

Skyline Query Processing in SpatialHadoop

Dimitrios Pertesis

Master of Science

Department of Digital Systems

University of Piraeus

2014

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

i

Abstract

The MapReduce programming model allows us to process large data sets on

a cluster of machines. A MapReduce job usually splits the input data set into

independent chunks which are processed by the map tasks in a completely

parallel manner. The framework sorts the outputs of the maps, which are then

input to the reduce tasks. Typically both the input and the output of the job are

stored in a file-system. The framework takes care of scheduling tasks,

monitoring them and re-executes the failed tasks. The most popular open-

source implementation is Apache Hadoop. Recently, an extension to Apache

Hadoop has been developed called SpatialHadoop. SpatialHadoop is

designed to handle large data sets of spatial data. SpatialHadoop contains

spatial built-in data types but you can define your own data types. Moreover, it

supports a variety of spatial operations and indexes.

In this project, we developed two efficient skyline computation algorithms and

implemented on SpatialHadoop. Also, we compared them with an algorithm

proposed in «CG_Hadoop: Computational Geometry in MapReduce» paper.

The object of this study is to implement algorithms that will be efficient in

uniform, correlated and anti-correlated distributions of data. These algorithms

should also be capable to work with indexed and non-indexed input files. In

order to evaluate the efficiency of these three algorithms we ran a set of

experiments in a cluster of 17 nodes.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

ii

Περίληψη

Το MapReduce είναι ένα προγραμματιστικό μοντέλο που επιτρέπει την

επεξεργασία μεγάλου όγκου δεδομένων σε ένα cluster από μηχανήματα. Ένα

MapReduce job διαμοιράζει τα δεδομένα εισόδου σε ένα σύνολο από

ανεξάρτητα κομμάτια τα οποία επεξεργάζονται από τις map διεργασίες

παράλληλα. Το framework ταξινομεί τις εξόδους των map οι οποίες θα είναι

στη συνέχεια είσοδοι στις reduce διεργασίες. Οι είσοδοι και έξοδοι ενός job

αποθηκεύονται σε ένα σύστημα αρχείων. Το framework φροντίζει για τον

προγραμματισμό και έλεγχο των διεργασιών καθώς και την επανεκτέλεση

αποτυχημένων διεργασιών. Το πιο γνωστό ανοιχτού κώδικα λογισμικό είναι το

Apache Hadoop. Πρόσφατα, έχει αναπτυχθεί μια επέκταση του Apache

Hadoop με ονομασία SpatialHadoop. Το SpatialHadoop έχει σχεδιαστεί ειδικά

να χειρίζεται μεγάλα σύνολα χωρικών δεδομένων. Το SpatialHadoop περιέχει

έτοιμους χωρικούς τύπους δεδομένων αλλά μας επιτρέπει τη δημιουργία και

δικών μας τύπων δεδομένων. Επιπλέον, υποστηρίζει ένα σύνολο από

χωρικές λειτουργίες και δείκτες.

Σε αυτήν την εργασία, αναπτύξαμε δύο αποδοτικούς αλγόριθμους

επεξεργασίας skyline ερωτημάτων και τους υλοποιήσαμε στο SpatialHadoop.

Επίσης, τους συγκρίναμε με έναν αλγόριθμο που προτείνεται από το

«CG_Hadoop: Computational Geometry in MapReduce» paper. Το

αντικείμενο αυτής της μελέτης είναι η υλοποίηση αλγορίθμων που θα είναι

αποδοτικοί σε διαφορετικές κατανομές των δεδομένων όπως uniform

correlated και anti-correlated. Οι αλγόριθμοι θα πρέπει να δουλεύουν σωστά

ανεξάρτητα αν τα αρχεία που επεξεργαζόμαστε περιέχουν ή όχι δείκτες. Για

να αξιολογήσουμε την απόδοση των τριών αλγορίθμων υλοποιήσαμε μια

σειρά πειραμάτων σε ένα cluster με 17 μηχανήματα.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Christos

Doulkeridis, for his guidance, continuous support and for his invaluable help

and advice throughout this project.

And last but not least, I would like to thank from the bottom of my heart my

parents, brother and grandmother who always stood by me.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

iv

To my parents, brother, grandmother and grandfather…

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

v

Table of Contents

Introduction .. 1

1.1 Overview ... 1

1.2 Aims .. 3

1.3 Thesis outline ... 3

Background .. 5

2.1 Hadoop ... 5

2.1.1 MapReduce introduction ... 6

2.1.2 MapReduce Data Flow ... 6

2.1.3 Combiner Functions ... 11

2.1.4 Hadoop Streaming ... 12

2.1.5 Hadoop Pipes ... 13

2.2 SpatialHadoop .. 13

2.2.1 Extensible data types ... 14

2.2.2 Built-in data types ... 14

2.2.3 User-defined data types ... 15

2.2.4 Spatial Operations .. 16

2.2.5 Spatial index ... 20

2.3 Related work ... 22

Problem Setting ... 25

3.1 SpatialHadoop vs. Hadoop ... 25

3.2 Base algorithm .. 25

3.3 Efficiency matters ... 26

Algorithms .. 29

4.1 First Algorithm .. 30

4.2 Second Algorithm ... 32

Implementation .. 35

5.1 Main method ... 36

5.2 skylineMapReduce method .. 36

5.3 CellsFilter class .. 37

5.4 Map class ... 37

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

vi

5.5 Reduce class .. 39

Experimental Evaluation ... 42

6.1 Experiments .. 42

6.2 Algorithms ... 43

6.3 Results .. 43

6.3.1 Uniform distribution... 44

6.3.2 Correlated distribution .. 47

6.3.3 Anti-Correlated distribution ... 50

Conclusion ... 56

Bibliography ... 58

A Pseudocode .. 59

A.1 Algorithm 1 ... 59

A.2 Algorithm 2 ... 60

B Hadoop/SpatialHadoop installation .. 62

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

vii

List of Figures

1-1: Skyline points example ... 2

2-1: Hadoop subprojects [1] ... 6

2-2: MapReduce data flow with a single reduce task [1] 9

2-3: MapReduce data flow with multiple reduce tasks [1] 10

2-4: MapReduce data flow with no reduce tasks [1] 10

2-5: R-tree index stored as a folder [6] ... 20

3-1: CG_Hadoop’s filters and optimization techniques 27

3-2: First algorithm’s filters and optimization techniques 27

3-3: Second algorithm’s filters and optimization techniques 28

4-1: CellsFilter example, Cell3 is dominated by Cell0 30

4-2: Area dominated by map filters in algorithm 1 .. 31

4-3: Area dominated by map filters in algorithm 2 .. 33

5-1: High level code organization ... 35

5-2: Map flowchart of the first algorithm ... 38

5-3: Map flowchart of the second algorithm ... 39

5-4: Reduce flowchart of the first algorithm .. 40

5-5: Reduce flowchart of the second algorithm .. 41

6-1: Uniform distributed data, 1G and 10G, Non-indexed file 45

6-2: Uniform distributed data, 1G and 10G, Rtree-indexed file 47

6-3: Correlated distributed data, 1G and 10G, Non-indexed file 48

6-4: Correlated distributed data, 1G and 10G, Rtree-indexed file 50

6-5: Anti-Correlated distributed data, 1G and 10G, Non-indexed file 52

6-6: Anti-Correlated distributed data, 1G and 10G, Rtree-indexed file 53

6-7: Anti-Correlated (2) distributed data, 1G and 10G, Rtree-indexed file 55

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

viii

List of Tables

5-1: min_x and min_y example .. 41

6-1: Parameters ... 43

6-2: Uniform distributed data, 1G, non-indexed file .. 44

6-3: Uniform distributed data, 10G, non-indexed file 45

6-4: Uniform distributed data, 1G, Rtree-indexed file 46

6-5: Uniform distributed data, 10G, Rtree-indexed file 46

6-6: Correlated distributed data, 1G, Non-indexed file 48

6-7: Correlated distributed data, 10G, Non-indexed file 48

6-8: Correlated distributed data, 1G, Rtree-indexed file 49

6-9: Correlated distributed data, 10G, Rtree-indexed file 50

6-10: Anti-Correlated distributed data, 1G, Non-indexed file 51

6-11: Anti-Correlated distributed data, 10G, Non-indexed file 51

6-12: Anti-Correlated distributed data, 1G, Rtree-indexed file 52

6-13: Anti-Correlated distributed data, 10G, Rtree-indexed file 53

6-14: Anti-Correlated (2) distributed data, 1G, Rtree-indexed file 54

6-15: Anti-Correlated (2) distributed data, 10G, Rtree-indexed file 55

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

1

Chapter 1

Introduction

1.1 Overview

Over the last few years, big data has become a big deal. Recently, spatial

data has gained interest. Spatial data has been used in many applications.

Increasingly, the size, variety, and update rate of spatial datasets exceed the

capacity of commonly used spatial computing and spatial database

technologies to process the data with reasonable effort. Such data is known

as Spatial Big Data. A solution to this problem is cloud computing. Cloud

computing has become a viable, mainstream solution for data processing,

storage and distribution. The cloud computing model is a perfect match for big

data since cloud computing provides unlimited resources on demand.

The skyline of a d-dimensional dataset contains the points that are not

dominated by any other point on all dimensions. The skyline operator is

important for several applications involving multi-criteria decision making.

Definition: Given a set of points p1, p2, . . . ,pN, the skyline operator returns all

points pi such that pi is not dominated by another point pj. Skyline query is

also known as Pareto optimal meaning that it returns all points pi such that

there is no other point pj better on all dimensions. Using the common example

in the literature, assume that we have a set of hotels and for each hotel we

store its distance from the beach (x axis) and its price (y axis). The most

interesting hotels are these for which there is no point that is better in both

dimensions (An example is illustrated in figure 1-1).

When it comes to processing vast amounts of data it becomes difficult to

compute the skyline points. In these situations, MapReduce is a fine solution.

MapReduce is a programming model for processing large data sets with a

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

2

parallel, distributed algorithm on a cluster. A MapReduce program is

composed of a Map() procedure that performs filtering and sorting and a

Reduce() procedure that performs a summary. The "MapReduce System"

orchestrates by marshalling the distributed servers, running the various tasks

in parallel, managing all communications and data transfers between the

various parts of the system, and providing for redundancy and fault tolerance.

