerange÷ 60
12: delta← |pointsnum − 15|
13: timechoicesstep [1]← 5

14: timechoicesstep [2]← 10

15: timechoicesstep [3]← 20

16: timechoicesstep [4]← 30

17: timechoicesstep [5]← 60
18: for i = 1→ 5 do

19: pointsnum ← timerange÷ timechoicesstep [i] ∗ 60
20: deltacur ← |pointsnum − 15|
21: if deltacur < delta then

22: delta← deltacur
23: timestep ← timechoicesstep [i]
24: end if

25: end for

26: for i = 1→ timerange ÷ timestep do

27: timelabel(i)← timeconvert(i ∗ timestep)
28: end for

Algorithm 8.3: Algorithm of the Plotter component
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Experiments and results

I
n this Chapter the experimental procedure, used to test the performance of the system,

is presented, along with the relative results. Initially the two traffic datasets used to

produce the alert-sets required for testing the system are discussed. The performance

of the system regarding reducing the volume of alerts is documented by comparing the

volume of sensors’ alert-sets to the respective volumes of aggregated alerts and clusters

produced by them. ROC analysis is used to show the ability of the system to efficiently

classify alerts as true or false. Subsequently the results of the Visualization subsystem

are presented and analysed for each one of the data-sets. The ability of the system to

hypothesize on missed events is tested by using subsets of a specific alert-set. Finally the

data-processing performance of the system is measured and discussed.

9.1 Set­up of experiments

In order to test the performance of the system the widely used network intrusion

detection system Snort [61] has been used against two different datasets.

The first dataset is the Darpa 2000 1.0 [60]. The Cyber Systems and Technology Group

of MIT Lincoln Laboratory, has collected and distributed standard corpora for evaluation

of computer network intrusion detection systems. One of these is the dataset used for

testing the performance of the proposed system. This dataset has been extensivelly used

in the past and the results produced on it are comparable to those of other methods

proposed in the literature. Apart from that, the corresponding documentation contains

the intrusion steps performed throughout the simulation process, so it facilitates the

evaluation of the results.
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The Darpa dataset has been heavily criticised [64], [65], [66] and is certainly out of date

as it does not contain modern attacks. However in view of the absence of an alternative

widely accepted benchmark it is still being almost exclusively used for testing intrusion

detection systems. Because of the above an alternative dataset has also been used. It

has been created from live traffic captured from an academic network, combined with a

specific attack plan (built up using modern tools) that have been conducted during the

time of traffic capture. Although this data-set cannot be used for exhaustive testing of

the system (due to incomplete knowledge of the possible attacks launched in the time of

traffic capture), it gives a good indication of the performance of the system against modern

attacks.

9.1.1 DARPA 2000 1.0 dataset

The specific dataset includes a distributed denial of service attack. This attack sce-

nario is carried out over five different phases. The attacker probes the network, breaks in

to some hosts by exploiting the Solaris sadmind vulnerability and installs trojan mstream

DDoS software. She finally launches a distributed denial of service (DDoS) attack at an

off site server from the compromised hosts. The steps of the attack are analysed in the

MIT Lincon Laboratory website [60] and are described as follows.

1. The adversary performs a scripted IP sweep of multiple class C subnets on the Air

Force Base. The networks swept are 172.16.115.0/24, 172.16.114.0/24, 172.16.113.0/24

and 172.16.112.0/24.

2. The hosts discovered in the previous phase are probed, to determine which hosts

are running the "sadmind" remote administration tool.

3. The attacker then tries to break into the hosts found to be running the sadmind

service in the previous phase. The attack script attempts the sadmind Remote-to-

Root exploit several times against each host, each time with different parameters.

4. Entering this phase, the attack script has built a list of those hosts on which it

has successfully created a new user. These are 172.16.115.20, 172.16.112.50 and

172.16.112.10. For each host on this list, the required scripts for DDos are installed.
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5. In the final phase, the attacker manually launches the DDos from the infected hosts

against the victim.

The DARPA 2000 1.0 dataset contains network traffic data from two sensors (inside

and DMZ). These streams of data have been both used as input to a Snort 2.8.5.3 in-

stallation and two corresponding alert sets have been produced. These alert-sets have

been used as input to the proposed system. The produced alert-set has been labelled

(alerts have been recognized as true or false) by using the documentation of the DARPA

dataset, which contains info about real intrusion activity. The results of this labelling are

summarized in Table 9.1.

Sensor True alerts False alerts

Inside 764 (76%) 237 (24%)

DMZ 430 (15%) 2215 (84%)

Table 9.1: Darpa alert-set statistics

9.1.2 Live academic dataset

The academic network used as test-bed for this experiment consists of 25 servers

hosting various services and around 100 desktops used by members of the academic

community. For the purposes of the attack simulation, an image of a vulnerable host the

Metasploitable VM [67] and an image of a host, hosting common LAMP stack, Ultimate-

Lamp [68] have been used. Two virtual machines have been initiated by these images

and added to the existing network structure. The simulation lasted for approximately one

hour. During this time range a specific attack scenario was executed, while live network

traffic was monitored by two Snort sensors.

The executed attack scenario consists of the following steps :

1. An external host scans all hosts in network’s range.

2. Alive hosts found are scanned for known vulnerabilities.

3. The Metasploitable VM is selected as a target.

4. The Tomcat 5.5 vulnerability is chosen to be exploited and shell access is gained to

the specific Host.



118 Experiments and results

5. XerXes DoS attack is successfully executed from Metasploit VM against UltraLamp

VM.

Two Snort sensors were used to produce alerts. One was located at the main switch

of the DMZ network, while the other was located outside the firewall of the network.

Real world conditions have been ensured, as live traffic of an academic network has

been used as the platform, on which the attack plan has been executed. On the other

hand, this choice has created a lot of ambiguity in the experimental procedure, as the

background traffic can not be characterized with certainty as legitimate use or intrusion.

The academic network consists of a /25 network. The addresses depicted in the

results have been obfuscated for privacy reasons. The hosts and the attack plan used are

described in Tables 9.2 and 9.3, respectively.

Host Shortname IP

External intruder EI -

Metasploit VM MVM 76.213.183.136

UltraLamp VM UVM 76.213.183.231

Table 9.2: Hosts used in the academic dataset attack plan

for

No Time Source Destination Incident

1 17:58-59 EI /25 network Scanning for alive hosts

2 18:01 EI Alive hosts Scanning for vulnerabilities

3 18:03 EI MVM Tomcat 5.5 vulnerability (unsuccessful)

4 18:12 EI MVM Tomcat 5.5 vulnerability (successful)

5 18:13 MVM UVM XerXes DoS

Table 9.3: Description of academic dataset attack plan

The alerts produced by the Snort sensors have been examined and manually labelled

as true or false according to the attack plan mentioned in Table 9.3. The results of this

labelling are summarized in Table 9.4.
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Sensor True alerts False alerts

DMZ 448 (58%) 316 (42%)

Outside 178 (43%) 237 (57%)

Table 9.4: Academic alert-set statistics

9.2 Reducing the volume of alerts

The main component that reduces the volume of alerts is the AGC component, which

transforms alerts to aggregated alerts. Table 9.5 shows the numbers of alerts produced

by sensors for both data-sets and the numbers of aggregated alerts to which these alerts

are transformed, by the AGC components. The corresponding reductions are presented

as percentages.

Darpa dataset Academic dataset

inside DMZ DMZ outside

Number of alerts 1001 2645 415 764

Number of aggregated alerts 357 164 84 111

Percentage of reduction 65% 94% 80% 86%

Total percentage of reduction 86% 84%

Table 9.5: Performance of AGC component for all sensors

The AGC component reduces the overall volume of alerts by approximately 85% in

both datasets. This surely makes the alert-set easier to be examined and additionally

enables next components to function in a more efficient way.

The Merger also helps in the alerts volume reduction direction, by discarding identical

aggregated alerts, produced by different sensors. In Table 9.6 the performance of the

Merger component is shown for both data-sets.

