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Abstract 

 
The MapReduce programming model allows us to process large data sets on 

a cluster of machines. A MapReduce job usually splits the input data set into 

independent chunks which are processed by the map tasks in a completely 

parallel manner. The framework sorts the outputs of the maps, which are then 

input to the reduce tasks. Typically both the input and the output of the job are 

stored in a file-system. The framework takes care of scheduling tasks, 

monitoring them and re-executes the failed tasks. The most popular open-

source implementation is Apache Hadoop. Recently, an extension to Apache 

Hadoop has been developed called SpatialHadoop. SpatialHadoop is 

designed to handle large data sets of spatial data. SpatialHadoop contains 

spatial built-in data types but you can define your own data types. Moreover, it 

supports a variety of spatial operations and indexes.  

 

In this project, we developed two efficient skyline computation algorithms and 

implemented on SpatialHadoop. Also, we compared them with an algorithm 

proposed in «CG_Hadoop: Computational Geometry in MapReduce» paper. 

The object of this study is to implement algorithms that will be efficient in 

uniform, correlated and anti-correlated distributions of data. These algorithms 

should also be capable to work with indexed and non-indexed input files. In 

order to evaluate the efficiency of these three algorithms we ran a set of 

experiments in a cluster of 17 nodes. 
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Περίληψη 

 
Το MapReduce είναι ένα προγραμματιστικό μοντέλο που επιτρέπει την 

επεξεργασία μεγάλου όγκου δεδομένων σε ένα cluster από μηχανήματα. Ένα 

MapReduce job διαμοιράζει τα δεδομένα εισόδου σε ένα σύνολο από 

ανεξάρτητα κομμάτια τα οποία επεξεργάζονται από τις map διεργασίες 

παράλληλα. Το framework ταξινομεί τις εξόδους των map οι οποίες θα είναι 

στη συνέχεια είσοδοι στις reduce διεργασίες. Οι είσοδοι και έξοδοι ενός job 

αποθηκεύονται σε ένα σύστημα αρχείων. Το framework φροντίζει για τον 

προγραμματισμό και έλεγχο των διεργασιών καθώς και την επανεκτέλεση 

αποτυχημένων διεργασιών. Το πιο γνωστό ανοιχτού κώδικα λογισμικό είναι το 

Apache Hadoop. Πρόσφατα, έχει αναπτυχθεί μια επέκταση του Apache 

Hadoop με ονομασία SpatialHadoop. Το SpatialHadoop έχει σχεδιαστεί ειδικά 

να χειρίζεται μεγάλα σύνολα χωρικών δεδομένων. Το SpatialHadoop περιέχει 

έτοιμους χωρικούς τύπους δεδομένων αλλά μας επιτρέπει τη δημιουργία και 

δικών μας τύπων δεδομένων. Επιπλέον, υποστηρίζει ένα σύνολο από 

χωρικές λειτουργίες και δείκτες. 

 

Σε αυτήν την εργασία, αναπτύξαμε δύο αποδοτικούς αλγόριθμους 

επεξεργασίας skyline ερωτημάτων και τους υλοποιήσαμε στο SpatialHadoop. 

Επίσης, τους συγκρίναμε με έναν αλγόριθμο που προτείνεται από το 

«CG_Hadoop: Computational Geometry in MapReduce» paper. Το 

αντικείμενο αυτής της μελέτης είναι η υλοποίηση αλγορίθμων που θα είναι 

αποδοτικοί σε διαφορετικές κατανομές των δεδομένων όπως uniform 

correlated και anti-correlated. Οι αλγόριθμοι θα πρέπει να δουλεύουν σωστά 

ανεξάρτητα αν τα αρχεία που επεξεργαζόμαστε περιέχουν ή όχι δείκτες. Για 

να αξιολογήσουμε την απόδοση των τριών αλγορίθμων υλοποιήσαμε μια 

σειρά πειραμάτων σε ένα cluster με 17 μηχανήματα. 
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Chapter 1 

 

 

Introduction 
 
 
 
1.1 Overview 

 

Over the last few years, big data has become a big deal. Recently, spatial 

data has gained interest. Spatial data has been used in many applications. 

Increasingly, the size, variety, and update rate of spatial datasets exceed the 

capacity of commonly used spatial computing and spatial database 

technologies to process the data with reasonable effort. Such data is known 

as Spatial Big Data. A solution to this problem is cloud computing. Cloud 

computing has become a viable, mainstream solution for data processing, 

storage and distribution. The cloud computing model is a perfect match for big 

data since cloud computing provides unlimited resources on demand. 

 

The skyline of a d-dimensional dataset contains the points that are not 

dominated by any other point on all dimensions. The skyline operator is 

important for several applications involving multi-criteria decision making. 

Definition: Given a set of points p1, p2, . . . ,pN, the skyline operator returns all 

points pi such that pi is not dominated by another point pj. Skyline query is 

also known as Pareto optimal meaning that it returns all points pi such that 

there is no other point pj better on all dimensions. Using the common example 

in the literature, assume that we have a set of hotels and for each hotel we 

store its distance from the beach (x axis) and its price (y axis). The most 

interesting hotels are these for which there is no point that is better in both 

dimensions (An example is illustrated in figure 1-1). 

  

When it comes to processing vast amounts of data it becomes difficult to 

compute the skyline points. In these situations, MapReduce is a fine solution. 

MapReduce is a programming model for processing large data sets with a 
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parallel, distributed algorithm on a cluster. A MapReduce program is 

composed of a Map() procedure that performs filtering and sorting and a 

Reduce() procedure that performs a summary. The "MapReduce System" 

orchestrates by marshalling the distributed servers, running the various tasks 

in parallel, managing all communications and data transfers between the 

various parts of the system, and providing for redundancy and fault tolerance. 

A popular open-source implementation is Apache Hadoop. Apache Hadoop is 

an open-source software framework for storage and large scale processing of 

data-sets on clusters of commodity hardware. 

  

 

 
Figure 1-1: Skyline points example 

 

Unfortunately, Hadoop is not very efficient concerning spatial data processing. 

A more efficient MapReduce extension to Apache Hadoop designed specially 

to work with spatial data is SpatialHadoop. SpatialHadoop is an open source 

MapReduce extension designed specifically to handle huge datasets of 

spatial data on Apache Hadoop. SpatialHadoop is shipped with built-in spatial 

high level language, spatial data types, spatial indexes and efficient spatial 

operations. 
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1.2 Aims 

 

The goal of this research is to implement skyline algorithms on SpatialHadoop 

that will be efficient to deal with a variety of input data. The programs must 

take as input a file of two-dimensional points and it must output the skyline 

points.  

 

The most important thing is to develop an algorithm that can compute the 

skyline points on different sizes of files e.g. 1G or 10G.  Also, it should be able 

to work with various data distributions such as uniform, correlated and anti-

correlated. 

 

The challenge is that the algorithm must be efficient on all these different kind 

of data. It is not easy to do something like this because some algorithms 

perform better in some situations and less efficiently in other cases. To be 

more specific, we may have developed an algorithm that is very fast when it 

comes to uniform distributed data but not so efficient in anti-correlated 

distributed data or the exact opposite. So the goal of this thesis is to find out 

algorithms that are efficient no matter the size or distribution of a data set. 

 

 

1.3 Thesis outline 

 

The thesis has been divided into 7 chapters starting from this one. The 

remaining chapters are organized as follows: 

 

 Chapter 2 describes how MapReduce works, explains the features of 

Hadoop, SpatialHadoop and presents papers on skyline query 

processing using MapReduce platforms. 

 Chapter 3 focuses on the subject of efficient skyline query processing 

in SpatialHadoop. 

 Chapter 4 explains the algorithms that compute the skyline points over 

an input file. 
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 Chapter 5 presents the implementation of the algorithms from chapter 

4. 

 Chapter 6 gives us an experimental evaluation of the implemented 

algorithms. 

 Chapter 7 summarizes every aspect presented in this thesis. 
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Chapter 2 

 

 

Background 
 
 
 
2.1 Hadoop 

 

Hadoop is a collection of related subprojects that fall under the umbrella of 

infrastructure for distributed computing. These projects are hosted by the 

Apache Software Foundation, which provides support for a community of 

open source software projects. Although Hadoop is best known for 

MapReduce and its distributed file system (HDFS, renamed from NDFS), the 

other subprojects provide complementary services, or build on the core to add 

higher-level abstractions. The subprojects, and where they sit in the 

technology stack, are shown in Figure 2-1 and described briefly here: 

 

 Core 

 Avro 

 MapReduce 

 HDFS 

 Pig 

 HBase 

 ZooKeeper 

 Hive 

 Chukwa 
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Figure 2-1: Hadoop subprojects [1] 

 

 

2.1.1 MapReduce introduction 

 

MapReduce is a programming model for data processing. The model is 

simple, yet not too simple to express useful programs in. Hadoop can run 

MapReduce programs written in various languages. Most importantly, 

MapReduce programs are inherently parallel, thus putting very large-scale 

data analysis into the hands of anyone with enough machines at their 

disposal. 

 

MapReduce works by breaking the processing into two phases: the map 

phase and the reduce phase. Each phase has key-value pairs as input and 

output, the types of which may be chosen by the programmer. The 

programmer also specifies two functions: the map function and the reduce 

function. 

 

 

2.1.2 MapReduce Data Flow 

 

A MapReduce job is a unit of work that the client wants to be performed: it 

consists of the input data, the MapReduce program, and configuration 

information. Hadoop runs the job by dividing it into tasks, of which there are 

two types: map tasks and reduce tasks. 
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There are two types of nodes that control the job execution process: a 

JobTracker and a number of TaskTrackers. The JobTracker coordinates all 

the jobs run on the system by scheduling tasks to run on TaskTrackers. 

TaskTrackers run tasks and send progress reports to the JobTracker, which 

keeps a record of the overall progress of each job. If a task fails, the 

JobTracker can reschedule it on a different TaskTracker. 