A popular open-source implementation is Apache Hadoop. Apache Hadoop is

an open-source software framework for storage and large scale processing of

data-sets on clusters of commodity hardware.

Figure 1-1: Skyline points example

Unfortunately, Hadoop is not very efficient concerning spatial data processing.

A more efficient MapReduce extension to Apache Hadoop designed specially

to work with spatial data is SpatialHadoop. SpatialHadoop is an open source

MapReduce extension designed specifically to handle huge datasets of

spatial data on Apache Hadoop. SpatialHadoop is shipped with built-in spatial

high level language, spatial data types, spatial indexes and efficient spatial

operations.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Dominated points

Skyline points

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

3

1.2 Aims

The goal of this research is to implement skyline algorithms on SpatialHadoop

that will be efficient to deal with a variety of input data. The programs must

take as input a file of two-dimensional points and it must output the skyline

points.

The most important thing is to develop an algorithm that can compute the

skyline points on different sizes of files e.g. 1G or 10G. Also, it should be able

to work with various data distributions such as uniform, correlated and anti-

correlated.

The challenge is that the algorithm must be efficient on all these different kind

of data. It is not easy to do something like this because some algorithms

perform better in some situations and less efficiently in other cases. To be

more specific, we may have developed an algorithm that is very fast when it

comes to uniform distributed data but not so efficient in anti-correlated

distributed data or the exact opposite. So the goal of this thesis is to find out

algorithms that are efficient no matter the size or distribution of a data set.

1.3 Thesis outline

The thesis has been divided into 7 chapters starting from this one. The

remaining chapters are organized as follows:

 Chapter 2 describes how MapReduce works, explains the features of

Hadoop, SpatialHadoop and presents papers on skyline query

processing using MapReduce platforms.

 Chapter 3 focuses on the subject of efficient skyline query processing

in SpatialHadoop.

 Chapter 4 explains the algorithms that compute the skyline points over

an input file.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

4

 Chapter 5 presents the implementation of the algorithms from chapter

4.

 Chapter 6 gives us an experimental evaluation of the implemented

algorithms.

 Chapter 7 summarizes every aspect presented in this thesis.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

5

Chapter 2

Background

2.1 Hadoop

Hadoop is a collection of related subprojects that fall under the umbrella of

infrastructure for distributed computing. These projects are hosted by the

Apache Software Foundation, which provides support for a community of

open source software projects. Although Hadoop is best known for

MapReduce and its distributed file system (HDFS, renamed from NDFS), the

other subprojects provide complementary services, or build on the core to add

higher-level abstractions. The subprojects, and where they sit in the

technology stack, are shown in Figure 2-1 and described briefly here:

 Core

 Avro

 MapReduce

 HDFS

 Pig

 HBase

 ZooKeeper

 Hive

 Chukwa

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

6

Figure 2-1: Hadoop subprojects [1]

2.1.1 MapReduce introduction

MapReduce is a programming model for data processing. The model is

simple, yet not too simple to express useful programs in. Hadoop can run

MapReduce programs written in various languages. Most importantly,

MapReduce programs are inherently parallel, thus putting very large-scale

data analysis into the hands of anyone with enough machines at their

disposal.

MapReduce works by breaking the processing into two phases: the map

phase and the reduce phase. Each phase has key-value pairs as input and

output, the types of which may be chosen by the programmer. The

programmer also specifies two functions: the map function and the reduce

function.

2.1.2 MapReduce Data Flow

A MapReduce job is a unit of work that the client wants to be performed: it

consists of the input data, the MapReduce program, and configuration

information. Hadoop runs the job by dividing it into tasks, of which there are

two types: map tasks and reduce tasks.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

7

There are two types of nodes that control the job execution process: a

JobTracker and a number of TaskTrackers. The JobTracker coordinates all

the jobs run on the system by scheduling tasks to run on TaskTrackers.

TaskTrackers run tasks and send progress reports to the JobTracker, which

keeps a record of the overall progress of each job. If a task fails, the

JobTracker can reschedule it on a different TaskTracker.

Hadoop divides the input to a MapReduce job into fixed-size pieces called

input splits, or just splits. Hadoop creates one map task for each split, which

runs the user defined map function for each record in the split.

Having many splits means the time taken to process each split is small

compared to the time to process the whole input. So if we are processing the

splits in parallel, the processing is better load-balanced if the splits are small,

since a faster machine will be able to process proportionally more splits over

the course of the job than a slower machine. Even if the machines are

identical, failed processes or other jobs running concurrently make load

balancing desirable, and the quality of the load balancing increases as the

splits become more fine-grained.

On the other hand, if splits are too small, then the overhead of managing the

splits and of map task creation begins to dominate the total job execution

time. For most jobs, a good split size tends to be the size of a HDFS block, 64

MB by default, although this can be changed for the cluster (for all newly

created files), or specified when each file is created.

Hadoop does its best to run the map task on a node where the input data

resides in HDFS. This is called the data locality optimization. It should now be

clear why the optimal split size is the same as the block size: it is the largest

size of input that can be guaranteed to be stored on a single node. If the split

spanned two blocks, it would be unlikely that any HDFS node stored both

blocks, so some of the split would have to be transferred across the network

to the node running the map task, which is clearly less efficient than running

the whole map task using local data.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

8

Map tasks write their output to local disk, not to HDFS. Map output is

intermediate output: it’s processed by reduce tasks to produce the final

output, and once the job is complete the map output can be thrown away. So

storing it in HDFS, with replication, would be overkill. If the node running the

map task fails before the map output has been consumed by the reduce task,

then Hadoop will automatically rerun the map task on another node to

recreate the map output.

Reduce tasks don’t have the advantage of data locality—the input to a single

reduce task is normally the output from all Mappers. In the present example,

we have a single reduce task that is fed by all of the map tasks. Therefore the

sorted map outputs have to be transferred across the network to the node

where the reduce task is running, where they are merged and then passed to

the user-defined reduce function. The output of the Reducer is normally

stored in HDFS for reliability. For each HDFS block of the reduce output, the

first replica is stored on the local node, with other replicas being stored on off-

rack nodes. Thus, writing the reduce output does consume network

bandwidth, but only as much as a normal HDFS write pipeline consumes.

The whole data flow with a single reduce task is illustrated in Figure 2-2. The

dotted boxes indicate nodes, the light arrows show data transfers on a node,

and the heavy arrows show data transfers between nodes.

The number of reduce tasks is not governed by the size of the input, but is

specified independently.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

9

Figure 2-2: MapReduce data flow with a single reduce task [1]

When there are multiple Reducers, the map tasks partition their output, each

creating one partition for each reduce task. There can be many keys (and

their associated values) in each partition, but the records for every key are all

in a single partition. The partitioning can be controlled by a user-defined

partitioning function, but normally the default partitioner - which buckets keys

using a hash function - works very well.

The data flow for the general case of multiple reduce tasks is illustrated in

Figure 2-3. This diagram makes it clear why the data flow between map and

reduce tasks is colloquially known as “the shuffle,” as each reduce task is fed

by many map tasks. The shuffle is more complicated than this diagram

suggests, and tuning it can have a big impact on job execution time.

Finally, it’s also possible to have zero reduce tasks. This can be appropriate

when you don’t need the shuffle since the processing can be carried out

entirely in. In this case, the only off-node data transfer is when the map tasks

write to HDFS (see Figure 2-4).

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

10

Figure 2-3: MapReduce data flow with multiple reduce tasks [1]

Figure 2-4: MapReduce data flow with no reduce tasks [1]

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

11

2.1.3 Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on the cluster,

so it pays to minimize the data transferred between map and reduce tasks.

Hadoop allows the user to specify a combiner function to be run on the map

output—the combiner function’s output forms the input to the reduce function.

Since the combiner function is an optimization, Hadoop does not provide a

guarantee of how many times it will call it for a particular map output record, if

at all. In other words, calling the combiner function zero, one, or many times

should produce the same output from the Reducer.

The contract for the combiner function constrains the type of function that may

be used. This is best illustrated with an example. Imagine the first map

produced the output:

(1950, 0)
(1950, 20)
(1950, 10)

And the second produced:

(1950, 25)
(1950, 15)

The reduce function would be called with a list of all the values:

(1950, [0, 20, 10, 25, 15])

with output:

(1950, 25)

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

12

since 25 is the maximum value in the list. We could use a combiner. The

reduce would then be called with:

(1950, [20, 25])

and the reduce would produce the same output as before. More succinctly,

we may express the function calls as follows:

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

Not all functions possess this property. For example, if we were calculating

mean values, then we couldn’t use the mean as our combiner function, since:

mean(0, 20, 10, 25, 15) = 14

but:

mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

The combiner function doesn’t replace the reduce function. The reduce

function is still needed to process records with the same key from different

maps. But it can help cut down the amount of data shuffled between the maps

and the reduces, and for this reason alone it is always worth considering

whether you can use a combiner function in your MapReduce job.

2.1.4 Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and

reduce functions in languages other than Java. Hadoop Streaming uses Unix

standard streams as the interface between Hadoop and your program, so you

can use any language that can read standard input and write to standard

output to write your MapReduce program.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

13

Streaming is naturally suited for text processing, and when used in text mode,

it has a line-oriented view of data. Map input data is passed over standard

input to your map function, which processes it line by line and writes lines to

standard output. A map output key-value pair is written as a single tab-

delimited line. Input to the reduce function is in the same format—a tab-

separated key-value pair—passed over standard input. The reduce function

reads lines from standard input, which the framework guarantees are sorted

by key, and writes its results to standard output.

2.1.5 Hadoop Pipes

Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce.

Unlike Streaming, which uses standard input and output to communicate with

the map and reduce code, Pipes uses sockets as the channel over which the

TaskTracker communicates with the process running the C++ map or reduce

function. JNI is not used.

Unlike the Java interface, keys and values in the C++ interface are byte

buffers, represented as Standard Template Library (STL) strings. This makes

the interface simpler, although it does put a slightly greater burden on the

application developer, who has to convert to and from richer domain-level

types.