Darpa dataset Academic dataset

Number of aggregated alerts 521 195

Number of aggregated alerts after merging 440 113

Percentage of reduction 16% 42%

Table 9.6: Performance of the Merger component for both datasets

The reduction of alerts that happens in the Merger component is relevant to the
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percentage of network traffic existing in both sensors’ placements. If the firewall blocks

most of the traffic, low redundancy between the aggregated alert-sets will exist and the

percentage of reduction will be relatively low. On the other hand if the firewall allows

most of the traffic in, then higher redundancy will exist between the two alert-sets and

higher reduction of alerts will occur in the Merger component.

The last component, in which a reduction in volume of data takes place, is the Clus-

terer. The Clusterer detects related aggregated alerts and groups them in clusters. The

numbers of clusters created in relevance to the numbers of aggregated alerts, fed as input

to the Clusterer, are depicted in Table 9.7.

Darpa dataset Academic dataset

Number of aggregated alerts 440 113

Number of clusters produced 24 56

Percentage of reduction 95% 61%

Table 9.7: Performance of the Clusterer for both datasets

The Clusterer stores in the database of the system an impressively low number of data

instances, as compared to the numbers of alerts produced by Snort sensors. Specifically

for the Darpa dataset, the sensors of which initially produced 3646 alerts, 24 clusters

are produced and for the academic data-set, the sensors of which initially produced 1179

alerts, 56 clusters are produced. This reduction in the volume of data is important, as it

enables both the analyst to easily read the clusters’ list and the Visualization subsystem

to efficiently visualize it.

9.3 Reducing false positives

9.3.1 Validity scores

The main task of the Sensor manager is to calculate validity scores for the alerts

produced by the corresponding sensor. As it has been analysed in Chapter 6, four com-

ponents NRA, NRAS, HAF, RFP calculate partial scores, which are then combined to

produce a final score. The average scores produced by the components and by the sys-

tem as a whole for true and for false alerts have been calculated. These are shown in

Table 9.8 for the Darpa dataset and in Table 9.9 for the academic dataset.
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Inside sensor DMZ sensor

Component TA avg FA avg TA avg FA avg

NRA 0.313 0.135 0.951 0.014

NRAS 0.140 0.021 0.287 0.002

HAF 0.663 0.564 0.652 0.229

UFP 1.000 0.795 1.000 0.090

SYS 0.467 0.327 0.835 0.085

Table 9.8: Average validity scores for Darpa dataset

DMZ sensor outside sensor

Component TA avg FA avg TA avg FA avg

NRA 0.791 0.378 0.874 0.174

NRAS 0.305 0.140 0.293 0.029

HAF 0.999 0.586 0.999 0.563

RFP 1.000 0.610 1.000 0.633

SYS 0.706 0.425 0.590 0.349

Table 9.9: Average validity scores for academic dataset

It is obvious from Tables 9.8 and 9.9 that the Sensor manager discriminates between

true and false alerts, which was the initial motivation for this subsystem. Depending on

the dataset and the location of each sensor the differences between the validity scores of

true and false alerts vary. In all cases there is a significant difference between scores for

true and false alerts.

Regarding the Darpa dataset, the system has produced an average validity score of

0.476 for the true alerts of the inside sensor, while the corresponding average validity

score for false alerts is 0.327. The true alerts’ validity score is on average 42% higher

than the score of false alerts. For the DMZ sensor of the same dataset the results are

almost perfect. The true alerts’ average score is 0.835, which is 980% higher that the cor-

responding false alerts score (0.0835). In this case the system has successfully detected

most of the false alerts, with a high confidence, as it has produced minimal validity scores

for the majority of them.

On the other hand, regarding the academic dataset the system has performed almost

the same for both sensors. Specifically for the DMZ sensor true alerts’ scores average

at 0.706 which is 66% higher than false alerts scores’ average (0.425). For the outside



122 Experiments and results

sensor the average score of true alerts is 0.590 and is 69% higher than false alerts’ average

score, which is 0.349.

In general the true alerts’ average validity score is significantly higher than that of

the false alerts for all cases. This enables the system to attach useful truth values on

each alert, which are utilized by subsequent components. Even if the Darpa DMZ sensor

high difference should be regarded as a special case, the results for the remaining three

sensors prove that Sensor manager component is capable of efficiently discriminating

between true and false alerts.

The four components seem to have deviations in their performance. This is normal

as they examine specific alerts’ properties and the results obtained are normally different

for different intrusions, or even different sensors’ placements. The logic of using multiple

components is not to utilize them on their own, but to combine their results, to get a

useful validity estimate for as more cases as possible.

9.3.2 ROC analysis

As it has been stated in Chapter 6, no discarding of alerts is conducted in Sensor

Manager. In order to examine NRA, NRAS, HAF, RFP components and Sensor manager

as a whole in terms of classification performance, a ROC curve analysis [69] has been

conducted. The use of a threshold value valthr indicates that every alert with higher

validity score than valthr is considered as positive, while every alert with validity score

lower than valthr is considered as negative and is discarded. The use of a threshold

creates four different categories of alerts:

• True positives : True alerts that have been classified as positives.

• False positives : False alerts that have been classified as positives.

• True negatives : False alerts that have been classified as negatives.

• False negatives : True alerts that have been classified as negatives.

These categories are also shown in Table 9.10.

From these values some interesting metrics can be calculated. True positives rate

(TPR) is the fraction of real alerts, classified as true, while False positives rate (FPR) is the
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True class

p n

Hypothesized class
Y TP FP

N FN TN

Table 9.10: Categories of alerts after threshold use

fraction of false alerts, classified as true. These metrics are calculated in Equations 9.1

and 9.2.

TPR =
TP

p
=

TP

TP + FN
(9.1)

FPR =
FP

n
=

FP

FP + TN
(9.2)

(9.3)

The ROC curve is a graph where FPR is denoted in the x-axis and TPR is denoted in the

y-axis. A classifier corresponds to a point in this graph according to its TPR and FPR. If

all possible threshold values are examined for a classifier, then the corresponding points

form a curve called ROC curve. The y=x line corresponds to the random choice classifier.

Every classifier’s curve should be as much higher as possible from this line, to justify

its good performance. Curves close to this line or even under it, indicate inadequate

classifiers, while curves close to (0,1) indicate well performing classifiers.

For each one of the two sensors, for both datasets all possible threshold values in

the [0,1] range have been examined. By using a threshold value the scores produced by

each one of the components and the system as a whole can be used in a classification

procedure. The relevant rates have been calculated and the resulting ROC curves are

shown in Figures 9.1,9.2,9.3 and 9.4.
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Figure 9.1: Darpa inside ROC curve
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Figure 9.2: Darpa DMZ ROC curve
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Figure 9.3: Academic DMZ ROC curve
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Figure 9.4: Academic outside ROC curve

By examining the ROC curves for the Darpa dataset, it is obvious that the blue lines

that correspond to the output of the system indicate a well performing classifier for both

sensors. In the inside sensor’s case, the individual components’ performance varies.
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While the curve of the HAF component is close to the system’s one, the curve of the

NRA component is close to the random classifier’s line. On the other hand in the DMZ

sensor’s case, all components perform well. The ROC curves of the academic dataset

show a similar situation, with the curve of the system situated significantly higher than

the random classifier. The components’ curves vary from being very good to being almost

unacceptable.

As it has been analysed, the individual performances of the components are not sig-

nificant as long as the overall system performs well. The NRA components in the Darpa

inside case or the HAF component in the academic outside case surely do not perform

well in general. However they are useful, as they may produce critically low or high scores

for a small subset of alerts, that enable the system as a whole to perform well.

A metric for the performance of a classifier is the area under the ROC curve (AUC).

The larger this area is, the better the classifier is. AUC values have been calculated for all

components in all cases and are shown in Table 9.11.

Darpa dataset Academic dataset

Component inside DMZ DMZ outside

NRA 0.528 0.984 0.787 0.917

NRAS 0.616 0.983 0.722 0.944

HAF 0.841 0.869 0.635 0.528

RFP 0.772 0.961 0.745 0.702

SYS 0.854 0.998 0.869 0.877

Table 9.11: AUC values for all components in all cases

As it was expected, the AUC values for the individual components range from 0.528

to 0.944. The most important indication of the good performance of the system is that in

all cases examined the AUC value for the Sensor manager subsystem is above 0.85.