 

Hadoop divides the input to a MapReduce job into fixed-size pieces called 

input splits, or just splits. Hadoop creates one map task for each split, which 

runs the user defined map function for each record in the split. 

 

Having many splits means the time taken to process each split is small 

compared to the time to process the whole input. So if we are processing the 

splits in parallel, the processing is better load-balanced if the splits are small, 

since a faster machine will be able to process proportionally more splits over 

the course of the job than a slower machine. Even if the machines are 

identical, failed processes or other jobs running concurrently make load 

balancing desirable, and the quality of the load balancing increases as the 

splits become more fine-grained. 

 

On the other hand, if splits are too small, then the overhead of managing the 

splits and of map task creation begins to dominate the total job execution 

time. For most jobs, a good split size tends to be the size of a HDFS block, 64 

MB by default, although this can be changed for the cluster (for all newly 

created files), or specified when each file is created. 

 

Hadoop does its best to run the map task on a node where the input data 

resides in HDFS. This is called the data locality optimization. It should now be 

clear why the optimal split size is the same as the block size: it is the largest 

size of input that can be guaranteed to be stored on a single node. If the split 

spanned two blocks, it would be unlikely that any HDFS node stored both 

blocks, so some of the split would have to be transferred across the network 

to the node running the map task, which is clearly less efficient than running 

the whole map task using local data. 
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Map tasks write their output to local disk, not to HDFS. Map output is 

intermediate output: it’s processed by reduce tasks to produce the final 

output, and once the job is complete the map output can be thrown away. So 

storing it in HDFS, with replication, would be overkill. If the node running the 

map task fails before the map output has been consumed by the reduce task, 

then Hadoop will automatically rerun the map task on another node to 

recreate the map output. 

 

Reduce tasks don’t have the advantage of data locality—the input to a single 

reduce task is normally the output from all Mappers. In the present example, 

we have a single reduce task that is fed by all of the map tasks. Therefore the 

sorted map outputs have to be transferred across the network to the node 

where the reduce task is running, where they are merged and then passed to 

the user-defined reduce function. The output of the Reducer is normally 

stored in HDFS for reliability. For each HDFS block of the reduce output, the 

first replica is stored on the local node, with other replicas being stored on off-

rack nodes. Thus, writing the reduce output does consume network 

bandwidth, but only as much as a normal HDFS write pipeline consumes. 

 

The whole data flow with a single reduce task is illustrated in Figure 2-2. The 

dotted boxes indicate nodes, the light arrows show data transfers on a node, 

and the heavy arrows show data transfers between nodes. 

 

The number of reduce tasks is not governed by the size of the input, but is 

specified independently. 
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Figure 2-2: MapReduce data flow with a single reduce task [1] 

 

When there are multiple Reducers, the map tasks partition their output, each 

creating one partition for each reduce task. There can be many keys (and 

their associated values) in each partition, but the records for every key are all 

in a single partition. The partitioning can be controlled by a user-defined 

partitioning function, but normally the default partitioner - which buckets keys 

using a hash function - works very well. 

 

The data flow for the general case of multiple reduce tasks is illustrated in 

Figure 2-3. This diagram makes it clear why the data flow between map and 

reduce tasks is colloquially known as “the shuffle,” as each reduce task is fed 

by many map tasks. The shuffle is more complicated than this diagram 

suggests, and tuning it can have a big impact on job execution time. 

 

Finally, it’s also possible to have zero reduce tasks. This can be appropriate 

when you don’t need the shuffle since the processing can be carried out 

entirely in. In this case, the only off-node data transfer is when the map tasks 

write to HDFS (see Figure 2-4). 

 



ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

 
 

10 
 

 

 

Figure 2-3: MapReduce data flow with multiple reduce tasks [1] 

 

 

 

Figure 2-4: MapReduce data flow with no reduce tasks [1] 
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2.1.3 Combiner Functions 

 

Many MapReduce jobs are limited by the bandwidth available on the cluster, 

so it pays to minimize the data transferred between map and reduce tasks. 

Hadoop allows the user to specify a combiner function to be run on the map 

output—the combiner function’s output forms the input to the reduce function. 

Since the combiner function is an optimization, Hadoop does not provide a 

guarantee of how many times it will call it for a particular map output record, if 

at all. In other words, calling the combiner function zero, one, or many times 

should produce the same output from the Reducer. 

 

The contract for the combiner function constrains the type of function that may 

be used. This is best illustrated with an example. Imagine the first map 

produced the output: 

 

(1950, 0) 
(1950, 20) 
(1950, 10) 
 

And the second produced: 

 

(1950, 25) 
(1950, 15) 
 

The reduce function would be called with a list of all the values: 

 

(1950, [0, 20, 10, 25, 15]) 

 

with output: 

 

(1950, 25) 
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since 25 is the maximum value in the list. We could use a combiner. The 

reduce would then be called with: 

 

(1950, [20, 25]) 

 

and the reduce would produce the same output as before. More succinctly, 

we may express the function calls as follows: 

 

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25 

 

Not all functions possess this property. For example, if we were calculating 

mean values, then we couldn’t use the mean as our combiner function, since: 

 

mean(0, 20, 10, 25, 15) = 14 

 

but: 

 

mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15 

 

The combiner function doesn’t replace the reduce function. The reduce 

function is still needed to process records with the same key from different 

maps. But it can help cut down the amount of data shuffled between the maps 

and the reduces, and for this reason alone it is always worth considering 

whether you can use a combiner function in your MapReduce job. 

 

 

2.1.4 Hadoop Streaming 

 

Hadoop provides an API to MapReduce that allows you to write your map and 

reduce functions in languages other than Java. Hadoop Streaming uses Unix 

standard streams as the interface between Hadoop and your program, so you 

can use any language that can read standard input and write to standard 

output to write your MapReduce program. 
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Streaming is naturally suited for text processing, and when used in text mode, 

it has a line-oriented view of data. Map input data is passed over standard 

input to your map function, which processes it line by line and writes lines to 

standard output. A map output key-value pair is written as a single tab-

delimited line. Input to the reduce function is in the same format—a tab-

separated key-value pair—passed over standard input. The reduce function 

reads lines from standard input, which the framework guarantees are sorted 

by key, and writes its results to standard output. 

 

 

2.1.5 Hadoop Pipes 

 

Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce. 

Unlike Streaming, which uses standard input and output to communicate with 

the map and reduce code, Pipes uses sockets as the channel over which the 

TaskTracker communicates with the process running the C++ map or reduce 

function. JNI is not used. 

 

Unlike the Java interface, keys and values in the C++ interface are byte 

buffers, represented as Standard Template Library (STL) strings. This makes 

the interface simpler, although it does put a slightly greater burden on the 

application developer, who has to convert to and from richer domain-level 

types. 

 

 

2.2 SpatialHadoop 

 

SpatialHadoop is an open source MapReduce extension designed specifically 

to handle huge datasets of spatial data on Apache Hadoop. SpatialHadoop is 

shipped with built-in spatial high level language, spatial data types, spatial 

indexes and efficient spatial operations. You can use it to analyze your huge 

spatial datasets on a cluster of machines. 

 

 



ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

 
 

14 
 

2.2.1 Extensible data types 

 

SpatialHadoop ships with several data types including (Point, Rectangle and 

Polygon). There are different cases where you'll need to extend these data 

types or implement new spatial data types. 

 

 Input  files are not in the standard format used by SpatialHadoop 

 Each record contains more information than just the shape (e.g., tags 

or comments) 

 The application uses shapes other than the supported shapes (e.g., 

rounded rectangle) 

 

 

2.2.2 Built-in data types 

 

SpatialHadoop contains three main spatial data types, namely, Point, 

Rectangle and Polygon. Each data types stores just the spatial information 

about the shape without any extra information. All shapes are two-

dimensional in the Euclidean space. A point is represented by its two 

dimensions (X and Y). A rectangle is represented by a corner point (X, Y) and 

the dimensions (Width x Height). A polygon is represented as a list of two-

dimensional points. 

 

The main storage format for spatial data types in SpatialHadoop is the text 

format. This makes it easier to import/export legacy formats in other 

applications. The standard format is a CSV format where each record is 

stored in one line. This format can be changed for custom data types provided 

that each record is stored in exactly one line. For point, a line contains two 

fields (X,Y) separated by a comma. For a rectangle, the tuple (X, Y, Width, 

Height) is stored with a comma as a separator. For polygon, each line 

contains number of points followed by the coordinates of each point. For 

example, a triangle with the corner points (0,0), (1,1) and (1,0) can be 
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represented as "3,0,0,1,1,1,0". All coordinates used in the standard data types 

are long integers (64-bit). 

 

 

2.2.3 User-defined data types 

 

To define your own data type, you need to define it as a new class that 

implements the Shape interface. For convenience, you could choose to 

extend one of the standard data types and built on top of it instead of building 

a class from scratch. For example, let's say that your files contain records 

represented as rectangles. Unlike the standard rectangles, each rectangle 

has an additional ID that precedes the coordinates of the rectangle. You can 

extend the rectangle class and add an additional ID field. 

 

RectangleID.java: 

 

public class RectangleID extends Rectangle { 
 private int id; 
 

To define your own data type, you need to define it as a new class that 

implements the Shape interface. For convenience, you could choose to 

extend one of the standard data types and built on top of it instead of building 

a class from scratch. For example, let's say that your files contain records 

represented as rectangles. Unlike the standard rectangles, each rectangle 

has an additional ID that precedes the coordinates of the rectangle. You can 

extend the rectangle class and add an additional ID field. 