2.2 SpatialHadoop

SpatialHadoop is an open source MapReduce extension designed specifically

to handle huge datasets of spatial data on Apache Hadoop. SpatialHadoop is

shipped with built-in spatial high level language, spatial data types, spatial

indexes and efficient spatial operations. You can use it to analyze your huge

spatial datasets on a cluster of machines.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

14

2.2.1 Extensible data types

SpatialHadoop ships with several data types including (Point, Rectangle and

Polygon). There are different cases where you'll need to extend these data

types or implement new spatial data types.

 Input files are not in the standard format used by SpatialHadoop

 Each record contains more information than just the shape (e.g., tags

or comments)

 The application uses shapes other than the supported shapes (e.g.,

rounded rectangle)

2.2.2 Built-in data types

SpatialHadoop contains three main spatial data types, namely, Point,

Rectangle and Polygon. Each data types stores just the spatial information

about the shape without any extra information. All shapes are two-

dimensional in the Euclidean space. A point is represented by its two

dimensions (X and Y). A rectangle is represented by a corner point (X, Y) and

the dimensions (Width x Height). A polygon is represented as a list of two-

dimensional points.

The main storage format for spatial data types in SpatialHadoop is the text

format. This makes it easier to import/export legacy formats in other

applications. The standard format is a CSV format where each record is

stored in one line. This format can be changed for custom data types provided

that each record is stored in exactly one line. For point, a line contains two

fields (X,Y) separated by a comma. For a rectangle, the tuple (X, Y, Width,

Height) is stored with a comma as a separator. For polygon, each line

contains number of points followed by the coordinates of each point. For

example, a triangle with the corner points (0,0), (1,1) and (1,0) can be

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

15

represented as "3,0,0,1,1,1,0". All coordinates used in the standard data types

are long integers (64-bit).

2.2.3 User-defined data types

To define your own data type, you need to define it as a new class that

implements the Shape interface. For convenience, you could choose to

extend one of the standard data types and built on top of it instead of building

a class from scratch. For example, let's say that your files contain records

represented as rectangles. Unlike the standard rectangles, each rectangle

has an additional ID that precedes the coordinates of the rectangle. You can

extend the rectangle class and add an additional ID field.

RectangleID.java:

public class RectangleID extends Rectangle {
 private int id;

To define your own data type, you need to define it as a new class that

implements the Shape interface. For convenience, you could choose to

extend one of the standard data types and built on top of it instead of building

a class from scratch. For example, let's say that your files contain records

represented as rectangles. Unlike the standard rectangles, each rectangle

has an additional ID that precedes the coordinates of the rectangle. You can

extend the rectangle class and add an additional ID field.

The new field must be also written when an object of this class is serialized

over network. This is required by SpatialHadoop (and Hadoop) when objects

are transferred from mappers to Reducers. This can be done as follows:

public void write(DataOutput out) throws IOException {
 out.writeInt(id);
 super.write(out);
}

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

16

public void readFields(DataInput in) throws IOException {
 id = in.readInt();
 super.readFields(in);
}

You need also to specify the format of the input file that contains objects of

this type. This done by implementing two methods fromText and toText. The

first method takes as input a text that represents a line read from the input file,

and parses it to fill the target object. The second method does the exact

opposite of this. It takes a Text object and serializes the information stored in

this object to this text. It should not add a terminating new line as this is added

by the framework itself. The implementation of these two method will look like

this.

public void fromText(Text text) {
 id = TextSerializerHelper.consumeInt(text, ',');
 super.fromText(text);
}

public Text toText(Text text) {
 TextSerializerHelper.serializeInt(id, text, ',');
 return super.toText(text);
}

Once you're done with this class, you can use it with the existing operations

(range query, kNN and spatial join). All you need to do is to provide its name

when you call the operations using the shape: option. For example, you can

perform a range query using the following command:

$ bin/hadoop hadoop-operations-*.jar input-filename rect:500,500,1000,1000

shape:RectangleID

2.2.4 Spatial Operations

Operations in SpatialHadoop are implemented as regular MapReduce

programs. The main difference between spatial operations and regular

operations is that the input file is spatially indexed. To read a spatially indexed

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

17

file, you need to provide the correct InputFormat and RecordReader. In

addition, to the regular map and reduce functions, SpatialHadoop allows you

to provide a filter function that performs and early pruning step that prunes

away file blocks that do not contribute to answer based on their minimal

bounding rectangles (MBRs). This can be useful to decrease the number of

map tasks for a job. We will take you with step by step instructions to write a

spatial operation.

We will use the range query as an example to describe how spatial operations

are implemented. In range query, we have an input file that contains a set of

shapes and a rectangular query area (A). The output is all shapes that overlap

with the query area (A).

Before writing the MapReduce program for this operation, we need to think

about it and decide how it should work. A naive implementation would scan

over all shapes in the input file and select the shapes that overlap the query

area. In SpatialHadoop, since the input file is indexed, we can utilize this

index to avoid scanning the whole file. The input file is partitioned and each

partition is stored in a separate block. If the boundaries of a partition is disjoint

with the query area, it indicates that all shapes inside this query area are also

disjoint. Hence, an initial filter step is to remove all blocks that are disjoint with

the query area. This leaves only the blocks that overlap with the query area.

For each overlapping block, we need to find shapes that overlap the query

area. This simple algorithm is almost correct. There is one glitch that needs to

be handled. As some shapes in the input file might overlap two partitions, they

are replicated to each of these partitions. If the query area overlaps these two

partitions and overlaps this shape, the shape will be reported twice in the

answer. To avoid this situation, we implement a duplicate avoidance

technique which ensures that each shape is reported once. This is done by

calculating the intersection of the query area and the block boundaries (cell

intersection) and the intersection of the query area and the shape (shape

intersection). If the top left point of the shape intersection falls inside the cell

intersection, the answer is reported, otherwise the answer is skipped.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

18

The spatial filter function takes as input all blocks in an input file, and outputs

the subset of blocks that needs to be processed. For range query, it selects

the blocks that overlap the query area. The code will look like the following.

RangeFilter.java:

public class RangeFilter extends DefaultBlockFilter {
 public void selectBlocks(SimpleSpatialIndex gIndex,
 ResultCollector output) {
 gIndex.rangeQuery(queryRange, output);
 }
}

This code simply selects and returns all blocks that overlap the query range.

The MBR of each block was calculated earlier when the file was indexed.

Note that to access the query area in the filter function, it needs to be set in

the job configuration file and read in RangeFilter#configure method.

The map function takes as input the contents of one block, and it selects and

output all shapes overlapping the query area. We will show here how the map

function looks like if the blocks are indexed as R-tree.

RangeQuery.java:

public void map(final CellInfo cellInfo, RTree shapes, final OutputCollector
output, Reporter reporter) {

shapes.search(queryShape.getMBR(), new ResultCollector() {
 public void collect(T shape) {
 try {
 boolean report_result = false;
 if (cellInfo.cellId == -1) {
 report_result = true;
 } else {
 Rectangle intersection =

 queryShape.getMBR().getIntersection(shape.getMBR());
 report_result = cellInfo.contains(intersection.x, intersection.y);
 }
 if (report_result)
 output.collect(dummy, shape);
 } catch (IOException e) {
 e.printStackTrace();
 }

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

19

}
});

}

The above code simple issues a range query against the R-tree built in this

block to find all shapes overlapping the query area. For matching shapes, the

duplicate avoidance test is carried out to decide whether to report this shape

in answer or not. If the cell ID is -1, this indicates that there is no MBR

associated with this block. This means that records in input file are not

partitioned, hence, no replication and the answer should be reported.

Otherwise, the test described earlier is done. Depending on the result of this

test, the answer is finally reported.

Since the output of the map function is the final answer, no reduce step is

needed. The reduce function is not provided for this operation.

The final step is how to configure the job. We will focus on the parts that are

specific to the range query and/or SpatialHadoop.

RangeQuery.java:

job.setNumReduceTasks(0);
job.setClass(SpatialSite.FilterClass, RangeFilter.class, BlockFilter.class);
RangeFilter.setQueryRange(job, queryShape);
job.setMapperClass(Map.class);
job.setInputFormat(RTreeInputFormat.class);
job.set(QUERY_SHAPE_CLASS, queryShape.getClass().getName());
job.set(QUERY_SHAPE, queryShape.toText(new Text()).toString());
job.set(SpatialSite.SHAPE_CLASS, shape.getClass().getName());

Setting number of reduce jobs to zero ensures that the output of the map

function goes directly to output. The filter function is set using job.setClass

method. The query range used by the filter function is set using the

RangeFilter.setQueryRange method. Then, the map function is set as normal.

The input format is set to RTReeInputFormat since blocks are R-tree indexed.

After that, the query shape is set in job configuration to make it accessible to

the map function. Finally, the SHAPE_CLASS is set to indicate the type of

shapes stored in input file.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

20

Once the job is configured correctly, it is submitted to SpatialHadoop for

processing as a normal MapReduce job. The output is stored to HDFS in the

configured output file. You can check the job counters to see how many splits

were created and see that only the subset of blocks overlapping the query

range were processed.

2.2.5 Spatial index

We will show how to access the spatial indexes built in SpatialHadoop. We

assume that there is an index already constructed using the index command

and stored on disk. We will show how to retrieve basic information about the

index and how to perform simple queries on it.

The first step to interact with the index is to understand how it is organized on

disk. Let's say we issue the index command to create an R-tree index in the

path 'parks.rtree'. The target will be stored as a folder that looks like the one in

figure 2-5.

Figure 2-5: R-tree index stored as a folder [6]

The index is stored as a set of data files where each data file contains the

records in one partition. The index also contains one _master.xxx file which

contains metadata about the global index (i.e., file partitions). Simply, it

contains one line per partition which contains the boundaries of the partition

and the partition file name. The extension of the master file indicates the type

of index constructed. The supported indexes are grid, rtree and r+tree. Below

is an example of a small master file with three partitions.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

21

-179.3248215,-54.934357,6.9290401,71.2885321,part-00000_data_00001
-171.7735299,-54.8114255,6.9261512,65.1485099,part-
00000_data_00001_16.9225032,-46.44586,179.3801209,78.0657531,part-
00000_data_00002_2

All other files are data files which contain data records. For a grid index, each

partition file is a simple text file which contains one record per line. For R-tree

and R+-tree, partition files are a little bit more complex. Records in each

partition are organized in an R-tree index. Each file contains two sections. The

first section stores the R-tree structure in a binary format as a list of nodes

stored in level-order traversal. The second section stores data records in a

text format as one record per line. The header of the R-tree contains

information about the size of the tree which allows SpatialHadoop to skip over

the R-tree structure and reads the records directly if the R-tree is not useful

for processing.