9.4 Visualization results

All the enhancements mentioned in previous Sections have an impact on the visual-

ization produced by the Visualization subsystem. The three dimensional graphs produced

by this subsystem are informative for the security state of the system, without demand-

ing much effort from the security analyst. In Figures 9.5 and 9.6 the final visualizations
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produced for both datasets are depicted.

In the specific visualizations a validity filter has been used. Clusters with validity

scores lower than 0.3 have been ignored in the formation of the resulting surfaces, to

produce a clearer result.

9.4.1 Darpa data­set visualization analysis

Regarding the Darpa visualization, there are indicative peaks for all attack steps of

the intruder, while irrelevant peaks are a minority. The same visualization is depicted in

Figure 9.7 with all peaks corresponding to intruders actions labelled accordingly to the

relative phase of the attack.

For phase 1 the cluster is not depicted as clearly as possible. The sweeping of the

network has not produced a continuous, in terms of IP values, cluster, so three different

peaks correspond to this phase. The first two peaks are also related with traffic of the

next phases so they are longer in the time dimension, while the third one is correctly

positioned on the y axis. In general the analyst is informed about suspicious traffic on

time, but the characteristics of the actions of the intruder are not obvious on the graph.

For phase 2, on the other hand, there is a clear peak showing the probing activity on

alive hosts discovered during the previous step.

For phase 3 there are two different peaks that clearly show the occuring activity.

The graph depicts the IP range of the cluster instead of its individual IPs, so there is no

clue about the specific IPs related to activity. The analyst can get these information by in-

specting the clusters list stored in the database. For phase 4 there is also a representative

corresponding peak.

Finally for phase 5 there is a corresponding peak which stimulates the analyst to

further investigate the alerts produced by the sensors. The peak is large in width (in

terms of IP values), because of the nature of DDos attack.

Except for the peaks described above, there are some peaks irrelevant to the actions

of the intruder, which are also labelled on the graph. They correspond to clusters formed

from false alerts. Their impact on the final visualization is significantly lower than that of

the high percentage of false alerts in the initial alert-sets.
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9.4.2 Academic data­set visualization analysis

The visualization of the academic dataset has been labelled according to the phases

of the attack executed and is shown in Figure 9.8

The IP sweeping of phase 1 is depicted by three different peaks, which cover most of

the IP range of the protected network. The same stands for phase 2. The difference is that

the peaks seem more specific in terms of IP addresses. This is expected, as in the first

phase all IPs of the network are scanned, while in the second phase only hosts found to

be alive in the first phase, are probed.

Regarding phase 3, there are three peaks indicating activity around the IP of the MVM

host, and span a 6 minute range, in which the intruder unsuccessfully tried to exploit

the Tomcat vulnerability.

Regarding the representation of the last two phases the system under-performs as the

alerts for both steps are included in the same cluster and inevitably they produce only one

peak. This peak is extended between the two IPs of MVM and UVM so the analyst cannot

clearly understand what is really happening in the system. For both of these phases the

sensors produce very few alerts in the initial alert-set, so the problem in the resulting

visualization is partly due to the poor performance of the intrusion detection sensors.

Another important remark is that peaks, irrelevant to actions of the intruder, are more

in number than they were in the Darpa dataset case and make the reading of the graph

slightly harder. Like with the Darpa dataset, the overhead imposed by irrelevant peaks,

is significantly lower than that of false alerts in the initial alert-sets.
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Figure 9.5: Visualization for Darpa dataset
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Figure 9.6: Visualization for academic dataset
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Figure 9.7: Visualization for Darpa dataset with phase labels

Figure 9.8: Visualization for academic dataset with phase labels
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9.5 Hypothesizing on missed events

An additional task for the Clustering subsystem is to hypothesize on missed intrusion

events and approximate relevant information. In order to test the performance of the

system for this task, subsets of the Darpa dataset have been used. Specifically hypothet-

ical alert-sets were created, which reflect the cases in which distinct phases of the attack

scenario have been missed by both sensors.

The Darpa dataset has been examined and the procedure followed was to manually

recognise the alerts pertaining to each attack phase (the intermediate phases 2,3,4) and

to remove them in an iterative mode. Three alert-sets were created, each one of which

corresponds to the scenario that one of the three intermediate phases has been missed

by the Snort sensors. These three scenarios were then used as input to the system in

both simple and advanced mode. All scenarios are shown in Table 9.12.

Testing Scenarios

Name Description

Phase 2 out Alerts of Phase 2 are dropped

Phase 3 out Alerts of Phase 3 are dropped

Phase 4 out Alerts of Phase 4 are dropped

Table 9.12: Testing hypothesizing performance scenarios

Figures 9.9 and 9.10 show the results of simple and advanced functioning of the sys-

tem for the scenario "Phase 2 out". Phase 2 regards probe of live IP to look for the sadmind

daemon, running on Solaris hosts. Phase 2 time range spans from 10:07:07 to 10:18:05.

The Clusters generator produces an artificial cluster that sufficiently approximates the

probe regarding both time and IP values.

Figures 9.11 and 9.12 show the results of simple and advanced functioning of the

system for the scenario "Phase 3 out". Phase 3 regards breaking in via the sadmind

vulnerability, on the hosts found during phase 2. It includes both successful and un-

successful attempts. This phase lasts from 10:33:10 to 10:34:59. Again the Clusters

generator produces a very good estimate of the missed real event.

Finally Figures 9.13 and 9.14 show the results of simple and advanced functioning

of the system for the scenario "Phase 4 out". Phase 4 regards installation of the trojan
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mstream DDoS software on three of the hosts discovered in previous phases. The time

range of this phase is from 10:46:28 to 11:00:32. The Clusters generator produces a

relative cluster depicted in Figure 9.14. The peak is situated at the end of the time range

of the phase, while the IPs range is a good approximation of the internal IPs related to

this phase. Because the IPs of the three hosts are not close to each other (172.16.115.20,

172.16.112.50 and 172.16.112.10), the IP range of the produced cluster is not sufficiently

informative for the analyst. In this scenario there are two additional artificial clusters

which are situated close to phase 2 clusters, so they are not distinguishable in the graph

and do not confuse the analyst.

In general the estimation of missed events is satisfactory. It enables the analyst to be

more effective in guessing events not detected by the sensors. The motivation behind the

component was not to produce alerts for missed events, which is obviously impossible,

but to produce estimates about missing clusters. The Figures mentioned in previous

paragraphs show that informative estimates are achieved.
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Figure 9.9: Darpa phase 2 out scenario (simple mode)

Figure 9.10: Darpa phase 2 out scenario (advanced mode)
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Figure 9.11: Darpa phase 3 out scenario (simple mode)

Figure 9.12: Darpa phase 3 out scenario (advanced mode)
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Figure 9.13: Darpa phase 4 out scenario (simple mode)

Figure 9.14: Darpa phase 4 out scenario (advanced mode)
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9.6 Data processing performance of the system

The data processing performance of the system has also been measured. The Darpa

dataset has been used to measure the time required by the system, to process various

numbers of alerts. The simulation speed has been set to maximum, so the only latency

that exists in the system is due to processing overhead. The algorithm was executed on a

Intel Core i7 with 4GB of RAM. Table 9.13 depicts the execution times (in ms) for various

numbers of alerts :

Number of alerts Time (ms)

1000 3081

1250 3683

1500 4757

1750 5462

2000 5973

2250 6611

2500 7416

2750 8095

3000 9254

3250 9673

3500 9769

Table 9.13: Execution times

These measurements have been marked on a graph, depicted in Figure 9.15, which

shows the time values in relevance to the numbers of alerts. The points in the graph are

sufficiently approximated by the line :

time = 2.9 ∗ number of alerts (9.4)

This means that each alert needs 2.9 milliseconds, on average, to be processed. A

more detailed examination of the system has shown that some of this time is used to read

the alerts from the database, during simulation. During real world application this won’t

happen, so the net processing time needed is more or less 2 milliseconds. In other words

the system can process around 500 alerts
sec

, without introducing processing overhead. If

a more powerful machine is used, then this rate will be much higher. It is obvious that



9.6 Data processing performance of the system 137

the system can be applied to modern, large, high speed networks with multiple intrusion

detection sensors.
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Figure 9.15: Execution time with respect to number of alerts

The calculated processing rate is a multiple of the rate required in current intrusion

detection systems deployment scenarios. A research on high alert volume scenarios in

recent literature has indicated that the maximum rate required is 170 alerts
sec

.