 

The new field must be also written when an object of this class is serialized 

over network. This is required by SpatialHadoop (and Hadoop) when objects 

are transferred from mappers to Reducers. This can be done as follows: 

 

public void write(DataOutput out) throws IOException { 
 out.writeInt(id); 
 super.write(out); 
} 
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public void readFields(DataInput in) throws IOException { 
 id = in.readInt(); 
 super.readFields(in); 
} 
 

You need also to specify the format of the input file that contains objects of 

this type. This done by implementing two methods fromText and toText. The 

first method takes as input a text that represents a line read from the input file, 

and parses it to fill the target object. The second method does the exact 

opposite of this. It takes a Text object and serializes the information stored in 

this object to this text. It should not add a terminating new line as this is added 

by the framework itself. The implementation of these two method will look like 

this. 

 

public void fromText(Text text) { 
 id = TextSerializerHelper.consumeInt(text, ','); 
 super.fromText(text); 
} 
 

public Text toText(Text text) { 
 TextSerializerHelper.serializeInt(id, text, ','); 
 return super.toText(text); 
} 
 

Once you're done with this class, you can use it with the existing operations 

(range query, kNN and spatial join). All you need to do is to provide its name 

when you call the operations using the shape: option. For example, you can 

perform a range query using the following command: 

 

$ bin/hadoop hadoop-operations-*.jar input-filename rect:500,500,1000,1000 

shape:RectangleID 

 

 

2.2.4 Spatial Operations 

 

Operations in SpatialHadoop are implemented as regular MapReduce 

programs. The main difference between spatial operations and regular 

operations is that the input file is spatially indexed. To read a spatially indexed 
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file, you need to provide the correct InputFormat and RecordReader. In 

addition, to the regular map and reduce functions, SpatialHadoop allows you 

to provide a filter function that performs and early pruning step that prunes 

away file blocks that do not contribute to answer based on their minimal 

bounding rectangles (MBRs). This can be useful to decrease the number of 

map tasks for a job. We will take you with step by step instructions to write a 

spatial operation. 

 

We will use the range query as an example to describe how spatial operations 

are implemented. In range query, we have an input file that contains a set of 

shapes and a rectangular query area (A). The output is all shapes that overlap 

with the query area (A). 

 

Before writing the MapReduce program for this operation, we need to think 

about it and decide how it should work. A naive implementation would scan 

over all shapes in the input file and select the shapes that overlap the query 

area. In SpatialHadoop, since the input file is indexed, we can utilize this 

index to avoid scanning the whole file. The input file is partitioned and each 

partition is stored in a separate block. If the boundaries of a partition is disjoint 

with the query area, it indicates that all shapes inside this query area are also 

disjoint. Hence, an initial filter step is to remove all blocks that are disjoint with 

the query area. This leaves only the blocks that overlap with the query area. 

For each overlapping block, we need to find shapes that overlap the query 

area. This simple algorithm is almost correct. There is one glitch that needs to 

be handled. As some shapes in the input file might overlap two partitions, they 

are replicated to each of these partitions. If the query area overlaps these two 

partitions and overlaps this shape, the shape will be reported twice in the 

answer. To avoid this situation, we implement a duplicate avoidance 

technique which ensures that each shape is reported once. This is done by 

calculating the intersection of the query area and the block boundaries (cell 

intersection) and the intersection of the query area and the shape (shape 

intersection). If the top left point of the shape intersection falls inside the cell 

intersection, the answer is reported, otherwise the answer is skipped. 
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The spatial filter function takes as input all blocks in an input file, and outputs 

the subset of blocks that needs to be processed. For range query, it selects 

the blocks that overlap the query area. The code will look like the following. 

 

RangeFilter.java: 

 
public class RangeFilter extends DefaultBlockFilter { 
 public void selectBlocks(SimpleSpatialIndex gIndex, 
        ResultCollector output) { 
      gIndex.rangeQuery(queryRange, output); 
   } 
} 
 

This code simply selects and returns all blocks that overlap the query range. 

The MBR of each block was calculated earlier when the file was indexed. 

Note that to access the query area in the filter function, it needs to be set in 

the job configuration file and read in RangeFilter#configure method. 

 

The map function takes as input the contents of one block, and it selects and 

output all shapes overlapping the query area. We will show here how the map 

function looks like if the blocks are indexed as R-tree. 

 

RangeQuery.java: 

 
public void map(final CellInfo cellInfo, RTree shapes, final OutputCollector 
output, Reporter reporter) { 

shapes.search(queryShape.getMBR(), new ResultCollector() { 
  public void collect(T shape) { 
     try { 
       boolean report_result = false; 
        if (cellInfo.cellId == -1) { 
           report_result = true; 
        } else { 
           Rectangle intersection = 
               
 queryShape.getMBR().getIntersection(shape.getMBR()); 
        report_result = cellInfo.contains(intersection.x, intersection.y); 
       } 
       if (report_result) 
          output.collect(dummy, shape); 
     } catch (IOException e) { 
        e.printStackTrace(); 
     } 
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} 
}); 

}     
 

The above code simple issues a range query against the R-tree built in this 

block to find all shapes overlapping the query area. For matching shapes, the 

duplicate avoidance test is carried out to decide whether to report this shape 

in answer or not. If the cell ID is -1, this indicates that there is no MBR 

associated with this block. This means that records in input file are not 

partitioned, hence, no replication and the answer should be reported. 

Otherwise, the test described earlier is done. Depending on the result of this 

test, the answer is finally reported. 

 

Since the output of the map function is the final answer, no reduce step is 

needed. The reduce function is not provided for this operation. 

 

The final step is how to configure the job. We will focus on the parts that are 

specific to the range query and/or SpatialHadoop. 

 

RangeQuery.java: 

 
job.setNumReduceTasks(0); 
job.setClass(SpatialSite.FilterClass, RangeFilter.class, BlockFilter.class); 
RangeFilter.setQueryRange(job, queryShape); 
job.setMapperClass(Map.class); 
job.setInputFormat(RTreeInputFormat.class); 
job.set(QUERY_SHAPE_CLASS, queryShape.getClass().getName()); 
job.set(QUERY_SHAPE, queryShape.toText(new Text()).toString()); 
job.set(SpatialSite.SHAPE_CLASS, shape.getClass().getName()); 
 

Setting number of reduce jobs to zero ensures that the output of the map 

function goes directly to output. The filter function is set using job.setClass 

method. The query range used by the filter function is set using the 

RangeFilter.setQueryRange method. Then, the map function is set as normal. 

The input format is set to RTReeInputFormat since blocks are R-tree indexed. 

After that, the query shape is set in job configuration to make it accessible to 

the map function. Finally, the SHAPE_CLASS is set to indicate the type of 

shapes stored in input file. 
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Once the job is configured correctly, it is submitted to SpatialHadoop for 

processing as a normal MapReduce job. The output is stored to HDFS in the 

configured output file. You can check the job counters to see how many splits 

were created and see that only the subset of blocks overlapping the query 

range were processed. 

 

 

2.2.5 Spatial index 

 

We will show how to access the spatial indexes built in SpatialHadoop. We 

assume that there is an index already constructed using the index command 

and stored on disk. We will show how to retrieve basic information about the 

index and how to perform simple queries on it. 

 

The first step to interact with the index is to understand how it is organized on 

disk. Let's say we issue the index command to create an R-tree index in the 

path 'parks.rtree'. The target will be stored as a folder that looks like the one in 

figure 2-5. 

 

 
 

Figure 2-5: R-tree index stored as a folder [6] 

 

The index is stored as a set of data files where each data file contains the 

records in one partition. The index also contains one _master.xxx file which 

contains metadata about the global index (i.e., file partitions). Simply, it 

contains one line per partition which contains the boundaries of the partition 

and the partition file name. The extension of the master file indicates the type 

of index constructed. The supported indexes are grid, rtree and r+tree. Below 

is an example of a small master file with three partitions. 
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-179.3248215,-54.934357,6.9290401,71.2885321,part-00000_data_00001 
-171.7735299,-54.8114255,6.9261512,65.1485099,part-
00000_data_00001_16.9225032,-46.44586,179.3801209,78.0657531,part-
00000_data_00002_2 
 

All other files are data files which contain data records. For a grid index, each 

partition file is a simple text file which contains one record per line. For R-tree 

and R+-tree, partition files are a little bit more complex. Records in each 

partition are organized in an R-tree index. Each file contains two sections. The 

first section stores the R-tree structure in a binary format as a list of nodes 

stored in level-order traversal. The second section stores data records in a 

text format as one record per line. The header of the R-tree contains 

information about the size of the tree which allows SpatialHadoop to skip over 

the R-tree structure and reads the records directly if the R-tree is not useful 

for processing. 

 

All the information about the global index is stored in the master file. However, 

you don't need to parse the file yourself. You can make an API call which 

retrieves the global index and returns it as one object. The 

method SpatialSite#getGlobalIndex(FileSystem, Path) takes a file system and 

a path to a directory in that file system and returns the associated master file. 

If the path indicates a non-indexed data, null is returned. The returned value is 

of type GlobalIndex<Partition>. You can iterate over all partitions using 

the iterator method. You can also retrieve specific partitions using the 

rangeQuery and knn methods. 

 

Once you retrieve a partition or a set of partitions, the next step is to read the 

records stored in that partition. The format of partition files is different 

depending on the index type. In grid index, partitions are stored as text files, 

while in R-tree and R+-tree, partitions organize the data in an R-tree. To 

simplify the parsing of the partition, the API contains an abstract 

class SpatialRecordReader which contains all the logic needed for parsing a 

data file. This class automatically detects the format of the partition and 

parses it accordingly. In addition to that abstract class, SpatialHadoop also 
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contains a set of concrete classes that retrieves records from the file in a 

specific format. All of them are instances of RecordReader which allows them 

to be used in MapReduce programs. To adhere with the MapReduce 

programming interface, each record has to be represented as a key-value 

pair. SpatialHadoop always uses the partition boundaries as the key 

represented as an object of type Rectangle. The value differs according to the 

specific reader instantiated/used. 

 

  

2.3 Related work 

 

There are several papers that propose a solution to skyline query processing 

in MapReduce. In this unit we present some of these and their main ideas. 