All the information about the global index is stored in the master file. However,

you don't need to parse the file yourself. You can make an API call which

retrieves the global index and returns it as one object. The

method SpatialSite#getGlobalIndex(FileSystem, Path) takes a file system and

a path to a directory in that file system and returns the associated master file.

If the path indicates a non-indexed data, null is returned. The returned value is

of type GlobalIndex<Partition>. You can iterate over all partitions using

the iterator method. You can also retrieve specific partitions using the

rangeQuery and knn methods.

Once you retrieve a partition or a set of partitions, the next step is to read the

records stored in that partition. The format of partition files is different

depending on the index type. In grid index, partitions are stored as text files,

while in R-tree and R+-tree, partitions organize the data in an R-tree. To

simplify the parsing of the partition, the API contains an abstract

class SpatialRecordReader which contains all the logic needed for parsing a

data file. This class automatically detects the format of the partition and

parses it accordingly. In addition to that abstract class, SpatialHadoop also

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

22

contains a set of concrete classes that retrieves records from the file in a

specific format. All of them are instances of RecordReader which allows them

to be used in MapReduce programs. To adhere with the MapReduce

programming interface, each record has to be represented as a key-value

pair. SpatialHadoop always uses the partition boundaries as the key

represented as an object of type Rectangle. The value differs according to the

specific reader instantiated/used.

2.3 Related work

There are several papers that propose a solution to skyline query processing

in MapReduce. In this unit we present some of these and their main ideas.

CG_Hadoop: Computational Geometry in MapReduce [2] by Ahmed Eldawy,

Yuan Li, Mohamed F. Mokbel and Ravi Janardan. This paper proposes two

algorithms, one for Hadoop and another for SpatialHadoop. The Hadoop

skyline algorithm works in three steps, partitioning, local skyline, and global

skyline. The partitioning step divides the input set of points into smaller

chunks of 64MB each and distributes them across the machines. In the local

skyline step, each machine computes the skyline of each partition assigned to

it, using the traditional algorithm, and outputs only the non-dominated points.

Finally, in the global skyline step, a single machine collects all points of local

skylines, combines them in one set, and computes the skyline of all of them.

The skyline algorithm in SpatialHadoop is very similar to the Hadoop

algorithm, with two main changes. First, in the partitioning phase, it uses the

SpatialHadoop partitioner when the file is loaded to the cluster. This ensures

that the data is partitioned according to an R-tree instead of random

partitioning, which means that local skylines from each machine are non

overlapping. Second, it applies an extra filter step right before the local skyline

step. The filter step, runs on a master node, takes as input the minimal

bounding rectangles (MBRs) of all partitioned R-tree index cells, and prunes

those cells that have no chance in contributing any point to the final skyline

result.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

23

Parallel Computation of Skyline and Reverse Skyline Queries Using

MapReduce [3] by Yoonjae Park, Jun-Ki Min and Kyuseok Shim. This paper

proposes the SKY-MR algorithm to discover the skyline SL(D) in a given data

set D which consists of three phases. First is the Sky-quadtree building

phase. To filter out nonskyline points effectively earlier, it proposes a new

histogram, called the sky-quadtree. To speed up, it builds a sky-quadtree with

a sample of D where each leaf node with non-skyline sample points only is

marked as «pruned». Second is the Local skyline phase. It partitions the data

D based on the regions divided by the sky-quadtree and computes the local

skyline for the region of every unpruned leaf node independently using

MapReduce by calling L-SKY-MR. Third is the Global skyline phase. It

calculates the global skyline using MapReduce from the local skyline points in

every unpruned leaf node by calling G-SKY-MR. When the number of local

skyline points is small, it runs the serial algorithm G-SKY in a single machine

to speed up.

Efficient Skyline Computation for Large Volume Data in MapReduce Utilising

Multiple Reducers [4] by Kasper Mullesgaard and Jens Laurits Pedersen. This

paper proposes two novel algorithms, MR-GPSRS and MR-GPMRS. The

main feature of the algorithms is that they allow decision making across

mappers and reducers. This is accomplished by using a bitstring describing

the partitions empty and non-empty state across the entire data set. In

addition, the common bottleneck of having the final skyline computed at a

single node is avoided in the MR-GPMRS algorithm by utilizing the bitstring to

partition the final skyline computation among multiple reducers.

Adapting Skyline Computation to the MapReduce Framework: Algorithms and

Experiments [5] by Boliang Zhang, Shuigeng Zhou, and Jihong Guan. This

paper proposes MapReduce based BNL (MR–BNL), MapReduce based SFS

(MR–SFS) and MapReduce based Bitmap (MR–Bitmap). The BNL algorithm

(MR-BNL) is a two-stage method. The first stage is to divide the whole data

into small disjoint subsets. For each subset, it runs a BNL procedure to

compute the skyline. In the second stage, the local skylines are merged and

filtered, thus the global skyline is obtained. In the Sort-Filter-Skyline (SFS)

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

24

algorithm the input data is sorted at first in a topological order compatible with

the skyline criterion. Thus, once a record r is inserted into the window, no

record following it will dominate r and r is a skyline point. Therefore, at the end

of each iteration, it can output all records inside. The iteration times of SFS is

optimal, i.e., [N/W] where N represents the number of data records and W is

the window size in number of records. In MR–Bitmap, every point is mapped

into a bit vector, and the whole dataset forms the bitmap structure. The bitmap

structure reflects the order of data records in all dimensions, ignoring their

magnitudes. Every comparison in Bitmap is a lightweight bitwise operation.

However, in order to examine a record, it needs to compare it with all the

other records. Bitmap supports progressive sky line computation since a point

can be returned to the user immediately once it is identified as a member of

the skyline.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

25

Chapter 3

Problem Setting

As mentioned, the purpose of this thesis is to implement efficient skyline

query processing algorithms. The best way to accomplish this is by using the

MapReduce programming model. It is ideal to process large data sets on a

cluster of machines. It is possible to implement these algorithms using

Apache Hadoop but SpatialHadoop is much more desirable for a lot of

reasons. The “CG_Hadoop: Computational Geometry in MapReduce” paper

proposes an algorithm for this query for SpatialHadoop. This algorithm has

some advantages but also many disadvantages.

3.1 SpatialHadoop vs. Hadoop

The input data we want to process are 2-dimensional points. Unlike Hadoop,

SpatialHadoop contains three spatial data types, namely, Point, Rectangle

and Polygon as described in the second chapter. We can use the Point data

type for processing our input files and to produce the output. In order to

achieve a better performance, using indexed files is a good idea. Hadoop

does not support indexes but SpatialHadoop does. The most important thing

is that SpatialHadoop supports spatial indexes like Rtree. Rtree-indexing

improves a lot the efficiency for skyline query processing. Taking into account

all these this stuff, we will use SpatialHadoop to implement our algorithms.

3.2 Base algorithm

First of all, we have to implement an algorithm that computes the skyline

points over a file without taking into account efficiency matters. A base

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

26

algorithm that performs this task just outputs every single point from the

Mapper and in the Reducer applies an algorithm to find the skyline points.

This step is necessary just to make sure the algorithm computes the skyline

points correctly.

3.3 Efficiency matters

The “CG_Hadoop: Computational Geometry in MapReduce” paper’s

proposed algorithm applies a filter step before the MapReduce job runs.

According to SpatialHadoop an Rtree-indexed file is divided into different

cells. This filter step prunes those cells that have no chance in contributing

any point to the final skyline result. This improves a lot the efficiency of the

program. Also, it uses a combiner to reduce the total number of inputs to the

Reducer. Then, the Mapper and the Reducer of the base algorithm is

performed. The main problem of this algorithm is that the Mapper does not

apply any filters to reduce the total number of map output records, it just

outputs every point. Moreover, the Reducer does not use any optimization

techniques to improve performance.

The challenge we are facing is to find additional filter steps and optimization

techniques to reduce the total execution time taking into account different data

distributions and volumes of data. For example, a filter step that is perfect for

a uniform distributed dataset would be very bad for an anti-correlated

distributed dataset with 300 thousand skyline points. The algorithms

proposed in this thesis should work on both indexed and non-indexed files.

First of all, we have to apply a cells filter that prunes all the dominated cells.

The second thing we have to do is to apply a filter in the Mapper to reduce the

map outputs. Reducing the map outputs will improve the performance of the

Reducer’s computation of the skyline points. There are two algorithms

presented in this thesis and both of them apply a filter to reduce the map

outputs. The filter in the first algorithm is better in cases where there are not

too many skyline points and there are a lot of map input records. On the other

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

27

hand, when there many thousands of total skyline points the second’s

algorithm filter is better. Also, the second algorithm sorts the map output

points according to their mindist that is the sum of the two dimensions. This

allows us to perform some optimization techniques in the Reducer. The first

algorithm also uses some optimization techniques in the Reducer which are

used as filters in the Mapper. Both algorithms use a combiner. In figures 3-1,

3-2 and 3-3 are illustrated the performance steps of the CG_hadoop and this

thesis’ proposed algorithms.

Figure 3-1: CG_Hadoop’s filters and optimization techniques

Figure 3-2: First algorithm’s filters and optimization techniques

Cells filter

Combiner

+

Cells filter

+

Map filters

+

Combiner

+

Reduce optimization techniques

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

28

Figure 3-3: Second algorithm’s filters and optimization techniques

In some cases where there are too many map input records and not too many

total skyline points the sorting of the second algorithm is not preferred. Also,

the filters and optimization techniques are not the same so we cannot

conclude anything from these figures. As said before, everything depends on

the input data we are processing. In the next chapter, we will examine more

thoroughly how this thesis’s algorithms work and how are they implemented.