Specifically the authors in [70] have collected traffic in the ETH campus and their

alert rate was 3 million alerts per day. In [71] experiments have been conducted in the

campus network of the Xian Jiaotong University. The alerts collected were 1 million per

day. Researchers in [72] have used alerts submitted to DShield service [73] and had to

cope with processing 15 million alerts per day. The authors in [74] have also worked on

a University campus network and collected 117 millions alerts throughout the period of

one month. The alert rate referred in each one of the above research efforts is shown in

Table 9.14, in terms of alerts per second.

The processing rate of the system is on average 500alerts
sec

, much higher than the alert

rates found in the literature; thus the proposed methodology is capable of coping with

real world networks, characterized by high volume of alerts.
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Reference Rate mentioned Rate (alerts/sec)

[70] 3M / day 34

[71] 1M / day 11

[72] 15 M /day 170

[74] 117 M / month 45

Table 9.14: Referenced alert rates
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Using Fuzzy Inference Systems to reduce false

positives in IDS

E
ven if intrusion detection systems have marginally improved in the past few years,

they still face the problem of high false positives rate. In this Chapter the use of

a fuzzy inference system, which filters out false positives, without missing on any of the

detected attacks, is proposed. The design of the system is based on meta-alerts, which

carry special information about the nature of alerts. The system has been tested against

the DARPA dataset and has exhibited a significant reduction (83%) of false positives.

10.1 Introduction

In this chapter an alternative approach on reducing false positives is described. As it

has been discussed in previous Chapters intrusion detection systems exhibit high false

positive rates, to the extent that the alert-sets they produce consist mainly of false alerts.

This makes them difficult to use; consequently, much research effort has been invested

into devising ways for filtering false positives.

The approach discussed in this chapter is a false positives filtering method based on

fuzzy inference systems (FIS) [75]. The rationale of the method is related to the validity

score producing scheme existing in Sensor Manager, where statistical observations on

the nature of false and true positives are utilized. Herewith, the method is enhanced

by using a robust and competent tool, such as fuzzy inference systems. The result of

this enhancement is a clear improvement in performance, enhanced configurability and

feasibility for supervised learning.
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10.2 Related Work

A lot of research has been conducted in improving the performance of intrusion de-

tection systems. Fuzzy logic and fuzzy inference systems have been widely used in this

research.

In [76] a FIS (Fuzzy Inference System) was used within an intrusion detection system.

The result was better detection rates, regarding port scanning attacks. In [77] fuzzy logic

was incorporated in order to change the detecting method of intrusion detection systems.

The authors of [78] created a two layer architecture, whose first layer consists of five

trainable FISs, while the second consists of one FIS, which is based on expert knowledge.

Several experiments on anomaly based intrusion detection have been based on FISs.

In [79] a FIS is one of the three parts of an anomaly-based intrusion detection system.

In [80] another anomaly-based system uses fuzzy logic. In [81] an interesting variation

of FIS is presented. EFIS which stands for evolvable FIS tries to automatically follow

the changes happening regarding the normal behaviour model, used in anomaly-based

intrusion detection.

It is common to use Neural Networks along with a FIS. This usually happens in order to

define the FIS parameters, through the training process of the neural network. Examples

of such methodologies are [82] and [83].

Fuzzy logic has also been used in [84], to improve Hidden Markov Models detection

capabilities. Fuzzy logic and fuzzy sets are much more appropriate than crisp logic for

describing the existence of an attack. It has also been used in [36] to cope with another

challenge in intrusion detection research, namely alert aggregation.

In [85] and [86] a FIS was used to fuse the results of other methods. The architecture

of a FIS, which will be analysed in Section 10.3, allows multiple rules that can support

many inputs to the system. These inputs may as well be the outputs of other systems.

While all the above work has been conducted in order to change the way intrusion

detection systems function, in [87] the authors try to post process an intrusion detec-

tion alert set. This approach resembles work presented in this Chapter and the results

obtained are comparable. The method of [87] is based on training, which makes the

proposed system very dataset-dependent. Authors achieved a slightly higher percentage

on false positive reduction; however, it is not stated therein whether the filtered alert set
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contains alerts for all attacks.

10.3 Fuzzy Logic And Fuzzy Inference Systems

Fuzzy logic is based on the idea that the claim about the truth of a fact is not neces-

sarily absolute (meaning that the fact can be either true or false). In fuzzy logic this claim

can also be relative (the fact can be true in some degree).

FIS are based on fuzzy logic. They are systems that take one or more inputs and

export results for one or more outputs. The mapping of the value of inputs and outputs

to a degree of membership (a number between 0 and 1) is conducted through the use of

membership functions. The relation between inputs and outputs is declared by if-then

rules. The format of these rules is:

If input1 is low and input2 is high then output is high (10.1)

All the inputs are fed into the FIS. Through the use of membership functions, input

values are translated into degrees of membership regarding predefined fuzzy sets. Then

if-then rules are applied and specific results are produced for the outputs by each rule.

The results of all rules are aggregated into one single result for each output. These results

consist of the combination of truncated diagrams into one diagram for each output. The

last phase that takes place is defuzzification, where these combined fuzzy diagrams are

converted into single numbers, through the use of appropriate methods.

FIS can be very useful in domains where human knowledge can be translated into

membership functions and if-then rules. If the parameters for these components are

wisely set, then FISs can achieve great results in terms of predicting values or classifying

instances.

10.4 Logic of the filter

The system is based on the logic used in the Sensor manager subsystem. False and

true positives can be identified by different characteristics that seem to describe each

category.

For specific kinds of attacks multiple alerts are produced; these can either be identical
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or have noticeable similarities to each other. These similarities in most cases can be

denoted by their source and destination IP addresses. By checking whether an alert

belongs to a group of related alerts, an indication of whether it is true or not can be

derived.

Another common observation for true alerts is that they tend to increase the frequency

of appearance for their signatures. Generally speaking, an occurring attack should prob-

ably create an anomaly in the usual distribution of alerts. If the standard frequency

of alerts carrying a specific signature can be calculated, then the alerts that cause a

substantial raise in this frequency can be considered true ones.

False positives on the other hand usually derive from specific causes, which may be

related to the topology of the network, mis-configured hosts or periodical nominal services

and tasks that occur in the network. All these causes are stable and produce recurrent

patterns of FPs. If these patterns of FPs could be extracted, then they could be used to

detect false alerts and to filter them out.

All these observations were used in Sensor Manager subsystem presented in Chapter

6. By incorporating the same logic in a FIS, a flexible system can be built on the basis of

fuzzy sets.

10.5 FIS Application

The input to FIS used consists of meta-alerts created from the intrusion detection

alerts. For each alert, meta-data, relative to the observations stated in Section 10.4, are

calculated. The calculations for each specific alert are based on an alert window around

it. For example a window of width equal to 200 alerts consists of 100 alerts before the

specific alert and 100 alerts after it. The relevant meta-data for a specific alert are:

• The percentage of alerts in the window that carry the same signature with the

specific alert.

• The percentage of alerts in the window that have a similarity in source or destination

IP addresses with the specific alert.

• The percentage of alerts in the window that have a similarity in the subnets of source

or destination IP addresses with the specific alert.
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• The average time difference between timestamps associated to alerts within the

window and the timestamp of the specific alert.

• The number of appearances of the signature of the specific alert in an attack free

period.

• The percentage of alerts in the window, of which source and destination IPs are

related to the source and destination IPs of the specific alert in a sweep-suspicious

manner (they have one equality of IPs and one equality of subnets of IPs).

For each alert all these data are calculated and combined to one corresponding meta-

alert. The features of meta-alerts are summarized in Table 10.1.

Description Acronym

Percentage with the same signature same_sig

Percentage with the same source or destination IPs same_s_d_ip

Percentage with the same source or destination subnet same_s_d_sub

Average time difference av_t_d

Number of appearances in the attack free period afp_ap

Percentage of sweep related alerts sweep_rel

Table 10.1: Meta-alerts’ features

These meta-alerts are imported into the FIS. For each input a membership function

that converts its values to degrees of membership regarding fuzzy sets is needed. By

observing the values of the meta-alerts features for true and false alerts it is easy to

deduce that they follow different distributions. Based on these distributions, it is easy to

create membership functions that can discriminate between false and true positive alerts.