 

CG_Hadoop: Computational Geometry in MapReduce [2] by Ahmed Eldawy, 

Yuan Li, Mohamed F. Mokbel and Ravi Janardan. This paper proposes two 

algorithms, one for Hadoop and another for SpatialHadoop. The Hadoop 

skyline algorithm works in three steps, partitioning, local skyline, and global 

skyline. The partitioning step divides the input set of points into smaller 

chunks of 64MB each and distributes them across the machines. In the local 

skyline step, each machine computes the skyline of each partition assigned to 

it, using the traditional algorithm, and outputs only the non-dominated points. 

Finally, in the global skyline step, a single machine collects all points of local 

skylines, combines them in one set, and computes the skyline of all of them. 

The skyline algorithm in SpatialHadoop is very similar to the Hadoop 

algorithm, with two main changes. First, in the partitioning phase, it uses the 

SpatialHadoop partitioner when the file is loaded to the cluster. This ensures 

that the data is partitioned according to an R-tree instead of random 

partitioning, which means that local skylines from each machine are non 

overlapping. Second, it applies an extra filter step right before the local skyline 

step. The filter step, runs on a master node, takes as input the minimal 

bounding rectangles (MBRs) of all partitioned R-tree index cells, and prunes 

those cells that have no chance in contributing any point to the final skyline 

result. 
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Parallel Computation of Skyline and Reverse Skyline Queries Using 

MapReduce [3] by Yoonjae Park, Jun-Ki Min and Kyuseok Shim. This paper 

proposes the SKY-MR algorithm to discover the skyline SL(D) in a given data 

set D which consists of three phases. First is the Sky-quadtree building 

phase. To filter out nonskyline points effectively earlier, it proposes a new 

histogram, called the sky-quadtree. To speed up, it builds a sky-quadtree with 

a sample of D where each leaf node with non-skyline sample points only is 

marked as «pruned». Second is the Local skyline phase. It partitions the data 

D based on the regions divided by the sky-quadtree and computes the local 

skyline for the region of every unpruned leaf node independently using 

MapReduce by calling L-SKY-MR. Third is the Global skyline phase. It 

calculates the global skyline using MapReduce from the local skyline points in 

every unpruned leaf node by calling G-SKY-MR. When the number of local 

skyline points is small, it runs the serial algorithm G-SKY in a single machine 

to speed up. 

 

Efficient Skyline Computation for Large Volume Data in MapReduce Utilising 

Multiple Reducers [4] by Kasper Mullesgaard and Jens Laurits Pedersen. This 

paper proposes two novel algorithms, MR-GPSRS and MR-GPMRS. The 

main feature of the algorithms is that they allow decision making across 

mappers and reducers. This is accomplished by using a bitstring describing 

the partitions empty and non-empty state across the entire data set. In 

addition, the common bottleneck of having the final skyline computed at a 

single node is avoided in the MR-GPMRS algorithm by utilizing the bitstring to 

partition the final skyline computation among multiple reducers. 

 

Adapting Skyline Computation to the MapReduce Framework: Algorithms and 

Experiments [5] by Boliang Zhang, Shuigeng Zhou, and Jihong Guan. This 

paper proposes MapReduce based BNL (MR–BNL), MapReduce based SFS 

(MR–SFS) and MapReduce based Bitmap (MR–Bitmap). The BNL algorithm 

(MR-BNL) is a two-stage method. The first stage is to divide the whole data 

into small disjoint subsets. For each subset, it runs a BNL procedure to 

compute the skyline. In the second stage, the local skylines are merged and 

filtered, thus the global skyline is obtained. In the Sort-Filter-Skyline (SFS) 
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algorithm the input data is sorted at first in a topological order compatible with 

the skyline criterion. Thus, once a record r is inserted into the window, no 

record following it will dominate r and r is a skyline point. Therefore, at the end 

of each iteration, it can output all records inside. The iteration times of SFS is 

optimal, i.e., [N/W] where N represents the number of data records and W is 

the window size in number of records. In MR–Bitmap, every point is mapped 

into a bit vector, and the whole dataset forms the bitmap structure. The bitmap 

structure reflects the order of data records in all dimensions, ignoring their 

magnitudes. Every comparison in Bitmap is a lightweight bitwise operation. 

However, in order to examine a record, it needs to compare it with all the 

other records. Bitmap supports progressive sky line computation since a point 

can be returned to the user immediately once it is identified as a member of 

the skyline. 
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Chapter 3 

 

 

Problem Setting 
 
 
 
As mentioned, the purpose of this thesis is to implement efficient skyline 

query processing algorithms. The best way to accomplish this is by using the 

MapReduce programming model. It is ideal to process large data sets on a 

cluster of machines. It is possible to implement these algorithms using 

Apache Hadoop but SpatialHadoop is much more desirable for a lot of 

reasons. The “CG_Hadoop: Computational Geometry in MapReduce” paper 

proposes an algorithm for this query for SpatialHadoop. This algorithm has 

some advantages but also many disadvantages. 

 

 

3.1 SpatialHadoop vs. Hadoop 

 

The input data we want to process are 2-dimensional points. Unlike Hadoop, 

SpatialHadoop contains three spatial data types, namely, Point, Rectangle 

and Polygon as described in the second chapter. We can use the Point data 

type for processing our input files and to produce the output. In order to 

achieve a better performance, using indexed files is a good idea. Hadoop 

does not support indexes but SpatialHadoop does. The most important thing 

is that SpatialHadoop supports spatial indexes like Rtree. Rtree-indexing 

improves a lot the efficiency for skyline query processing. Taking into account 

all these this stuff, we will use SpatialHadoop to implement our algorithms. 

 

 

3.2 Base algorithm 

 

First of all, we have to implement an algorithm that computes the skyline 

points over a file without taking into account efficiency matters. A base 
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algorithm that performs this task just outputs every single point from the 

Mapper and in the Reducer applies an algorithm to find the skyline points. 

This step is necessary just to make sure the algorithm computes the skyline 

points correctly. 

 

 

3.3 Efficiency matters 

 

The “CG_Hadoop: Computational Geometry in MapReduce” paper’s 

proposed algorithm applies a filter step before the MapReduce job runs. 

According to SpatialHadoop an Rtree-indexed file is divided into different 

cells. This filter step prunes those cells that have no chance in contributing 

any point to the final skyline result. This improves a lot the efficiency of the 

program. Also, it uses a combiner to reduce the total number of inputs to the 

Reducer. Then, the Mapper and the Reducer of the base algorithm is 

performed. The main problem of this algorithm is that the Mapper does not 

apply any filters to reduce the total number of map output records, it just 

outputs every point. Moreover, the Reducer does not use any optimization 

techniques to improve performance. 

 

The challenge we are facing is to find additional filter steps and optimization 

techniques to reduce the total execution time taking into account different data 

distributions and volumes of data. For example, a filter step that is perfect for 

a uniform distributed dataset would be very bad for an anti-correlated 

distributed dataset with 300 thousand skyline points.  The algorithms 

proposed in this thesis should work on both indexed and non-indexed files. 

 

First of all, we have to apply a cells filter that prunes all the dominated cells. 

The second thing we have to do is to apply a filter in the Mapper to reduce the 

map outputs. Reducing the map outputs will improve the performance of the 

Reducer’s computation of the skyline points. There are two algorithms 

presented in this thesis and both of them apply a filter to reduce the map 

outputs. The filter in the first algorithm is better in cases where there are not 

too many skyline points and there are a lot of map input records. On the other 



ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

 
 

27 
 

hand, when there many thousands of total skyline points the second’s 

algorithm filter is better. Also, the second algorithm sorts the map output 

points according to their mindist that is the sum of the two dimensions. This 

allows us to perform some optimization techniques in the Reducer. The first 

algorithm also uses some optimization techniques in the Reducer which are 

used as filters in the Mapper. Both algorithms use a combiner. In figures 3-1, 

3-2 and 3-3 are illustrated the performance steps of the CG_hadoop and this 

thesis’ proposed algorithms.  

 

 

 

 

 

 

 

 
Figure 3-1: CG_Hadoop’s filters and optimization techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-2: First algorithm’s filters and optimization techniques 
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Figure 3-3: Second algorithm’s filters and optimization techniques 

 

In some cases where there are too many map input records and not too many 

total skyline points the sorting of the second algorithm is not preferred. Also, 

the filters and optimization techniques are not the same so we cannot 

conclude anything from these figures. As said before, everything depends on 

the input data we are processing. In the next chapter, we will examine more 

thoroughly how this thesis’s algorithms work and how are they implemented. 
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Chapter 4 

 

 

Algorithms 
 
 
 
In this chapter we will discuss about the algorithms that compute the skyline 

points over a file. These algorithms can work with indexed and non-indexed 

files. We have two different algorithms with some common elements. Both 

algorithms use a list that keeps every single moment the current skyline 

points. The first algorithm uses that list in both map and reduce functions but 

the second one only in the reduce function. We use some filtering and 

optimization techniques to reduce total execution time. We will next examine 

thoroughly these algorithms. You can refer to Appendix A for the pseudocode 

of these algorithms. 

 

First of all, we will present the common filtering techniques of these two 

algorithms: 

 

 CellsFilter 

 

When the input file that contains the 2 dimensional points is indexed 

we can use this filter. An indexed file is divided into different cells. 

Each cell is a rectangle e.g. starting (lower left corner) from the point 

(0,0) and its width is 500 and its height also 500. Many points are 

contained in this rectangle that their dimensions vary between 0 and 

500. If another cell exists and starts at the point (1000,1000) it will be 

dominated by the previous one, since all its points will be dominated 

by that cell. In many cases, there are cells that have no chance to 

contain candidate skyline points so with the CellsFilter they are pruned 

and in this way the Mappers will have much less input records. In 

figure 4-1 you can see an example of a dominated cell. 
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 Combiner 

 

We use as a combiner the same class we do with the Reducer. The 

combiner is very useful because it takes as input the output of the 

Mappers and computes the local skyline points. So the Reducer will be 

much faster because many points will have been pruned by the 

combiner. 