Cells filter

+

Map filters

+

Sorting

+

Reduce optimization techniques

Combiner

+

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

29

Chapter 4

Algorithms

In this chapter we will discuss about the algorithms that compute the skyline

points over a file. These algorithms can work with indexed and non-indexed

files. We have two different algorithms with some common elements. Both

algorithms use a list that keeps every single moment the current skyline

points. The first algorithm uses that list in both map and reduce functions but

the second one only in the reduce function. We use some filtering and

optimization techniques to reduce total execution time. We will next examine

thoroughly these algorithms. You can refer to Appendix A for the pseudocode

of these algorithms.

First of all, we will present the common filtering techniques of these two

algorithms:

 CellsFilter

When the input file that contains the 2 dimensional points is indexed

we can use this filter. An indexed file is divided into different cells.

Each cell is a rectangle e.g. starting (lower left corner) from the point

(0,0) and its width is 500 and its height also 500. Many points are

contained in this rectangle that their dimensions vary between 0 and

500. If another cell exists and starts at the point (1000,1000) it will be

dominated by the previous one, since all its points will be dominated

by that cell. In many cases, there are cells that have no chance to

contain candidate skyline points so with the CellsFilter they are pruned

and in this way the Mappers will have much less input records. In

figure 4-1 you can see an example of a dominated cell.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

30

 Combiner

We use as a combiner the same class we do with the Reducer. The

combiner is very useful because it takes as input the output of the

Mappers and computes the local skyline points. So the Reducer will be

much faster because many points will have been pruned by the

combiner.

Figure 4-1: CellsFilter example, Cell3 is dominated by Cell0

4.1 First Algorithm

Now, let’s focus on the first algorithm. In the map function we use the list as

discussed above. This list is empty before the map function begins. When the

map gets first point it will output it. This point will also be inserted in the list.

From now on, every point will be checked if it is dominated by the points

contained in the list. If a point is dominated it will not be inserted in the list and

it will not be outputted. Otherwise, we check if that point dominates some of

the points contained in the list. If so, these points are removed and the new

point is inserted and outputted. Our last filter in the map is to keep the point

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

31

that has the minimum mindist that is the sum of its dimensions (x + y). Every

moment we have to check if the points coming from the map are dominated

from that point. This point will be also contained in the list. If a point is

dominated by this one, we don’t have to search the list. Otherwise, we check

if the new point is the one that will be from now on the point that has the

minimum mindist.

Let’s see an example of how filters work in the Mappers. In this example we

assume that at a certain time our list contains five points:

{20,0}, {18,1}, {15,2}, {14,4}, {13,5}

Of course, this list contains the point with the minimum mindist which is {15,2}.

The point with the minimum mindist is used only to avoid searching the list. To

be more specific, first we check if a point is dominated by the point with the

minimum mindist. Then, we check if a point is dominated by a point contained

in the list. In figure 4-2 you can see the area dominated by each filter.

Figure 4-2: Area dominated by map filters in algorithm 1

In the Reducer we use the same filtering techniques to reduce the total

execution time. What is different in the Reducer is that now every single

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

32

moment that a point is inserted in the list is not outputted at the same time.

When all points outputted from the Mapper are processed in the Reducer we

use an extra loop in which we output the points contained in the final version

of the list. These points are the global skyline points.

4.2 Second Algorithm

The second algorithm works a little bit differently. The main difference is that

the points are sent sorted according to their mindist in the Reducer. We

achieve that by using the MapReduce sorting built-in functionality. Every time

we output a point as a value we set its key as the sum of its two dimensions

that is x and y. For instance, a point that its x dimension is 5 and its y is 10 is

outputted with the key equal to 15. By doing this, the efficiency of the Reducer

can improve because it allows us to perform some filter and optimization

tricks.

The Mapper is also different than it was in the previous algorithm. We use

three points to filter the output. The first one is the point with the minimum

mindist(x + y), the second is the point with the minimum x dimension and the

third one has the minimum y dimension. In the beginning, these points are not

being assigned to any value. When the map gets the first point its value is

assigned to all three filtering points and of course it is outputted. For every

new point we check if we have to update these three points. From now on,

every point will be always checked by these three to decide if it will be

outputted. For example, if the point with minimum mindist, the point with

minimum x dimension and the point with minimum y dimension are:

{5,5}, {3,9}, {10,4}

Then the area which points will be dominated from now is shown in figure 4-3.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

33

Figure 4-3: Area dominated by map filters in algorithm 2

The Reducer will take as input the points outputted from the map. All these

points will be sorted in ascending according to their key which is the

mindist(x + y). This sorting allows us to implement a few techniques that

were not possible in the first algorithm. The Reducer uses a list to keep the

skyline points. We will only perform additions not removals in the list because

the Reducer gets the points sorted so there is no chance a future point to

dominate a point that has already been added in the list. Also, every point

added in the list will be outputted at the same time because it is not possible

to be dominated by future points so the algorithm will not spend time to output

the global skyline points in an additional loop. We will also use min_x and

min_y values. These values will keep the minimum x and minimum y

dimensions found in the current skyline points list. The reason we want to

keep these values is that we will check every new point if its x dimension is

less than min_x or its y dimension is less than min_y. If so, this point is not

dominated by any other points added in the list and it will be outputted and

added in the list without having to search the list if it is dominated. Every

moment we add a point in the list we also check if we have to update min_x

and min_y values. In order to understand better how min_x and min_y works

let’s see an example. Assume we have found three skyline points until now:

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

34

{12,7}, {11,9}, {8,13}

In this case, min_x is equal to 8 and min_y is equal to 7. If a candidate point’s

x dimension is less than 7 e.g. 5 it will not be dominated by any of these three

points and it will not dominate any of them because in this algorithm all points

are sorted according to their mindist (x + y). So if this points x dimension is 5,

its y dimension will be at least 16 which is the maximum mindist found until

now. This optimization technique reduces the total execution time a lot when

our list contains thousands of skyline points because we don’t have to search

the whole list to see if a candidate point is dominated or not.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

35

Chapter 5

Implementation

In this chapter we will describe step by step how the algorithms on chapter 4

are implemented on SpatialHadoop. As explained earlier SpatialHadoop is the

most suitable software to perform spatial operations in a distributed

environment. We will next present the implementation of the skyline query on

MapReduce adapted on both indexed and non-indexed files. In figure 5-1 is

illustrated the high level code organization of both algorithms.

Figure 5-1: High level code organization

Skyline class

main method

skylineMapReduce method

CellsFilter class Map class Reduce class

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

36

5.1 Main method

Both algorithms use a timer that calculates the total execution time. The

program gets the current local machine time in milliseconds in the beginning

and in the end of the main. Then, subtracts these two values and outputs it on

the screen. The program takes two arguments one for the input file we want to

compute the skyline points and one for the path where we want to output

these points. These arguments as well as a file system object are passed into

a method called skylineMapReduce. This method keeps the driver code and

performs the cells filter step described in previous chapters.

5.2 skylineMapReduce method

The skylineMapReduce method contains the driver code for the job, finds the

cells that are pruned and runs the job. In this unit when not mentioned, the

code described will be the same for both algorithms.

In the driver code we set the number of Map and Reduce tasks, the output

key and value classes. The output value class is Point and is the same for

both algorithms because the data we are processing are 2 dimensional points.

For the first algorithm, the output key class is NullWritable since we don’t want

to process the data according to their keys. On the other hand, for the second

algorithm the output key class is IntWritable because we want to sort the data

according to their keys. We also set the Mapper, Combiner and Reducer

classes. By the way, the Combiner and Reducer classes are the same. Next,

we set the input and output format and paths for our data. The next step is to

check if the file is indexed and if so we have to find which cells are being

dominated and we pass the information needed to the CellsFilter class. This

information includes the MapReduce job object, arrays with spatial information

of the cells and a Boolean array that indicates if a cell is dominated or not. All

this information is passed through the setQueryRange method of the

CellsFilter class. Finally, we run the job.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

37

5.3 CellsFilter class

The CellsFilter class is responsible for the cells that will be processed in the

map. The setQueryRange method called in the skylineMapReduce method

passed the necessary information to this class. Actually, the selectBlocks

method decides the cells that will be processed in our job. In this method we

use the rangeQuery method and the Boolean array containing the information

about the cells that have to be pruned and the other arrays with spatial

information about the cells.

5.4 Map class

The Mapper classes are called Map in both algorithms. However, the code

differs in these two algorithms. The difference is the filters used to reduce the

Map outputs.

The Mapper of the first algorithm uses two different kinds of filters. The first

one is a list of points called skylinePoints. This list keeps the current skyline

points. The second one is the p_minMinDist variable of Point type which is

initialized to null. The p_minMinDist keeps the point with the minimum mindist

that is the sum of the x and y dimension. We also keep a Boolean variable

called inserted. This variable is set to true every time we begin processing a

new point in the map and is set to false if a point is dominated. In the map

method we first check if the p_minMinDist is null, if so we assign it with the

first point’s value. Otherwise, we check if the point is dominated by

p_minMinDist. If this condition is not true we check if the point is dominated by

any point in the skylinePoints list. We also, update if needed the p_minMinDist

and the skylinePoints list. In the end, we check if the inserted variable is set to

true in order to output the received point. In Figure 5-2 the map flowchart of

the first algorithm is illustrated.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

38

Figure 5-2: Map flowchart of the first algorithm

The only common filter in the Mapper of the second algorithm is the

p_minMinDist point. This Mapper uses another two Point variables, the

p_minX and p_minY. The p_minX and p_minY keep the points with the

minimum x and y dimension respectively. In the beginning these variables are

initialized to null. When the map method runs for the first time these variables

are set to the first received point. Then that point is outputted. From now on,

for every new received point we will check if it is dominated by any of these

three points. If not, the received point is outputted. Of course, we update if

needed these three variables. In Figure 5-3 the map flowchart of the second

algorithm is illustrated.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

39

Figure 5-3: Map flowchart of the second algorithm

5.5 Reduce class

As said earlier, the Reducer classes are the same with the Combiner classes

on both algorithms. However, the Reducer classes work in a different way in

these two algorithms because the second algorithm gets the points sorted

from the Mapper.

The Reducer of the first algorithm uses the variables skylinePoints,

p_minMinDist and inserted. These variables are being updated and are used

in conditions in the same way as in the Mapper. The only difference is that

when a received point is added in the skylinePoints it is not outputted at the

same time. Only if we receive all points from the Mapper in a while loop we

will be sure that the skylinePoints list will contain the correct skyline points.