For example Figure 10.1 and Figure 10.2 show the distribution of same_sig metadata for

FPs and TPs respectively.
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Figure 10.1: Distribution of FP alerts according to same_sig
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Figure 10.2: Distribution of TP alerts according to same_sig
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Figure 10.3 shows the membership function deduced. This feature will be high for

many TPs, while it will not be high for almost all FPs. Figure 10.4 depicts the membership

functions for all 6 inputs, which are designed in a similar manner.
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Figure 10.3: Membership function for input of same_sig feature
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Figure 10.4: Membership functions for all inputs

The next step is to create the if-then rules, which will connect the inputs to the output.

Based on the observations mentioned in Section 10.4 the rules used are:

• if (same_sig is high) then (alert is tp)

• if (same_s_d_ip is high) or (same_s_d_sub is high) then (alert is tp)

• if (avt is not high) then (alert is tp)

• if (afp_ap is not high) then (alert is tp)

• if (sweep_rel is high) then (alert is tp)

The rules are aggregated by picking the maximum out of the five rules results (degrees

for the output to be TP), while the defuzzification method used is centroid, which is the

most common choice.
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The output is a value in the interval [0,1] which corresponds to the degree in which

the specific alert is a true positive. A threshold is then used in order to determine which

alerts are true and which are not.

10.6 Experimental Results

The dataset used for designing and testing the filter has been created by the DARPA

off-line intrusion detection evaluation in 1999 [88]. A simulation of a real world network

was created and more than 200 attacks against it were attempted. The network traffic

was captured during simulation to create the data-set.

This traffic has been replayed and Snort has been used in order to produce a relevant

alert set. This alert set is the input to the system. The features of alerts used are their

signature ids, their timestamps and their source and destination IPs.

The resulting FIS was tested against the 2nd week’s data of DARPA 1999 dataset

network traffic. Snort (version 2.6) has been used to detect attacks from these traffic

data. These data include 43 real attacks. Snort produces 41,164 alerts which are related

to 24 out of 43 real attacks. 38.79% (15,970 alerts) of the alerts produced are false

positives.

These alerts were used to produce meta-alerts and the meta-alerts were used as input

to the system. A threshold should be defined, to classify alerts into TPs and FPs. Various

threshold values have been tested. In Figure 10.5 the number of alerts filtered in is

depicted against the value of the threshold.

As is shown in Figure 10.5, the best value for the threshold parameter is 0.726. If this

value is used, the system filters in alerts for all attacks (all attacks detected by Snort),

while it reduces FPs by 83%. The comparison of the results to the results of using only

Snort are shown in Table 10.2.
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Figure 10.5: Membership functions for all inputs

It is obvious that the proposed fuzzy inference system greatly improves the quality of

the alerts, as it vastly reduces the rate of false positives, while it filters in alerts for all

attacks detected by Snort.

FIS Snort

Number of filtered in alerts 23833 41164

Number of FPs 2624 15970

Percentage of FPs 11,01% 38,8%

Number of attacks detected 24 24

Table 10.2: Results of FIS compared to Snort
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A test­bend for intrusion detection systems results

post­processing

I
ntrusion detection systems produce alert-sets of low quality. Many post-processing

methods have been proposed to make alert sets more meaningful to security analysts.

Relevant research has to deal with an important task; implementing proposed methods

and carrying out required experiments. In this Chapter a platform which can be used

as a test-bend for conducting intrusion detection alerts post-processing experiments is

proposed. All the standard functionality is already implemented for the user, as she has

to implement only the core logic of her method. Additionally the platform offers important

reuse and evaluation capabilities. Finally a previously implemented method has been

reimplemented on the platform to test its usefulness.

11.1 Introduction

A lot of research has been focused on post-processing of intrusion detection alerts in

recent years. Intrusion detection systems usually produce alert-sets of low quality. These

alert-sets are characterized by their enormous size, which is disproportional to the size of

the relevant protected systems, their high rate of false positives and false negatives and

their inconsistency in regards to the real attack plan committed. Researches have been

recently working on this field intensively and have proposed a lot of interesting methods

that utilize ideas from various science fields such as machine learning, data mining, fuzzy

logic,time series etc.

These research efforts always include commonly used procedures such as reading

alerts or evaluating results. Apart from that, researchers usually implement functionality
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they have already used in their previous work, while another important problem is that

comparison of experimental results is most of the time a big issue.

If segments of the methodologies proposed were formally defined as components, then

they would be suitable for reuse. They could be reused by their authors or even by others.

Apart from that, standard evaluation components could make the direct comparison of

results easier and more elaborate.

This Chapter presents the development of a software platform, implemented in Java,

that enables researchers to implement the post-processing solutions they have designed,

as interconnected components. The platform contains well defined models of all the stan-

dard functionality needed by researchers and provides it to them as ready components.

Additionally it offers to them a clear and easy way to inject their methods in the solution.

Emphasis has been given on the re-usability of the parts of the solution, in order for the

user to be able to reuse her methods or distribute them to others. The evaluation part

has also been standardized, in a way that results of different implementations are directly

comparable.

11.2 Related work

Researchers in intrusion detection alerts post-processing have to make important im-

plementation efforts in order to test their systems. The proposed platform provides them

with the tools to efficiently implement their post-processing methods. No similar plat-

form, that tests intrusion detection alerts post-processing methods, has been proposed

in bibliography. There are some systems presented in articles published in the early days

of intrusion detection research, that focus on testing the intrusion detection systems

themselves.

Authors in [89] and [90] propose a platform on which the user can create scripts that

simulate intrusive or normal behaviour, in order to test an intrusion detection system.

They then systematically try to evaluate the performance of the intrusion detection system

in test by observing the detected intrusions.

In [91] the system proposed injects dummy intrusion network traffic into the normal

live traffic of a network. In this way a data-set for testing an intrusion detection system

is created, while normal traffic is as realistic as possible. Moreover the user can test any
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intrusion she wishes, without creating any real security issues for the protected network.

In [92] signatures of Snort network-based intrusion detection system are used as input

to an event stream generator that produces randomized synthetic events that match the

input signatures. The resulting events stream is then used to trigger a number of different

intrusion detection systems and the results are analysed.

It is obvious that these efforts are related to testing the actual intrusion detection

systems. The motivation for the platform implemented is to provide researchers with an

elaborate alerts post processing methods development environment. There is no other

system proposed in bibliography, that shares the same motivation.

11.3 The problem

Intrusion detection has been a very intensively researched area in recent years. Many

researchers work on this field and try to improve the quality of the results obtained by

intrusion detection systems. While others try to achieve this by proposing improvements

of the detection techniques, many researchers use post-processing of the produced alerts.

They try to extract additional valuable knowledge of the security state of the protected

system from the actual alert-set.

Generally produced alert sets are of low quality. The most common problem is high

false positives rate. The percentage of false alerts, is usually so high that it is hard to

isolate the real alerts from false ones. Additionally the relevance between events and

alerts is not always obvious. A single event may produce multiple identical instances of

the same alert or it can produce many alerts that differ in a small subset of their fields.

Generally alerts are usually in lower level of complexity than the events that trigger them.

All these factors contribute to the low quality of the produced alert set.

In general reading alert sets is impractical as they contain thousands of alerts, which

are not all useful or they overlap, while many of them are false. The motivation of re-

searchers dealing with alert post-processing is to improve the results obtained from in-

trusion detection systems in every possible way. The main concepts in post-processing of

intrusion detection alerts are :

• False positives reduction (filtering)
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• Aggregation

• Correlation

• Clustering

• Visualization

Many researchers are working in the field of post processing of intrusion detection

alerts, in order to enhance the produced alert-set. An important part of their efforts is

dedicated to implementing their methods and justifying their performance with relative

experiments. The main problems hindering these efforts are :

• A lot of standard functionality, irrelevant to the methods’ core logic needs to be

implemented. Code has to be written for reading the alert set out of the intrusion

detection system and for transforming it to a format suitable for processing or for

measuring the method?s performance in order to evaluate its efficiency.

• Additionally, if a researcher wants to extend or enhance an existing method, she has

to re-code all the functionality that exists in the previous implementation. While the

functionality of the code will be similar, a lot of attention must be paid to the changes

needed to the existing code in order to function properly in the new implementation.