 

 

 
Figure 4-1: CellsFilter example, Cell3 is dominated by Cell0 

 

 

4.1 First Algorithm 

 

Now, let’s focus on the first algorithm. In the map function we use the list as 

discussed above. This list is empty before the map function begins. When the 

map gets first point it will output it. This point will also be inserted in the list. 

From now on, every point will be checked if it is dominated by the points 

contained in the list. If a point is dominated it will not be inserted in the list and 

it will not be outputted. Otherwise, we check if that point dominates some of 

the points contained in the list. If so, these points are removed and the new 

point is inserted and outputted. Our last filter in the map is to keep the point 
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that has the minimum mindist that is the sum of its dimensions (x + y). Every 

moment we have to check if the points coming from the map are dominated 

from that point. This point will be also contained in the list. If a point is 

dominated by this one, we don’t have to search the list. Otherwise, we check 

if the new point is the one that will be from now on the point that has the 

minimum mindist.  

 

Let’s see an example of how filters work in the Mappers. In this example we 

assume that at a certain time our list contains five points: 

 

{20,0}, {18,1}, {15,2}, {14,4}, {13,5} 

 

Of course, this list contains the point with the minimum mindist which is {15,2}. 

The point with the minimum mindist is used only to avoid searching the list. To 

be more specific, first we check if a point is dominated by the point with the 

minimum mindist. Then, we check if a point is dominated by a point contained 

in the list. In figure 4-2 you can see the area dominated by each filter.  

 

 

 
Figure 4-2: Area dominated by map filters in algorithm 1 

 

In the Reducer we use the same filtering techniques to reduce the total 

execution time. What is different in the Reducer is that now every single 
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moment that a point is inserted in the list is not outputted at the same time. 

When all points outputted from the Mapper are processed in the Reducer we 

use an extra loop in which we output the points contained in the final version 

of the list. These points are the global skyline points. 

 

 

4.2 Second Algorithm 

 

The second algorithm works a little bit differently. The main difference is that 

the points are sent sorted according to their mindist in the Reducer. We 

achieve that by using the MapReduce sorting built-in functionality. Every time 

we output a point as a value we set its key as the sum of its two dimensions 

that is x and y. For instance, a point that its x dimension is 5 and its y is 10 is 

outputted with the key equal to 15. By doing this, the efficiency of the Reducer 

can improve because it allows us to perform some filter and optimization 

tricks. 

 

The Mapper is also different than it was in the previous algorithm. We use 

three points to filter the output. The first one is the point with the minimum 

mindist( x + y ), the second is the point with the minimum x dimension and the 

third one has the minimum y dimension. In the beginning, these points are not 

being assigned to any value. When the map gets the first point its value is 

assigned to all three filtering points and of course it is outputted. For every 

new point we check if we have to update these three points. From now on, 

every point will be always checked by these three to decide if it will be 

outputted. For example, if the point with minimum mindist, the point with 

minimum x dimension and the point with minimum y dimension are: 

 

{5,5}, {3,9}, {10,4} 

 

Then the area which points will be dominated from now is shown in figure 4-3. 
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Figure 4-3: Area dominated by map filters in algorithm 2 

 

The Reducer will take as input the points outputted from the map. All these 

points will be sorted in ascending  according to  their key which is the   

mindist( x + y ). This sorting allows us to implement a few techniques that 

were not possible in the first algorithm. The Reducer uses a list to keep the 

skyline points. We will only perform additions not removals in the list because 

the Reducer gets the points sorted so there is no chance a future point to 

dominate a point that has already been added in the list. Also, every point 

added in the list will be outputted at the same time because it is not possible 

to be dominated by future points so the algorithm will not spend time to output 

the global skyline points in an additional loop. We will also use min_x and 

min_y values. These values will keep the minimum x and minimum y 

dimensions found in the current skyline points list. The reason we want to 

keep these values is that we will check every new point if its x dimension is 

less than min_x or its y dimension is less than min_y. If so, this point is not 

dominated by any other points added in the list and it will be outputted and 

added in the list without having to search the list if it is dominated. Every 

moment we add a point in the list we also check if we have to update min_x 

and min_y values. In order to understand better how min_x and min_y works 

let’s see an example. Assume we have found three skyline points until now: 
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{12,7}, {11,9}, {8,13} 

 

In this case, min_x is equal to 8 and min_y is equal to 7. If a candidate point’s 

x dimension is less than 7 e.g. 5 it will not be dominated by any of these three 

points and it will not dominate any of them because in this algorithm all points 

are sorted according to their mindist (x + y). So if this points x dimension is 5, 

its y dimension will be at least 16 which is the maximum mindist found until 

now. This optimization technique reduces the total execution time a lot when 

our list contains thousands of skyline points because we don’t have to search 

the whole list to see if a candidate point is dominated or not. 
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Chapter 5 

 

 

Implementation 
 
 
 
In this chapter we will describe step by step how the algorithms on chapter 4 

are implemented on SpatialHadoop. As explained earlier SpatialHadoop is the 

most suitable software to perform spatial operations in a distributed 

environment. We will next present the implementation of the skyline query on 

MapReduce adapted on both indexed and non-indexed files. In figure 5-1 is 

illustrated the high level code organization of both algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-1: High level code organization 

 

 

 

 

Skyline class 

main method 

skylineMapReduce method 

CellsFilter class Map class Reduce class 
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5.1 Main method 

 

Both algorithms use a timer that calculates the total execution time. The 

program gets the current local machine time in milliseconds in the beginning 

and in the end of the main. Then, subtracts these two values and outputs it on 

the screen. The program takes two arguments one for the input file we want to 

compute the skyline points and one for the path where we want to output 

these points. These arguments as well as a file system object are passed into 

a method called skylineMapReduce. This method keeps the driver code and 

performs the cells filter step described in previous chapters. 

 

 

5.2 skylineMapReduce method 

 

The skylineMapReduce method contains the driver code for the job, finds the 

cells that are pruned and runs the job. In this unit when not mentioned, the 

code described will be the same for both algorithms. 

 

In the driver code we set the number of Map and Reduce tasks, the output 

key and value classes. The output value class is Point and is the same for 

both algorithms because the data we are processing are 2 dimensional points. 

For the first algorithm, the output key class is NullWritable since we don’t want 

to process the data according to their keys. On the other hand, for the second 

algorithm the output key class is IntWritable because we want to sort the data 

according to their keys. We also set the Mapper, Combiner and Reducer 

classes. By the way, the Combiner and Reducer classes are the same. Next, 

we set the input and output format and paths for our data. The next step is to 

check if the file is indexed and if so we have to find which cells are being 

dominated and we pass the information needed to the CellsFilter class. This 

information includes the MapReduce job object, arrays with spatial information 

of the cells and a Boolean array that indicates if a cell is dominated or not. All 

this information is passed through the setQueryRange method of the 

CellsFilter class. Finally, we run the job. 

 



ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

 
 

37 
 

5.3 CellsFilter class 

 

The CellsFilter class is responsible for the cells that will be processed in the 

map. The setQueryRange method called in the skylineMapReduce method 

passed the necessary information to this class. Actually, the selectBlocks 

method decides the cells that will be processed in our job. In this method we 

use the rangeQuery method and the Boolean array containing the information 

about the cells that have to be pruned and the other arrays with spatial 

information about the cells. 

 

 

5.4 Map class 

 

The Mapper classes are called Map in both algorithms. However, the code 

differs in these two algorithms. The difference is the filters used to reduce the 

Map outputs. 

 

The Mapper of the first algorithm uses two different kinds of filters. The first 

one is a list of points called skylinePoints. This list keeps the current skyline 

points. The second one is the p_minMinDist variable of Point type which is 

initialized to null. The p_minMinDist keeps the point with the minimum mindist 

that is the sum of the x and y dimension. We also keep a Boolean variable 

called inserted. This variable is set to true every time we begin processing a 

new point in the map and is set to false if a point is dominated. In the map 

method we first check if the p_minMinDist is null, if so we assign it with the 

first point’s value. Otherwise, we check if the point is dominated by 

p_minMinDist. If this condition is not true we check if the point is dominated by 

any point in the skylinePoints list. We also, update if needed the p_minMinDist 

and the skylinePoints list. In the end, we check if the inserted variable is set to 

true in order to output the received point. In Figure 5-2 the map flowchart of 

the first algorithm is illustrated. 
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Figure 5-2: Map flowchart of the first algorithm 

 

 

The only common filter in the Mapper of the second algorithm is the 

p_minMinDist point. This Mapper uses another two Point variables, the 

p_minX and p_minY. The p_minX and p_minY keep the points with the 

minimum x and y dimension respectively. In the beginning these variables are 

initialized to null. When the map method runs for the first time these variables 

are set to the first received point. Then that point is outputted. From now on, 

for every new received point we will check if it is dominated by any of these 

three points. If not, the received point is outputted. Of course, we update if 

needed these three variables. In Figure 5-3 the map flowchart of the second 

algorithm is illustrated. 
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Figure 5-3: Map flowchart of the second algorithm 

 

 

5.5 Reduce class 

 

As said earlier, the Reducer classes are the same with the Combiner classes 

on both algorithms. However, the Reducer classes work in a different way in 

these two algorithms because the second algorithm gets the points sorted 

from the Mapper. 

 

The Reducer of the first algorithm uses the variables skylinePoints, 

p_minMinDist and inserted. These variables are being updated and are used 

in conditions in the same way as in the Mapper. The only difference is that 

when a received point is added in the skylinePoints it is not outputted at the 

same time. Only if we receive all points from the Mapper in a while loop we 

will be sure that the skylinePoints list will contain the correct skyline points. 

When this while loop completes we output all skyline points listed in 

skylinePoints from a for loop. In Figure 5-4 the reduce flowchart of the first 

algorithm is illustrated. 
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Figure 5-4: Reduce flowchart of the first algorithm 

 

As described earlier, the second algorithm gets all the points in the Reducer 

sorted. This allows us to apply some important optimization techniques. The 

Reducer uses the skylinePoints variable like the Reducer of the first algorithm. 