When this while loop completes we output all skyline points listed in

skylinePoints from a for loop. In Figure 5-4 the reduce flowchart of the first

algorithm is illustrated.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

40

Figure 5-4: Reduce flowchart of the first algorithm

As described earlier, the second algorithm gets all the points in the Reducer

sorted. This allows us to apply some important optimization techniques. The

Reducer uses the skylinePoints variable like the Reducer of the first algorithm.

Moreover, it uses another two variables of type long, min_x and min_y. These

variables keep the minimum x and y found in skylinePoints list respectively

and they are initialized to the maximum value that the long type can take that

is 2147483647. We also use the inserted variable. The Reducer has only a

while loop where it receives all points from the Mapper. In this loop, we first

check if the received point’s x dimension is less than the min_x or its y

dimension is less than the min_y. If so, we know for sure that the point is not

dominated by any other point. In this occasion the point is outputted.

Otherwise we have to check if the received point is dominated by any of the

points in the skylinePoints list. When a received point is outputted min_x,

min_y and skylinePoints are being updated if necessary. In most cases, when

points are sorted in ascending order according to their mindist, as we process

points with greater mindist, one of their dimensions is less than any of the

previous points. For example, if we have to process the following sorted

dataset:

{10,10), {8,14}, {16,9}, {19,7}, {5,25}, {0,32}, {35,2}, {40,0}

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

41

We can see that by using min_x and min_y variables we avoid to search the

skylinePoints list. When we use these two variables the total number of the for

loop iterations is 0. Otherwise, the number of iterations is 28. In the table 5-1

you can see this example step by step. When skylinePoints contains

thousands of skyline points this optimization technique will improve a lot the

efficiency of the computation. In Figure 5-5 the reduce flowchart of the second

algorithm is illustrated.

 point mindist min_x min_y Total
loop

iterations

Total
loop

iterations
without
min_x

and
min_y

x y

0 - - - 2147483647 2147483647 0 0

1 10 10 20 10 10 0 0

2 8 14 22 8 10 0 1

3 16 9 25 8 9 0 3

4 19 7 26 8 7 0 6

5 5 25 30 5 7 0 10

6 0 32 32 0 7 0 15

7 35 2 37 0 2 0 21

8 40 0 40 0 0 0 28

Table 5-1: min_x and min_y example

Figure 5-5: Reduce flowchart of the second algorithm

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

42

Chapter 6

Experimental evaluation

In this chapter we will present the experimental evaluation of the algorithms

implemented by this thesis as well as the CG_Hadoop algorithm and we will

compare the algorithms presented in this thesis with the CG_Hadoop

algorithm. Also, we will present our results in tables and diagrams.

6.1 Experiments

The environment we ran our experiments was a 17 nodes cluster. You can

refer to Appendix B for instructions how to install and configure

Hadoop/SpatialHadoop in a multi-node environment. The NameNode,

SecondaryNameNode and JobTracker daemons were running on three

different machines. The DataNode and TaskTracker daemons were running

on all remaining machines. In order to evaluate the efficiency of the algorithms

we had to run a variety of experiments with different parameters. The first

parameter was the size of the input file. The two different sizes used in our

experiments were 1G and 10G. The second parameter was the distribution of

the data of the input file. Uniform, Correlated and two different Anti-Correlated

distributions were used. The second Anti-Correlated distribution was

accompanied only by indexed files because it produced many thousands of

skyline points and it was too time-consuming for some algorithms. The third

parameter was to use indexed and non-indexed input files. In our case, we

used Rtree-indexed files. All parameters are summarized in Table 6-1. Each

experiment was run 10 times and we recorded important information such as

input splits, map input and output records, combine input and output records,

reduce input and output records, total execution time.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

43

Parameter Range

Size 1G, 10G

Data distribution Uniform, Correlated, Anti-Correlated

Index Null, Rtree

Table 6-1: Parameters

6.2 Algorithms

The first algorithm as explained in the previous chapters uses a cells filter to

prune the cells that are dominated. Also uses some filters that reduce the total

map output points and computes the skyline points in the Reducer.

The second algorithm uses the same cells filter with the first algorithm but is

different concerning the map filters. Moreover, it sorts the map output records

so it computes the skyline points in the Reducer with some important

optimization techniques.

The point in these experiments is to evaluate the efficiency of the algorithms

described in this thesis and to compare them with the CG_Hadoop algorithm.

CG_Hadoop algorithm also uses the cells filter step. Then, it outputs all the

map output points and computes the skyline points. We have to figure out if

the previous algorithms perform better than CG_Hadoop in different

circumstances.

6.3 Results

Firstly, we will start our experiments with the Uniform distributed data. Next,

we will continue with Correlated distributed data. Lastly, we will perform

experiments with two different Anti-Correlated distributions. For each,

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

44

experiment we will show a table with information. After the tables we will

present diagrams comparing the efficiency of the three algorithms. Also, every

diagram shows the error bars for the total execution times. With error bars we

will be able to estimate if the mean represents the true total execution time.

6.3.1 Uniform distribution

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 16/16 16/16 16/16

Map input
records

68000004 68000004 68000004

Map output
records

68000004 2052 41127

Combine input
records

68003621 2052 41127

Combine output
records

3877 260 260

Reduce input
records

260 260 260

Reduce output
records

21 21 21

Total execution
time (10 runs)

51555, 54346,
50451, 51565,
50198, 51211,
51190, 47422,
48371, 50380

41131, 43147,
43372, 42514,
35379, 35307,
41223, 43194,
41351, 41404

43150, 42153,
42170, 42153,
42352, 41306,
41379, 43183,
43126, 44329

Table 6-2: Uniform distributed data, 1G, non-indexed file

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 160/160 160/160 160/160

Map input
records

680000020 680000020 680000020

Map output
records

680000020 19950 417977

Combine input
records

680035251 19950 417977

Combine output
records

37667 2436 2436

Reduce input
records

2436 2436 2436

Reduce output
records

10 10 10

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

45

Total execution
time (10 runs)

137646, 148406,
136444, 137607,
136388, 138376,
138375, 136646,
142622, 142711

93391, 94299,
91563, 94501,
90707, 97288,
90305, 92467,
90597, 96576

93603, 90275,
96332, 96667,
89499, 93335,
94320, 94252,
97340, 90527

Table 6-3: Uniform distributed data, 10G, non-indexed file

Figure 6-1: Uniform distributed data, 1G and 10G, Non-indexed file

We can see that Algorithm1 and Algorithm2 are better than CG_Hadoop.

CG_Hadoop does not use any filters in the map so it has many points to

process in the reduce. Also, in the reduce it does not use any optimization

techniques. This is the reason why it performs worse. Algorithm1 is a little bit

better than algorithm2 in this experiment. Algorithm2 has more map output

records than algorithm1 because of the different map filters it uses. Also, it

sorts the map output points and sorting is a little bit time consuming especially

when we have many map output records. In this occasion, we don’t have

many map output records so we have only a small difference in total

execution time.

0

20000

40000

60000

80000

100000

120000

140000

160000

Uniform, 1G, Non-indexed Uniform, 10G, Non-indexed

CG_Hadoop

Algorithm1

Algorithm2

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

46

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 10/20 10/20 10/20

Map input
records

33970406 33970406 33970406

Map output
records

33970406 1350 25840

Combine input
records

33972175 1350 25840

Combine output
records

1926 157 157

Reduce input
records

157 157 157

Reduce output
records

21 21 21

Total execution
time (10 runs)

44408, 45167,
44163, 40116,
44400, 45156,
45536, 38095,
40124, 40415

38385, 38166,
38127, 38139,
38131, 34361,
38389, 34358,
34062, 38167

35325, 33382,
38387, 34117,
38157, 34101,
38345, 34113,
35402, 33121

Table 6-4: Uniform distributed data, 1G, Rtree-indexed file

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 28/182 28/182 28/182

Map input
records

104528147 104528147 104528147

Map output
records

104528147 3577 75281

Combine input
records

104533540 3577 75281

Combine output
records

5754 361 361

Reduce input
records

361 361 361

Reduce output
records

10 10 10

Total execution
time (10 runs)

53232, 48470,
53438, 53380,
48173, 54204,
53402, 54507,
54483, 47217

41234, 42500,
41349, 41429,
41180, 41267,
41130, 47487,
41361, 44431

41450, 42186,
45387, 41416,
40476, 41155,
41157, 41197,
41358, 41349

Table 6-5: Uniform distributed data, 10G, Rtree-indexed file

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

47

Figure 6-2: Uniform distributed data, 1G and 10G, Rtree-indexed file

Algorithm1 and Algorithm2 are better than CG_Hadoop for the same reasons

described in the previous experiment. Here, algorithm2 is a little bit better than

algorithm1. Indexing helps algorithm2 to perform better with the computation

of the skyline points by using some optimization techniques.

6.3.2 Correlated distribution

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 17/17 17/17 17/17

Map input
records

68000002 68000002 68000002

Map output
records

68000002 1191 4021

Combine input
records

68002074 1191 4021

Combine output
records

2263 191 191

Reduce input
records

191 191 191

Reduce output
records

9 9 9

0

10000

20000

30000

40000

50000

60000

Uniform, 1G, Rtree-indexed Uniform, 10G, Rtree-indexed

CG_Hadoop

Algorithm1

Algorithm2

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

48

Total execution
time (10 runs)

49194, 49153,
51340, 49268,
52133, 49160,
51373, 49352,
49389, 51243

42152, 40119,
40274, 40338,
43341, 40123,
41478, 40352,
42423, 42344

42087, 42102,
42124, 43267,
44314, 39322,
39245, 40112,
40117, 39416

Table 6-6: Correlated distributed data, 1G, Non-indexed file

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 163/163 163/163 163/163

Map input
records

680000029 680000029 680000029

Map output
records

680000029 11062 33724

Combine input
records

680020645 11062 33724

Combine output
records

22313 1697 1697

Reduce input
records

1697 1697 1697

Reduce output
records

15 15 15

Total execution
time (10 runs)

145765, 134410,
142410, 134611,
141576, 150592,
143449, 140583,
138403, 141899

96584, 90547,
93331, 100337,
98793, 100583,
93549, 96300,
100286, 97349

93553, 100529,
97418, 93547,
97439, 94538,
91505, 91532,
96317, 93324

Table 6-7: Correlated distributed data, 10G, Non-indexed file

Figure 6-3: Correlated distributed data, 1G and 10G, Non-indexed file

0

20000

40000

60000

80000

100000

120000

140000

160000

Correlated, 1G, Non-
indexed

Correlated, 10G, Non-
indexed

CG_Hadoop

Algorithm1

Algorithm2

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

49

The CG_Hadoop is worse than the other algorithms because of the reasons

described in the previous experiments. Algorith1 and algorithm2 perform

almost the same in this experiment because both of them output only a few

map output records so the different processing in the map and reduce does

not make a difference.