• An important issue comes up when comparing methods of different authors. Their

implementations vary along with the data they use or the evaluation methods they

choose. This makes the comparison process problematic, as different parameters

in each implementation may induce doubts on the validity of the comparison itself.

11.4 Designing the system

A platform, which will help the researchers on implementing their methods has been

designed. The main ideas behind it were :

• Re-use of components implemented in previous methods

• Ready to use components for standard procedures (e.g. reading data from intrusion

detection sensors)
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• Included alert sets for widely used cases (e.g. alert set produced by Snort from

DARPA [88], [93] datasets)

• Ready to use performance measuring components

• Ready to use visualization components

The proposed platform should enable researchers, working in the field of intrusion

detection alerts post-processing, to test the methods they propose efficiently. The main

concept is that they should be able to develop components with one or more alert sets

as inputs and one alert set as output. They should then be able to use a graphical

tool to connect these components (send a component’s output to the input of another

component). The components along with the connections structure in which they are

connected make up a solution in the platform. In this way researchers will be able

to build sophisticated methods to improve the quality of the initial alert set, with the

minimum effort.

The main building blocks of the solution are the components; these are either generic

or special. Generic components may be extended by the user of the platform, in order to

achieve the post-processing functionality she has designed. Special components are used

to achieve specific functionality and the user is responsible for setting their parameters.

The flow of alert sets, or in other words the connections between the components of

the solution, along with the details of each component are stored in an XML file. The XML

file contains all the required information about each of the components of the solution.

11.4.1 Abstract solution component

The user should implement the functionality she has designed. The platform provides

her with all the infrastructure needed in order to start coding her logic. Every other aspect

of the problem besides logic of the method such as reading data, sending data to other

components, checking the validity of these data exchanges or measuring performance

should be taken care of by the platform. The researcher should be focused only on

implementing her methods.

The abstract solution component is a Java Class that contains all the required char-

acteristics that a component should have.
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• Minimum number of inputs

• Maximum number of inputs

• List of accepted input types

• Output type

• Void execute() method that should be overridden by the Class implemented by the

user

For each of the custom components used, the user has to develop her own Java

Class which will extend the abstract solution component Class. The only requirement for

the custom Classes is to override the execute() method of the abstract solution Class to

implement the logic of the component.

11.4.2 Special components

There are special components that are used to achieve specific tasks needed for the ex-

periments, such as reading data from an intrusion detection system source or measuring

the performance of the system.

IDSDataReader:

The IDSDataReader component is responsible for reading data (intrusion detection

systems alerts) from a source and importing them into the system. This component is

specific for each possible case of input. Input cases are characterized by two parameters;

the IDS used and the format it keeps its data in. For example a IDSDataReader component

can be developed to read data from a Snort installation that keeps data in a MYSQL

database, while another would be needed to read data from a Snort installation that

keeps alerts in a log file and a third one would be required to read data from a Bro IDS

installation.

IDSEvaluator:

The IDSEvaluator is another special component responsible for evaluating the perfor-

mance of the solution proposed. The performance of the solution can be measured in
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various ways, e.g. how many false positives (alerts without a corresponding event) exist

in the final alert set or how many false negatives exist (events without a corresponding

alert). The evaluation is performed upon data that represent the real events that have

taken place, while the alerts data-set was being collected. The format in which these data

are fed to the IDSEvaluator component has to be predefined. An example is the XML

format used by DARPA for the real events of DARPA data-sets.

11.4.3 Connecting the components

After the researcher has implemented the required components, then the next step is

to combine them, in order to produce a solution. The system stores the produced solution

in an XML file. This file contains information about each component such as :

• Id of the component

• Ids of previous components (their output is connected to the input of the component)

• Ids of next components (the output of the component is connected to their inputs)

• Map containing values of configuration variables of the component

A subsection of a solution XML file that refers to a specific component is shown below

:

<bean id=" id1 " class="component_class ">

<property name=" previous">

< l i s t >

<re f bean=" id2 "/>

</ l i s t >

</property>

<property name="next ">

< l i s t >

<re f bean=" id3 "/>

<re f bean=" id4 "/>

</ l i s t >

</property>
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<property name="configMap ">

<map>

<entry key=" var1 " value=" value1 "/>

<entry key=" var2 " value=" value2 "/>

</map>

</property>

</bean>

This entry for the component with id1 defines that its input comes from the output

of the component with id2 and that its output is connected to the inputs of components

with id3 and id4. This is depicted in Figure 11.1.

The functioning of the specific component is configured by the configMap property

shown in the XML file that contains two configuration variables var1 and var2 along with

the respective values.

11.4.4 Using the system

The proposed software contains a few initial components that implement working

post-processing methods, which are enough for researchers to get the system going. The

aim is to create a public library of components, to which every researcher will be able to

submit her components. If this library is sufficiently populated then :

• Everyone will have a lot of ready to use components to experiment with

• Developers of well performing components, will receive the analogous recognition

Figure 11.1: The connections between components
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• Researchers will easily expand the work of others

• Comparison of the performance of different methods will be trivial

Of course every user is able to develop from scratch new components. As mentioned

in Section 11.4 the user has to define the acceptable range for the number of inputs, the

accepted input types and the produced output type. The logic of the users method has to

be implemented in execute() method which should override an execute() method existing

in the abstract component Class.

Then a graphical user interface, enables the user to create a structure of components.

Through a drag and drop procedure the user can place components on the solution’s

canvas and then connect them in serial or parallel manner. The first component used

has to be an IDataReader component, while the last should usually be an IDataEvaluator

component. The structure created can be saved and loaded in the future. It can also

be loaded in another installation of the platform as long as the required components

exist in it. The user can export her components’ Classes and import to them to another

installation of the platform.

The solution (structure of components) created by the user is implemented as a di-

rected graph of Java objects. Each component used is a node in this graph. When the

user executes her solution the nodes of the graph are visited in a Breadth First Search

(BFS) manner, beginning from the root of the graph. The execute() method of each com-

ponent is run, while logic of BFS algorithm ensures that no component’s execution is

attempted, without first producing the required input.

11.5 Implementing the system

The platform has been developed in Java. In this section its main Classes are analysed.

They are presented in three subsections relevant to the components of the system, the

data exchanged between these components and the user interface of the system.

11.5.1 Components Classes

The main Class of the system is the AbstractSolutionComponent Class. Developers

that want to create their own components must write Classes that implement this Class.
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It contains all common functionality that components should have. AbstractSolution-

Componnet Class main properties are :

• An id field, which is unique and representative of each component

• A set of Java Lists of Alert objects, that contain input alert sets

• A Java List of Alert objects, that contain output alert set

• Two Java Lists that contain previous and next components respectively and provide

the means to create an interconnected diagram of components

• A boolean flag that shows if the component has been executed or not

The AbstractSolutioncomponent Class also has all the required methods, such as

getters and setters for its fields.

Classes of custom made components inherit AbstractSolutioncomponent Class. All

the standard functions (input, output, etc) that a component should contain are imple-

mented in AbstractSolutioncomponent Class. The only task that remains to the developer

is override the execute() method and embed into it the core logic of her method.

The execute() method of each component should read input alert-sets from the in-

putAlertSet Lists, conduct the processing it has been designed to do and then store the

resulting alert-set to the outputAlertSet List. Before the execution of any other component

which accepts this components output as input, the system will copy the outputAlertSet

List of this component to the other components inputAlertSet Lists.

There is also an InitSolutionComponent Class, the objects of which are responsible for

handling all the standard procedures for the solution. Reading data, validating solutions

or evaluating results is committed by cooperating with other special Classes such as

IDataReader, IdataEvaluator and InitializingComponent interface. All these Classes are

depicted in Figure 11.2.

11.5.2 Data Classes

Data that flows between the components is mainly Java Lists of Alert Class objects.

There is also an AlertId Class that relates alerts with their categories. Apart from that
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Figure 11.2: Components Class Diagram
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another Class used is TrueEvent that holds data of real events happened and is used by

the IDataEvaluator Class. Figure 11.3 shows the relevant part of the Class diagram.