Moreover, it uses another two variables of type long, min_x and min_y. These 

variables keep the minimum x and y found in skylinePoints list respectively 

and they are initialized to the maximum value that the long type can take that 

is 2147483647. We also use the inserted variable. The Reducer has only a 

while loop where it receives all points from the Mapper. In this loop, we first 

check if the received point’s x dimension is less than the min_x or its y 

dimension is less than the min_y. If so, we know for sure that the point is not 

dominated by any other point. In this occasion the point is outputted. 

Otherwise we have to check if the received point is dominated by any of the 

points in the skylinePoints list. When a received point is outputted min_x, 

min_y and skylinePoints are being updated if necessary. In most cases, when 

points are sorted in ascending order according to their mindist, as we process 

points with greater mindist, one of their dimensions is less than any of the 

previous points. For example, if we have to process the following sorted 

dataset: 

 

{10,10), {8,14}, {16,9}, {19,7}, {5,25}, {0,32}, {35,2}, {40,0} 
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We can see that by using min_x and min_y variables we avoid to search the 

skylinePoints list. When we use these two variables the total number of the for 

loop iterations is 0. Otherwise, the number of iterations is 28. In the table 5-1 

you can see this example step by step. When skylinePoints contains 

thousands of skyline points this optimization technique will improve a lot the 

efficiency of the computation. In Figure 5-5 the reduce flowchart of the second 

algorithm is illustrated. 

 

 

 point mindist min_x min_y Total 
loop 

iterations 

Total 
loop 

iterations 
without 
min_x 

and 
min_y 

x y 

0 - - - 2147483647 2147483647 0 0 

1 10 10 20 10 10 0 0 

2 8 14 22 8 10 0 1 

3 16 9 25 8 9 0 3 

4 19 7 26 8 7 0 6 

5 5 25 30 5 7 0 10 

6 0 32 32 0 7 0 15 

7 35 2 37 0 2 0 21 

8 40 0 40 0 0 0 28 

 

Table 5-1: min_x and min_y example 

 

 
Figure 5-5: Reduce flowchart of the second algorithm 
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Chapter 6 

 

 

Experimental evaluation 
 
 
 
In this chapter we will present the experimental evaluation of the algorithms 

implemented by this thesis as well as the CG_Hadoop algorithm and we will 

compare the algorithms presented in this thesis with the CG_Hadoop 

algorithm. Also, we will present our results in tables and diagrams. 

 

 

6.1 Experiments 

 

The environment we ran our experiments was a 17 nodes cluster. You can 

refer to Appendix B for instructions how to install and configure 

Hadoop/SpatialHadoop in a multi-node environment. The NameNode, 

SecondaryNameNode and JobTracker daemons were running on three 

different machines. The DataNode and TaskTracker daemons were running 

on all remaining machines. In order to evaluate the efficiency of the algorithms 

we had to run a variety of experiments with different parameters. The first 

parameter was the size of the input file. The two different sizes used in our 

experiments were 1G and 10G. The second parameter was the distribution of 

the data of the input file. Uniform, Correlated and two different Anti-Correlated 

distributions were used. The second Anti-Correlated distribution was 

accompanied only by indexed files because it produced many thousands of 

skyline points and it was too time-consuming for some algorithms. The third 

parameter was to use indexed and non-indexed input files. In our case, we 

used Rtree-indexed files. All parameters are summarized in Table 6-1. Each 

experiment was run 10 times and we recorded important information such as 

input splits, map input and output records, combine input and output records, 

reduce input and output records, total execution time. 
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Parameter Range 

Size 1G, 10G 

Data distribution Uniform, Correlated, Anti-Correlated 

Index Null, Rtree 

 

Table 6-1: Parameters 

 

 

6.2 Algorithms 

 

The first algorithm as explained in the previous chapters uses a cells filter to 

prune the cells that are dominated. Also uses some filters that reduce the total 

map output points and computes the skyline points in the Reducer. 

 

The second algorithm uses the same cells filter with the first algorithm but is 

different concerning the map filters. Moreover, it sorts the map output records 

so it computes the skyline points in the Reducer with some important 

optimization techniques. 

 

The point in these experiments is to evaluate the efficiency of the algorithms 

described in this thesis and to compare them with the CG_Hadoop algorithm. 

CG_Hadoop algorithm also uses the cells filter step. Then, it outputs all the 

map output points and computes the skyline points. We have to figure out if 

the previous algorithms perform better than CG_Hadoop in different 

circumstances. 

 

 

6.3 Results 

 

Firstly, we will start our experiments with the Uniform distributed data. Next, 

we will continue with Correlated distributed data. Lastly, we will perform 

experiments with two different Anti-Correlated distributions. For each, 
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experiment we will show a table with information. After the tables we will 

present diagrams comparing the efficiency of the three algorithms. Also, every 

diagram shows the error bars for the total execution times. With error bars we 

will be able to estimate if the mean represents the true total execution time. 

 

 

6.3.1 Uniform distribution 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 16/16 16/16 16/16 

Map input 
records 

68000004 68000004 68000004 

Map output 
records 

68000004 2052 41127 

Combine input 
records 

68003621 2052 41127 

Combine output 
records 

3877 260 260 

Reduce input 
records 

260 260 260 

Reduce output 
records 

21 21 21 

Total execution 
time (10 runs) 

51555, 54346, 
50451, 51565, 
50198, 51211, 
51190, 47422, 
48371, 50380  

41131, 43147, 
43372, 42514, 
35379, 35307, 
41223, 43194, 
41351, 41404 

43150, 42153, 
42170, 42153, 
42352, 41306, 
41379, 43183, 
43126, 44329 

 

Table 6-2: Uniform distributed data, 1G, non-indexed file 

 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 160/160 160/160 160/160 

Map input 
records 

680000020 680000020 680000020 

Map output 
records 

680000020 19950 417977 

Combine input 
records 

680035251 19950 417977 

Combine output 
records 

37667 2436 2436 

Reduce input 
records 

2436 2436 2436 

Reduce output 
records 

10 10 10 
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Total execution 
time (10 runs) 

137646, 148406, 
136444, 137607, 
136388, 138376, 
138375, 136646, 
142622, 142711 

93391, 94299, 
91563, 94501, 
90707, 97288, 
90305, 92467, 
90597, 96576 

93603, 90275, 
96332, 96667, 
89499, 93335, 
94320, 94252, 
97340, 90527 

 

Table 6-3: Uniform distributed data, 10G, non-indexed file 

 

 

 
 

Figure 6-1: Uniform distributed data, 1G and 10G, Non-indexed file 

 

 

We can see that Algorithm1 and Algorithm2 are better than CG_Hadoop. 

CG_Hadoop does not use any filters in the map so it has many points to 

process in the reduce. Also, in the reduce it does not use any optimization 

techniques. This is the reason why it performs worse. Algorithm1 is a little bit 

better than algorithm2 in this experiment. Algorithm2 has more map output 

records than algorithm1 because of the different map filters it uses. Also, it 

sorts the map output points and sorting is a little bit time consuming especially 

when we have many map output records. In this occasion, we don’t have 

many map output records so we have only a small difference in total 

execution time. 
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 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 10/20 10/20 10/20 

Map input 
records 

33970406 33970406 33970406 

Map output 
records 

33970406 1350 25840 

Combine input 
records 

33972175 1350 25840 

Combine output 
records 

1926 157 157 

Reduce input 
records 

157 157 157 

Reduce output 
records 

21 21 21 

Total execution 
time (10 runs) 

44408, 45167, 
44163, 40116, 
44400, 45156, 
45536, 38095, 
40124, 40415 

38385, 38166, 
38127, 38139, 
38131, 34361, 
38389, 34358, 
34062, 38167 

35325, 33382, 
38387, 34117, 
38157, 34101, 
38345, 34113, 
35402, 33121 

 

Table 6-4: Uniform distributed data, 1G, Rtree-indexed file 

 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 28/182 28/182 28/182 

Map input 
records 

104528147 104528147 104528147 

Map output 
records 

104528147 3577 75281 

Combine input 
records 

104533540 3577 75281 

Combine output 
records 

5754 361 361 

Reduce input 
records 

361 361 361 

Reduce output 
records 

10 10 10 

Total execution 
time (10 runs) 

53232, 48470, 
53438, 53380, 
48173, 54204, 
53402, 54507, 
54483, 47217 

41234, 42500, 
41349, 41429, 
41180, 41267, 
41130, 47487, 
41361, 44431 

41450, 42186, 
45387, 41416, 
40476, 41155, 
41157, 41197, 
41358, 41349 

 

Table 6-5: Uniform distributed data, 10G, Rtree-indexed file 
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Figure 6-2: Uniform distributed data, 1G and 10G, Rtree-indexed file 

 

 

Algorithm1 and Algorithm2 are better than CG_Hadoop for the same reasons 

described in the previous experiment. Here, algorithm2 is a little bit better than 

algorithm1. Indexing helps algorithm2 to perform better with the computation 

of the skyline points by using some optimization techniques. 