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 8/20 8/20 8/20

Map input
records

27220734 27220734 27220734

Map output
records

27220734 899 704094

Combine input
records

27221989 899 704094

Combine output
records

1356 101 114

Reduce input
records

101 101 114

Reduce output
records

9 9 9

Total execution
time (10 runs)

44126, 44165,
44157, 45438,
45375, 44278,
44142, 44237,
47365, 48350

39392, 38095,
38166, 38112,
38397, 38396,
41372, 41128,
41190, 39386

35428, 35478,
38117, 38175,
35097, 38350,
38187, 38494,
38160, 38136

Table 6-8: Correlated distributed data, 1G, Rtree-indexed file

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 26/182 26/182 26/182

Map input
records

97049893 97049893 97049893

Map output
records

97049893 3093 4440302

Combine input
records

97054663 3093 4440302

Combine output
records

5080 310 504

Reduce input
records

310 310 310

Reduce output
records

15 15 15

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

50

Total execution
time (10 runs)

59253, 53178,
50205, 48198,
56303, 48411,
49453, 47195,
53227, 49181

41415, 35178,
41183, 41180,
41154, 41410,
44375, 41442,
41189, 41150

51199, 47250,
47235, 47343,
47195, 47412,
47471, 50349,
47407, 41237

Table 6-9: Correlated distributed data, 10G, Rtree-indexed file

Figure 6-4: Correlated distributed data, 1G and 10G, Rtree-indexed file

Once again, algorithm1 and algorithm2 are better than CG_Hadoop. In the 1G

dataset algorithm2 is a little bit better than algorithm1 because indexing

improves the performance of the reduce in a better way for this algorithm. In

the 10G dataset algorithm1 is better than algorithm2. Algorithm1 map outputs

are only 3093 while algorithm2 has 4440302 map outputs. Algorithm2 has

much more data to process in the reduce and also it has to sort all these map

output records. This is the reason why algorithm1 performs better in this

situation.

6.3.3 Anti-Correlated distribution

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 16/16 16/16 16/16

Map input 68000001 68000001 68000001

0

10000

20000

30000

40000

50000

60000

Correlated, 1G, Rtree-
indexed

Correlated, 10G, Rtree-
indexed

CG_Hadoop

Algorithm1

Algorithm2

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

51

records

Map output
records

68000001 313455 67585488

Combine input
records

68749451 313455 68329019

Combine output
records

806041 56591 800122

Reduce input
records

56591 56591 56591

Reduce output
records

4226 4226 4226

Total execution
time (10 runs)

290608, 287810,
298910, 293837,
299625, 290894,
288616, 299793,
341881, 318109

435884, 446825,
451128, 397919,
388855, 410818,
401988, 467907,
428942, 427121

70382, 62202,
68399, 69434,
68433, 75451,
71422, 65222,
69150, 69244

Table 6-10: Anti-Correlated distributed data, 1G, Non-indexed file

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 160/160 160/160 160/160

Map input
records

680000024 680000024 680000024

Map output
records

680000024 3139739 675862632

Combine input
records

687501173 3139739 683314695

Combine output
records

8067244 566095 8018158

Reduce input
records

566095 566095 566095

Reduce output
records

4746 4746 4746

Total execution
time (10 runs)

1349957,
1338891,
1327857,
1316040,
1280655,
1332886,
1329749,
1306915,

1346073, 1275824

1963214,
1950774,
1996999,
2001036,
1938801,
1914687,
1974196,
1962905,
1983027,
1885885

232668, 235687,
234881, 235892,
240992, 234625,
232637, 230580,
247857, 239866

Table 6-11: Anti-Correlated distributed data, 10G, Non-indexed file

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

52

Figure 6-5: Anti-Correlated distributed data, 1G and 10G, Non-indexed file

Algorithm1 performs worse than CG_Hadoop in this experiment because the

list in the map takes a long time when there are a lot of candidate skyline

points. However, algorithm2 is a lot better than CG_Hadoop because sorting

the map output records allows it to perform some important optimization

techniques in the reduce.

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 20/20 20/20 20/20

Map input
records

68000001 68000001 68000001

Map output
records

68000001 31526 60664391

Combine input
records

68049431 31526 60708260

Combine output
records

53830 4400 48269

Reduce input
records

4400 4400 4400

Reduce output
records

4226 4226 4226

Total execution
time (10 runs)

59256, 54502,
60357, 59409,
56171, 62125,
61182, 59392,
59331, 57400

56160, 59173,
51380, 56363,
58400, 55172,
62217, 56141,
56390, 57395

55354, 51165,
53164, 58351,
53441, 55396,
47139, 50169,
56137, 54385

Table 6-12: Anti-Correlated distributed data, 1G, Rtree-indexed file

0

500000

1000000

1500000

2000000

2500000

Anti-Correlated, 1G, Non-
indexed

Anti-Correlated, 10G, Non-
indexed

CG_Hadoop

Algorithm1

Algorithm2

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

53

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 160/160 182/182 182/182

Map input
records

680000024 680000024 680000024

Map output
records

680000024 53221 278199208

Combine input
records

680083772 53221 278232224

Combine output
records

89948 6200 39594

Reduce input
records

6200 6200 6578

Reduce output
records

4746 4746 4746

Total execution
time (10 runs)

159538, 158788,
152727, 155908,
157522, 151624,
154797, 153853,
154729, 157502

106594, 106597,
103588, 105680,
107589, 107428,
109423, 101460,
100545, 103379

141489, 139485,
138653, 138680,
144454, 139512,
138692, 142680,
138749, 146512

Table 6-13: Anti-Correlated distributed data, 10G, Rtree-indexed file

Figure 6-6: Anti-Correlated distributed data, 1G and 10G, Rtree-indexed file

In the 1G dataset algorithm2 is better than the other two algorithms for the

same reasons described in the previous experiment. Indexing helps

algorithm1 to produce around 90% less map output records than the previous

experiment. This is the reason why algorithm1 is more efficient than

CG_Hadoop. In the 10G dataset algorithm1 is more efficient than algorithm2

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Anti-Correlated, 1G, Rtree-
indexed

Anti-Correlated, 10G, Rtree-
indexed

CG_Hadoop

Algorithm1

Algorithm2

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

54

because it has much less map output records than algorithm2. Algorithm2

has to sort a lot of data and has much more data to process in the reduce.

These are the reasons why algorithm1 performs better than algorithm2.

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 20/20 20/20 20/20

Map input
records

68000002 68000002 68000002

Map output
records

68000002 1335016 67923443

Combine input
records

70924076 1335016 70839478

Combine output
records

3221858 297784 3213819

Reduce input
records

297784 297784 297784

Reduce output
records

297720 297720 297720

Total execution
time (10 runs)

1264229,
1223253,
1237214,
1213143,
1199206,
1215345,
1167184,
1226310,
1217119,
1233394

1909542,
1997314,
1853071,
1923334,
1940543,
1930446,
1870182,
1892219,
2038671,
1876538

254559, 274801,
263537, 266580,
261823, 281795,
260781, 260488,
257518, 274512

Table 6-14: Anti-Correlated (2) distributed data, 1G, Rtree-indexed file

 CG_Hadoop Algorithm 1 Algorithm 2

Input splits 182/182 182/182 182/182

Map input
records

680000014 680000014 680000014

Map output
records

680000014 2085641 672952362

Combine input
records

684297122 2085641 677188802

Combine output
records

4651946 354838 4591278

Reduce input
records

354838 354838 354838

Reduce output
records

354188 354188 354188

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

55

Total execution
time (10 runs)

1328741,
1328777,
1335638,
1269714,
1327800,
1301545,
1290865,
1297698,
1346977,
1322697

2210032,
1806532,
1809504,
2156789,
1795359,
1794466,
2162211,
1803348,
1781537,
1805472

425269, 442986,
431952, 423284,
437244, 437146,
435275, 433221,
423098, 434211

Table 6-15: Anti-Correlated (2) distributed data, 10G, Rtree-indexed file

Figure 6-7: Anti-Correlated (2) distributed data, 1G and 10G, Rtree-indexed

file

In these experiments we have many thousand skyline points. Algorithm2 sorts

its map output records and performs some optimization techniques that

improve a lot the computation that’s why it performs much better than the

other algorithms. Algorithm1 performs worse than CG_Hadoop because the

list it uses in the map to keep the candidate skyline points has many data to

process in this situation.

0

500000

1000000

1500000

2000000

2500000

Anti-Correlated (2), 1G,
Rtree-indexed

Anti-Correlated (2), 10G,
Rtree-indexed

CG_Hadoop

Algorithm1

Algorithm2

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

56

Chapter 7

Conclusion

In this thesis, we have addressed efficient skyline query processing

algorithms. These algorithms were implemented on SpatialHadoop using the

MapReduce programming model. We developed two algorithms. Both

algorithms have a filter step that selects only the cells that it is possible to

contain candidate skyline points. The first one uses some filter techniques in

the Mapper that reduces the number of total map output records to a

significant degree. However, this filter can increase a lot the total execution

time when it comes to anti-correlated data distributions with a huge number of

total skyline points. In this occasion, the map filtering techniques of the

second algorithm are preferred. The second algorithm also sorts the data.