The Alert Class holds data relevant to alerts such as the time-stamp, the signature of

the alert, source IP, destination IP etc. There is a special field in the Alert Class, which

holds a Java Map and is called properties. This can be utilized by the user, in order to

enhance the basic data type (simple alert) with meta-data. For example a component can

calculate a validity score for each alert. This score can be attached to the alert itself, by

including it in the properties map. The next component that will accept the enhanced

alert set as input will be able to read and utilize this validity score.

AlertId Class relates alerts to their Classes by defining alert id to Class id relationships.

This may be used by a component that needs attack class information for its processing.

The TrueEvent Class holds data relevant to the true security events occurred. Its

objects contain information such as the time stamp, the duration and source and desti-

nation IPs. This is used by the IDataEvaluator Class, in order to check if the alerts of the

finally produced alert-set are valid or not. If events, relevant to an alert, exist in the List

of TrueEvent objects then this alert is marked as valid, otherwise it is marked as false.

11.5.3 User interface Classes

Finally the third part of Classes of our platform enables the user to create her solution

with a intuitive graphical interface.

The main Class in this part of the platform is ConfigUI. This Class holds all the

information required for the graphical representation of the solution. Its main properties

Figure 11.3: Data Class Diagram
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Figure 11.4: The UI Class Diagram
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are a list of all the components of the solution, a list of all the required packages in

an installation for the solution to work and the name of the solution. All the required

methods that enable the graphical user interface to function, also exist in this Class.

11.6 Testing the system

In order to test the system it have been used to re-implement a previous work in

alerts post processing. The effort needed in both cases was compared and the qualitative

advantages of using the proposed platform were highlighted.

The implemented work contains a post-processing filter, which reduces false positives

in network-based intrusion detection systems. The filter consists of three components, the

functioning of which is based upon statistical properties of the input alert set. The filter

shown in Figure 11.5 was developed in Java for the purposes of the relevant experiments

that justified that it is able to drastically filter out false alerts. There are three components;

namely NRA, HAF and UFP. Each one produces a score for each alert, which indicates

the probability of this alert to be true. Afterwards these three scores produced for each

alert are combined into one final score. A threshold is finally used to identify the alerts

that will be rejected.

The same filter has been developed by using the proposed system. The development

has been easier because ready to use functionality has been used. Procedures such

as reading alerts from Snort and measuring the performance of the filter has not been

implemented, as this functionality is offered by standard components of the system. For

each component of the original filter a component in the platform has been created by

inheriting the AbstractSolutionComponent Class. Additionally a component responsible

for the fusion of the results obtained by each component have been implemented.

Figure 11.5: The filter
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As it was expected implementing the filter with the proposed system demanded marginally

less lines of code and less effort from the developer. It has been calculated that the lines

of code needed to be written in the scenario of using the system were approximately 40%

of the lines of code in the original implementation of the filter. This mainly happened be-

cause the original implementation was characterized by a lot of code redundancy. Parts

of code, irrelevant to filters logic, appears multiple times throughout the initial implemen-

tation. This code handled standard procedural functioning such as receiving an alert-set,

exporting an alert-set from a component, calculating false positives rate etc. This func-

tioning is already implemented in the platform and the developer can focus on writing

code only for the logic of her method.

Moreover each component developed is built independently of the rest of the solution.

This means that it can be easily moved out of the solution, edited, replaced by another or

even distributed to others. So if this method or part of it is needed to be used in a future

work, the procedure of re-using it will be trivial.
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C H A P T E R 12

Conclusions and future work

T
he results of the experiments presented in Chapter 9 are discussed and conclu-

sions on whether the proposed system fulfils the objectives, set during its design,

are made. The results of the proposed system are also commented with respect to other

relative methods existing in literature. Aspects of the proposed system that can be en-

hanced are identified and functionality that can be added to it is discussed. Additionally

the systems proposed in Chapters 10 and 11 are discussed and corresponding future

work opportunities are presented.

12.1 Main system

12.1.1 Conclusions

The proposed system performed efficiently on all the experiments conducted. The

main conclusion is that there is a lot of room for quality improvement, regarding the

information presented to the analyst about the security state of the protected system.

It is obvious that lists of thousands of alerts is not the best way to timely trigger the

required protection or recovery action from the analyst. The graphical representation,

produced by the proposed system, is capable of informing the analyst about events in

a fast and efficient manner. If the presented information is not sufficient, then she can

further examine the alert-sets produced by the intrusion detection systems.

Alerts volume reduction

It has been proved that the proposed system can significantly reduce the volume of

data produced by the intrusion detection sensors. As it has been analysed in Chapter 9
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this reduction is concurrently achieved by:

• Aggregating multiple identical alerts produced by the same event

• Merging aggregated alerts produced for the same event by different sensors

• Clustering related aggregated alerts

The results show that population of produced clusters is an order of magnitude less

than the population of alerts. For the Darpa data-set 3646 alerts produced 24 clusters

and for the academic data-set 1179 alerts produced 56 clusters.

Reducing false positives

The performance of the system in detecting false positive alerts has also been impor-

tant for the final result. If clusters with low truth values are ignored by the Visualization

subsystem, then a sharper and clearer representation of the security state of the protected

system can be produced.

The Sensor manager subsystem does not clearly classify alerts into true or false pos-

itives, but attaches a score to them that corresponds to a validity estimate value. This

score is then used by subsequent components. In order to asses the system’s classify-

ing capability the average validity scores for true and false alerts can be analysed. The

scores for true alerts are on average around 50% greater than scores for false alerts. It is

easy to conclude that the use of an appropriate threshold value can transform the Sensor

manager subsystem to an efficient classifier.

Producing informative results

One of the main motivations in designing the system was to solve the problem of

different level of detail between true events and alerts they trigger. As it has been stated

in previous Chapters each event produces multiple alerts identical or similar to each

other. Aggregation, merging and clustering procedures embedded in the proposed system

aim to gradually eliminate this disagreement between real events and the information

detected in relevance to them.

As it has been previously discussed, the system produces 24 clusters for the Darpa

dataset and 56 clusters for the academic dataset, both of which relate to a five steps attack
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plan. It is obvious that these numbers of clusters are a significant improvement with

respect to the thousands of alerts in the initial alert-sets. A more thorough examination

of the produced clusters list reveals that some of them are relevant to normal or non-

existent events. The average number of clusters produced for each step of the intrusion

steps is 1.8 clusters per step, for the Darpa data-set and 2.2 clusters per step for the

academic data-set. The low average number of clusters per event is an important result

as it enables the system to produce a high quality and meaningful representation at the

end.

Visualizing results

The Visualisation subsystem produces an elaborate live graphical representation of

the security state of the protected system. It enables the analyst to easily and instantly

spot events happening on the system. The depicted level of detail is more than enough for

high level inspection. If the analyst needs, she can recall lists of clusters or even alerts

from the database for a more thorough examination.

The three dimensional graph enables the system to depict multiple characteristics for

each cluster, namely is its time range, the relevant IP addresses range, a danger value

along with a validity estimation. The production of a single surface provides the required

level of simplicity, in order not to over populate the resulting graph with insignificant

information.

Apart from that, the efficient generation of the graph images, enables the subsystem to

produce a real-time representation of events as they happen. The low complexity of alerts’

processing makes it possible to produce the clusters and subsequently the visualization

frames in real time, without demanding significant hardware resources.

Hypothesizing on missed events

Another important aspect of intrusion detection systems results’ quality improvement

is the estimation of information about missed events. Missing on some events is inevitable

for intrusion detection systems. Not all the missed events can be reconstructed, but when

these are the intermediate steps of an organized attack plan, then the previous and next

steps may be informative.
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The tests on the hypothetical scenarios produced by the Darpa datasets have shown

that the estimation of missing information is feasible to some extent. In all three cases

the missing event was decently estimated. It must be noted that the produced estimates

are not accurate enough to be used when taking preventive actions, but can be used to

make the analyst more suspicious about possibly missed intruder’s actions.

12.1.2 Comparison to other methods

The proposed system in the thesis is a complete solution, producing an elaborate

result to the security analyst by combining various approaches to alerts post-processing.

Its main advantage is the produced informative visualization, which is made possible by

using appropriate false reduction, aggregation, clustering and hypothesizing techniques

in previous subcomponents of the system. There is no other system proposed in the

literature that approaches the intrusion detection alerts low quality problem, in such a

global way. So a direct comparison to similar systems is not feasible, but each of the

procedures of the system can be compared to similar methods existing in the literature.