 

 

 

6.3.2 Correlated distribution 

 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 17/17 17/17 17/17 

Map input 
records 

68000002 68000002 68000002 

Map output 
records 

68000002 1191 4021 

Combine input 
records 

68002074 1191 4021 

Combine output 
records 

2263 191 191 

Reduce input 
records 

191 191 191 

Reduce output 
records 

9 9 9 
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Total execution 
time (10 runs) 

49194, 49153, 
51340, 49268, 
52133, 49160, 
51373, 49352, 
49389, 51243 

42152, 40119, 
40274, 40338, 
43341, 40123, 
41478, 40352, 
42423, 42344 

42087, 42102, 
42124, 43267, 
44314, 39322, 
39245, 40112, 
40117, 39416 

 

Table 6-6: Correlated distributed data, 1G, Non-indexed file 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 163/163 163/163 163/163 

Map input 
records 

680000029 680000029 680000029 

Map output 
records 

680000029 11062 33724 

Combine input 
records 

680020645 11062 33724 

Combine output 
records 

22313 1697 1697 

Reduce input 
records 

1697 1697 1697 

Reduce output 
records 

15 15 15 

Total execution 
time (10 runs) 

145765, 134410, 
142410, 134611, 
141576, 150592, 
143449, 140583, 
138403, 141899 

96584, 90547, 
93331, 100337, 
98793, 100583, 
93549, 96300, 
100286, 97349 

93553, 100529, 
97418, 93547, 
97439, 94538, 
91505, 91532, 
96317, 93324 

 

Table 6-7: Correlated distributed data, 10G, Non-indexed file 

 

 

 
 

Figure 6-3: Correlated distributed data, 1G and 10G, Non-indexed file 
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The CG_Hadoop is worse than the other algorithms because of the reasons 

described in the previous experiments. Algorith1 and algorithm2 perform 

almost the same in this experiment because both of them output only a few 

map output records so the different processing in the map and reduce does 

not make a difference. 

 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 8/20 8/20 8/20 

Map input 
records 

27220734 27220734 27220734 

Map output 
records 

27220734 899 704094 

Combine input 
records 

27221989 899 704094 

Combine output 
records 

1356 101 114 

Reduce input 
records 

101 101 114 

Reduce output 
records 

9 9 9 

Total execution 
time (10 runs) 

44126, 44165, 
44157, 45438, 
45375, 44278, 
44142, 44237, 
47365, 48350 

39392, 38095, 
38166, 38112, 
38397, 38396, 
41372, 41128, 
41190, 39386 

35428, 35478, 
38117, 38175, 
35097, 38350, 
38187, 38494, 
38160, 38136 

 

Table 6-8: Correlated distributed data, 1G, Rtree-indexed file 

 

 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 26/182 26/182 26/182 

Map input 
records 

97049893 97049893 97049893 

Map output 
records 

97049893 3093 4440302 

Combine input 
records 

97054663 3093 4440302 

Combine output 
records 

5080 310 504 

Reduce input 
records 

310 310 310 

Reduce output 
records 

15 15 15 
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Total execution 
time (10 runs) 

59253, 53178, 
50205, 48198, 
56303, 48411, 
49453, 47195, 
53227, 49181 

41415, 35178, 
41183, 41180, 
41154, 41410, 
44375, 41442, 
41189, 41150 

51199, 47250, 
47235, 47343, 
47195, 47412, 
47471, 50349, 
47407, 41237 

 

Table 6-9: Correlated distributed data, 10G, Rtree-indexed file 

 

 

 
 

Figure 6-4: Correlated distributed data, 1G and 10G, Rtree-indexed file 

 

Once again, algorithm1 and algorithm2 are better than CG_Hadoop. In the 1G 

dataset algorithm2 is a little bit better than algorithm1 because indexing 

improves the performance of the reduce in a better way for this algorithm. In 

the 10G dataset algorithm1 is better than algorithm2. Algorithm1 map outputs 

are only 3093 while algorithm2 has 4440302 map outputs. Algorithm2 has 

much more data to process in the reduce and also it has to sort all these map 

output records. This is the reason why algorithm1 performs better in this 

situation. 

 

 

6.3.3 Anti-Correlated distribution 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 16/16 16/16 16/16 

Map input 68000001 68000001 68000001 
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records 

Map output 
records 

68000001 313455 67585488 

Combine input 
records 

68749451 313455 68329019 

Combine output 
records 

806041 56591 800122 

Reduce input 
records 

56591 56591 56591 

Reduce output 
records 

4226 4226 4226 

Total execution 
time (10 runs) 

290608, 287810, 
298910, 293837, 
299625, 290894, 
288616, 299793, 
341881, 318109 

435884, 446825, 
451128, 397919, 
388855, 410818, 
401988, 467907, 
428942, 427121 

70382, 62202, 
68399, 69434, 
68433, 75451, 
71422, 65222, 
69150, 69244 

 

Table 6-10: Anti-Correlated distributed data, 1G, Non-indexed file 

 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 160/160 160/160 160/160 

Map input 
records 

680000024 680000024 680000024 

Map output 
records 

680000024 3139739 675862632 

Combine input 
records 

687501173 3139739 683314695 

Combine output 
records 

8067244 566095 8018158 

Reduce input 
records 

566095 566095 566095 

Reduce output 
records 

4746 4746 4746 

Total execution 
time (10 runs) 

1349957, 
1338891, 
1327857, 
1316040, 
1280655, 
1332886, 
1329749, 
1306915, 

1346073, 1275824 

1963214, 
1950774, 
1996999, 
2001036, 
1938801, 
1914687, 
1974196, 
1962905, 
1983027, 
1885885 

232668, 235687, 
234881, 235892, 
240992, 234625, 
232637, 230580, 
247857, 239866 

 

Table 6-11: Anti-Correlated distributed data, 10G, Non-indexed file 
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Figure 6-5: Anti-Correlated distributed data, 1G and 10G, Non-indexed file 

 

 

Algorithm1 performs worse than CG_Hadoop in this experiment because the 

list in the map takes a long time when there are a lot of candidate skyline 

points. However, algorithm2 is a lot better than CG_Hadoop because sorting 

the map output records allows it to perform some important optimization 

techniques in the reduce. 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 20/20 20/20 20/20 

Map input 
records 

68000001 68000001 68000001 

Map output 
records 

68000001 31526 60664391 

Combine input 
records 

68049431 31526 60708260 

Combine output 
records 

53830 4400 48269 

Reduce input 
records 

4400 4400 4400 

Reduce output 
records 

4226 4226 4226 

Total execution 
time (10 runs) 

59256, 54502, 
60357, 59409, 
56171, 62125, 
61182, 59392, 
59331, 57400 

56160, 59173, 
51380, 56363, 
58400, 55172, 
62217, 56141, 
56390, 57395 

55354, 51165, 
53164, 58351, 
53441, 55396, 
47139, 50169, 
56137, 54385 

 

Table 6-12: Anti-Correlated distributed data, 1G, Rtree-indexed file 
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 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 160/160 182/182 182/182 

Map input 
records 

680000024 680000024 680000024 

Map output 
records 

680000024 53221 278199208 

Combine input 
records 

680083772 53221 278232224 

Combine output 
records 

89948 6200 39594 

Reduce input 
records 

6200 6200 6578 

Reduce output 
records 

4746 4746 4746 

Total execution 
time (10 runs) 

159538, 158788, 
152727, 155908, 
157522, 151624, 
154797, 153853, 
154729, 157502 

106594, 106597, 
103588, 105680, 
107589, 107428, 
109423, 101460, 
100545, 103379 

141489, 139485, 
138653, 138680, 
144454, 139512, 
138692, 142680, 
138749, 146512 

 

Table 6-13: Anti-Correlated distributed data, 10G, Rtree-indexed file 

 

 
 

Figure 6-6: Anti-Correlated distributed data, 1G and 10G, Rtree-indexed file 

 

In the 1G dataset algorithm2 is better than the other two algorithms for the 

same reasons described in the previous experiment. Indexing helps 

algorithm1 to produce around 90% less map output records than the previous 

experiment. This is the reason why algorithm1 is more efficient than 

CG_Hadoop. In the 10G dataset algorithm1 is more efficient than algorithm2 
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because it has much less map output records than algorithm2.  Algorithm2 

has to sort a lot of data and has much more data to process in the reduce. 

These are the reasons why algorithm1 performs better than algorithm2. 

 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 20/20 20/20 20/20 

Map input 
records 

68000002 68000002 68000002 

Map output 
records 

68000002 1335016 67923443 

Combine input 
records 

70924076 1335016 70839478 

Combine output 
records 

3221858 297784 3213819 

Reduce input 
records 

297784 297784 297784 

Reduce output 
records 

297720 297720 297720 

Total execution 
time (10 runs) 

1264229, 
1223253, 
1237214, 
1213143, 
1199206, 
1215345, 
1167184, 
1226310, 
1217119, 
1233394 

1909542, 
1997314, 
1853071, 
1923334, 
1940543, 
1930446, 
1870182, 
1892219, 
2038671, 
1876538 

254559, 274801, 
263537, 266580, 
261823, 281795, 
260781, 260488, 
257518, 274512 

 

Table 6-14: Anti-Correlated (2) distributed data, 1G, Rtree-indexed file 

 
 
 

 CG_Hadoop Algorithm 1 Algorithm 2 

Input splits 182/182 182/182 182/182 

Map input 
records 

680000014 680000014 680000014 

Map output 
records 

680000014 2085641 672952362 

Combine input 
records 

684297122 2085641 677188802 

Combine output 
records 

4651946 354838 4591278 

Reduce input 
records 

354838 354838 354838 

Reduce output 
records 

354188 354188 354188 
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Total execution 
time (10 runs) 

1328741, 
1328777, 
1335638, 
1269714, 
1327800, 
1301545, 
1290865, 
1297698, 
1346977, 
1322697 

2210032, 
1806532, 
1809504, 
2156789, 
1795359, 
1794466, 
2162211, 
1803348, 
1781537, 
1805472 

425269, 442986, 
431952, 423284, 
437244, 437146, 
435275, 433221, 
423098, 434211 

 
Table 6-15: Anti-Correlated (2) distributed data, 10G, Rtree-indexed file 

 

 

 
Figure 6-7: Anti-Correlated (2) distributed data, 1G and 10G, Rtree-indexed 

file 

 

In these experiments we have many thousand skyline points. Algorithm2 sorts 

its map output records and performs some optimization techniques that 

improve a lot the computation that’s why it performs much better than the 

other algorithms. Algorithm1 performs worse than CG_Hadoop because the 

list it uses in the map to keep the candidate skyline points has many data to 

process in this situation. 
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Chapter 7 

 

 

Conclusion 
 
 
 
In this thesis, we have addressed efficient skyline query processing 

algorithms. These algorithms were implemented on SpatialHadoop using the 

MapReduce programming model. We developed two algorithms. Both 

algorithms have a filter step that selects only the cells that it is possible to 

contain candidate skyline points. The first one uses some filter techniques in 

the Mapper that reduces the number of total map output records to a 

significant degree. However, this filter can increase a lot the total execution 

time when it comes to anti-correlated data distributions with a huge number of 

total skyline points. In this occasion, the map filtering techniques of the 

second algorithm are preferred. The second algorithm also sorts the data.  