This improves the performance of the Reducer by using some optimization

techniques. The idea was to combine these algorithms into a single algorithm

by using a sampler to figure out which algorithm is better depending on the

input data. However, the sampler was not too efficient so we ended up having

two separate algorithms. We also, implemented the CG_Hadoop algorithm in

order to compare it with this thesis’ algorithms. The CG_Hadoop algorithm

uses also the cells filter step described earlier. We ran a set of experiments

on a cluster of 17 nodes. The most important thing was to test them in

different kind of input data. Each experiment was run 10 times. From these

experiments we calculated the mean, standard deviation and standard error to

represent the average total execution times with error bars. In most cases, the

first algorithm was better than CG_Hadoop. The second algorithm was better

than CG_Hadoop in all cases. This thesis’ algorithms perform better in

different situations. To sum up, both algorithms in this thesis were efficient

and it depends on what kind of data we want to process to choose which one

is better. The second algorithm is much better than the first one when we

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

57

have too many total skyline points. The second algorithm performs worse than

the first one only if it outputs too many map output records and for the same

input data the first algorithm outputs only few map output records.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

58

Bibliography

[1] Tom White. Hadoop: The Definite Guide.

[2] Ahmed Eldawy, Yuan Li, Mohamed F. Mokbel, Ravi Janardan.

CG_Hadoop: Computational Geometry in MapReduce.

[3] Yoonjae Park, Jun-Ki Min, Kyuseok Shim. Parallel Computation of

Skyline and Reverse Skyline Queries Using MapReduce.

[4] Kasper Mullesgaard, Jens Laurits Pedersen. Efficient Skyline

Computation for Large Volume Data in MapReduce Utilising Multiple

Reducers.

[5] Boliang Zhang, Shuigeng Zhou, and Jihong Guan. Adapting Skyline

Computation to the MapReduce Framework: Algorithms and

Experiments.

[6] http://spatialhadoop.cs.umn.edu/

[7] https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

[8] http://en.wikipedia.org/wiki/MapReduce

[9] http://en.wikipedia.org/wiki/Apache_Hadoop

[10] http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-

single-node-cluster/

[11] http://www.cs.umd.edu/class/spring2005/cmsc828s/slides/skyline.pdf

[12] http://cloud.asperasoft.com/big-data-cloud/

[13] http://www.theatlantic.com/sponsored/ibm-cloud-

rescue/archive/2012/09/changing-the-world-big-data-and-the-

cloud/262065/

[14] http://wenku.baidu.com/view/d42d29f2524de518974b7d02.html

http://spatialhadoop.cs.umn.edu/
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Apache_Hadoop
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.cs.umd.edu/class/spring2005/cmsc828s/slides/skyline.pdf
http://cloud.asperasoft.com/big-data-cloud/
http://www.theatlantic.com/sponsored/ibm-cloud-rescue/archive/2012/09/changing-the-world-big-data-and-the-cloud/262065/
http://www.theatlantic.com/sponsored/ibm-cloud-rescue/archive/2012/09/changing-the-world-big-data-and-the-cloud/262065/
http://www.theatlantic.com/sponsored/ibm-cloud-rescue/archive/2012/09/changing-the-world-big-data-and-the-cloud/262065/
http://wenku.baidu.com/view/d42d29f2524de518974b7d02.html

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

59

Appendix A

Pseudocode

This appendix gives the pseudocode for the skyline algorithms of this thesis,

written in a MapReduce programming paradigm.

A.1 Algorithm 1

if file is spatially indexed then

 function CellsFilter(C: Set of cells)

 for each cell c in C do

 if c is not dominated by any cell then

 Load c in Map function

 end if

 end for

 end function

end if

Initialize skylinePoints list to {}

Initialize p_minMinDist to null

function Map(p:Point)

if p is not dominated by p_minMinDist then

if p is not dominated by any points in skylinePoints then

Update if necessary p_minMinDist

Add p in skylinePoints

Remove the points dominated by p in skylinePoints

output(null, p)

end if

end if

end function

Initialize skylinePoints list to {}

Initialize p_minMinDist to null

function Combine, Reduce (null, P:Set of points)

 for each point p in P do

if p is not dominated by p_minMinDist then

if p is not dominated by any points in skylinePoints then

Update if necessary p_minMinDist

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

60

 Remove the points dominated by p in

skylinePoints

end if

end if

 end for

for each point p in skylinePoints do

output(null, p)

end for

end function

A.2 Algorithm 2

if file is spatially indexed then

function CellsFilter(C: Set of cells)

 for each cell c in C do

 if c is not dominated by any cell then

 Load c in Map function

 end if

 end for

 end function

end if

Initialize p_minMinDist to null

Initialize p_minX to null

Initialize p_minY to null

function Map(p:Point)

if p is not dominated by p_minMinDist or p_minX or p_minY then

Update if necessary p_minMinDist

Update if necessary p_minX

Update if necessary p_minY

output(x + y, p)

end if

end function

Initialize skylinePoints list to {}

Initialize min_x and min_y to 2147483647

function Combine, Reduce (mindist, P:Set of points)

if the x or y dimension of p is less than min_x or min_y respectively

then

output(mindist, p)

else

if p is not dominated by any points in skylinePoints then

Update if necessary min_x

Update if necessary min_y

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

61

Add p in skylinePoints

output(mindist, p)

end if

 end if

end function

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

62

Appendix B

Hadoop/SpatialHadoop installation

In this appendix we will describe how to set up a linux multi-node

Hadoop/SpatialHadoop cluster. To achieve this we have to follow these

required steps on every single machine:

1) Java 6

Java 6 is recommended for running Hadoop/SpatialHadoop. To install java

6:

$ sudo apt-get install sun-java6-jdk

2) Configuring SSH

We have to generate an SSH key for our user:

$ ssh-keygen -t rsa -P ""

After this press ENTER. Then we have to enable SSH access to our local

machine with this newly created key:

$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

3) Networking

All machines must be able to reach each other over the network. We have

to update /etc/hosts on all machines. For example, if we have a cluster

with six nodes. Three nodes running NameNode, SecondaryNameNode,

JobTracker daemons and three slave nodes running the DataNode and

TaskTracker daemons. If the IPs of these machines are 172.18.255.0,

172.18.255.1, 172.18.255.2, 172.18.255.3, 172.18.255.4, 172.18.255.5

respectively we update the hosts file with the following lines:

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

63

172.18.255.0 namenode

172.18.255.1 secondarynamenode

172.18.255.2 jobtracker

172.18.255.3 slave01

172.18.255.4 slave02

172.18.255.5 slave03

4) SSH access

The user on the namenode and jobtracker must be able to connect to the

users on the slave machines via a password-less SSH login. We have to

upload the id_rsa.pub key from the namenode and jobtracker and copy

them to the authorized_keys on every slave machine as in the step 2.

5) Hadoop/SpatialHadoop upload

We must upload the Hadoop/SpatialHadoop on every machine in the

cluster. This can be done with the scp command. For example, to upload a

file called SpatialHadoop (located in your home folder) to the root user on

namenode:

$ scp SpatialHadoop root@namenode:[path]

The path is optional. If you do not place anything after the : the file will be

placed in the home folder.

6) Hadoop/SpatialHadoop configuration

Next we have to define on which machine Hadoop/SpatialHadoop will

start secondarynamenode in our multi-node cluster. To achieve this we

have to update the conf/masters file. On the namenode we update the

masters file with:

secondarynamenode

The conf/slaves file lists the hosts, one per line, where the Hadoop slave

daemons (DataNodes and TaskTrackers) will be run. On both namenode

and jobtracker nodes we must update the slaves file:

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

64

slave01

slave02

slave03

We must also change the configuration files conf/core-

site.xml, conf/mapred-site.xml and conf/hdfs-site.xml, conf/hadoop-

env.sh on all machines as follows:

conf/core-site.xml

First, we have to change the fs.default.name parameter (in conf/core-

site.xml), which specifies the NameNode host and port.

<property>

 <name>fs.default.name</name>

 <value>hdfs://namenode:9000</value>
 </property>

 conf/mapred-site.xml

Second, we have to change the mapred.job.tracker parameter

(in conf/mapred-site.xml), which specifies the JobTracker host and port.

<property>

<name>mapred.job.tracker</name>

<value>jobtracker:9001</value>
 </property>

 conf/hdfs-site.xml

Third, we change the dfs.replication parameter (in conf/hdfs-site.xml)

which specifies the default block replication. It defines how many

machines a single file should be replicated to before it becomes

available.

<property>

 <name>dfs.replication</name>

 <value>3</value>

 </property>

http://hadoop.apache.org/core/docs/current/hadoop-default.html#fs.default.name
http://hadoop.apache.org/core/docs/current/api/overview-summary.html
http://hadoop.apache.org/core/docs/current/hadoop-default.html#mapred.job.tracker
http://hadoop.apache.org/core/docs/current/api/org/apache/hadoop/mapred/JobTracker.html
http://hadoop.apache.org/core/docs/current/hadoop-default.html#dfs.replication

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

65

 conf/hadoop-env.sh

The only required environment variable we have to configure for Hadoop

is JAVA_HOME for example:

export JAVA_HOME=/usr/lib/jvm/java-6-sun

7) Disabling IPv6

One problem with IPv6 on Ubuntu is that using 0.0.0.0 for the various

networking-related Hadoop configuration options will result in Hadoop

binding to the IPv6 addresses of my Ubuntu box. We can disable IPv6 for

Hadoop/SpatialHadoop by adding the following line to conf/hadoop-env.sh:

export HADOOP_OPTS=-Djava.net.preferIPv4Stack=true

8) Formatting the HDFS filesystem via the NameNode

To format the filesystem, run the command the following command on

namenode:

$ bin/hadoop namenode –format

9) Starting the multi-node cluster

Starting the cluster is performed in two steps.

a) We begin with starting the HDFS daemons: the NameNode

daemon is started on namenode, and DataNode daemons

are started on all slaves:

$ bin/start-dfs.sh

b) Then we start the MapReduce daemons: the JobTracker is

started on jobtracker, and TaskTracker daemons are started

on all slaves:

$ bin/start-mapred.sh

10) Stopping the multi-node cluster

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

66

Like starting the cluster, stopping it is done in two steps. The workflow

however is the opposite of starting.

a) We begin with stopping the MapReduce daemons: the

JobTracker is stopped on jobtracker, and TaskTracker

daemons are stopped on all slaves:

$ bin/stop-mapred.sh

b) Then we stop the HDFS daemons: the NameNode daemon

is stopped on namenode, and DataNode daemons are

stopped on all slaves:

$ bin/stop-dfs.sh