Regarding reducing false positives there are many proposed methods that detect false

alerts and filter them out. In general these methods are usually characterized by low

false positives rate. Comparing such methods is complex as along with the percentage

of false positives filtered out, the true alerts filtered in should also be examined. The

Sensor manager subsystem produces a validity estimate for each alert but does not use

a threshold value in order to classify alerts as true or false . Its estimation performance

is depicted by the ROC curves in Figures 9.1, 9.2, 9.3 and 9.4. The estimated validity

scores are significantly higher for true alerts, so the use of an appropriate threshold value

would enable the Sensor manager component to efficiently classify alerts as true or false

and filter out the false ones. The false positives reduction rate would be comparable to

the higher corresponding percentages in the literature, while almost all true alerts would

be filtered in.

The system has performed excellently in reducing the volume of the alert-set by aggre-

gating identical alerts, merging alerts of different sensors and finally clustering relevant

alerts. The methods existing in the literature also reduce the size of the alerts, but the

correspondence between the final data and occurred events is usually not discussed at
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all. The Clustering subsystem on average created 2 clusters per event, which enables the

visualization subsystem to produce elaborate graphs as visualization frames.

The Clustering subsystem also hypothesizes on missed events. There are not many

relevant methods in the literature to compare its performance to. Only one of the methods

presented in Chapter 3 has been tested in hypothesizing missed events and the results

are comparable. The authors mainly reunite clusters parts instead of creating clusters

from scratch, so the success of their method depends on the existence of some alerts for

the missed event.

Furthermore the produced real time visualization is of high quality. It enables the

analyst to be quickly informed about the events occurring in the protected network. In

comparison to other visualization methods in the literature the produced results are more

informative and easier to read. Most of other methods produce representations of high

complexity in order to depict as much information as possible. The successful clustering

performed by the proposed system makes simple but informative visualization feasible.

Finally an important advantage of the proposed system against most of relative meth-

ods is that it has been designed for real world implementation. The complexity of all

components has been kept at minimum levels, to avoid introducing any latency to the

system. Additionally, all components process only past alerts. This is fundamental for

real world application of the system. Most methods proposed in the literature are tested

against a previously produced alert-set and usually use this as a whole. For example a

clustering method that examines the whole alert-set and produces clusters would not be

applicable in a real world scenario, as the alert-set is never available as a whole but is

populated gradually through time.

Generally, the proposed system is a complete approach to the low quality problem of

intrusion detection alerts. It is applicable in real world scenarios, at least against the

two data-sets used, it performs very well. Alternative system that have been proposed in

the literature are too theoretical, do not tackle all the aspects of the problem and are not

appropriate for real world application.
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12.1.3 Future work

The proposed system is indicative of the possibilities that exist for intrusion detection

alerts’ post-processing. The obtained results are encouraging, but there is a lot of room

for further improvement.

The implemented system accepts as input alert-sets produced by Snort. While Snort

is broadly used, it would be interesting to enable the system to use input from other

intrusion detection systems. The use of a different network-based system is feasible,

without many changes. The information the system uses from Snort alerts surely exists

in all network-based systems’ alerts. The only issue that should be sorted out is to create

a common representation for signatures [94], in order for alerts from different systems to

be comparable and eligible for merging or clustering.

Another, more difficult, improvement would be to incorporate host-based systems

along with the network-based ones. In this case the different nature of alerts produced

by host-based systems makes unifying alerts of different types of systems a more complex

task. Apart from a global representation for types of attacks, source and destination IP

addresses for the host-based alert must also be extracted.

Alerts refer to activity relevant to the protected system. One way to properly process

these alerts is to take into account parameters of the protected system. These parameters

can improve the calculations regarding both danger and validity scores for the detected

events. An enhancement to the proposed system would be to continuously monitor the

protected network along with its hosts. Simple information such as which hosts are alive,

what is their operating system or what services run on them is valuable in determining

the validity of alerts and the likelihood of the corresponding intrusion to be effective, even

if it is really happening. Alerts that are related to non alive hosts may be considered

false, while alerts that are related to services which do not run on the target host of the

intrusion may be considered of low danger.

The evolution of intrusion detection systems has produced intrusion prevention sys-

tems, which do not only detect intrusions but take actions to stop them or to protect the

system’s assets from them. An improvement to the proposed system would be to take

advantage of its notable detection performance, in order to efficiently prevent the ongoing

intrusions. Taking preventive actions with respect to an alert-set with high false positives
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rate, can make the system unusable, as each legitimate action, wrongly classified by the

intrusion detection system, would be blocked along with other similar actions. By the use

of appropriate agents, installed on critical hosts or network boundaries such as firewalls,

the high quality information produced by the proposed system could be incorporated to

prevent the actual intrusions from happening. Prevention policies should be defined and

communication issues should be sorted out before extending the system in this way.

Finally the processing rate of the system could be further improved by using parallel

programming techniques. In the implementation used throughout the tests, the pro-

cessing of the alerts was sequential. When a new alert was imported into the system it

was propagated to the Clusterer component, which run periodically to create clusters.

The system could not process the incoming alert until the previous one had reached the

Clusterer component. One obvious improvement would be to implement components to

be executed in parallel. In this way, when a component processes an alert and sends

it to the next components, it is ready to accept another alert. A more advanced imple-

mentation would be to initiate a new execution thread for each different alert, but in this

case significant issues would be raised with regards to defining the neighbouring alerts

for each alert and calculating various metrics for it. If these issues are solved, then the

performance of the system can be significantly increased.

In general the system can be improved in various ways, in order to take advantage

of its results. A lot of attention should be given to not over-increase complexity, as the

real-time application of the system in real world networks is one of its most important

advantages.

12.2 Using Fuzzy Inference Systems to reduce false positives

The fuzzy inference system methodology has been used to create a system able to filter

out most of the false alerts, while filtering in alerts for all detected attacks in Chapter 10.

The core logic of the system comes from statistical observations about the distribution of

true and false alerts. Fuzzy logic seems to serve well the need for relative assumptions

about the nature of alerts, and maximizes the quality of the results obtained.

The system can be further improved by adjusting the parameters in a more efficient

way or by importing additional parameters. Apart from that, there are training schemes
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for fuzzy inference systems, which function by trying to minimize the false positives rate. If

these schemes are enhanced to also maximize the percentage of attacks for which alerts

are filtered in instead of only minimizing the FPR, and over-fitting issues are carefully

treated, then the resulting system may perform even better.

12.3 Test­bend for intrusion detection systems results post­

processing

It is generally accepted that post-processing of alerts is a significant area of intrusion

detection research. All the authors proposing a relevant method have to put a lot of effort

on implementation, in order to prove the validity of their method. The implementation

part is always difficult and time consuming. There are no tools, that can help researchers

on this problem, so they have to manually code everything.

The platform, presented in Chapter 11, fills this gap. It offers researchers ready to

use functionality, the ability to reuse theirs or others older functionality and a standard

evaluation environment that enables reliable comparisons between different methods. The

tests committed have demonstrated that using the platform makes the implementation

easier and less time-consuming.

The platform is in its initial steps and future work can add value to its use from

researchers. A lot of attention has to be given on making users publish their components.

The true power of the platform is that it enables easy reuse of previous methods. The

researcher has to just import others’ components to her installation to make use of them,

so testing or extending others’ work is very easy. So if researching community made their

components available for public use, then the community itself would benefit from an

important repository of ready to use components.

Apart from that, obliging users to write in Java is a limitation that should be vanished.

If a researcher has already implemented her methods in another programming language

(C or Matlab), she will not re-implement it in Java just to make it public to others. A

generic component should be implemented, that will be able to communicate with external

software (functionality implemented in other languages) and use it in terms of the solution

designed in the platform.

Finally, in order to accommodate functionality, that demands excessive processing
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power, a second abstract component that will be designed in parallel programming ap-

proach, should be implemented. A relevant hardware platform should be chosen and

a component that will execute different parts of its execute() method on different pro-

cessors available should be created. In this way the user that has in her disposal the

required hardware, will be able to exploit it in order to implement and test a complicated,

processing-power demanding method.
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