This improves the performance of the Reducer by using some optimization 

techniques. The idea was to combine these algorithms into a single algorithm 

by using a sampler to figure out which algorithm is better depending on the 

input data. However, the sampler was not too efficient so we ended up having 

two separate algorithms. We also, implemented the CG_Hadoop algorithm in 

order to compare it with this thesis’ algorithms. The CG_Hadoop algorithm 

uses also the cells filter step described earlier. We ran a set of experiments 

on a cluster of 17 nodes. The most important thing was to test them in 

different kind of input data. Each experiment was run 10 times. From these 

experiments we calculated the mean, standard deviation and standard error to 

represent the average total execution times with error bars. In most cases, the 

first algorithm was better than CG_Hadoop. The second algorithm was better 

than CG_Hadoop in all cases. This thesis’ algorithms perform better in 

different situations. To sum up, both algorithms in this thesis were efficient 

and it depends on what kind of data we want to process to choose which one 

is better. The second algorithm is much better than the first one when we 
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have too many total skyline points. The second algorithm performs worse than 

the first one only if it outputs too many map output records and for the same 

input data the first algorithm outputs only few map output records. 
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Appendix A 
 

 

Pseudocode 
 
 
 
This appendix gives the pseudocode for the skyline algorithms of this thesis, 

written in a MapReduce programming paradigm. 

 

 

A.1 Algorithm 1 

 

if file is spatially indexed then 

 function CellsFilter(C: Set of cells) 

  for each cell c in C do 

   if c is not dominated by any cell then   

    Load c in Map function 

   end if 

  end for 

 end function 

end if 

Initialize skylinePoints list to {} 

Initialize p_minMinDist to null 

function Map(p:Point) 

if p is not dominated by p_minMinDist then 

if p is not dominated by any points in skylinePoints then 

Update if necessary p_minMinDist 

Add p in skylinePoints 

Remove the points dominated by p in skylinePoints 

output(null, p) 

end if 

end if 

end function 

Initialize skylinePoints list to {} 

Initialize p_minMinDist to null 

function Combine, Reduce (null, P:Set of points) 

 for each point p in P do 

if p is not dominated by p_minMinDist then 

if p is not dominated by any points in skylinePoints then 

Update if necessary p_minMinDist 
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 Remove the points dominated by p in             

skylinePoints 

end if 

end if 

 end for 

for each point p in skylinePoints do 

output(null, p) 

end for 

end function 

 

 

A.2 Algorithm 2 

 

if file is spatially indexed then 

function CellsFilter(C: Set of cells) 

  for each cell c in C do 

   if c is not dominated by any cell then   

    Load c in Map function 

   end if 

  end for 

 end function 

end if 

Initialize p_minMinDist to null 

Initialize p_minX to null 

Initialize p_minY to null 

function Map(p:Point) 

if p is not dominated by p_minMinDist or p_minX or p_minY then 

Update if necessary p_minMinDist 

Update if necessary p_minX 

Update if necessary p_minY 

output(x + y, p) 

end if 

end function 

Initialize skylinePoints list to {} 

Initialize min_x and min_y to 2147483647 

function Combine, Reduce (mindist, P:Set of points) 

if the x or y dimension of p is less than min_x or min_y respectively 

then 

output(mindist, p) 

else 

if p is not dominated by any points in skylinePoints then 

Update if necessary min_x 

Update if necessary min_y 
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Add p in skylinePoints 

output(mindist, p) 

end if 

 end if 

end function 
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Appendix B 

 

 

Hadoop/SpatialHadoop installation 
 

In this appendix we will describe how to set up a linux multi-node 

Hadoop/SpatialHadoop cluster. To achieve this we have to follow these 

required steps on every single machine: 

 

1) Java 6 

 

Java 6 is recommended for running Hadoop/SpatialHadoop. To install java 

6: 

 

$ sudo apt-get install sun-java6-jdk 

 

2) Configuring SSH 

 

We have to generate an SSH key for our user: 

 

$ ssh-keygen -t rsa -P "" 

 

After this press ENTER. Then we have to enable SSH access to our local 

machine with this newly created key: 

 

$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys 

 

3) Networking 

 

All machines must be able to reach each other over the network. We have 

to update /etc/hosts on all machines. For example, if we have a cluster 

with six nodes. Three nodes running NameNode, SecondaryNameNode, 

JobTracker daemons and three slave nodes running the DataNode and 

TaskTracker daemons. If the IPs of these machines are 172.18.255.0, 

172.18.255.1, 172.18.255.2, 172.18.255.3, 172.18.255.4, 172.18.255.5 

respectively we update the hosts file with the following lines: 
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172.18.255.0  namenode 

172.18.255.1  secondarynamenode 

172.18.255.2  jobtracker 

172.18.255.3  slave01 

172.18.255.4  slave02 

172.18.255.5  slave03 

 

4) SSH access 

 

The user on the namenode and jobtracker must be able to connect to the 

users on the slave machines via a password-less SSH login. We have to 

upload the id_rsa.pub key from the namenode and jobtracker and copy 

them to the authorized_keys on every slave machine as in the step 2. 

 

5) Hadoop/SpatialHadoop upload 

 

We must upload the Hadoop/SpatialHadoop on every machine in the 

cluster. This can be done with the scp command. For example, to upload a 

file called SpatialHadoop (located in your home folder) to the root user on 

namenode: 

 

$ scp SpatialHadoop root@namenode:[path] 

 

The path is optional. If you do not place anything after the : the file will be 

placed in the home folder. 

 

6) Hadoop/SpatialHadoop configuration 

 

Next we have to define on which machine Hadoop/SpatialHadoop will 

start secondarynamenode in our multi-node cluster. To achieve this we 

have to update the conf/masters file. On the namenode we update the 

masters file with: 

 

secondarynamenode 

 

The conf/slaves file lists the hosts, one per line, where the Hadoop slave 

daemons (DataNodes and TaskTrackers) will be run. On both namenode 

and jobtracker nodes we must update the slaves file: 



ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

 
 

64 
 

 

slave01 

slave02 

slave03 

 

We must also change the configuration files conf/core-

site.xml, conf/mapred-site.xml and conf/hdfs-site.xml, conf/hadoop-

env.sh on all machines as follows: 

 

conf/core-site.xml 

 

First, we have to change the fs.default.name parameter (in conf/core-

site.xml), which specifies the NameNode host and port. 

 

<property> 

   <name>fs.default.name</name> 

   <value>hdfs://namenode:9000</value>  
      </property> 

 

      conf/mapred-site.xml 

 

Second, we have to change the mapred.job.tracker parameter    

(in conf/mapred-site.xml), which specifies the JobTracker  host and port. 

 

<property> 

<name>mapred.job.tracker</name> 

<value>jobtracker:9001</value> 
       </property> 

 

       conf/hdfs-site.xml 

 
Third, we change the dfs.replication parameter (in conf/hdfs-site.xml) 

which specifies the default block replication. It defines how many 

machines a single file should be replicated to before it becomes 

available. 

 

<property> 

  <name>dfs.replication</name> 

  <value>3</value> 

       </property> 

 

        

http://hadoop.apache.org/core/docs/current/hadoop-default.html#fs.default.name
http://hadoop.apache.org/core/docs/current/api/overview-summary.html
http://hadoop.apache.org/core/docs/current/hadoop-default.html#mapred.job.tracker
http://hadoop.apache.org/core/docs/current/api/org/apache/hadoop/mapred/JobTracker.html
http://hadoop.apache.org/core/docs/current/hadoop-default.html#dfs.replication
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       conf/hadoop-env.sh 

 
The only required environment variable we have to configure for Hadoop 

is JAVA_HOME for example: 

 

export JAVA_HOME=/usr/lib/jvm/java-6-sun 

 

7) Disabling IPv6 
 

One problem with IPv6 on Ubuntu is that using 0.0.0.0 for the various 

networking-related Hadoop configuration options will result in Hadoop 

binding to the IPv6 addresses of my Ubuntu box. We can disable IPv6 for 

Hadoop/SpatialHadoop by adding the following line to conf/hadoop-env.sh: 

 

export HADOOP_OPTS=-Djava.net.preferIPv4Stack=true 

 

8) Formatting the HDFS filesystem via the NameNode 

 
To format the filesystem, run the command the following command on 

namenode: 

 

$ bin/hadoop namenode –format 

 

9) Starting the multi-node cluster 

 
Starting the cluster is performed in two steps. 

 
a) We begin with starting the HDFS daemons: the NameNode 

daemon is started on namenode, and DataNode daemons 

are started on all slaves: 

 

$ bin/start-dfs.sh 

 
b) Then we start the MapReduce daemons: the JobTracker is 

started on jobtracker, and TaskTracker daemons are started 

on all slaves: 

 

$ bin/start-mapred.sh 

 

10)  Stopping the multi-node cluster 
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Like starting the cluster, stopping it is done in two steps. The workflow 

however is the opposite of starting. 

 
a) We begin with stopping the MapReduce daemons: the 

JobTracker is stopped on jobtracker, and TaskTracker 

daemons are stopped on all slaves: 

 

$ bin/stop-mapred.sh 

 
b) Then we stop the HDFS daemons: the NameNode daemon 

is stopped on namenode, and DataNode daemons are 

stopped on all slaves: 

 
$ bin/stop-dfs.sh 




